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Abstract 

In the nuclear waste reprocessing, radioactive iodine is released in both organic and inorganic 

forms into off-gas streams. Due to its properties of long half-life and accumulation in human 

bodies, the radioactive iodine is required to be removed by the Environmental Protection Agency 

(EPA) and Nuclear Regulatory Commission (NRC). In this presented work, the removal of 

organic iodides is studied particularly.  

Unlike that of inorganic iodine, the organic iodides were not well studied because of the low 

concentrations and the corresponding technical difficulties. Most of the studies on the organic 

iodides are semi-quantified, focusing on the performances of the adsorption columns of certain 

combinations of conditions and the quantified single-layer adsorptions were rarely reported. To 

provide the information and results supporting the adsorption columns design, single layer 

continuous-flow organic iodides adsorptions using silver-containing adsorbents were performed.  

The solid adsorption method was developed in replacement of the liquid scrubbing strategy for 

its low operational cost and simplicity of design. The most commonly used adsorbents include 

reduced silver exchanged mordenite (Ag0Z) and silver nitrate impregnated alumina (AgA), and 

they have been applied in multiple waste reprocessing plants around the world. In the 2010s, a 

novel silver-containing material, reduced silver functionalized silica aerogel (Ag0-Aerogel), was 

developed at the Pacific Northwest National Laboratory (PNNL), and has been considered as an 

outstanding material for its high silver content and adsorption rate. 

The efficiencies of the three materials were evaluated and the Ag0-Aerogel was identified to be 



 

the optimum adsorbent among Ag0-Aerogel, Ag0Z and AgA. Therefore, the CH3I adsorptions on 

Ag0-Aerogel were performed at various concentrations and temperatures. The data were 

analyzed using multiple models and the parameters were determined. The results indicated that 

the CH3I adsorption on Ag0-Aerogel is a surface reaction at the specified conditions and the 

adsorption rate increases with the adsorption temperature.  

Additionally, adsorptions of other iodoalkanes (C3H7I, C6H13I, C8H17I and C12H25I) were 

performed and the corresponding dependencies on temperatures, concentrations and the length of 

carbon chain were determined. The C6H13I and C12H25I adsorptions are likely to be zero-order 

adsorptions and the temperature dependencies may vary at different conditions. Moreover, the 

adsorption rates of C3H7I and C8H17I are higher than expected, accordingly, further studies are 

suggested.  

Using the parameters determined, the column adsorption modeling of organic iodides was 

conducted and the modeling results were comparable to the literature works. The model was also 

applied to predict the breakthrough of the column, and the outcomes indicate that a column of at 

least 15-20 cm is required to remove the organic iodides of up to approximately 100 ppbv. Based 

on the results of organic iodides adsorptions and the modeling works, the potential research 

objectives were recommended and the properties of the next generation materials and adsorption 

systems were also suggested.  
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Chapter 1. Introduction 

In the early 20th century, a new era was initiated when one of the most well-known equations E = 

mc2 was proposed by Einstein. This theory relates the mass and energy and provides a solid 

foundation to the nuclear energy. During the nuclear fission of uranium-235 (235U), a neutron hits 

the nucleus of 235U and the nucleus splits into multiple smaller nuclei. In this process, the 

summation of mass decreases and energy is released.  

The nuclear fission was firstly discovered in the late 1930s by Hahn and Strassmann; they 

observed the change of elements when bombarding the nuclei with neutrons.1 Once the scientists 

noticed that energy is released in the nuclear fission, the nuclear energy started to be used as 

weapons. In the early 1940s, the Manhattan Project was initiated and it brought an end to World 

War II.2,3 Soon after the war, the first nuclear power plant EBR-1 was built in Idaho by Argonne 

National Laboratory.4 At first, the plant can only power four lightbulbs, and in the 21st century, 

the power increased dramatically to over 1 GW.5 In 2020, more than 4 trillion kilowatt-hours 

were generated in the United States by the 95 nuclear power reactors, which contribute 

approximately 20% of all electricity.6,7  

Nuclear power is considered as clean energy for its low emission rate of air pollutants.8-10 

However, multiple radioactive isotopes, including krypton (85Kr), strontium (90Sr), xenon 
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(133Xe), iodine (129I and 131I), Cesium (134Cs and 137Cs), and others, are produced in the uranium 

fission.11-13 In this presented work, the adsorption of iodine will be evaluated. 

When the life cycle of nuclear fuel is terminated, a treatment process is required for the recycling 

of uranium and proper storage of the nuclear waste. The schematic diagram of a typical waste 

treatment system is shown in Figure 1-1.13-15 The spent nuclear fuel rods are dissembled and 

dissolved using concentrated nitric acid (HNO3); a portion of tritium (T) is removed with gas 

phase radioactive isotopes (T, C, I, Kr, Xe, etc.) being released into the dissolver off-gas 

(DOG).14 After the dissolution, the solution undergoes the plutonium uranium reduction 

extraction (PUREX) process. The uranium and plutonium are extracted and concentrated using 

organic solvents, which can be further reused as nuclear fuel with additional treatments. In the 

aqueous separation process, some radioactive isotopes react with the organic solvents and the 

products such as radioactive organic iodides are released to the vessel off-gas (VOG). After the 

extraction, uranium and plutonium are recycled and the remaining components are solidified and 

stored; in this process, some remaining gas phase isotopes are released to the waste system off-

gas (WOG). 
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Figure 1-1. A typical nuclear waste treatment system. 
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The off-gas streams contain T, C, I, Kr and Xe, for which multiple capture systems are required 

to remove the isotopes. After isotopes are removed, the off-gas streams are emitted to the 

atmosphere with the concentration regulated by the U.S. Code of Federal Regulations (CFR) 

Title 10 Part 20 and Title 40 Part 190 issued by U.S. Environment Protection Agency (EPA) and 

Nuclear Regulatory Commission (NRC).16,17  

Radioactive iodine is the species studied in the presented work. In the environment, iodine is 

mostly in the non-radioactive 127I form; and trace amount (129I/127I = 10-7 – 10-11) in radioactive 

129I as the result of human activities.18-23 The 129I is the product of the 235U fission with a half-life 

of 1.6×107 years and a production ratio of 0.706±0.032% per 235U fission.24 Another radioactive 

iodine generated in the nuclear fission is 131I; it obtains a higher production ratio of 

2.878±0.032% per 235U fission but a much shorter half-life of 8.1 days.25 With a half-life in days, 

131I is highly radioactive and dangerous in nuclear accidents but typically not considered in the 

iodine removal and storage process of the nuclear waste treatment.  

However, since the 129I obtains one of the longest half-lives among the products of uranium 

fission, the long-term environmental and health effects must be considered. Due to human 

activities especially the nuclear fuel reprocessing, 129I can be detected almost everywhere, from 

the Norwegian Sea in Europe to the Atacama Desert in Chile,26,27 both in soil and water,28,29 and 

even the north pole.30,31 As a micronutrient, iodine accumulates easily in the human body, 

especially in the thyroid.32-35 Therefore, the removal of iodine from nuclear waste is crucial for 

the purpose of environmental protection and human health. 
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Based on previous studies, Jubin and Strachan36 estimated the iodine concentrations in the off-

gas streams. For a typical light water reactor with the burnup (the heat extracted in unit time per 

unit mass of nuclear fuel source) of 60 GWd/tIHM (Gigawatt-days per metric ton of initial heavy 

metal), after 5 years of cooling, the mass of iodine is approximately 350 g/tIHM (gram per 

metric ton of initial heavy metal). The iodine is released into the off-gas streams during the 

reprocessing, for DOG and VOG, the concentrations of radioactive iodine are approximately 5-

10 ppmv (part per million by volume) and 20-30 ppbv (part per billion by volume), respectively.  

VOG is released during the uranium and plutonium extraction process. In this process, organic 

solvents are used and radioactive iodine reacts with the solvent to form organic iodides. The 

composition of the organic iodides existing in VOG could vary from methyl iodide (CH3I) to 

iodododecane (C12H25I), and the prior studies have identified CH3I and C12H25I to be the most 

representative of those organic iodides.37-42 Since the chemical properties of isotopes are 

relatively similar,43 the non-radioactive 127I are used in the experiments conducted to avoid 

potential harm and additional personal protection procedure. Moreover, the VOG also carries 

multiple contaminants generated during the reprocessing including NO, NO2 and H2O. These 

components poison the solid adsorbents and decrease the iodine adsorption capacities by 

oxidizing the metal (e.g., Ag in silver containing materials) in the materials, which will be 

discussed in Section 2.5. 

Regulated by the EPA and NRC, the radioactivity limits of iodine in the released air and water 

are 4×10-11 and 2×10-7 Ci/m3 or 1.5 and 7400 Bq/m3 (1Bq = 1 atom decayed per second), 
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respectively.16,17 To satisfy the regulation, two major methods, liquid scrubbing and solid 

adsorption are used.  

Generally, the liquid scrubbing method is removing the pollutant by contacting the polluted gas 

with scrubbing liquid and the pollutant is captured in the liquid through chemical reactions and 

dissolutions. For iodine removal, multiple scrubbing liquids were used including acids44 (e.g. 

HNO3), alkalis45 (e.g. NaOH, KOH), Mercurex46,47 (a mercury-containing acidic liquid), 

Iodox48,49 (a corrosive hyperazeotropic HNO3-containing liquid) and electrolysis in Co3+-HNO3 

solution.50 The liquid scrubbing method is being replaced by the solid adsorption method for its 

disadvantages such as being inefficient at low iodine concentration, requiring corrosion-resistant 

material for the liquid scrubber, requiring special protection over toxic solutions and requiring 

additional concentrating or solidifying processes. 11,51,52 

To overcome these disadvantages, the solid adsorption method was developed. The off-gas flows 

through the adsorption column containing solid adsorbent and the pollutants are captured, which 

reduces the operational cost and difficulties significantly. The adsorbents developed include 

carbon-based adsorbents such as graphene and graphene-based material,53-56 activated 

carbon,57,58 and chalcogel;59-62 silver-containing adsorbents such as reduced silver functionalized 

silica aerogel (Ag0-Aerogel),63-65 reduced silver exchanged mordenite (Ag0Z),66-68 silver nitrate 

impregnated alumina (AgA),69,70 and silver exchanged faujasite (AgX);71-74 other metal-

containing inorganic materials such as lead-exchanged mordenite and faujasite,75 bismuth-

decorated carbon nanofiber,76 Bi-Bi2O3-TiO2-C system,77 and bismuth mordenite;78 and metal 



7 

organic frameworks.79-82 

Among these materials, the silver-containing adsorbent is one of the most matured and widely-

used materials. The Ag0Z and AgA were developed in the 20th century for iodine removal and 

have been used in the US, France and Japan.83 Their iodine loading capacities are 10-15 wt% and 

the abilities of regeneration (adsorb and desorb iodine for multiple times) have been 

demonstrated. However, with the elemental form of Ag exposed, both of the materials are 

affected significantly by the NOx in the off-gas streams, which is usually called the ‘aging 

effect’.84,85 The capacity loss in one month exposing to NO2 may be up to 80-90% of original 

capacities.  

Therefore, a novel silver-containing adsorbent, reduced silver functionalized silica aerogel (Ag0-

Aerogel) was developed by Matyáš et al. in Pacific Northwest National Laboratory.64 Using 

commercial silica aerogel, they first attached a layer of propylthoil by treating with 3-

mercaptopropyltrimethoxysilane (3-MPTMS) in supercritical CO2 solvent and further installed a 

layer of Ag+ ions on the propylthoil layer by processing with AgNO3 solutions. After the 

treatments, the material was reduced at 165 ℃ for 2h using H2/Ar mixture to generate silver 

nanoparticles on the surface.64 Approximately 40 wt%, the iodine adsorption capacity of Ag0-

Aerogel is higher than those of Ag0Z and AgA, and the aging resistance is also higher. With the 

special structure, Ag0-Aerogel maintains more than 70% of its capacity when being aged in static 

NO2 for 1 month.86  

The silver containing materials have been researched in national laboratories for decades. Most 
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of the studies were semi-quantified and application-oriented, focusing on the performance of the 

adsorption column over time. For example, in experiments performed by Bruffey et al.87 the 

CH3I was mixed with moist air and passed through an approximately 12 cm-long adsorption 

system containing Ag0-Aerogel. After the experiments, the Ag0-Aerogel was collected for 

neutron activation analysis (NAA) to determine the iodine contents at different depths in the 

column. With the iodine concentrations measured, the curve of bed length vs. iodine 

concentrations was generated to determine the penetration depth (furthest depth the CH3I reached 

in the column) and conclude the efficiency of column adsorption. A parameter commonly used to 

describe the effectiveness of the column is the decontamination factor (DF), which is defined as 

the inlet iodine concentration over outlet concentration. For the 40 ppbv CH3I adsorption with 

H2O present, the DF of a 12 cm Ag0-Aerogel adsorption system is estimated to be no less than 

382. Similar column experiments of iodine adsorption and dry air/moist air/NOx aging of Ag0Z, 

AgA were also performed and the results determined mostly focused on describing the 

effectiveness of columns with certain lengths.37,88-91  

As supplementary to the column adsorption experiments, the single layer adsorptions are helpful 

for understanding the adsorption kinetics, determining the reaction mechanism and providing 

parameters for column design. The single-layer CH3I adsorptions on Ag0Z were discussed in 

detail by Jubin92 in 1994, in his study, multiple combinations of parameters including pellet size, 

adsorbate concentration, gas velocity, temperature and water concentration were tested. The 

methods used and conclusions made provide solid foundations for the follow-up studies. 



9 

However, limited by the instruments in the 1990s, some of the kinetics measured and the 

parameters determined are not ideal, which have been optimized by Nan15 in 2017. 

Nan performed the I2 and H2O adsorption on Ag0Z. In his study, he identified the optimum 

adsorption conditions and explained the reaction/aging mechanism between I2 and Ag0Z and H2O 

and Ag0Z, which enlightened the aging studies done by Choi et al.93 and the work to be presented 

here. 

In this work, the efficiencies of three silver containing materials, Ag0-Aerogel, Ag0Z and AgA for 

removing organic iodides in VOG were compared and the results indicated that the Ag0-Aerogel 

is the optimum one for its highest adsorption efficiency and aging resistance.  

To further understand the adsorption behaviors on Ag0-Aerogel, the single layer organic iodides 

(including CH3I, C3H7I, C6H13I, C8H17I and C12H25I) adsorptions at various concentrations and 

temperatures were conducted using high precision continuous flow adsorption systems. To 

analyze the adsorption data collected, multiple kinetic models were applied and compared. The 

parameters determined were not consistent. To explain such inconsistency, one of the models was 

optimized and a reaction mechanism was proposed to further explain the optimized model.  

Moreover, since the criteria in determining the efficiency of adsorption are different between the 

I2 adsorption in ppmv level and organic iodides adsorption in ppbv level, the temperature 

dependencies of the adsorption were also examined. An abnormally high CH3I adsorption rate 

was observed at 200 ℃, and to explain this unusual behavior, multiple physical analyses were 

performed.  
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Additionally, since the VOG does not only contains CH3I but also many organic iodides with 

longer alkyl groups, the adsorptions of other organic iodides were also performed at various 

temperatures and concentrations. The C6H13I and C12H25I adsorptions appeared to be zero-order 

process and the C3H7I and C8H17I obtains much higher adsorption rate than other organic iodides 

do. To simulate the column adsorptions, the shrinking core model was incorporated into the 

column adsorption model and the modeling results are comparable with literature studies. The 

model was further used to estimate the column breakthrough and the behaviors of C12H25I 

adsorptions.  
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Chapter 2. Literature Review 

2.1 Calculating the 129I Concentration Limit 

The limit of radioactivities of 129I in the air and water released are 1.5 and 7400 Bq/m3, 

respectively, regulated by the EPA and NRC. 16,17 To convert these values to concentrations, Eq. 

2-1 can be applied,13 

 
129

129

I

I

dC
C

dt
=   2-1 

where C129I is the concentration of 129I in air or water (mol/m3) and the rate constant of decay, λ 

(s-1) is given by,13  

 
1/2

ln 2

t
 =   2-2 

where t1/2 is the half-life of the isotope. To calculate the radioactivities, Eq. 2-1 can be written 

as,  

 129 I
1/2

ln 2
Aradioactivity N C

t
=   2-3 

where the NA is the Avogadro number (6.022×1023 mol-1). Therefore, with t1/2 = 1.6×107 years, 

the limit concentrations of 129I in the treated gas and water are 1.8×10-9 and 8.9×10-6 mol of I 

atom/m3. The concentration in air can also be written as 0.0406 ppbv for organic iodides or 

0.0203 ppbv for I2.  

The iodine concentration in VOG was estimated to be 20-30 ppbv by Jubin and Strachan;36 using 

this concentration range, the decontamination factor (DF) is approximately 500-750, which is 

comparable with the value achieved by Bruffey et al.87 in the Ag0-Aerogel column adsorption.  
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2.2 Adsorptions on Ag0Z 

The I2 and CH3I adsorptions on Ag0Z have been studied for decades. The experiments performed 

can be roughly sorted as column or single layer adsorptions of I2 or CH3I, with or without 

contaminants (H2O, NO, NO2) presented.  

Multiple comprehensive studies of Ag0Z in iodine removal were made by Jubin and colleagues in 

the 80s and 90s.66,67,92,94 In their studies, they examined the CH3I adsorption on single layer Ag0Z 

with multiple combinations of temperature, size of the pellet, CH3I concentration, flow rate, etc. 

It is observed that the shrinking core model can describe the process well at low iodine uptakes. 

Moreover, they calculated the temperature difference between the pellet and the bulk air, and 

further concluded that the temperature difference in the system can be neglected.  

Another single layer adsorption study was performed by Nan et al.15,95 They examined and 

proposed the optimal condition for the reduction of Ag0Z, adsorption temperature and flow rates. 

The reaction pathway of I2 on Ag0Z was proposed to be the chemical reaction between I2 and Ag 

forming AgI, and the overall adsorptions follow the shrinking core process. 

Column adsorptions of I2 and CH3I on Ag0Z were studied in the national laboratories. Bruffey et 

al.37 performed column adsorptions of the CH3I on Ag0Z. In the experiments, a system consisting 

of three columns was designed. The first column is a thin bed with a depth of 0.35 cm, used for 

measuring the adsorption rate. The second column (11.5 cm) is the main bed used for 

determining the mass transfer through the column and calculating the decontamination factors 

(DF) by time. The third column is another thin bed of 0.75 cm; it was removed and replaced 
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periodically, intended to detect breakthrough of the second column. With 40 ppbv CH3I 

concentration, the average uptake rate was approximately 2.8×10-4 wt%/h. In 100 days, no iodine 

uptake was measured in the column 3, indicating the breakthrough did not occur in column 2 and 

the estimated DF was greater than 190.  

To simulate the actual off-gas condition, the I2 and CH3I co-adsorption on Ag0Z with H2O, NO, 

NO2 presented were performed by Soelberg et al.90,96,97 The adsorption column they used 

consisted of 4 sections, with lengths of approximately 1, 4, 5 and 10 cm respectively. The 

concentration of I2 ranged from 2 to 50 ppmv, the concentration of CH3I was from 0 to 50 ppmv, 

the concentrations of NO and NO2 ranged from 1000 to 10000 ppmv, and the H2O concentrations 

were approximately 4 vol%. The outlet gases from sections were sampled and the concentrations 

of I2 and CH3I were measured using gas chromatography (GC). Depending on the concentrations 

of the components, the breakthrough of section 3 happened as the shortest of 40 hours and the 

DF of the full-length adsorption column remained greater than 10000 up to 200-300 hours.  

 

2.3 Adsorptions on Ag0-Aerogel 

The Ag0-Aerogel was developed by Matyáš et al. in 2011 and the procedure has been discussed 

in Chapter 1.64 Numerous tests of I2 and CH3I column adsorptions on Ag0-Aerogel were 

performed in national laboratories. Using the similar method of Ag0Z adsorptions, Bruffey et 

al.87,98,99 measured the 40 ppbv CH3I average adsorption rate on Ag0-Aerogel of approximately 

6.9×10-4 wt%/h, which is 2.5 times of that of Ag0Z. Additionally, in an 84 days column 
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adsorption, they observed a 16% increase of the Ag0-Aerogel bulk density and 11% decrease of 

the Ag0-Aerogel packing height in the column as the results of pellet cracking.  

Jubin et al.100 compared the CH3I and I2 column adsorption on Ag0-Aerogel and observed that the 

penetration depth of I2 is approximately 35% less than that of CH3I. More specifically, 85%-

99.8% of I2 was captured in the first 2 cm of the column whereas the numbers are 77-92.8% for 

CH3I. Such observation indicates that I2 was adsorbed more rapidly than CH3I was.  

