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Abstract 

Antibiotics are medicines used to treat bacterial infections by either killing bacteria or 

stopping them from reproducing. Throughout the use of antibiotics, bacteria has developed a 

variety of defense mechanisms against antibiotics and thus diminishing their effectiveness. 

Antibiotic resistance is a growing threat and becomes a global crisis as it is able to constantly 

evolve and rapidly spread. In the face of increasing bacterial resistance to all known antibiotics, 

there is an urgent need to accelerate the antibiotic discovery pipeline and discover new classes of 

antibiotics. A major bottleneck in the discovery of novel antibiotics is the limited permeability of 

potent drug molecules across the bacterial envelope to reach their target, and thus hindering their 

activities in vivo. With the aid of state-of-the-art computational methods and tools, we developed 

a computational platform to automate and study the translocation of small molecule drugs across 

bacterial outer membrane proteins, with a goal of accelerating the antibiotic discovery process. We 

applied all-atom and coarse-grained molecular modeling, enhanced sampling techniques, and a 

parallel computing environment to maximize the performance. We further demonstrate the 

efficacy of this platform with a comprehensive study of a benchmark case. Key findings include 

free energy profile, translocation kinetics and thermodynamics, and molecular interactions 

between drug molecules and protein residues. Ultimately, this approach is designed to screen small 

molecule libraries with a fast turnaround time to yield structure-property relationships to discover 

antibiotics with high permeability. Furthermore, this work is expected to provide insights in 

inverse engineering and mutation design during drug development.
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1.1 Background 

Antibiotics are medicines used to treat bacterial infections by either killing the bacteria or 

slowing down their reproduction. Throughout the use of antibiotics, bacteria has developed 

different resistance mechanisms to fight against anti-infective drugs (Figure 1-1).1 There are many 

defense strategies, including but not limited to, producing pumps to get rid of antibiotics, 

developing protein channels with low permeability to restrict access, destroying or modifying 

drugs with enzymes, mutating target structure to prevent the binding of antibiotics, and expressing 

alternative proteins required for cell functions.1-2 

 

Figure 1-1 Antibiotic resistance strategies in bacteria 

Antibiotic resistant germs are able to quickly spread everywhere considering the fact that 

they are very small living organisms and they constantly evolve at a staggering rate. A variety of 

factors have mixed and exacerbated the antimicrobial resistance. They spread within and across 

all settings in the community that are associated with the entire environment. Moreover, antibiotic 

resistance is rapidly spreading all over the world due to overprescription and misuse of drugs. For 

example, there is a large-scale of antibiotic consumption in agriculture and livestock farming, and 
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animals that carry drug resistant pathogens will consequently contaminate the food supply. The 

antibiotic resistance is endangering both individual and society. It has been reported that there are 

approximately 3 million people in the United States infected by antibiotic resistant pathogens every 

year, leading to more than 35000 deaths.2-3 

In addition to the rapid spreading, stranded discovery pipeline has become exhausted. The 

drug discovery pipeline is at a virtual standstill due to limited profits and regulatory bottlenecks. 

It is estimated that over $1 billion is needed for developing an antibiotic.3 As a result, many 

pharmaceutical companies have abandoned the antibiotic discovery market in favor of pursuing 

more profitable drug discovery line, such as cancer drugs. Infectious diseases are now on the verge 

of acquiring effective treatments using novel antibiotics. Antibiotic discovery requires 

revolutionary methodology to accelerate the process and reduce overall costs. 

One of the bottlenecks in antibiotic discovery is to overcome the inability of drug 

candidates to penetrate through bacterial membrane to eventually reach their target.3 Comparing 

to Gram-positive bacteria, Gram-negative bacteria has developed liposaccharide-rich, negatively 

charged outermembrane, which serves as a highly effective barrier against most small molecule  

drugs. In addition, a variety of size-selective, substrate-specific protein channels (or porins) are 

expressed, which are embedded in the outermembrane to further decrease the uptake (Figure 1-

2).4 Understanding the porin facilitated translocation of small molecules at a molecular scale is 

particularly imperative to drug discovery. 

In our work, we focused on Pseudomonas aeruginosa, which is a notoriously multi-drug 

resistant Gram-negative bacterium. According to the 2019 Antibiotic Resistance Threats Report 

published on the Centers for Disease Control and Prevention website, P. aeruginosa was listed as 

one of the serious threats for its infections in the U.S.5 P. aeruginosa has an extra outer membrane 
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as opposed to Gram-positive bacteria. The discovery of new antibiotics against especially Gram-

negative bacteria is a major challenge, and primarily because of a low hit rate during screening of 

compound libraries. In the case of P. aeruginosa, the rate can be up to 1000-fold lower than in the 

case of Gram-positive bacteria, and the major reason for such a low hit rate is caused by the low 

permeability barrier of this extra outer membrane.13 In addition, P. aeruginosa has developed 

many small-channel porins such that becoming intrinsically resistant towards most antibiotics. 

