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ABSTRACT

This dissertation contains essays on causal inference with model averaging. The first essay

presents a theoretical derivation of a model-averaging-based average treatment effect estima-

tor. The second essay provides comparison of predictability of treated counterfactual outcome

between model averaging and other methods. The third essay is an empirical study evaluating

the economic impact of Ukraine’s 2013 conflict.

The first essay constructs a new average treatment effect estimator based on model av-

eraging in a panel data setting. The estimator is shown to be asymptotically unbiased and

consistent. Its asymptotic distribution is derived, which turns out to be non-normal and non-

standard. A subsampling procedure is then applied to obtain valid inference. Simulation re-

sults show that the proposed estimator compares favourably with alternative estimators in out-

of-sample prediction accuracy under a common factor structure.

The second essay further compares predictability of treated counterfactual outcome be-

tween model averaging and other methods under more general set-ups. The simulations show

that the model averaging and penalized regression methods yield more accurate counterfac-

tual prediction than the model selection methods. We also find evidences that if the predictors

(e.g., control units’ outcomes) are more correlated, the model averaging methods have more

accurate prediction than the penalized regression, and vice versa.

The third essay evaluates the economic impact of Ukraine’s 2013 conflict using a com-

parative case study. A modified synthetic control method is applied to account for poten-

tial spillover from the conflict on Ukraine’s neighbouring countries. The results show that

Ukraine’s real GDP was reduced by 29.7% from late-2013 to the end of 2015. The spillover

effects are detected in every quarter since the conflict began. Furthermore, negative spillover

effects are found in countries selected by the modified synthetic control.
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1. Introduction
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In social sciences, we often want to know the “treatment effect” of an intervention or an

event d on an outcome of interest y. A panel data {yit}N,Ti=1,t=1 records rich information and it

is often used to investigate the treatment effect. Under potential - treated and untreated - out-

comes framework, the observed outcome yit can be either treated y1
it if dit = 1 or untreated

y0
it if dit = 0. The treatment effect is defined as the difference between the two potential out-

comes, that is, ∆it = y1
it − y0

it.

In this dissertation, we mainly consider a set-up with only a single treated unit, a fixed

number of control units and large pre- and post-treatment periods. Without loss of generality,

we assume the first unit receives the treatment at T1 + 1. We are interested in the temporal

average treatment effect

∆1 = E(∆1t) = E(y1
1t − y0

1t) t = T1 + 1, . . . , T

The fundamental problem in the Causal Inference is that only y1
1t is observed whereas y0

1t

is not in the post-treatment periods. Therefore, we need to predict the missing counterfac-

tual outcome y0
1t. The major challenge in the current context is to accurately predict y0

1t, ∆1

and to provide measure of uncertainty for the corresponding estimators ŷ0
1t, ∆̂1 = (T −

T1)−1
∑T

T1+1(y1t − ŷ0
1t).

In the current context, synthetic control method (SCM) (Abadie et al. 2003, 2010) is per-

haps one of most popular methods to investigate treatment effects and average treatment ef-

fects. It uses a convex combination of control units’ outcomes - called synthetic control - to

predict y0
1t in the post-treatment periods. The non-negativity and sum-to-one constrains on

control units’ weights are used to select control units from control group. For the inference,

it uses placebo tests under the assumption that the treated unit is randomly assigned so that

counterfactual outcome for each unit is estimated and a distribution of differences between

actual outcome and counterfactual outcome is obtained. The treatment effect is significant if it

is very large relative to this distribution of differences. However, the treated unit is treated for

some reasons, thus the random-assignment assumption may not hold in many cases. An al-
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ternative method to SCM is panel data approach (HCW) (Hsiao et al., 2012), which is a least-

squares-based method. It uses a two-step procedure to select proper control units, which is

essentially minimizing model selection criterion AIC or AICC. However, the formal inference

procedure was not discussed in the original paper.

It is worth noting that the data-driven weight selection processes used in SCM and HCW

inevitably pose the difficulty of post-model-selection inference. After model selection, the

conventional inference procedure based on normal approximation is inaccurate and the distor-

tions are potentially unbounded.

In Chapter 2, we use model averaging (MA) methods to construct the treated counter-

factual outcome instead of choosing a single model with a subset of control units based on

certain criterion. Within a regression framework, the MA is to firstly obtain (least squares)

estimator from each candidate model; then take a weighted average of these estimators. The

resulting averaging estimator is used as control units’ weights to form the estimator of treated

counterfactual outcome. We then derive the asymptotic distribution of MA-based ATE esti-

mator, which turns out to be non-normal and non-standard. We instead apply a subsampling-

bootstrap method to obtain valid inference result.

In Chapter 3, we conduct extensive simulations to compare predictability between model

averaging and other methods in terms of mean squared prediction error. The simulation re-

sults show that our proposed MA-based ATE estimator compares favourably with alternative

methods.

In Chapter 4, we examine the economic impact of Ukraine’s 2013 conflict. Suspecting

that the conflict could generate spillover effects on Ukraine’s neighbouring countries and

trade partners, we apply a modified synthetic control methods that accounts for potential

spillovers. We consider Ukraine as the treated unit. We pre-specify some countries to have

potential spillovers and other countries to be control countries. For each country, we obtain its

synthetic control weights estimates. The weights estimates are then used to predict treatment

and spillover effects.

3



2. Estimation and inference of average treatment effects with

model averaging
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1. Introduction

In many social science disciplines, it is desired to know the average treatment effect (ATE)

of economic events or policy intervention (i.e., treatment). The major challenge is to accu-

rately estimate the counterfactual outcome - the hypothetical outcome in the absence of treat-

ment, which is the key element in estimating ATE. There are several ways to estimate the

counterfactual outcome and ATE, one of them is panel data approach by Hsiao et al. (2012)

(hereafter HCW). The approach is motivated by a factor model where the potential outcomes

are generated by some unobserved common factors. For example, in a macroeconomic set-

ting, the output or growth rate of different countries can be affected by common factors such

as technological progress, business cycle, financial crises, etc. The information embedded

in control units not subject to the treatment can help explain the counterfactual outcome of

treated unit. Therefore, the observed outcomes of control units are used to construct the coun-

terfactual outcome. Another popular approach is the synthetic control methods by Abadie et

al. (2003, 2010) (hereafter SCM)1. Intuitively, SCM constructs a synthetic control as a convex

combination of control units to maximally resemble the treated unit in terms of the outcome

and a number of attributes (if available) over pre-treatment periods. The evolution of the syn-

thetic control thereafter is considered as prediction of counterfactual outcome of treated unit.

Model selection is a common problem in HCW, SCM, and related methods. This is due to

the challenge of finding proper control units to build the “optimal” model for predicting coun-

terfactual. Here “optimal” can be defined in terms of a proper loss function such as squared

error loss in prediction. HCW proposed a two-step procedure to select proper control units,

which is essentially minimizing the Akaike information criterion (AIC; Akaike, 1973, 1974)

or the corrected Akaike information criterion (AICC; Hurvich and Tsai, 1989). On the other

hand, the non-negativity and sum-to-one weight restrictions imposed in SCM can be viewed

as a regularization device to select control units from the control group (see Doudchenko and

Imbens, 2016). However, these data-driven selection processes inevitably pose challenges

with statistical inference after model selection, as it is well-known that after model selection,
1See Gardeazabal and Vega-Bayo (2017) for a comparison between HCW and SCM
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the inferential procedures derived from the classical theory are inaccurate and make predic-

tions with overoptimistic confidence (Faraway, 1992; Berk et al., 2013).

Instead of choosing one “optimal” model based on an information criterion or regulariza-

tion procedure, we suggest using model averaging (MA) method to construct the treated coun-

terfactual outcome and estimate ATE. Specifically, we replace the 2-step procedure in HCW

with two frequentist MA methods: the Mallows model averaging (MMA; Hansen 2007) and

the Jackknife model averaging (JMA; Hansen and Racine, 2012). We demonstrate the asymp-

totic unbiasedness of the MA-based ATE estimator and derive its asymptotic distribution,

which is non-normal and non-standard. Nonetheless, we show that valid inference regard-

ing ATE estimator can be obtained by using a subsampling-based procedure. On the other

hand, our simulation results show that under the common factor structure, the MA-based ATE

estimator achieves smaller mean squared prediction error relative to many existing estima-

tors, though we do not provide theoretical justification of this finite-sample improvement.

MA methods have long been popular within the Bayesian paradigm, in the meantime there

is rapidly-growing literature on frequentist model averaging. We direct interested readers to

Hoeting et al. (1999) for Bayesian model averaging and Hansen (2007) and Wan et al. (2010)

for frequentist model averaging. The idea of using MA method for estimating ATE has been

proposed before by Long et al. (2015), but their paper focuses on improving prediction accu-

racy of JMA relative to AIC and AICC. To date, there has been no formal inference theory for

ATE estimator based on model averaging methods. Thus, our main contributions are: (i) we

establish asymptotic properties of the MA-based ATE estimator in the panel data setting; (ii)

we apply a subsampling procedure to obtain valid inference of this ATE estimator, thus avoid

tackling the intricate post-selection inference problems inherent in many existing methods.

We illustrate the proposed method by revisiting two empirical examples in HCW. The

first example measures the economic impact from transfer of sovereignty over Hong Kong

on July 1, 1997, and the second example evaluates the impact of the implementation of the

Closer Economic Partnership Arrangement (CEPA) between mainland China and Hong Kong,

started on January 1, 2004. Using our proposed ATE estimator, we estimate that the transfer

6



of sovereignty over Hong Kong - the political integration - did not have statistically signif-

icant impact on Hong Kong’s real GDP growth. On the other hand, Hong Kong’s economy

benefited from the implementation of the CEPA. More specifically, from the first quarter in

2004 to the first quarter in 2008, the CEPA raised the annual real GDP growth rate of Hong

Kong by 3.8% based on MMA and 3.9% based on JMA. Our estimation and inference results

support the original findings in HCW.

The remainder of this paper is organized as follows. Section 2 presents the theoretical

model and common methods for estimating ATE. Section 3 presents MA-based ATE esti-

mator. Section 4 presents the asymptotic properties for the proposed estimator. Section 5

presents Monte Carlo simulation results. Section 6 presents empirical applications. Section

7 concludes.

2. Model and estimation

2.1. Theoretical model

Let y1
it and y0

it denote the outcome variable for unit i at time t with and without treatment. The

treatment effect for the ith unit at time t is defined as

∆it = y1
it − y0

it (1)

As we often do not observe simultaneously y0
it and y1

it, the observed outcome is yit = dity
1
it +

(1 − dit)y
0
it where dit = 1 if unit i is under treatment at time t and dit = 0 otherwise. If the

treatment effects ∆it follow a stationary process, we can define the ATE as ∆i = E(∆it) and

estimate it by taking the simple average of treatment effects over post-treatment periods.

Assume ft is a K × 1 vector of unobserved common factors that drive outcomes of all

units to change over time. We consider the case that only one unit is treated at time t = T1 +

1, ..., T . Without loss of generality, let it be the first unit. We follow HCW and consider a fac-

7



tor model

y0
it = αi + b′ift + εit, i = 1, ..., N, t = 1, ..., T (2)

where bi is a K × 1 vector of factor loadings for unit i, αi is individual fixed effect and εit is

the ith unit’s idiosyncratic error term with E(εit) = 0. In matrix form,

y0
t = α+Bft + εt, (3)

where y0
t = (y0

1t, ..., y
0
Nt)
′, α = (α1, ..., αN)′,B = (b1, ..., bN)′ is the N × K matrix and εt =

(ε1t, ..., εNt)
′.

The first unit has been treated since T1 + 1, hence y1t = y1
1t for t = T1 + 1, ..., T and

yit = y0
it for i = 2, ..., N and t = 1, ..., T . The counterfactual outcome y0

1t is not observed

for post-treatment periods, we need to predict it. HCW proposed using y−1t = (y2t, ..., yNt)
′

instead of ft to predict y0
1t

2. Specifically, let a = (1,−ã′−1)′ where ã′−1 = (a2, ..., aN)′ such

that a′B = 0, i.e., a is in the null space ofB. Then we have a′y0
t = y0

1t− ã′−1y−1t = a′α +

ε1t − ã′−1ε−1t because a′B = 0. After rearranging terms, y0
1t = a′α + ã′−1y−1t + ε̃1t,

where ε̃1t = ε1t − ã′−1ε−1t, ε−1t = (ε2t, ..., εNt)
′. Because ε̃1t depends on all ε1t, ..., εNt, ε̃1t is

correlated with y−1t. Denote e1t = ε̃1t − E(ε̃1t|y−1t), it is clear that E(e1t|y−1t) = 0. HCW

further assumed a linear conditional mean function, i.e., E(ε̃1t|y−1t) = c1 + c′y−1t, which

leads to

y0
1t = ᾱ + a′−1y−1t + e1t (4)

where ᾱ = a′α+c1, a−1 = ã−1 +c. Let xt = (1,y′−1t)
′ and β = (ᾱ,a′−1)′, we rewrite model

(4) as

y0
1t = x′tβ + e1t (5)

The least squares regression on (5) will give consistent estimator of β.

2HCW argued that the information provided by ft is embedded in y−1t. Also, it may be difficult to iden-
tify ft andB in a finite sample where the number of control units or the number of time periods is small or
moderate.
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For the whole sample period, we can also write the observed outcome of treated unit as

y1t = y0
1t + ∆1td1t = x′tβ + ∆1td1t + e1t (6)

where d1t = 0 if t < T1 and d1t = 1 otherwise. The treatment effect estimator at t = T1 +

1, ..., T is defined as ∆̂1t = y1t−ŷ0
1t. Let T2 = T−T1, the ATE estimator is given by averaging

∆̂1t over post-treatment periods3:

∆̂1 = T−1
2

T∑
t=T1+1

∆̂1t (7)

2.2. Estimation

HCW is a least-squares-based method, the parameter β in (5) can be estimated via the follow-

ing unconstrained minimization problem:

β̂OLS = argminβ∈RN

T1∑
t=1

(y1t − x′tβ)2 (8)

However, if the mean-square criterion is adopted, it is well known that the optimal estima-

tor is not necessarily based on the largest model. HCW suggested using Akaike Information

Criterion (AIC; Akaike, 1973,1974) or the corrected Akaike information criterion (AICC;

Hurvich and Tsai, 1989) to select control units. Specifically,

1) Use R2 to select the best predictor for y0
1t using j out of N − 1 control units, denoted by

M(j)∗ for j = 1, ..., N − 1;

2) From M(1)∗,M(2)∗, ...,M(N − 1)∗ choose M(m)∗ in terms of information criterion

such as AIC and AICC, etc.

The counterfactual outcome is estimated by ŷ0
1t,HCW = x∗t

′β̂∗HCW and the ATE estimator is

∆̂1,HCW = T−1
2

∑T
t=T1+1(y1t − ŷ0

1t,HCW).

Du and Zhang (2015) proposed an approach that is anchored by the original HCW’s model

3To be more rigorous, it is temporal average treatment effect on the treated estimator.
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and replaces above two-step procedure with a “leave-many-out” cross-validation method

based on Shao (1993). Their simulation results showed that the CV method gives smaller

post-treatment mean squared prediction error than that from original HCW.

A popular alternative method is the Synthetic Control methods (SCM). SCM use a weighted

average of control units’ outcomes to construct the counterfacual outcome of the treated unit.

The weights are selected by best fitting the treated unit’s outcome (and its covariates if they

are available) using pre-treatment data and are assumed to be non-negative and sum-to-one.

That is, β is estimated via the constrained minimization problem:

β̂SC = argminβ∈ΛSC

T1∑
t=1

(y1t − x′tβ)2 (9)

where ΛSC = {β ∈ RN−1 : βj ≥ 0 for j = 2, ..., N and
∑N

j=2 βj = 1}. Then ŷ0
1t,SC =

x′tβ̂SC and the ATE estimator is ∆̂1,SC = T−1
2

∑T
t=T1+1(y1t − ŷ0

1t,SC). A modified synthetic

control method (MSC) was proposed by Doudchenko and Imbens (2016) and formalized by

Li (2019). The proposed modifications include adding an intercept and dropping the weight

sum-to-one constraint, that is,

β̂MSC = argminβ∈ΛMSC

T1∑
t=1

(y1t − x′tβ)2 (10)

where xt = (1,y′−1t)
′ and ΛMSC = {β ∈ RN−1 : βj ≥ 0 for j = 2, ..., N}. The treatment

effect estimator and ATE estimator are defined accordingly.

Doudchenko and Imbens (2016) also proposed using Elastic-net regularized regression

(Zou and Hastie, 2005) for estimation. The idea of Elastic-net is to combine the `1 and `2

penalty terms such that the underlying model can be more flexible. The Elastic-net estimator

solves the optimization problem:

β̂en = argminβ∈RN

T1∑
t=1

(y1t − x′tβ)2 + λR

N∑
j=1

β2
j + λL

N∑
j=1

|βj|

with λR = λ(1 − α) and λL = λα where α ∈ [0, 1]. The tuning parameters λ and α can be

10



selected via cross-validation or information criterion.

3. MA-based ATE estimator

For HCW and alternative methods, regardless of what criterion or constraint is used, one fi-

nally ends up with a single model among all candidate models. In addition, different criterion

will favour different model given a set of candidate models. For example, the Schwarz-Bayes

information criterion (BIC) will favour more parsimonious model while AIC will favour more

parameterized models (Hansen and Racine, 2012). The MA method, on the other hand, avoids

the reliance on a single model by averaging over the whole set of candidate models.

We seek to combine HCW with two frequentist model averaging methods: the Mallows

model averaging (MMA) estimator (Hansen, 2007) and Jackknife model averaging (JMA) es-

timator (Hansen and Racine, 2012). In the panel data setting, because we have a single treated

unit and a fixed number of control units within large pre and post-treatment periods, which is

often the case with comparative case studies, we consider MMA and JMA estimators in a lin-

ear regression framework with finite number of regressors. That is, we estimate the MA-based

counterfactual y0
1t using following regression model, which is the same as the model in (4):

y0
1t = ᾱ + a′−1y−1t + e1t (11)

where ᾱ is the intercept, y−1t = (y2t, . . . , yNt)
′ is the vector of control units’ outcomes and

e1t is idiosyncratic error with zero mean, finite variance E(e2
1t|{ᾱ,y−1t}) = σ2(ᾱ,y−1t).