The VOG condition simulation adsorptions on Ag0-Aerogel with same set-ups were performed 

by Soelberg et al.91,97,101 At similar inlet stream conditions, I2 concentration = ~35 ppmv, NO 

concentration = 10000 ppmv, NO2 concentration = 10000 ppmv, H2O concentration = 1.5%, 

temperature = 150 ℃ and total flow rate = 1685 sccm, the Ag0-Aerogel column performed better 

than Ag0Z column did. The breakthrough time of Ag0-Aerogel section 3 is 40 hours whereas that 

of Ag0Z is 30 hours. Therefore, they concluded that the Ag0-Aerogel appears to be a very 

effective and efficient adsorbent.  

 

2.4 Alternative Materials 

In recent years, multiple novel materials for iodine removal were developed such as graphene-

based materials, bismuth-containing materials and metal organic frameworks (MOF). The iodine 

adsorptions on graphene aerogel (GA) were examined by Liu et al.55 and Scott et al.53 Depending 

on the pretreatment methods, the iodine adsorption capacities of the materials at room 

temperature may reach up to 80 wt%, much higher than the traditional Ag-containing materials. 
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According to the authors,53,55 the iodide is physisorbed on the GA and the iodine can be 

regenerated by immersing the iodine-loaded GA in ethanol solution. After the regenerations, the 

GA maintains its full capacity in at least three recycles.  

The bismuth-containing materials were studied by Zou et al77, Han et al54. and Chee et al.76 The 

iodine adsorption capacities of bismuth-containing materials are approximately 60 wt% and the 

operational temperature is 200 ℃. The iodine is chemisorbed on the materials through the 

reaction,  

 
2 32 3 2Bi I BiI+ =   2-4 

The adsorbed iodide can be regenerated by heating the materials to 400-500 ℃, whereas the 

recycled capacities of the adsorbents were not declared.  

Multiple metal organic frameworks (MOF) with different structures and components were 

developed.79,80,102-104 Their iodine loading capacities vary from 40 wt% to 600 wt%. At 70-80℃, 

the iodine interacts and binds with the atoms in the MOF and therefore being captured. Reported 

by He et al.,80 the regeneration temperature is 170 ℃, and the MOF maintains 70-80% of its full 

capacity after regeneration.  

 

2.5 Adsorbent Aging 

In the off-gas environment simulations conducted (described in Section 2.2 and 2.3), the effects 

of H2O, NO and NO2 were observed, and the effect of dry air was also observed by Choi et al.93 

These oxidants decrease the iodine loading capacities of Ag0-Aerogel, Ag0Z and AgA by 
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oxidizing the silver nanoparticles.85,105,106 When contacting with NO and NO2, the silver 

nanoparticles on the surface of Ag0Z are oxidized to Ag+ and then migrate from the surface to the 

pores, resulting in the unavailability of the elemental silver. For example, the reaction pathway of 

NO aging was proposed as,105 

 
0

2 22 4 4 4 2NO Ag HZ AgZ H O N+ +  + +   2-5 

where Ag0 and Z denote the elemental silver and mordenite respectively. In one month, with 

being aged by continuous-flow 1% NO, the Ag0Z losses over 95% of its original capacity, and 

the result is similar when 2% of NO2 present. 

For the dry air and moist air aging process, the oxygen takes the role of NO, and the reaction 

pathway is,  

 
0

2 24 4 4 2O Ag HZ AgZ H O+ +  +   2-6 

where the H2O in the moist air accelerates this process.93 In dry air, Ag0Z loses 40% of capacity 

in one month and the aging effect is more severe with the presence of H2O, the Ag0Z loses 50-

55% of capacity. 

With the specially designed structure, Ag0-Aerogel is more resistant to the aging effects. When 

contacting with continuous-flow dry air, moist air, NO and NO2 for one month, the iodide 

adsorption capacity of Ag0-Aerogel decreases for 20%, 19%, 24% and 80%. Choi et al.105 

suggested that the dry air, moist air and NO aging on Ag0-Aerogel is the process of Ag2S 

formation and the NO2 aging is the formation of Ag2SO4. For example, the pathway of NO2 

aging can be represented as,  
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0

2 2 2 4 22 4 3 2 2 2NO Ag O HS Ag SO N HO− −+ + + → + +   2-7 

The NO2 oxidizes the Ag0 to Ag+ and the Ag+ further reacts with the thiol (HS-) functional group 

and O2 to form Ag2SO4. 
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Chapter 3. Experimental 

3.1 Experimental Setup 

In the experiments, the mass changes were measured by the microbalance and data were 

recorded using a computer. Figure 3-1 is the schematic diagram of the continuous flow 

adsorption system and the photos are shown in Figure 3-2. The organic iodides were generated in 

the Dynacalibrator (VICI®, Model 450 and 500) by heating the permeation tubes to a desired 

temperature and flowing the carrier gas (Airgas, Air, Ultra Zero) through. The gas mixture, with 

flow rate of 500 sccm (standard cubic centimeter per minute) was then passed through the pre-

heating coil around the adsorption column (Inner Diameter = 30 mm) and being heated to the 

adsorption temperature (100, 150 or 200 ℃). In the adsorption column, one layer of pellets was 

placed on a tray and suspended under the microbalance. During the adsorption, mass change was 

measured by the microbalance and saved by the data acquisition system. In the experiments, the 

temperature was controlled by the furnace controller and flow rates were controlled by mass flow 

controllers. 
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Figure 3-1. Schematic diagram of the continuous flow organic iodides adsorption system. 
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Figure 3-2. Photographs of the continuous flow adsorption system. (a-1) Adsorption column, (a-2) Ag0-Aerogel on the tray, (a-3) 

Furnace, (b) Dynacalibrator, (c) Microbalance head, (d) Microbalance controller and temperature controller, (e) Mass flow controller.  
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A total of three continuous flow adsorption systems were used in the experiments, 

Dynacalibrators (Model 500) were used in two of the systems and the other system used 

Dynacalibrator Model 450. Named after the Dynacalibrator, three systems were labeled as 450, 

500-1 and 500-2.  

A Dynacalibrator consists of three major parts, the temperature-controlled permeation chamber 

(two chambers for Model 500 and one chamber for Model 450), the flow rate-controlled dilution 

line and the vent/flow mode switch.   

 

Figure 3-3. The schematic diagram of the Dynacalibrator Model 450 (in flow mode). 

 

A schematic diagram of the Dynacalibrator model 450 in flow mode is shown in Figure 3-3. The 

carrier gas (Airgas®, Air, Ultra Zero) flows into the Dynacalibrator and splits into two streams. 
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The chamber stream first passes through a flow rate regulator and then enters the permeation 

chamber. By heating up the permeation tube, the organic iodide is released into the chamber 

stream. The chamber temperature is controlled automatically by the Dynacalibrator and the 

temperature is set to the target temperature specified by the manufacturer of permeation tubes.  

The dilution steam passes through a value to control the dilution flow rate, and the dilution flow 

rate is shown by a flow rate meter. By switching to flow mode, the chamber stream mixes with 

the dilution steam and the mixture further flows to the adsorption column. When the 

Dynacalibrator is in vent mode, the chamber flow is released directly and only the dilution flow 

passes to the adsorption column.  

The flow rate of the chamber stream is set to be constant by the flow rate regulator; for 

Dynacalibrator model 450, the chamber stream flow rate is 170 sccm and Dynacalibrator model 

500 has two chambers with flow rate of 75 sccm each. Since the permeation rate of the 

permeation tube is constant, the difference in the chamber flow rate shows no impact on the 

organic iodide concentration in the outlet stream. 

Shown in Figure 3-1, a mass flow controller is used to control the flow rate of the carrier gas 

entering the Dynacalibrator. Since only one of two chambers is used for generating organic 

iodide, for Dynacalibrator model 500, the inlet flow rate is set to be 575 sccm for flow mode and 

650 sccm for vent mode. For Dynacalibrator model 450, the inlet flow rate is 500 sccm for flow 

mode and 670 sccm for vent mode.  

Three microbalances made by Precision® were used in the continuous flow adsorption systems. 
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The microbalance contains a sample tray and a counterweight; the mass of the sample is 

measured by an electromagnetic coil in the head of the microbalance. The limit of precision is 

0.1 μg and the standard deviation is approximately 35 μg for all microbalances. To avoid the 

oxidation of the counterweight, nitrogen (Airgas®, Nitrogen, Ultra High Purity) with 40 sccm 

flow rate is used as the protective gas.  

Two mass flow controllers made by Cole-Parmer® are used in each adsorption system to control 

the flow rates of the adsorption stream and the protective gas stream. The standard deviations of 

the flow rates are approximately 1 – 2 sccm for all six mass flow controllers. Additionally, one 

furnace is used in each adsorption system to maintain the adsorption temperature. The 

temperature is controlled by a temperature controller and the standard deviations are 1 – 2 ℃ for 

all three furnaces. 

 

3.2 Organic Iodides 

The organic iodides used in the experiments (structures shown in Figure 3-4) are iodomethane 

(aka. methyl iodide, CAS No: 74-88-4, CH3I), 1-iodopropane (CAS No: 107-08-4, C3H7I), 1-

iodohexane (CAS No: 638-45-9, C6H13I), 1-iodooctane (CAS No: 629-27-6, C8H17I) and 1-

iodododecane (CAS No: 4292-19-7, C12H25I).  
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Figure 3-4. Molecule structures of CH3I, C3H7I, C6H13I, C8H17I and C12H25I. 

 

CH3I is toxic; National Institute for Occupational Safety and Health (NIOSH)107 reported that the 

LD50 (lethal dose, 50% death) for rats is 150 – 200mg/kg and Buckell108 reported that the LC50
 

(lethal concentration, 50% death) for mice is approximately 57 minutes at 5 mg/L concentration. 

The toxicities of CH3I to liver107, human erythrocytes109, respiratory system110,111 and 

reproductive system112 were also reported. However, the detailed toxicity data were rarely 

reported for organic iodides with longer alkyl groups. 

The permeation tubes were ordered from VICI®. The desired concentrations and flow rates of gas 

mixture were provided to the manufacturer and VICI® made the Dynacal® permeation tubes as 

requested. VICI® describes the permeation tubes as: 

The perm tube, a sealed permeable cylinder containing the desired permeant reference 

material, is the most widely used of the various permeation devices. Release of the chemical 

occurs by permeation through the walls of the PTFE tube for the entire length between the 

impermeable plugs. A wide range of rates can be achieved by varying the length and 

thickness of the tube, with typical rates ranging from 5 ng/min to 50,000 ng/min. 
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Figure 3-5. The 104 ppbv CH3I permeation tube. 

 

The permeation tubes (Figure 3-5) are made by polytetrafluoroethylene (PTFE), containing 

liquid organic iodide. Organic iodide diffuses through the tube wall and the permeation rate can 

be controlled by the chamber temperature. The flow rates provided by the manufacture are 

measured in ng/min, and the organic iodides concentrations in ppbv (part per billion by volume) 

and mol/cm3 are calculated using, 
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where FR is the flow rate (mol/min or cm3/min), PR is the permeation rate (ng/mol), MW is the 

molecular weight of organic iodides (g/mol), R is the gas constant (83.14 cm3·bar·K-1·mol-1), T is 

the temperature (K) and P is the pressure (bar). The units of flow rate and concentration are 

listed in the parentheses. Subscript std denotes the standard condition (273 K, 1 bar) and ads 

denotes adsorption conditions. 

The target concentrations of CH3I permeation tubes were, 100, 250, 1000 and 10000 ppbv; C-

3H7I, 100 ppbv; C6H13I, 100 and 1000 ppbv; C8H17I, 100 ppbv; and C12H25I, 100 and 1000 ppbv. 

Limited by the manufacturing techniques, the concentrations received are not identical to those 

of the requests. Additionally, the 10000 ppbv permeation device was provided as a 3-tube kit, 

with the concentration of each tube is approximately 3000 ppbv and the total concentration is 

9584 ppbv.  

The permeation rates were measured by the manufacture using a method similar to 

thermogravimetric analysis (TGA). The permeation tubes were heated to the target temperatures 

and mass losses were monitored continuously. After a certain period of time, the permeation rates 

can be calculated, and the accuracies were also reported. To reduce the losses of organic iodides 



27 

during storage, the permeation tubes were placed in a laboratory refrigerator.  

The specifications of all permeation tubes used are listed in Table 3-1; the permeation rates, 

accuracies and the chamber temperature were provided by the manufacturer. The concentrations 

in ppbv at 500 sccm flow rate of all permeations tubes are, CH3I-104 ppbv, CH3I-245 ppbv, CH-

3I-1044 ppbv, CH3I-9584 ppbv, C3H7I-96 ppbv, C6H13I-101 ppbv, C6H13I-733 ppbv, C8H17I-60 

ppbv, C12H25I-113 ppbv and C12H25I-606 ppbv. 

The vapor pressures of the organic iodides are reported in EPA Distributed Structure-Searchable 

Toxicity (DSSTox) database, and the vapor pressure of CH3I, C3H7I, C6H13I, C8H17I and C12H25I 

are 405, 43.1, 1.4, 0.25 and 1.4×10-2 mmHg, or, 5.33×108, 5.7×107, 1.8×106, 3.3×105 and 

1.8×104 ppbv respectively.113-117 Considering the C12H25I-606 ppbv adsorption, the highest 

C12H25I concentration may exist in the chamber stream (Figure 3-3) of Dynacalibrator model 500 

with chamber flow rate of 75 sccm, and the concentration is approximately 4000 ppbv, far lower 

than the vapor pressure of C12H25I. Therefore, the condensation of organic iodides may not 

happen anywhere in the adsorption system.  
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Organic Iodides Permeation 

Rate 

(ng/min) * 

Accuracy* Chamber 

Temperature* 

(℃) 

Conc' 

(ppbv) 

Conc' at 100℃ 

(mol/cm3) 

Conc' at 150℃ 

(mol/cm3) 

Conc' at 200℃ 

(mol/cm3) 

CH3I 

329.00  ±1.82% 45 104  3.39×10-12 2.99×10-12 2.68×10-12 

775.02  ±1.87% 60 245  8.00×10-12 7.05×10-12 6.31×10-12 

3307.29  ±0.44% 35 1044  3.41×10-11 3.01×10-11 2.67×10-11 

9587.03**  ±0.47% 35 3027  9.89×10-11 8.72×10-11 7.80×10-11 

10352.80**  ±0.11% 35 3269  1.07×10-10 9.42×10-11 8.42×10-11 

10412.60**  ±0.37% 35 3288  1.07×10-10 9.47×10-11 8.47×10-11 
        

C3H7I 366.07  ±1.28% 50 96  3.15×10-12 2.78×10-12 2.49×10-12 
        

C6H13I 
478.46  ±2.97% 60 101  3.30×10-12 2.91×10-12 2.60×10-12 

3468.20  ±1.50% 60 733  2.39×10-11 2.11×10-11 1.89×10-11 
        

C8H17I 323.62  ±1.65% 80 60  1.97×10-12 1.74×10-12 1.56×10-12 
        

C12H25I 
749.75  ±4.35% 100 113  3.71×10-12 3.27×10-12 2.92×10-12 

4009.52  ±2.38% 100 606  1.98×10-11 1.75×10-11 1.56×10-11 

* Provided by the manufacturer         

**3-tube kit, total concentration = 9584 ppbv      

Table 3-1. Specifications of the permeation tubes, concentrations calculated for 500 sccm flow rate. 
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3.3 Materials 

Figure 3-6 shows the materials tested in this presented work include reduced silver 

functionalized aerogel (Ag0-Aerogel), hydrogen reduced silver exchanged mordenite (Ag0Z) and 

silver nitrate impregnated alumina (AgA). The Ag0-Aerogel was provided by Pacific Northwest 

National Laboratory (PNNL); the Ag0Z was prepared by reducing the IONEX-TYPE AgZ (Ag-

900 E16, Lot# 111515-1, Molecular Products, Inc) in 4% H2/96 % Argon (Airgas) at 400 ℃ for 

24h; and the AgA was self-prepared following the procedure described in Section Chapter 4. 

 

 

Figure 3-6. Photographs of Ag0-Aerogel, Ag0Z and AgA. 

 

The properties of the materials are listed in Table 3-2. To measure the chemisorption iodine 

loading capacity and the available silver content for reaction, the 50 ppmv I2 adsorptions at 

150 ℃ on the three materials were performed using the continuous flow adsorption system. The 

chemisorption iodine loading capacities determined (Figure 3-7) are, 37.2, 12.8 and 11.2 wt% for 



30 

Ag0-Aerogel, Ag0Z and AgA, respectively. The iodine loading capacities of Ag0-Aerogel vary 

between different manufacturing batches, and the values were reported up to 48 wt%.64,98,118 The 

capacity of Ag0Z was reported by Nan et al.95 as more than 12 wt% and a capacity of 10.1 wt% 

for AgA was measured by Jordan and Jubin.119  

 

Properties Ag0-Aerogel Ag0Z AgA 

Density (g/cm3) 0.58 1.87 0.89 

Diameter (mm) 2.0  1.8  2.0  

Silver Content (wt%) 31.6  10.9  9.5  

Iodine Chemisorption Capacity (wt%) 37.2 12.8 11.2 

BET Surface Area (m2/g) 291.1  178.9  254.6  

BJH Pore Volume (cm3/g) 0.263  0.097  0.450 

Table 3-2. Properties of Ag0-Aerogel, Ag0Z and AgA.  
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Figure 3-7. I2 adsorption kinetics of Ag0-Aerogel, Ag0Z and AgA. 

 

3.4 Experimental Conditions 

By performing the iodide adsorption on Ag0Z at various flow rates, Nan et al.95 reported no 

significant impact of the iodine uptake at superficial gas velocity greater than 1.1 m/min. More 

specifically, Nan performed the I2 adsorption on Ag0Z at 150 ℃ with flow rates and 

concentrations combinations of 9 ppmv - 2000 sccm, 9 ppmv - 500 sccm, 25 ppmv - 1000 sccm, 

25 ppmv - 500 sccm, 50 ppmv - 500 sccm, and 50 ppmv - 250 sccm. Comparing to 50 ppmv - 

500 sccm adsorption, both uptake rate and maximum iodine adsorption capacity decreased at 50 
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ppmv - 250 sccm condition, whereas the adsorption behaviors remained similar at other 

conditions.  

The inner diameter of the adsorption column is 30 mm; therefore, Nan et al. 95 calculated the 

superficial gas velocity of 1.1 m/min and reported it as the minimum gas velocity with no impact 

on adsorption behaviors. Similar results were also suggested by Jubin.92 Jubin performed 

approximately 1000 ppbv CH3I adsorption on Ag0Z with superficial velocities of 1, 2, 5, and 10 

m/min and no significant impact of uptake rate was observed. Based on their conclusions, 500 

sccm is selected to be the flow rate of all experiments in this presented work. 

Additionally, the optimum temperature for I2 adsorption on Ag0Z was also examined by Nan et 

al.95 By performing the 10 – 50 ppmv I2 adsorption on Ag0Z at 100, 150 and 200 ℃, Nan 

observed a maximum I2 adsorption capacity at 150 ℃ and an increasing uptake rate with 

increasing temperature. Since the higher I2 adsorption capacity is preferred for ppmv level 

adsorption, Nan et al. reported 150 ℃ as the optimum I2 adsorption temperature. The 150 ℃ 

temperature was also used in multiple iodine removal experiments including, I2 and CH3I column 

adsorption on Ag0-Aerogel,87,100 NO2 aging of Ag0Z and Ag0-Aerogel,88 I2 and CH3I column 

adsorption on Ag0Z100 and I2 and CH3I single layer adsorption on Ag0Z15,92. Therefore, 150 ℃ 

was selected to be the standard adsorption temperature and 100 and 200 ℃ experiments were 

also performed.   
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3.5 Analytical Techniques 

3.5.1 SEM-EDX 

Scanning electron microscopy with energy dispersive x-ray analyses (SEM-EDX) were 

conducted to observe the structure and surface composition changes of the sample. The SEM 

analyses were performed using JEOL JSM IT100LA at SUNY College of Environmental Science 

and Forestry (SUNY-ESF). Secondary electron detector (SED) images were collected for 

observing the surface structure changes and backscattered electron composition (BEC) images 

with elemental mappings were used for identifying the surface compositions and the distributions 

of silver. The acceleration voltage was 10-15 kV and the probe current is 20-30 mA for SED 

mode and 55-65 mA for BEC mode. 