 

Figure 1-2 Cell wall structure in gram-negative vs. gram-positive bacteria 

Among the P. aeruginosa porins, the most important is the Outer membrane Carboxylate 

Channel (Occ) family that are dedicated to the uptake of small, water-soluble, carboxylate 

containing solutes.6 The Occ family comprise 2 subfamilies, OccD and OccK, which differ in pore 

size and structure dynamics. The OccD subfamily has 8 members and the OccK subfamily has 11 

members as these structures have been experimentally resolved. The majority of them are available 

on Protein Data Bank database and are rendered in Figure 1-3. In general, the OccD porins have a 

smaller pore size compared to the ones from OccK subfamily with the exception of some OccD 

proteins showing similar sizes as OccK proteins, which suggests that these two subfamilies have 

different substrate selectivity. Besides the variation in pore size, it is reported that OccD structures 
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are more dynamic as they can stabilize in either closed or open state, whereas the OccK porins 

have a more rigid channel.6-7 

As the first member of the Occ family, OccD1 porin has been studied extensively via both 

experimental and computational approaches. OccD1 is the least specific channel among the Occ 

family, and thus creating a 

less restricted access and 

allowing more efficient 

permeation of relatively 

larger molecules such as 

medium-chain fatty acids. In 

particular, it shows that 

small structural 

modifications of known 

antibiotics have caused 

significant impacts on their 

permeation through OccD1 

porin.8 Therefore, understanding the porin facilitated translocation behavior is of huge importance 

in drug candidate optimization. Interestingly, OccD3 is structurally similar as OccD1, which is a 

monomeric protein in β-barrel shape and serves as an uptake channel of arginine and dipeptide in 

P. aeruginosa. As recent works showed that OccD3 plays a key role in carbapenem translocation 

in P. aeruginosa, it attracts great attention in exploring OccD3 in-depth in the field of antibiotic 

resistance study.  

Figure 1-3 Occ porins in the order from left to right in cartoon 

representation: OccD1, OccD2, OccD3, OccK1, OccK2, OccK3, 

OccK4, OccK5, OccK6, OccK7, OccK8, OccK9, OccK10, and 

OccK11. 
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1.2 Computational Methods 

Computational methods possess significant advantages in the study of understanding 

biological systems and processes, such as drug molecule-protein residue interactions, as they 

provide direct insights at the molecular level. The detailed system initiation, Molecular 

Dynamics simulation and umbrella sampling protocol, and python and shell scripting 

implemented scripts for analyzing simulation trajectories are distributed and discussed in-depth 

in future chapters. Here is a list of advanced computational methods and tools that have been 

used throughout my work. 

1.2.1 Molecular Dynamics simulation 

Molecular Dynamics (MD) is a computational simulation method that mimics atomic and 

molecular movements in real life by solving Newton’s equations of motion. From a knowledge 

of the force acting on each atom, it is able to determine the acceleration of each atom in the 

system, and therefore obtaining its position and velocity over a period of time and predicting the 

future behavior of the system. 

MD simulation is able to approximate the interaction energy of each atom within itself 

(bonded interaction) and with the surrounding atoms (non-bonded interaction). Figure 1-4 

Figure 1-4 An example of a typical equation used to approximate the atomic forces that govern 

molecular movement 



 

 

 7  

 

demonstrates a typical equation used in calculating total interaction energy by incorporating the 

two types, bonded and nonbonded interaction energy.9 Both can be further broken down into 

specific terms: bonded interaction includes bond-stretch, angle-bend, and rotate-along-bond terms; 

non-bonded interaction comprises of van der Waal’s and electrostatic components. 

With the aid of a number of well parameterized force fields, we are able to model and 

simulate a wide variety of biomolecules, including amino acids, proteins, lipids, organic 

compounds, polymers, and solvents. We conducted MD simulations by using a powerful MD 

engine, GROMACS software suite, which has grown out of GROMOS force field and supports 

the majority of other well-formulated force fields. 

1.2.2 Multiscale modeling 

In our research, we have adopted multiscale MD modeling, which combines the all-atom 

(AA) and the coarse-grained (CG) resolutions. In atomistic simulations, each atom is calculated to 

determine its position and velocity over a period of time. Among many available force fields, we 

often use CHARMM force field when we need to perform atomistic equilibrations before moving 

forward to coarse-grained simulations. The CHARMM potential energy function is applicable to 

a variety of atoms, including but not limited to carbon, oxygen, nitrogen, sulfur, and phosphorous, 

and therefore, has been widely used in simulating complex biomolecules, e.g., protein-membrane 

systems.14 

Coarse grain method groups several atoms into one bead to decrease the amount of 

calculation while preserving the molecular properties. Therefore, coarse grained resolution is able 

to enlarge the simulation system size and extend simulation timescale comparing to the atomistic 

precision. We apply MARTINI approach for coarse graining, which has the advantage of 
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transferability of the force field parameters to a wide range of biomolecules and on-demand reverse 

mapping to atomistic resolution.10 MARTINI force field maps four adjoining heavy atoms into 

one CG bead, in the meantime it is also flexible to provide three-to-one or five-to-one mapping 

scheme if required. The beads are distinguished by their charges, polarities, and structures. 

1.2.3 Enhanced sampling 

The bottleneck of traditional MD simulation is that there are high-energy barriers 

separating two regions of phase or configuration space, which can result in poor sampling as 

transitions between them can take a long time to or rarely happen. It is necessary to overcome the 

energy barrier to save both simulation time and computational costs. Among many advanced 

techniques that have been developed over the past few decades, umbrella sampling has been widely 

used to achieve enhanced sampling.11 It works by decreasing the energy barrier between different 

structures or conformations so that the transition between these regions is more accessible and 

hence, enhancing the sampling. 