Stacking (11) over all pre-treatment periods gives:

y0
1 = τ ᾱ + Y a−1 + e1 = Xβ + e1 (12)

where y0
1 = (y0

11, ..., y
0
1T1

)′, τ = (1, ..., 1)′, Y = (y−11, ...,y−1T1)
′ is a T1 × (N − 1) matrix,

e1 = (e11, ..., e1T1)
′, β = (ᾱ,a′−1)′ andX = (τ ,Y ) is a T1 × N matrix of full column rank.

The regression model in (12) is equivalent to the model that is commonly considered in MA
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literature as in Liang et al. (2011), Liu (2015), Liu and Zhang (2018).

Suppose that we have M candidate models. We follow Hansen (2007, 2014), Liu and

Zhang (2018) and consider a sequence of nested candidate models4. As there are N − 1 con-

trol units, we have M = N candidate models. The mth candidate model includes a constant

(intercept) and the first m − 1 control units, but excluding the remaining control units. In the

set-up with finite number of regressors (control units in our case), we can define some special

models. Any candidate model omitting regressors with non-zero coefficient is called under-

fitted model. A candidate model is called just-fitted if the model has no omitted variables

nor irrelevant variables. A candidate model is called over-fitted if it has no omitted variables

but has irrelevant variables5. Without loss of generality, let the first M0 candidate models be

under-fitted. Clearly, M = N > M0 ≥ 0.

LetXm = (τ ,Ym), where Ym contains the first m− 1 regressors in Y . Note thatXm has

Km = m regressors. Denote Πm as a selection matrix such that Πm = (IKm ,0Km×(N−Km))

and thusXm = XΠ′m, where IKm is a Km × Km identity matrix. Under the mth candidate

model, the least squares estimator is β̂m = Π′m(X ′mXm)−1X ′my
0
1 . The model averaging

estimator of β is β̂(ω) =
∑M

m=1 ωmβ̂m, where ωm is the weight on the mth candidate model

and ω = (ω1, ..., ωM)′ ∈ W = {ω ∈ [0, 1]M :
∑M

m=1 ωm = 1}. Then ŷ0
1t,MA = x′tβ̂(ω̂) and

the ATE estimator is ∆̂1,MA = T−1
2

∑T
t=T1+1(y1t − ŷ0

1t,MA).

Since model weight is an integrated part of MA estimator, different strategies for weight

selection have been proposed. We use following two strategies in this chapter:

• MMA

Denote Pm = Xm(X ′mXm)−1X ′m, the mth model’s projection matrix; let P (ω) =∑M
m=1 ωmPm, andK = (K1, ..., KM)′. In the homoscedastic error setting, Hansen

4Similar to Hansen (2014), Liu and Zhang (2018), we do not impose any assumptions on the ordering of
regressors (control units’ outcomes in the present case)

5We do not assume that the true model must be one of candidate models. We need that at least one candidate
model is not under-fitted. If there is no true model among all candidate models, the just-fitted model is the model
that has no omitted variable and the smallest number of irrelevant variables, and the over-fitted model is the
model that has no omitted variable but more irrelevant variables than the just-fitted model.
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(2007) proposed choosing weights by minimizing Mallows criterion

C(ω) = ||{IT − P (ω)y}||2 + 2σ2ω′K (13)

where || · ||2 stands for the Euclidean norm, σ2 = E(e2
i ). In practice, σ2 can be estimated

by σ̂2 = (T − N)−1||y0
1 −Xβ̂M ||2. Let ŵMMA = argminω∈WC(ω), so that the MMA

estimator of β is

β̂(ω̂MMA) =
M∑
m=1

ωMMA,mβ̂m (14)

• JMA

Denote hmtt the tth diagonal element of Pm andDm a diagonal matrix with (1 − hmtt )−1

being its tth diagonal element. It can be shown that P JMA
m = Dm(Pm − IT ) + IT

(see Appendix A.1). Then P JMA(ω) =
∑M

m=1 ωmP
JMA
m . In the linear regression model

with heteroscedastic errors, Hansen and Racine (2012) proposed selecting weights by

minimizing cross-validation or Jackknife criterion

J (ω) = ||{IT − P JMA(ω)}y||2. (15)

Let ŵJMA = argminω∈WJ (ω), so that the JMA estimator of β is

β̂(ω̂JMA) =
M∑
m=1

ωJMA,mβ̂m (16)

Hansen (2007) and Hansen and Racine (2012) showed that MMA and JMA estimators are

asymptotically optimal in the sense that they achieve the lowest possible mean squared error

among the class of linear estimators in homoscedasitc and heteroscedastic setting, respec-

tively.6

6As discussed in Liu (2015) and Liu and Zhang (2018), it is possible that the MMA and JMA estimators are
not asymptotically optimal in the framework with finite number of regressors.
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4. Asymptotic properties of MA-based ATE estimator

We first state some regularity conditions required for asymptotic results.

Condition C.1. The data {xt}Tt=1 follows a weakly dependent stationary process with

T−1
1

∑T1
t=1 xt

p−→ E(xt) andQT1 = T−1
1 X ′X

p−→ Q where xt = (1, y2t, . . . , yNt)
′,Q =

E(xtx
′
t) is positive definite. Let η = limT1,T2→∞

√
T2/T1 be a finite non-negative constant.

Condition C.2. {e1t}Tt=1 is zero mean, serially uncorrelated and satisfies

ZT1 = T
−1/2
1 X ′e1 = T

−1/2
1

∑T1
t=1 xte1t

d−→ Z ∼ N(0,Ω), where Ω = E(xtx
′
te

2
1t) is a

positive definite matrix and ΩT1 = T−1
1

∑T1
t=1 xtx

′
te

2
1t

p−→ Ω.

Condition C.3. h̄T1 = max1≤m≤Mmax1≤t≤T1h
m
tt = Op(T

−1
1 )

Condition C.4. {∆1t}Tt=1 has mean ∆1 and is serially uncorrelated. We assume that ν1t =

∆1t − ∆1 + e1t satisfies a central limit theorem: T−1/2
2

∑T
t=T1+1 ν1t

d−→ N(0,Ων) where

Ων = E(ν2
1t).

Condition C.5. Let γt = (y1t, y2t, ..., yNt,∆1td1t) for t = 1, . . . , T , where d1t = 0 if t <

T1 and d1t = 1 otherwise. Assume {γ̂t}Tt=1 is weakly dependent stationary process. Define

ρ(τ) = max1≤t≤Tmax1≤i,j≤N |cov(γit, γj,t+τ )/
√

Var(γit)Var(γj,t+τ )|. There exist some finite

constants C > 0 and 0 < λ < 1 such that ρ(τ) ≤ Cλτ .

Condition C.1 is high-level. One sufficient condition for C.1 is that {(ft, εt)}t≥1 in (3) is

stationary, ergodic process such that the law of large number holds. Condition C.1 and C.2

imply that
√
T1(β̂M − β)

d−→ N(0,Q−1′ΩQ−1) where β̂M is the least squares estimator from

the largest model, i.e., β̂M = (X ′X)−1X ′y0
1 . Condition C.3 requires that hmtt be asymptotic

negligible for all models considered and conditioin of this form is typical for application of

cross-validation (Hansen and Racine 2012). Condition C.4 implies that ν1t is serially uncor-

related and requires that a central limit theorem hold for a partial sum of ν1t. Condition C.5

is related to the whole sample t = 1, . . . , T . It ensures that MA estimator β̂(ω̂) from pre-

treatment sample are asymptotic independent of quantity involving the post-treatment sample

average of demeaned treatment effects and idiosyncratic error. Condition C.1 and C.2 are sim-

ilar to condition 1 and 2 in Liu and Zhang (2018), condition C.3 is similar to condition C.2 in
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Zhang (2015). Condition C.4 and C.5 are similar to Assumption 3 and 4 in Li (2019).

4.1 Consistency

The average treatment effect for the treated unit is given by ∆1 = E(∆1t). In this subsection

we show the consistency of MA-based ATE estimator ∆̂1. In order to show the consistency,

we need the following lemma.

Lemma 1 Under condition C.1 and C.2,
√
T1{β̂(ω̂MMA) − β} = Op(1); if condition C.3 is

also satisfied,
√
T1{β̂(ω̂JMA)− β} = Op(1)

We then derive the consistency result in the next proposition.

Proposition 1 Under condition C.1 - C.3, as T1, T2 →∞, we have

∆̂1
p−→ ∆1 (17)

4.2 Asymptotic distribution

To study the asymptotic distribution of MA-based ATE estimator, we need to first study the

asymptotic distributions of two averaging estimators β̂(ω̂MMA) and β̂(ω̂JMA), which depend

on the asymptotic bahavior of weights estimator. We follow Liu and Zhang (2018) and show

that MMA and JMA estimators asymptotically assign zero weights to under-fitted models,

which is given in the following theorem.

Theorem 1 Under conditions C.1 - C.2, for any m ∈ {1, ...,M0},

ω̂MMA,m = Op(T
−1
1 ) (18)

If condition C.3 is also satisfied,

ω̂JMA,m = op(T
−1/2
1 ) (19)

Because under-fitted models receive zero weight asymptotically, we can exclude them and
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define new weight vector as λ = (λ1, . . . , λS) ∈ L = {λ ∈ [0, 1]S :
∑S

s=1 λs = 1} where

S = M−M0. Let Ωs = ΠM0+sΩΠ′M0+s,Qs = ΠM0+sQΠ′M0+s and Vs = Π′M0+sQ
−1
s ΠM0+s

denote covariance matrices based on new weight vector, where Ω andQ are defined in condi-

tion C.1 - C.2. The following theorem summarizes the asymptotic distributions for β̂(ω̂MMA)

and β̂(ω̂JMA).

Theorem 2 Under conditions C.1 - C.2,

√
T1{β̂(ω̂MMA)− β} d−→

S∑
s=1

λ̃MMA,sVsZ (20)

where λ̃MMA = (λ̃MMA,1, . . . , λ̃MMA,S)′ = argminλ∈Lλ
′T λ and T is an S × S matrix with

(s, j)th element

Tsj = 2σ2KM0+s −Z ′Vmax{s,j}Z (21)

If condition C.3 is also satisfied, we have

√
T1{β̂(ω̂JMA)− β} d−→

S∑
s=1

λ̃JMA,sVsZ (22)

where λ̃JMA = (λ̃JMA,1, . . . , λ̃JMA,S)′ = argminλ∈Lλ
′Σλ and Σ is an S×S matrix with (s, j)th

element

Σsj = tr(Q−1
s Ωs) + tr(Q−1

j Ωj)−Z ′Vmax{s,j}Z (23)

Theorem 2 shows that both MMA and JMA estimators have non-standard limiting distri-

butions, which are non-linear functions of normal random vector Z. Finally, the asymptotic

distribution of MA-based ATE estimator is given by the next theorem:

Theorem 3 Under conditions C.1 - C.5,

√
T2(∆̂1 −∆1)

d−→ −η E(x′t)(
S∑
s=1

λ̃MA,sVsZ) + Z2 (24)

where ∆̂1 is estimated by either MMA or JMA, λ̃MA,s are corresponding weights,

η = limT1,T2→∞
√
T2/T1, Z is defined in condition C.2., Z2 is independent of Z and dis-
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tributed as N(0,Ωv), Ωv is defined in condition C.4. It is worth noting that the ATE estimator

in Equation (24) is also asymptotically unbiased. This is because both MMA and JMA esti-

mators of regression coefficients are asymptotically unbiased since they asymptotically assign

zero weights to the under-fitted models, which in turn imply that the MA-based ATE estima-

tor is asymptotically unbiased.

5. Inference of MA-based ATE estimator

It is shown in previous section that the MA-based ATE estimator has a non-standard asymp-

totic distribution, which is result of non-standard distribution of MA estimators β̂(ω̂MMA) and

β̂(ω̂JMA). In addition, their asymptotic distributions are not pivotal, thus they cannot be di-

rectly used for inference. To address this issue, we follow Li (2019) and consider a subsam-

pling method for constructing confidence intervals.

From proof of Theorem 3 in the Appendix A.6,

Â =
√
T2(∆̂1 −∆1)

= −
√
T2

T1

(
1

T2

T∑
t=T1+1

x′t)
√
T1(β̂(ω̂)− β) +

1√
T2

T∑
t=T1+1

ν1t

= Â1 + Â2 (25)

where ν1t = ∆1t − ∆1 + e1t, Â1 = −
√
T2

T1

(
1

T2

T∑
t=T1+1

x′t)
√
T1(β̂(ω̂) − β) and Â2 =

1√
T2

T∑
t=T1+1

ν1t.

The expression in (25) shows that ∆̂1 can be decomposed into Â1 that involves β̂(ω̂) and

Â2 that is not related to the averaging estimator. The inference procedure is to implement the

subsampling method only to the term Â1 and the regular bootstrap method to Â2. Specifically,

from condition C.4, ν1t is serially uncorrelated, so Ωv can be consistently estimated by Ω̂v =

T−1
2

∑T
t=T1+1 ν̂

2
1t where ν̂1t = ∆̂1t − ∆̂1. So we can generate ν∗1t from i.i.d. N(0, Ω̂v) for post-
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treatment periods. Let b be the subsample size such that b → ∞ and b/T1 → 0 as T1 → ∞.

For t = 1, . . . , b, we randomly draw (y∗1t,x
∗
t ) from (y1t,xt)

T1
t=1 with replacement. Then we

use subsample (y∗1t,x
∗
t )
b
t=1 to estimate β and obtain β̂∗b by either MMA or JMA method. By

replacing unknown parameter β with its consistent MA estimator β̂(ω) and plugging in β̂∗b

into Â1, the subsampling-bootstrap form of Â is

Â∗ = −
√
T2

T1

(
1

T2

T∑
t=T1+1

x′t)
√
b(β̂∗b − β̂(ω̂)) +

1√
T2

T∑
t=T1+1

ν∗1t (26)

We can repeat the procedure J times and obtain subsampling-bootstrap sample {Â∗j}Jj=1. Af-

ter sorting the statistics Â∗j , the 1− α confidence interval for ∆̂1 is given by

[∆̂1 − T−1/2
2 Â∗(1−α/2)J , ∆̂1 − T−1/2

2 Â∗(α/2)J ] (27)

The following theorem shows that the above confidence intervals are consistent for confi-

dence intervals of ∆1.

Theorem 4 Under conditions C.1 - C.5 and condition that b → ∞ and b/T1 → 0 as T1 → ∞,

the (1−α) confidence intervals of ∆1 can be consistently estimated by [∆̂1−T−1/2
2 Â∗(1−α/2)J ,

∆̂1 − T−1/2
2 Â∗(α/2)J ] for any α ∈ (0, 1).

In summary, the following algorithm describes the entire inference procedure:

Algorithm: Subsampling - bootstrap Inference for MA-based ATE estimator

1. Use pre-treatment data to find β̂(ω̂) based on MMA or JMA;

2. Calculate counterfactual estimate ŷ0
1t = x′tβ̂(ω̂) and treatment effect estimate ∆̂1t = y1t −

ŷ0
1t for post-treatment periods T1 + 1, . . . , T ; then find ATE estimate ∆̂1 = 1

T2

∑T
t=T1+1 ∆̂1t,

T2 = T − T1;

3. Calculate ν̂1t = ∆̂1t − ∆̂1 and estimate σ2
ν by σ̂2

ν = T−1
2

∑T
t=T1+1 ν̂

2
1t. Sample ν∗1t ∼

i.i.d.N(0, σ̂2
ν) for t = T1 + 1, . . . , T ;

4. Specify the sub-sample size b7, sample {y∗1t,x∗t}bt=1 from {y1t,xt}T1t=1 with replacement;

7The proposed inference procedure does not perform well in general when b is too small or too large relative
to T1 (i.e., the number of pre-treatment periods). We recommend trying different b with T1/3 ≤ b ≤ 2T1/3 in
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5. Use sub-sample {y∗1t,x∗t}bt=1 to obtain β̂∗b based on MMA or JMA;

6. Calculate

Â∗ = −
√
T2

T1

(
1

T2

T∑
t=T1+1

x′t)
√
b(β̂∗b − β̂(ω̂)) +

1√
T2

T∑
t=T1+1

ν∗1t

7. Repeat step 5 - 6 J times and obtain a sample {Â∗j}Jj=1. Sort Â∗j , the 1−α confidence inter-

val for ∆̂1 is

[∆̂1 − T−1/2
2 Â∗(1−α/2)J , ∆̂1 − T−1/2

2 Â∗(α/2)J ]

for α ∈ (0, 1).

6. Simulation study

6.1 Comparison of different estimation methods

In this section we compare the predictive performance of various methods discussed in Sec-

tion 2 and 3. Specifically, we consider MMA, JMA, AICC, Elastic-net (E-net), leave-many-

out cross-validation (CVd) , synthetic control method (SCM) and modified synthetic control

(MSC)8. Furthermore, we add two additional methods for comparison: the least squares esti-

mator from the largest model (Full), i.e., no data-driven model selection or model averaging,

and a simple equal-weighted average (EQ-MA). To balance the computation time and accu-

racy, we consider the number of units N = 12 and the experiment is repeated 1, 000 times.

We set T1 = 25, 40, 60, T = T1 + 10. We generate model (2) with the same 1-factor, 2-factor

and 3-factor structure as in HCW:

1-factor:

f1t = 0.95f1t−1 + u1t

practice.
8Because results based on AIC are quantitatively similar to AICC in most cases, they are not reported to save

space.
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2-factor:

f1t = 0.3f1t−1 + u1t

f2t = 0.6f2t−1 + u2t

3-factor:

f1t = 0.8f1t−1 + u1t

f2t = −0.6f2t−1 + u2t + 0.8u2t−1

f3t = u3t + 0.9u3t−1 + 0.4u3t−2

where uit is distributed to N(0, 1), i = 1, 2, 3. {εit} in model (2) are generated by σ2N(0, 1),

where σ2 = 1, 0.5, 0.1; bi is generated by N(1, 1). The various methods are compared based

on post-treatment mean squared prediction error (MSPE):

MSPE =
1

T2

T∑
t=T1+1

(y0
1t − ŷ0

1t)
2

In addition to MSPE, the average number of selected control units are reported for AICC, E-

net, CVd, SCM and MSC.