 

3.5.2 XPS 

X-ray photoelectron spectroscopy (XPS) analyses were performed to determine the surface 

compositions and the oxidation states of elements using the Scienta Omicron ESCA-2SR at 

Cornell University. The operating pressure is 1×10-9 Torr, and the monochromatic Al Kα x-rays 

(1486.6 eV) were generated at 300W (15 kV; 20mA). For each sample, a wide survey scan was 

performed to measuring the surface composition and regional elemental scans of Ag and I. The 

regional C spectrum was also obtained to calibrate all other spectra collected.  
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3.5.3 Nitrogen Titration 

The nitrogen titration analyses were used to determine the porosities, surface areas, pore volumes 

and pore size distributions of the materials. The adsorption isotherms were collected using 

Micrometrics ASAP 2020 Surface Area and Porosity Analyzer. The Brunauer-Emmett-Teller 

(BET) method120 was used to determining the BET surface area; the Harkins-Jura (HJ) t-plot 

method121 was used to measuring the micropore volume, micropore area and external surface 

area; the Barrett-Joyner-Halenda (BJH) method122 was used to estimate the surface area, pore 

volume and pore distribution of mesopores; and Density Function Theory (DFT)123 was used to 

obtain a general pore size distribution. 

 

3.6 Modeling 

3.6.1 Shrinking Core Model 

The Shrinking Core Model (SCM) model has been widely used in the nuclear waste treatment 

area including water adsorption on molecular sieves 3A124, water adsorption on Ag0Z15,125, I2 

adsorption on Ag0Z15,95, CH3I adsorption on Ag0Z92, etc. In a typical SCM gas-solid adsorption 

process, the adsorbate first reaches the pellet surface by diffusing through a gas film around the 

pellet. Then, the adsorbate reacts with the adsorbent surface. When the surface is fully reacted, 

the adsorbate diffuses into the pellet and reacts with the second layer of the adsorbent. Because 

the size of the unreacted core decreases as the adsorption proceeds, the model is named 

‘shrinking core’. The SCM was developed by Yagi and Kunii126 in 1955 and modified by 
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Levenspiel127. It consists of a gas film diffusion term, pore diffusion term and reaction term. The 

SCM assumes that the reaction sites are evenly distributed in the pellet. Additionally, this model 

also assumes that the reaction between the adsorbent and adsorbate is relatively fast. Therefore, 

the adsorbate is limited at the reacting surface. 

SCM relates the time and adsorption mass by using 3 parts shown in Eq. 3-6: 
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1 2 31 2 1 3 1 1 1
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q q q q
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  3-6 

where q is the average sorbate concentration in adsorbent (mol/g) at time t (s) and qe is the 

saturation sorbate concentration in adsorbent (mol/g). In the SCM, the ‘saturation’ is when the 

adsorbent reaches its maximum capacity and the uptake mass no longer changes, indicating that 

all available sites (Ag) are occupied by the adsorbate or deactivated by other toxic gases such as 

NOx for Ag0-Aerogel adsorption.86,91 For convenience, q and qe are sometimes represented as 

‘mass uptake’, ‘adsorption capacity’ or ‘loading capacity’ with the unit ‘wt% 

(
Uptake mass

Adsorbent mass
)’, which can be easily converted by the atomic mass of iodine. τ1, τ2, and τ3 are 

the gas film diffusion term, pore diffusion term, and 1st order reaction term respectively. By 

assuming the gas-solid reaction is 1st order, τ1, τ2, and τ3 can be calculated by Eq. 3-7 to 3-9. 
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where Ra is the radius of the pellet (cm), ρp is the density of the pellet (g/cm3), Cb is the bulk 

adsorbate concentration (mol/cm3), kf is the gas film mass transfer coefficient (cm/s), Dp is the 

pore diffusivity (cm2/s), ks is the 1st order reaction rate constant (cm/s) and b is the stoichiometric 

coefficient of Ag in Ag-organic iodides reaction, which is 1. Since an analytical solution with 

respect to q is not available and t was used for model fitting. After the parameters were obtained, 

the q’s were calculated using the parameters and the relative error was determined. 

To improve the SCM, the unnecessary 1st order reaction assumption may be replaced by the nth 

order reaction, which τ1 and τ2 remain the same and τ3 is replace by the nth order reaction term τ3
* 

given in Eq. 3-10:  
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where n is the reaction order and ks
* is the nth order reaction rate constant ((cm/s)∙(mol/cm3)1-n) 

To reduce the variables to be fitted in the model and increase the accuracy of the result, an 

alternative method of determining kf was used by Nan et al.95 kf can be determined using Eq. 3-11 

to 3-14.128-131      
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Sh, Sc, and Re are the Sherwood number, Schmidt number, and Reynolds number respectively, 

DAB is the binary diffusion coefficient (cm2/s), T is the temperature (K), P is the pressure (bar), 

MAB is the average molecular weight of species A, organic iodides, and species B, air, and ν is the 

atomic diffusion volume (cm3). For CH3I adsorption, MAB = 48.12 g/mol, ( )
A

  = 52.63 cm3 

and ( )
B

  = 19.7 cm3.129 The DAB for CH3I at 150 ℃ determined using this method is 

approximately 0.196 cm2/s, which is similar to the value of 0.207 cm2/s measured experimentally 

by Matsunaga et al. 132  

The differential form of the diffusion term of the SCM is also used in the modeling the water 

adsorption/desorption, which is, 

 2( , ) ( , )
4

dq r t dq r t
V r D

dt dr
=   3-15 

where q(r,t) is the sorbate concentration (mol/g) at radius r (cm) at time t (sec).  

 

3.6.2 Volume Reaction Model 

Another model used to determine the adsorption on porous material is the volume reaction model 

(VRM), also known as the progressive conversion model. As the VRM described, the adsorbate 

diffuses into the pellet and with a concentration gradient that exist during the adsorption. 

According to its concentration, the adsorbate reacts with the adsorbent at different rates. The 

VRM was proposed by Ramachandran and Doraiswamy133,134, which is,  
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where, 

 
v bbk C t =   3-17 

and, 
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For spherical pellets, the geometry coefficients ζ, B12, W1 and W2 are 2, 10.5, 0.233 and 0.1, 

respectively.134 θ is the dimensionless time, kv is the rate constant for volume reaction 

(cm3/mol/s), ϕ is the Thiele modulus, CAg is the silver concentration (mol/cm3) and the symbols 

not mentioned are same as SCM.  

The Thiele modulus ϕ represent the ratio of the reaction rate to diffusion rate. For ϕ >>1, the 

diffusion is much slower than the reaction rate; the adsorption is therefore the diffusion-

controlled process and vice versa. The VRM was fit by minimize the difference between the two 

sides of Eq. 3-16. 

 

3.6.3 Linear Driving Force Model 

The Linear Driving Force Model (LDFM) was proposed by Glueckauf and Coates135; it is 

commonly used for its simplicity and the straight-forward physical interpretation. It is assumed 

that the reaction occurs homogenously and the average reaction rate is proportional to the 

amount of remaining sites in the pellet. The model is given by Eq. 3-19,  

 ( )LDF e

dq
k q q
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= −   3-19 
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where kLDF is the linear driving force mass transfer coeffecient (s-1).  

For isothermal adsorption, kLDF can be estimated by,136  
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where εp
 is the porosity of the pellet, iR  is the radius of the micropore, Da and Di are the 

macropore and micropore diffusivity. 

The SCM, VRM and LDFM are similar in their physical implications, adsorbate diffuses into the 

pellet and reacts with the available sites with the rate related to the in-pellet adsorbate 

concentration. However, the diffusion and the concentration gradient of adsorbate in the three 

models are different.  
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Figure 3-8. Comparison of the shrinking core, volume reaction and linear driving force models 

(Curves only represent trends). 

 

Figure 3-8 represents the relative adsorbate concentrations and the fractional conversions of the 

adsorbent of the SCM, VRM and LDFM. The diffusivity in VRM is moderate and a 

concentration gradient exists in the pellet. The shrinking core model represents the low 

diffusivity; the diffusion of adsorbate is much slower than the consumption and a reacting 

surface may form in this circumstance. When diffusivity increases significantly and the 

concentration gradient is negligible, the adsorption may be described by the LDFM with 

homogenous adsorbate concentration and adsorbent conversion. Additionally, it is important to 
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notice that the concentration and conversion are average values and the diffusivities can be 

interpreted by Eq. 3-20. 

 

3.6.4 Pore Diffusion Model 

The pore diffusion model (PDM) was developed by Ruckenstein et al.137, and it considers both 

macropore and micropore diffusion. In the PDM, the pellets consist of macropores and the 

macropores consist of micropores. The adsorbate first diffuses into the macropores and further 

into the micropores. Therefore, the diffusivities of both macro and micro pores can be 

determined.  

The PDM assumes that the adsorptions in the pores are linear15, and the macropore diffusion is 

expressed as,  
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From left to right, Eq. 3-21 implies that the flux of adsorbate equals to the summation of volume 

accumulation in macropores, surface adsorption in macropores and the diffusion to micropores.  

The micropores diffusion can be expressed as,  
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where the physical meaning is similar to that of macropore diffusion. In Eq. 3-21 and 3-22, a and 

i denote the macropore and micropore, D is the diffusivity (cm2/s), m is the number of 

micropores pre unit volume of macropore, ε is the porosity, C is the fluid phase sorbate 
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concentration (mol/cm3), Cs is the adsorbed phase concentration on the pore surface (mol/cm2), S 

is the pore surface area (cm2), R  is radius of pores (cm) and r is the distance from pore center 

to the pore surface (cm). 

The analytical solution for Eq. 3-21 and 3-22 is,137  
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where n  is the summation index and other parameters are given as, 
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where H is the Henry’s law constant of adsorption, and D’ is the effective diffusivity.  

In the numerator of Eq. 3-23, the left term represents the macropore diffusion and the right one 

represents the micropore diffusion. If the macropore diffusion is the rate-limiting step, Eq. 3-23 

can be simplified as,137  
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where, 
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If the micropore diffusion is the rate-limiting step, the process can be expressed as,137  
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3.6.5 Fick’s Law 

Generally, the diffusion in the spherical adsorbent can be described by the Fick’s law127, which is 
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where q(r,t) is the sorbate concentration (mol/cm3) at radius r (cm) at time t (s). The average 

sorbate concentration q(t) can be calculated using, 
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where V is the volume of the pellet (cm3) and r is the distance from the pellet center to surface.  

 

3.7 Difficulties in Organic Iodides Adsorption on Ag0-Aerogel 

After the comparison of three materials (Chapter 4), this presented work is particularly focused 

on the organic iodides adsorption on Ag0-Aerogel, which contains multiple difficulties. Unlike 

the I2 adsorption, the reactions between organic iodides and Ag would be more complex. For 

CH3I and Ag, Scheele et al.68 proposed the reactions as, 

 
3 2 62 2 2Ag CH I AgI C H+  +   3-33 
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where the CH3I react with Ag and forms gas phase C2H6 (ethane). With H2O presented, 

CH3OCH3 (dimethyl ether) and CH3OH (methanol) may be generated. These organic products 

were observed by Soelberg and Watson,89 the scission of C-I bond was proposed by Jenks et 

al.138 and the formation of C2H6 in similar reactions was suggested by Zhou et al139. With the 

presence of NOx in the gas stream, other organic compounds such as CH3NO2 (nitromethane) 

and C3H9NO (3-amino-1-propanol) were also detected.90  

The iodoalkanes used in the experiments range from CH3I to C12H25I (iodododecane). As the 

length of alkyl group increased, the compounds become more unstable. The cleavages of C-C 

bonds in organic iodides on metal surface were reported by Tjrandra and Zaera140 and Yamauchi 

et al;141 and the dehydrogenation was also observed in previous experiments.142,143 These studies 

indicate that the products of the iodoalkane-Ag reactions may not be limited to the alkanes with 

the length doubled (e.g. C2H6 as for CH3I-Ag reaction) and with the increasing length of alkyl 

group, the complexity of the reactions may increase exponentially.  

The second difficulty is the concentrations of iodoalkanes. Unlike the ppmv level concentrations 

in previous single-layer adsorption studies,15,92 the concentrations selected are down to tens or 

hundreds of ppbv level. At such concentrations, measuring the mass uptakes was highly 

challenging. To obtain reliable data, the pellets were dried carefully before the adsorption, or the 

mass change due to moisture equilibrium will impact the results significantly. Moreover, since 

no permeation tubes with higher organic iodides concentration are available, determining the 
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maximum organic iodides adsorption capacities may be impracticable. Therefore, by assuming 

the capacities of organic iodides adsorptions and I2 adsorption are similar, the uptake capacities 

used in modeling works are estimated by the 50 ppmv I2 adsorption at 150 ℃.  

Additionally, the Ag0-Aerogel is a highly heterogeneous material. The shape, size and silver 

coverage are uneven, which implies that the actual properties of Ag0-Aerogel used in 

experiments may vary slightly. Additionally, Bruffey et al.99 suggested that Ag0-Aerogel may 

crack during the adsorptions, large particles break down to smaller particles, which results in the 

decrease of average pellet size during the experiments.  

To avoid the influences of the variations of properties between experiments, the adsorption 

kinetics were collected and reported on following bases, 

1. If the adsorption kinetics collected were questionable or the trends did not agree with 

the expectations, the experiments were repeated at least once (or twice if the kinetics are 

critical for making conclusions). 

2. In the repeats (including the first trial), if a kinetics is highly unlikely to be reasonable 

(comparing with literature works and the trends observed in previous experiments 

performed), the kinetics was excluded from the data analyses. 

3. In two repeats, if the kinetics were similar, only one of the results was reported. If the 

two kinetics were not agreed, a third repeat was performed.  

4. In three repeats, if two of the kinetics were similar, both two results were reported. If 

three repeats were not agreed, the kinetics with moderate uptake rate was reported. 
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Chapter 4. Material Comparison: Ag0-Aerogel, Ag0Z and AgA 

4.1 AgA Manufacturing 

Silver nitrate impregnated alumina spheres were manufactured following the procedure 

suggested by Jordan and Jubin.119 100 g of alumina spheres (Sorbent Technologies, activated 

alumina spheres, 7×14 Tyler mesh, 2mm) were mixed with the solution of 25 g of AgNO3 (silver 

nitrate, Sigma-Aldrich) in 76 ml DI water. The mixture was then transferred to a rotary 

evaporator (Büchi Rotavapor R-114) and dried under vacuum at 125 ℃ using an oil bath (Büchi 

Heating Bath B-491). After 9 hours, the dried samples were transferred to plastic sample vials 

and stored under vacuum.  

The nitrogen titration analyses were performed using both the alumina spheres and AgA. The 

results showed that no micropores exist in both samples, the BET surface area of the sample 

decreased from 300.8 m2/g to 254.6 m2/g during the treatment and the BJH pore volume 

decreased from 0.454 cm3/g to 0.450 cm3/g. 

Assuming the mass of the alumina sphere remained constant, the procedure-based silver 

composition can be calculated to be approximately 13.7 wt%. The sample composition was 

scanned using XPS and SEM-EDX and the results are shown in Table 4-1. N is not determined in 

either spectrum; the Ag composition ranges from 20 wt% to 25 wt%. Additionally, 50 ppmv I2 

adsorption on AgA at 150 ℃ was also performed using the continuous flow adsorption system 

and the maximum I2 capacity is approximately 11.2 wt%. Assuming the silver is fully consumed 

and the molar ratio is 1, the adsorption-based Ag composition is approximately 9.5 wt%.  
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Method C (wt%) O (wt%) Al (wt%) Ag (wt%) 

XPS 3.69  34.05  41.50  20.76  

SEM-EDX 2.31  37.87  34.50  25.32  

Table 4-1. Composition of AgA measured by XPS and SEM-EDX. 

 

4.2 Adsorption Kinetics and Modeling Results 

To compare the effectiveness of Ag0-Aerogel, Ag0Z and AgA in organic iodides removal, the 104 

and 1044 ppbv CH3I adsorptions at 150 ℃ were performed using the continuous flow adsorption 

system and the results are plotted in Figure 4-1.  

In the 1044 ppbv adsorption, the AgA obtained the slowest uptake rate among three materials, 

only approximately 1/5 of Ag0-Aerogel and Ag0Z. As for the 104 ppbv adsorption, no significant 

mass uptake on AgA was measured in approximately 12 days. It is important to notice that no 

significant mass uptake measured does not necessarily imply no CH3I adsorbed, instead, a trace 

amount of I was observed in the XPS analysis.  

In the CH3I adsorptions on Ag0Z at both concentrations, significant mass increases were 

observed in the first day. The uptake mass in the first 5 hours exceeded 0.5 wt% and 

approximately 0.8 wt% of CH3I was adsorbed in 24 hours. Similarly, the significant mass 

decreases were also observed after the adsorption stopped and the desorption started; in 5 hours, 

approximately 0.3 wt% of adsorbed CH3I desorbed from the Ag0Z, which indicated that the 

physisorption of CH3I on Ag0Z is much more significant than that on Ag0-Aerogel. Using the 

adsorption column, it is impracticable to observe such behavior since the mass gain cannot be 
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measured continuously.37 Neither in the 50 ppmv I2 single layer adsorption15; the chemisorption 

of I2 is much more rapid than the physisorption and therefore covered the physisorption region. 

Excluding the physisorption uptake, in 104 ppbv adsorptions, Ag0-Aerogel and Ag0Z reached 

0.42 and 0.62 wt% respectively and in the 1044 ppbv adsorption, Ag0-Aerogel, Ag0Z and AgA 

reached 3.71, 2.90 and 0.75 wt%. 

 

 

Figure 4-1. Adsorption kinetics of 104 (a) and 1044 (b) ppbv CH3I adsorptions on Ag0-

Aerogel, Ag0Z and AgA at 150 ℃ (No significant mass uptake on AgA observed at 104 ppbv). 

 

Considering the chemisorption region, the reaction rate constants and the pore diffusivities can 

be determined using the shrinking core model and the results are listed in Table 4-2. The 

diffusivities were not determined at 104 ppbv concentrations because the mass uptakes were too 
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low to enable any diffusion process to be revealed. The Ag0-Aerogel obtains the highest average 

uptake rate, approximately 50% higher than that of Ag0Z. However, due to the variations in the 

maximum iodide loading capacities and the silver contents, the reaction rate constants of Ag0-

Aerogel are actually lower than those of Ag0Z.  

 

Concentration 

(ppbv) 

Material Max Capacity 

(wt%) 

Avg Uptake Rate 

(wt%/h) 

kf 

(cm/s) 

Dp 

(cm2/s) 

ks 

(cm/s) 

AARD 

(%) 

104 

Ag0-Aerogel 37.2 1.45×10-3 2.71* N.D** 0.23  14.74% 

Ag0Z 12.8 9.90×10-4 2.97* N.D** 0.60 48.01% 

AgA*** 11.2 NA NA NA NA NA 

        

1044 

Ag0-Aerogel 37.2 1.42×10-2 2.71* 7.07×10-4 0.40  1.87% 

Ag0Z 12.8 8.02×10-3 2.97* 2.42×10-3 0.58  1.59% 

AgA 11.2 2.50×10-3 2.71* 6.68×10-4 0.06  5.50% 

*Calculated theoretically  

**Not determined.  

***No significant mass uptake measured  

Table 4-2. The model fitting parameters and results for 104 and 1044 ppbv CH3I adsorption on 

Ag0-Aerogel, Ag0Z and AgA. 

 

4.3 Physical Analyses Results 

The Ag and I compositions were measured using XPS and SEM-EDX and the results are listed in 

Table 4-3. To compare the compositions of the samples with different iodide uptake, the weight 
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percent of Ag and I was calibrated as,  

 
. %

. %
(1 %)

measured wt
Calibrated wt

Iodine
=

−
  4-1 

which means the iodide was considered as additional mass. 

 

Material Conc’ (ppbv) XPS   SEM-EDX Iodine Uptake* (wt%) 

  
Ag 

(wt%) 

I 

(wt%) 

I:Ag 

(%) 

 
Ag 

(wt%) 

I 

(wt%) 

I:Ag 

(%) 

 

Ag0Z 

Fresh 8.84         

104 8.94  4.10  46%  18.47  1.86  10% 0.62  

1044 10.78  9.22  86%  14.12  10.17  72% 2.90  

          

AgA 

Fresh 20.76     25.32     

104 19.53  0.21  1%  24.57  0.11  0.4% NA** 

1044 21.39  1.89  9%  29.36  3.40  12% 0.75  

          

Ag0-Aerogel 

Fresh 33.7    31.5    

104 28.0 2.5 9%  38.5 1.2 3% 0.42 

1044 27.8 12.4 45%  34.3 5.0 15% 3.71 

*Chemisorption iodine uptake    

**No significant mass uptake measured    

Table 4-3. The Ag and I compositions of Ag0-Aerogel, Ag0Z and AgA measured by XPS and 

SEM-EDX. 

