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Abstract

Behavioral biometrics can be used in different security applications like authentica-

tion, identification, etc. One of the trending applications is predicting future activities

of people and guessing whether they will engage in malicious activities in the future. In

this research, we study the possibility of predicting future activities and propose novel

methods for near-future activity prediction.

First, we study gait signals captured using smartphone accelerometer sensor and

build a model to predict a future gait signal. Activity recognition using body move-

ments captured from mobile phone sensors has been a major point of interest in recent

research. Data that is being continuously read from mobile sensors can be used to rec-

ognize user activity. We propose a model for predicting human body movements based

on the previous activity that has been read from sensors and continuously updating

our prediction as new data becomes available. Our results show that our model can

predict the future movement signal with a high accuracy that can contribute to several

applications in the area.

Second, we study keystroke acoustics and build a model for predicting future ac-

tivities of the users by recording their keystrokes audio. Using keystroke acoustics to

predict typed text has significant advantages, such as being recorded covertly from a dis-

tance and requiring no physical access to the computer system. Recently, some studies

have been done on keystroke acoustics, however, to the best of our knowledge none have

used them to predict adversarial activities. On a dataset of two million keystrokes con-

sisting of seven adversarial and one benign activity, we use a signal processing approach

to extract keystrokes from the audio and a clustering method to recover the typed let-

ters followed by a text recovery module to regenerate the typed words. Furthermore, we

use a neural network model to classify the benign and adversarial activities and achieve

significant results: (1) we extract individual keystroke sounds from the raw audio with



91% accuracy and recover words from audio recordings in a noisy environment with

71% average top-10 accuracy. (2) We classify adversarial activities with 93% to 98%

average accuracy under different operating scenarios.

Third, we study the correlation between the personality traits of users with their

keystroke and mouse dynamics. Even with the availability of multiple interfaces, such

as voice, touch, etc., keyboard and mouse remain the primary interfaces to a computer.

Any insights on the relation between keyboard and mouse dynamics with the personality

type of the users can provide foundations for various applications, such as advertise-

ment, social media, etc. We use a dataset of keystroke and mouse dynamics collected

from 104 users together with their responses to two personality tests to analyze how

their interaction with the computer relates to their personality. Our findings show that

there are considerable trends and patterns in keystroke and mouse dynamics that are

correlated with each personality type.
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Chapter 1

Introduction

1.1 Overview of the Dissertation

The use of behavioral biometrics for security applications has been a trending topic

in recent research. Behavioral biometrics refers to the patterns and activities which

are unique to the human activities and the way humans behave. In contrast, physi-

cal biometrics refers to the natural characteristics of people [1]. Behavioral biometrics

can be used for different applications including authentication, identification, and at-

tack detection. Among the applications of behavioral biometrics is to detect malicious

activities and adversarial behavior in computing environments. As defined by NIST,

malicious activities are "Activities, other than those authorized by or in accordance

with U.S. law, that seek to compromise or impair the confidentiality, integrity, or avail-

ability of computers, information or communications systems, networks, physical or

virtual infrastructure controlled by computers or information systems, or information

resident thereon." [2]. Examples of malicious activities include viruses and malwares,

activities that result in data loss and theft, scanning and attacking networks, spamming

emails, and disabling or removing security monitoring systems [3]. Furthermore, NIST
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defines adversary as "An entity that is not authorized to access or modify information,

or who works to defeat any protections afforded the information." [4]. In the scope of

our research, we define adversaries as the users of a computer system who intend to

interfere with the proper functioning of the system. Similar to the NIST definition, we

define malicious activities as the activities that the adversaries do to interfere with the

proper functioning of the system.

In this research, we study and analyze different aspects of adversarial activity de-

tection using behavioral biometrics through three projects:

First, we try to project the future activities of the users so we can predict whether

the user will engage in malicious activities in the future. To address this, we use

the motion sensors of smartphones, particularly the accelerometer sensor to analyze

the movement patterns of the user during different activities like walking and biking.

Then, we try to predict the future movements of the user based on the past movement

signal. Having the future movements signal of the user can help us predict whether

the user is likely to engage in malicious activities. The use of mobile phone motion

sensors has been addressed in several studies before, in applications like identification

and authentication. However, our goal is not to identify the user, but to get more

information about the future gait signal of the user.

Second, we try to predict adversarial activities without having access to the users’

devices or violating their privacy by installing software on their mobile phones to collect

their movement data. For this, we study other important biometric sensors which are

keystrokes and audio. We focus on predicting the activity of the user by listening to the

user’s typing sound. Research has shown different keys on a keyboard make different

sounds that are distinguishable and it is possible to recover the pressed keystrokes by

recording the typing session audio. So, we propose a model for recovering the typed

keys using their audio and then using the recovered text to predict the activity of
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the user and whether the user will engage in malicious activity in the near future by

assigning a threat score to the user’s activity session. We make this problem much

more challenging by using a noisy dataset in an environment similar to a real-world

office with several people and noises present.

Third, we do an empirical analysis of the effects of personal traits and character-

istics on the way the user interacts with the computer. More specifically, we use two

psychological tests to determine the personal characteristics of the users and analyze

the correlation between the personal traits of the user with the user’s typing dynamics.

As a result of this research, we have studied different aspects of behavioral bio-

metrics and how they can be used in detecting and predicting adversarial activities.

To summarize, our thesis statement is to find out how different behavioral biometrics

expose the vulnerability of the systems or the security threats against them.

1.2 Dissertation Roadmap

The rest of the dissertation is organized as follows: in chapter 2, we present our work on

human gait prediction using motion sensors and discuss it in detail. Chapter 3 discusses

our study on detecting threats against a system by analyzing the typing audio of its

users. Chapter 4 presents an analysis of the correlation between personal traits of

people and their behavior in interaction with a computer system. Finally, in chapter 5,

we conclude the thesis by summarizing our findings.
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Chapter 2

Looking Into Your Future: A

Continuous Human Gait Prediction

for Near Future

2.1 Introduction

The ability to predict the future actions of human beings is an interesting topic in foren-

sics research. Early prediction of future activities leads to the detection of malicious

and criminal activities. Many criminal activities are connected to human body move-

ments because a criminal usually walks and moves when committing a crime. Also, with

the emergence of the COVID-19 pandemic as one of today’s major problems, people

use masks in public and cover their faces which makes identification more challenging.

Body movements during walking activity can be used for analyzing the behavior and

the action of the criminals. Furthermore, being able to predict the future movements

of the human body, can give early information about the future activities of a criminal.

For example, by observing a gradual speed-up in the criminal’s walking behavior, we
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can predict that they may be escaping from something and take action to prevent it.

Our research addresses this problem by proposing a model for forecasting the future

gait signal of humans to be used for future activity detection.

The use of smartphone sensors has been an interesting topic of research during the

past years. The data that can be captured from smartphone sensors have been used

in different applications. For example, instead of traditional authentication methods

like passwords, pins, and fingerprints, smartphone sensor recordings have been used

to authenticate users based on their movements and behavioral activities. Behavioral

biometrics are harder to exploit and safer to implement in these applications. Another

application of these sensors is activity recognition. For example, smartphone sensors

can be used for counting the user’s steps or monitoring their health. Also, these sensors

can be used for applications in digital forensics. For example, by fingerprinting the

movements or walking patterns of a user, it is possible to predict their activity [5, 6],

find out if they are committing a crime [7], or identify a specific person [8, 9]. But

the challenge in this area is the availability of data. Because usually, we do not have

access to enough data from the users to be able to accurately identify them, predict

their activity, or analyze their behavior.

Neural networks have achieved notable results in predicting the future based on

observing a history of available data. Among those, Long Short-Term Memory (LSTM)

[10] has been used to forecast speech, handwriting, and other time-series data. In this

work, we build a prediction model based on a neural network that learns the user’s real-

time phone movements and predicts the near future movements. Our model generates

a future signal without having information about the activity which is being performed.

It is trained with data from several activities such as walking and biking and predicts

when similar activities are performed. For our application, we use data that is captured

using the smartphone accelerometer sensor when it is in the user’s pocket.
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Figure 2.1: Overview of the problem. Movement signal (x, y, z) is fed into the model
as input and the model generates the forecast of the future signal in the output.

The main contributions of this research are:

• A previously unexplored application of LSTM for forecasting the users’ movement

sequence while they perform different activities.

• Evaluating and comparing the performance of our movement prediction model for

multiple users and different activities with the user’s gait data captured using the

accelerometer sensor in the user’s smartphone. The analysis of the dataset of four

different activities performed by 9 different users shows that our prediction model

forecasts the near future movement signal with a small DTW distance between

the predicted and actual signal.

• Discussion on various applications of the user’s future movement prediction.
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2.2 Related Work

As surveyed by Saini et al. [7], several biometric sensors can be used for forensic

identification, from older technologies like fingerprint, palm print, voice, etc. to newer

emerging ones like gait, odor, and keystroke dynamics. The use of gait for forensic

identification has many advantages in comparison with other biometrics. First, most

people walk, and gait data can be collected from them. Second, gait information can

be collected non-intrusively, without the subjects knowing that it is being collected.

In contrast with biometrics like fingerprint that needs the subject to collaborate and

provide their finger for scanning, this is an important feature for gait that it does not

directly need the subject’s consent.

Multiple studies have addressed human identification using gait video data recorded

by CCTV cameras. Zhang et al. [8] use gait image data with a CNN model to identify

the subjects and correlate it with their demographic information. They do a thorough

study on multiple gait factors, compare their results with similar work, and achieve

better results in identification. While some of the vision-based methods mention and

address the several problems that come with person identification using images, includ-

ing different obstacles, camera angles, and clothing of the subjects, these models are

still vulnerable to the looks of the criminals in forensics applications, because they can

easily be modified and obscured by the subjects. Studies that use motion sensors to

capture gait patterns and identify subjects are less prone to these vulnerabilities be-

cause they are usually not affected by the change in the subject’s appearance, camera

placement, obstacles, etc.

Several studies have made use of biometric features of the human body using dif-

ferent sensors for security and privacy applications. One major point of study in this

area is the use of wearable and mobile sensors for continuously authenticating users
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to access systems. Continuous authentication uses time-series data captured from bio-

metric sensors to build a trust model on users as they continue interacting with the

system and more data is becoming available. Kumar et al. [11] collect movement data

from multiple users while performing different kinds of activities using smartphone sen-

sors and build a model to classify users for continuous authentication with unlabeled

data. Their classification results using various algorithms show that their model does

not work for every smartphone user when the collected data is for movements of arbi-

trary activity. Our proposed model uses similar unlabeled sensor readings to predict

the upcoming movements and may be able to improve their results because, with our

predictions, more data is available during each session. Kwapisz et al. [9] collect smart-

phone sensors data for different activities while the phone is in the user’s pocket and

propose a model to identify and authenticate the users based on their data. Their

model can identify the users in a sequence of activities as low as 10 seconds. Similarly,

they authenticate the user using 10 seconds of data. After identifying the user, since

the users’ activity patterns are known and the model is already trained with them, our

model can predict the 10 seconds of data that is needed for authentication based on

fewer observations, thus making decisions faster. Several other works [12, 13, 14, 15,

16] have studied continuous authentication systems using human biometrics which can

make use of our model for access to more data and potentially earlier authentication.

In another line of research, Guan et al. [5] design an LSTM-based model for activity

recognition. However, their model is limited to recognition and cannot foresee future

events and activities. Minor et al. [6] collect a dataset of users’ activities based on their

location during an extended amount of time using multiple smart-home sensors. They

propose a model for predicting activity occurrence times in the future. The difference

between their work and ours is that they label the data with the activity and use a

sequence of activities to predict future activities. Also, their model is based on static

data and is not designed to predict using live and continuous data readings. Cao et
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al. [17] focus on recognizing human activities based on partially observed streams of

videos. However, they are not filling up the missing parts of the videos. Our model

can contribute to filling the missing parts and improve the accuracy of the proposed

methods for activity recognition based on sensors.

Finally, most of the research in this area has been done for user identification or

activity recognition. Our research focuses on forecasting human movements based on

their history of activities and generating a predicted signal that is close to the actual

signal. One of the major concerns in continuous authentication and activity recognition

systems is to authenticate the user with maximum trust in a short amount of time.

However, the data is not available or not enough for decision-making until the user

does the activity for a certain amount of time. Our research can provide data for

a longer period of user activity based on a small amount of data and can make the

decision-making in authentication and activity recognition systems faster.

2.3 Methodology

In this section, we present the data we use for our studies and discuss its features and

characteristics. Then, we discuss the architecture of our proposed forecast model in

detail.

2.3.1 Data Description

For this study, we use Heterogeneity Activity Recognition Data Set [18] which is col-

lected by Stisen et al. and is publicly available at the UCI Machine Learning Repository

[19]. The data consists of accelerometer and gyroscope recordings collected from smart-

phone and smartwatch sensors for 9 users performing 6 actions during multiple sessions.
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Figure 2.2: Architecture of the proposed model for forecasting the future signal.

The actions during each session are walking, biking, stairs up, stairs down, sitting down,

and standing up and the sensor data has been read at 100Hz. We only use accelerom-

eter data and discard sitting down and standing up data which have limited samples

captured and do not have a significant variation to fit our model. Also, we only keep

x, y, and z values of the raw accelerometer data and discard all other features.

2.3.2 Model Architecture

LSTM neural networks are famous for their ability to remember and forecast time-

series data. They have been commonly used to forecast weather conditions [20] and

stock prices [21]. In biometrics, LSTM networks have been widely used for recognizing

speech [22] and handwriting [23] sequences. They are also used in natural language

processing systems for predicting context based on the sequence of words that appeared

in the past [24]. Another feature of LSTM is that it pays more attention to the most

recent data [24], so we may only feed the latest available readings for making predictions.

This leads to a faster and more accurate prediction that does not take old readings into

account. However, feeding only a few late actual readings will result in the predictions

being made based on small data that can be noisy, inaccurate, or inadequate. So, the

prediction will be unreliable.
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The properties of LSTM make it promising for our application. Thus, we develop an

LSTM neural network to predict the gait signal based on previous actual information

captured from users’ smartphones. Our training session starts by reading the first

activity session for each user. We scale the x, y, and z readings of accelerometer data

to fall in a fixed range. Each of our training samples consists of Ω readings as the input

data that is used for making the prediction and a single reading which is the result of

the prediction. So, the input data is a matrix of shape Ω × 3 where Ω is the number

of input samples and 3 is the size of the x, y, z vector. The output of the network is a

single vector of size 3 which is the predicted data for the next (Ω+ 1st) sample. As can

be seen in Fig. 2.2, inputs X1 to XΩ will be fed to the LSTM layer. Then, the network

generates a single output Y0. Afterwards, the next input XΩ+1 is fed to the network to

generate the next prediction Y1. New samples are continuously fed into the network as

they become available. We build the LSTM network with mean absolute error (MAE)

loss function and Adam optimizer [25]. We use a different session of user activity as

validation data for each training epoch.