Umbrella sampling is the first collective variable (or reaction coordinate) based sampling 

methods. In umbrella sampling simulations, the collective variable space is divided into many 

windows, and time-independent bias potentials are added to each window to obtain the umbrella 

potential and estimate the equilibrium probability distribution. Next, the probability distribution 

from all windows are calculated iteratively and concatenated using the well-established weighted 

histogram analysis method (WHAM).12 Finally, with the total equilibrium probability distribution 

constructed, free energies as a function of the collective variable can be calculated. 

Umbrella sampling is the fundamental machinery behind our computational method, 

making the MD simulation more powerful and robust.  
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2.1 Abstract 

Bacterial colonization of biotic and abiotic surfaces and antibiotic resistance are grand 

challenges with paramount societal impacts. However, in the face of increasing bacterial resistance 

to all known antibiotics, efforts to discover new classes of antibiotics have languished, creating an 

urgent need to accelerate the antibiotic discovery pipeline. A major deterrent in the discovering of 

new antibiotics is the limited permeability of molecules across the bacterial envelope. Notably, the 

Gram-negative bacteria have nutrient specific protein channels (or porins) that restrict the 

permeability of non-essential molecules, including antibiotics. Here, we have developed the 

ComputationaL Antibiotic Screening Platform (CLASP) for screening of potential drug molecules 

through the porins. The CLASP takes advantage of coarse grain (CG) resolution, advanced 

sampling techniques, and a parallel computing environment to maximize its performance. The 

CLASP yields comprehensive thermodynamic and kinetic output data of a potential drug molecule 

within a few hours of wall-clock time. Its output includes the potential of mean force profile, 

energy barrier, the rate constant, and contact analysis of the molecule with the pore-lining residues, 

and the orientational analysis of the molecule in the porin channel. In our first CLASP application, 

we report the transport properties of six carbapenem antibiotics—biapenem, doripenem, 

ertapenem, imipenem, meropenem, and panipenem—through OccD3, a major channel for 

carbapenem uptake in Pseudomonas aeruginosa. The CLASP is designed to screen small molecule 

libraries with a fast turnaround time to yield structure-property relationships to discover antibiotics 

with high permeability. The CLASP will be freely distributed to enable accelerated antibiotic drug 

discovery. 
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2.2 Introduction 

Antibiotic resistant bacteria are endangering the efficacy of known antibiotics, which have 

saved millions of lives since the middle of the last century.2-5 In the past few decades, antibiotics 

have become the most prescribed drugs in human medicine. However, over prescription and 

misuse of antibiotics have led to the upsurge in bacterial resistance.6 To make matters worse, the 

drug discovery pipeline is at a virtual standstill due to limited profits and regulatory bottlenecks.7 

The development of a new antibiotic is a prolonged process requiring years of drug screening, in 

vitro testing, clinical trials, and billions of dollars in investment. Therefore, there is an urgent need 

to accelerate the screening of drug candidates and develop new antibiotics.8-11 

A bottleneck in a drug molecule’s penetration into a bacterial cell is the multilayered 

bacterial envelope.12 Both Gram-positive and Gram-negative bacteria have evolved a sophisticated 

and complex cell wall that protects them from hostile chemical environments. For Gram-negative 

bacteria in particular, their liposaccharide-rich, negatively charged outer membranes with narrow, 

water-filled protein channels (or porins) allow selective uptake of nutrients, while preventing the 

passage of toxins into the cell.13-14 The chemical nature (lipophilic versus hydrophilic) of the 

antibiotic molecule determines whether the permeation occurs via the lipid-mediated or the porin-

mediated pathway.14 

A critical step in antibiotic discovery is to identify chemical compounds with high 

permeability through Gram-negative bacterial outer membranes. The bacterial outer membrane 

porins are passive transporters of water-soluble molecules with a size limit of 600-700 Da.14 , 15-16 

Besides mediating uptake of nutrients for survival, porins fortuitously allow the diffusion of 

antibiotics across the outer membrane.17-18 For example, β-lactams, including cephalosporins, 
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penicillins, and carbapenems, are known to penetrate the outer membrane through the porins.12 

These small molecule portals make the bacteria more susceptible to new classes of antibiotics. 

Understanding the porin-mediated uptake of small molecules at a molecular-level can spur 

the identification of natural compounds or aid in the rational design of new classes of antibiotics. 

Screening for penetration experimentally is challenging due to the low-throughput nature of related 

procedures. The use of computational approaches can provide molecular insights that are 

undetectable via currently available experimental methods.19-25 For example, advanced simulation 

approaches, such as metadynamics,21, 26-27 steered molecular dynamics,20, 22 umbrella sampling,28-

29 and accelerated molecular dynamics simulations30 have been used to simulate translocation 

through bacterial porins. However, these and other computational methods do not provide high-

throughput thermodynamic and kinetic data of uptake of substrate molecules, precluding the high-

throughput screening of libraries of natural compounds as possible antibiotics. 