 

The iodine compositions determined in Table 4-3 are roughly comparable with the iodine uptakes 

measured experimentally. Both the modeling and the physical analyses results indicate that the 

AgA obtains the lowest efficiency in iodine removal and the chemisorption rate of Ag0-Aerogel 

is greater than that of Ag0Z. 
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4.4 Aging Resistance 

Besides the adsorption rate, the aging resistance is another critical factor to be considered in 

comparing the efficiency for iodide removal. In the off-gas streams, a considerable amount of 

NOx exists and induces the losses of adsorption capacities of the adsorbents by oxidizing the 

silver contained.65,98 In the study conducted by Choi et al.,105 the NO2 was identified as the 

species that obtains the highest aging effect to Ag0Z and Ag0-Aerogel among dry air, moist air, 

NO, and NO2. When contacting with NO2
 at 150 ℃, Ag0Z loses more than 90% of its original 

iodine capacity in the first week and at 1 month, the capacity is close to zero.84,85  

AgA obtains stronger resistance to NO2 aging but the capacity loss is still considerable. Jordan 

observed 76% loss in 1-month NO2 aging experiments and the remaining capacity is 

approximately 2.4 wt%.84 The NO2 aging resistance is similar for Ag0-Aerogel (80% loss of 

capacity in 1 month). However, since the initial adsorption capacity is much higher, Ag0-Aerogel 

maintains approximately 6 wt% of capacity.  

These literature works suggest that for its high silver content and special structures, the Ag0-

Aerogel obtains the highest aging resistance among the three materials. 

 

4.5 Conclusions 

When determining the optimal adsorption temperature, Nan et al.95 reported 150 ℃ at which the 

highest adsorption capacity was observed. However, the criterion changes for the ppbv level 

adsorption. To be discussed in Chapter 5, reaching the maximum capacities of the adsorbents is 
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not applicable. For example, based on the model predictions, the adsorption process on Ag0-

Aerogel may last for decades at 104 ppbv. Therefore, it is not necessary to consider the capacities 

in determining the efficiencies of the materials. Instead, the uptake rate becomes more important. 

With the adsorbent of higher uptake rate, the adsorption column may be shortened with no 

impact on the designated removal ratio. 

Moreover, the aging resistance is another crucial factor to be considered. Discussed in the 

previous section, Ag0-Aerogel maintains the highest adsorption capacity of 8 wt% after 

contacting with NO2 at 150 ℃ for one month, whereas Ag0Z lost all the capacity and AgA 

remains 2-3 wt%.  

Therefore, since the Ag0-Aerogel obtains the highest iodine uptake rate, adsorption capacity and 

aging resistance, Ag0-Aerogel is considered as the optimal material among the three materials. 

However, there are multiple factors not considered. Ag0-Aerogel is a novel material developed in 

the 2010s, whereas the Ag0Z and AgA were developed decades ago and have been used around 

the world. The techniques of maintaining and operating the Ag0Z and AgA adsorption are well-

developed. In other words, to replace with Ag0-Aerogel, the adsorption system may need to be 

altered and additional training may be required. These additional procedures increase the capital 

cost and may obstruct the application of Ag0-Aerogel.  

Secondly, the understanding of Ag0-Aerogel is still limited. The adsorption kinetics, iodine 

capacities and the aging effects were investigated but the results are still not adequate to provide 

a comprehensive overview of the material. To employ the Ag0-Aerogel in the industrial waste 
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reprocessing system, more application-oriented studies are required.  

Chapter 5. CH3I Adsorption on Ag0-Aerogel: Concentration Dependence 

5.1 Introduction 

The Ag0-Aerogel was selected as the most effective material among Ag0-Aerogel, Ag0Z and AgA 

for its high CH3I adsorption rate and aging resistance. To further examine the adsorption 

behaviors and provide parameters for column modeling and design, the single-layer CH3I 

adsorptions at various concentrations were conducted to understand the concentration 

dependence of the adsorption. 

In the single-layer adsorption experiments, Ag0-Aerogel was placed in a tray connected to a 

microbalance, enabling real-time and high-precision measurement of the mass change. The 

temperature was 150 ℃ and gas flow rate was set to be 500 sccm in order to satisfy the 1.1 m/s 

superficial gas velocity suggested by Nan et al.95 To provide an overview of the CH3I adsorption, 

two long term adsorptions were performed at 245 and 9584 ppbv concentrations. The results 

indicated that reaching adsorption saturations is unrealistic for concentrations under 

approximately 1 ppmv, therefore, the 104 and 1044 ppbv CH3I adsorptions were stopped at about 

12 days (approximately 300h). 

The adsorption kinetic data at various CH3I concentrations were obtained and used to evaluate 

the models and determining pore diffusivity and reaction rate of CH3I in Ag0-Aerogel. To explain 

the inconsistency of reaction rate constants at different concentrations, an nth order shrinking core 

model was applied and the modeling results were used to improve the predictions of adsorption 
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behavior at various CH3I concentrations.  

5.2 Adsorption Kinetics 

Four adsorption experiments with 104, 245, 1044 and 9584 ppbv CH3I in dry air were conducted. 

The concentrations were calculated from the data provided by the permeation tube manufacturer 

and confirmed by measuring the mass differences of the permeation tubes before and after the 

experiments. Approximately 288 hours adsorption data of 104, 245, 1044 and 9584 ppbv CH3I 

adsorption on Ag0-Aerogel are plotted in Figure 5-1. At 288 hours, mass uptakes reached 0.39, 

0.91, 3.7 and 14.7 wt% at 104, 245, 1044 and 9584 ppbv respectively; and the long-term 

adsorptions at 245 and 9854 ppbv reached 4.1 and 28.5 wt% (The full adsorption kinetics are 

plotted in Figure 5-2). To eliminate the physically adsorbed CH3I, the Ag0-Aerogel was left in the 

adsorption column and desorbed by stopping CH3I generation and flowing only dry air for 24-48 

h. During this desorption process, no significant mass losses were observed, indicating CH3I 

adsorption on Ag0-Aerogel was mostly chemisorption.  
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Figure 5-1. Uptake curves of 104, 245, 1044 and 9584 ppbv CH3I adsorptions on Ag0-Aerogel 

for up to 288 hours. 
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5.3 Considering the Aging Effect 

When being heated in air, Ag0-Aerogel tends to lose its adsorption capacity and this aging 

phenomenon becomes significant when the exposure time is long enough. Reported by Matyáš et 

al.65 Ag0-Aerogel loses 21.5% of its original capacity when being aged in 150 ℃ dry air for 6 

months and Choi et al.105 observed a 19.7% loss in 1 month. The long term CH3I adsorptions at 

245 and 9854 ppbv reached 4.1 and 28.5 wt%, which provide an excellent opportunity for 

examining the aging effect during iodine removal.  

Choi et al.105 proposed the dry air aging mechanism of Ag0-Aerogel to be,  

 2-

2 24 2 2 2
O

O Ag HS Ag S HO−+ + ⎯→ +   5-1 

The silver sites are deactivated by reacting with thiol groups (HS-) with air present and the rate 

can be written as,  

 
*

1 1

Ag

AgHS S Ag

dC
k C C k C C

dt
− − +−= − +   5-2 

where, 

 
2

*

1 1 Ok k C=   5-3 

k1 and k-1 are the forward and reverse reaction rate constants and C ’s are the dimensionless 

concentration.  

The material balance of Ag and S can be represented as,  

 1
HS S

C C− −− =   5-4 

 2
S Ag

C C− +=   5-5 
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 1 AgAg
C C+ = −   5-6 

Therefore, Eq. 5-2 can be written in k’s and
AgC as,  

 ( ) ( )( )*

1 12 1 1 2 2
Ag

Ag Ag Ag Ag

dC
k C C k C C

dt
−= − − + − −   5-7 

with the initial condition as,  

 
0

1Ag t
C

=
=   5-8 

and k1
* = 1.3×10-4 hr-1 and k-1 = 1.3×10-3 hr-1.105  

Assuming the deactivation of Ag sites is homogeneous through the pellet, the aging effect can be 

incorporated into the adsorption model and the qe (saturation sorbate concentration) used for 

modeling may be replaced with a time-dependent qe(t) as,  

 ( ) ( )e e Agq t q C t=   5-9 

The model fitting results using the shrinking core model (SCM), volume reaction model (VRM), 

linear driving force model (LDFM) and the micropore term of the pore diffusion model (PDMI) 

of the 245 and 9584 ppbv CH3I adsorption on Ag0-Aerogel with fixed qe = 37 wt% and the aging 

effect-incorporated, time-dependent qe(t) are plotted in Figure 5-2 and the parameters determined 

are listed in Table 5-1.  
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Figure 5-2. Model fitting results using SCM, VRM, LDFM and PDMI of the 245 and 9584 ppbv CH3I adsorption on Ag0-Aerogel 

with fixed qe = 37 wt% and the aging effect-incorporated, time-dependent qe(t). 
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  SCM  VRM   LDFM   PDMI 

Concentration  

(ppbv) 

kf  

(cm/s) 

Dp  

(cm2/s) 

ks  

(cm/s) 

AARD  

(%) 

 kv  

(cm3/mol/s) 

Dp  

(cm2/s) 

ϕ2 

  

AARD 

 (%) 

 kLDF  

(s-1) 

AARD  

(%) 

 Di  

(cm2/s) 

AARD 

 (%) 

245 (Fixed qe) 2.71* 4.95×10-4 0.28  2.48  7.77×103 NA** NA** NA**  1.71×10-8 17.56%  NA** NA** 

245 (Aged qe) 2.71* 5.86×10-4 0.27  1.62  1.00×104 NA** NA** NA**  1.87×10-8 14.91%  NA** NA** 

9584 (Fixed qe) 2.71* 5.65×10-4 0.88  2.59  1.29×104 7.18×10-4 303.8 3.98  2.58×10-7 6.60%  6.21×10-23 5.74% 

9584 (Aged qe) 2.71* 7.16×10-4 0.62  1.29  1.26×104 8.98×10-4 236.9 2.93  3.27×10-7 4.62%  9.05×10-23 5.09% 

*Determined theoretically using Eq. 3-11 to 3-14.        

**No reasonable fitting results could be determined.        

Table 5-1. The parameters determined using SCM, VRM, LDFM and PDMI with fixed qe and aging-incorporated qe.



60 

To average the weights of different sections in the adsorption curves and increase the accuracy of 

data fitting, the variables to be fitted were rescaled by log10 before applying the least square 

regressions. More specifically, 

 ( )( )
2

10 10
1, 2...

log ( 1, 2...) log ( )min i exp i
para para i

f para para data−   5-10 

was used instead of, 

 ( )
2

1, 2...

( 1, 2...) ( )min i exp i
para para i

f para para data−   5-11 

where f is the equation of the model to be fitted, para1, para2… are the parameters in the model, 

subscript i is the number of experimental data and dataexp is the experimental data. 

Eq. 5-11 is a typical method of performing model fitting, and another method is,  

 

2

1, 2...

( 1, 2...) ( )

( )
min

i exp i

para para i exp i

f para para data

data

 −
  
 

   5-12 

In these two methods, the weights of the values are highly uneven. For example, in Eq. 5-11, the 

model tends to focus on the data with greater values since a relative error for the data with 

smaller value contribute much less absolute error than that with a greater value. Similarly, when 

using the method in Eq. 5-12, the model tends to focus on the data with smaller values because 

relative error for a small value data may be magnified significantly by the denominator. The 

effect of uneven weights of the data becomes significant especially for the data with a wide 

range; e.g., for the SCM, t is fitted and the range is from 1 up to 106 second. Therefore, to 

narrow-down the range and even the weights of the values, the method shown in Eq. 5-10 was 

applied. 
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The AARD’s (average absolute relative deviation) were calculated using, 

 
1

100
exp modelN
i i

exp
i i

q - q
AARD

N q
=    5-13 

where model indicates model fitting result and N is the number of data points. 

Since the a near-saturation was achieved in 9584 ppbv adsorption, the process can be fitted by all 

four models and the AARD’s are relatively low. However, limited by the low mass uptake, no 

reasonable results can be determined for the 245 ppbv adsorption using VRM and PDMI. (Four 

models will be compared in the next section.) 

Incorporating the aging effect enabled better model fitting results since the AARD’s in Table 5-1 

decreased. Additionally, visualized in Figure 5-2, the 9584 ppbv adsorption was approaching the 

saturation and the maximum capacity may be located at approximately 30-31wt%, 19% lower 

than the fresh capacity, which is close to the aged capacity reported by Matyáš et al.65 and Choi 

et al.105 

To further understand the aging effect during CH3I adsorption, some estimations were made 

based on the aging model proposed. When the aging time exceeds approximately 170 days, the 

adsorption capacity equilibrates at about 30.8 wt%. Additionally, the aging effect may only be 

significant when the adsorption time is long enough, (months or longer) and in 12 days (the time 

selected for other adsorption experiments), the adsorption capacity decreased form 37 wt% to 

35.7 wt%, which may not impact the adsorption parameters determined. To maintain the 

consistency of model fitting processes, the aging effect was always incorporated in the model for 
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the rest of presented work unless specified particularly. 

5.4 Model Fitting Results and Model Comparison 

To analyze the kinetic data collected for 104, 245, 1044 and 9584 ppbv CH3I adsorption on Ag0-

Aerogel at 150 ℃, the shrinking core model (SCM), volume reaction model (VRM), linear 

driving force model (LDFM) and the micropore term of the pore diffusion model (PDMI) were 

applied and a comparison of the four models was made. Figure 5-3 shows the adsorption kinetics 

and model fitting results and the parameters determined are listed in Table 5-2. kf in the SCM 

was calculated theoretically using Eq. 3-11 to 3-14. The value was 2.71 cm/s, which is 

comparable with what Jubin calculated under similar conditions.92 For 104, 245 and 1044 ppbv 

adsorption, no reasonable parameters could be determined using PDMI and the diffusivities in 

VRM are not reasonable either. Additionally, the LDFM results are not reliable for 104, 245 and 

1044 ppbv adsorption.  

The 9584 ppbv adsorption can be described by all four models, and the parameters determined 

by LDFM and PDMI agree well. When the micropore diffusion is the controlling term for 

LDFM, the Eq. 3-20 reduces to,125 

 
2

1

15

i

LDF i

R

k D
=   5-14 

For Ag0-Aerogel, the micropore diameter is 6.6 Å, and the Di can be estimated using Eq. 5-14 

to be 9.51×10-23 cm2/s. 

By applying the SCM, Dp’s were determined to be 5.86×10-4, 7.07×10-4 and 7.16×10-4 cm2/s for 
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245, 1044 and 9584 ppbv respectively, and the Dp was not determined using the SCM at 104 

ppbv adsorption since no significant diffusion process was observed. More specifically, at low 

concentration, the CH3I has not consumed all Ag on the surface of Ag0-Aerogel pellet during the 

test time frame and therefore no significant pore diffusion was observed. The average Dp by 

SCM was 6.70 ± 0.73×10-4 cm2/s and the value of 8.98×10-4 cm2/s determined using VRM at 

9584 ppbv concentration is also comparable. 
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Figure 5-3. The adsorption kinetics and model fitting results of 104, 245, 1044 and 9584 ppbv CH3I adsorption on Ag0-Aerogel. 
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  SCM   VRM   LDFM   PDMI 

Concentration  kf  Dp  ks  AARD  
  

kv  Dp  ϕ2 AARD 
  

kLDF  AARD  
  

Di  AARD 

(ppbv) (cm/s) (cm2/s) (cm/s) (%) (cm3/mol/s) (cm2/s)    (%) (s-1) (%) (cm2/s)  (%) 

104 2.71* N.D ** 0.23  14.74  9.96×103 N.D** N.D ** N.D **  1.11×10-8 14.52   N.D ** N.D ** 

245 2.71* 5.86×10-4 0.27  1.62  1.00×104 N.D ** N.D ** N.D **  1.87×10-8 14.91   N.D ** N.D ** 

1044 2.71* 7.07×10-4 0.40  1.87  1.28×104 N.D ** N.D ** N.D **  1.13×10-7 12.61   N.D ** N.D ** 

9584 2.71* 7.16×10-4 0.62  1.29  1.26×104 8.98×10-4 236.9 2.93  3.27×10-7 4.62   9.05×10-23 5.09  

*Determined theoretically using Eq. 3-11 to 3-14.         

**No reasonable fitting results could be determined.         

Table 5-2. The parameters determined for 104, 245, 1044 and 9584 ppbv CH3I adsorption on Ag0-Aerogel. 
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The pore diffusion model has been used in the CH3I and water adsorption on Ag0Z by Jubin92 

and Nan15; the Da and Di determined agreed well in their experiments and the errors are 

acceptable. In the 9585 ppbv adsorption, the mass uptake reached 28.5 wt%. Adequate amount of 

CH3I diffused into the pellet and the overall process is mainly diffusion controlled (To be 

discussed in Section 5.7). Therefore, the process can be described by the pore diffusion model 

and the micropore diffusivity Di was calculated to be 9.05×10-23 cm2/s. However, the pore 

diffusion model is not applicable for ‘partial adsorptions’. For 104, 245 and 1044 ppbv CH3I 

adsorption, the highest mass uptake achieved was approximately 4 wt%, less than 1/9 of the full 

capacity. In such case, only limited amount of diffusion exists and the adsorptions are mainly 

controlled by reaction. Similarly, the reactions are not included in the linear driving force model, 

and the results determined are not reliable either. Therefore, since the pore diffusion model and 

linear driving force model do not consider the reaction between organic iodides and Ag0-

Aerogel, the PDM and LDFM are not suitable for the ‘partial adsorptions’ of organic iodides on 

Ag0-Aerogel. 

Unlike the PDM and LDFM, the VRM considers both the reaction and diffusion processes in the 

adsorption but the results are not ideal either. For the ‘partial adsorption’ at 104, 245 and 1044 

ppbv, only the reaction rates were interpreted using the VRM and the Dp’s were not determined. 

For the same reason discussed above, the diffusivities may not be reliable when the diffusion 

process in the adsorption is not significant enough, and the threshold of determining a reliable Dp 

for VRM may be higher than that of SCM. Additionally, since the natural logarithm was required 
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when applying the VRM (Eq. 3-16), results with imaginary numbers may exist in certain 

circumstances, which introduces additional difficulties in the model fitting process.  

Additionally, a shrinking core process was observed by cutting a partial reacted Ag0-Aerogel 

pellet. In the CH3I adsorption, the color of Ag0-Aerogel changed from black to pale yellow and 

therefore enabled observing the adsorption process in another perspective. By cutting a I2 partial 

reacted Ag0Z pellet in half, Nan15 observed a clear edge between the reacted and unreacted layer 

and concluded that the adsorption of I2 on Ag0Z is a shrinking core process. Similarly, the CH3I 

partial adsorbed Ag0-Aerogel was cut in half and a dark unreacted core with yellow reacted layer 

was observed (Figure 5-4), therefore, the adsorption of CH3I in Ag0-Aerogel is likely to be the 

shrinking core process.  

 

Figure 5-4. Shrinking core process observed in CH3I adsorption on Ag0-Aerogel, two cut 

halves of a partially reacted pellet. 
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Based on the explanation above, the shrinking core model is considered as the most suitable 

model among SCM, VRM, LDFM and PDMI for its accuracy, straight-forward physical 

implication and easy applying. 

Using the SCM, an average Dp was calculated and it can be used for further applying the SCM to 

predict the adsorption behavior in a wider concentration range. However, different from 3 similar 

Dp’s, ks’s increase from 0.23 cm/s at 104 ppbv to 0.62 cm/s at 9584 ppbv. The concentration-

dependent ks is highly questionable. Theoretically, for a given reaction, the reaction rate constant 

only depends on temperature and shall not change with the reactant concentration.144 Therefore, 

the orderly changed ks indicates an nth order reaction instead of the assumed 1st order.  

 

5.5 Nth Order Shrinking Core Model 

The nth order SCM cannot be used directly to fit an adsorption curve because the ks
*Cb

n term in 

Eq. 3-10 contains two variables (ks
* and n) and one constant (Cb). There exists an unlimited 

amount of combinations to yield the desired value. Instead, ks
* and n were determined by plotting 

ks
 (cm/s) and Cb (mol/cm3) using Eq. 5-15 and 5-16. 

 
* n

s b s bk C k C=   5-15 

 
*ln( ) ln( ) ln( )s b s bk C k n C= +    5-16 

The reaction order and nth order reaction constant were determined using Figure 5-5 and shown 

in Table 5-3. For CH3I-Ag0-Aerogel adsorption system, n=1.22 and ks
*= 74.90 

(cm/s)∙(mol/cm3)1-n. As mentioned earlier, the SCM results can be applied to deep-bed adsorption 
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analysis. However, keeping the nth order reaction assumption may introduce certain difficulties in 

calculations. Therefore, Eq. 5-15 can be rewritten as Eq. 5-17 to calculate the nth-order-

compensated, concentration-dependent pseudo ks’s (cm/s). 

 
* 1 n

s s bpseudo k k C −=   5-17 

 

 

Figure 5-5. Reaction order plot, ln(Cb) vs. ln(ksCb). 