The testing data includes a separate session of all 4 activities each continuously

done by every user. Each testing data instance is used to predict a single sample.

Furthermore, each predicted sample contributes to the prediction of the next sample.

When Ω = 10, let 10 actual samples be a1..a10. Then, the model is expected to predict

p111 which corresponds to a11 where p indicates a predicted sample and a indicates an

actual sample. While the data is captured at 100Hz, predicting a single sample only

indicates 0.01 seconds of activity. So, in a real-world scenario, it is needed to predict

more future samples. When the actual data is available, we can still use it for predicting

the next step ignoring past predictions, otherwise, we can mix the information we have

from actual and predicted data for our next prediction. In this case, if a11 is captured

and available, the model uses a2..a11 for predicting p112, otherwise, it uses a2, .., a10, p11

to generate p212. The subscript in p212 is the sequence number and the superscript is the
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prediction index which is used to show different predictions of a sample in the future

using different available data.

a1,a2, ..., a10 → p111

a2, a3, ..., a10, a11 → p112

a2, a3, ..., a10, p11 → p212

a3, a4, ..., a11, a12 → p113

a3, a4, ..., a11, p12 → p213

a3, a4, ..., p11, p12 → p313

...

(2.1)

When actual data is available, the model will add more weight to samples that are

predicted based on more actual samples and present an average:

P12 =
α1p112+α2p212

α1+α2
α1 > α2

P13 =
α1p113+α2p213+α3p313

α1+α2+α3
α1 > α2 > α3

...

Px =

n∑
i=1

αip
i
x

n∑
i=1

αi

α1 > ... > αn

(2.2)

2.4 Evaluation and Results

We performed a detailed analysis and evaluation of our prediction model using our

dataset (see Section 2.3.1) that consists of various activities performed by 9 different

users. We use one session of accelerometer data to test our model performance that

includes the data corresponding to all the activities performed by a user in our dataset.
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Table 2.1: Results of the KS two sample test for walking data, comparing the actual
and the predicted signal for each coordinate and user.

User Statistic P-value
x y z x y z

1 4.9E-1 4.8E-1 3.8E-1 5.6E-17 6.9E-16 1.3E-10
2 6.3E-1 6.1E-1 5.2E-1 9.2E-32 1.1E-28 1.8E-23
3 6.3E-1 7.5E-1 7.6E-1 6.7E-34 1.1E-45 3.7E-40
4 4.9E-1 3.8E-1 3.8E-1 1.9E-22 1.3E-12 2.8E-12
5 6.8E-1 6.4E-1 6.2E-1 7.3E-40 1.1E-33 8.0E-33
6 4.4E-1 4.3E-1 5.6E-1 1.5E-17 1.2E-14 3.5E-28
7 5.0E-1 9.0E-1 4.7E-1 3.5E-22 2.2E-68 8.8E-13
8 7.5E-1 2.9E-1 3.5E-1 1.8E-51 1.8E-7 7.4E-10
9 3.6E-1 3.1E-1 6.5E-1 1.7E-11 2.1E-7 1.5E-33
Avg 5.5E-1 5.3E-1 5.2E-1 1.9E-12 4.4E-8 9.7E-11

Table 2.2: Results of the KS two sample test for biking data, comparing the actual and
the predicted signal for each coordinate and user.

User Statistic P-value
x y z x y z

1 7.1E-1 3.4E-1 4.7E-1 3.6E-35 1.3E-6 2.5E-19
2 5.9E-1 4.8E-1 8.9E-1 1.1E-24 4.5E-19 5.8E-67
3 6.6E-1 4.6E-1 9.4E-1 1.5E-35 8.8E-19 5.2E-77
4 9.1E-1 4.7E-1 8.5E-1 5.5E-69 2.8E-20 1.2E-63
5 6.1E-1 5.6E-1 8.4E-1 5.5E-28 6.8E-20 3.4E-49
6 9.2E-1 5.3E-1 8.6E-1 3.5E-76 1.8E-25 1.2E-63
7 8.4E-1 3.8E-1 3.5E-1 2.1E-61 2.8E-12 1.8E-7
8 8.8E-1 3.9E-1 4.1E-1 3.3E-68 1.3E-12 2.4E-11
9 4.1E-1 6.0E-1 9.8E-1 4.1E-13 6.7E-27 2.6E-87
Avg 7.3E-1 4.7E-1 7.3E-1 4.6E-14 1.4E-7 2.0E-8
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Table 2.3: Results of the KS two sample test for stairs up data, comparing the actual
and the predicted signal for each coordinate and user.

User Statistic P-value
x y z x y z

1 5.7E-1 6.8E-1 3.9E-1 2.4E-28 1.3E-34 8.9E-12
2 5.7E-1 5.9E-1 5.3E-1 1.0E-27 2.0E-20 1.4E-22
3 8.7E-1 6.3E-1 9.5E-1 6.7E-66 1.8E-23 2.3E-75
4 5.0E-1 6.1E-1 4.8E-1 1.0E-21 3.4E-29 2.0E-20
5 5.6E-1 5.9E-1 6.3E-1 3.5E-28 3.4E-28 1.0E-26
6 4.6E-1 7.0E-1 7.3E-1 8.8E-19 6.0E-45 1.3E-47
7 5.0E-1 9.0E-1 4.7E-1 3.5E-22 2.2E-68 8.8E-13
8 8.0E-1 3.6E-1 4.0E-1 3.2E-52 4.1E-12 1.9E-10
9 5.7E-1 7.1E-1 4.5E-1 1.4E-25 1.7E-29 3.0E-14
Avg 6.0E-1 6.4E-1 5.6E-1 9.8E-2 4.5E-13 2.2E-11

Table 2.4: Results of the KS two sample test for stairs down data, comparing the actual
and the predicted signal for each coordinate and user.

User Statistic P-value
x y z x y z

1 4.2E-1 5.8E-1 3.7E-1 4.4E-13 2.7E-25 7.8E-11
2 7.3E-1 3.5E-1 7.0E-1 9.7E-40 3.8E-8 2.5E-40
3 3.9E-1 7.6E-1 8.5E-1 1.3E-12 3.2E-52 1.2E-63
4 4.4E-1 3.7E-1 3.15-1 2.9E-12 4.7E-9 1.2E-6
5 3.9E-1 8.4E-1 7.4E-1 2.4E-12 1.8E-57 1.5E-40
6 5.1E-1 6.1E-1 7.9E-1 2.4E-19 4.7E-32 7.6E-52
7 6.3E-1 7.9E-1 4.6E-1 8.0E-33 6.7E-53 1.8E-16
8 5.5E-1 3.0E-1 3.9E-1 7.0E-25 6.3E-7 1.9E-13
9 8.1E-1 3.5E-1 2.6E-1 1.5E-51 5.0E-11 4.0E-4
Avg 5.4E-1 5.5E-1 5.4E-1 7.9E-13 7.5E-8 4.5E-5
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Figure 2.3: Comparison of DTW distance between actual and predicted signals for 200
samples for all users during different activities. The predictions are made based on 50
previous samples of actual and prediction data mixed as discussed in Section 2.4.
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The model was trained using the rest of the sessions’ data (consisting of all the activi-

ties) that has on average 200000 samples that are captured during 33 minutes. Another

session’s data of the same size is used for the model validation. We use different LSTM

configurations to fit our model and present the results obtained using an optimal con-

figuration of the LSTM model having 50 neurons at one hidden layer, trained with 64

vector samples per batch during 100 epochs. We decided to choose this setting after

trying different configurations and finding out that our model performs the best with

our dataset using this configuration.

For this experiment, we train our model with Ω = 50 to predict one sample based on

50 previously seen samples. Furthermore, we extend our prediction to 200 samples in

the future using the method we discussed in Section 2.3.2. So, since the data has been

captured at 100Hz, we look at the past 0.5 seconds and predict the future 2 seconds

which is sufficient for most applications. We use a different session having an average

of 100000 samples per user indicating 16 minutes of captured activities as the test

data. Each testing vector consists of 50 samples as input and one as output. With

every 50 samples as input, to predict more than one future sample, we use already

predicted samples with previously available ones by moving the window of 50 input

samples. We use all the possible vectors of actual data and predicted data to generate

all the possible prediction vectors as shown in Eq. 2.1. For generating the prediction

signals, we use two windows. The first window moves on 200 samples of actual data

and the second window moves on 100 samples of actual data followed by predicted data

that is generated during each prediction. In each movement of the windows, we discard

the oldest sample. The first window only accepts actual data while the second window

starts with actual data and will discard actual data and accept predicted data during

each prediction. Here is the algorithm for this scenario:

1. Add 50 samples from actual data to Window1
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2. Let Window2=Window1

3. Predict a new sample based on Window2

4. Remove the first (oldest) sample from Window2

5. Append the new predicted sample to Window2

6. Repeat step 3 to 5 for 100 times

7. Remove the first (oldest) sample from Window1

8. Append next sample from actual data to Window1

9. Repeat steps 2 to 8 for 200 times

The above algorithm results in vectors of predicted values based on actual data and

a mix of actual data and predicted data. We use Eq. 2.2 to calculate the average for

each sample. Setting α1 = 1 and all other coefficients to zero results in the case that

all the predictions have been made based on all actual data is far from the real-world

scenario. So, we assume the predicted samples from all actual data are more accurate, if

available, but we also give weights to other predicted samples which are not completely

made based on actual data. Hence, we set α1 = n, α2 = n − 1, α3 = n − 2, ..., αn = 1

paying more attention to the predicted samples made based on actual data.

The final result of the test will be a vector of 200 predicted samples. We use the

corresponding 200 samples from the actual signal to evaluate the performance of our

predictor. To present a measure for the distance between actual and prediction signals,

we use the Dynamic Time Warping (DTW) algorithm and calculate the distance be-

tween each x, y, z pairs of signals. The significant feature of DTW distance is that

when comparing two signals distributed over time, it can ignore the differences that are

caused by time. In our case, DTW can ignore gait speed and acceleration differences

between two users. So, when comparing the signals using DTW, we can assume the

users have performed the same amount of activity (e.g. steps for walking) in the period

we are using for comparison (200 samples). We also perform a Kolmogorov-Smirnov
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(KS) test on our data to examine the statistical significance of the signals.

2.4.1 DTW Analysis

We run the test for all 9 users with walking, biking, stairs up, and stairs down data

with several batches of 200 continuous samples from the activity signals. Then, we

calculate the DTW distance between the actual and predicted signal for each test and

each coordinate. Finally, we calculate the average of each coordinate from the results

for every user during each activity and present the results in Fig. 2.3.

The results show that the DTW falls in a maximum distance of 1.30 for x, 1.35 for

y, and 2.30 for z while according to our data the maximum possible ranges for x, y, and

z are 40, 30, and 30 respectively after removing the outliers. The z coordinate shows

the highest average distance, while x and y are significantly lower. So, the model may

be tuned to pay more attention to z.

Among different activities, the model has been most successful in predicting the

biking signal. Among different users, user 5 shows the highest average distance in all

coordinates.

2.4.2 Statistical Analysis of the Predicted Signal

We use KS two-sample test to compare the actual and predicted signals and estimate

how the signals follow each other. For each test, we calculate the test statistic value

(D) and P-value. For 200 samples at a 5% significance level, the critical value Dα is

0.136. The null hypothesis says that the actual and predicted signals are from the same

distribution. Our test results as shown in Tables 2.1-2.4 indicate that 99% of statistic

values are over the critical value. Also, the P-values are significantly small. So, the
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test results reject the null hypothesis. The test with a 1% significance level leads to the

same conclusion. However, we cannot rely on the outcome of the KS two-sample test for

our experiment, because it calculates the maximum difference between the cumulative

distribution function (CDF) of the actual and the predicted signal, and CDF is not

reflective of the time sequence pattern due to the variations in gait speed.

2.5 Summary

We proposed a model for predicting future activity signal for accelerometer data cap-

tured from a smartphone during different activities and executed multiple experiments

to evaluate our model. Our results show that our model is capable of generating the

future movement signal with significant accuracy.

Following our study on gait biometrics, we are also interested to explore another cat-

egory of behavioral biometrics related to human computer interaction. So, in the next

chapter, we study user interactions with input devices to a computer using keystroke

sounds. Furthermore, we study the security applications of behavioral biometrics and

build a model to examine the threats against a computer system using keystrokes au-

dio.
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Chapter 3

Adversarial Activity Detection Using

Keystroke Acoustics

3.1 Introduction

Keystroke acoustics can be used to detect adversarial activities and threats against a

system by monitoring users’ behavior without interrupting their interaction with the

computer. There is no need to install specific software or hardware, such as a keylogger

on the users’ machines to monitor their activity. Therefore, the typing activity of a

malicious attacker may be monitored covertly without the attacker’s awareness. So, it

is less likely that the attacker takes preventive measures to evade detection. In Section

3.4.2, we discuss how our method compares with installing a simple keylogger on the

users’ machines which is one of the traditional monitoring methods.

In this research, we propose a model consisting of multiple components that gets the

audio data of the users’ typing sessions as input and detects the type of their activity

and the threat level against the system as output. As depicted in Fig. 3.1, we use audio
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Table 3.1: Comparison of the prior work on text recovery using keystrokes audio with
our work.

Research Data Quality Data Type
Data
Collection
Method

Recovery
Method Mics

Asonov & Agrawal [26] Clean & Noisy Random Fixed Keys 2
Zhuang et al. [27] Moderate Noise Benign Fixed Words 1
Berger et al. [28] Clean Benign Fixed Words 1
Liu et al. [29] Moderate Noise Random Random Keys 2
Roth et al. [30, 31] Clean & Noisy Benign Free & Fixed N/A 1
Campagno et al. [32] Clean & Noisy Random Fixed Keys 1

This Work Very Noisy Adversarial
& Benign Free Words 2

signals collected using multiple recording devices to recover the keystrokes and typed

words of the users. Then, we develop an LSTM-based neural network model to identify

the user’s activity type based on the typed words. Finally, we use the user’s activity

and its preassigned threat level to generate a threat score for the session.