The simulation results are reported in Table 1-3. Firstly, the two data-driven MA methods

have smaller MSPE in all cases considered. Specifically, the MMA and JMA have very simi-

lar results in most cases. This is expected as the random error {εit} in (2) are generated as ho-

moscedastic error and the limiting distribution of the MMA and JMA estimators are the same

for homoscedastic case (Liu and Zhang, 2018). Secondly, SCM and MSC perform poorly in

terms of achieving smaller MSPE. As discussed in Wan et al. (2018), if constraints on syn-

thetic control weights are invalid, then SCM could lead to biased prediction. It is likely that

the constraints imposed in SCM and MSC are not satisfied, which lead to poor out-of-sample

predictive performance. Thirdly, CVd generates smaller MSPE than that from AICC when the

sample size is small. However, as pre-treatment sample size T1 increases, it performs worse
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than AICC in most cases, contradicting to Du et al. (2015)’s results that are obtained with

smaller repetition numbers (100). Finally, in terms of number of selected control units, CVd

consistently selects the most sparse model among all methods considered.

6.2 The coverage probabilities of inference procedure

We consider the same 3-factor DGP in the subsection 6.1 with the error term {εit} in model

(2) being generated by N(0, 1). We use the DGP in Li (2019) to generate treatment effects

∆1t:

∆1t = α0(
eZt

1 + eZt
), t = T1 + 1, . . . , T (28)

where Zt = 0.5Zt−1 + φt and φt ∼ i.i.d.N(0, 0.52). Therefore, y1t = y0
1t + ∆1t for t =

T1 + 1, . . . , T . If α0 = 0, there is no treatment effect; if α0 > 0, there is positive treatment

effect. In this simulation exercise, we set number of control units N = 12 and 20, T1 = 50,

T2 = 20, T = T1 + T2 = 70. To implement the proposed inference procedure for the MA-

based ATE estimator, the subsample size b = 20, 35, 50 when N = 12; b = 30, 40, 50 when

N = 20. Note that when b = 50, subsampling is equivalent to the regular bootstrap. We repeat

the subsampling-bootstrap procedure 1, 000 times and J = 400 subsamples are generated in

each iteration. We also consider the following estimators for comparison:

• HCW based on the largest model with bootstrap, i.e., b = 50 (labeled Full).

• HCW based on the AICC model selection criterion with bootstrap (labeled AICC).

• Model averaging estimator based on the equal weights with bootstrap (labeled EQ-

MA).

• Full model based on asymptotic distribution with T1 = 50, T = 70 (labeled Asy1).9

• Full model based on asymptotic distribution with T1 = 500, T = 550 (labeled Asy2).

The results are reported in Table 4 and 5. The proposed subsampling-bootstrap proce-

dure works very well and results in coverage probability that is close to nominal level in most
9The asymptotic normal distribution is based on the Li and Bell (2017).
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cases. However, the regular bootstrap (b = 50) does not work, the coverage probability are

much lower than the nominal values in all cases. On the other hand, the bootstrap methods

works reasonably well for the HCW based on the largest model, which is expected as there

are no model selection and model averaging involved. The bootstrap does not work for model

averaging estimator with equal weights or the estimator based on AICC, both estimators suf-

fer from undercoverage problem. The ATE estimator based on the asymptotic normal distri-

bution as in Li and Bell (2017) does not work when the sample is small. However, as we in-

crease both the pre- and post-treatment sample size, the estimated coverage probability tends

to attain the nominal level.

7. Empirical application

To demonstrate the MA-based ATE estimator, we revisit two empirical examples in HCW

who investigated the impact of political integration of Hong Kong with China on July 1, 1997

and economic integration through implementation of the Closer Economic Partnership Agree-

ment (CEPA) in 2004 Q1. We use the same dataset as in HCW, which includes quarterly real

GDP growth rate of 24 control units from 1993 Q1 to 2008 Q1.

We first evaluate the impact of political integration on Hong Kong’s real GDP growth.

Hong Kong was a fishing village ceded to UK after the Opium War in 1842 and its sovereignty

was reverted back to China on July 1, 1997. We consider the same subset containing 10 con-

trol units as in HCW due to the short pre-treatment periods. Figure 1 displays the results. The

counterfactuals generated by HCW and MA method trace well the actual data in the pre-

treatment period. In the post-treatment period, the predicted path from HCW (red dashed

line) and MA (JMA with blue dotted line; MMA with purple dotted-dashed line) have simi-

lar shape but the paths from MA are lower than the one from HCW in most post periods. For

the statistical inference, HCW fits an AR(2) model for the estimated treatment effects and the

implied long-fun effect is -0.032 and statistically insignificant. Based on the MA method, the

ATE of political integration is estimated at -0.029 by JMA and -0.024 by MMA. In order to
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apply the proposed inference procedure for MA-based ATE estimator, we need to first check

whether e1t defined in condition C.2 and ν1t defined in condition C.4 are serially uncorrelated

or not.
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Figure 1: Actual and counterfactual real GDP growth rate of Hong Kong

Figure 2 and Figure 3 show the autocorrelation of two residuals of JMA and MMA, re-

spectively. Because the right panels show that the residuals ν1t appear to be serially correlated

for both JMA and MMA, we allow for ν1t to follow an AR(2) process: ν1t = φ1ν1,t−1 +

φ2ν1,t−2 + ξt where ξt is serially uncorrelated. Note that ∆̂1 in (24) can be decomposed into

Â1 and Â2. ν1t only enters Â2, which implies that only Â2 needs to be adapted. Thus we gen-

erate the adapted value Â∗2 as follows:

1) Regress ν̂1t on ν̂1,t−1 and ν̂1,t−2 to obtain φ̂1 and φ̂2 for T1 + 2, . . . , T ;

2) Estimate ξt by ξ̂t = ν̂1t− φ̂1ν̂1,t−1− φ̂2ν̂1,t−2 and compute σ̂2
ξ = (T −T1−3)−1

∑T
t=T1+3 ξ̂

2
t ;

3) Generate ξ∗t ∼ i.i.d.N(0, σ̂2
ξ ) and compute ν∗1t = φ̂1ν

∗
1,t−1 + φ̂2ν

∗
1,t−2 + ξ∗t for t = T1 +

2, . . . , T where ν∗1,T1 and ν∗1,T1+1 are drawn from i.i.d.N
(
0, (

1− φ̂2

1 + φ̂2

) ·
σ̂2
ξ

(1− φ̂2)2 − φ̂2
1

)
;

4) Compute Â∗2 = T
−1/2
2

∑T
t=T1+1 ν

∗
1,t.
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Figure 2: JMA: autocorrelation of ê1t: 1993:1-1997:1 and ν̂1t: 1994 :2-2003:4
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Figure 3: MMA: autocorrelation of ê1t :1993:1-1997:1 and ν̂1t :1994:2-2003:4

Because the simulation results in the previous section suggest that regular bootstrap doesn’t

work for MA-based ATE estimator, and there are only 18 pre-treatment periods, we select the

subsample size b = 11, 16. For each b, we implement 10,000 subsampling simulations. We

then sort the 10,000 statistics to obtain α/2 and 1 − α/2 percentile for α = 0.2, 0.1, 0.05.

The confidence intervals of ∆̂1 are reported in Table 6. It is noted that all these intervals con-
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Figure 4: Political integration: ATE estimate based on MMA and ATE estimate based on
JMA

tain zero. Alternatively, we can construct ATE as rolling average of treatment effect estimate

starting at the first post-treatment period, that is,

∆̂t =
1

t− T1

t∑
i=T1+1

∆̂1i t = T1 + 1, . . . , T (29)

We then use proposed inference procedure to construct the confidence intervals. Figure 4

shows the average treatment effect along with its 95% confidence intervals based on MMA

and JMA. The confidence intervals based on JMA are narrower than those based on MMA.

The results reported in Table 6 as well as Figure 4 suggest no significant impact of political

integration on Hong Kong’s real GDP growth, which support results in HCW.

We continue to investigate the impact of economic integration on Hong Kong’s economy.

On January 1, 2004, the CEPA, which is essentially a free trade agreement, took effect. The

CEPA aimed to strengthen the linkage between mainland China and Hong Kong by liber-

alizing trade in services, enhancing cooperation in the area of finance, promoting trade and

investments. Using 24 countries/regions not subject to the CEPA, HCW constructed the coun-

terfactual Hong Kong to evaluate the impact of the CEPA on Hong Kong’s real GDP growth.
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Their results suggest that Hong Kong’s real GDP growth rate was 4% higher than what it

would have been in the absence of the CEPA.
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Figure 5: Actual and counterfactual real GDP growth rate of Hong Kong

In this application, the pre-treatment periods are 1993 Q1-2003 Q4 such that T1 = 44,

T2 = 17. The ATE of the CEPA is estimated at 3.9% by JMA and 3.8% by MMA respec-

tively, similar to the result reported in HCW (see also Figure 5). Figure 6 and Figure 7 dis-

play the autocorrelation of two residuals from JMA and MMA. All appear to be serially un-

correlated. As there are 44 pre-treatment periods, we select the subsample size b = 30, 40.

Similarly, we implement 10,000 subsampling simulations for each b. The confidence inter-

vals of ∆̂1 are reported in Table 7. It is noted that the lower bounds of these intervals are all

positive in all cases. This implies that the estimated ATE based on JMA and MMA are pos-

itive and significantly different from zero for all conventional significance levels. Figure 8

displays ATE estimates over post-treatment periods, along with its 95% confidence inter-

vals, which also suggest significant positive impact from the CEPA on Hong Kong’s real GDP

growth. Table 8 and Table 9 report the model averaging estimates of regression coefficient or
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“weights” in the applications of political integration and economic integration. For brevity,

we only report the MMA estimates in this section. The estimates are sorted in decreasing

order based on absolute value. We note that the countries with large coefficient (in absolute

value) are those selected in the original HCW based on AIC or AICC.
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Figure 6: JMA: autocorrelation of ê1t :1993:1-2003:4 and ν̂1t :2004:1-2008:1

0 5 10 15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
C

F

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
C

F

Figure 7: MMA: autocorrelation of ê1t :1993:1-2003:4 and ν̂1t :2004:1-2008:1
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Figure 8: Economic integration: ATE estimate based on MMA and ATE estimate based on
JMA

8. Conclusion

Researchers and analysts usually face the challenge of accurately estimating the average treat-

ment effect when evaluating the impact of an economic event or a political intervention. In

this chapter, we seek to use model averaging method to construct the counterfactual outcome

and estimate ATE in a panel data setting. The model-averaging-based ATE estimator is shown

to be asymptotically unbiased under mild assumptions. We also derive its asymptotic distri-

bution, which turns out to be non-normal and non-standard. To address the problem of infer-

ence, we use a subsampling-based inference procedure. We assess the finite sample properties

of model-averaging-based method with other commonly used methods including the Hsiao

et al. (2012) and synthetic control methods, the proposed MA based-method works better in

terms of small mean squared prediction error. However, we do not provide any theoretical jus-

tification of this finite-sample improvement, and it would be greatly desirable to demonstrate

the formal justification in future study. Our simulation results suggest that the inference pro-

cedure based on subsampling method yields coverage probabilities close to nominal levels.

Finally, we illustrate our method with the application used in Hsiao et al. (2012), who investi-

gated the impact of mainland China - Hong Kong political and economic integration on Hong
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Kong ’s economy. Our results support the original findings.

29



Table 1: Comparison of different estimation methods: one-factor

σ2 = 1
MMA JMA EQ-MA Full AICC Enet CVd MSC SCM

T1 = 25, T = 35
Avg.No 2.275 5.245 2.277 5.046 4.642
Avg.MSPE 1.5796 1.5659 1.7611 2.1327 1.8561 2.1673 1.8034 1.9255 2.5707

T1 = 40, T = 50
Avg.No 2.626 3.199 2.324 5.315 5.085
Avg.MSPE 1.3761 1.3691 1.7462 1.6406 1.5362 1.7575 1.5194 1.7481 2.6525

T1 = 60, T = 70
Avg.No 2.866 6.241 2.421 5.508 5.464
Avg.MSPE 1.2762 1.2756 1.6490 1.4056 1.3535 1.4739 1.3642 1.4970 2.5457

σ2 = 0.5
T1 = 25, T = 35
Avg.No 2.299 5.973 2.308 5.052 4.557
Avg.MSPE .7896 .7829 1.0044 1.0686 .9281 1.0986 .9123 1.0761 1.8120

T1 = 40, T = 50
Avg.No 2.634 6.545 2.295 5.327 4.976
Avg.MSPE .6862 .6833 .9989 .8188 .7654 .8897 .7535 .9874 1.9176

T1 = 60, T = 70
Avg.No 2.876 6.885 2.427 5.52 5.359
Avg.MSPE .6380 .6377 .9427 .7019 .6504 .7414 .6795 .8326 1.8410

σ2 = 0.1
T1 = 25, T = 35
Avg.No 2.317 7.4 2.339 5.01 4.437
Avg.MSPE .1577 .1565 .3709 .2145 .1853 .2178 .1817 .3515 1.1963

T1 = 40, T = 50
Avg.No 2.642 7.839 2.323 5.309 4.851
Avg.MSPE .1370 .1363 .3726 .1633 .1533 .1755 .1508 .3493 1.3273

T1 = 60, T = 70
Avg.No 2.898 8.091 2.418 5.504 5.226
Avg.MSPE .1275 .1275 .3502 .1401 .1353 .1464 .1358 .2753 1.2686

Notes: MMA is based on Mallow’s model averaging; JMA is based on Jackknife model averaging; EQ-MA
is based on model averaging with equal weights; Full stands for the full model, i.e., the M th model; AICC is
based on AICC criterion; Enet stands for Elastic-net penalized regression; CVd is based on leave-many-out cross
validation; MSC stands for modified synthetic control; SCM stands for synthetic control method.
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Table 2: Comparison of different estimation methods: two-factor

σ2 = 1
MMA JMA EQ-MA Full AICC E-net CVd MSC SCM

T1 = 25, T = 35
Avg.No 2.726 5.416 2.529 4.860 4.558
Avg.MSPE 1.8191 1.8047 1.8865 2.3161 2.0504 1.8872 2.0278 1.9406 2.0890

T1 = 40, T = 50
Avg.No 3.176 5.687 2.608 5.151 4.813
Avg.MSPE 1.5908 1.5943 1.7473 1.7426 1.7167 1.6789 1.7213 1.7620 1.9494

T1 = 60, T = 70
Avg.No 3.577 5.916 2.828 5.390 5.090
Avg.MSPE 1.4226 1.4241 1.7043 1.5320 1.5071 1.5074 1.5302 1.6457 1.9462

σ2 = 0.5
T1 = 25, T = 35
Avg.No 2.818 5.892 2.576 4.749 4.260
Avg.MSPE .9255 .9196 1.0555 1.1677 1.0322 .9593 1.0250 1.0929 1.3038

T1 = 40, T = 50
Avg.No 3.298 6.077 2.662 5.019 4.468
Avg.MSPE .8077 .8094 .9851 .8803 .8737 .8467 .8701 .9887 1.2016

T1 = 60, T = 70
Avg.No 3.699 6.189 2.902 5.268 4.711
Avg.MSPE .7221 .7226 .9595 .7723 .7639 .7599 .7828 .9410 1.2523

σ2 = 0.1
T1 = 25, T = 35
Avg.No 2.951 6.302 2.632 4.593 3.782
Avg.MSPE .1879 .1874 .3302 .2344 .2090 0.1892 .2060 .3671 .6584

T1 = 40, T = 50
Avg.No 3.383 6.467 2.776 4.855 3.922
Avg.MSPE .1636 .1640 .3115 .1777 .1759 .1708 .1754 .3318 .5870

T1 = 60, T = 70
Avg.No 3.768 6.483 3.022 5.12 4.134
Avg.MSPE .1466 0.1466 .3073 .1556 0.1551 .1524 0.1576 .3303 .6736

Notes: MMA is based on Mallow’s model averaging; JMA is based on Jackknife model averaging; EQ-MA
is based on model averaging with equal weights; Full stands for the full model, i.e., the M th model; AICC is
based on AICC criterion; Enet stands for Elastic-net penalized regression; CVd is based on leave-many-out cross
validation; MSC stands for modified synthetic control; SCM stands for synthetic control method.
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Table 3: Comparison of different estimation methods: three-factor

σ2 = 1
MMA JMA EQ-MA Full AICC E-net CVd MSC SCM

T1 = 25, T = 35
Avg.No 3.139 5.931 2.813 4.515 4.099
Avg.MSPE 2.2338 2.2414 2.6500 2.8193 2.5659 2.4752 .2532 2.8777 3.2075

T1 = 40, T = 50
Avg.No 3.756 4.418 3.034 4.633 4.154
Avg.MSPE 1.9009 2.0298 2.4670 2.0298 2.0551 2.1426 2.1258 2.7711 3.2642

T1 = 60, T = 70
Avg.No 4.289 6.484 3.385 4.843 4.292
Avg.MSPE 1.6879 1.6891 2.3853 1.7908 1.7862 1.8006 1.8349 2.2603 3.0024

σ2 = 0.5
T1 = 25, T = 35
Avg.No 3.283 6.233 2.893 4.302 3.779
Avg.MSPE 1.1459 1.1536 1.6236 1.4311 1.3045 1.2741 1.289511 1.8777 2.3393

T1 = 40, T = 50
Avg.No 3.820 6.457 3.107 4.561 3.959
Avg.MSPE .9094 .9109 1.5355 1.0298 .9938 1.0069 1.0276 1.6656 2.2316

T1 = 60, T = 70
Avg.No 4.425 6.564 3.509 4.590 3.937
Avg.MSPE .8589 .8594 1.4785 .9077 .9106 .9130 .9376 1.4542 2.2617