To advance screening of molecular libraries for the identification of potential antibiotics, 

in this work, we report the development of the Computational Antibiotic Screening Platform 

(CLASP). The CLASP takes advantage of coarse-grained (CG) resolution, advanced sampling 

techniques, and a parallel computing environment to maximize performance. The CLASP yields 

comprehensive thermodynamic and kinetic data of a solute’s transport through a bacterial outer 

membrane porin. Its output includes the potential of mean force profile, energy barrier, rate 

constant of the molecule’s transport, contact analysis of the molecule with the pore-lining residues, 

and the orientational analysis of the molecule in the porin channel. The CLASP automated 

workflow yields result in less than two hours of wall-clock time. The output turnaround times can 

be further improved with an increase in computer resources. 
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Our first CLASP application focuses on antibiotic uptake by Pseudomonas aeruginosa, a 

multi-drug resistant Gram-negative bacterium. Compared to other common Gram-negative 

bacterial species, the membrane permeability of P. aeruginosa is about one order of magnitude 

lower, primarily due to the presence of substrate-specific porins with sub-nanometer diameters.31-

32 As a result, the development of new drugs to treat infections caused by P. aeruginosa has been 

a major challenge.11 In the 2019 Antibiotic Resistance report, published by the Centers for Disease 

Control and Prevention, P. aeruginosa was identified as a serious threat for infections in the United 

States.33 

Among the P. aeruginosa porins, the most important is the Outer membrane Carboxylate 

Channel (Occ) family that are dedicated to the uptake of small, water-soluble, carboxylate 

containing solutes. In recent years, several members of the Occ family have been studied, including 

OccD1 and OccD3 that facilitate permeation of arginine, dipeptides, and carbapenem antibiotics.34-

35 As the first member of the Occ family, OccD1 porin has been studied extensively via 

experimental23, 36-39 and computational20-22 approaches. The closely related OccD1 ortholog, 

OccD3 has also been implicated as a channel for carbapenem uptake.34-35, 40  We focused our 

investigation on OccD3, which has high structural similarity and higher ion conductance than 

OccD1.35 The OccD3 is a β-barrel porin formed by 18 β-strands that are connected by large 

extracellular loops and short turns.40 The porin’s lumen is hourglass-shaped, which has a 3.7 Å 

diameter bottleneck region (Figure 2-1). 
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We investigated six members of the carbapenem family of antibiotics—biapenem, 

doripenem, ertapenem, imipenem, meropenem, and panipenem. The carbapenem family is one of 

the limited classes of antibiotics that can treat P. aeruginosa infections.41-45 The carbapenems are 

effective because they have a lower propensity to enzymatic degradation inside the bacterial cell, 

and are therefore, commonly prescribed for the treatment of infections caused by P. aeruginosa.45 

Understanding the mechanism of carbapenems’ transport and is imperative to develop new drugs 

and reduce the threat of P. aeruginosa. 

The results provide the details of the CLASP application and comprehensive analysis of 

the translocation profiles of the six carbapenems through OccD3. The free energy profiles and the 

energy barriers for carbapenem translocation are consistent with previous reports in the literature. 

Besides, we computed the contact frequencies between the carbapenem molecules and each OccD3 

protein residue, which identified the key pore-lining residues and revealed the bottleneck 

Figure 2-1. Molecular structure of OccD3 porin. The (a) side-view and (b) top-view of OccD3 in 

cartoon representation (colored blue to red from N-term to C-term) along with the porin channel 

(in orange surface representation). The diameter of the channel is marked in circles. The two 

horizontal lines show the membrane embedded region of the porin. 
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conformation of the carbapenem molecule during translocation. Additionally, we reverse mapped 

the CG structures of carbapenems to atomistic resolution in the bottleneck region to further 

illustrate the role of pore-lining residues in the translocation process. Finally, guided by the high-

frequency contacts, we mutated two bulky pore-lining residues Y217A and F334A, to create 

OccD3m. The effect of mutations in OccD3m provided vital insight into the mechanism of 

carbapenem translocation. 

2.3 CLASP Workflow 

Molecular understanding of the transport of drugs through biological barriers is 

fundamental to the future of biomedicine. There is a need to provide robust thermodynamic and 

kinetic data for the permeation of drugs that spans nano- to macro-scale. The key is to provide 

mechanistic, structural, orientational, conformational, and mutational details of the drug 

permeation process that can inform the development of new drugs and accelerate the sluggish drug 

discovery pipeline. To cover the spatial and temporal scales involved in the drug transport, we 

have adopted a multiscale approach that takes advantage of different resolutions. We use the state-

of-the-art umbrella sampling method to compute the potential of mean force (PMF) of permeation 

of drugs through bacterial porins. 



 

 

 18  

 

Umbrella sampling (US) simulations46 are often laborious and typically require frequent 

user interventions at multiple steps. To streamline US simulations by eliminating the need for 

manual interventions, CLASP employs an efficient algorithm for the permeation of small 

molecules through bacterial porins. To maintain fast turnaround time in the current implementation 

of CLASP algorithm, we adopted coarse-grain (CG) resolution. Coarse-grain representation 

affords larger system sizes and longer timescale simulations by reducing the slow degree of 

freedom essential in all-atom simulations. Mapping the atomistic system to CG allows use of a 

time step that is one order of magnitude larger; plus, the CG resolution reduces the number of 

particles to be tracked in a simulation by at least one additional order of magnitude. Therefore, CG 

resolution is often two orders of magnitude more efficient than atomistic systems. The loss of 

atomic resolution in the CG simulations can be recovered by reverse mapping the output to 

atomistic representation. 

Figure 2-2. The CLASP workflow. The systematic representation of CLASP inputs and outputs. 