3.1.1 Related Work

Prior studies have proposed multiple approaches for recovering letters and words using

audio recordings of typing sessions. In a classic approach to this problem, Asonov and

Agrawal [26] propose a method to extract individual keystroke sounds from raw audio

using amplitude threshold and signal peaks. Then, they extract FFT (Fast Fourier

Transform) coefficients from each keystroke as a feature vector and train a neural

network to detect the keystrokes. Zhuang et al. [27] improve Asonov and Agrawal’s

work using an unsupervised approach instead of a labeled training set. They use Mel-

frequency Cepstral Coefficients (MFCC) instead of FFT coefficients. Berger et al. [28]

further improve the previous work by proposing a dictionary attack to extract words

based on the keystroke audio recordings and achieve 73% overall accuracy for recover-

ing the words. However, their approach is not applicable for recovering random text
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like passwords. In another effort, Liu et al. [29] combine the time of arrival and acous-

tic features of keystrokes to extract individual keystrokes from audio recordings with a

mobile phone. They recover 97% of the text without training or depending on linguistic

context. Campagno et al. [32] propose Skype & Type which focuses on recovering the

keystrokes using audio transmitted over VoIP applications. They use a peak detection

method for individual keystroke sound extraction and MFCC features for classifica-

tion. In another noteworthy work, Wang et al. [33] study the detection of combined

keystrokes using acoustic signals.

Another application that has been studied by the prior work is attack detection

and classification using keystrokes. Belman et al. [34] extract several features from

keystroke dynamics of benign and malicious users and train conventional classifiers for

adversarial activity detection. However, their method assumes that they have access to

keystroke dynamics, including the exact pressed keys and the timing of keystrokes. In

our method, we use audio recordings instead of keystroke dynamics and pay attention

to the context of the typed text.

Furthermore, in another series of studies, Roth et al. [30, 31] use keystroke audio

emanations for user identification. They use a threshold-based method and MFCC

features for building an authentication model based on keystroke acoustics.

3.2 The Significance of Our Work

Although prior studies have addressed the use of keystroke acoustics for various appli-

cations, none have used them for malicious activity and threat-level detection to the

extent of our knowledge. As summarized in Table 3.1, this study stands out from prior

work and contributes to the research in multiple aspects:
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Table 3.2: A comparison between the characteristics of the attack and the benign
dataset. The numbers show the averages for the entire dataset.

Attack Benign

Duration 4884.62s 2915.32s
Enters 160.21 68.57
Enters/hour 119.5 85.44
Letters/Sentence 11.18 65.28
Words/Sentence 2.65 13.1
Words in Dict 21.46% 31.59%

• We present a model for text recovery from raw audio data of users’ typing ses-

sions, especially suited to noisy environments, such as where multiple people are

present in a room (similar to a real-world office environment). Our results on a

particularly challenging dataset with multiple inaudible keystrokes and a noisy

environment show that our text recovery model is able to recover the typed words

with an average 71% top-10 accuracy.

• We show that it is possible to classify a sequence of typed words which are recov-

ered from audio into 8 different activities with up to 98.07% accuracy by proposing

an LSTM-based model which is unique for our application. While the number of

activities is limited to our dataset, our work is easily extendable to other activi-

ties.

• Our large dataset of nearly two million keystrokes is collected during both adver-

sarial and benign sessions from 103 and 117 users respectively. The users have

interacted with the keyboard freely, without having to type certain fixed words

several times in contrast to most of the prior studies.

• Although other studies have collected and used data from noisy environments, as

discussed in Section 3.5.1, the amount of noise in our data is significantly high,

making the text recovery task very challenging.
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3.3 Typing Differences in Adversarial and Benign En-

vironments

User interaction with the input devices varies during different activities. In benign

activities like web browsing, email writing, etc., the usage of specific keys and the

overall usage of the keyboard are different. For example, the use of the enter key is

more frequent in adversarial activities because the commands are separated by the

enter key and are shorter than sentences typed in a benign session. Also, the use of

special characters is more frequent in adversarial activities and dictionary words appear

more in benign activities. Table 3.2 shows a few statistical differences between the two

datasets. The average number of enters per hour is higher for the attack sessions

which can show higher terminal usage with shorter commands. The average numbers of

letters and words are higher for the benign activity showing longer words and sentences.

Also, a higher percentage of the words typed during the benign session appear in an

English dictionary. Therefore, several features can distinguish between the benign and

adversarial activities as studied in [34]. However, these features may misclassify benign

terminal sessions with a lot of safe commands, resulting in a high false-positive rate.

Also, they cannot distinguish between different types of adversarial activities.

Benign and adversarial environments are also different in terms of the typed words

and commands. Some of the commands typed in a terminal are more dangerous in

nature. For example, "sudo" is used to gain administrative privileges and is more

common in malicious activities than daily tasks. Similarly, the commands for creating

filesystems, installing applications, etc. can be more dangerous than a simple execution

of "ls" to list the files in a directory.
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3.3.1 How These Differences Are Useful in Our Application?

The presence of specific words which are unique to one environment and are absent from

another, helps us train a neural network model to distinguish between the adversarial

and benign activities as discussed in Section 3.7. Since a single malicious command may

not be sufficient for evaluating the threat level of the entire typing session, we assign

a threat level to each activity instead of each command. Our model learns to classify

a sequence of words into an activity. Then, we use the threat level of the activity to

detect the maliciousness level of the entire typing session (Section 3.7.2).

3.4 Threat Model and Adversarial Capabilities

In our application, we assume that we have already identified the user and their input

devices. The user can be identified using methods based on behavioral biometrics or

through classic user name/password authentication. So, we are aware of the user ac-

cess privileges in the system and assume the adversary has limited access to a system,

network, or sensitive data for a legitimate purpose and can use a Linux terminal to ex-

ploit the system and a web browser to search for attack instructions and downloading

malware. However, we do not make any assumptions about the presence of any vul-

nerabilities in the system. The adversary works with a mouse and a keyboard and can

recognize if any eavesdropping or surveillance software or hardware have been directly

installed on the machine. The only information captured is the environment sound.

3.4.1 Real World Attack Scenario

This work addresses any attack that can be done in public spaces with a keyboard

on a computer. A routine scenario can be an employee working with a computer in
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an office or a college student using a public computer available on campus. After

authentication, the user will have limited access to the computer and the network. The

type of the keyboard is fixed for the specific public computer and the user is identified

through authentication. A voice recorder has been set up in the room which records

the environment audio and broadcasts it to a server that runs our model for threat level

evaluation.

3.4.2 Using Keystroke Acoustics Versus Keylogger

A common eavesdropping method to detect potentially harmful behavior is to install

software or hardware keyloggers on the users’ machines. The keylogger reads all the

keystrokes and broadcasts them to a server for processing. However, audio recording

can be done covertly and from distance without physical access to the computer and

the user’s awareness. So, it is more practical in the real-world scenario.

3.5 Description of Benign and Adversarial Datasets

Following Institutional Review Board (IRB) approval, two separate datasets have been

collected in our lab. In both, several modalities have been collected from a variety of

participants. The SU-AIS BBMAS [35] dataset is collected from the participants during

their everyday routines which we consider as benign activity. The second dataset is

collected from participants while performing predefined malicious tasks on a computer

to gain access to a remote machine and extract sensitive information. This dataset

will be published and made publicly available in IEEE Dataport by our lab. In both

datasets, the user has used a standard computer QWERTY keyboard (Dell KB212-B).

Two devices have been used for recording the audio: a Blue Yeti Professional Wired
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Table 3.3: Description of activities performed by the users in the adversarial and benign
datasets, example command that may be entered by the user, and their threat level.
Example commands only show one method of doing a specific task and the participants
were asked to use their own method for fulfilling the task.

Welcome
Activity

Description Opening a terminal on a Linux machine.
Example Use GUI, CTRL+T, gnome-terminal, xterm
Threat Level Low

Network
Discovery

Description Identifying IP addresses and open ports.
Example nmap -sV 192.0.1.1/24
Threat Level Medium

Target
Identification

Description Identifying an attack to access a vulnerable machine.
Example ssh 192.0.1.3
Threat Level Medium

Password
Dictionary
Attack

Description Cracking a user/pass of the remote machine.
Example hydra –L user.txt –P pass.txt 192.0.1.3 ssh
Threat Level High

Privilege
Escalation

Description Obtaining root access to the remote machine.
Example sudo, chown, chmod, scp
Threat Level High

Data
Exfiltration

Description Downloading sensitive files from the remote machine.
Example chown, chmod, scp
Threat Level High

Credential
Stealing

Description Accessing the remote machine by stealing credentials.
Example ssh -i id_rsa jesse@192.0.1.12
Threat Level High

Benign
Description Daily tasks like online shopping, note-taking, etc.
Example Arbitrary benign command/text
Threat Level Low/Benign
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Table 3.4: The number of audible, inaudible, and noisy keystroke sounds out of 100
randomly selected ones for 5 randomly selected users from the dataset as discussed in
Section 3.5.1.

User Audible Inaudible Noisy

1 39 57 4
2 50 43 7
3 56 42 2
4 71 25 4
5 65 32 3

Microphone which was placed 1 inch away from the top of the keyboard and a Samsung

Galaxy S6 smartphone which was placed 1 foot to the left of the keyboard.

The benign data is collected from 117 participants during regular daily tasks like

text transcription, online shopping, note-taking, and typing the answers to a set of

questions. Most of the participants were students with computer science or related

majors with ages of 19 to 35 years. Among the participants 72 were male and 45 were

female. The adversarial dataset has been collected from 103 students in the age range of

19-46 years among which 22 were female and 81 were male, mostly with computer science

background during a sequence of activities that result in discovering a vulnerability in

a remote machine, getting access to it, and extracting information from it. The tasks

are defined in a way to reproduce a regular procedure for a common form of attack in a

network. The users were asked to do 7 different activities to eventually succeed in the

attack. They were given a Linux machine with a web browser to search for information

and tutorials to aid them to fulfill the requirements of the tasks. The users were free

to use their method for completing the tasks and were not asked to follow a fixed set

of instructions or commands. Among the available data, we use keystrokes data and

audio data which is recorded using a standalone microphone and a mobile phone in this

work. The activities and their threat level against the system which are manually set

by us are described in detail in Table 3.3.
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3.5.1 Noisiness of the Data

Our data is collected in a lab room with the presence of other researchers and an

instructor directing the participant to do the tasks and their voice is also recorded in

the background. Based on the typing behavior of the user, some keys may be pressed

gently without making any audible sound to be recorded. Furthermore, our data is

collected using simple and cheap equipment like mobile phones. Therefore, several

keystroke sounds are inaudible or overlap with human voice and background noise. To

evaluate the quality of the data, we use the exact keystrokes times to extract their sound

from the session audio. Then, we listen to 100 random keystroke sounds from 5 users

manually to see if they are audible by the human ear. We refer to a keystroke sound as

inaudible if nothing can be heard from the audio and refer to it as noisy if some noise

from the environment such as human voice talking in the background overlaps with the

keystroke sound in a way it cannot be heard and recognized by the human ear. We

show the statistics for this experiment in Table 3.4.

3.6 Text Extraction from Audio

As shown in Fig. 3.1, to recover the typed text from audio, first we preprocess the raw

audio signal to improve the quality and reduce the noise. Then, we extract individual

keystroke sounds from it. Next, we generate features for each keystroke audio signal,

remove the outliers, and cluster them into a set of audio letters. Finally, we present

a mathematical model to recover the words using the audio alphabet and use a spell-

checking method to fix the errors in the recovered words. In this section, we go over

each component in detail. Since the audio recordings from the benign dataset are not

available, we only use the attack dataset for extracting text from audio.
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3.6.1 Audio Signal Preprocessing by Signal Mixing and Noise

Reduction

We process and clean the audio file by mixing audio data from two separate record-

ing devices to improve the signal quality. In summary, these are the steps taken to

preprocess the raw audio:

• Matching and time synchronizing the recordings from the microphone and the

smartphone. Because the exact start times of the recordings are available in the

dataset and both tracks have been recorded with equal sample rates, there is

no need for up-sampling or down-sampling and the effect of distance from the

keyboard is diminished.

• Mixing both signals into one stereo audio track using Sound eXchange (SoX) mix-

ing tool [36].

• Obtaining a noise profile to reduce the background noise such as human voice,

fan, door sound, etc.

• Using a generic spectral noise gating algorithm with the noise profile to reduce

the background noise in the audio.

• Applying voice reduction and isolation filter using Audacity [37] tool to remove

the human voices.

• Normalizing the amplitude using two passes of ffmpeg loudnorm filter with EBU

R 128 [38] algorithm.
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Touch Event

Press Event

Release Event

Figure 3.2: Example of an audio signal for a single keystroke. Each keystroke event
consists of a touch, a press, and a release event. The horizontal axis shows time in
seconds and the vertical axis shows signal amplitude which is scaled between -1 and 1.

3.6.2 Audio Signal Segmentation Into Individual Keystroke Sounds

As shown in Fig. 3.2, each keystroke event is composed of three stages: touch, press,

and release [27]. Since the most distinguishable and significant peak of the signal is

the press event, we use it for detecting the keystroke signal. We use a similar approach

to prior research [29, 27, 30, 31] with different parameters and modifications to fit our

data and application. First, we calculate FFT coefficients for small sliding windows

of 10ms. With a 44100Hz signal sample rate, we slide the window in steps of 0.02ms.

Then, we get the sum of FFT coefficients for each window as the signal energy and

calculate the 99% percentile of the resulting sum values from all the windows. Finally,

we accept the windows greater than the 99% percentile as peaks. As a result, each

keystroke sound will be detected multiple times. To avoid this, we use a threshold

of 113ms which is obtained through experiments as the minimum delay between two
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press events. We take the past 10ms and the future 90ms of the peak from the signal

to include the touch event, assuming each keystroke event takes 100ms. The 100ms

keystroke delay has shown to be sufficient for our purpose in prior research [26, 27, 29].

To further improve the accuracy of our method, we use an amplitude and a frequency

filter to accept the detected keystroke sounds. Based on experiments, a minimum cutoff

of 12000 for amplitude and a maximum cutoff of 150Hz for frequency achieve the best

results.

This process is only used with the testing data because the the ground truth (exact

keystroke timings) for all the keystrokes is available in the dataset. Thus, instead

of using this process to extract the individual keystroke sounds, we directly use the

timings to extract them from the preprocessed audio and extend them to 100ms.

3.6.3 Using MFCCs as Audio Features

MFCCs have been frequently used as features in speech recognition applications [39].