σ2 = 0.1
T1 = 25, T = 35
Avg.No 3.485 6.438 3.177 4.017 3.342
Avg.MSPE .2284 .2294 .6873 .2906 .2597 .2445 .2576 .8450 1.7106

T1 = 40, T = 50
Avg.No 4.007 6.585 3.309 4.241 3.470
Avg.MSPE .1847 .1851 .6755 .2089 .2046 .2008 .2112 .9011 1.6079

T1 = 60, T = 70
Avg.No 4.563 6.656 3.724 4.246 3.481
Avg.MSPE .1746 .1746 .6428 .1835 .1874 .1835 .1918 .7510 1.6566

Notes: Notes: MMA is based on Mallow’s model averaging; JMA is based on Jackknife model averaging; EQ-
MA is based on model averaging with equal weights; Full stands for the full model, i.e., the M th model; AICC is
based on AICC criterion; Enet stands for Elastic-net penalized regression; CVd is based on leave-many-out cross
validation; MSC stands for modified synthetic control; SCM stands for synthetic control method.
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Table 4: Coverage probabilities (α0 = 0, no treatment effects)

N = 12
JMA MMA Full AICC EQ-MA Asy1 Asy2

b 20 35 50 20 35 50 50 50 50
80% .793 .766 .718 .801 .767 .725 .724 .661 .630 .640 .750
90% .893 .873 .816 .903 .868 .825 .848 .767 .740 .757 .871
95% .945 .931 .893 .951 .930 .891 .910 .844 .814 .831 .931

N = 20
JMA MMA Full AICC EQ-MA Asy1 Asy2

b 30 40 50 30 40 50 50 50 50
80% .781 .755 .727 .791 .755 .724 .751 .657 .673 .634 .791
90% .887 .863 .836 .887 .863 .841 .862 .766 .790 .738 .889
95% .938 .918 .903 .946 .924 .904 .912 .829 .860 .822 .939

N = 30
JMA MMA Full AICC EQ-MA Asy1 Asy2

b 40 50 40 50 50 50 50
80% .766 .711 .768 .702 .732 .631 .698 .649 .773
90% .875 .814 .895 .812 .839 .741 .802 .761 .884
95% .933 .889 .942 .888 .893 .817 .876 .848 .944

Notes: The pre-treatment sample size T1 = 50, b is sub-sample size.
JMA estimator with subsampling-based confidence intervals (JMA);
MMA estimator with subsampling-based confidence intervals (MMA);
Least squares estimator for the largest model with bootstrap (Full);
AICC model selection estimator with bootstrap (AICC);
Model averaging estimator with equal weights with bootstrap (EQ-MA) ;
Least squares on the largest model with asymptotic normal approximation (T1 = 50, T =
70) (Asy1);
Least squares on the largest model with asymptotic normal approximation (T1 = 500, T =
550) (Asy2).
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Table 5: Coverage probabilities (α0 = 1, positive treatment effects)

N = 12
JMA MMA Full AICC EQ-MA Asy1 Asy2

b 20 35 50 20 35 50 50 50 50
80% .807 .772 .720 .806 .772 .725 .726 .668 .634 .648 .763
90% .899 .874 .819 .903 .878 .829 .852 .770 .746 .762 .883
95% .947 .933 .903 .950 .931 .899 .903 .850 .814 .840 .942

N = 20
JMA MMA Full AICC EQ-MA Asy1 Asy2

b 30 40 50 30 40 50 50 50 50
80% .785 .766 .737 .793 .763 .739 .752 .656 .682 .635 .804
90% .891 .868 .846 .896 .870 .847 .863 .771 .800 .741 .896
95% .943 .920 .912 .949 .926 .910 .911 .832 .867 .831 .940

N = 30
JMA MMA Full AICC EQ-MA Asy1 Asy2

b 40 50 40 50 50 50 50
80% .776 .720 .778 .718 .738 .658 .697 .649 .792
90% .879 .820 .894 .821 .838 .771 .808 .770 .891
95% .937 .893 .945 .894 .902 .843 .876 .848 .951

Notes: The pre-treatment sample size T1 = 50, b is sub-sample size.
JMA estimator with subsampling-based confidence intervals (JMA);
MMA estimator with subsampling-based confidence intervals (MMA);
Least squares estimator for the largest model with bootstrap (Full);
AICC model selection estimator with bootstrap (AICC);
Model averaging estimator with equal weights with bootstrap (EQ-MA) ;
Least squares on the largest model with asymptotic normal approximation (T1 = 50, T =
70) (Asy1);
Least squares on the largest model with asymptotic normal approximation (T1 = 500, T =
550) (Asy2).
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Table 6: Confidence intervals of MA-based ATE (political integration)

JMA JMA MMA MMA
b 11 16 11 16
80% [-.058, .010] [-.056, .008] [-.066, .017] [-.064, .016]
90% [-.069, .019] [-.066, .018] [-.078, .029] [-.076, .027]
95% [-.077, .028] [-.074, .026] [-.088, .040] [-.085, .037]

Note: The pre-treatment sample size T1 = 18, b is sub-sample size.

Table 7: Confidence intervals of MA-based ATE (economic integration)

JMA JMA MMA MMA
b 30 40 30 40
80% [.030, .053] [.033, .048] [.027, .051] [.031, .045]
90% [.027, .058] [.032, .050] [.024, .055] [.029, .047]
95% [.023, .062] [.030, .052] [.021, .059] [.027, .049]

Note: The pre-treatment sample size T1 = 44, b is sub-sample size.

Table 8: Political integration: MMA coefficients estimates

Country coefficient estimate
(Intercept) .018
Taiwan 1.053
Japan - .536
Korea -.464
US .105
Singapore .067
Malaysia -.062
China .019
Philippines .013
Thailand -.008
Indonesia -.002
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Table 9: Economic integration: MMA coefficients estimates

Country coefficient estimate
(Intercept) -.001
Austria - 1.304
Germany .329
Italy -.328
Mexico .323
Singapore .293
Norway .257
Korea .253
Philippines .169
China -.166
Switzerland .154
Denmark -.135
Thailand .089
Japan -.054
France -.028
Finland -.018
Indonesia -.008
Netherlands -.008
Taiwan .006
US .002
Australia .000
Canada .000
New Zealand .000
Malaysia .000
UK .000
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Appendix

A.1 Leave-one-out formula

For notational simplicity, we consider a generic candidate model so that subscript m can be

omitted. That is, y = Xβ + e where y, e are T × 1 vector,X is an T × N matrix and β is

an N × 1 vector. DenoteX(−t), y(−t) with tth row being deleted. Similarly, β̂(−t) and ê(−t) are

the estimate and residual from the sample when leaving out tth observation xt. Let ŷt = x′tβ̂

and êt = yt − ŷt, htt = x′t(X
′X)−1xt.

We first show the following :

β̂ − β̂(−t) = ((1− htt)−1êt)(X
′X)−1xt (A.1)

The proof uses ‘Sherman-Marrison’ formula that states: LetA be a non-singular matrix, b a

vector and λ a scalar. If λ 6= −(b′A−1b)−1, then

(A+ λbb′)−1 = A−1 −
(
λ(1 + λb′A−1b)−1

)
A−1bb′A−1 (A.2)

LetA =X ′X , λ = −1, b = xt, the above formula implies

(X ′(−t)X(−t))
−1xt = ((1− htt)−1)(X ′X)−1xt (A.3)

From the normal equationX ′Xβ̂ = X ′y,

(xtx
′
t +X ′(−t)X(−t))β̂ = X ′(−t)y(−t) + xtyt

{(X ′(−t)X(−t))
−1xtx

′
t + IN}β̂ = (X ′(−t)X(−t))

−1X ′(−t)y(−t)

+ (X ′(−t)X(−t))
−1xt(x

′
tβ̂ + êt)

β̂ = β̂(−t) + (X ′−tX(−t))
−1xtêt
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A.1 follows by substituting A.3 into the above equation. Given A.1,

x′tβ̂ − yt + yt − x′tβ̂(−t) = ((1− htt)−1)x′t(X
′X)−1xtêt

That is, ê(−t) = ((1− htt)−1)êt. LetD be an T × T diagonal matrix with tth diagonal element

(1− htt)−1. The leave-one-out or jackknife residual vector is ẽ = Dê, then (IT − P JMA)y =

D(y − Py). Therefore, we have P JMA = D(P − IT ) + IT .

A.2 Proof of Lemma 1

Suppose at least one candidate model is not under-fitted. We denoteXmc as a matrix contain-

ing columns ofX not inXm, Πmc as the corresponding selection matrix such thatXmc =

XΠ′mc . Similarly, βm = Πmβ and βmc = Πmcβ.

SinceQ is a positive definite matrix, it is well known that

|Q| =

∣∣∣∣∣∣∣
Q11 Q12

Q21 Q22

∣∣∣∣∣∣∣ = |Q11||Q22 −Q21Q
−1
11Q12|

which implies |Q22 − Q21Q
−1
11Q12| > 0. Thus, for any candidate model m, there exists a

positive definite matrixQm such that

T−1
1 X ′mc(IT1 − Pm)Xmc = T−1

1 X ′mcXmc − T−1
1 X ′mcXm(X ′mXm)−1X ′mXmc

p−→ Qm (A.4)

We denote qm = β′mcQmβmc . For any under-fitted model m ∈ {1, . . . ,M0}, from equation
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(11),

T−1
1 ||y0

1 − Pmy0
1|| = T−1

1 (e1 +Xmcβmc)′(IT1 − Pm)(e1 +Xmcβmc)

= T−1
1 β′mcX ′mc(IT1 − Pm)Xmcβmc

+ T−1
1 ||e1||2 + 2T−1

1 e1
′(IT1 − Pm)Xmcβmc

− T−1
1 e1

′Pme1

= qm + T−1
1 ||e1||2 + op(1) (A.5)

where the term qm comes from omitted variables. From condition C.1 and C.2, for any m ∈

{1, . . . ,M},

e′1Pme1 = Op(1), e′1(IT1 − Pm)Xmcβmc = Op(1) (A.6)

Therefore, A.5 follows from A.6 as T1 →∞. For any m /∈ {1, ...,M0},

T−1
1 ||y0

1 − Pmy0
1|| = T−1

1 e1
′(IT1 − Pm)e1 = T−1

1 ||e1||2 + op(1) (A.7)

Let µ denote linear conditional mean function, the Mallows criterion is

C(ω) = ||{IT1 − P (ω)}y0
1||2 + 2σ̂2ω′K

= ||Xβ̂(ω)− µ− e1||2 + 2σ̂2ω′K

= ||e1||2 + (β̂(ω)− β)′X ′X(β̂(ω)− β)

− 2e1
′X(β̂(ω)− β) + 2σ̂2ω′K (A.8)

Condition C.1 and C.2 also imply that

σ̂2 = Op(1) (A.9)

Given j /∈ {1, ...,M0}, suppose ω = {0, ..., ωj, ..., 0} = {0, ..., 1, ..., 0}, by condition

C.1-C.2, and A.9, C(ω) = ||e1||2 + ηT1 where ηT1 = Op(1), then C(ω̂MMA) ≤ ||e1||2 + ηT1 .
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From A.8

(β̂(ω̂MMA)− β)′X ′X(β̂(ω̂MMA)− β)

−2e1
′X(β̂(ω̂MMA)− β̂) + 2σ̂2ω′MMAK ≤ ηT1 (A.10)

Let λmin(X) be the smallest eigenvalue of matrixX . From A.10,

λmin(QT1)||
√
T1(β̂(ω̂MMA)− β)||2 ≤ (β̂(ω̂MMA)− β)′X ′X(β̂(ω̂MMA)− β)

≤ ηT1 + 2e1
′X(β̂(ω̂MMA)− β)− 2σ̂2ω̂′MMAK

≤ ηT1 + 2||T−1/2
1 e1

′X|| ||
√
T1(β̂(ω̂MMA)− β)||

Therefore, we have

||
√
T1(β̂(ω̂MMA)− β)||

∈ [−{λmin(QT1)
−1(ηT1 + λmin(QT1)

−1||T−1/2
1 e1

′X||2)}1/2 + λmin(QT1)
−1||T−1/2e1

′X||,

{λmin(QT1)
−1(ηT1 + λmin(QT1)

−1||T−1/2
1 e1

′X||2)}1/2 + λmin(QT1)
−1||T−1/2

1 e1
′X||]

The above relationship, together with condition C.2 and ηT1 = Op(1), imply that
√
T1(β̂(ω̂MMA)−

β) = Op(1).

Before showing the consistency of JMA estimator, we rewrite C(ω) as

C(ω) = ω′Φω for any ω ∈ W (A.11)

where Φ is an M × M matrix with (m, j)th element Φmj = amax{m,j} + σ̂2(Km + Kj)

and am = y0
1
′
(IT1 − Pm)y0

1 . To see this, we stack residual vectors by column, so we have

Ê = (ê1, ..., êM) where êm = (ê1,m, ..., êT1,m)′. Let I = (1, ..., 1)′ be an M -dimensional
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vector, then

C(ω) = ω′Ê′Êω + 2σ̂2ω′K

= ω′Ê′Êω + σ̂2ω′(KI ′ + IK ′)ω

= ω′(Ê′Ê + σ̂2(K ′I + IK ′))ω

= ω′Φω

where

Φmj = ê′mê
′
j + σ̂2(Km +Kj)

= y0
1
′
(IT1 − Pm)(IT1 − Pj)y0

1 + σ̂2(Km +Kj)

= amax{m,j} + σ̂2(Km +Kj) (A.12)

Now we take a look at JMA criterion function. Denote Cm as a T1 × T1 diagonal ma-

trix with the tth diagonal element Cm,tt = hmtt /(1 − hmtt ) such thatDm = Cm + IT1 .

Based on A.11, we can write J (ω) = C(ω) + ω′Ψω where Ψ is an M × M matrix with

the (mj)th element Ψmj = (e1 + Xmcβmc)′(IT1 − Pm)(Cm + Cj + CmCj)(IT1 −

Pj)(e1 + Xjcβjc) − 2Kmσ̂
2. To derive this, note that the model averaging leave-one-out

residual ẽ1t(ω) = y0
1t −

∑M
m=1 ωmx

′
tmβ̂(−t),m. For candidate model m, denote residual vec-

tor ẽ1,m = (ẽ11,m, ...ẽ1T1,m)′. Similarly, we stack the residual vectors by column and obtain

Ẽ = (ẽ1,1, ..., ẽ1,M). Therefore, ẽ1(ω) = Ẽω and J (ω) = ẽ1(ω)′ẽ1(ω) = ω′Ẽ′Ẽω =
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ω′(ẽ′1,mẽ1,j)m,j∈{1,...,M}ω. From previous section A.1, ẽ = Dê, thus,

ẽ′1,mẽ1,j = ê′1,mDmDjê
′
1,j

= e′1,m(IT1 − Pm)DmDj(IT1 − Pj)e1,j

= e′1,m(IT1 − Pm)(Cm +Cj +CmCj + IT1)(IT1 − Pj)e1,j

= y0
1
′
(IT1 − Pm)(Cm +Cj +CmCj + IT1)(IT1 − Pj)y0

1

= amax{m,j} + y0
1
′
(IT1 − Pm)(Cm +Cj +CmCj)(IT1 − Pj)y0

1

= amax{m,j}

+(e1 +Xmcβmc)′(IT1 − Pm)(Cm +Cj +CmCj)(IT1 − Pj)(e1 +Xjcβjc)

= Φmj

+(e1 +Xmcβmc)′(IT1 − Pm)(Cm +Cj +CmCj)(IT1 − Pj)(e1 +Xjcβjc)

−σ̂2(Km +Kj)

= Φmj + Ψmj − σ̂2(Km −Kj)

So we write

J (ω) = C(ω) + ω′Ψω (A.13)

Now let S(X) denote the largest singular value of a matrixX . It is known that for any two

n× n matrixA andB, S(AB) ≤ S(A)S(B) and S(A+B) ≤ S(A) + S(B),

(e1 +Xmcβmc)′(IT1 − Pm)(Cm +Cj +CmCj)(IT1 − Pj)(e1 +Xjcβjc)

≤ ||e1 +Xmcβmc|| ||e1 +Xjcβjc ||S((IT1 − Pm)(Cm +Cj +CmCj)(IT1 − Pj))

≤ ||e1 +Xmcβmc || ||e1 +Xjcβjc||
(
2h̄T1 + h̄2

T1

)
= Op(1)

(A.14)

The first inequality follows from Schwarz inequality and spectral norm definition. Condition

C.3 implies 1/(1−hmtt ) = 1+hmtt +op(1), so S(Cm) ≤ h̄T1 and the second inequality follows.

Therefore, for any ω ∈ W , ω′Φω = Op(1). Then the consistency follows the arguments in
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above proof for β̂(ω̂MMA) and we obtain
√
T1(β̂(ω̂JMA)− β) = Op(1).