 

Concentration (ppbv) ks (cm/s) ln(ksCb) ln(Cb) pseudo ks (cm/s) 

104 0.23  -26.54  -28.01  0.23  

245 0.27  -25.68  -26.98  0.28  

1044 0.40  -24.23  -25.14  0.38  

9584 0.62  -21.88  -22.36  0.64  

n=1.22       

ks
*=74.90 (cm/s)∙(mol/cm3)1-n    

Table 5-3. Parameters and results of determining reaction order. 
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Similar fractional reaction orders were also observed in other silver-containing materials. Zhou 

and White145 suggested that the desorption of organic products from Ag(111) surface changes the 

order of the C2H5I-Ag reaction. Robb and Harriott146 indicated that the diffusion limitation in 

supported silver catalysts changes the order of CH3OH oxidation. Both researchers point out the 

effect of the physical process, the diffusion of product, to the order of chemical reaction, which 

will be discussed in Section 5.8. 

 

5.6 Nth Order SCM Examination and Application 

The effectiveness of the nth order SCM can be demonstrated by comparing predictions made by 

the nth order SCM and 1st order SCM with average ks, which the average ks = 0.381 cm/s was 

calculated by averaging 4 ks’s directly. Figure 5-6 shows the prediction of 104 ppbv CH3I 

adsorption behavior generated by using nth order SCM and 1st order SCM with average ks, and 

the Dp used is the average value determined. Comparing with 1st order SCM with average ks, the 

nth order SCM decreases AARD by approximately 35%. The mass uptakes in 288 hours 

predicted by using nth order SCM and 1st order SCM with average ks are 0.40 wt% and 0.59 wt% 

respectively, where the measured mass uptake is approximately 0.39 wt%. 
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Figure 5-6. 104 ppbv CH3I on Ag0-Aerogel, SCM prediction using nth order SCM and 1st order 

SCM with average ks. 

 

With the developed nth order SCM, the adsorption behavior can be predicted more accurately. 

Figure 5-7 shows the predicted behavior of 104, 245, 1044 and 9584 ppbv CH3I adsorption on 

Ag0-Aerogel at 150 ℃ using nth order SCM. The capacity loss caused by dry air aging effect was 

considered, and other parameters are kf = 2.71 cm/s, Dp = 6.70×10-4 cm2/s, n= 1.22 and ks
* = 

74.90 (cm/s)∙(mol/cm3)1-n. Based on the results, for CH3I adsorption on Ag0-Aerogel at 150 ℃ 

reaching saturation, 15.7K days are required at 104 ppbv condition, 7.7K days at 245 ppbv, 1.4K 

days at 1044 ppbv and 152 days at 9584 ppbv. 
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Figure 5-7. 104, 245, 1044 and 9584 ppbv CH3I adsorption behavior prediction using nth order SCM.
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The saturation times provided are based on only the initial part of the adsorption curve. For 

example, at 104 and 245 ppbv, the acquired results only contain 12-days of data, whereas the full 

adsorption processes would take decades. Admittedly, comparing the predictions with the data 

collected in a longer time period will provide more reliable and persuasive results. However, this 

is clearly not practicable. Therefore, the saturation times provided are only for estimation, but we 

expect that the actual times should be in the same time scale with our predictions. 

 

5.7 Rate-Controlling Step 

For further analysis and application of the SCM results, it is necessary to understand the rate-

controlling step of the process. To determine how the CH3I-Ag0-Aerogel adsorption is controlled, 

τ1, τ2, and τ3 at 4 different concentrations were calculated using Eq 3-7 to 3-9 with the 

determined parameters shown in Table 5-2. τ1, τ2, and τ3 are the partial adsorption saturation time 

contributed by the gas film diffusion, pore diffusion, and reaction term. More straightforwardly, 

the saturation time, tsat, can be expressed as, 

 
1 2 3satt   = + +   5-18 

For the SCM, the control term can be represented by overall resistance ratio, τi/tsat, where i = 1, 

2, or 3.125  
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Figure 5-8. Resistance contributions of pore diffusion and reaction terms for CH3I-Ag0-Aerogel 

adsorption at 104, 245, 1044 and 9584 ppbv. 

 

Figure 5-8 shows the resistance contributions of the pore diffusion term and reaction term, 

whereas the gas film diffusion term is less than 1% and not shown in the figure. It was found that 

the reaction resistance contribution decreases from 15% at 104 ppbv to 6% at 9584 ppbv and the 

pore diffusion resistance contribution increases accordingly. Generally, for a given adsorption 

system, the resistance contribution is independent of the concentration of the adsorbate. 

Therefore, the change shown in Figure 5-8 is due to the nth order reaction which has been 

discussed previously.  

The adsorption rate is determined by the process with the highest resistance. Visualized from 

Figure 5-8, the pore diffusion contributes the most among the gas film diffusion, pore diffusion, 
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and reaction term, especially at high CH3I concentration. Therefore, the CH3I-Ag0-Aerogel 

adsorption is identified as an ‘overall’ diffusion-controlled process. The overall process is 

diffusion-controlled, but at certain conditions, the process may not be controlled by diffusion, 

which will be discussed in the following content. Moreover, as the concentration decreased from 

9584 to 104 ppbv, the ratio of reaction resistance contribution increases accordingly, indicating 

that the CH3I-Ag0-Aerogel adsorption may change from a pore diffusion-controlled to a reaction-

controlled process if the concentration decreases substantially. 

Although the overall process is controlled by the pore diffusion of CH3I, at VOG conditions, the 

rate determining step may vary because of the actual adsorption process. As mentioned above, in 

the VOG stream, the CH3I concentration is in ppbv level, and the adsorption rate is extremely 

low. For example, at 104 ppbv, the prediction of the single-layer adsorption shows that the 

adsorption may not reach saturation in decades. Therefore, in the industrial application, the 

active regions are only the initial parts of the adsorption curves. These regions correspond to the 

surface reaction between CH3I and Ag0-Aerogel, which are highly reaction-controlled. In this 

process, CH3I reacts with Ag on the surface of Ag0-Aerogel and only a limited amount of CH3I 

diffuses into the pellets. Quantitatively speaking, at VOG conditions, the q/qe term in Eq. 3-6 is 

much smaller than 1 and by specifying the q/qe values, the real-time contributions of diffusion 

term and reaction term can be calculated. For example, as Figure 5-9 shows, at 104 ppbv, the 

reaction term contributes approximately 49% at q = 5 wt%, which approximately 300 days are 

required to reach this point. Additionally, within 1 months, the reaction term contribution is 
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higher than 80% and the mass uptake is below 1 wt%. Therefore, it is important to notice that 

although the overall adsorption process is controlled by the pore diffusion, at actual VOG 

conditions, the effect of pore diffusion to the uptake rate is minor in at least months. For the 

industry application purpose, when determining the CH3I-Ag0-Aerogel adsorption behavior at 

low concentration conditions, the analysis should focus on the initial part, and this part is mainly 

controlled by the reaction rate instead of the pore diffusivity.  

 

Figure 5-9. Real-time contribution of reaction term and pore diffusion term in CH3I-Ag0-Aerogel 

adsorption at 104 ppbv (percentage represents reaction contribution). 
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Because the adsorption behavior at low concentration minorly depends on the gas film diffusion 

and pore diffusion term, the SCM in Eq. 3-6 can be reduced to Eq. 5-19 and the mass uptake 

rate is given by Eq. 5-20.  

 

1/3

3

q
1 1

e

t
q


  
 = − − 
   

  5-19 

 

2

3

3

3

3 ( )eq tdq
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



−
=     5-20 

Since at the initial region, t<<τ3, Eq. 5-20 can be written as Eq. 5-21 for nth order reaction. 

 
*3 n

s b

a p

bk Cdq

dt R 
=   5-21 

Furthermore, by replacing Ra and ρp, Eq. 5-21 becomes,  

 *

s  When  and n

b sat e

dq
Abk C t t q q

dt
=  （ ）  5-22 

where A is the specific surface area (cm2/g) of the material. This result indicates that at VOG 

conditions, the initial part, the only region need be considered, of nth order SCM reduces to a 

simple nth order surface reaction with a constant uptake rate, which can be demonstrated by 104 

and 245 ppbv adsorption curves in Figure 5-1. However, to increase the adsorption efficiency, 

simply increasing the surface area by reducing the diameter may not be applicable. The surface 

reaction condition may not hold due to the change of flow regime caused by fine pellets. 
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5.8 Potential Reaction Mechanism 

For the chemisorption with gas phase product generated, Zhou and White145 and Robb and 

Harriott146 suggested that the formation of gases and the successive diffusion limitations may 

result in a fractional order reaction, which has been observed in the CH3I adsorption. To explain 

this observation, a potential reaction pathway is proposed.  

 

Figure 5-10. The proposed reaction pathway between CH3I and Ag in Ag0-Aerogel. 

 

In the shrinking core model, the reactions only happen on the reacting surface, which separates 

the reacted layer and the unreacted core. Once the Ag sites on one surface are fully consumed, 

the reactions proceed to the next surface. As Figure 5-10 shows, during the adsorption, CH3I first 
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diffuses through the reacted layer and reaches the reacting surface (0). On the reacting surface, 

CH3I breaks reversibly into two free radicals (1), CH3
* and I*. Two CH3

* radicals bind with each 

other and form C2H6 (2); I* radical binds with Ag and forms AgI (3); and C2H6 diffuses out 

through the reacted layer (4). In this process, to satisfy the observed 1.22 reaction order, the 

reaction order of CH3I is assumed to be n; the orders of other reactions are 1 to each component; 

and the reason will be discussed in the following contents.  

The formation/consumption rates of the components can be written as,  

 
3 3 31 1 * *

n

CH I CH I CH Ir k C k C C−= − +   5-23 

 
3 3* 1 3 * 1 * *

n

I CH I I CH Ir k C k C k C C−= − −   5-24 

 
3 3 3 3 2 6* 1 1 * * 2 * 2

n

CH CH I CH I CH C Hr k C k C C k C k C− −= − − +   5-25 

 2 6

2 6 3 2 6

*

2 * 2

C H

C H CH C H

D C
r k C k C

L
−= − −   5-26 

where k’s are the surface reaction rate constants, D* is the diffusivity of C2H6, and L is the 

thickness of the reacted layer. The stoichiometric coeffecient of C2H6 is ignored in the equations 

since it does not impact the results. 

Assuming pseudo-equilibrium, the steady state is established immediately after the reactions 

proceed to the next surface, CH3
*, I* and C2H6 are assumed to not accumulate on the reacting 

surface and the rates, 
3*CHr , 

*Ir , and 
2 6C Hr  should be 0.  

Set Eq. 5-26 = 0 and solve for 
2 6C HC ,  

 2 6

2 6 3 2 6

*

2 * 2 0
C H

C H CH C H

D C
r k C k C

L
−= − − =   5-27 
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Set Eq. 5-24 = 0 and solve for *I
C , 

 
3 3* 1 3 * 1 * * 0n
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Insert Eq. 5-28 and Eq. 5-30 into Eq. 5-25, set Eq. 5-25 = 0 and solve for *
3CH

C ,  
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Reorganize Eq. 5-31,  
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Further reorganize,  
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Define, 

 2

*

k L

D

− =   5-34 

Eq. 5-33 can be written as,  

 3 3

*
3

1 3 2 *

3 1 1

n

CH I CH

CH

k k C k C

k k C−

=
+ +

  5-35 
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Linearize Eq. 5-35,  

 ( )* *
33 3

2

1 2 2 3 1 31 0n

CH ICH CH
k k C k k C k k C− + − + =   5-36 

Solve for *
3CH

C , 
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Reorganize,  
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or, 
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Plug Eq. 5-30 to Eq. 5-23 and reorganize,  
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Plug Eq. 5-39 to Eq. 5-40 , 
3CH Ir  can be written as Eq. 5-41,  
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2

*

k L

D

− =   5-42 

where Φ is similar to the Thiele modulus, the ratio of the reaction rate to the diffusion rate.147  

As more than five parameters are included, determining the 
3CH Ir  step-wise would be 
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impractical. Considering two limiting cases, when 31 1

2 3

4 (1 )
1

n

CH Ik k C

k k

− +
, the reaction rate 

3CH Ir  would be proportional to
3

/2n

CH IC ; if 31 1

2 3

4 (1 )
1

n

CH Ik k C

k k

− +
, 

3CH Ir would be proportional to

3

n

CH IC . Since the reaction order would be between n/2 and n, the integer that satisfies the 

observed 1.22 order is n = 2.  

Additionally, Eq. 5-41 indicates that the temperature change may impact the reaction rate. 

Generally, the relationship between k (or D) and T can be written as Eq. 5-43, 
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'

1 1
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k E
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    
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which implies that the temperature change may impact the overall reaction rate by changing the 

magnitude of 31 1

2 3

4 (1 )n

CH Ik k C

k k

− +
.  

 

5.9 Conclusions 

The kinetic data of CH3I adsorption on Ag0-Aerogel at 150 ℃ were obtained using the 

continuous flow adsorption system. The CH3I concentrations were 104, 245, 1044 and 9584 

ppbv. Because the corresponding shrinking core process was observed, the shrinking core model 

was applied to determine the gas film diffusivity, pore diffusivity and reaction rate constant. The 

1st order reaction was originally assumed. The well-agreed pore diffusivities were determined in 

three of the total four trials. The average value was 6.70 ± 0.73 ×10-4 cm2/s. Orderly increasing 

reaction rate constants were observed and, therefore, the modified nth order SCM was selected 
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for analysis.  

The reaction order of CH3I-Ag0-Aerogel adsorption was calculated to be approximately 1.22 and 

the reaction rate constant was approximately 74.90 (cm/s)∙(mol/cm3)1-n. This nth order SCM 

effectively increases the accuracy of adsorption behavior prediction. Using nth order SCM 

instead of 1st order SCM, the AARD of 104 ppbv adsorption behavior prediction decreases from 

50.63% to 14.52% (Figure 5-6). Furthermore, the overall single-layer adsorption behaviors at 

104, 245, 1044 and 9584 ppbv were predicted. For example, it requires more than 40 years for a 

single-layer Ag0-Aerogel reach to saturation at 104 ppbv, 150 ℃ and 500 sccm flow rate 

condition with the capacity loss due to dry air aging effects incorporated.   

The rate-controlling step of CH3I-Ag0-Aerogel adsorption was identified by plotting the 

resistance of different rate-dependent terms. Although the overall adsorption process is 

controlled by pore diffusion, the surface reaction between CH3I and Ag is more crucial at VOG 

conditions in a predictable time period. The nature of low concentration in VOG streams limits 

the adsorption from a full nth order SCM to a surface reaction. To increase the adsorption 

efficiency, decreasing the size of pellets is a theoretically applicable method. However, the 

detailed solution still requires further studies in deep-bed adsorption. By replacing the 1st order 

SCM by nth order SCM, the accuracy of adsorption behavior prediction at VOG conditions was 

increased significantly.  

To determine the adsorption behavior for the column adsorption at ppb levels, it should be 

noticed that the adsorption process is mainly controlled by the surface reaction and the complete 
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saturation of pellets may not happen during the test period. For the column adsorption modeling, 

using only the nth order SCM is insufficient, and directly applying the saturation time estimated 

in the presented work may be inappropriate. However, the idea of fractional reaction order and 

the parameters determined can be widely applied to the deep-bed adsorption system design of the 

off-gas treatment in the nuclear fuel reprocessing process.   
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Chapter 6. CH3I Adsorption on Ag0-Aerogel: Temperature Dependence 

6.1 Introduction 

In Chapter 5, the results of 104, 245, 1044 and 9584 ppbv CH3I adsorptions indicated that the 

adsorption is likely to be a shrinking core process and by applying the corresponding models, the 

diffusivities and reaction rate constants were determined. The diffusivities Dp’s determined were 

relatively constant with an average value of 6.70 ± 0.73 ×10-4 cm2/s. However, the reaction rate 

constants ks’s change with concentration, which indicates that the reaction between CH3I and 

Ag0-Aerogel may not be 1st order. Therefore, the SCM was modified to a nth order SCM and the 

reaction order determined was 1.22 and the nth order reaction rate constant was 74.90 

(cm/s)∙(mol/cm3)1-n. 

To further analyze the CH3I adsorption behavior, additional experiments at 100 and 200 ℃ were 

performed at 104 and 1044 ppbv and the results were compared with the 150 ℃ adsorption. 

During the experiments, an abnormally high uptake rate was observed for 104 ppbv CH3I 

adsorption at 200 ℃, and multiple physical analyses including nitrogen titration, scanning 

electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) were performed. Based 

on the data collected and theoretical analyses, the factors impacting the uptake rate appear to be, 

unusual reactions and products, difference in silver site availability, change of diffusion 

limitation and impact of temperature to reaction rate described by the Arrhenius relationship. 
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6.2 Procedure Description 

Using the continuous flow adsorption system, the mass changes of Ag0-Aerogel were recorded 

and the kinetic adsorption curves were generated. In this presented work, the adsorption 

experiments of 104 ppbv and 1044 ppbv of CH3I at 100, 150 and 200 ℃ were performed. Since 

reaching equilibrium is not realistic at ppbv level concentrations, the experiments were stopped 

at approximately 300 hours.148  

Before the start of the organic iodide adsorption, the pellets were air-dried at the same 

temperature as that of the adsorption experiment until the mass change in the past 24 hours is 

lower than 0.005 wt% (approximately 1/5 of the adsorption rate of 104 ppbv CH3I at 150 ℃). 

Especially, at 200℃, the drying process induced the loss of organic moiety of up to 9 -10 wt%, 

which a similar observation was reported in Matyáš and Engler’s thermogravimetric analysis 

(TGA).149  

Therefore, to determine the effect of organic moiety loss, the comparison experiments were 

performed at 104 ppbv-CH3I-150℃ and 1044 ppbv-CH3I-150 ℃ using the Ag0-Aerogel with and 

without the organic moiety loss. The results showed no significant difference in the uptake 

curves (in wt%). To further accelerate the drying process (which usually takes weeks) and 

removing the organic moiety for all experiments, the pellets were vacuum dried overnight at 

350 ℃ using the degas function of Surface Area and Porosity Analyzer (Micromeritics, ASAP 

2020) and stored in N2
 after the treatment. Similarly, after degassing, the adsorption curves (in 

wt%) and the maximum iodine capacities (approximately 37 – 38 wt%, measured by 50 ppmv I2 
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adsorption at 150 ℃) are similar to the untreated adsorbent. It is important to notice that during 

the 350 ℃ treatment, the organic moiety loss results in approximately 10 % loss of pellet mass. 

Therefore, the similar uptake rate by pellet mass indicates an approximately 10% loss of uptake 

rate by silver mass. However, this loss could be considered as a ‘worthy cost’ due to the 

successive significant increase of the organic iodide uptake rate at 200 ℃, which will be 

discussed in the following sections. 

 

6.3 Adsorption Kinetics  

The 104 ppbv and 1044 ppbv CH3I adsorptions on Ag0-Aerogel at 100, 150 and 200 ℃ were 

performed using the continuous flow adsorption system. For consistency purposes, pellets used 

for all trials were vacuum dried at 350 ℃ before the adsorption. After the pre-dry process, the 

pellets were moved to the adsorption system and the final water equilibrium process (flowing the 

carrier gas at the target adsorption temperature) was performed before starting the adsorption. 

Once the mass change of the pellets in the past 24h was less than 0.005 wt%, the CH3I 

adsorption was started. During the CH3I adsorption, no significant mass gain/loss was observed 

neither in the initial part (first 1-2 days) nor after the adsorption ended and the desorption started, 

which indicating the physisorption of CH3I on Ag0-Aerogel is relatively minor.  

The kinetic curves are shown in Figure 6-1, at 100 and 150 ℃, the tendency agrees well with the 

previous studies of I2 adsorption on Ag0Z95, that the adsorption rates increase slightly as the 

temperature increases. However, at 200 ℃, the uptake rate increases significantly (3 – 4 times 
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higher) at 104 ppbv, and the curvature of the curve decreases at 1044 ppbv. To analyze such 

abnormal behaviors, the shrinking core model (SCM) was applied. The parameters and results 

determined using the SCM are listed in Table 6-1. At 104 ppbv, the Dp’s were not determined 

since no significant pore diffusion processes were observed during the experiments.  

It can be visualized that, at 200 ℃, certain abnormal behaviors exist for both 104 and 1044 ppbv 

CH3I adsorption. To explain such observation, the nitrogen titration, XPS and SEM-EDX 

analyses were performed and a potential reaction pathway was proposed. 