The porin and solute coordinates are the required inputs, which then are processed by the 

C_setup.py python script to generate 𝑁 parallel umbrella sampling runs. The post simulation 

analysis scripts combine the 𝑁  trajectories to generate the free energy profile, solute-protein 

residue contact map, and solute orientational analysis. 
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Among the several CG approaches available, MARTINI force field has been used for a 

diverse set of biomolecules, including lipids, proteins, solvents, and ions.19, 47-54 In our previous 

work, we developed MARTINI force field parameters for outer membrane lipids for several 

pathogenic and nonpathogenic Gram-negative bacterial species.19, 53-54 In CLASP, we retained the 

molecular descriptors of the proteins and substrate (here the carbapenems) at the level of 

MARTINI CG that recommends mapping four adjoining nonhydrogen atoms to one CG bead. This 

approach, popularly employed in biomolecular simulations, preserves the bonded and nonbonded 

interactions of the atomistic system and circumvents oversimplification of the molecular 

properties. The MARTINI CG has the advantage of transferability of the force field parameters to 

a wide range of biomolecules and on-demand reverse mapping to atomistic resolution.52 In 

addition, we employed the PyCGTOOL,55 which semi-automates the parametrization process for 

obtaining CG  models for small molecules. 

The CLASP implementation is compatible with the GROMACS 5.0 simulation package.56 

The program uses a series of python scripts for building the input files, setting up parallel 

simulation runs, and performing post-simulation analysis. The workflow enables highly-

automated simulations (Figure 2-2). The CLASP workflow and implementation used are described 

as follows. 

CLASP input. The CLASP requires two inputs, the three-dimensional structure and 

coordinates of the bacterial outer membrane protein and the potential antibiotic or the solute 

molecule. 

Solute molecule. The MARTINI force field parameters from the literature will be adopted 

for small molecules when available. Otherwise, we recommend employing the PyCGTOOL.55 

This python script generates the molecule’s CG model parameters based on its atomistic dynamical 
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data. The automated script provides molecular topologies and CG parameters with high chemical 

fidelity to the atomistic structure. 

Bacterial outer membrane protein. The structure of the OccD3 bacterial protein is obtained 

from the Protein Data Bank. Missing residues are built via homology modeling using the 

standalone YASARA software57 or online SWISS-MODEL server.58 Next, the protein is 

embedded in a bacterial membrane and thermally equilibrated in the all-atom representation using 

standard MD packages or the CHARMM-GUI server.59 The equilibrated protein is then converted 

to CG resolution using the MARTINI approach. 

CLASP set up and production. In the setup stage, all systems are in the CG 

representation. The CG protein is embedded in CG bacterial lipids using Bacterial Outermembrane 

Figure 2-3. The CLASP simulation setup. The membrane embedded porin channel oriented 

parallel to the z-axis is divided into 𝑁  equidistant umbrella sampling windows. The probe 

molecule is inserted into each 𝑊𝑖  window. 
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Builder script (BOB.py),53-54 an in-house modified insane.py script60 that includes CG parameters 

for bacterial outer membranes. The protein is embedded in an asymmetric patch of the outer 

membrane lipids and is solvated with standard MARTINI water. The system’s energy is then 

minimized, followed by equilibration in the isothermal-isochoric (NVT) and isothermal-isobaric 

(NPT) conditions. The output of the NPT run is the starting structure for CLASP. 

In the next step, bacterial membrane is generated in the xy-plane and the porin is embedded 

in the membrane such that the porin channel is along the z-axis. The molecule’s permeation 

coordinate (𝑠)   is parallel to the z-axis, and the length of the porin channel from the extracellular 

region to the periplasmic region along 𝑠 is denoted by 𝐿𝑠 (Figure 2-3). The free energy profile 

along 𝑠 is generated by dividing 𝐿𝑠 into 𝑁 umbrella sampling windows (𝑊𝑖 ) with uniform spacing 

of  𝐿𝑠 𝑁⁄  nm. The solute molecule is inserted in each 𝑊𝑖  window, where the insertion coordinates 

are computed relative to the center-of-mass (COM) of the porin. Given, the hourglass shape of the 

porin, the COM lies in the middle of the porin channel. The location of the COM is considered 

𝑊𝑁 2⁄ , with an equal number of windows on either side. 

Next, the CLASP script generates 𝑁 separate folders, each with a unique location of the 

substrate molecule defined within 𝑊𝑖 , totaling the length 𝐿𝑠  along 𝑠 . Each folder is set up to 

execute energy minimization and US simulations independently. The 𝑁 jobs run concurrently on 

separate computer cluster nodes for maximum efficiency and shortest completion time. 

CLASP analysis. The CLASP outputs are four primary outputs from a CLASP run: 

Free energy profile. The potential of mean force (PMF) profile of the solute molecule’s 

transport from the extracellular to the periplasmic region is computed along the one-dimensional 

translocation coordinate (𝑠) .The C_PMF.py script combines the trajectories from the 𝑁 folders to 
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generate the PMF profile of the solute molecule. The PMF average profile with standard deviations 

were obtained using a GROMACS built-in utility. The detailed usage of the script is provided in 

the Supporting Information. 

Permeation barrier. the barrier height (BH) for the solute’s permeation is calculated by 

taking the difference between the maximum and the minimum energy points along 𝑠. Using the 

transition state theory as a first-order approximation of the solute translocation, we defined rate 

constant as 𝑘 = (𝑘𝐵𝑇 ℎ⁄ )𝑒𝑥𝑝(−𝐵𝐻 𝑅𝑇⁄ ), where 𝑘B  is the Boltzmann constant, R is the gas constant, 

and T is the temperature. 