Research has shown that they can also be effective for recovering keystrokes using their

sound [30, 31, 33, 29, 27]. Thus, we generate MFCCs as features for each individual

keystroke sound. We use a window length of 10ms and 2.5ms step between windows,

32 filters in the filter bank, and 16 coefficients with a frequency range of 400-14000Hz.

The shape of the MFCC feature set will be 30x13 for each keystroke sound which we

flatten to get a linear feature vector of length 390.

3.6.4 Removing Inaudible and Noisy Keystrokes

As mentioned in Section 3.5.1, there are several keystrokes that have not made any

audible sound and are not recorded. We show the signals for a few samples randomly
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selected from keystroke sounds in Fig. 3.3. The signals that look similar to the one we

have shown in Fig. 3.2 are usually recorded correctly and the signals that are not in

the same shape are from the keypresses which have been pressed very gently and have

not made any audible sound to be recorded by the devices. So, we need to remove them

from our training set as outliers. To do this, after generating the feature vectors, we

use the K-Means clustering algorithm [40] to split keystroke sounds into two clusters.

As a result, one cluster includes all the correctly recorded keystroke sounds and the

other cluster includes noisy or inaudible ones. For each cluster, we calculate the mean

of the absolute amplitude values. The cluster with the lower mean contains the outliers

which we remove from the data.

3.6.5 Clustering Keystroke Sounds Into Audio Alphabet

The sound a keystroke makes is not always unique. So, similar to [30, 31], we de-

fine an audio alphabet containing a set of audio letters. Our audio alphabet size is

larger than the number of keys, allowing each key to be assigned to different audio let-

ters. We use the Gaussian Mixture clustering algorithm [41] (implemented in Python

sklearn.mixture.GaussianMixture package) to assign keystroke sounds into 104 differ-

ent clusters (the number of clusters is chosen through experiments reported in Section

3.8.3). We only use alphanumeric, special character, space, and enter keys (total 52

keys) for generating the clusters using training data. For each user, the training data

consists of individual keystroke sounds extracted from the audio recordings using the

ground truth timings and values available in the dataset.
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Table 3.5: (a) Example of 22 keystroke sounds clustered into 8 audio letters. (b) The
value of h′

kcj
probability for each letter. (c) Assigned keys to each cluster during the

training session, sorted by h′
kcj

probability.
The values for the clusters which are not among the example query discussed in Section
3.6.6 are not shown in (b) and (c).

(a)

Cluster Keys
c1 d b d d
c2 e b b e
c3 e a a e c
c4 b a a
c5 a c
c6 c c
c7 a
c8 d

(b)

Key (k) Probability
h′
kc1

h′
kc2

h′
kc3

a 0 0 2/5
b 1/4 1/2 0
c 0 0 1/5
d 3/4 0 0
e 0 1/2 2/5

(c)

Cluster Keys
c1 d b
c2 b e
c3 a e c

e
(0.5)

b
(0.5)

d
(0.75)

b
(0.25)a

(0.4)

c
(0.2)

e
(0.4)

C2 C3 C1

bed
bad
bcd
beb
bab
bcb
eed
ead
ecd
eeb
eab
ecb

cab

Output

ZU

Erro
r c

orr
ect

ion

Generated Words

q1 q2 q3

Figure 3.4: Generating words for the query Q = {q1, q2, q3} clustered into Y =
{c2, c3, c1} where each ci is a letter from the audio alphabet (clusters). All the pos-
sible permutations from the clusters are generated and then sorted by ZU which shows
the correctness probability of the word. "bad" and "bed" are already correct English
words. "bab" and "eab" will be corrected to "cab" by the error correction module.
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3.6.6 Text Recovery Using Audio Alphabet

We build a mathematical model based on the probabilities that we have to recover the

typed words. Let T = {t1, t2, ..., tn} be the set of all the training samples, the probability

that keystroke sound ti being assigned to cluster cj calculated by the Gaussian Mixture

clustering method be gcj ti , the total number of training samples assigned to cluster cj

be Nj , and A = {a1, a2, ..., an} be the set of all keystroke sounds (ti’s) that represent

key k. We calculate hkcj which is the probability of key k in cluster cj :

hkcj = p(k|cj) =

n∑
i=1

gcjai

Nj

(3.1)

For each ai representing k, Gaussian Mixture clustering method generates a vector

vai
= {gc1ai

, gc2ai
, ..., gcjai

}. We take the maximum gcjai
for each ai, set it to 1, and set

the rest to zero. So, we assign each keystroke sound to only one cluster:

J = {j |gcjai
= max(vai

)} (3.2)

Gcjai
=


0 j ̸= J

1 j = J

(3.3)

Then, we define h′
kcj

and Hkcj probabilities:

N ′
j =

n∑
i=1

Gcj ti (3.4)

h′
kcj

=

n∑
i=1

Gcjai

N ′
j

(3.5)

Hkcj = max(hkcj , h
′
kcj

) (3.6)
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We sort the keys in each cluster by Hkcj . So, the keys in cluster cj will be Kcj =

{k1, k2, ..., k52} where Hk1cj ≥ Hk2cj ≥ ... ≥ Hk52cj . Note that samples representing some

keys will never be assigned to some of the clusters and the majority of h probabilities

will be zero resulting in h = h′ for most of the samples and clusters.

Now, if we have a query of keystroke sounds Q = {q1, q2, ..., qm} where each qi is

a keystroke sound sample from a testing set, we use the Gaussian Mixture clustering

method with the already trained model to classify each qi to the clusters. Then, we

only take the cluster cj with the highest Hcjqi for each qi. As a result, we assign

each qi to only one cluster. So we have a set of clusters Y = {y1, y2, ..., ym} where

q1 ∈ y1, q2 ∈ y2, ..., qm ∈ ym. Now, we generate all the permutations of keys from the

clusters, taking one key from each cluster, starting with the key with the highest Hkcj

in each cluster cj .

We use a dictionary of English words [42] combined with a list of Linux commands

and common words typed in terminals [43]. If we have ki representing letter li, we

define dki = p(li|li−1). If the number of times li and li−1 appear sequentially in all the

words in the dictionary is j and the number of all occurrences of li in the dictionary is

L, we calculate dki = j/L.

Let U = k1, k2, ..., km be a permutation of keys (word) where ki is selected from ci.

We define:

ZU =
m∏
i=1

αdki + βHkici

α + β
(3.7)

ZU represents the correctness probability of a permutation retrieved from a query of

clusters based on the probability of the letters in the dictionary (d) and the probability

of each key in each cluster (H). α and β are factors for changing the weight of d and

H and are manually set through experiments (Section 3.8.3). We calculate ZU for each

permutation and sort them based on ZU . As a result, our model generates words that
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are recovered from the query of keystroke sounds sorted by their correctness probability.

A Simplified Example

We show an example of the training and testing procedure with a limited number of

samples. To minimize the number of possible permutations generated from a query

of clusters, we assume that each training sample is only assigned to one cluster, so

Hkcj = h′
kcj

. Let T = {t1, ..., t22} and T ′ = {l1, ..., l22} where T contains all the

keystroke sounds in the training set and T ′ is the set of letters represented by the

keystroke sounds in T and ln is the key represented by tn. In our example, we set

T ′ = {b, d, d, d, e, b, a, e, c, b, c, a, b, a, e, a, a, c, e, c, a, d} and assume there are 8 clusters

and each sample has been assigned to one of the clusters as shown in Table 3.5a. Also,

we have query Q = {q1, q2, q3} clustered into Y = {c2, c3, c1}. Then, we calculate h′
kcj

for all keys in all clusters which shows the probability of key k, if cluster cj is selected.

We show the calculated h′ values in Table 3.5b for c1, c2, c3 because these are the only

clusters that have appeared in our sample query. By sorting the keys in each cluster

based on h′, we get the clusters in Table 3.5c. Then, we generate all the permutations

of keys as shown in Fig. 3.4. Next, we calculate ZU based on dk and h′. For simplicity,

we just illustrate the ZU values for each permutation in Fig. 3.4 as the calculations are

redundant and straightforward.

3.6.7 Error Correction using Dictionary

Having a set of words sorted by ZU , we still recover words that are not completely

correct or not in the dictionary. So, after generating the possible words, we use a spell-

checking algorithm [44] with the same dictionaries used in the text recovery module

[42, 43]. We filter out the words with numbers and special characters using regular
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Word Sequence
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cd home root sudo see hidden files mv home cd cd pwd scp

Figure 3.5: An example of a sequence of words typed by one of the users during activity
6. Red shows higher probability while green indicates lower probability. (See Section
3.7.1)

expressions and do not pass them to this module.

3.7 Adversarial Activity Detection and Classification

Among the different prominent architectures of Artificial Neural Networks (ANNs) that

have been implemented as software and hardware components [45], recurrent neural net-

works are the preferred methods of learning from temporally correlated datasets. Long

Short-Term Memory (LSTM) is a variant of RNN that has shown notable performance

in the classification of sequential data. Hence, we propose an LSTM-based model to

classify each sequence of words into one of the 8 classes. To build the training dataset,

first, we get all the keystrokes from all the users and take each sequential set of keys
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Figure 3.6: Data flow over N time-steps with inputs x1, x2, xN (words) for the en-
coder/decoder LSTM architecture as discussed in Section 3.7.

(separated by space or enter) as a typed word. Then, we use every n sequential words

for each activity of each user as one data sample. To feed the sequence into the network,

we fix its length to n words. When n words are not available, we pad the sequence with

zeros and when a sequence is longer than n words, we break it into segments of n words.

As a result, we have fixed-length sequences of words and their corresponding activity

to be used for training the model. Also, we get all the words from the dataset and

sort them based on their frequency. Then, we assign an index to each word, with the

most frequent word indexed with 1. The procedure for classifying a sample sequence of

words has been demonstrated in Fig. 3.5.

Fig. 3.6 shows the flow of the data across three time steps. Similar to the previous

work on time series data classification [46, 47], each input word x is fed to an embedding

layer (EMB) to be represented in a lower-dimensional space. Then, the word embedding

is passed to an LSTM layer that performs the main task of classification using Adam

optimizer [25]. Pavllo et al. [48], show that regularizing the model by adding another

network to form an encoder-decoder architecture that learns to reconstruct the input

data increases the robustness and generalization capability of the LSTM layer and
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helps the model to learn and represent the features of the data in a more effective way.

So, we add such a component to our network. The latent state of the LSTM, which

is represented by ht in Fig. 3.6, is shared among the encoder and the decoder. For

the classification task, h is passed through a fully connected network (FCN) with one

hidden layer. During the training process, h is also used for reconstruction of the input

data x̂t.

Eq. 3.8 shows the loss function that is used for training the model. LR denotes the

loss value obtained for the reconstruction of input in the output of the decoder and LC

represents the classification loss, which is calculated by comparing the expected output

with the predicted class from the model. α and β are coefficients for controlling the

effect of LC and LR on the total loss.

Ltotal = αLC(y, ŷ) + βLR(x, x̂) (3.8)

3.7.1 Examples of Adversarial Activity Detection using Typed

Sentences

We obtain a set of sequentially typed words from the attack dataset: {how, to, scan,

open, ports, in, kali}

The set of words will be embedded into word indexes. In this example, we only

consider the top 1000 words, so, the word "ports" is embedded to zero because it is not

among the top 1000 words in the dataset: {121, 12, 720, 150, 0 ,10, 990}

Finally, the adversarial activity probability vector will be generated by the attack

detection module: {0.04, 0.26, 0.15, 0.11, 0.09, 0.07, 0.09, 0.19}

As can be seen, the typed sentence will be classified to the network discovery ac-
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tivity (Table 3.3) with the highest probability. Also, the benign activity probability is

relatively high which is expected as the typed sentence is not necessarily threatening.

Similarly, we show an example of a sentence taken from the benign dataset. Here, we

also show the sentence before error correction, so, the effect of error correction module

can be seen: {slice, it, and, then, place, a, layer, of, tomato, on, top, of, the, laye, rof,

onion} → {slice, it, and, then, place, a, layer, of, tomato, on, top, of, the, layer, of,

onion} → {818, 17, 5, 21, 220, 4, 561, 14, 0, 16, 41, 14, 6, 561, 14, 0} → {0.06, 0.00,

0.00, 0.00, 0.04, 0.01, 0.00, 0.89}

3.7.2 Quantifying The Threat Level

The output of the activity classification network is a probability vector v = {p1, p2, ..., p8}

indicating the probability that word sequence B belongs to each activity a1 to a8 re-

spectively. We also define D = {d1, d2, ..., d8} where di indicates the threat level for

each activity and is manually set. Since d8 represents the benign activity, we set it

to a small value ϵ. The rest of the d values are set on a scale of 0 to 1 based on our

evaluation of the maliciousness of each activity as we have defined them where 0 shows

a benign activity and 1 shows a highly malicious activity. Finally, we define X as a

measure for the threat level of B:

X = d1p1 + d2p2 + ... + d8p8 (3.9)

3.7.3 Continuous Real-Time Monitoring of the Threat Level

After calculating the threat level score in each time step, we use a separate scoring

model as shown in Eq. 3.10 to continuously update the threat level in real-time. We
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use a coefficient zi which grows exponentially to give more attention to the latest seen

events.

T =

n∑
i=1

(zi
8∑

j=1

pjdj)

n∑
i=0

zi
(3.10)

Later, in our experiments in Section 3.9, we use d = {0.25, 0.5, 0.5, 1, 1, 1, 1, 0} as the

activities threat level vector by assigning 0 to the benign activity, 0.25 to low threat

activities, 0.5 to medium threat activities, and 1 to high threat activities. As a result,

with this d vector, the value of T in Eq. 3.10 will converge to 0.65 (Eq. 3.11).

lim
n→∞

T = lim
n→∞

8∑
j=1

dj

8
= 0.65 (3.11)

3.8 Performance Evaluation of the Proposed Compo-

nents

In this section, we evaluate and analyze the performance of each module in our proposed

method through several experiments.

3.8.1 Audio Signal Segmentation into Individual Keystroke Sounds

After preprocessing and outlier removal, we use the audio segmentation module to

extract the keystroke times. For each keystroke time in the ground truth, we find

the closest value from the audio segmentation module predictions. Then, we use an

error threshold to consider the predicted time as correct or incorrect. With a threshold

of 100ms, our audio segmentation module can detect 91% of the keystroke sounds on
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average. The mean squared error averaged for all the users is 0.09. We calculate the

mean squared error as follows when Yi is the actual start time of the keystroke and Ŷi

is our predicted start time: MSE = 1
n

n∑
i=1

(Yi − Ŷi)
2.