A.3 Proof of Proposition 1

The argument works for both JMA and MMA-based estimator. For t = T1 + 1, T1 + 2, . . . T ,

∆̂1t = y1
1t − ŷ0

1t(ω̂)

= y1
1t − y0

1t + y0
1t − ŷ0

1t(ω̂)

= ∆1t + x′tβ + e1t − x′tβ̂(ω̂)

= ∆1t + e1t +Op(T
−1/2
1 )

where the last equality is from Lemma 1. As T1, T2 →∞,

∆̂1 − ∆̄1 = T−1
2

T∑
t=T1+1

∆̂1t − T−1
2

T∑
t=T1+1

∆1t

= T−1
2

T∑
t=T1+1

e1t +Op(T
−1/2
1 )

= op(1) (A.15)

The last equality follows from condition C.1-C.2. Therefore, by A.15 and the assumption that

∆1t follows a stationary process,

∆̂1 −∆1 = ∆̂1 − ∆̄1 + ∆̄1 −∆1 = op(1) (A.16)

A.4 Proof of Theorem 1

By definition under (A.11), am = y0
1(IT1 − Pm)y0

1 , so aj − am = y0
1(Pm − Pj)y0

1 and for

sequence of nested model, Pm−Pj is a projection matrix. Therefore, aj ≥ am for m > j. For

m ∈ {1, ...,M0}, we define a weight

ω̃m =
(
ω̂MMA,1, ..., ω̂MMA,m−1, 0, ω̂MMA,m+1..., ω̂MMA,M0 , ..., ω̂MMA,M + ω̂MMA,m

)′
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Clearly, ω̃m ∈ W . In the proof of Theorem 1(Liu and Zhang, 2018), they show the following

0 ≤ C(ω̃m)− C(ω̂MMA)

≤ ω̂2
MMA,m(am − aM) + 2ω̂2

MMA,m(aM − am) + 2ω̂MMA,mσ̂
2(KM −Km)

(A.17)

From A.17, when ω̂MMA,m 6= 0

ω̂MMA,m ≤ (am − aM)−12σ̂2(KM −Km) (A.18)

For m ∈ {1, ...,M0},

am − aM = (e1 +Xmcβmc)′(IT1 − Pm)(e1 +Xmcβmc)− e′1(IT1 − PM)e1

= e′1(PM − Pm)e1 + 2e′1(IT1 − Pm)Xmcβmc

+ (Xmcβmc)′(IT1 − Pm)Xmcβmc (A.19)

Similar to A.4, we have

T−1
1 (Xmcβmc)′(IT1 − Pm)(Xmcβmc)

= T−1
1 β′mc(X ′mcXmc −X ′mcXm(X ′mXm)−1X ′mXmc)βmc

p−→ c

where c is a positive constant. The above result, along with A.6 and A.19, imply

T1(am − aM)−1 = Op(1) (A.20)

Then ω̂MMA,m = Op(T
−1
1 ) follows from A.9, A.18 and A.20.
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For JMA, given any m ∈ {1, ...,M0}, we can define a similar weight as

ω̄m =
(
ω̂JMA,1, ..., ω̂JMA,m−1, 0, ω̂JMA,m+1..., ω̂JMA,M0 , ..., , ω̂JMA,M + ω̂JMA,m

)′
From A.13 and similar arguments for A.17,

0 ≤ J (ω̄m)− J (ω̂JMA)

= C(ω̄m)− C(ω̂JMA) + ω̂2
JMA,m(ΨMM + Ψmm −ΨMm −ΨmM)

+ 2ω̂JMA,m

M∑
j=1

ω̂JMA,j

When ω̂JMA,m 6= 0

ω̂JMA,m ≤ (am − aM)−1[2σ̂2(KM −Km) + ω̂JMA,m(ΨMM + Ψmm −ΨMm −ΨmM)

+2
M∑
j=1

ω̂JMA,j(ΨMj −Ψmj)] (A.21)

As T1 → ∞, T−1
1 /T

−1/2
1 → 0, condition C.3 implies h̄T1 = op(T

−1/2
1 ). Following similar

arguments for A.14, we have

(e1 +Xmcβmc)′(IT1 − Pm)(Cm +Cj +CmCj)(IT1 − Pj)(e1 +Xjcβjc)

≤ ||e1 +Xmcβmc|| ||e1 +Xjcβjc ||(2h̄T1 + h̄2
T1

) = op(T
1/2
1 )

(A.22)

The result in A.22, along with A.13 and observation that σ̂2 = σ2 + op(1), imply that

Ψmj = op(T
1/2
1 ) for any m, j ∈ {1, ...,M} (A.23)

Then ω̂JMA,m = op(T
−1/2
1 ) follows from A.9, A.20 ,A.21 and A.23.
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A.5 Proof of Theorem 2

The proof mainly follows Liu and Zhang(2018). For MMA, we denote Φ∗ = Φ − ||e1||2II ′

where I = (1, ..., 1)′ and the last term is unrelated to ω. Therefore,

ω̂MMA = argminω∈Wω
′Φ∗ω

Let ω̂MMA = (ω̂′1, ω̂
′
2)′ with ω̂1 containing weights of under-fitted models only. We write

|Φ∗| =

∣∣∣∣∣∣∣
Φ∗11 Φ∗12

Φ∗21 Φ∗22

∣∣∣∣∣∣∣
such that ω̂′MMAΦ∗ω̂MMA = ω̂′1Φ

∗
11ω̂1 + ω̂′2Φ

∗
21ω̂1 + ω̂′1Φ

∗
12ω̂2 + ω̂′2Φ

∗
22ω̂2. Condition C.1 and

C.2 imply that T−1
1 (am − ||e1||2) = Op(1) when 1 ≤ m ≤ M0; am − ||e1||2 = Op(1) when

M0 < m ≤M . From previous section, we know that ω̂MMA,m = Op(T
−1
1 ) when 1 ≤ m ≤M0.

These results imply

ω̂′1Φ
∗
11ω̂1 = op(1) ω̂′1Φ

∗
12ω̂2 = op(1) (A.24)

Let S = M −M0 such that Φ∗22 is an S × S matrix, then (s, j)th element of Φ∗22

Φ∗22,sj = ê′1sê1j + σ̂2(KM0+s +KM0+j)− ||e1||2

= σ̂2(KM0+s +KM0+j)− e′1PM0+max(s,j)e1

p−→ Tsj

(A.25)

where Tsj = 2σ̂2KM0+s − Z ′Vmax({s,j}Z. As in the proof of Theorem 3 in Liu(2015), ω̂2
d−→

λ̃MMA. From condition C.1-C.2, for any m ∈ {1, ...,M0}

β̂m = Π′m(X ′mXm)−1X ′my
0
1 = Op(1) (A.26)
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Then we have

√
T1{β̂(ω̂MMA)− β} =

M0∑
m=1

ω̂MMA,m

√
T1(β̂m − β)

+
M∑

m=M0+1

ω̂MMA,m

√
T1Π

′
m(X ′mXm)−1X ′me1

= Op(T
−1/2
1 ) +

M∑
m=M0+1

ω̂MMA,m

√
T1Π

′
m(ΠmQT1Π

′
m)−1ΠmZT1

d−→
S∑
s=1

λ̃MMA,sVsZ (A.27)

For JMA, we similarly define Ξ∗ = Φ + Ψ− ||e1||2II ′ so that

ω̂JMA = argminω∈Wω
′Ξ∗ω

Following above proof, we need to look at term Ψ. Note that for any m ∈ {1, ...,M},

e′1diag(hm11, ..., h
m
T1T1

)e1 =

T1∑
t=1

e2
1tx
′
m,t(X

′
mXm)xm,t

= tr((T−1
1 X ′mXm)−1T−1

1

T1∑
t=1

e2
1txm,tx

′
m,t)

= tr((ΠmQT1Π
′
m)−1ΠmΩT1Π

′
m)

Recall Cm is a T1×T1 diagonal matrix with tth diagonal element Cm,tt = hmtt /(1−hmtt ). From

condition C.3, 1/(1−hmtt ) = 1+hmtt+op(1), so we have e′1Cme1 = tr((ΠmQT1Π
′
m)−1ΠmΩT1Π

′
m).

By condition C.3 and following arguments for deriving A.22, we have

e′1Pm(Cm +Cj +CmCj)(IT1 − Pj)e1 ≤ ||Pme1||S((Cm +Cj +CmCj)(IT1 − Pj))||e1||

≤ ||Pme1||h̄T1||e1||

= op(1)
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and

e′1Pm(Cm +Cj +CmCj)Pje1 ≤ ||Pme1||h̄T1||Pje1|| = op(1)

Based on the above results,

Ψmj = e′1(IT1 − Pm)(Cm +Cj +CmCj)(IT1 − Pj)e1 − 2Kmσ
2

= tr
(
(ΠmQT1Π

′
m)−1ΠmΩT1Π

′
m

)
+ tr

(
(ΠjQT1Π

′
j)
−1ΠjΩT1Π

′
j

)
+γ̂mj − 2Kmσ̂

2

where γ̂mj = op(1). We can similarly define ω̂JMA = (ω̂′1, ω̂
′
2)′ with ω̂1 including only

weights of under-fitted models. Let Ξ∗22 be a S × S matrix which is bottom-right block of

Ξ∗. The (s, j)th element of Ξ∗22 is

Ξ∗22,sj = Φ∗22,sj + Ψ22,sj
d−→ Σsj

where Σsj = tr(Q−1
s Ωs) + tr(Q−1

j Ωj)−Z ′Vmax{s,j}Z. Similarly, ω̂2
d−→ λ̃JMA. Finally,

√
T1{β̂(ω̂JMA)− β} =

M0∑
m=1

ω̂JMA,m

√
T1(β̂m − β)

+
M∑

m=M0+1

ω̂JMA,m

√
T1Π

′
m(X ′mXm)−1X ′me1

= op(1) +
M∑

m=M0+1

ω̂JMA,m

√
T1Π

′
m(ΠmQT1Π

′
m)−1ΠmZT1

d−→
S∑
s=1

λ̃JMA,sVsZ (A.28)
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A.6 Proof of Theorem 3

We can write

Â =
√
T2(∆̂1 −∆1)

=
1√
T2

T∑
t=T1+1

(y1t − ŷ0
1t −∆1)

=
1√
T2

T∑
t=T1+1

(x′tβ + ∆1t + e1t − x′tβ̂(ω̂)−∆1)

= −
√
T2

T1

(
1

T2

T∑
t=T1+1

x′t)
√
T1(β̂(ω̂)− β) +

1√
T2

T∑
t=T1+1

(∆1t −∆1 + e1t)

= −
√
T2

T1

(
1

T2

T∑
t=T1+1

x′t)
√
T1(β̂(ω̂)− β) +

1√
T2

T∑
t=T1+1

ν1t

= Â1 + Â2 (A.29)

where Â1 = −
√
T2

T1

(
1

T2

T∑
t=T1+1

x′t)
√
T1(β̂(ω̂)− β), Â2 =

1√
T2

T∑
t=T1+1

ν1t.

Â2
d−→ Z2 by condition C.4, where Z2 ∼ N(0,Ωv). By Theorem 2 and condition C.1,

Â1
d−→ A1 = −η E(x′t)(

∑S
s=1 λ̃MA,sVsZ) and λ̃MA can be either MMA or JMA weights. Let

Z1 denote the asymptotic distribution of
√
T1(β̂M − β), that is, the asymptotic distribution

of the full model. In Theorem 3.2 and Lemma A.1 of Li and Bell (2017), they showed that

Z1 and Z2 are asymptotically uncorrelated and therefore asymptotically independent, which

suggests the independence of Z and Z2 . As a result, A1, as a function of Z, is asymptotically

independent of Z2 and expression (24) holds true.

A.7 Proof of Theorem 4

The proof mainly follows Li (2019). From derivation of Proposition 1, we know that ∆̂1t =

∆1t + e1t +Op(T
−1/2
1 ). Also, ∆̂1 = x̄′(β − β̂(ω)) + ∆̄1 + ē1 = ∆1 +Op(T

−1/2
1 + T

−1/2
2 ).
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Therefore,

Ω̂v =
1

T2

T∑
t=T1+1

(∆1t + e1t −∆1)2 +Op(T
−1/2
1 + T

−1/2
2 )

= Ωv +Op(T
−1/2
1 + T

−1/2
2 )

That is, Ωv can be consistently estimated by Ω̂v. Then T−1/2
2

∑T
t=T1+1 ν

∗
1t ∼ T

−1/2
2

∑T
t=T1+1 ν1t

d−→ Z2, where ∼ represents asymptotic equivalence. From condition that b → ∞, b/T1 → 0

as T1 → ∞ and Theorem 3, by Theorem 2.2.1 of Politis, Ramano, Wolf(1999),
√
b(β̂∗b −

β̂(ω̂)) ∼
√
T1(β̂(ω̂) − β). Therefore, Â∗ in (25). and Â in (24). have the same asymptotic

distribution.
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3. Comparing predictability between model averaging and

other methods
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1. Introduction

An important problem in social sciences is to infer the causal impact of an intervention or an

event on an outcome variable of interest. The causal impact of an intervention on the treated

unit is also known as the treatment effects on the treated. It is measured as the difference

between the observed outcome and the unobserved counterfactual outcome that would have

been obtained under the alternative treatment1. Therefore, measuring treatment effect can be

transformed into a problem of predicting the counterfactual outcome.

One common strategy in practice is to characterize the counterfactual outcome for the

treated unit as a linear combination of outcomes for the control units. A recent summary re-

garding this strategy can be found in Doudchenko and Imbens (2016). However, as with other

domains, one often does not know exactly which control units (as predictors) should be in-

cluded in the model for constructing counterfactual outcome. When predictors with zero ef-

fect are included, they cause loss in predictive performance of the model.

In Chapter 2, we proposed using model averaging approach other than model selection

or Elastic-net (Zou and Hastie, 2005) in the above framework. Since the true data generating

process (DGP) is typically unknown, we conduct simulation experiments to compare which

approach is more likely to yield more accurate prediction of counterfactual outcome. When

the DGP of the outcome variables follows a common factor structure, we show that the model

averaging approach achieves smaller mean squared prediction error (MSPE) than other meth-

ods. It is also worth further investigating whether such finite-sample performance can be ex-

tended to cases other than pure common factors structure.

To this end, we conduct simulation experiments to compare the predictability between

model averaging and other methods under two set-ups. In the first set-up, the counterfactual

outcome is assumed to follow an interactive fixed effects (IFE) model ( Bai, 2009), which in-

corporates covariates and common factor structure. References of using the IFE model for

causal inference include Gobillon and Magnac (2016), Xu (2017). In the second set-up, the

treated counterfactual outcome is time series. We assume that it follows factor-augmented

1We consider binary treatment in this chapter.
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regression model (Bai and Ng, 2006; Cheng and Hansen, 2015), which adds dynamics by al-

lowing lagged outcome variables and factors2. The idea of using time series behaviour of the

outcome to measure causal impact of an intervention or an event is explored in Carter and

Smith (2007), who estimated the price impact of a market event (a food scare of genetically

modified corn) on corn price. Broadersen et al.(2015) proposed a structural Bayesian time se-

ries model that estimates the effect of an intervention on a target time-series by comparing the

differences between the observed and counterfactual outcome.

In this chapter, the predictability is measured by the MSPE over post-treatment periods.

We compare several (frequentist) model averaging approaches with model selection methods

such as AIC and BIC. Since penalized regression methods are also discussed for predicting

counterfactual outcome (e.g., Doudchenko and Imbens, 2016; Li and Bell, 2017), we include

LASSO (Tibshirani, 1996), Elastic-net (Zou and Hastie, 2005) and Adaptive LASSO (Zou,

2006) for comparison.

The rest of the chapter is organized as follows. In section 2, we describe the two models

underlying the DGPs for the counterfactual outcome and review different estimation meth-

ods. In section 3, we conduct simulations that explore the finite-sample performance of model

averaging and other methods. The last section concludes.

2. Description of models and estimation

2.1 Interactive fixed-effect model

Bai (2009) proposed the interactive fixed effects (IFE) model, which can be implemented in

prediction of counterfactual outcome. We consider the following model:

yit = δDit + x′itβ + λ′ift + εit (1)

2We use the factor-augmented regression model as DGP to generate outcome variables and compare pre-
dictability of different methods, the formal treatment of using the model for causal inference is left for future
research.
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For simplicity, the treatment effect is assumed to be homogeneous, which is represented by

δ. Dit is the treatment indicator such that Dit = 1 if unit i has been exposed to the treatment

at t and Dit = 0 otherwise, xit is a (k × 1) vector of observed covariates and β is a (k × 1)

vector of unknown parameters. The factor component of the model λ′ift = λi1f1t + λi2f2t +

· · ·+λirfrt, is assumed to take a linear additive form, the number of factors r is assumed to be

known. The underlying counterfactual outcome is then given by

y0
it = x′itβ + λ′ift + εit (2)

The model (1) is called the IFE model, in which the unobserved factors ft and factor load-

ings λi are regarded as unknown parameters. The IFE model is a generalization of the com-

mon factor model considered in Chapter 1, as it allows for the causal impact of observed co-

variates xit. In the present setting, one has observations (yit, Dit,xit) for i = 1, . . . , N and

t = 1, . . . , T . We assume that D1t = 0 for t = 1, . . . , T0, D1t = 1 for T0 + 1, . . . , T and

Dit = 0 for i = 2, . . . , N , t = 1, . . . , T . That is, only first unit receives treatment. If N

and T (and T0) are large, one can estimate the counterfactual outcome of treated unit using the

method proposed in Bai (2009), which is to perform principal component analysis and least

squares estimation in iterations. However, the large N and T set-up may be a luxury in many

applications. When neither N nor T is large, a more practical strategy is to use control units’

outcomes (y2t, . . . , yNt) to predict counterfactual outcome of treated unit y0
1t:

y0
1t = µ+

N∑
i=2

ωiyit + ν1t = z′tπ + ν1t (3)

where π = (µ, ω2, . . . , ωN)′, zt = (1, y2t, . . . , yNt)
′, ν1t satisfies E(ν1t) = 0,E(ν1tzt) = 0.

However, there is an issue of using (3) directly for predicting treated counterfactuals, as in-

cluding more control units leads to larger estimation variance and the resulting estimator may

suffer from lack of precision. Several methods will be discussed in later section to address

such issue.
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2.2 Factor-augmented regression model

Inferring the causal impact of an intervention can often be transformed into a problem of pre-

dicting the missing counterfactual outcome. When the outcome is a time series, this observa-

tion motivates the use of approaches that explores the time-series behaviour of an outcome of

interest. In this section, we assume that in the absence of treatment, the outcome is generated

by the factor-augmented regression model (Bai and Ng, 2006; Cheng and Hansen, 2015).