Orientational analysis. The orientation of the solute molecule is quantified by defining the 

interatomic vector connecting head bead to the tail bead of the solute molecule, 𝑟 = 𝑟𝑇⃗⃗ ⃗⃗ − 𝑟𝐻⃗⃗⃗⃗  ⃗. 

Based on the angle 𝜃 that the unit vector �̂� =
𝑟

|𝑟|
 makes with the z-axis, we used 𝑑𝑧 = |𝑑| cos 𝜃 to 

determine in the orientation of the molecule, where 𝑑𝑧 ∈ [−1, 1]. If 𝑑𝑧 = 1, the molecule is 

orientated headfirst towards the translocation direction, and 𝑑𝑧 = −1 for tail first. If 𝑑𝑧 = 0, then 

the molecule lies in the xy-plane, perpendicular to the z-axis. 

Contact analysis. The interaction of the solute molecule with the protein residues is 

performed for all 𝑁 windows. A contact is defined to have formed between the solute and protein 

residue if the distance between any of their beads is within a 1.2 nm cut off. A contact receives a 

value of either 1 when formed or 0 when the contact is broken. The cumulative number of contacts 

made by the solute with each protein residue in 𝑁 windows is calculated. The residues are sorted 

from smallest to largest based on the total number of residue-solute contacts to identify the highest 

contacting residues (99th percentile). 
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Reverse mapping. The on-demand CG to atomistic reverse mapping is available to 

determine the atomistic level interactions of the solute molecule with the pore-lining residues.52 

2.4 Methods 

Carbapenem coarse graining. The MARTINI CG parameters for the carbapenem 

molecules were developed based on many-to-one mapping. PyCGTOOL was used to generate the 

CG coordinates and topologies for all solute molecules. Benchmarking of the CG parameters 

against the atomistic models was performed using the PyCGTOOL. The CG mapping of the 

carbapenem molecules are shown in Figure 2-4. The force field parameters of all six carbapenems 

are provided in Tables 2-2 – 2-7. 

Porin structure. The x-ray crystallographic structure of OccD3 was obtained from the 

Protein Data Bank (PDB ID: 3syb), and the missing residues were built using the SWISS-MODEL 

server. The structure was then optimized in atomistic representation using the CHARMM36 force 

field.61 The NVT and NPT simulations were performed for 200 ns each at T = 320 K. The point 

mutations in the OccD3 structure were generated using the CHARMM-GUI webserver.59 The 

mutated structures were then optimized using the same approach outlined above for the OccD3. 

Porin-membrane system. The CG mapping of the OccD3 was performed using 

martinize.py script. The MARTINIv2.1 force field parameters50 were used along with the 

ELNeDyn network49 constraint to maintain the porin’s secondary structure. The porin was inserted 

in a 10×10 nm2 patch of the P. aeruginosa membrane using the BOB.py script. The membrane’s 

outer leaflet consisted of P. aeruginosa’s lipid A and  1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine (DPPE) in 9:1 ratio and pure DPPE in the lower leaflet. The membrane was 

placed in a 10×10×12 nm3 simulation box and solvated with MARTINI water (9:1 of W:WF) and 

150 mM CaCl2. The molecular composition of the simulation box is provided in Table 2-8. 
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Figure 2-4. Atomistic to CG mapping for (a) biapenem, (b) doripenem, (c) ertapenem, (d) 

imipenem, (e) meropenem, and (f) panipenem showing the MARTINI bead type assignments 

along with positive and negative charges. The red bead, which is part of the β-lactam ring, denotes 

the head and the yellow bead, the farthest bead from the β-lactam ring, denotes the tail. 
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CG MD Simulation. The GROMACS 5.1.2 package56 was used for CG MD simulations. 

The system was energy minimized using the steepest-decent algorithm until the maximum force 

on any bead was below the tolerance parameter of 10 kJmol−1nm−1. This was followed by NVT 

and NPT equilibration for 0.02 µs and 2 µs, respectively. A 20 fs time step was used for the 

equilibration and production runs. The temperature was set to 320 K for all systems using the v-

rescale thermostat with τt = 1 ps. A semi-isotropic pressure coupling of 1 bar was maintained using 

Berendsen barostat62 with τp = 4 ps. Both the nonbonded van der Waals and electrostatics 

interaction cut offs were set to 1.2 nm. Periodic boundary conditions were applied in all three 

dimensions. 

CLASP production. A total of 𝑁 independent simulations were perfomed concurrently on 

separate computer nodes (Table 2-9). Within each window the simulations were performed in two 

steps. The first US run was performed for 0.2 µs using a 20 fs time step. The OccD3 protein and 

the solute molecule were position-restrained with a 1000 kJmol−1nm−2 force constant. In the second 

step, the US simulation was run for 1 µs with a 20 fs time step. The position restraint of the drug 

molecule was removed in this step with all other parameters maintained. The harmonic potential 

with a force constant of 3000 kJmol−1nm−2 was used. A cut off of 1.1 nm was used for both the 

long-range electrostatic and the nonbonded van der Waals interactions. The potential-shift-Verlet 

algorithm was applied to shift the van der Waals interactions beyond the cut off. The Coulombic 

interactions were calculated using the reaction-field algorithm. The temperature was maintained 

at 300 K using the v-rescale thermostat with τt = 1.0 ps. 