The Impact of Using a Single Microphone

As mentioned in Section 3.6.1, the data has been recorded using microphones and we

mix the recorded signals to improve the quality and reduce the noise. To find out

whether the use of two separate microphones contribute to the performance of the

audio segmentation module, we repeat the same experiments with the recordings from

each of the microphones, without mixing the signals. Our results show that using

only the stand-alone microphone, with a threshold of 100ms, the audio segmentation

module detects 89% of the keystroke sounds on average with a mean squared error of

0.10. When using the mobile microphone only, 84% of the keystrokes are detected with

a mean squared error of 0.10.

3.8.2 Clustering into Audio Alphabet

To evaluate the clustering method, we assume each training sample is assigned to only

one cluster and define three metrics to calculate the accuracy. For all test samples

t1, t2, ..., tn representing keys k1, k2, ..., kn clustered into c1, c2, ..., cn respectively, we cal-

culate A1 as an accuracy metric by considering a classification correct if at least one

training sample that represents ki has been assigned to ci during the training procedure

(h′
ciki

> 0).
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Figure 3.7: Distribution of the number of users based on A1, A2, A3 accuracy metrics
as discussed in Section 3.8.2.

A1 =

n∑
i=1


0 h′

kici
= 0

1 h′
kici

̸= 0

n
(3.12)

We also define A2 as another accuracy metric which is the mean of h′
kici

for all

key-cluster pairs:

A2 =

n∑
i=1

h′
kici

n
(3.13)

We consider sample ti representing key ki clustered into ci as correct if ki has the

highest probability h′
kici

among all the keys that have been clustered into ci during the
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training procedure. If N is the total number of the keys we calculate A3:

A3 =

n∑
i=1


0 h′

kici
̸= maxN

j=0(h
′
kjci

)

1 h′
kici

= maxN
j=0(h

′
kjci

)

n
(3.14)

As an example, take the clusters of Table 3.5a. Assume we have a set of testing

samples t1, t2, t3 representing keys a, b, c clustered into c1, c2, c3. Then, we have:

h′
ac1

, h′
bc2

, h′
cc3

= 0, 1/2, 1/5 =⇒


A1 =

0+1+1
3

= 0.66

A2 =
0+1/2+1/5

3
= 0.23

A3 =
0+1+0

3
= 0.33

We take 70% of keystroke sounds for each user and group them into 104 clusters.

Then, we predict the cluster for each sample keystroke sound from the test set. It is

possible that the keystroke sounds representing a specific letter be assigned to different

clusters. Also, multiple keystroke sounds representing the same character can be as-

signed to the same cluster. The average A1, A2, and A3 values for all the users are 90%,

38%, 48% respectively. We show the distribution of the number of users based on the

accuracy values in Fig. 3.7. Note that an A2 value of 100% is only possible when all

the samples that have been assigned to each cluster only represent a specific letter. In

this case, each cluster represents only one letter. Similarly, an A3 value of 100% means

all the samples from the test set that represent a specific key are assigned to only one

cluster. This also leads to each cluster representing only one letter. As a result, A2 and

A3 can reach 100% in theory while it is not possible in practice and values of 38% and

48% do not necessarily show a low accuracy for the model.
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3.8.3 Recovering Text from Clusters

For each user, we get the keystroke sounds from 70% of the typed words to train the

clusters and use the remaining 30% for testing. While we use the ground truth for

identifying words using spaces and enters as separators for our evaluation, in a real-

world scenario, we identify the separators by assigning them to a specific cluster that

represents them. The cluster with the highest number of enters (or spaces) assigned to

it in the training session, represents enter (or space). Later, when a keystroke sound is

assigned to such cluster, we consider it as a possible separator. We take the words with

a fixed length. Most of the typed words are between 2 to 4 letters, so we use those in

most of our experiments. The distribution of words length in the datasets is shown in

Fig. 3.8.

In Fig. 3.9, we show the distribution of the top-1000 accuracy for all of the users for

3 and 4-letter words with and without using the error correction module. With 3-letter

words, the accuracy for most of the users is 80-90% while for 4-letter words it is 50-60%.
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word recovery module for 3-letter and 4-letter words before and after using the error
correction module.
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Figure 3.10: The accuracy of the text recovery module for 10 users when changing the
number of top guesses which are considered as correct (Top-n Accuracy).

The average accuracy for all the users is 72% for 3-letter words and 53% for 4-letter

words. The average top-10 accuracy for words of length 2-4 and all the users is 54%

which will later be improved by the error correction module. We change the number of

top guesses which are considered correct and show the accuracy for words with 2 to 4

letters for 10 users in Fig. 3.10.

Error Correction

We apply the error correction method (Section 3.6.7) to the guessed words in the pre-

vious experiment. Fig. 3.9 shows how the error correction module improves the perfor-

mance of the word recovery module. With error correction, the average top-10 accuracy

for words of 2 to 4 letters will be improved to 71% which is an acceptable accuracy con-

sidering our noisy dataset. Also, since text recovery is not the final goal of our model
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Figure 3.11: Accuracy of the clustering method evaluated using three metrics, changing
number of the clusters.

and the recovered words will be passed to the activity detection module, the effect of

accuracy for the text recovery module will be lowered. In Section 3.8.4, we show that

if we use our activity detection model with the words directly fetched from the dataset

(without extracting them from audio), the accuracy gain in comparison with using the

words produced by the text recovery module is insignificant.

Choosing the Number of the Clusters

To find the optimal number of clusters, we take 30% of all the keystroke sounds from all

the users as test data and classify them into the pre-trained clusters. Fig. 3.11 shows

the evaluation results using our three metrics. When the number of clusters grows, the

probability that a keystroke sound representing a key k be assigned to a cluster with

at least one sample representing k from the training set decreases. At the same time,

if a keystroke sound is clustered correctly because the number of samples is lower in

each cluster, the probability of the key in the cluster (h′) would be higher, resulting
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Figure 3.12: Top-1000 accuracy of the word recovery module for different word lengths
and number of clusters.

in higher A2 and A3 values. Overall, the results show that using 104 and 208 clusters

achieves the best performance.

In another experiment, we run the word extraction algorithm for each user with

different word lengths and number of clusters. First, we get 70% of the words for each

user and generate the clusters using the keystroke sounds from each word. Then, we

take 30% of the words as the test data and classify them into clusters. Next, we use

the predicted cluster to regenerate the words and consider a prediction correct if it is

among the 1000 most probable words predicted by the algorithm. As shown in Fig. 3.12,

104 and 208 clusters achieve the best overall performance and the sum of performance

metrics for 104 clusters is the highest. Therefore, based on the findings in Fig. 3.11

and Fig. 3.12, we choose to use 104 clusters for our experiments.
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and number of most frequent words.

Choosing the Values of α and β

To choose the best values for α and β in Eq. 3.7 which control the effect of probability

in the dictionary and the probability in the clusters for each recovered word, we run

the same experiment that we used for evaluating the text recovery module, varying the

values of α and β between 1 to 1000. Based on the experiment on the 3-letter and

4-letter words, the best results are achieved when α = 1 and β = 10. So, we use these

values for our experiments.

3.8.4 Adversarial Activity Detection and Classification

We directly take the ground truth for all the typed word sequences from the attack and

benign datasets instead of the words generated by the text recovery module and fix their

length. We only take the n most frequent words (top words) typed by all the users and
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Figure 3.14: Training and validation loss and accuracy for activity detection algorithm
with word sequences of length 50 and considering only the 1000 top words.
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Table 3.6: Comparison of the performance of different algorithms for classifying word
sequences to activities. The input data is fixed-length zero-padded sequences of 50
words considering only the 2000 most frequent words in the dataset.

Model Hyper-parameters Accuracy

Mean STD

Nearest Neighbor Number of Neighbors 3 0.65 0.01

RBF SVM Regularization 2 0.67 0.10gamma 1

Decision Tree Max depth 5 0.75 0.04

Random Forest
Max depth 5

0.69 0.09Number of estimators 10
Max features 1

AdaBoost Number of estimator 50 0.38 0.8Base estimatior 1

Naive Bayes Variance smoothing 1e-9 0.28 0.04

QDA Threshold 1e-4 0.46 0.03

Our Model

Embedding vector length 512

0.98 0.01LSTM layer size 100
Number of epochs 10
Batch size 32
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discard (zero out) the rest. We train and test our model with different sequence lengths

and top words and show the results in Fig. 3.13. Based on the sequence length, it is

possible that a chosen sentence for classification include words from multiple commands

or words from a part of a command. The best accuracy gained is 98.07% when we take

only the 1000 top words and fix the sequence length to 50 words. The training and

validation loss and accuracy of the model for sequences of 50 words and considering the

1000 most frequent words are shown in Fig. 3.14.

Furthermore, we use the words generated by the text recovery module to evaluate

our activity detection model. We use sequences of 2 to 4 letter words from the dataset to

train the activity detection model. Then, we use the text recovery module to generate

words of length 2-4 using keystroke audio samples and feed them as test data to the

activity detection module. We use sequences of 50 subsequent words for this experiment.

Since we do not have the audio for the benign dataset, we directly get the words from

it without recovering them from the audio. As a result of this evaluation, our model

achieves 93.11% accuracy in detecting and classifying the activities.

In another experiment, we fine-tune the hyper-parameters of our model and compare

the best-performing configuration with other classifiers. We use the fixed-length zero-

padded sequences of words as features, and activities as labels for the training and

testing data. For each classifier, we fine-tune the hyper-parameters separately to get

the best possible accuracy. Among the several algorithms and configurations we used,

decision tree results in the best performance with 75% accuracy which is significantly

less than our model’s performance. Detailed results of this experiment are reported in

Table 3.6.
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Classifying Real-Time Data

In our experiments, we assume that a sequence of typed words by the user is available

for classification. However, some of the sequences are zero-padded to have same length

sequences of words. Considering this, any number of words can be used for classification

using our model. So, based on each new word that is detected from the user’s typing

audio, we can get a new classification decision and continuously improve the accuracy

of threat level score. Furthermore, it is possible to update the threat level continuously

after getting each k words.

3.9 Evaluating the Threat Score

We proposed a model for generating a threat score based on a sequence of words that

have been typed by a user and then developed it into a continuous model to update
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Figure 3.16: Comparison of the performance of our method with S&T [32] for retrieving
single letters from keystroke sounds.

the threat score in real time. However, we did not provide a metric to evaluate how

the numerical value of the threat score reflects the threat against a system. To relate

the threat score to the actual threat level, we run a experiment by feeding sets of 3,

5, and 10 consecutive words from different users in different activities in the dataset

to the activity detection module and then, we generate the threat score for each. We

show the average for 100 repetitions of each experiment in Fig. 3.15. The threat score

is generated using Eq. 3.9 with d = {0.25, 0.5, 0.5, 1, 1, 1, 1, 0}. As we can see, for the

activity 8 which is the benign activity, the average threat score is less than 0.5 while

for the activities with highest maliciousness level, the average threat score is between

0.7 and 0.8. So, we can define the range for our threat score between 0 and 1 while

we consider scores below 0.5 to be completely safe and scores closer to 1 to show the

highest maliciousness level.
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Figure 3.17: Distribution of users based on accuracy for classifying each user’s key
sounds using S&T [32] method and our method.

3.10 Comparison with Other Work

There are a limited number of prior studies with publicly available source code to be

evaluated with our data. Among those, we evaluate a similar work Skype & Type! (S&T)

[32] with our dataset. S&T has different components similar to our work. The audio

segmentation module uses a peak detection method to extract individual keystorke

sounds from the raw audio file. However, this component as implemented does not

work on our dataset because of the presence of noise and inaudible keystrokes. So,

we remove this component and use already extracted individual keystroke sounds and

their labels with their classification model. S&T generates MFCC features with similar

hyper-parameters to ours and uses a feature selection algorithm to reduce the number

of features. We run their model using different classifiers with the audio data from 5

of the users in our dataset separately and once with the audio data of all the users

combined. Note that their model directly classifies the feature vector and assigns it
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to a key while our classification method generates a probability for multiple possible

audio letters (clusters) representing each MFCC feature vector and does not give an

explicit key for each sample. We use A3 as the metric for calculating the accuracy of

our work. Using this metric is fair for comparison because for each sample keystroke

sound, we output one cluster and for each cluster, we only take the most probable letter

as correct. So, in this evaluation method, our classifier gets a keystroke sound as input

and outputs a key (E.g. letter) like what S&T does. The results for all users and 5

users are presented in Fig. 3.16 showing significantly better accuracy for our model

in comparison to S&T for single users and similar accuracy for all users combined. In

Fig. 3.17, we show the frequency of the users based on the classification accuracy of

their keystroke sound samples for both S&T and our method. We need to mention that

our method can achieve even better accuracy because we build a probability model to

consider all the possible letters in the cluster and do not only take the most probable

letter as the result of the classification. So, our model does not assign a specific key to a

keystroke sound sample and the subsequent modules (text extraction, error correction)

will decide about the final chosen key.

3.11 Summary

We showed that it is possible to detect different adversarial activities and evaluate the

threat level against a computer system using the audio recordings of typing sessions with

significant accuracy. To show that, we proposed a model with multiple components to

extract text from typing audio, detect activity based on extracted words, and quantify

the threat level based on the activity.

Following the detection and prediction of the user’s activity, we are also interested

to find out whether the activities and the behavior of the users in their interaction with
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a computer are correlated with their personality. So, in the following chapter, we try

to get insights into the personality of people and how it is related to their usage of

keyboard and mouse.
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Chapter 4

On the Correlation of Keystroke and

Mouse Dynamics With Personality

4.1 Introduction

Research in the past has directed significant attention to keystroke and mouse dynamics

of individuals because they provide a primary interface to a desktop computer. While

many studies in the past have addressed authentication [49, 50, 51] and identification

[52, 53], (and some isolated works related to emotions, social networks, etc. (see Section

4.2)); to the best of our knowledge, none have analyzed the personality of people and

its correlation with the users’ interactions with a computer through keystroke dynamics

and mouse usage.

Creating the personality and psychological profile of users based on their interaction

with the computer can be used for different applications, such as showing personality-

directed content to the users, advertisement, law enforcement, and malicious behavior

detection and prevention. It can also be used in chatting and match-making applica-
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tions to connect people with similar personalities to each other.

In this research, using data from 104 participants, we present how characteristics of

keyboard and mouse usage relate to the users’ personality traits, as inferred through

two psychological batteries–The Holland Code Test [54] and The Big Five Personalities

Test [55].

The contributions of this research are:

• We introduce several empirically derived features related to the keystroke dynam-

ics and mouse usage of the users. Our features are unique because they inherently

capture the usage patterns of certain tasks and may be used to find the correlation

with users’ personality types.