Suppose we have observations {yt, xit} for t = 1, . . . , T0, T0 + 1, . . . , T0 + h and i =

1, . . . , N , where T0 is the number of pre-treatment periods, h ≥ 1 is number of post-treatment

periods or forecast horizon. A linear form of factor-augmented regression model for predic-

tion is

yt+h = α0 + α(L)yt + β(L)′ft + εt+h (4)

xit = λ′ift + uit (5)

where (α(L),β(L)) are polynomials of lags of order p and q, for some 0 ≤ p ≤ pmax and

0 ≤ q ≤ qmax, the factors ft in (4) are assumed to satisfy the factor model in (5). We use

pre-treatment data to estimate (4) and (5). Hence, (5) can be written in matrix form asX =

FΛ′ +u, whereX is T0 ×N . F = (f1, . . . ,fT0)
′ is T0 × r, Λ = (λ1, . . . ,λN)′ is N × r and

u is a T0 ×N error matrix. The number of factors r is assumed to be fixed and known. In our

simulations, r can be estimated by the information criterion in Bai and Ng (2002), namely,

ICp2(k) = log(V (k)) + k(
N + T0

NT0

)log(min{N, T0})

where V (k) = minΛ∈RN×k,F∈RT0×k(1/NT0)
∑N

i=1

∑T0
t=1(xit − λ′ift)2 for 0 ≤ k ≤ k̄ (k̄ is

an upper bound of the number of factors). Let k̂ = argmin0≤k≤k̄ICp2(k), P (k̂ = r) → 1 as

N, T0 →∞ under some conditions.

The factor-augmented regression model allows the impact from lagged outcome and lagged

factors so that the underlying model becomes more dynamic. Our goal is to predict yT0+h for
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h ≥ 1. However, we cannot use (4) directly since ft is not observed. Instead, we can first

estimate the factor model in (5) via principle component methods and obtain common factor

estimates f̃t. As a result, the application using this factor-augmented regression model re-

quires large number of predictors and pre-treatment periods. We can then regress yt+h on the

intercept, yt, f̃t and obtain the least squares estimates α̂0, α̂(L) and β̂(L). The prediction for

yT0+h can be written as

ŷT0+h|T0 = α̂0 + α̂(L)yT0 + β̂(L)′f̃T0 (6)

Given pmax, qmax and estimated factors, the largest possible model for (4) includes predictors

z̃t = (1, yt, . . . , yt−pmax , f̃
′
t , . . . , f̃

′
t−qmax

)′ (7)

and it can be written as

yt+h = z̃′tπ + εt+h (8)

where π includes all coefficients from (4). Similar to model (3), the regression on full model

(8) may not deliver accurate out-of-sample prediction.

2.3 Estimation methods

Model averaging

Given linear regression models in (3) and (8), different combinations of predictors (e.g., con-

trol units’ outcomes in (3), lagged outcomes and factors in (8)) constitute different candi-

date models. Unlike model selection, which selects a single model among candidate models,

model averaging incorporates all available information by averaging over all candidate mod-

els. The motivation of model averaging is originated from addressing model uncertainty, it

also leads to reduced prediction variance and good finite-sample performance (smaller MSPE)

(see Zhang, Wan and Zou, 2013; Hansen, 2014).

Denote M the total number of candidate models. Suppose that one is considering M can-
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didate models indexed by m = 1, . . . ,M , where each candidate model m specifies a subset

zt(m) of the predictors zt. The mth candidate model based on (3) is given by

y0
1t = zt(m)′π(m) + ν1t(m) (9)

The mth candidate model based on (8) is

yt+h = z̃t(m)′π(m) + εt+h(m) (10)

Following Hansen (2007), we do not place any restrictions on the candidate models, that

is, they can be nested or non-nested. Nevertheless, we consider nested models in our simula-

tions as they are computationally feasible for moderate or even large number of predictors. In

terms of candidate model (9), we set zt(m) = (1, y2t, . . . , ymt)
′ for 2 ≤ m ≤ N and zt(1)

contains only one. Let Z(m) = (z1(m), z2(m), . . . ,zT0(m))′, the least squares estimate of

π(m) is π̂(m) = (Z(m)Z(m))−1Z(m)′y with residual ν̂1t(m) = y1t − zt(m)′π̂(m). The

prediction based on the mth candidate model for t ≥ T0 + 1 is

ŷ0
1t(m) = zt(m)′π̂(m) (11)

In terms of factor-augmented regression candidate model (10), we set z̃t(m) = (1, yt, yt−1

. . . , yt−p(m), f̃
m
t , . . . , f̃

m
t−q(m)) where 0 ≤ p(m) ≤ pmax and 0 ≤ q(m) ≤ qmax. Let

Z̃(m) = (z̃1(m), . . . , z̃T0(m))′. The least squares estimate of π(m) is given by π̂(m) =

(Z̃(m)′Z̃(m))−1Z̃(m)′y with ε̂t+h(m) = yt+h − π̂t(m)′z̃t(m). The least squares prediction

by the mth candidate model is then given by

ŷT0+h|T0(m) = z̃T0(m)′π̂(m) (12)

Once we obtain prediction from each candidate model given in (11) and (12), we construct
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the combination of predictions by taking weighted average in the form:

ŷ0
1t(ω) =

M∑
m=1

ωmŷ
0
1t(m) (13)

and

ŷT0+h|T0(ω) =
M∑
m=1

ωmŷT0+h|T0(m) (14)

where ω = (ω1, . . . , ωM) is the weights vector with 0 ≤ ωm ≤ 1 and
∑M

m=1 ωm = 1. The av-

eraging residuals are given by ν̂1t(ω) =
∑M

m=1 ωmν̂1t(m) and ε̂t+h(ω) =
∑M

m=1 ωmε̂t+h(m),

respectively.

The application of model averaging requires selecting model weights that are subject

to non-negativity and sum-to-one constraints. In this chapter, we consider three criteria for

weights selection: Mallows criterion, leave-one-out cross-validation criterion and leave-h-out

cross-validation criterion.

Let km denote the number of predictors in the mth candidate model. The Mallows crite-

rion for weight selection in (13) is

C(ω) =
1

T0

T0∑
t=1

(
M∑
m=1

ωmν̂1t(m))2 +
2σ̂2

T0

T0

M∑
m=1

ωmkm (15)

where σ̂2
T0

= (T0−kM)−1
∑T0

t=1 ν̂1t(M)2 using the largest model M . Then the Mallows weight

vector is

ω̂MMA = argmin{0≤ωi≤1;
∑M

i=1 ωi=1}C(ω) (16)

By replacing ν̂1t(m) with ε̂t+h(m), we can use Mallows criterion to obtain weights in (14).

The weight vector ω̂MMA is called Mallows model averaging (MMA) weights. Hansen (2008)

showed that the MMA criterion is an asymptotically unbiased estimate of the both in-sample

MSE and the out-of-sample one-step mean-squared forecast error for stationary dependent

observations under homoscedastic regression model.

In the case of heteroscedastic linear regression model, Hansen and Racine (2012) pro-
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posed using leave-one-out cross validation criterion to select weights. To obtain averaging

weights in (13), the criterion is

CV (ω) =
1

T0

T0∑
t=1

(
M∑
m=1

ωmν̃1t(m))2 (17)

where ν̃1t(m) is the residual from model m obtained by least squares estimation without the

tth observation. The leave-one-out cross-validation choice for weight vector is

ω̂JMA = argmin{0≤ωi≤1;
∑M

i=1 ωi=1}CV (ω) (18)

Hansen and Racine (2012) also called the above weights the Jackknife model averaging (JMA)

weights. The JMA weights for (14) can be obtained similarly.

Although the leave-one-out cross-validation criterion allows heteroscedasticity, it re-

quires the errors to be serially uncorrelated. Regarding the factor-augmented regression model

in (8), the errors εt+h can be serially correlated when h > 1. In this case, the leave-h-out

cross-validation (or h-block cross-validation) can be used for weight selection. The idea is

to remove h − 1 observations before and after the tth observation3 and only use the remain-

ing observations for estimation. We denote the leave-h-out residual ε̃t+h,h(m) = yt+h −

z̃t(m)′π̃t,h(m) where π̃t,h(m) is the least squares estimate from regression of yt+h on z̃t(m)

with the observations {yj+h, z̃j(m) : j = t − h + 1, . . . , t + h − 1} removed. For h > 1,

Hansen (2010) showed that it can be computed as

ε̃t+h,h(m) = ε̂t+h(m) + z̃t(m)′(
∑
|j−t|≥h

z̃j(m)z̃j(m)′)−1 × (
∑
|j−t|<h

z̃j(m)ε̂j+h(m)) (19)

where ε̂t+h(m) is the residual from least squares regression using all observations. The av-

eraging residual is then ε̃t+h,h(ω) =
∑M

m=1 ωmε̃t+h,h(m). The leave-h-out cross-validation

3By doing so, CVA-h is equivalent to leave-one-out cross validation when h = 1.
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criterion is

CVh(ω) =
1

T0

T0∑
t=1

ε̃t+h,h(ω)2

=
1

T0

T0∑
t=1

(
M∑
m=1

ωmε̃t+h,h(m))2 (20)

The selected weight vector is the minimizer to CVh(ω) as

ω̂CVA-h = argmin{0≤ωi≤1;
∑M

i=1 ωi=1}CVh(ω) (21)

Penalized regression methods

When the accuracy of predicting the counterfactual outcome is of primary interest, includ-

ing all available predictors in (3) and (8) is generally not optimal choice as it comes with the

danger of over-fitting. Thus, some level of constraints or regularization can be used to pre-

vent the models from being overly complex. Penalized regression methods are often designed

such that the degree of model complexity is tuned towards more accurate prediction. This

type of methods reduce the model complexity by incorporating a term that penalizes the size

of predictors ( i.e., control units’ outcomes or lagged treated outcome and factors) to the usual

measure of model fit (e.g., the sum of squared residuals). Among various penalized regression

methods, we pay special attention to LASSO (Tibshirani, 1996), Elastic-net (Zou and Hastie,

2005) and Adaptive LASSO (Zou, 2006). For brevity, we use model (3), the regression on

control units’ outcomes, to define penalized regression estimators in the following section.

The penalized estimators from regression on lagged outcomes and factors in (8) can be de-

fined similarly.

We denote the LASSO estimator of π as π̂LASSO. It solves the following minimization

problem:

minπ∈RN

1

T0

T0∑
t=1

(y0
1t − z′tπ)2 + λ

N∑
i=1

|πi| (22)

where λ > 0 is tuning parameter. This is the classic LASSO (Tibshirani, 1996). The LASSO
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fits a model containing all N predictors (e.g., control units’ outcomes) at once. The `1 penalty

term
∑N

i=1 |πi| can force some of coefficient estimates to be exactly equal to zero when λ is

sufficiently large. By doing so, it avoids over-fitting problem that worsens out-of-sample pre-

diction performance. In practice, the tuning parameter λ can be selected by cross-validation

method. However, the cross-validation method can be computationally intensive if the sample

is large and there are many sample splits. Alternatively, one can use information criteria such

as AIC or BIC to select λ as it is directly related to the degrees of freedom of the model. The

prediction based on LASSO estimator is then ŷ0
1t = z′tπ̂LASSO.

The elastic-net estimator solves the minimization problem:

minπ∈RN

1

T0

T0∑
t=1

(y0
1t − z′tπ)2 + λR

N∑
i=1

π2
i + λL

N∑
i=1

|πi| (23)

where λR = λ(1 − α) and λL = λα for α ∈ [0, 1]. Thus, the elastic-net penalty is a con-

vex combination of ridge penalty (when α = 0) and LASSO penalty (when α = 1). The

idea of elastic-net is to combine the strength of both ridge and LASSO regression and make

the underlying model more flexible. In practice, one can choose the value of α while λ can be

selected by cross-validation or information criteria. The prediction based on elastic-net esti-

mator is ŷ0
1t = z′tπ̂Enet where π̂Enet is the minimizer of (23).

The adaptive LASSO estimator solves the minimization problem:

minπ∈RN

1

T0

T0∑
t=1

(y0
1t − z′tπ)2 + λ

N∑
i=1

1

|π̂i|α
|πi| (24)

where λ > 0 and α > 0 are tuning parameters. The adaptive LASSO can be viewed as a more

“tailored ” version of classic LASSO in the sense that it scales the individual weight by initial

estimator such as least square estimator whereas the classic LASSO penalizes all parameters

by the same λ. It is worth noting that the initial estimator is not limited to the least squares es-

timator, one can choose other estimators depending on the applications. In the following sim-

ulation, we use LASSO as initial estimator (excluding all variables for which β̂i,LASSO = 0). In
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practice, one chooses the value of α, and λ is determined by cross-validation or information

criteria. We denote the adaptive LASSO estimator π̂AdaLASSO. The corresponding prediction is

given by ŷ0
1t = z′tπ̂AdaLASSO.

3. Simulation studies

Because the counterfactual outcome is unobserved, we carry out computer simulations to gen-

erate it and compare the predictability of model averaging and other methods discussed in this

chapter. In order to conduct the simulation we use DGPs following the IFE model specified in

equation (2) and the factor-augmented regression model specified in equation (4) and (5).

DGP1: IFE model

The first design is modified based on Xu (2017). We assume the DGP that includes two ob-

served time-varying covariates, two unobserved factors and additive individual and time ef-

fects:

y0
it = xit,1 · 2 + xit,2 · 3 + λ′ift + αi + ξt + 5 + εit (25)

where ft = (f1t, f2t)
′ are time-varying factors, λi = (λi1, λi2)′ are individual-specific factor

loadings. The two covariates are positively correlated with factors and factor loadings, that is,

xit,k = 1 + λ′ift + λi1 + λi2 + f1t + f2t + ηit,k, k = 1, 2. The idiosyncratic error term εit and

disturbances in covariates ηit,1 and ηit,2 are generated from i.i.d.N(0, 1). We assume factors

f1t, f2t, ξt are i.i.d.N(0, 1). The factor loadings λi1 and λi2 as well as individual fixed effects

αi are i.i.d.U(−
√

3,
√

3). We consider two cases of number of units N = 20, 40; for each

N , we set pre-treatment periods T0 = 50, 70, 90. The number of post-treatment periods is set

to 10 for all cases such that T = 60, 80, 100. The data are replicated 5, 000 times according

to equation (25). The predictability is measured by mean squared prediction error (MSPE),

which is computed as MSPE = (1/S)
S∑
s=1

{ 1

T − T0

T∑
t=T0+1

(y0
1t,s − ŷ0

1t,s)
2}, where S = 5, 000.

In this simulation experiment, we consider the following approaches for comparisons:

Mallows model averaging (MMA), Jackknife model averaging (JMA), the simple averaging
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with equal weights (EQ-MA), LASSO, adaptive LASSO (AdaLASSO), Elastic-net (Enet),

AIC, BIC and the least squares on all control units (Full). For each approach, we assume the

first unit is treated and remaining N − 1 units are controls. The counterfactual prediction ŷ0
1t

is generated based on model (3) as a linear combination of an intercept and control units’ out-

comes. Regarding model averaging approaches, we consider nested models, hence the num-

ber of models is M = 20 when N = 20, M = 40 when N = 40. For three penalized

regression methods, we follow Medeiros and Mendes (2016) to apply BIC to select the tun-

ing paramter λ. Regarding the adaptive LASSO, we choose LASSO as initial estimator and

set α = 1, which is a common value in practice. For Elastic-net, we set α = 0.5 to avoid

selection of an additional tuning parameter.

The main results from the first simulation are summarized in Table 1. Firstly, as expected,

the MSPEs of all different methods decrease as the pre-treatment periods increase and num-

ber of control units (predictors) increases. In almost all cases, the model averaging with data-

driven model weights and penalized regression methods outperform the simple (equal) av-

eraging. On the other hand, the model selection methods AIC and BIC perform worse than

the model averaging methods and three penalized methods4. Among three penalized regres-

sion methods, Elastic-net performs better than LASSO and both yield smaller MSPE than the

adaptive LASSO. As discussed in the end of Section 2.1, the least squares on the full model

does not deliver good out-of-sample prediction. Here it has worst predictive performance in

all cases considered.

In this simulation experiment, the three penalized regression methods yield more accurate

prediction than MMA and JMA. This is different from our previous result in Chapter 1 when

MMA and JMA are compared to the Elastic-net. We suspect that the difference is due to the

correlation among control units’ outcomes, which are used as predictors for treated counterfa-

catual outcome. Table A1 in the appendix shows a sample correlation matrix of control units’

outcomes generated by three common factor structure used in simulations in Chapter 1. The

4We also compare the MSPE of a new model selection criterion — the bridge criterion (BC) that has benefits
of both AIC and BIC (Ding, Tarokh and Yang, 2018). Because it is still outperformed by model averaging and
three penalized methods in this simulation, we do not report it here to save space.

66



Table 1: MSPE of different methods

MMA JMA EQ-MA AIC BIC LASSO Enet AdaLASSO Full
N = 20
T1 = 50

43.69 43.36 46.56 49.03 47.28 39.93 39.14 41.81 473.57
T = 60

T1 = 70
40.04 39.92 44.38 43.08 43.10 37.74 37.00 39.56 470.34

T = 80

T1 = 90
38.52 38.47 43.89 40.68 41.52 36.79 36.09 38.11 465.75

T = 100

N = 40
T1 = 50

26.27 22.98 24.33 62.12 25.35 20.75 22.00 21.14 305.20
T = 60

T1 = 70
20.73 20.24 20.84 27.05 21.75 18.24 17.77 19.18 256.51

T = 80

T1 = 90
19.53 19.36 19.80 22.39 20.99 17.93 17.43 18.88 238.85

T = 100

Notes: MMA is Mallows model averaging; JMA is Jackknife model averaging;
EQ-MA is simple averaging with equal weights; Enet is Elastic-net penalized regression;
AdaLASSO is adaptive LASSO; Full is the least squares using all control units.

control units’ outcomes are highly-correlated as many pairwise correlations are greater than

0.6. On the other hand, the IFE model considered in this simulation experiment generates less

correlated control units’ outcomes, as shown in Table A2 in the appendix5. In the presence of

highly correlated predictors, the LASSO-type methods can end up selecting arbitrarily one of

them (variable selection instability), which could reduce prediction accuracy. The model av-

eraging approaches, however, could give more accurate prediction in this case as they do not

select variables for prediction.