 

Concentration (ppbv) Temperature (℃) kf (cm/s) Dp (cm2/s) ks (cm/s) AARD (%) 

104 

100 2.18* N.D** 0.17 11.64% 

150 2.71* N.D** 0.23 14.74% 

200 3.29* N.D** 0.67 11.51% 

      

1044 

100 2.18* 3.48×10-4 0.30 1.90% 

150 2.71* 7.07×10-4 0.40 1.87% 

200 3.29* 5.45×10-3 0.29 1.19% 

*Calculated theoretically   

**Not determined.      

Table 6-1. Parameters and results of the SCM 
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Figure 6-1. The CH3I adsorption curves of 104 ppbv (a) and 1044 ppbv (b) at 100, 150 and 200 ℃. 
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6.4 Water Equilibrium in Drying Process 

Because of multiple factors including the pellet size of Ag0-Aerogel, the internal structure of 

Ag0-Aerogel, etc., the water concentration in the pellets after 350 ℃ vacuum drying may not be 

constant. Therefore, a final drying is still required before the CH3I adsorption and the pellets may 

adsorb or desorb water in different trials. The water adsorbed was from the trace amount of 

moisture contained in the carrier gas (Airgas Inc. Air, Ultra Zero). According to the 

manufacturer, the air contains approximately 2 ppmv of water and the value was also validated 

by experimental measurement using a dewpoint meter. By selecting a water adsorption curve 

with the highest uptake (therefore the initial water concentration in the pellet can be assumed to 

be zero) , the water adsorption process can be modeled using multiple models including the 1-D 

spherical Fick’s Law127 (Eq. 6-1), differential form of the diffusion term of the shrinking core 

model (SCM)127 (Eq.6-2), and the micropore term of the pore diffusion model (PDMI)15 

(Eq.6-3). For Fick’s law and the shrinking core model, it is assumed that an equilibrium is 

established on the surface immediately.  
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q(r,t) is the sorbate concentration (mol/cm3 or g/cm3) at radius r (cm) at time t (s), and the 

average sorbate concentration q(t) can be calculated using, 
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Dp is the pore diffusivity (cm2/s), r is the radius at time t, V is the volume of the pellet (cm3), Di 

is the micropore diffusivity (cm2/s) and Ri is the radius of the micropore (cm). Ri was measured 

by the nitrogen adsorption method using ASAP 2020 and the value is approximately 6.6 Å.  

 

 

Figure 6-2. The 3-D fitting results of the Fick’s law. 
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Figure 6-3 The 3-D fitting results of the SCM. 

 

Figure 6-4. The adsorption curve and the modeling results of the water adsorption process 

(Fick’s Law and PDMI are overlapped). 
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The 3-D fitting results of the Fick’s law and shrinking core model are plotted in Figure 6-2 and 

Figure 6-3; the experiment data and the model fitting results are shown in Figure 6-4. The 

diffusivities determine using Fick’s Law, SCM and PDMI are 9.6×10-9 cm2/s, 2.6×10-8 cm2/s and 

4.4×10-21 cm2/s respectively. By comparing with multiple literature works150,151, the values of the 

diffusivities clearly fit in the range of micropore diffusion, indicating that the water 

adsorption/desorption in Ag0-Aerogel is a micropore diffusion process.  

 

6.5 Nitrogen Adsorption Analyses 

Since the carrier gas contains approximately 2 ppmv of water, the Ag0-Aerogel tends to reach 

moisture equilibrium with the ambient air during the adsorption of CH3I. The moisture levels in 

the pellet at 100, 150, 200℃ were measured using the pre-dried pellet and the continuous flow 

adsorption system. The pre-dried (350 ℃ degassed) pellets were placed into the adsorption 

system with identical settings except flowing pure air instead of air/CH3I mixture. The 

temperature of the adsorption column was firstly set at 200 ℃, and the pellets started to adsorb 

water from the ambient air, with the mass change collected continuously. Once the mass change 

in the past 24h was less than 0.005 wt%, the temperature was decreased to 150 ℃ and further 

down to 100 ℃ when the same criterion was met. The time to settle a new equilibrium was 100 – 

150 hours. 

The results indicated that the differences in water concentration between each temperature were 

approximately 0.15 – 0.2 wt%. In other words, if the water concentration in the pellets at 200 ℃ 
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was set as the zero point, the water adsorbed at 150 and 100 ℃ were approximately 0.2 and 0.4 

wt%. To examine such observation, the water desorption experiment in the reverse temperature 

order was also performed and the differences between each level were comparable.  

In order to determine the effect of different concentrations of moisture in the pellets at various 

temperatures, the nitrogen adsorption analyses were performed using the Surface Area and 

Porosity Analyzer (Micromeritics, ASAP 2020). Traditionally, the samples used for nitrogen 

adsorption analysis were fully dried to prevent any residual water to influence the results. Since 

the standard drying conditions for Ag0-Aerogel were not reported, the fully dried result was the 

one with the highest pore volume and surface area, selected from multiple 350 ℃ degassed trials.  

Instead, to determine the surface area and pore volume at real adsorption temperatures, the Ag0-

Aerogel was air dried using the adsorption column at the target temperatures (100, 150 and 

200 ℃) with the same criterion described above. Once the drying process was completed, the 

pellets were transferred to ASAP 2020 as quickly as possible (2-3 min). To minimize the 

potential water gain/loss during the analyses, multiple methods were applied including, minimize 

the time of transferring sample, measure the free volume of the test tube in advance (therefore, 

exposing the dried sample under vacuum at room temperature could be avoided), submerge the 

sample in liquid nitrogen immediately, only start the vacuum pump after the sample was 

submerged, and minimize the analysis time by selecting the minimal amount of sample points. 

Once the analysis was completed, the sample was transferred back to the adsorption column to 

measure the mass change during the porosity analysis. Since no significant mass changes were 
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observed, the water gain/loss during the analysis appears to be minor.  

As a reference of the highest level of water that could be contained in the pellet during actual 

industrial usage, the nitrogen adsorption experiment without any sample pretreatment was also 

performed using normally stored Ag0-Aerogel (named as Room Condition Equilibrium in Figure 

6-5, short as RC.EQ). The storage conditions measured by laboratory thermometer and 

hydrometer are, 20 – 23 ℃ and 20 – 30% humidity. 

 

Figure 6-5. The surface area and pore volume of micropores, macropores and total pores 

measured using nitrogen titration method at different drying conditions. 
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The micro, macro and total pore surface area and volume are plotted in Figure 6-5. The total pore 

surface area of the 350 ℃ degassed sample is 297.6 m2/g and the total pore volume is 0.34 

cm3/g, which are comparable with the trends of surface area and pore volume to silver 

composition in silica aerogel reported by Balkis Ameen et al.152  

Additionally, the plot shows that as the temperature decreases and the in-pellet water 

concentration increases, both pore surface area and pore volume decrease. As the temperature 

decreases to 100 ℃, the micropores are significantly blocked by water and become fully blocked 

at room condition equilibrium.  

Moreover, the diffusion of CH3I and related gas form products in Ag0-Aerogel may also be 

impacted by the porosity change. The porosity (ε = total pore volume / density) of the pellet is 

larger at higher temperature, and an experimental relationship between pore diffusivity and 

porosity is given as,153  

 / m

p AB pD D =    6-5 

where m is usually between 2 – 4.5 depending on the material. This relationship indicates that the 

pore diffusivities of both CH3I and gas phase products may increase with increasing temperature 

(DAB increases with temperature), and therefore decreasing the diffusion limitations and 

speeding-up the adsorption process. 
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6.6 Pore Distribution and Silver Site Availability  

Shown in Figure 6-5, the drying temperature impacts the pore surface area and the pore volume 

of the pellets by changing the water concentration in the pellet. When temperature decreases to 

below 100 ℃, the micropores are significantly impacted. This can be further visualized by 

comparing the pore distribution plots of the Barrett-Joyner-Halenda (BJH) desorption method 

and the density function theory (DFT) of 350 ℃ degassed and room condition equilibrium 

samples.  

The pore distribution plots (Figure 6-6) show that the Ag0-Aerogel mostly consists of mesopores 

(20-500 Å) and micropores (<20 Å) with a limited amount of macropores (> 500 Å), which agree 

with the SEM images that no significant structure was observed in the micrometer scale. 

Comparing the two curves in Figure 6-6. b, two sharp peaks at approximately 6 and 12 Å were 

observed only in the fully dried sample, whereas the room condition equilibrium one only 

contained a small peak at 15-17 Å. A similar trend is also revealed in Figure 6-6. a: the 350 ℃ 

degassed sample contains a ‘tail’ at 20-25 Å.  

Such observation further supports that the micropores (< 2 nm) are mostly blocked as the in-

pellet water concentration increases (Discussed in Section 6.5) and the water 

adsorption/desorption process in Ag0-Aerogel is a micropore diffusion process (Discussed in 

Section 6.4). 
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Figure 6-6. The BJH (a) and DFT (b) pore distribution plots of 350 ℃ degassed sample and 

room condition equilibrium (RC.EQ). 

`  

Since both pore surface area, pore volume and the amount of micropores decrease as the 

adsorption temperature decreases, the availability of silver sites may decrease due to the 

increasing water coverage. 

 

6.7 Arrhenius Relationship and Eyring Equation 

The well-known Arrhenius relationship is commonly used in describing the temperature 

dependence of reaction rate constant and diffusivity, which is, 144 

 
0 /  (replace  with  for diffusion)E RT

s s sk k e k D−=   6-6 

and the linear form is,  

 
0 1

ln( ) ln( )s s

E
k k

R T

−  
= +   

  
  6-7 



99 

Where ks
0 is the pre-exponential factor (unit same as ks), ΔE is the activation energy (kJ/mol) and 

R is the gas constant (kJ/mol/K). Discussed in Chapter 5, the CH3I adsorption on Ag0-Aerogel 

may be a 1.22 order shrinking core process, where the calibrated ks
* ((cm/s)∙(mol/cm3)1-n) can be 

represented as 
* 1 n

s s bk k C −= . Therefore, the Arrhenius equation was applied to the calibrated ks
* 

and the plot including the fitting results are shown in Figure 6-7.  

 

Figure 6-7. The Arrhenius plot of 104 and 1044 ppbv CH3I adsorptions on Ag0-Aerogel at 100, 

150 and 200 ℃.  

 

By fitting all three data points at each concentration, the ΔE’s are 20.21 and 0.64 kJ/mol for 104 

and 1044 ppbv adsorptions respectively. As stated above, both adsorption behaviors at 200 ℃ are 

relatively abnormal. If excluding the 200 ℃ data and consider the 100 and 150 ℃ results only, 
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the ΔE’s of 104 and 1044 ppbv adsorptions are well-agreed. The activation energy determined 

using 100 and 150℃ data of 104 ppbv adsorption is 8.6 kJ/mol, that of 1044 ppbv adsorption is 

8.2 kJ/mol and the pre-exponential factors are 904 and 848 (cm/s)∙(mol/cm3)1-n respectively. The 

activation energy determined appear to be reasonable comparing with previous studies. Park et 

al.154 performed the CH3I adsorption on silver ion-exchange ZSM-5 (Ag-ZSM-5) at 50, 70, 90, 

120 and 150 ℃ and reported the activation energy of 2.57 kJ/mol and Scheele et al.68 proposed 

20 – 40 kJ/mol for CH3I adsorption on Ag0Z.  

Another model describing the relationship between temperature and reaction rate constant is the 

Eyring equation,155  

 /G RTBk T
k e

h

−=   6-8 

where k is the reaction rate (s-1), kB is Boltzmann’s constant, h is Planck’s constant and ΔG is the 

Gibbs free energy of activation. Since the unit and the physical meaning of k are different from ks 

determined using SCM, a quantified result may not be given. However, some valuable trends and 

predictions can be interpreted. Representing the Gibbs free energy of the activation of the 

reaction between iodoalkane and Ag0-Aerogel as ΔG, dk/dT may be written as,  

 
/G RT Bkdk G

e T
dT hT R

−   
= +  

  
  6-9 

Eq. 6-9 indicates that the dependency of k to T may vary as ΔG/R changes. For example, given 

a range of temperature T1 to T3, Figure 6-8 shows that how -ΔG/R changes the dependency of k 

to T. 
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Figure 6-8. An example of the Eyring equation, how ΔG/R changes the dependency of k to T 

(curves have been rescaled and repositioned to clarify the tendencies). 

 

When -ΔG/R < T1, dk/dT > 0, indicating the increasing temperature increases the reaction rate; 

when -ΔG/R > T3, dk/dT < 0, and the reaction rate may decrease with increasing temperature. 

Interestingly, if T1 < -ΔG/R < T3, a minimum value of k may be observed at T = -ΔG/R. 

Generally, the ΔG is represented as a positive number, but can it be negative in some 

circumstances?  

Proposed in the Chapter 5, iodoalkane molecules may cleave into free radicals and produce 

alkanes and AgI in the re-bindings of radicals. The negative activation energies have been 

reported in some radicals-engaged reactions.156,157 Therefore, in the adsorptions of iodoalkanes 
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with larger alkane groups (e.g. C6H13I, C12H25I, etc.), the ΔG’s may decrease (or become 

negative) due to their instabilities,158 and the rough estimation above suggests that the 

dependency of k to T may vary at certain circumstances (To be discussed in Chapter 7).  

 

6.8 XPS and SEM-EDX Analyses 

To determine the compounds formed during the adsorptions, XPS analyses were performed 

using, fresh Ag0-Aerogel, 350 ℃ degassed Ag0-Aerogel, CH3I fully loaded (9585 ppbv, 

powdered adsorbent) Ag0-Aerogel, I2 fully loaded (50 ppmv, powdered adsorbent) Ag0-Aerogel, 

104 ppbv CH3I adsorbed (partially loaded) Ag0-Aerogel at 100, 150 and 200 ℃, and 1044 ppbv 

CH3I adsorbed (partially loaded) Ag0-Aerogel at the same temperatures. Since the first scan of 

the 104 ppbv/200 ℃ was questionable, a rescan was performed using the identical sample and 

settings (marked as SC1 and SC2 in the spectra). 

The XPS analyses were performed using the Scienta Omicron ESCA-2SR at Cornell University. 

The operating pressure is 1×10-9 Torr, and the monochromatic Al Kα x-rays (1486.6 eV) were 

generated at 300W (15 kV; 20mA).  
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Figure 6-9. Regional scans of Ag (a), I (b) XPS spectra of 104 ppbv CH3I adsorbed Ag0-

Aerogel and Ag (c), I(d) of 1044 ppbv CH3I adsorbed Ag0-Aerogel, with fresh, 350 ℃ 

degassed, CH3I fully loaded at 150 ℃ and I2 fully loaded Ag0-Aerogel at 150 ℃ as references. 
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The XPS spectra collected are shown in Figure 6-9. The fresh Ag0-Aerogel obtains the Ag3d5/2 

peak located at approximately 368.6 eV and the Ag3d3/2 peak at approximately 374.6 eV, which 

are comparable to the binding energy (BE) reported by Matyáš et al.65 After being degassed at 

350 ℃, the Ag BE decreases to 368.1 and 374.1 eV, indicating that certain amount of Ag2S 

nanoparticles may be generated in this process.159,160 After reacting with CH3I at different 

concentrations and temperatures, most of the Ag peaks shift to approximately 368.2 and 374.2 

eV except those of the pellets at 104 ppbv/ 200 ℃ condition. The trend of iodine BE is slightly 

different from that of Ag, CH3I fully loaded sample contains the I3d5/2 and I3d3/2 peaks at 

approximately 619.6 and 631.1 eV respectively, I2 fully loaded sample contains I3d5/2 and I3d3/2 

peaks at approximately 619.3 and 630.8 eV, and the peaks of remaining CH3I reacted samples 

located in between the values above except the 104 ppbv/ 200 ℃ case.  

However, the spectra of the 104 ppbv/200 ℃ CH3I adsorbed Ag0-Aerogel are significantly 

different. Both Ag3d5/2 and Ag3d3/2 split to at least two peaks, locating at approximately 366.6, 

369.5, 372.6 and 375.5 eV and I3d5/2 and I3d3/2 at 618.1, 620.9, 629.6 and 632.4 eV. The 

variations of the Ag and I spectra at 104 ppbv/ 200 ℃ condition indicate the Ag-I compounds 

formed may be different. 

The SEM-EDX analyses were also conducted to measure the element compositions and potential 

structure changes on the pellet surface. The SEM-EDX analyses were performed using JEOL 

JSM IT100LA at SUNY College of Environmental Science and Forestry (SUNY-ESF). The 

acceleration voltage was 10-15 kV and the probe current is 20-30 mA for secondary electron 
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detector (SED) mode and 55-65 mA for backscattered electron composition (BEC) mode. 

The SED and BEC (including the corresponding mappings of Ag and I) images are shown in 

Figure 6-10. The images show that the fresh Ag0-Aerogel (a) does not contain any notable Ag 

clusters in the micrometer scale on the surface. After reacting with 104 ppbv (b) and 1044 ppbv 

(c) CH3I (partially loaded), the surfaces of the adsorbent become coarser, whereas the 

distributions of Ag and I remain relatively uniform. As the concentration of the adsorbate 

increases, certain surface structures were formed and some bright spots can be observed in the 

SED image of the 9585 ppbv CH3I fully loaded Ag0-Aerogel(d). Similar bright spots were also 

identified in the BEC image and the corresponding Ag and I mappings. In the Ag and I mapping, 

a large bright spot exists on the top of the images and at least two other spots locate in the middle 

and the bottom-right corner. Therefore, the bright spots on the surface of CH3I fully loaded 

samples appear to be AgI clusters.  
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Figure 6-10. The SEM images including SED, BEC, Ag mapping and I mapping of various Ag0-Aerogels: (a) fresh, (b) 104 

ppbv/150 ℃ CH3I partially loaded, (c) 1044 ppbv/150 ℃ CH3I partially loaded, (d) 9585 ppbv/150 ℃ CH3I fully loaded and (e) 50 

ppmv /150 ℃ I2 fully loaded. (Continue in the next page) 
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Figure 6-10. The SEM images including SED, BEC, Ag mapping and I mapping of various Ag0-Aerogels: (a) fresh, (b) 104 

ppbv/150 ℃ CH3I partially loaded, (c) 1044 ppbv/150 ℃ CH3I partially loaded, (d) 9585 ppbv/150 ℃ CH3I fully loaded and (e) 50 

ppmv /150 ℃ I2 fully loaded. 
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The change of surface structure is more significant for the 50 ppmv I2 fully loaded sample (e). In 

the images, an obvious pattern can be identified, indicating a layer of AgI formed during the 

adsorption. The AgI clusters are in polygon shape and the diameter of the clusters are 

approximately 1-5 μm.  

 

6.9 Surface Composition 

Observed in the XPS results (Figure 6-9), the spectra of 104 ppbv/ 200 ℃ CH3I adsorbed Ag0-

Aerogel are significantly different from all others, which may further explain the abnormal high 

uptake rate. Figure 6-11 is the Ag(a) and I(b) regional scans of the 104 ppbv/200 ℃ CH3I 

adsorbed pellets with the spectra of CH3I fully loaded sample as references. Both Ag and I 

spectra of 104 ppbv/ 200℃ sample consist of three groups of peaks, which are marked as 1, 2 

and 3 in the figure. For Ag spectrum, 3 Ag3d5/2 peaks are located at 366.6, 368.2 and 369.45 eV, 

which the second group is well agreed with the peaks of CH3I fully loaded sample. Similarly, the 

I spectrum also contains 3 groups of peaks and the binding energies of the second group are close 

to those of the fully loaded sample. The compositions of three groups of peaks were also 

determined, and the results are, approximately 52-55%, 15-20% and 28-29% for group 1, 2 and 3 

respectively. Since the compositions acquired in both fittings are relatively similar, the additional 

peaks appear to be some form of Ag-I (not AgI, silver iodide) compounds. 

Reported in multiple studies,161-165 the Ag BE tends to decrease as the oxidation state increases. 

For example, the Ag3d5/2 BE of metallic Ag is approximately 368.1 eV, and this value decreases 
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to 367.7-367.9 eV for Ag+ and 367.3-367.6 eV for Ag2+. Admittedly, the instrument deviations 

and data calibration standards may vary the BE measured, but the trend indicates that a certain 

amount of Ag2+ may be formed in 104 ppbv CH3I adsorption at 200 ℃, whereas the peak group 

3 remains questionable. 
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Figure 6-11. The regional scans of Ag(a), I(b) and the curve fits of the 104 ppbv/ 200 ℃ 

CH3I adsorbed Ag0-Aerogel.  
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The Ag and I concentrations can be interpreted from the XPS and SEM-EDX spectra, where the 

results are listed in Table 6-2. To compare the iodine concentrations between samples, the iodine 

compositions have been calibrated as additional mass, which the summations of all other 

elements are 100%. It is important to noticed that the Ag0-Aerogel is a highly heterogeneous 

material; the Ag coverage on the pellets is uneven, and the values measured by SEM-EDX and 

XPS may vary based on the specific location scanned. 