• We show that certain personality traits such as extraversion are correlated with

the typing dynamics of the users such as the number of clicks and keys and differ-

ent personalities present different behaviors in their interaction with a computer.

For example, people with conventional personality type tend to spend more time

with a computer to do a certain task and people with social personality type

use the mouse relatively more than the keyboard in their interaction with the

computer (see Section 4.5 for more details).

• We posit that this study along with the dataset will serve as a benchmark to

build further analysis linking psychological profiles of individuals with computer

usage. Our dataset provides unique advantages because it is large (104 users)

and includes typing and mouse data obtained through multiple activities together

with the answers to questionnaires from which the personality and psychological

profile of the users may be interpreted.
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Table 4.1: Description and statistics of the six personalities that are categorized by the
Holland Code Test [56]. The shaded columns show the statistics of the results on our
dataset.

Personality Description Count Gender
M F

Avg
Age

Realistic Practical, physical, concrete, hands-on 2 2 0 27.50
Investigative analytical, intellectual, scientific 21 15 6 25.47
Artistic creative, original, independent 18 16 2 23.50
Social cooperative, supporting, patient 37 25 12 24.16
Enterprising competitive, leadership, persuading 8 8 0 23.87
Conventional detail-oriented, organizing, careful 14 12 2 23.57

Table 4.2: Five personalities evaluated by the Big Five Personalities Test [57]. The
shaded columns show the statistics of the results on our dataset for users with high
(H), medium (M), and low (L) personality scores. The criteria for score range selection
is described in Section 4.4.5.

Description Average Age Male FemalePersonality High Score Low Score H M L H M L H M L
Extraversion Outgoing, warm Quiet, reserved 23.13 24.82 24.16 18 41 18 4 12 7
Agreeableness Helpful, trusting Critical, uncooperative 23.84 24.50 24.33 24 47 6 8 15 0
Conscientiousness Hardworking, organized Impulsive, careless 23.17 25.22 23.66 30 37 10 4 14 5
Neuroticism Anxious, unhappy Calm, secure 24.60 24.27 23.96 35 40 2 4 15 4
Openness to Exp. Curious, independent Practical, conventional 24.82 24.03 22.50 32 42 3 7 15 1
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4.2 Related Work

Keystroke and mouse dynamics have been used for different applications like identifica-

tion, authentication, and emotion detection. Nahin et al. [58] study emotion identifica-

tion based on keystroke dynamics. They collect a dataset with self-reported emotional

states and keystrokes from users and build a model for emotion detection. Multiple

other studies address emotion [59, 60], gender [61, 62], age [62, 63], and handedness

[64] prediction and identification using keystroke dynamics in different environments

and applications like social networks [65] and chatting platforms [61]. Roy et al. [66]

address the same problem using touch screen interactions on the mobile. Our work is

unique in comparison with the prior work because we use personality types determined

using standard psychological tests and study their correlation with mouse and keyboard

dynamics. In a closer approach to our study, Katerina et al. [67] extract features from

mouse and keystroke dynamics and study their correlation with behavioral variables

like self-efficacy, risk perception, etc. They use a questionnaire survey for evaluating

the level of the behavioral variables for users and their analysis methods and behavioral

variables are different from ours. They also use a different set of features related to the

typing patterns and mouse movements.

4.3 Keyboard, Mouse, and Personality Dataset

After appropriate IRB approval, our dataset is collected from 104 participants during a

series of predefined activities on a computer in our lab which is connected to the school

network. Throughout the session, participants were free to search over the internet and

surf the web to get help and instructions on how to perform the requirements of the tasks

and activities. The data collection scenario consisted of seven different activities that

complement each other. The activities require the users to do several tasks that lead
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to connecting to a vulnerable virtual machine on a network and stealing information

from it. Several modalities have been collected in this data collection effort, including

keystrokes and keystroke timings, mouse clicks and movements, audio recordings during

the session, and system events. For this research, we use the keystroke and mouse

recordings. On average, 3261 keystrokes and 303 mouse clicks have been collected over

a course of about 90 minutes from each of 83 male and 21 female participants.

Table 4.3: Description and statistics of the features that are used for our analysis. The
average and standard deviation are calculated for all the users in our dataset after
outlier removal.

Feature Description Average STD

Duration The duration of the session. 4776 s 999 s

Keys The number of keystrokes for the session. 3274 1267

Clicks The number of left mouse button clicks for the session. 316 132

Clicks/Keys The ratio of clicks to keys. 0.10 0.03

Latency Average inter-key latency for sequential keystrokes. 0.24 s 0.04 s

Dclick Mouse double-click latency with 500ms threshold. 0.29 s 0.06 s

4.3.1 Personality Tests

All the participants of the dataset have also participated in two personality tests. The

Holland Code Test [54] asks 48 career-related questions and categorizes the participants

into 6 different personality types which are shown in Table 4.1. This Test focuses on

career-related personalities and how each person fits into different kinds of occupations.

The results of this test can help us understand whether career-related personalities can

affect people’s interaction with the computer through mouse and keyboard.

The second questionnaire is the Big Five Personality Test [55] which asks 50 personality-

related questions from the participants and indicates the level of five different person-

ality traits for them as shown in Table 4.2. This test indicates the way a person acts



67

and how the person’s personality is structured. Unlike the Holland Code Test, this test

does not categorize a person into a certain category. Instead, it will determine how

much each of the traits defines the person’s character.

4.3.2 Questionnaire Samples

Here we list some of the questions from the personality test questionnaires used in this

study.

Sample Questions From the Holland Code Test

In the Holland Code Test, each question is linked to a career-related personality type

and is ranked on a Likert scale:

• Test the quality of parts before shipment

• Study the structure of the human body

• Conduct a musical choir

• Give career guidance to people

• Sell restaurant franchises to individuals

Sample Questions From the Big Five Personalities Test

Similar to the Holland Code Test, the questions in the Big Five Personalities Test are

ranked on a Likert scale:

• I am the life of the party.

• I feel little concern for others.
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• I am always prepared.

• I get stressed out easily.

• I have a rich vocabulary.

4.4 Methodology

In this section, we describe the methods and steps that we take to pre-process the data

and generate the results for our analysis.

4.4.1 Feature Extraction

With all the keystrokes, mouse clicks, and mouse movements of the users recorded, we

generate several features that are useful to extract information about behavioral and

personality patterns in people’s interaction with the computer. We show the extracted

features together with the average and standard deviation for each feature among all

the users in our dataset in Table 4.3. The duration of each activity is available for all

the users. We use the total session duration as a feature for our analysis. Similarly,

we use the total number of keystrokes and left mouse button clicks as features. Later,

in Section 4.5.4, we analyze each feature for different activities in more details. The

number of right mouse button clicks and the mouse wheel usage is low for each user

since they are not frequently used in a regular session with a computer, so, we do

not use them for our analysis. The clicks/keys ratio is a useful feature to determine

the experience and skill of the users in their interaction with a computer, because

more experienced users use the keyboard more for doing their tasks and are also more

familiar with keyboard shortcuts. So, we expect their clicks/keys ratio be relatively

lower. We use this feature to determine which input device is relatively used more
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during the session. Another feature that we extract for our analysis is the inter-key

latency. We get the average time difference between each sequential keystrokes pair.

We choose a 1-second cut-off threshold based on our experiments and do not include

the time difference between any two sequential keys that have not been pressed within

1 second in calculating the average because the participant is not always typing during

the session and may pause for thinking, viewing and reading the monitor, using the

mouse, and scrolling. Inter-key latency can be used as a metric for evaluating the

user’s typing speed. A higher inter-key latency indicates lower typing speed. Lastly,

we use the double-click latency as another feature which is calculated by taking the time

difference between every two sequential left mouse button clicks that does not exceed

500 milliseconds. Any sequential click with a time difference of more than 500ms is not

considered double-click because this is the default double-click delay set in the data

collection machine.

4.4.2 Outlier Removal Based on Extracted Features

We discard the data for 4 out of 104 participants through our outlier detection process

and use the data from the 100 remaining participants for our analysis in the rest of

this study. As an example, the age of one participant is 46 while the average age in

our data is 26, and when this participant is removed, the age range will be from 20

to 33. There are also other participants with short session duration which means they

have not completed all the activities and the tasks of the data collection and should be

considered outliers. To find and remove these participants, we use the Z-score outlier

detection method on each feature. For example, for the total duration of the activity,

we calculate the z-score as Z = x−µ
σ

where x is each user’s duration and µ and σ are the

mean and the standard deviation of the duration for all users. We take records with

a z-score of more than 3 or less than -3 as outliers. For the duration, the z-score for
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Figure 4.1: Comparison of feature values average for each of the Holland Code Test
personality types.



71

Duration Keys Clicks LatencyClicks/Keys Dclick
0

0.1

0.2

0.3

0.4

0.5

0.6
Low (4-15) Medium (16-27) High (28-40)

(a) Extraversion

Duration Keys Clicks LatencyClicks/Keys Dclick
0

0.1

0.2

0.3

0.4

0.5

0.6
Low (14-21) Medium (22-30) High (31-39)

(b) Agreeableness

Duration Keys Clicks LatencyClicks/Keys Dclick
0

0.1

0.2

0.3

0.4

0.5

0.6
Low (11-19) Medium (20-28) High (29-37)

(c) Conscientiousness

Duration Keys Clicks LatencyClicks/Keys Dclick
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Low (6-16) Medium (17-27) High (28-38)

(d) Neuroticism

Duration Keys Clicks LatencyClicks/Keys Dclick
0

0.1

0.2

0.3

0.4

0.5

0.6
Low (8-17) Medium (18-27) High (28-38)

(e) Openness to Experience

Figure 4.2: Comparison of feature values average for the personality types of the Big
Five Personalities Test. The Y-axis shows the normalized values for each feature. All
the feature values are normalized between 0 and 1 to be shown in the same figure.
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one of the users is 6.06 which is significantly higher than the population. The user’s

duration value is 13111 seconds while µ = 2810 and σ = 1369. An abnormally high

duration can be due to a temporal halt during the data collection, for example, a phone

call or an emergency might have caused the user to idle during the session.

4.4.3 Correlation Analysis Methods

To evaluate the correlation between each Holland personality type and our features, we

use the point-biserial correlation coefficient [68]. This method is useful for calculating

the correlation when one of the variables is categorical. Because the categorical variable

should be binary, we set it separately for each personality type. For example, for

realistic personality type, we assign 1 to all the users who have been categorized as

realistic and 0 to the rest of the users. Then we use the point-biserial method to

calculate the correlation between this vector and each feature vector. To calculate the

correlation coefficient rpb, we split the users into two groups 0 and 1 based on their

binary variable value. We show the mean of the feature values for group 0 with M0

and for group 1 with M1. Respectively, we show the number of users in each group

with n0 and n1. With sn as the standard deviation of the feature vector, we calculate:

rpb =
M1−M0

sn

√
n1n0

n1+n0
.

To evaluate the correlation between each feature and each personality type for the

big five personalities test, we use Pearson correlation coefficient which is calculated as

ρP,F = cov(P,F )
σP σF

where P is the personality score, F is the feature value, and σP , σF are

the standard deviations for P and F .
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4.4.4 Holland Code Test Analysis Method

The Holland Code Test assigns a score in the range of 5-40 for each of the six personality

types to each user and considers the one with the highest score as the final personality

type for the user. To interpret the patterns and trends in the results of the test, for

the users assigned to each personality type, we calculate the average and the standard

deviation of each feature. Then, we observe the personality types that have higher or

lower values in most features and the ones that have the highest or lowest averages in

each feature. We analyze the patterns and trends that can be inferred from the results

of this test in Section 4.5.1. In our analysis, we try to reason about the characteristics

of each personality type and how they are related to the features extracted from the in-

teraction with the computer. However, accurate and theoretical psychological analysis

of the personalities are out of the scope of this research.

4.4.5 The Big Five Personalities Test Analysis Method

The big five personalities test assigns a score in the range of 0-40 to each personality

trait for each user. We split the score for each personality trait into three different

ranges: low, medium, and high. If m is the minimum, and M is the maximum score

for personality trait p among all the users, we divide the range M −m into three equal

ranges and round up the ranges in case M −m is not divisible by 3. Then, we calculate

the average of each feature for all the users in each range. So, for each feature, we know

the average for the low, medium, and high range. Then, we can use these values to

evaluate the trends for each feature. The results and analysis for this personality test

are reported in Section 4.5.2.



74

Table 4.4: Correlation statistics for Holland Code test calculated using point-biserial
correlation coefficient method. For each personality, all the users with that personality
are assigned the value 1 and rest have been assigned 0 as the binary categorical variable
for point-biserial correlation calculation. More significant values with p-value<=0.05
are shown in bold.

Personality Duration Keys Clicks Latency Clicks/Keys Dclick

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Realistic -0.11 0.27 -0.07 0.47 -0.07 0.51 -0.15 0.13 -0.02 0.84 -0.01 0.88
Investigative 0.06 0.59 0.09 0.37 0.11 0.28 0.29 0.00 0.04 0.68 0.17 0.05
Artistic 0.04 0.71 0.07 0.48 -0.08 0.45 -0.01 0.91 -0.14 0.02 0.01 0.94
Social -0.04 0.69 -0.13 0.18 -0.04 0.69 -0.09 0.35 0.09 0.04 -0.23 0.02
Enterprising -0.09 0.03 -0.09 0.03 -0.12 0.05 -0.04 0.71 0.01 0.95 -0.04 0.68
Conventional 0.06 0.52 0.11 0.03 0.14 0.05 -0.11 0.29 -0.01 0.90 0.15 0.12

Table 4.5: Correlation statistics for big five personality test calculated using Pearson
correlation coefficient method. More significant values with p-value<=0.05 are shown
in bold.

Personality Duration Keys Clicks Latency Clicks/Keys Dclick

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Extraversion -0.04 0.70 -0.24 0.02 -0.03 0.78 0.11 0.30 0.19 0.05 0.00 0.99
Agreeableness 0.19 0.05 0.03 0.77 0.06 0.55 0.03 0.78 0.06 0.53 0.00 1.00
Conscientiousness 0.14 0.16 -0.11 0.27 0.06 0.57 0.16 0.01 0.18 0.07 -0.03 0.77
Neuroticism 0.05 0.61 -0.13 0.02 0.00 0.98 0.12 0.24 0.21 0.04 0.03 0.77
Openness to Exp. -0.06 0.04 0.00 0.96 0.00 0.96 -0.05 0.64 -0.06 0.55 0.06 0.59
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4.5 Results and Analysis

In this section, we present the results of our study and analyze the trends and the

patterns that exist in the relation between personality types and the extracted features

from the mouse and keyboard for each personality test.