5One possible reason for the decreased correlation is that by including individual and time fixed effects,
which are random draw form i.i.d. uniform distribution and normal distribution ( both are of same magnitude as
the normal distribution generating common factors), the correlations induced by common factors are reduced.
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DGP2: Factor-augmented regression model

In this section we follow Cheng and Hansen (2015) and consider the following DGP for gen-

erating time series outcome. Let fjt denote the jth component of ft. For j = 1, . . . , r, i =

1, . . . , N and t = 1, . . . , T , we assume that the factor model follows:

xit = λ′ift +
√
reit

fjt = αjfjt−1 + ujt

eit = ρieit−1 + εit (26)

where r = 4, λi ∼ N(0, rIr), αj ∼ U [0.2, 0.8], ρi ∼ U [0.3, 0.8], (ujt, εit) ∼ N(0, I2), i.i.d.

over t, for j and i. αj and ρi are drawn once and held fixed over all repetitions. Hence, factors

fjt and error terms eit are assumed to follow AR(1) process. The outcome is generated by

yt+h = π1f2t + π2f4t + π3f2t−1 + π4f4t−1 + π5f2t−2 + π6f4t−2 + εt+h (27)

εt+h =
h−1∑
j=1

βjνt+h−j (28)

where νt ∼ i.i.dN(0, 1), {νt} is independent of {ujs} and {εis} for any t and s. That is,

the outcome is determined by the second factor and the fourth factor with their correspond-

ing lags. The error term εt+h follows a moving average process. The parameters are π =

(π1, . . . , π6) = c[0.5, 0.5, 0.2, 0.2, 0.1, 0.1], where the scaling parameter c controls the magni-

tude of the coefficients and is varied from 0.2 to 1.2 when h = 1. For h > 1, we fix c = 1

and vary the moving average parameter β in (28) from 0.1 to 0.9. We set the sample size

N, T = 100. The total number of replications is 5,000.

We follow Cheng and Hansen (2015) and treat the number of factors r as unknown. We

use the information criterion ICp2 to select the number of factors r̃, where the number of fea-

sible factors ranges from 0 to 10. Then the first r̃ factors are placed in f̃t. Given the estimated

factors, the set of all predictors are zt = (1, yt, . . . , yt−pmax , f̃
′
t , . . . , f̃

′
t−pmax

)′. Similar to the

first simulation experiment, we consider the nested models such that the first candidate model
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has zt(1) = 1, the second candidate model has zt(2) = (1, yt)
′, etc. Hence, we construct

the candidate models based on the order of predictors in zt. The total number of model M is

(1 + pmax)(1 + r̃). We set possible lags pmax = 0, 2, 4, 9 and forecast horizon h = 1, 4, 8, 12.

For this simulation exercise, we add leave-h-out cross validation averaging (CVA-h) for

comparison. The predictability is measured by MSPE = (1/S)
∑S

s=1(y0
T0+h,s − ŷ0

T0+h|T0,s)
2

with S = 5, 000. To more compactly report the comparisons, we normalize the MSPE by the

MSPE of simple averaging with equal weights, hence a value smaller than one indicates the

superior predictive performance relative to the simple averaging with equal weights.

Figure 1 displays the results for pmax = 0, corresponding to the case where the largest can-

didate model has predictor set (1, yt, f̃
′
t). Each panel corresponds to the relative MSPE for the

forecast horizon h = 1, 4, 8, 12. When h = 1 (upper left panel), it is worth noting that as c

increases, the parameters πi in (27) increases and the overall signal-to-noise ratio in (27) in-

creases. In the meantime, the parameter c affects the persistence of {f2t−1, f4t−1, f2t−2, f4t−2}.

The lagged factors have more persistent effect on the outcome variable as c increases. The

upper left panel shows the relative MSPE of all methods considered decrease as c increases

and are well below one, indicating their superior predictive performance over simple equal

averaging.

For multiple forecast horizons, the relative MSPE of all methods are again below one in

most ranges of moving averaging coefficient β. However, as β increases or equivalently the

serial dependence of errors gets stronger, the difference in MSPE between those methods and

simple equal averaging shrinks. It is noted that when the forecast horizon is large (h = 8 and

12) and serial dependence of errors is strong (β > 0.8), only model averaging with leave-h-

out CV (CVA-h) outperforms the simple equal averaging benchmark. In general, the model

averaging and penalized regression methods have smaller relative MSPE than that of AIC and

BIC.

Figure 2 - 4 display the results for largest possible lags pmax = 2, 4, 9. In the case of

h = 1, the model averaging approaches outperform penalized regression methods and model

selection methods in most range of c. When h > 1, the model averaging approaches have
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smaller MSPE than that of penalized regression methods when β is large (strong serial depen-

dence of errors εt+h ). Again, the advantage of CVA-h becomes prominent for large β. The

model selection methods AIC and BIC, however, have worse predictive performance in most

range of β.

As we include more lags of yt and f̃ ′t , we also increase the number of correlated predic-

tors in the model. The result that model averaging approaches generally have lower MSPE

than the penalized regression methods also supports previous observation that averaging ap-

proaches tend to perform better than the penalized regression methods when correlated pre-

dictors are present .

Another interesting result is that as lagged predictors are included for prediction , the dif-

ference in MSPE between simple equal averaging and those data-driven methods become

smaller. Compared to Figure 1, the MSPE in Figure 2-4 from simple equal averaging is com-

parable to the MSPEs of model averaging with data-driven weights. In many cases, the MSPE

of simple equal averaging is smaller than the MSPE of penalized methods
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Figure 1: Relative MSPE for h = 1, 4, 8, 12 (pmax = 0)

Note: pmax = 0 is the case that no lags of yt and f̃t are used. The MSPE is normalized by that of sim-
ple averaging with equal weights. Adalasso is adaptive Lasso. CVA-h is leave-h-out cross-validation
averaging. Enet is elastic-net penalized regression. JMA is Jackknife model averaging. MMA is
Mallows model averaging.
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Figure 2: Relative MSPE for h = 1, 4, 8, 12 (pmax = 2)

Note: pmax = 2 is the case that two lags of yt and f̃t are used. The MSPE is normalized by that of sim-
ple averaging with equal weights. Adalasso is adaptive Lasso. CVA-h is leave-h-out cross-validation
averaging. Enet is elastic-net penalized regression. JMA is Jackknife model averaging. MMA is
Mallows model averaging.
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Figure 3: Relative MSPE for h = 1, 4, 8, 12 (pmax = 4)

Note: pmax = 4 is the case that four lags of yt and f̃t are used. The MSPE is normalized by that of sim-
ple averaging with equal weights. Adalasso is adaptive Lasso. CVA-h is leave-h-out cross-validation
averaging. Enet is elastic-net penalized regression. JMA is Jackknife model averaging. MMA is
Mallows model averaging.
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Figure 4: Relative MSPE for h = 1, 4, 8, 12 (pmax = 9)

Note: pmax = 9 is the case that nine lags of yt and f̃t are used. The MSPE is normalized by that
of simple averaging with equal weights. Adalasso is adaptive Lasso. CVA-h is leave-h-out cross-
validation averaging. Enet is elastic-net penalized regression. JMA is Jackknife model averaging.
MMA is Mallows model averaging.

4. Concluding remarks

The treatment effect for a treated unit is measured as the difference between the outcome un-

der the treatment and the outcome in the absence of treatment. The outcome under treatment
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is observed but the latter is unobserved in post-treatment periods. Therefore, the problem of

evaluating the causal impact of an intervention turns into a problem of predicting the miss-

ing treated counterfactual outcome. In this chapter, we compare the predictability of of model

averaging approaches, penalized regression methods and model selection methods. To this

end, we conduct simulation experiments. In the first simulation experiment, we use a linear

combination of control units’ outcomes to predict the treated counterfactual outcome that

is generated by interactive fixed effect model. In the second simulation experiment, we as-

sume that the DGP for treated counterfactual outcome follows a factor-augmented regression

model. We predict the counterfactual outcome under this model specification with different

lags of outcome variable and factors. Our simulation results show that the model averaging

approaches and penalized regression methods have more accurate counterfactual prediction

than the model selection methods such as AIC and BIC. In terms of predictability compari-

son between model averaging approaches and penalized regression methods, neither domi-

nates uniformly the other. If the predictors (e.g., control units’ outcomes) are more correlated,

the model averaging approaches have more accurate prediction than the penalized regression

methods, and vice versa.
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Appendix

Table A1: Sample correlation matrix of control units: factor model with three factors

σ2 = 0.1
y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

y2 1.00
y3 -.45 1.00
y4 -.37 .98 1.00
y5 -.68 .96 .91 1.00
y6 .18 .78 .84 .58 1.00
y7 -.11 .80 .74 .69 .76 1.00
y8 .19 .75 .76 .56 .94 .90 1.00
y9 -.50 .99 .95 .96 .73 .84 .74 1.00
y10 -.26 .90 .84 .82 .77 .97 .87 .93 1.00
y11 -.58 .98 .96 .98 .68 .69 .62 .97 .81 1.00
y12 -.10 .93 .94 .79 .93 .87 .92 .90 .91 .85 1.00

Notes: The three-factor structure is the one considered on page 16 of Chapter 1. The
sample correlation matrix is calculated using pre-treatment observations (T0 = 25)
of 11 control units’ outcomes.
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4. Evaluating the Economic Impact of Conflict: A

counterfactual analysis of Ukraine
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1. Introduction

It has been observed that violent conflict adversely affects a country or region’s economic

performance at the aggregate level. However, to evaluate the impact of a violent conflict is a

challenging task. Ideally, one wishes to compare the economic outcome under conflict and

the one in the absence of conflict. However, it is rarely the case that researchers can observe

these data simultaneously in both states. Instead, researchers often rely on the construction of

counterfactual outcome - the outcome that would have been observed in the absence of con-

flict - to carry out comparison. In a seminal work, Abadie and Gardeazabal (2003) introduced

the synthetic control method (hereafter SCM) to measure the economic cost of the Basque

conflict between Spain and terrorist organization ETA. A weighted average of potential con-

trol countries/regions is constructed to approximate the pre-treatment outcome and available

characteristics of a country/region of interest. Then the impact of conflict is measured as dif-

ference between the actual and counterfactual outome in the post-treatment periods. A funda-

mental assumption of SCM and its variants is that the treatment must remain exogenous to the

control group. Once the assumption is violated, the SCM will induce a biased treatment effect

estimate. However, when the treated unit is a single entity and the treatment/shock is at ag-

gregate level, which is often the case with comparative case study, imposing this assumption

is not always realistic. For instance, when researchers study impact of a violent conflict on a

country/region’s economy, such assumption would imply that the conflict generates no exter-

nalities or spillovers to its neighbouring countries/regions or even further. In contrast, there

are lots of evidence about the existence of externalities and in most cases negative spillovers

from a violent conflict on proximate countries’ economic performance (Ades and Chua, 1997;

De Groot, 2010; Qureshi, 2013).

In this chapter, we study the economic impact of conflict on Ukraine’s Real GDP, account-

ing for potential spillovers to other countries. In particular, we apply the modified synthetic

control method with spillover effects (hereafter SCM-SP) (Cao and Dowd, 2019) to perform

a comparative case study on Ukraine’s economy. Within this framework, we can evaluate the
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impact of the armed conflict that started in late 2013 using a group of countries that are geo-

graphically close to and share economic, cultural linkage with Ukraine, but were not directly

involved in the conflict. The advantage of this approach is to estimate the impact of conflict in

the presence of spillovers. It also sheds lights on the direction and size of potential spillover

effects. A remaining limitation, however, is that the approach requires a spillover structure to

be pre-specified. This is potentially a weaker assumption in the current setting because knowl-

edge of geographic distance, social-political and economic relationships, and history should

enable one to construct a spillover structure that is reasonable.

Applying the SCM-SP approach, we estimate that the conflict decreased Ukraine’s real

GDP by 29.7% from late-2013 to the end of 2015, that is, the estimated counterfactual of real

GDP is 29.7% higher than the actual real GDP. In comparison, the results based on original

SCM indicates that the conflict reduced Ukraine’s real GDP by 16.3%. We also find the exis-

tence of spillovers in all nine post-treatment periods. The spillover effects seem to have sig-

nificant impact on the treatment effect estimates. Moreover, the estimates of spillover effects

for the countries selected by SCM-SP are negative, suggesting adverse impact of the conflict

on these countries.

The rest of the chapter is organized as follows: in Section 2, we review the background

of the violent conflict in Ukraine since late-2013. In Section 3 we introduce our empirical

methodology. In Section 4 we assess the economic impact on Ukraine’s real GDP and adverse

spillover effects on control countries. Section 5 concludes.

2. Background

This section presents a brief review of the origin and development of the 2013-2015 Ukrainian

conflict. The divisions within Ukraine can go back much further than the recent conflict. In

fact, Ukraine has been torn between West and East, which is reflected in its cultural and lin-

guistic divisions. From the mid-seventeenth through the nineteenth centuries, the western

territories of Ukraine belonged to the Polish administration, Austrian and Austro-Hungarian
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Empire. The majority of western part was back under Polish rule between two World Wars.

Meanwhile, the eastern Ukraine were governed by the Russian Empire since the seventeenth

century. Accordingly, there have been significant developments in Ukrainian language edu-

cation in the west, while the education was restricted to the Russian language in the east (Bi-

laniuk and Melnyk, 2008). The divisions continue since the collapse of Soviet Union. For

example, a 2006 survey found that 38% of the population reported speaking Ukrainian only,

30% only Russian and 31% reported using both, depending on the situation (Bilaniuk and

Melnyk, 2008). On the other hand, most Ukrainians in the west see Ukraine as part of Europe.

Those in the east are more pro-Russia and see the two countries are more historically linked.

A conflict over such disagreement may have been inevitable. In the mean time, there has been

a competition between the European Union (EU) and Russia for the future economic and for-

eign policy orientation of Ukraine.

The trigger of the conflict is the fact that the Ukraine’s former president Yanokovch re-

fused to sign the Ukraine European Union Association Agreement on November 21, 2013.

The agreement committed Ukraine to economic, judicial and financial reforms so that Ukraine

could converge its policies and legislation to those of EU, which has been long opposed by

Russia. Figure 1 shows several stages in the development of the conflict.

The rejection of the deal for greater integration with EU soon sparked mass protests called

Euromaidan protests, which the Ukrainian government attempted to put down. However, the

protests escalated into a series of riots and in the February 2014, the anti-government protests

toppled the government and the former president Yanokovch fled to Russia. In the following

month, Russia sent military force into Crimea, an autonomous region of southern Ukraine

with strong Russian connections. Russia completed its annexation of Crimea in a referendum

not recognized by Ukraine and most of the world. In April, pro-Russia separatist rebels began

seizing territories in eastern Ukraine. In Donbass, the conflict between the rebels and newly-

formed Ukrainian government escalated into an open warfare. Then two self-declared states

were formed: Donetsk and Luhansk People’s Republics. On July 17, 2014, a Malaysia Air-

line flight was shot down in eastern Ukraine and 298 people on the plane were killed. Two
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months later, the first cease-fire agreement , Minsk Protocol, was signed between Ukraine and

rebels. However, the violation of the cease-fire on both sides were common and the fighting

in eastern Ukraine intensified in the following months. In February 2015, the 2nd cease-fire

agreement was signed, but minor violation of the cease-fire continued. In January 2016, the

Deep and Comprehensive Free Trade Agreement (DCFTA) between EU and Ukraine took

effect. This agreement meant both sides would mutually open their markets for goods and ser-

vices based on enforceable trade rules and it had significant impact on Ukraine’s trade. EU, as

a single market, became Ukraine’s most important trading partner, accounting for more than

40% of Ukraine’s total trade in 20161. Meanwhile, Russia lost its position as the dominant

trade partner of Ukraine. In 2013, it accounted for 30.19% of Ukraine’s imports and 23.81%

of Exports. In 2016, these numbers reduced to 13.12% and 9.88%, respectively2.

In addition to the transformation of political power and change of trade relationship, the

Ukrainian conflict resulted in a humanitarian crisis. From mid-April 2014 to November 2015,

the United Nations Human Rights Monitoring Mission in Ukraine (HRMMU) recorded ap-

proximately thirty thousand casualties, including nine thousand killed and twenty-one thou-

sand injured. HRMMU had also registered one and half million internally displaced individu-

als throughout the Ukraine.

Last, it is worth noting that EU, US, and several other western countries have imposed

economic sanctions on Russia in response to its invasion and occupation of Ukraine’s Crimea

region and parts of eastern Ukraine. For instance, EU’s sanctions restricted Russian state ac-

cess to Western loans, blocked exports of defense-related equipment to Russia, banned ex-

ports of the oil industry technology to Russia. The series of sanctions were pushing the Rus-

sian economy to the brink of recession. Russia reacted to economic sanctions by banning a

wide range of imported western food. The sanctions and counter-sanctions from Russia would

have large impact on the regional economy, which will be discussed in Section 4.

1Data source: European Commission
2Data source: World Bank WITS database

85



2013−11 2014−01 2014−03 2014−05 2014−07 2014−09 2014−11 2015−01 2015−03 2015−05 2015−07 2015−09 2015−11 2016−01

−

−

−

−

−

−

−

−

−

−

−

−

Euromaidan protests

Mass protests&series of riots

Gunfight btw police and protestors

Former president fled to Russia

Russia's annexation of Crimea

War in Donbass

Malaysia Airline flight shot down in Eastern Ukraine

Minsk Protocol stupulated ceasefire

Intensified fighting in Eastern Ukraine

Minsk II stipulated ceasefire

Continuing ceasefire violations in Eastern Ukraine

DCFTA took effect

Figure 1: Development of Ukraine’s conflict: 2013.11 - 2016.01

3. Methodology

3.1 The model and estimation

Let y1
it and y0

it denote unit i’s outcome in time t with and without treatment. As we often do

not observe simultaneously y1
it and y0

it. the observed outcome is

yit = dity
1
it + (1− dit)y0

it (1)

where dit = 1 if the ith unit is under treatment at time t and dit = 0 otherwise. Let N and T

denote the total number of units and the total number of pre-treatment periods, we first con-

sider the case with one post-treatment period so that we observe a panel of N × (T + 1) of

outcomes yit and treatment assignments dit. We assume that only one unit receives treatment

at time T + 1. Without loss of generality, let the first unit receive a treatment, but all other

units yjt, j = 2, . . . , N do not experience any treatment at T + 1. Throughout this paper, N is
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fixed and T can be sufficiently large.