Both SEM-EDX and XPS are the surface analysis techniques whereas the penetration depth of 

XPS is approximately 5-10 nm and that of SEM-EDX is 1-10 μm.166,167 Therefore, the higher 

iodine compositions for partially loaded Ag0-Aerogel observed by XPS indicate the existence of 

a strong concentration gradient in the pellet during the CH3I adsorption. Additionally, it can also 

be visualized that the concentrations of I on the surface are much higher than the experimental 

measured iodine uptakes (same as CH3I uptake, assuming CH3 group diffuse out in C2H6 form), 

which further supports the existence of the surface reaction proposed in Chapter 5. 
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Conditions Temperature (℃)  SEM-EDX  XPS  Iodine Uptake (wt%) 

     Ag I I:Ag(2) I:Ag(3)  Ag I I:Ag(2) I:Ag(3)    
   (wt%) (wt%) (mol) (wt)  (wt%) (wt%) (mol) (wt)   

              

Fresh   31.5     33.7      

350 ℃ Degas   34.0     30.2      

              

CH3I F.L.(1) 150  29.1 32.3 0.94 1.11  29.2 28.3 0.82 0.97  28.31 

I2 F.L. (1) 150  -- -- -- --  26.9 27.1 0.86 1.01  37.24 
              

104 ppb 

100  39.0 0.9 0.02 0.02  27.7 1.8 0.05 0.06  0.29 

150  38.5 1.2 0.03 0.03  28.0 2.5 0.08 0.09  0.39 

200  41.9 2.6 0.05 0.06  28.7 5.8 0.17 0.20  1.15 
              

1044 ppb 

100  40.6 4.8 0.10 0.12  27.9 6.0 0.18 0.21  2.84 

150  34.3 5.0 0.12 0.15  27.8 12.4 0.38 0.45  3.71 

200   47.9 6.4 0.11 0.13   33.1 13.1 0.34 0.40   4.31 

(1) Fully Loaded            

(2) Molar ratio of I and Ag            

(3) Mass ratio of I and Ag            

Table 6-2. The Ag and I concentrations measured by SEM-EDX and XPS (I compositions have been calibrated as additional mass). 
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6.10 Explanation for the Additional Mass Uptake 

Shown in Figure 6-1a, the mass uptake rate at 200 ℃ was approximately 3 times higher than that 

at 150 ℃, and the mass uptake by 12 days increased from 0.39 wt% to 1.15 wt%. What is the 

additional mass? To explain this question, some theoretical analyses were performed and listed 

below.  

Firstly, if the additional mass is not iodine, what could it be? According to the manufacturer, 

except N2 and O2, the carrier gas (Air, Airgas, Ultra Zero) of CH3I used in adsorption 

experiments contains CO and CO2 with a combining concentration less than 1 ppmv. Reported in 

previous studies, silver was used as catalyst in CO and CO2 oxidation/reduction168-171, and it may 

capture CO and CO2
172,173. However, since the Ag0-Aerogel does not satisfy the requirement for 

catalyzing the impurities and the physical capturing of the CO and CO2 does not require CH3I, 

which implies that the physisorption should have happened during the drying process. Therefore, 

the abnormal mass increase caused by reaction between silver and impurities in carrier gas may 

be excluded.  

Another possibility is that the Ag is oxidized by O2 in the carrier gas and the additional mass is 

the result of oxidation. However, had the oxidation been the reason, the mass uptake should have 

been observed in the drying process and not only at 200 ℃-104 ppbv condition, as the ‘CH3I 

induced’ oxidation of Ag was not reported in literature. Therefore, the additional mass appears to 

be iodine. The surface compositions measured by XPS and SEM-EDX further support the 

conclusion. Shown in Table 6-2, the iodine fraction at 200 ℃-104 ppbv condition is much higher 



114 

than that at 150 ℃, indicating the abnormal mass gain is likely to be iodine. 

6.11 Conclusions and Recommendations 

Traditionally, after the adsorption, Ag0-Aerogel will be consolidated by compressing at high 

temperature, and removing the organic moieties at 350 ℃ before compressing benefits the 

consolidation results (higher product density and lower porosity).149 In this presented work, a 

novel pre-treating method was applied. The Ag0-Aerogel was vacuum dried at 350 ℃ before the 

CH3I adsorption to remove the organic moieties, and the uptake rate and maximum iodine 

adsorption capacity remain similar to the untreated one. Therefore, removing the organic 

moieties before the adsorption could be a practicable alternative, and the potential iodine 

contamination during the traditional organic moieties removing process could be avoided. 

In the 104 and 1044 ppbv CH3I adsorptions on Ag0-Aerogel at 100, 150 and 200 ℃, an abnormal 

behavior was observed in 104 ppbv adsorption at 200 ℃; the uptake rate was approximately 3 – 

4 times higher than those of 100 and 150 ℃ adsorptions at the same concentration. The most 

intuitive explanation is the well-known Arrhenius relationship, the increase of temperature 

results in the increase of reaction rate and diffusivity.  

Additionally, more potential explanations are proposed based on successive experimental and 

theoretical analyses. The nitrogen adsorption analyses were performed using the pellets at 

different drying conditions, and the results indicated that the increasing temperature decreases 

the water concentration in the pellet and therefore may increase the silver sites availability and 

the pore diffusivities of CH3I and the gas form product. The gas form product, believed to be 
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C2H6, is considered as a ‘diffusion limitation’ for the adsorption process in the proposed reaction 

pathway, and the increase of its diffusivity may vary the reaction rate in another perspective.  

Moreover, the XPS and SEM-EDX analyses were also performed and the results indicated that at 

104 ppbv/ 200℃ condition, some additional Ag-I compounds were generated. By comparing the 

binding energies of the peaks with previous studies, we presumed that the additional Ag-I 

compounds may contain a certain amount of Ag2+. However, identifying the peak group 3 in 

Figure 6-11 remains unsolved. To further determine the composition formed in CH3I adsorption 

process, performing additional physical analyses such as regional scans of other elements in 

XPS, x-ray absorption spectroscopy (XAS) and Raman spectroscopy are recommended. 

In the presented work, we observed an unusually high uptake rate for 104 ppbv CH3I adsorption 

on Ag0-Aerogel at 200 ℃, and suggested multiple explanations for this behavior. Our discoveries 

offer a new perspective in determining the optimum temperature for CH3I adsorptions, whereas a 

commonly used temperature is 150 ℃. However, for the purpose of carefulness and accuracy, we 

may not recommend 200 ℃ as the optimum adsorption temperature until further evidence has 

been revealed. 
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Chapter 7. Adsorption of Other Iodoalkanes 

7.1 Introduction 

In previous chapters, the temperature and concentration dependence of the CH3I adsorptions on 

Ag0-Aerogel were examined. The CH3I adsorptions at 150 ℃ are identified as an nth order 

shrinking core process. As the temperature increases, the reaction rate increases orderly, whereas 

an abnormal increase of reaction rate was observed at the CH3I-104 ppbv-200 ℃ condition. To 

further analyze the reaction behavior of other iodoalkanes, the adsorptions of C3H7I, C6H13I, 

C8H17I and C12H25I were performed using the continuous flow adsorption system. The 

concentrations used include, C3H7I-96 ppbv, C6H13I-101 ppbv, C6H13I-733 ppbv, C8H17I-60 ppbv, 

C12H25I-113 ppbv and C12H25I-606 ppbv. The temperature dependences were studied for C6H13I 

and C12H25I at all four concentrations by performing the experiments at 100, 150 and 200 ℃. 

The flow rate used is 500 sccm. 

In the experiments performed, it was observed that the adsorption behaviors were much more 

unstable than those of CH3I. Both the concentration dependency and the temperature dependency 

are different. To provide reliable conclusions, multiple repeats were performed and the results are 

presented in following sections. 

 

7.2 Adsorption Kinetics 

Since the repeatabilities of the C3H7I to C12H25I adsorptions are relatively poor compared with 

that of the CH3I, multiple repeats were performed and all experiments appeared to be reasonable 
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are shown in Figure 7-1. At 100 - 200 ℃, in approximately 300 h, the mass uptakes of C6H13I-

101 ppbv adsorptions reached approximately 0.5 – 1 wt% and those of C12H25I-113 ppbv 

adsorptions reached 0.3-0.8 wt%. Unlike the CH3I adsorptions, the mass uptakes are roughly 

proportional to the concentrations (104 ppbv-0.39 wt%, 245 ppbv-0.91 wt%, 1044 ppbv-3.7 wt% 

and 9584 ppbv-14.7 wt%), the mass uptakes of C6H13I-733 ppbv and C12H25I- 606 ppbv were 

relatively similar to those of the adsorptions at approximately 100 ppbv. The C6H13I-733 ppbv 

mass uptakes were 0.5-1.0 wt% and the C12H25I- 606 ppbv mass uptakes were 0.4-1.4 wt%, 

which indicates that the adsorption rates are relatively independent of the adsorbate 

concentrations.  

Moreover, with lower concentrations, the C3H7I and C8H17I adsorption rates increased instead. 

The mass uptake of C3H7I-96 ppbv adsorption reached 1.6 wt% and that of C8H17I-60 ppbv 

reached 0.8 wt%. By repeating the adsorptions, the abnormal increases of the uptake rates for 

C3H7I-96 ppbv and C8H17I-60 ppbv were confirmed. To further analyze the data, the shrinking 

core model (SCM) was used in the data fitting and the results are shown in following sections.  
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Figure 7-1. The adsorption kinetics at 100, 150 and 200 ℃, (a) C3H7I-96 ppbv, (b) C8H17I-60 

ppbv, (c) C6H13I-101 ppbv, (d) C6H13I-733 ppbv, (e) C12H25I-113 ppbv, (f) C12H25I-606 ppbv. (T1 

and T2 represent different experimental trials) 
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7.3 Shrinking Core Model Fitting 

A preliminary SCM fitting was performed and the Dp ranged from 10-5 to 105 cm2/s, which is 

because that the mass uptakes of the adsorption are relatively low (generally under 1.5 wt%), and 

acquiring accurate diffusivities using the SCM is impracticable. Therefore, two additional 

methods were used. The first method is estimating the values of Dp’s and calculating the reaction 

rate constant ks and the second method is ignoring the pore diffusivity term and only fitting the 

reaction term. 

 

7.3.1 Estimating the Gas Film Diffusivity and Pore Diffusivity 

Same as the CH3I adsorption, the binary diffusivities (DAB) and the gas film diffusivities (kf) can 

be estimated using Eq. 3-11 to 3-14. Using the data suggested by Fuller et al.,129 the diffusion 

volume (ν) of organic iodide is the summation of the diffusion volumes of the alkyl group and 

the iodine atom. The values are 52.63, 93.67, 155.23, 196.27, 278.35 cm3, for CH3I, C3H7I, 

C6H13I, C8H17I and C12H25I, respectively. The DAB’s of the organic iodides range from 0.196 to 

0.073 cm2/s. According to Currie,153 Dp is related to DAB by the pellet porosity (εp),  

 / m

p AB pD D =   7-1 

where m is generally between 2 – 4.5. Assuming εp and m are constant for the organic iodides 

adsorptions on Ag0-Aerogel, the relationship between Dp and DAB can be written as,  

 
' '

p AB

p AB

D D

D D
=   7-2 
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For the CH3I, at 150 ℃, the DAB of 0.196 cm2/s and the average Dp of 6.70×10-4 cm2/s were 

calculated in Section 5.4. The kf’s and Dp’s of other organic iodides at 100, 150, 200 ℃ can be 

therefore approximated using Eq. 7-2 and the results are listed in Table 7-1.  

 

Organic Iodides Temperature (℃) ν (cm3) DAB (cm2/s) kf (cm/s) Dp (cm2/s) 

CH3I 150 52.63 0.196  2.71  6.70×10-4 
      

C3H7I 150 93.67 0.153  2.17  5.24×10-4 
      

C6H13I 

100 

155.23 

0.097  1.43  3.33×10-4 

150 0.121  1.76  4.15×10-4 

200 0.147  2.11  5.05×10-4 
      

C8H17I 150 196.27 0.108  1.59  3.71×10-4 
      

C12H25I 

100 

278.35 

0.073  1.12  2.52×10-4 

150 0.092  1.37  3.14×10-4 

200 0.111  1.64  3.81×10-4 

 

Table 7-1. The estimated kf’s and Dp’s for the organic iodides adsorptions at 100, 150 and 200 ℃.  

 

7.3.2 Model Fitting Results 

The SCM fitting results of C3H7I, C6H13I, C8H17I and C12H25I adsorptions using three methods, 

full SCM, full SCM and estimated Dp, and the SCM with only gas film diffusion and reaction 

terms are listed in Table 7-2.  
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    Full SCM  Full SCM + Estimated Dp  Gas Film Diff + Reaction 

Conc Temp Avg Ads Rate   kf
* Dp ks AARD  kf

* Dp
* ks AARD  kf

* ks AARD 

 (ppbv)  (℃) (wt%/h)   (cm/s) (cm2/s) (cm/s) (%)   (cm/s) (cm2/s) (cm/s) (%)   (cm/s) (cm/s) (%) 

C3H7I 

96 
150 T1 5.65×10-3  2.17 1.94×10-2 1.703  4.14%  2.17 5.24×10-4 7.507  20.57%  2.17 1.651  4.58% 

150 T2 7.59×10-3  2.17 1.80×102 2.474  12.37%  2.17 5.24×10-4 9.561  26.47%  2.17 2.474  12.37% 

                 

C6H13I 

101 

100 T1 1.90×10-3  1.43 4.70×10-4 0.394  8.73%  1.43 3.33×10-4 0.416  8.73%  1.43 0.348  9.94% 

100 T2 2.78×10-3  1.43 4.61×10-4 0.883  9.30%  1.43 3.33×10-4 1.028  10.41%  1.43 0.622  12.26% 

150 T1 1.51×10-3  1.76 1.19×10-4 0.491  6.90%  1.76 4.15×10-4 0.375  10.65%  1.76 0.338  14.08% 

150 T2 2.02×10-3  1.76 2.60×10-4 0.528 14.75%  1.76 4.15×10-4 0.504  15.83%  1.76 0.437  17.54% 

200 3.01×10-3  2.11 4.94×105 0.525  12.84%  2.11 5.05×10-4 0.631  18.48%  2.11 0.525  12.84% 

                 

733 

100 1.85×10-3  1.43 2.70×10-5 0.051  4.77%  1.43 3.33×10-4 0.041  9.50%  1.43 0.040  10.27% 

150 2.38×10-3  1.76 4.00×10-5 0.084  5.57%  1.76 4.15×10-4 0.063  10.67%  1.76 0.061  11.81% 

200 3.34×10-3  2.11 3.18×105 0.076  3.17%  2.11 5.05×10-4 0.078  4.51%   2.11 0.076  3.17% 

*Calculated theoretically      

 

Table 7-2. The shrinking core model parameters determined for C3H7I, C6H13I, C8H17I and C12H25I adsorptions on Ag0-Aerogel at 100, 

150 and 200℃. (Continue in the next page). 
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    Full SCM  Full SCM + Estimated Dp  Gas Film Diff + Reaction 

Conc Temp Avg Ads Rate   kf
* Dp ks AARD  kf

* Dp
* ks AARD  kf

* ks AARD 

 (ppbv)  (℃) (wt%/h)   (cm/s) (cm2/s) (cm/s) (%)   (cm/s) (cm2/s) (cm/s) (%)   (cm/s) (cm/s) (%) 

C8H17I 

60 
150 T1 2.80×10-3  1.59 7.20×10-4 3.190  15.74%  1.59 3.71×10-4 9.382  19.35%  1.59 1.697  17.48% 

150 T2 4.64×10-3  1.59 7.79×104 3.562 14.03%  1.59 3.71×10-4 21.818 40.80%  1.59 3.563 14.04% 

                 

C12H25I 

113 

100 2.09×10-3  1.12 2.63×10-4 0.517  2.22%  1.12 2.52×10-4 0.525  2.21%  1.12 0.379  3.15% 

150 1.46×10-3  1.37 9.02×10-5 0.476  5.12%  1.37 3.14×10-4 0.340  2.50%  1.37 0.301  4.44% 

200 T1 0.96×10-3  1.64 3.41×105 0.149  16.95%  1.64 3.81×10-4 0.152  17.07%  1.64 0.149  16.95% 

200 T2 1.25×10-3  1.64 4.20×105 0.182  19.61%  1.64 3.81×10-4 0.189  21.04%  1.64 0.182  19.61% 

                 

606 

100 4.34×10-3  1.12 1.50×10-3 0.104  7.05%  1.12 2.52×10-4 0.116  9.36%  1.12 0.102  6.82% 

150 T1 1.26×10-3  1.37 2.26×10-5 0.048  10.50%  1.37 3.14×10-4 0.040  13.20%  1.37 0.039  13.64% 

150 T2 2.31×10-3  1.37 3.44×10-5 0.108  7.57%  1.37 3.14×10-4 0.079  11.23%  1.37 0.076  12.36% 

200 4.35×10-3  1.64 1.66×10-4 0.193  13.25%  1.64 3.81×10-4 0.168 11.76%  1.64 0.151 13.65% 

*Calculated theoretically           

 

Table 7-2. The shrinking core model parameters determined for C3H7I, C6H13I, C8H17I and C12H25I adsorptions on Ag0-Aerogel at 100, 

150 and 200℃. (T1 and T2 represent different experimental trials) 
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The fitting result of C8H17I-T1 adsorption is a good example to compare the three different 

methods. Shown in Figure 7-2, the full SCM method results in the closest fitting, but the Dp 

determined may not be reasonable (e.g., the ones in 10-5 or 105 cm2/s) and the corresponding ks’s 

at different conditions may not be comparable. To make the results determined comparable, the 

method of full SCM with estimated Dp was applied. It is suitable for some cases but may result 

in overfitting. For example, when applying this method in the C8H17I adsorption, the ks is much 

higher than the ks’s determined using the other two methods (marked in red in Figure 7-2). 

 

Figure 7-2. The C8H17I-60 ppbv-T1 adsorption kinetics and the fitting results of the three 

methods. 
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Since the adsorption in the initial portion of the overall process is mainly controlled by the 

reaction term, using only gas film diffusion and reaction terms in the SCM is adequate to 

describe the data acquired. The results are reasonable, no over fitting occur, and more 

importantly, the parameters determined are comparable. Therefore, the SCM with only gas film 

diffusion term and the reaction term was selected to be the optimum method and the results are 

used in following analyses.  

 

7.4 Concentration Dependence 

Visualized in Figure 7-1 and Table 7-2, the adsorption rates are roughly independent of the 

adsorbate concentrations. Discussed in Section 3.2, the concentrations of C6H13I and C12H25I are 

much lower than their vapor pressures, indicating that the actual concentrations were not limited 

by the condensations of the organic iodides. In other words, the actual concentrations of C6H13I 

and C12H25I should be the same as the calculated concentrations (733 and 606 ppbv), since no 

condensations occurred.  

Another possibility is that the rate limiting step changes in the C6H13I and C12H25I adsorptions. In 

Section 5.7, the reaction between CH3I and Ag0-Aerogel was identified as the rate limiting step 

for the low-concentration CH3I adsorption in a relatively short period and a potential reaction 

pathway was suggested in Section 5.8. Similar to Figure 5-10 but more generally, the reaction 

between organic iodides and Ag may be written as Figure 7-3.  



125 

 

Figure 7-3. A general reaction pathway between iodoalkanes and Ag. 

 

R-I denotes the organic iodide, R is the alkyl group and Rx is the potential product. For the 

C6H13I and C12H25I adsorptions, if the rate limiting step in the reaction becomes independent of 

the adsorbate concentration, the overall adsorption may become the same.  

A hypothesis could be that the surface reaction of iodoalkane is the rate limiting step and the 

binding of the molecules to the sites is relatively fast. Therefore, the ‘concentration available for 

reaction’ is actually limited by the number of sites, and, in the macroscale, the reaction rate 

becomes independent of the bulk adsorbate concentration. This hypothesis is supported by the 

Langmuir adsorption model.174,175 The reaction rate may be expressed as,  

 
1

L

L

K C
r k

K C
=

+
  7-3 

where KL is the Langmuir surface adsorption equilibrium constant and r, k and C are general 

reaction rate, reaction rate constant and concentration, respectively. When KLC >> 1, the reaction 

rate may become independent with the bulk adsorbate concentration.  
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7.5 Temperature Dependence 

Unlike the CH3I adsorptions, which the uptake rate increases orderly with the increasing 

temperature, the data collected for the C6H13I and C12H25I adsorptions do not obtain clear and 

constant tendencies. In Figure 7-1, it is observed that, for the C6H13I-733 ppbv adsorption, the 

reaction rate increases with increasing temperature, and the dependency reverses for the C12H25I-

113 ppbv adsorption. As for the C6H13I-101 ppbv and C12H25I-606 ppbv adsorptions, it appears 

that the adsorption rates at both 100 and 200 ℃ are higher than that at 150 ℃.  