4.5.1 Holland Code Test Results Analysis

As shown in Fig. 4.1, participants with conventional personality type have the highest

number of keys, clicks, and the longest average duration. The correlation statistics

(Table 4.4) also approves that conventional personality trait is slightly correlated with

the number of keys and clicks. This can be expected as people with this personality

tend to be detail-oriented, careful, and organizing. So, they spend more time and effort

to deliver the best performance in fulfilling the tasks.

On the other hand, the competitive characteristic of enterprising people can be the

reason for their shorter time to success and fewer keys and clicks as shown in Fig. 4.1

and Table 4.4.

Most of the feature values for the realistic group are lower, but we do not rely on

them to make strong statements because the number of participants assigned to this

group is low.

In Fig. 4.1d, we can see that the clicks/keys ratio for the people with artistic

personality type is the lowest, so, they use the keyboard more than the mouse in their

interaction with the computer. Also, Table 4.4 shows a slight negative correlation

between the artistic personality type and clicks/keys ratio.

In contrast, participants with social personality have the highest clicks/keys ratio.
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One characteristic of the social people is patience which is reflected in their high dura-

tion, number of clicks, and clicks/keys ratio which indicates higher usage of the mouse.

Working with the mouse usually takes longer and needs more effort for doing tasks with

the computer while it makes the interaction easier for less experienced users in com-

parison with the keyboard. In addition, Table 4.4 shows negative correlation between

social personality trait and double-click latency.

Investigative personality is positively correlated with inter-key latency. This shows

that people with this personality are usually slower typists. Furthermore, there is a

slight positive correlation between investigative personality and double-click latency.

As shown in Table 4.1, fewer people have been assigned to enterprising and realistic

personality types. While most of our participants are from computer science back-

ground, we can conclude that realistic and enterprising personalities are less common

among the students with computer science background in the 20-30 years old age range

in our dataset. Users with realistic and investigative personality types have the highest

average age while artistic users are the youngest in our dataset. Artistic users have the

highest and social users have the lowest male/female ratio and most of the users have

been categorized as social.

4.5.2 The Big Five Personalities Test Results Analysis

To present the results and findings based on the big five personalities test, we partition

the personality trait scores into three segments as described in Section 4.4.5. For exam-

ple, after removing the outliers, the extraversion score for the users falls in the range of

4-40. So, we partition this range into three ranges of 4-15, 16-27, and 28-40 and refer

to them as low, medium, and high respectively. The results for each personality trait

are shown in Fig. 4.2.
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There are various patterns and information we can extract based on the trends of

each feature for each personality trait. As shown in Fig. 4.2a, people with higher ex-

traversion score have higher clicks/keys ratio and lower number of keystrokes, so they

use the mouse relatively more than the keyboard and their total keyboard usage is lower.

Also, their inter-key latency is higher, showing a slower typing speed. Correlation re-

sults in Table 4.5 also show that extraversion is slightly correlated with clicks/keys ratio

and negatively correlated with the number of keys. So, people with higher extraversion

score, they tend to use the graphical interface and mouse more.

Fig. 4.2b does not provide any trends or patterns in the typing behavior using our

defined features for agreeableness and Table 4.5 only shows a slight correlation with

duration. So, we cannot make any conclusion about this personality trait based on our

results (Fig. 4.2b).

The trends for conscientiousness personality are similar to those of extraversion. A

higher conscientiousness score leads to a lower typing speed (higher inter-key latency)

and a higher mouse usage (Fig. 4.2c). The correlation analysis also approves correlation

between conscientiousness and inter-key latency (Table 4.5).

People with higher neuroticism scores succeed in fulfilling the requirements of the

task with lower usage of keyboard and mouse, while there is not any significant trend

in their duration of activity. So, people with this personality trait can do more with

less interaction with the computer, which means their usage of the input devices is opti-

mal. They tend to focus on the screen and the task and get the maximum information

without having to type multiple commands or browse different websites (Fig. 4.2d).

Furthermore, people with higher neuroticism score have a higher average clicks/keys

ratio which can also be inferred from Table 4.5.

Users with higher openness to experience scores are able to finish their tasks faster
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Table 4.6: Classification results using different machine learning algorithms for classify-
ing user personality types in Holland code test using different feature sets as described
in Section 4.5.3.

Model Hyper-parameters Accuracy

All
Features

All
Demographic
Features

All
Typing
Features

Selected
Features

Selected
Demographic
Features

Selected
Typing
Features

Nearest Neighbor Num of Neighbors 3 0.26 0.26 0.23 0.30 0.26 0.40

Linear SVM 0.36 0.46 0.40 0.43 0.46 0.50

RBF SVM Regularization 2 0.40 0.30 0.40 0.43 0.46 0.50
gamma 1

Gaussian Process 0.23 0.36 0.20 0.43 0.46 0.46

Decision Tree Max depth 5 0.26 0.26 0.30 0.36 0.30 0.36

Random Forest
Max depth 5

0.36 0.40
0.30 0.40 0.33 0.36

Num of estimators 10
Max features 1

Neural Net 0.33 0.36 0.26 0.43 0.46 0.50

AdaBoost Num of estimators 50 0.36 0.20 0.30 0.33 0.33 0.43
Base estimatior 1

Naive Bayes Variance smoothing 1e-9 0.30 0.10 0.43 0.26 0.23 0.36

QDA Threshold 1e-4 0.30 0.23 0.33 0.40 0.30 0.30

with lower usage of the keyboard. While we cannot get much information about their

interaction with the mouse, they seem to be more skillful in performing the assigned

tasks (Fig. 4.2e and Table 4.5).

Based on the results shown in Table 4.2, users with high openness to experience

score are the oldest, and users with low scores are the youngest in our dataset. Users

with high neuroticism and low agreeableness score have the highest male/female ratio.

4.5.3 Classification Results for the Holland Code Test

To find out if it is possible to get insights about the personality types of people using

their demographics and typing patterns, we use different machine learning algorithms

with multiple feature sets for classifying users’ Holland code test personality types.

To determine the most selective features for classifying users into different personality

types, we run the CFS feature selection algorithm with BestFirst search method on our
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Table 4.7: Correlation between the big five personality traits and the duration of each
activity for all users.

Duration 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Extraversion -0.06 0.57 -0.12 0.24 0.00 1.00 -0.18 0.08 -0.09 0.37 -0.21 0.04 0.15 0.15
Agreeableness -0.09 0.36 -0.09 0.35 -0.11 0.26 -0.16 0.12 -0.08 0.45 0.00 0.98 0.24 0.02
Conscientiousness -0.03 0.74 -0.08 0.44 -0.10 0.32 -0.04 0.70 -0.11 0.30 0.10 0.34 0.07 0.52
Neuroticism 0.01 0.95 0.00 0.98 -0.01 0.89 0.01 0.92 0.03 0.77 0.13 0.21 0.11 0.27
Openness to Exp. -0.09 0.35 -0.27 0.01 -0.31 0.00 -0.14 0.17 -0.25 0.01 0.31 0.00 0.32 0.00

data.

For the Holland Code Test, the results of feature selection show that height, inter-key

latency, handedness, age, double-click latency, clicks/keys ratio are the most selective

features. If we only consider typing pattern related features, the selected features

are inter-key latency, double-click latency, and clicks/keys ratio. Considering only

demographic features, height, handedness, and age will be selected.

In each experiment, we train our model with 70% of randomly selected users’ data

and test it with data from the remaining 30% of users. Since an accurate classification

needs a huge dataset and we have only 100 users available, we do not expect perfect

results, but we can still get insights about whether these features can be used to get

information about the personality types of the users. As shown in Table 4.6, using

the typing features, we can get better accuracy in classifying the personality type.

While the results show that the personality type of the users is reflected in their typing

behavior, we cannot strongly conclude that we can detect the personality type based

on typing patterns and demographics.
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Table 4.8: Correlation between the big five personality traits and number of keys of
each activity for all users.

Keys 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Extraversion 0.04 0.67 -0.03 0.80 0.19 0.06 -0.10 0.31 0.09 0.39 -0.10 0.31 0.11 0.28
Agreeableness 0.07 0.48 0.14 0.18 0.11 0.30 0.04 0.68 0.14 0.16 0.10 0.34 0.15 0.15
Conscientiousness 0.01 0.93 -0.04 0.70 -0.03 0.74 0.05 0.59 0.00 0.98 0.23 0.02 0.18 0.07
Neuroticism -0.03 0.77 -0.20 0.05 -0.07 0.47 -0.02 0.81 -0.02 0.81 0.08 0.45 0.05 0.64
Openness to Exp. -0.01 0.89 0.04 0.68 -0.11 0.29 0.05 0.60 -0.06 0.54 0.31 0.00 0.30 0.00

Table 4.9: Correlation between the big five personality traits and number of clicks of
each activity for all users.

Clicks 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Extraversion -0.06 0.54 -0.04 0.71 0.06 0.53 -0.15 0.13 -0.04 0.68 -0.09 0.37 0.03 0.75
Agreeableness 0.06 0.59 -0.09 0.35 0.00 0.98 -0.15 0.14 -0.09 0.35 0.05 0.63 0.06 0.58
Conscientiousness 0.01 0.88 -0.01 0.89 -0.01 0.92 0.04 0.68 0.02 0.88 0.15 0.13 0.13 0.19
Neuroticism -0.06 0.53 0.00 0.97 -0.05 0.64 -0.03 0.80 0.00 0.99 0.08 0.43 -0.02 0.83
Openness to Exp. 0.09 0.37 -0.20 0.04 -0.16 0.12 -0.11 0.30 -0.06 0.54 0.26 0.01 0.24 0.02

Table 4.10: Correlation between the big five personality traits and double-click latency
of each activity for all users.

Double-click
Latency

1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Extraversion -0.11 0.26 0.00 0.98 0.22 0.03 0.18 0.07 -0.04 0.70 0.12 0.23 0.04 0.66
Agreeableness 0.03 0.80 0.06 0.55 0.20 0.05 -0.01 0.91 0.11 0.27 0.07 0.49 0.27 0.01
Conscientiousness -0.12 0.26 0.07 0.47 -0.17 0.10 0.05 0.60 -0.23 0.02 0.08 0.44 -0.14 0.18
Neuroticism 0.09 0.39 -0.05 0.66 0.06 0.53 0.01 0.94 -0.03 0.79 -0.03 0.78 -0.02 0.83
Openness to Exp. 0.22 0.03 -0.06 0.57 -0.04 0.67 0.05 0.59 -0.03 0.80 0.01 0.94 0.12 0.22

Table 4.11: Correlation between the big five personality traits and clicks/keys ratio of
each activity for all users.

Clicks/Keys 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Extraversion -0.02 0.84 0.05 0.59 0.20 0.05 -0.04 0.67 0.06 0.53 -0.01 0.90 0.02 0.86
Agreeableness 0.06 0.57 0.11 0.28 0.06 0.53 0.00 0.97 0.09 0.36 0.08 0.46 0.02 0.85
Conscientiousness -0.05 0.65 0.04 0.72 -0.02 0.85 0.01 0.90 0.02 0.81 0.12 0.26 0.07 0.47
Neuroticism 0.03 0.77 -0.10 0.30 -0.13 0.20 -0.10 0.33 -0.07 0.51 0.02 0.85 -0.11 0.27
Openness to Exp. 0.14 0.16 0.11 0.27 0.08 0.45 0.08 0.43 0.25 0.01 0.19 0.06 0.21 0.03
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Table 4.12: Correlation between the big five personality traits and inter-key latency of
each activity for all users.

Inter-key
Latency

1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Extraversion -0.20 0.04 0.02 0.86 -0.15 0.14 0.10 0.32 -0.14 0.17 -0.02 0.81 0.11 0.30
Agreeableness -0.03 0.79 -0.18 0.07 -0.18 0.07 -0.03 0.80 -0.27 0.01 -0.07 0.48 -0.03 0.75
Conscientiousness -0.22 0.03 -0.14 0.18 -0.08 0.43 -0.16 0.11 -0.22 0.03 -0.24 0.01 -0.26 0.01
Neuroticism 0.09 0.40 0.13 0.21 0.10 0.33 0.00 0.96 0.15 0.15 -0.02 0.84 0.01 0.94
Openness to Exp. 0.09 0.38 -0.06 0.56 0.07 0.46 -0.15 0.15 -0.10 0.31 -0.15 0.14 -0.15 0.13

Table 4.13: Correlation between the Holland code test personality traits and the dura-
tion of each activity for all users.

Duration 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Realistic 0.06 0.53 0.12 0.23 0.03 0.77 0.11 0.29 0.12 0.25 -0.02 0.87 0.02 0.87
Investigative 0.10 0.35 -0.03 0.80 0.08 0.42 -0.10 0.32 0.03 0.79 -0.02 0.85 0.19 0.06
Artistic 0.02 0.86 -0.03 0.80 -0.02 0.88 -0.05 0.60 -0.05 0.60 0.00 1.00 0.05 0.63
Social -0.19 0.06 0.00 0.99 -0.07 0.51 -0.07 0.51 -0.27 0.01 0.05 0.63 -0.23 0.02
Enterprising 0.02 0.81 0.20 0.05 0.17 0.09 0.09 0.36 0.08 0.41 -0.02 0.83 -0.18 0.07
Conventional 0.14 0.16 0.14 0.16 0.13 0.21 0.01 0.90 0.20 0.04 -0.01 0.94 -0.12 0.23

Table 4.14: Correlation between the Holland code test personality traits and number
of keys of each activity for all users.

Keys 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Realistic 0.16 0.12 0.16 0.12 0.11 0.30 0.08 0.44 0.17 0.09 -0.10 0.35 -0.10 0.34
Investigative 0.05 0.60 0.09 0.38 0.11 0.26 -0.17 0.10 0.11 0.27 0.01 0.90 0.23 0.02
Artistic 0.07 0.50 0.09 0.37 0.14 0.17 0.01 0.96 0.07 0.52 0.08 0.43 0.05 0.64
Social -0.03 0.76 0.08 0.46 0.09 0.36 -0.06 0.56 -0.09 0.39 0.00 0.97 -0.19 0.05
Enterprising 0.15 0.14 0.10 0.32 0.28 0.00 0.22 0.03 0.19 0.06 -0.07 0.51 -0.22 0.03
Conventional 0.34 0.00 0.11 0.27 0.14 0.16 0.04 0.72 0.23 0.02 -0.01 0.96 -0.17 0.10

Table 4.15: Correlation between the Holland code test personality traits and number
of clicks of each activity for all users.