Let ∆i = y1
iT+1 − y0

iT+1, which can be the treatment effect or spillover effect depending on

whether i = 1. One popular approach to estimate the treatment effect ∆1 is SCM (Abadie et

al. 2003, 2010). Let xt,SCM = (y1t, . . . , yNt)
′, then a synthetic control weight estimator is

β̂ΛSCM = argminβ∈ΛSCM

T∑
t=1

(y1t − x′t,SCMβ)2 (2)

where ΛSCM = {β ∈ RN : β1 = 0, βj ≥ 0 for j = 2, . . . , N,
∑N

j=1 βj = 1}. The estimator for

treatment effect ∆1 is given by

∆̂1 = y1T+1 − x′T+1,SCMβ̂ΛSCM

To account for potential spillovers, we follow Cao and Dowd (2019) and assume that

some units are likely to experience spillover effects but not remaining units, while the sizes

of spillover effects are allowed to vary across those affected units. Suppose J units experience

spillovers. Then we can write a vector of treatment and spillover effects as a linear transfor-

mation of some unknown parameter γ ∈ Rk : ∆ = Aγ. Specifically,

A =


1 01×J

0J×1 IJ

0(N−J−1)×1 0(N−J−1)×J

 ,γ =



∆1

∆k1

...

∆kJ


(3)

where the matrixA specifies the structure of treatment and spillover, the vector γ includes

magnitude of treatment effect and spillover effects on J units. Under this specification, ∆ =

(∆1,∆k1 , . . . ,∆kJ , 0, . . . , 0)′. In other words, at T + 1, the first unit receives treatment, the

units indexed by k1, . . . , kJ experience each own spillover effects and the remaining units are

not exposed to either treatment effects or spillover effects.

We need to estimate an N × 1 vector ∆. To this end, let Yt = (y1t, y2t, . . . , yNt)
′, the
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vector of all units’ outcomes at time t. We can define unit i’s synthetic control weights as fol-

lowing:

âi
b̂i

 = argminã∈R,b̃∈W (i)

T∑
t=1

(yit − ã− Ytb̃′)2. (4)

where W (i) = {(w1, . . . , wN)′ ∈ RN
+ : wi = 0,

∑N
j=1wj = 1}. They are weights used for

SCM-SP method, which include an unrestricted intercept. Let ai = plimâi, bi = plimb̂i, it can

be shown that ai and bi are well-defined under a factor model (Lemma 1 in Cao and Dowd,

2019). For unit i at time t, the specification error is given by uit = y0
it− (ai+Y

0
t
′
bi). Stacking

uit for all i’s gives

ut = Y 0
t − (a+BY 0

t ) (5)

where ut = (u1t, . . . , uNt)
′, a = (a1, . . . , aN)′,B = (b1, . . . , bN)′. As in the post-treatment

period T + 1, YT+1 = Y 0
T+1 + ∆, the equation (5) indicates that

uT+1 = (YT+1 −∆)− (a+B(YT+1 −∆))

= (I −B)(YT+1 −∆)− a (6)

By imposing ∆ = Aγ, we have

uT+1 = (I −B)(YT+1 −Aγ)− a (7)

We use (7) to estimate γ and therefore ∆. In particular, we could estimate weights using

(4) for each i = 1, . . . , N . That is, we pretend each unit i to be treated and other units to

be controls. The estimator for a is then given by â = (â1, . . . , âN)′, the estimator forB is

B̂ = (b̂1, . . . , b̂N)′. LetM = (I −B)′(I −B) whose estimator is M̂ = (I − B̂)′(I − B̂),
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then

γ̂ = argminh∈Rk ||(I − B̂)(YT+1 −Ah)− â||

= (A′M̂A)−1A′(I − B̂)′((I − B̂)YT+1 − â) (8)

and the parameter of interest ∆ can be estimated by ∆̂ = Aγ̂. Under a factor model, it can

also be shown that as T →∞,

∆̂− (∆ +GuT+1)
p−→ 0 (9)

, whereG = A(AMA)−1A′(I − B)′ and E(GuT+1) = 0. That is, ∆̂ is asymptotically

unbiased for ∆.

In the case with multiple post-treatment periods, let Yt = Y 0
t if t ≤ T , Yt = Y 0

t + ∆t for

t ≥ T + 1. For each post-treatment period, we can similarly specify a treatment and spillover

structureAt. Therefore, an estimator for ∆t is defined as ∆̂t = At(A
′
tM̂At)

−1A′t

(I − B̂)′
(
(I − B̂)Yt − â

)
for t ≥ T + 1.

3.2 Statistical inference

The SCM-SP testing procedure is based on Andrews’ end-of-sample instability test (An-

drews, 2003) which is introduced to assess the instability at the end of a single series. At a

high level, the test uses pre-treatment sample to form the null distribution of post-treatment

quantity, which is the discrepancy between treated group (those under direct treatment and

indirect spillovers) and synthetic control group in the present case. There will be instability

if the treatment effect and/or spillover effects exist. Similar to the previous section, we first

consider the case with one post-treatment period. A general test regarding the vector of treat-

ment and spillover effects ∆ is H0: C∆ = d v.s. H1: C∆ 6= d where C and d are known.

If we want to test the hypothesis that there is no treatment effect on the treated unit (e.g., the

first unit in our case), we can set C = (1, 0, . . . , 0) ∈ R1×N and d = 0. If we want to test
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if there are spillover effects or not, we then set C = (0(N−1)×1, IN−1) ∈ R(N−1)×N and

d = (0, . . . , 0)′ ∈ R(N−1)×1.

We define the test statistic as

S = (C∆̂− d)′(C∆̂− d) (10)

From expression (9), S is asymptotically equivalent to u′T+1G
′C ′CGuT+1, whereG =

A(A′MA)−1A′(I − B)′. Denote xt = (1,Y ′t )′ and θ = [a B] ∈ RN×(N+1). The null

distribution consists of S(t) = u′tG
′C ′CGut = (Yt − θxt)′G′C ′CG(Yt − θxt) for

t = 1, . . . , T . The sample analogue is given by Ŝ(t) = (Yt − θ̂xt)′Ĝ′C ′CĜ(Yt − θ̂xt) for

each period t, where θ̂ contains synthetic control weights obtained from Equation (4). Then

we can calculate the p-value of the Andrews’ test as

p = 1/T
T∑
t=1

1{Ŝ(t)≥S} (11)

In the case with multiple post-treatment periods, we perform separate tests as the above

procedure for each t ≥ T + 1.

4. Evaluating the economic impact of the conflict

In this section, we assess the economic impact of Ukraine’s conflict. First we apply both SCM

and SCM-SP to evaluate its impact on Ukraine’s real GDP. Then we examine the potential

spillover effects. Last we do robustness checks of our main result.

4.1 Impact on real GDP

We use quarterly data from 2001 Q1 to study the impact of the conflict on Ukraine’s real

GDP. As Russia has been directly involved and impacted by the conflict, we do not include it

in the control countries. Considering Ukraine is located in Eastern Europe and a member state

of former Soviet Union, we include Poland, Slovak Republic, Hungary, Romania, Estonia,
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Latvia, Lithuania, Bulgaria, Slovenia, Czech Republic, Turkey3. Aware of growing political

influence and closer economic relationship with EU, we include Finland, France,Germany,

Italy, Netherland, Sweden and Switzerland. We also include US, UK and China. The real

GDP are from World Bank’s Global Economic Monitor database.

Our in-sample period ends at 2013 Q3 because the conflict started in November 2013. As

discussed in Section 2, the DCFTA took effect in the beginning of 2016 and had large impact

on Ukraine’s foreign trade. It is not easy to disentangle the impact of the conflict from the

trade agreement without strong assumptions. Therefore, we restrict out-of-sample evaluation

period to 2015 Q4 to obtain more clear effect of the conflict.

The countries that are likely to experience spillovers are selected by investigating the ge-

ometric proximity, cultural/ historical linkage and trade relationship with Ukraine. In par-

ticular, we include Ukraine’s four contiguous countries: Poland, Slovak Republic, Hungary,

Romania and countries that are a country away from Ukraine: Czech Republic, Slovenia and

Bulgaria. We include three Baltic states that are member states of former Soviet Union: Es-

tonia, Latvia and Lithuania. Finally, we include Ukraine’s top trading countries in the region:

Germany and Turkey4.

We use in-sample data to estimate control countries’ weights via equation (2) and (4). The

estimated weights of the control countries selected by SCM and SCM-SP for logRGDP are

shown in Table 1. The SCM selects Estonia, Latvia, Poland, Slovak Republic and UK. The

SCM-SP selects Bulgaria, Estonia, Hungary, Lithuania and Slovenia with intercept equal to

1.3054. In order to interpret the results more clearly, we convert the treatment effect estimates

back to percentage change. The estimated average treatment effects on Ukraine’s real GDP is

-16.4% based on SCM, which is the average difference between the actual Real GDP and the

counterfactual estimates from 2013 Q4 to 2015 Q4. When the spillover effects are allowed,

the average treatment effect is -29.7% during the same time periods. In other words, the con-

flict decreased the real GDP of Ukraine by 29.7% since late-2013.

3Two neighbouring countries Belarus and Moldova are not included because their data are unavailable.
4Based on the WITS data from World Bank, Germany had the 2nd and 3rd highest partner share in Ukraine’s

overall exports in 2014 and 2015 while Turkey had 2nd highest partner share in overall imports of Ukraine in
both 2014 and 2015.
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Figure 2. plots the actual and counterfactual logRGDP paths for the pre-conflict and post-

conflict time periods. The left panel shows that the counterfactual path estimated by SCM

(dotted line) and SCM-SP (dashed line) are similar to each other and both trace closely the

actual paths. The right panel shows that both counterfactual paths lie above the actual path in

all post-conflict periods. Moreover, the counterfactual path estimated by SCM-SP is higher

than the estimate by SCM in all post-conflict periods.
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Figure 2: Ukraine’s actual and counterfactual log(RGDP)

4.2 Spillovers

The inference procedure discussed in Section 3.2 allows us to test the existence of spillover

effects. We use the spillover structure specified in Section 4.1. The test result shows that there

were spillovers in every quarter after the conflict broke out. Figure 3 shows the treatment ef-

fect (as gaps in logRGDP between actual and counterfactual path). The left panel shows that

the treatment effects are close to zero based on both SCM and SCM-SP, which is expected

as there should be no effect from conflict before 2013 Q4. In the right panel, the error bars

around the SCM-SP estimates are 95% confidence intervals. We can see that there were sub-

stantial spillover effects, which in all post-conflict periods result in significant changes in

treatment effect estimates compared to SCM. In particular, in the presence of spillovers, the

treatment effects estimates based on SCM are attenuated. The result is also supported by the
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estimated spillover effects. First note that the five countries selected by SCM-SP: Bulgaria,

Estonia, Hungary, Lithuania and Slovenia are included in the specification of spillover struc-

ture. Table 2. shows their spillover effects estimates and weights estimates. It is not surprising

that all five countries experienced adverse spillover effects on their real GDP. In terms of pos-

sible channel of the negative spillover effects, reasoning that Russia exerted great influence

in the region’s economic growth and sanctions imposed by western countries in response to

its involvement in the conflict would disrupt the trade flows from/to Russia, the spillover ef-

fects may arise from such disruptions. To explore this hypothesis, we examine World Bank’s

the world integrated trade solution (WITS) dataset which includes bilateral trading share. We

find that in 2014 and 2015, Russia was among top 3 trade partners in terms of export share

and/or import share for the four of five countries selected by SCM-SP: Bulgaria, Estonia,

Hungary and Lithuania. For Estonia and Lithuania, the two countries that were hit hard by

negative spillovers, Russia was the most important trade partners. For example, in 2014, Rus-

sia had highest import share (10.7%) and second highest export share (14.16%) for Estonia;

while it ranked the first in both import (21.64%) and export share (20.85%) for Lithuania. In

2015, Russia ranked second and third among Estonia’s top trade partners, with 9.81% of im-

port share and 9.68% of export share; Russia still dominated Lithuania’s trade, though with

reduced import share (16.31%) and export share (13.69%).

4.3 Robustness check

In this section we conduct two robustness checks. In the first robustness check, we consider

a smaller control group than the one used in the Section 4.1. Table 1 shows that Latvia and

Lithuania receive substantial weight in the SCM-SP, we exclude all three Baltic countries:

Estonia, Latvia and Lithuania from the control group to see whether our result is sensitive

to their inclusion/exclusion. The specified spillover structure is the same as in the Section

4.1 except the three Baltic countries. In the second robustness check, we consider a spillover

structure that includes more countries than the one specified in Section 4.1 to see whether our
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Figure 3: Gap in log(RGDP) between Ukraine and counterfactual Ukraine (with 95% confi-
dence interval)

result is sensitive to the specification of spillover structure. Specifically, we add five more EU

countries: France, Italy, Netherlands, Sweden and Switzerland so that seventeen countries are

specified to have potential spillovers from the Ukraine’s conflict.

The results are reported in Figure 4. The left panel shows the treatment effects estimates

from SCM-SP on nineteen control countries, among which nine countries are specified to

have spillovers (SCM-SP (9)). The new treatment effect estimates are also negative and statis-

tically different from zero, though not statistically different from our main result (SCM-SP).

The right panel displays the treatment effect estimates from SCM-SP with seventeen coun-

tries affected by spillovers (SCM-SP(17)). The estimate is similar to the estimate obtained in

Section 4.1. Table 3. reports the weights of countries selected by SCM-SP excluding Estonia,

Latvia and Lithuania5. It is worth noting that the four selected countries - Turkey, Slovenia,

Romania and Hungary are included in the specified spillover structure.

5As we use the same control group as in Section 4.1 in the second robustness check, the countries selected by
SCM-SP are the same as shown in Table 1.
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Figure 4: Gaps in log(RGDP) with 95% confidence interval

5. Conclusion

In this chapter, we study the economic impact of the conflict on Ukraine’s real GDP since

late-2013. Considering the interdependence between the economies across the region and the

magnitude of the conflict, other countries within the same region of Ukraine are susceptible

to the external spillover effects from the conflict. In order to accommodate this situation, we

apply the synthetic control method that is adapted to the potential spillovers. We find that the

conflict reduced the Ukraine’s real GDP by -29.7% during 2014 and 2015, a much larger es-

timate of negative effects than the estimate based on the original synthetic control method

(-16.4%). According to the test results regarding the existence of spillovers, we detect the

spillovers in every quarter since the conflict broke out. We also find negative spillovers on all

the countries with positive weights. Our empirical results are robust to different specified con-

trol group and spillover structure.

Given the magnitude of negative impact from the conflict and evolving humanitarian crisis

in such a short time, the international communities who would like a resolution of Ukraine’s

conflict should take actions faster so that the economic future remains for Ukraine. The huge

estimated economic cost also requires those communities to take a tougher stand and actions.
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On the other hand, the conflict is costly for all parties, not only Ukraine and Russia, but also

those countries in the same region. Picking sides between western countries and Russia is

difficult and finding that balance between the two sides is even more challenging. As the

Ukraine’s conflict is still under way, those countries should remain vigilant and actively par-

ticipate in resolving the conflict to mitigate the long-run negative impact on the whole region.
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Table 1: Weights of control units for log(RGDP)

Country SCM weights SCM-SP weights
(Intercept) 1.3054
Bulgaria .0056
China
Czech Republic
Estonia .1531 .3257
Finland
France
Germany
Hungary .0468
Italy
Latvia .4946
Lithuania .4835
Netherland
Poland .1248
Romania
Slovak Republic .0037
Slovenia .1385
Sweden
Switzerland
Turkey
UK .2239
USA

Table 2: Spillover effects estimates in log(RGDP) for selected control countries

Country spillover effects SCM-SP weights
Bulgaria -.0825 .0056
Estonia -.2655 .3257
Hungary -.006 .0468
Lithuania -.1910 .4835
Slovenia -.0662 .1385
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Table 3: Weights of control units for log(RGDP) (robustness check)

Country SCM-SP weights
(Intercept) -.3335
Bulgaria
China
Czech Republic
Finland
France
Germany
Hungary .3334
Italy
Netherland
Poland
Romania .4201
Slovak Republic
Slovenia .0842
Sweden
Switzerland
Turkey .1623
UK
USA
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In this dissertation, we first propose using the model averaging (MA) method to estimate

treated counterfactual outcome and temporal average treatment effect (ATE) in a panel data

setting. We derive the asymptotic distribution of proposed MA-based ATE estimator when

N is fixed and T is large. We leave the asymptotic analysis of the proposed estimator for

both large N and T case in future work. The derived asymptotic distribution turns out to be

non-normal and non-standard, and cannot be directly used for inference. We instead apply a

subsampling-bootstrap inference procedure for the MA-based ATE estimator. Monte Carlo

simulations show that the proposed inference procedure results in reasonably good estimated

coverage probabilities. In the empirical application, we revisit Hsiao et al. (2012)’s evaluation

of impact of Hong Kong’s reunion with mainland China, using our proposed estimator and

inference procedure. Our results suggest that the political integration did not have significant

impact on Hong Kong’ s real GDP growth whereas the economic integration had significant

positive impact on Hong Kong’s economy, which support original findings.

Secondly, we conduct extensive simulations to compare the predictability of counterfac-

tual outcome between model averaging and other methods in terms of mean squared predic-

tion errors. The results show that the model averaging methods compare favourably with al-

ternative methods, such as AIC, BIC, synthetic control methods and the penalized regression

methods Elastic-net.

In the third part, we examine the economic impact of Ukraine’s 2013 conflict, using a

modified synthetic control method that accounts for potential spillover effects proposed by

Cao and Dowd (2019). Using the data of 21 countries consisting of Ukraine’s neighbour-

ing countries and trade partners, we find that the conflict decreased Ukraine’s real GDP by

29.7% from late-2013 to the end of 2015, which is larger (in absolute value) than the estimate

of original synthetic control (- 16.3%). We also conduct statistical test on the existence of

spillovers and find evidence of spillovers in all 9 post-conflict periods.
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