For the C6H13I-733 ppbv and C12H25I-113 ppbv adsorptions, the Arrhenius relationships were 

determined using Eq. 6-7 and the results are plotted in Figure 7-4. The activation energy ΔE’s 

are 9.44 kJ/mol and -12.56 kJ/mol and the pre-exponential factor ks
0’s are 1.17 cm/s and 

7.13×10-3 cm/s for C6H13I-733 ppbv and C12H25I-113 ppbv adsorptions respectively.  

 

Figure 7-4. The Arrhenius plots of (a) C6H13I-733 ppbv adsorption, and (b) C12H25I-113 ppbv 

adsorption. 
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For the C6H13I-101 ppbv and C12H25I-606 ppbv adsorptions, applying the Arrhenius relationship 

may not be suitable since the minimum ks’s appear to exist at 150 ℃. The detailed relationship 

between reaction rates and the activation energies were discussed in Section 6.7. The existence 

of the minimum ks in the temperature range, reversed dependency and the negative activation 

energy were predicted based on theoretical analyses and literature surveys.  

To further analyze the temperature dependencies, performing the adsorption experiments with 

various combinations of temperatures and the organic iodides species may not be practicable 

because of the workload. At least tens of combinations need to be examined and numerous 

repeats are required, whereas each experiment may take weeks. Therefore, software-based 

computational simulations are suggested in future studies for determining the detailed 

temperature dependencies and the related energies of the organic iodides adsorptions.  

 

7.6 Carbon Chain Length Dependence 

The adsorption kinetics acquired at 150 ℃ and approximately 100 ppbv are used for determining 

the effect of the carbon chain length. The conditions include CH3I-104 ppbv, C3H7I-96 ppbv, 

C6H13I-101 ppbv, C8H17I-60 ppbv, and C12H25I-113 ppbv. The adsorption kinetics are plotted in 

Figure 7-5.  
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Figure 7-5. The adsorption kinetics of CH3I-104 ppbv, C3H7I-96 ppbv, C6H13I-101 ppbv, C8H17I-

60 ppbv, and C12H25I-113 ppbv at 150 ℃. (T1 and T2 represent different experimental trials) 

 

Visualized from the figure, the uptake rates of CH3I, C6H13I and C12H25I are relatively similar, 

whereas those of C3H7I and C8H17I are higher. Similar behaviors are also revealed in the model 

fitting results, the C3H7I and C8H17I adsorptions obtain much higher reaction rate constants than 

others do. The model fitting procedure is the same as above (Section 7.3). To maintain the 

consistency of model fitting, the pore diffusion term in the SCM was neglected. 
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Concentration Avg Ads Rate kf
* ks AARD 

(ppbv) (wt%/h) (cm/s) (cm/s) (%) 

CH3I 

104 T1 1.39×10-3 2.71 0.239  14.63% 

104 T2 1.35×10-3 2.71 0.184  10.66% 

Average 1.37×10-3  0.212   

     

C3H7I 

96 T1 5.65×10-3 2.17 1.651  4.58% 

96 T2 7.59×10-3 2.17 2.474  12.37% 

Average 6.62×10-3  2.063   

     

C6H13I 

101 T1 1.51×10-3 1.76 0.338  14.08% 

101 T2 2.02×10-3 1.76 0.437  17.54% 

Average 1.77×10-3  0.388   

     

C8H17I 

60 T1 2.80×10-3 1.59 1.697  17.48% 

60 T2 5.11×10-3 1.59 3.563 14.04% 

Average 3.96×10-3  2.630  
     

C12H25I 

113 1.46×10-3 1.37 0.301  4.44% 

*Calculated theoretically 

 

Table 7-3. The parameters and model fitting results of CH3I-104 ppbv, C3H7I-96 ppbv, C6H13I-

101 ppbv, C8H17I-60 ppbv, and C12H25I-113 ppbv at 150 ℃. (T1 and T2 represent different 

experimental trials) 

 

The uptake rates of the C3H7I and C8H17I adsorptions are higher than expected and repeats were 
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performed to verify the results. Furthermore, since the Ag0-Aerogel is a highly heterogeneous 

material, the sizes of pellets used in all trails were also examined and the consistency was 

confirmed. With similar concentrations, the average uptake rates and reaction rate constants of 

the C3H7I and C8H17I are unexpectedly high and the behaviors observed appear to be trustful.  

Based on the results, the dependency of the adsorption rate on the length of carbon chain is not 

conclusive. A qualified observation is that, at low concentrations (tens of, or up to approximately 

100 ppbv), the adsorption rates of CH3I, C6H13I and C12H25I are relatively similar, and those of 

C3H7I and C8H17I are much higher. Therefore, when designing the adsorption columns, the 

scientists should focus on satisfying the removal efficiencies of the CH3I, C6H13I and C12H25I, 

since the same column should clearly be adequate for the C3H7I and C8H17I removals. 

 

7.7 Conclusions and Recommendations 

In this chapter, the adsorptions of other organic iodides including C3H7I, C6H13I, C8H17I and 

C12H25I were performed. The results indicate that the adsorptions of C6H13I and C12H25I are 

likely to be zero-order, in which the adsorption rates are independent of the concentrations at the 

ranges studied. A hypothesis based on the Langmuir adsorption model was proposed, suggesting 

that the ‘effective concentration (concentration available for reaction)’ may be limited by the 

reaction sites. Therefore, for the industrial applications, C6H13I and C12H25I (at least but may not 

be limited to) of high concentrations (hundreds of ppbv) should be avoided. The reason and a 

simulation will be presented in Section 8.5. 
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Moreover, the concentration dependencies of the organic iodide adsorptions are not consistent. 

Three patterns are observed, the reaction rate increases with temperature, the reaction rate 

decreases with temperature and a minimum reaction rate exists in the temperature range, which 

agrees with the prediction made in Chapter 6. As for the carbon chain length dependence, the 

tendency remains unresolved. The CH3I, C6H13I and C12H25I adsorptions obtain similar reaction 

rate constants and the reaction rate constants of the C3H7I and C8H17I are much higher.  

To further understand the organic iodides adsorption on Ag0-Aerogel, experimental methods may 

not be worthy due to the overwhelming workload comparing with the conclusions that may be 

revealed. Therefore, software-based computational simulations are suggested in solving the 

related questions. 
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Chapter 8. Column Adsorption Modeling 

8.1 Shrinking Core Model Incorporated Column Adsorption Modeling 

Since the reaction rates were determined, the column adsorption behavior of organic iodides can 

be estimated using the model suggested by Yang176 and Ruthven.136 Neglecting the axial 

dispersion of organic iodide and the temperature gradient due to reaction, the model can be 

written as,  
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where u is the gas velocity (cm/s), z is the distance from the inlet (cm), εb is the bulk porosity of 

the bed and ∂q/∂t is the adsorption rate. Since the organic iodides in the fluid are at ppbv level, 

the drops of pressure and gas velocity through the adsorption column are neglected. For a 

shrinking core process adsorption, the ∂q/∂t can be approximated by,127 
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and,  
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where rc is the radius (cm) of the unreacted core. Discussed in Chapter 5, the gas film diffusion 

in the shrinking core model is neglectable for the adsorption, therefore, the ∂rc/∂t can be written 

as,127  
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8.2 40 ppbv CH3I Column Adsorption, Literature Comparison 

The study of CH3I adsorption on Ag0-Aerogel performed by Bruffey et al.87 can be used as a 

reference. In the study, 40 ppbv CH3I flowed through three sections containing Ag0-Aerogel with 

lengths of 0.2, 11 and 0.5 cm, respectively. The temperature was 150 ℃; the diameter of the 

column system was 3.45 cm and the gas velocity was 10 m/min. In 16 weeks (approximately 120 

days), Bruffey et al.87 measured an average adsorption rate of 6.9×10-4 wt%/h in section 1. By 

performing the neutron activation analysis (NAA), no iodine was observed in section 3. Since the 

detecting limit of NAA is 0.0045 mg I/g , Bruffey et al.87 calculated a maximum CH3I 

concentration exiting section 2 of 0.105 ppbv and the minimum decontamination factor (DF) of 

382.  

In the modeling, the full column length is set to be 11.2 cm (the length of column 1 plus column 

2 in the study performed by Bruffey et al.87). The concentration-compensated pseudo ks of 0.19 

cm/s at 40 ppbv was estimated by Eq. 5-17. Admittedly, the CH3I concentrations through the 

adsorption column change with the distance from the inlet, but incorporating the real-time 

calculations of pseudo ks increases the calculation workload significantly. The Dp of 6.7×10-4 

cm2/s was calculated in Chapter 5, the bulk porosity εb was assumed to be 0.37,177,178 and the 

dry air aging effect was neglected. Eq. 8-1 can be solved by numerical integration and the 

results are shown in Figure 8-1.  
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The CH3I concentration, the mass uptake of Ag0-Aerogel and the core shrinkage rc/Ra through 

the column by time are plotted in Figure 8-1a, b and c respectively. In 120 days, the CH3I outlet 

concentration maintains below 0.06 ppbv and the DF is greater than 650 (Figure 8-1d), which is 

constant with the maximum CH3I outlet concentration of 0.105 ppbv proposed by Bruffey et al.87 

Since the concentration gradient in the first 0.2 cm (section 1) is roughly linear, the mass uptake 

in section 1 may be estimated by the mass uptake at z = 0.1 (Figure 8-1e). The mass uptake 

reaches 1.2 wt% in 120 days with an average mass uptake rate of 4.4×10-4 wt%/h, which are 

comparable with the experimental values of 2.0 wt% and 6.9×10-4 wt%/h.87 Moreover, in Figure 

8-1f, the mass uptake by distance at day 120, the mass uptake at 2 and 4 cm is approximately 

0.45 and 0.15 wt%, which are close to the observation by Bruffey et al.87 and the penetration 

depth of 5-8 cm is also comparable.  

 



135 

 

Figure 8-1. Fitting results of the 40 ppbv CH3I column adsorption on Ag0-Aerogel in 120 days. (a) CH3I concentration in the column 

by time, (b) mass uptake of Ag0-Aerogel in the column by time, (c), the core shrinkage rc/Ra by time, (d) outlet concentration and the 

decontamination factor (DF), (e) mass uptake at the middle of section 1 (z = 0.1 cm), (f) mass uptake at Day 120 by distance.
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8.3 Modeling Results, Column Breakthrough 

The model can also be used to describe the breakthrough of the adsorption column. In this case, 

the dry air aging effect must be considered. The adsorption capacity qe is set to 30.8 wt%, which 

is the capacity of Ag0-Aerogel after being aged for long enough (greater than approximately 170 

days, discussed in Section 5.3). The other parameters are the same as Section 8.2.  

The results are plotted in Figure 8-2. In 10000 days, the outlet concentration increases to 16 

ppbv, whereas the DF decreases from approximately 1000 to 2 (Figure 8-2d), indicating the 

breakthrough of the column is in progress. By 10000 days, the mass uptake of the pellets at the 

column inlet reaches 20 wt% and that at the outlet is approximately 8 wt%.  
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Figure 8-2. Estimation of the breakthrough for the 40 ppbv CH3I column adsorption on Ag0-Aerogel. (a) CH3I concentration in the 

column by time, (b) mass uptake of Ag0-Aerogel in the column by time, (c), the core shrinkage rc/Ra by time, (d) outlet concentration 

and the decontamination factor (DF), (e) mass uptake at the middle of section 1 (z = 0.1 cm), (f) mass uptake at Day 10000 by 

distance. 
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8.4 Column Length and Breakthrough 

To estimate the length required for the adsorption column, the modeling of 40 ppbv CH3I 

adsorptions in columns with different lengths was performed. The emission iodine radioactivity 

is regulated by NRC and EPA, and the corresponding concentration has been calculated in 

Section 2.1 to be 0.0406 ppbv. In the adsorption column modeling, the lengths of columns were 

set to 5 to 20 cm and all other parameters are identical. The results in Figure 8-3 indicate that an 

adsorption column of at least 12 cm is required and the outlet concentration is approximately 

0.03 ppbv before the breakthrough. For the 12 cm adsorption column, the breakthrough starts in 

around 100 days, and the emission regulation is no longer satisfied after approximately 150 days.  

 

Figure 8-3. Estimating the effectiveness of 40 ppbv CH3I removal using columns with different 

lengths (From the top to the bottom, the column lengths increase accordingly). 
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Increasing the column length extends the column lifetime and reduces the outlet CH3I 

concentration significantly. For example, with a 20 cm column, the outlet CH3I concentration 

may be reduced to sub-pptv (part per trillion by volume) level and the column lifetime may be 

greater than 10 years. Therefore, conservatively speaking, to satisfy the regulation and extend the 

lifetime, a column of at least 15-20 cm is required for the 40 ppbv CH3I adsorption.  

 

8.5 Simulations of C12H25I Column Adsorption  

In Section 7.4 and 7.7, the C6H13I and C12H25I adsorptions was observed to be a zero-order 

process, the adsorption rates are independent of the adsorbate concentrations. Therefore, it is 

suggested that C6H13I and C12H25I of high concentrations should be avoided in the column 

adsorptions and the reasons are discussed in this section. The column modeling of 113 and 606 

ppbv C12H25I adsorptions are compared. The εp, temperature, and gas velocity are the same as 

above. Dp was estimated to be 3.14×10-4 cm2/s, and ks was 0.340 and 0.040 cm/s for 113 ppbv 

and 606 ppbv respectively (parameters acquired from Section 7.3.2) 
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Figure 8-4. (a) C12H25I concentration in the column by time (113 ppbv), (b) mass uptake of Ag0-

Aerogel in the column (113 ppbv), (c) C12H25I concentration in the column (606 ppbv), (d) mass 

uptake of Ag0-Aerogel in the column by time (606 ppbv), (e) C12H25I outlet concentration and 

the decontamination factor (DF) of two adsorption columns, (f) the mass uptake at Z=0.1 cm of 

two adsorption columns. (Column lengths are 15 and 90 cm for 113 and 606 ppbv respectively) 
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The column modeling results are shown in Figure 8-4. A 15 cm column is adequate to remove 

the C12H25I of 113 ppbv, and the outlet concentration remains below 10-2 ppbv in approximately 

150 days. The lifetime of the column is more than 500 days. To achieve a similar lifetime, a 6-

time longer column is required for removing the C12H25I of 606 ppbv concentration since the 

C12H25I adsorption is an approximately zero-order process. This zero-order can be further 

visualized in the mass transfer zone plot (Figure 8-5a). Since the adsorption is a zero-order 

process, the mass transfer zone almost increases proportionally to the concentration. The mass 

transfer zone for 113 ppbv adsorption is 6-7 cm in length and that of 606 ppbv is 40-50 cm. 

Similar behaviors are also revealed in Figure 8-5b, at the end of the adsorptions, 606 ppbv 

C12H25I penetrates much deeper into the column than 113 ppbv C12H25I does. 

 

Figure 8-5. (a) The mass transfer zone of two columns at t=0.1 day, (b) the penetration of C12H25I 

into two columns at the end of adsorptions. 
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The comparison of the 113 and 606 ppbv C12H25I column adsorptions indicates that the mass 

transfer zone increases significantly as the concentration increases because of the zero-order 

reaction. Therefore, in industrial applications, the C6H13I and C12H25I of high concentrations 

should be avoided.  

 

8.6 Recommendations and Conclusions 

In this chapter, the shrinking core model was incorporated into the column adsorption modeling. 

By performing the numerical integration, the column adsorption behaviors were estimated, and 

the estimation results were comparable with the experiments performed by Bruffey et al.87 For 

the tens of ppbv level adsorptions, to achieve a sufficient lifetime, the column of at least 15-20 

cm is suggested. In the industrial application, the ppbv level of organic iodides are mixed with 

the ppmv level I2 before the adsorption.14,36 Obviously, the I2 breakthrough will happen much 

sooner than the organic iodide breakthrough, which implies that as long as the outlet organic 

iodides concentrations are lower than that of I2 during the adsorption, the impact of organic 

iodides on the column adsorption may be neglected. Multiple column adsorptions of ppmv level 

I2 using Ag0-Aerogel were performed, and the results indicated that the breakthroughs are 

generally within days or up to weeks.97,101 Therefore, the impacts of ppbv level organic iodides to 

the column adsorptions appear to be minor. However, since the adsorptions of C6H13I and C12H-

25I were observed to be zero-order processes, the C6H13I and C12H25I of high concentrations 

(hundreds of ppbv) should be avoided or pretreated in the column adsorption systems.  
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Chapter 9. Recommendations for Future Studies and Industrial Applications 

9.1 Sulfur in Ag0-Aerogel and the Relationship to Aging and Reaction Mechanism 

Observed in previous studies, the Ag0-Aerogel consists of Ag0 nanoparticles on SiO2 support 

with -SH, R-S-Ag groups binding to Ag0.65,179 A rough schematic diagram is shown in Figure 

9-1, the -SH and R-S-Ag groups form a protection layer around the Ag0, which the Ag0 

nanoparticles on Ag0Z are exposed to the ambience.15  

 

 

Figure 9-1. The schematic diagram of the chemical structure of Ag0-Aerogel.  
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The sulfuric compounds in the Ag0-Aerogel change the aging resistance and the mechanism.105 

Moreover, during the organic iodides adsorption on Ag0-Aerogel, the sulfuric compounds may 

interact with organic iodides, which similar reactions were proposed by Selker180 and 

Markuszewski et al.181 To further understand the aging and adsorption behavior of Ag0-Aerogel, 

detailed studies on the sulfuric groups are suggested.  

 

9.2 Long-Chain Iodoalkanes and Products 

Due to the additional alkyl group, the reactions of CH3I between Ag0-Aerogel are more 

complicated than that of I2, and multiple organic products include alkanes, alcohols, ethers and 

nitro compounds were measured in the outlet gas.89,90 For the organic iodides with longer chains 

(e.g., C6H13I, C12H25I), the organic products would be even more sophisticated.  

In a typical off-gas treatment system (Figure 1-1), a certain amount of 14C exists and a CO2 

capture vessel is attached right after the iodine capture vessel to remove the radioactive 

carbon.14,36 However, the methods used are typically designed for CO2, which include caustic 

scrubbing, physisorption and chemisorption.14 With the presence of 14C, the organic products 

from the iodoalkanes-Ag0-Aerogel adsorptions could also be radioactive and the CO2 capture 

methods may be inadequate for removing the radioactive organic compounds. Therefore, 

understanding the reactions between the alkyl groups and Ag0-Aerogel is beneficial for the 

design of the waste reprocessing system. 
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9.3 Suggestions for Next-Generation Materials and Adsorption systems 

In the presented work, the organic iodides adsorptions on multiple silver-containing materials 

were examined and the Ag0-Aerogel appears to be the most efficient material among Ag0-

Aerogel, Ag0Z and AgA. Towards the next generation materials, the following suggestions are 

made based on the results determined. 

 

1. Higher pore diffusivity.  

As the rate-limiting step of the overall adsorption process, increasing the pore diffusivity 

results in more rapid adsorptions and may increase the efficiency of the adsorption column 

significantly. 

 

2. Uniform shape and higher mechanical stability. 

Ag0-Aerogel is a highly heterogeneous material: the shape, size and silver coverage are 

uneven. Additionally, during the adsorption, the pellets crash into smaller particles. During 

the column adsorption, the ashes may be carried out of the column by the gas flow, resulting 

in the contamination of the following vessels. To resolve the issue, materials with higher 

mechanical stability are suggested.  

 

3. Novel aging-protection techniques.  

The thiol-functionalizing technique is applied in the Ag0-Aerogel manufacturing and the NO 
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aging resistance increases significantly. As for NO2 aging, Ag0-Aerogel maintains the 

highest iodine adsorption capacity among the materials tested but the capacity loss (~80%) is 

still considerable. For the next generation materials, new aging-protection techniques are 

suggested. For example, some ‘NOx-active’ functional groups could be the alternatives. 

Instead of passive defense, the functional groups react and decontaminate the NOx actively, 

and the Ag0 nanoparticles may be protected from the aging agents.  

 

For the next-generation adsorption system, two suggestions are also proposed.  

 

1. NOx pretreatment. 

The NOx reduces the iodine adsorption capacity of the material by oxidizing the Ag0. To 

prevent the aging effects radically, a NOx pretreatment process is suggested in the next-

generation adsorption system. 

 

2. Radioactive organic compounds removal. 

After the organic iodides adsorptions, the 14C may not only be presented as CO2 but also 

organic compounds. To satisfy the 14C emission regulations, it may also be necessary to 

remove the radioactive organic compounds. Some oxidation methods such as metal catalytic 

oxidation or combustion vessel would be possible choices. 
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