Clicks 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Realistic 0.07 0.52 0.03 0.80 -0.11 0.28 0.02 0.85 -0.03 0.79 -0.18 0.08 -0.15 0.15
Investigative 0.03 0.75 -0.04 0.70 0.08 0.42 -0.04 0.69 0.03 0.78 0.02 0.85 0.07 0.49
Artistic -0.07 0.47 -0.06 0.55 -0.02 0.84 -0.08 0.41 -0.10 0.31 -0.14 0.18 -0.06 0.55
Social -0.23 0.02 -0.10 0.34 -0.09 0.38 -0.01 0.89 -0.27 0.01 0.04 0.70 -0.08 0.44
Enterprising 0.07 0.48 0.06 0.55 0.12 0.24 0.00 1.00 -0.10 0.33 -0.08 0.46 -0.11 0.27
Conventional 0.17 0.09 0.11 0.28 0.10 0.34 0.00 0.96 0.08 0.42 -0.03 0.79 -0.11 0.30
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Table 4.16: Correlation between the Holland code test personality traits and double-
click latency of each activity for all users.

Double-click
Latency

1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Realistic -0.04 0.70 -0.04 0.69 0.03 0.77 0.19 0.06 0.05 0.59 0.01 0.93 -0.02 0.85
Investigative 0.00 0.99 -0.08 0.42 -0.05 0.60 0.04 0.68 0.03 0.76 -0.06 0.58 0.15 0.14
Artistic -0.06 0.58 -0.09 0.36 -0.07 0.50 -0.06 0.57 -0.11 0.30 -0.10 0.34 -0.04 0.72
Social -0.02 0.82 -0.20 0.05 -0.05 0.60 -0.05 0.64 -0.18 0.07 -0.05 0.62 0.04 0.71
Enterprising 0.15 0.13 -0.02 0.82 0.14 0.17 0.20 0.05 -0.10 0.33 -0.05 0.61 -0.12 0.23
Conventional 0.02 0.88 0.02 0.88 0.18 0.08 0.31 0.00 -0.07 0.48 0.07 0.50 -0.11 0.26

Table 4.17: Correlation between the Holland code test personality traits and clicks/keys
ratio of each activity for all users.

Clicks/Keys 1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Realistic -0.06 0.52 -0.08 0.41 -0.21 0.04 -0.08 0.46 -0.12 0.26 -0.21 0.04 -0.21 0.03
Investigative -0.01 0.89 -0.08 0.43 0.09 0.35 0.02 0.82 0.03 0.74 0.03 0.77 0.04 0.69
Artistic 0.04 0.68 -0.01 0.95 0.04 0.67 -0.05 0.65 -0.07 0.49 -0.06 0.57 -0.06 0.58
Social -0.09 0.40 0.01 0.95 -0.01 0.92 0.03 0.78 -0.20 0.05 -0.03 0.80 -0.03 0.74
Enterprising 0.09 0.37 0.04 0.69 0.08 0.45 0.05 0.62 -0.18 0.07 -0.01 0.92 -0.07 0.50
Conventional 0.05 0.60 -0.07 0.52 -0.03 0.75 -0.09 0.38 -0.11 0.27 -0.01 0.92 -0.13 0.19

Table 4.18: Correlation between the Holland code test personality traits and inter-key
latency of each activity for all users.

Inter-key
Latency

1 2 3 4 5 6 7

Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val Corr p-val

Realistic 0.08 0.43 0.02 0.82 0.10 0.35 0.13 0.22 -0.03 0.77 0.08 0.42 0.18 0.08
Investigative 0.13 0.20 -0.15 0.13 -0.07 0.47 0.17 0.09 0.01 0.95 0.02 0.82 0.03 0.77
Artistic -0.01 0.89 -0.18 0.08 -0.20 0.05 0.12 0.26 -0.15 0.14 0.03 0.78 0.05 0.64
Social -0.04 0.69 -0.14 0.17 -0.12 0.23 0.08 0.44 -0.10 0.33 -0.04 0.72 0.06 0.53
Enterprising -0.04 0.71 -0.01 0.96 -0.04 0.71 0.03 0.73 -0.14 0.16 0.00 0.97 0.17 0.09
Conventional -0.09 0.35 -0.05 0.64 -0.11 0.30 0.03 0.78 -0.12 0.25 -0.03 0.75 0.14 0.16
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4.5.4 Correlation Between Personality Traits and Features for

Each Activity

To further analyze the correlation between personality traits and interaction with in-

put devices, we calculate the correlation between each personality trait and the feature

vectors for each activity. As we noted earlier, each user has participated in 7 different

activities with different risk levels. The description of these activities is shown in Table

3.3. This analysis may help us get insights about the trends in the personality traits

in correlation with the features for more or less malicious activities. To do so, for each

trait in the big five personality test, we get the scores vector and calculate the Pearson

correlation coefficient with the feature values vector for all users. For example, we get

the extraversion score for all users as one feature vector and the duration of the first

activity for all users as another feature vector and calculate the Pearson correlation co-

efficient between them. We do the same process for calculating the correlation between

features and traits in the Holland code test. The results of these tests are shown in

Tables 4.7 to 4.18. The higher correlation values are shown in bold.

Our observations in the aforementioned tables show that there are several corre-

lated pairs of features and traits for different activities. From Table 4.7, we can see

that openness to experience is directly correlated with duration for activities 6 and 7

which are more malicious, and inversely correlated with duration for activities 2 and

3 which are less malicious. So, we may conclude that generally, people with higher

openness to experience score, tend to spend more time for completing the malicious ac-

tivities. Furthermore, based on Table 4.8, we can see that people with higher openness

to experience, use the keyboard more for fulfilling the most critical activities, because

there is a correlation between this trait and number of keys in activities 6 and 7 which

are considered as malicious. The same argument can be made based on Table 4.9 for

the number of clicks as there is a correlation between openness to experience and the
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number of clicks for activities 6 and 7. So, we may conclude that people with higher

openness to experience score make more use of the input devices during malicious ac-

tivities. In Table 4.10 we can see that agreeableness is directly correlated with activity

7 which is a malicious activity. Table 4.11 shows correlation between openness to ex-

perience and activities 5 and 7 which are malicious activities, so, the more openness

to experience leads to higher clicks/keys ratio for malicious activities showing higher

usage of the mouse. Table 4.12 shows multiple inverse correlations, especially between

conscientiousness and activities 1, 5, 6, and 7. As a result, we can conclude that peo-

ple with higher conscientiousness level, are faster in working with the input devices,

especially for more malicious activities.

To analyze the results based on the Holland Code Test, we observe Tables 4.13 to

4.18. It is observable that the more social people, spend less time in activities 5 and 7

which are both malicious activities. However, there is no significant correlation between

the typing latency of social people and the activities as shown in Table 4.18. There are

multiple correlations observable in Table 4.14. More enterprising people use keyboard

more in activities 3 and 4 and less in activity 7. Also, more conventional people use

the keyboard more in activities 1 and 5. Table 4.15 shows negative correlation between

social trait and number of clicks in activities 1 and 5. Table 4.16 shows correlation

between enterprising and conventional traits and double-click latency in activity 4.

Table 4.17 shows negative correlation between realistic trait and activities 3, 6, and

7. Finally, the only notable correlation in Table 4.18 is negative correlation between

artistic trait and activity 3.
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4.6 Summary

We extracted multiple features from the keyboard and mouse usage of 100 users. Then,

we used the results from two separate questionnaires to perceive the personality traits

of the users. We studied the correlation between the personality traits with keystroke

and mouse dynamics and analyzed the patterns and trends that exist between them.

Our analysis shows that there is a possibility to infer different trends and patterns from

the data to the extent and situations where the personality tests and our interpretations

are valid. We showed how different personality characteristics of people may be corre-

lated with their typing behavior and interaction with a computer system. This study

provides a benchmark for further analysis of correlation between personality types and

interaction with computer through mouse and keyboard. Although our analysis shows

correlations between the personality traits and user interactions with input devices,

the results of our research are based on the mathematical inferences and may not be

sufficient to make psychological conclusions. So, psychological analysis of the patterns

and the correlations is beyond the scope of this study.
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Chapter 5

Conclusion

We studied different aspects of behavioral biometrics and how they can be used in

security-related applications. Through our study on predicting the future gait signal of

humans using ubiquitous motion sensors, we showed that it is possible to use behavioral

biometrics in forensics applications. Our prediction of the future signal can open the

path for several future studies in security and forensics applications.

Furthermore, we studied and analyzed two large datasets of different sensors cap-

tured from several users during their interaction with a computer system. We analyzed

and used the data to be used in different applications. Among those, we chose to study

how audio data that has been recorded from typing sessions can be used in predicting

possible threats and securing the system. Our study showed that it is possible to use

audio to predict the activity of the users in real-time and find out if there is any threat

against the system by a particular user.

Finally, we extended our research to find out whether the personality traits and

psychological characteristics of the users can give us insights into their behavior in

working with a computer system. Our findings showed that there are different corre-



87

lations between the personality of the users and how they interact with input devices

like keyboard and mouse, which are among the main interfaces for interaction with

computers.

Our studies have contributed to the research by providing several insights on how

behavioral biometrics apply to everyday security challenges. We have unfolded several

research directions for the future and believe there is more left for exploration by us

and future scientists.

These are some of the limitations of our work that we recommend to be studied

further and addressed in the future research:

• In our future gait signal predictions, we evaluate our work by predicting 200

samples in the future. While we narrow our problem to near-future prediction

and this might be enough for most applications in the area, evaluating the model

with more samples and tuning it to perform well for further predictions in the

future is left for future research.

• For predicting the future gait signal, we assume that we have already identified the

users and trained a separate model for each individual. The possibility of using

a single model for all the users, taking their height, gender, etc. into account as

model parameters can be studied in the future.

• In our evaluations, we use a mixture of already predicted samples and actual

samples from the past to predict the future signal. Evaluating the performance of

the model using only actual past samples and only predicted past samples is left

to be explored.

• We use a dataset with a limited number of users (9 users) to conduct our research

on gait signal prediction. We also use a limited number of activities (walking,
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biking, stairs up, stairs down). The applicability of our method and the extension

of our model to support more activities with variations in speed is subject to

further research.

• We use the accelerometer captured from mobile phones in users’ pockets for future

gait signal prediction. The use of different sensors that are available in today’s

smartphones, different mobile phone placements, and other devices like smart-

watches can be studied in the future.

• For recovering keystrokes using their audio, we use a limited recording configu-

ration, placing the microphones near the keyboard. Using high-end microphones

that can capture the sound from a higher distance and further placement of mi-

crophones can be explored in future research.

• We have separate benign and adversarial datasets. While there are participants

that have participated in both data collections, collecting a unified dataset with

both adversarial and benign activities from the same participants can be con-

ducted in future research. Furthermore, our benign dataset does not have keystroke

audio recordings and we evaluate our text recovery method only on the adversar-

ial dataset. For evaluating our activity prediction model, we get the exact typed

text from the benign dataset and do not recover the text using audio. This can

be addressed in future research.

• In our dataset, we use a single keyboard and mouse for all participants and develop

our model with specific input devices. Extending the model to support different

input devices is subject to further study.

• While we capture the sound with a microphone, capturing different waves and

signals that are in the inaudible frequency range using different high-end devices

can be studied in the future. This way, we may be able to apply the model to the
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silent keyboards that are emerging and make acoustic-based methods including

ours ineffective.

• While our activity detection model can classify the activities regardless of the

user, our text recovery method is dependent on the identity of the user and we

train separate models for each user. The possibility of using a unified model for

text recovery for all users is subject to future research.

• We use a supervised model for text recovery from keystroke acoustics. However,

past research has shown that it is possible to use unsupervised models for this

application [27]. The applicability of those models to our dataset and their per-

formance on our problem can be studied in the future.

• In our model, we only use a limited number of keys (alphanumerical, special

characters, space, and enter) for text recovery and classification. While we showed

that it is possible to classify the activity and measure the threat level using those

keys with notable performance, the use of other keys on the keyboard (like tab

which is used to auto-complete commands in the terminal) and their effects on the

model performance is left for the future research. Also, studying the detection of

keystroke combinations which is partially addressed in [33] and its effects on our

model performance can be conducted in the future.

• We use a dictionary-based method for recovering meaningful words using keystrokes

audio. Whether random sequences of keystrokes can contribute to activity detec-

tion is subject to further research.

• We limit our adversarial activities to 7 different categories. Collecting a more

complex dataset with other adversarial activities and evaluating the performance

of our model based on a higher variation of adversarial activities can be done in

the future.
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• We exclude analysis based on demographics in our research, however, demographic

information is available in our dataset and different insights may be retrieved from

them by further study in the future.

• We use a limited number of features for studying the correlation between the

usage of input devices and personality. Using a wider collection of features (for

example, features related to specific keystrokes, keystroke combinations, mouse

movement patterns, etc.) and their fusion can be studied in the future.

• Our study on personalities and their correlation with features related to input

devices is a foundational work that opens the path for future studies in this area.

It is too early to deduce strong conclusions based on them or utilize them for

adversarial activity detection.

• Psychological analysis of the outcomes of the correlations between personality

traits and input device features can be further studied in joint work with experts

in the psychology field.

• While our problem is not to detect personalities based on keyboard and mouse

features and we only focus on finding correlations, building and tuning a classifi-

cation model can be an interesting problem for research in the future.

While we conduct our research in a lab setting, careless application of artificial in-

telligence methods in the real world, including ours, may result in different unethical

outcomes. It is also important that AI researchers be aware of the problems of stereo-

typing and labeling people as criminal, malicious, adversary, etc. based on experimental

research. So, we need to state that even though our research in gait signal prediction

opens the path for many applications in forensics research, applying it to real-world

problems and labeling people as criminals based on it is subject to extensive research
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and experiments in the future. Similarly, our personality analysis and adversarial activ-

ity detection using keystrokes have been studied with limited data and considerations.

Our limited dataset only includes a limited group of participants and may be subject

to different biases. Generalizing the results of our research to be used with a greater

and more diverse population needs further studies and experiments on larger and more

diverse data. Furthermore, errors are inevitable in AI applications, including ours and

they should be expected and considered carefully. In our keystrokes audio recording

scenario, we assume that we can record the user without their knowledge and use the

recordings in surveillance applications. However, the application of this scenario in

the real world, taking into account the user’s privacy, legal, and ethical concerns needs

careful consideration.
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