Analysis. Post simulation analyses were performed using CLASP python scripts. We 

computed the histograms of the US window along the translocation path (Figures S1-S6). The 
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CAVER plugin63 available in PyMOL was used for OccD3 channel analysis. Molecular 

visualization and graphics were generated using VMD,64 PyMOL,65 and YASARA.57 

2.5 Results and Discussion 

The CLASP simulations were employed to characterize and compare the permeabilities of 

six carbapenems— biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem—

through the wildtype OccD3 porin. The role of pore-lining residues involved in carbapenem 

translocation was further evaluated by site-directed mutagenesis of Y217 and F334 residues to 

alanine in the double mutant OccD3 (OccD3m) porin. The results provided detailed insight into 

the uptake mechanism and demonstrated the robustness of the CLASP method in capturing the 

effects of point mutations. 

2.5.1 Carbapenem uptake through OccD3 channel with characteristic PMF 

The PMF profile of each carbapenem molecule’s transport from the extracellular to the 

periplasmic region of the OccD3 porin was studied in the 𝑠 ∈ [0, 11] nm range. For clarity, in this 

discussion, the 𝑠 coordinate is subdivided into three sections—the extracellular region with the 

porin vestibule, 𝑠 ∈ [0 − 4.2] nm; the porin constriction region, 𝑠 ∈ [4.2 − 7.4]  nm; and the 

periplasmic region, 𝑠 ∈ [7.4 − 11.0] nm. 

In the extracellular region, the carbapenem molecule interacts freely with the porin loops 

and shows an energy minimum at the pore vestibule 𝑠 = 4.2 nm. Each carbapenem is different in 

molecular size (Table 2-1) and functional groups attached to the β-lactam ring (Tables 2-2 – 2-7), 

so free energy variations among the carbapenems are expected; however, stabilization before 

penetrating the porin channel is observed in all six cases (Figure 2-5). The free energy profile of 

all six carbapenems except doripenem show approximately 10 kcal mol−1 stabilization at 𝑠 = 4.5 
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nm. Beyond the extracellular vestibule, the free energy increases for all carbapenems until they 

reach the bottleneck. 

Table 2-1 Molecular weight (MW), barrier height (BH), and rate constant (k) of six carbapenems 

through OccD3 and OccD3m. 

 

 

 

 

 

 

 

A comparison of the free energy barrier for translocation through the OccD3 pore shows a 

range between 20-31 kcal mol−1 (Table 2-1). In OccD1, the translocation barriers for positively 

charged amino acid substrates vary between 5-10 kcal mol−1.21 Energy barriers are three to four 

times higher for permeation through OccD3 than OccD1, which is expected because OccD3 has 

more constrained channel and contains a unique N-terminal extension loop.34 

We observe a weak correlation between the magnitude of the energy barrier and the 

molecular size of the carbapenem molecule. Ertapenem is the largest carbapenem and has the 

highest BH = 31±2.8 kcal mol−1. Imipenem, which is the smallest carbapenem, has one of the 

smallest BH = 22±2.1 kcal mol−1. The similarly sized, biapenem and panipenem, have energy 

barriers of BH = 27±2.5 and 26±2.3 kcal mol−1, respectively. Meanwhile, doripenem, which is the 

second largest in terms of MW, has the lowest BH = 20±3.2 kcal mol−1. The results indicate that 

 

Antibiotic 
MW 

(Da) 

OccD3  OccD3m 

BH 

(kcal 

mol−1) 

k 

(s−1) 

 BH 

(kcal 

mol−1) 

k 

(s−1) 

Biapenem 350.4 27±2.5 1.4×10-7  15±2.1 7.6×101 

Doripenem 420.5 20±3.2 1.7×10-2  16±2.2 1.4×101 

Ertapenem 474.5 31±2.8 6.0×10-12  10±2.5 2.1×10-5 

Imipenem 299.4 22±2.1 1.1×10-4  16±1.6 1.4×101 

Meropenem 383.5 21±1.8 3.3×10-3  14±1.6 4.1×102 

Panipenem 339.4  26±2.3 7.5×10-7  12±2.2 1.2×104 
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the molecular size of the carbapenems is not the only criteria that determines the magnitude of the 

energy barrier. In a previous study, Soundararajan et al., reported that meropenem interacts more 

strongly with the OccD3 porin than imipenem using ion conductance measurements35; however 

Table 1 shows that both molecules have similar barrier heights. To investigate the differences in 

energy barriers, we evaluated the interactions of carbapenem molecule throughout the porin 

channel with emphasis on the bottleneck region. A detailed discussion of the carbapenem 

conformation at the bottleneck region of the pore is provided in Section 2.5.3. 

The rate constant (s−1) of the six carbapenems are shown in Table 2-1. Rate constants are 

calculated by assuming a first order transition state theory and are directly related to energy 

barriers. They are used to distinguish the relative rate and preference of carbapenems permeating 

through OccD3. Between ertapenem (BH = 31±2.8 kcal mol−1) and doripenem (BH = 20±3.2 kcal 

mol−1), which has the largest and smallest energy barriers, the rate constants are different by 

multiple orders of magnitudes. We further compare the rate constants of mutations, which will be 

discussed in Section 2.5.4. 

It is apparent from the thermodynamic that besides the molecular size of the translocating 

molecule, the orientation of the molecule in pore’s constriction region can also be crucial. For this 

purpose, we evaluated the orientation of the carbapenem molecule along  𝑠 ∈ [0 − 11.0] nm. The 

orientation profiles of the six carbapenems were somewhat similar in the extracellular and 

periplasmic regions. In all cases, the carbapenem adopted a wide range of orientations, indicated 

by the large deviation in the average 𝑑𝑧 values in both the extracellular region 𝑠 ∈ [0 − 4.2] nm 

and the periplasmic region, 𝑠 ∈ [7.4 − 11.0] nm (Figure 2-6). However, in the constriction zone, 

the solute molecule is restrained by the channel walls, which was manifest in small deviations in 

the 𝑑𝑧 values. 
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Figure 2-5. The PMF profiles of carbapenems through OccD3 and OccD3m. The comparison of 

(a) biapenem, (b) doripenem, (c) ertapenem, (d) imipenem, (e) meropenem, and (f) panipenem 

translocation through OccD3 (black line) and OccD3m (red line). The error bars calculated using 

the bootstrap analysis are marked in gray. The barrier heights (dashed lines) are marked in each 

panel. The translocation coordinate (s) is subdivided into outer membrane region (green), 

constriction zone (white) and periplasmic region (blue).  
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Figure 2-6. Orientational analysis of carbapenems along the translocation coordinate in OccD3. 

The variation in dz for (a) biapenem, (b) doripenem, (c) ertapenem, (d) imipenem, (e) 

meropenem, and (f) panipenem as a function of s. The mean dz values are denoted by the yellow 

dots, and the standard deviations are shown by the black bars. The 𝑠 coordinate is subdivided 

into outer membrane region (green), constriction region (white) and periplasmic region (blue).  
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2.5.2 Carbapenems make highest contact with bulky Y217 and F334 OccD3 

residues 

Using the molecular interaction data of the carbapenem molecules with the OccD3 

residues, we generated the contact maps. The contact map provides a percentile-based overview 

of contacts the molecule makes with each of the 452 OccD3 residues (Figure 2-7). All carbapenems 

have the same set of highest contact residues, namely Y169, Y217, Y326, H328, and F334 (Figures 

S7-S12). In fact, comparing the full contact map between all carbapenems, the most contacted 

residues (>80th percentile) are consistent. This reflects the dominant role of these residues in 

kinetics of carbapenem uptake. Besides, the importance of the charged D342 and R449 residues 

was shown by Soundarajan et al. in the ion-conductance experiments involving molecular uptake 

of imipenem and meropenem via OccD3 porin; the authors demonstrated that both mutations 

D342H (charge reversal) and R449A (charge neutralization) disturbed the translocation of 

imipenem and meropenem molecules.35 

Notably, in OccD1 carbapenem transporter, residues Y176, Y282, D307, Y305 and D295 

have been reported as the most probable pore-lining residues;21 the sequence alignment between 

OccD3 and OccD1 (Table 2-10) shows that Y176 and Y282 in OccD1 match Y217 and Y326 (99th 

percentile residues) in OccD3, and D307, Y305 and D295 in OccD1 match D342, L340 and S331 

(90th percentile residues) in OccD3. These results confirm that both OccD3 and OccD1 are 

carbapenem transporters. 
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Figure 2-7 Interaction of meropenem with OccD3 porin channel. (a) Meropenem-OccD3 contact 

map, and (b) structure of the OccD3 (cartoon representation, gray) along with key pore-lining 

residues (stick model) that line the channel (orange, surface representation). 

All six carbapenems make contacts with a series of charged arginine and lysine residues 

(Figures S7-S12), which constitutes the basic ladder. These observed interactions with the charged 

residues are consistent with the earlier reports involving uptake of substrates via OccD3 and 
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OccD1 porins. The presence of the basic ladder is considered crucial in providing the Coulombic 

interactions for the substrate to translocate through the porin channel. 

Previous experimental and computational studies have focused on evaluating the role of 

charged residues in OccD3 and OccD1 channels.35, 40 However, the steric effect of bulky pore-

lining residues in OccD3 channel have not been investigated. Using CLASP, we explore the effect 

of two bulky residues—F334 and Y217—that make the first and second highest frequency contacts 

in all six carbapenems. As shown in Figure 2-7b, Y217 lies at the tip of the constriction zone on 

the extracellular side. The F334 is the most important hydrophobic residue in OccD3 that contacts 

all six carbapenems in their highest energy structures. We hypothesized that a double mutation of 

bulky residues Y217 and F334 to alanine would increase channel diameter and lower the energy 

barrier to carbapenem permeation. We also expect that these mutations will not cause the 

carbapenem to adopt a new pathway in the channel. 

Remarkably, in OccD3m, the top residue contacts (99th percentile) for all six carbapenems 

are identical as well (Y169, N172, R173, Y326, S331), and the top 90th percentile contacts are 

fairly consistent (Figure S7-S12). Contact maps of OccD3 and OccD3m have similar most-

contacted residues regions, which confirms the presence of a single pathway through the porin. 

The double mutation shows that the two bulky residues play a significant role in creating the 

bottleneck in the porin pathway. The discussion on the mechanism of carbapenem translocation 

through OccD3m is provided in Section 2.5.4. 
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2.5.3 Conformation of the carbapenem at the bottleneck in the OccD3 

channel influence the energy barrier to translocation 

The orientational and contact map analysis of the carbapenem molecules in the OccD3 

channel indicates the strong interplay between the carbapenem structure and the pore-lining 

residues in determining the energy barrier to the translocation. The chemical groups attached to 

the β-lactam ring in different carbapenems impact the conformational flexibility of the molecule, 

which can be an important factor at the pore’s bottleneck region. 

For this purpose, we reverse mapped the carbapenem molecule and porin from CG to 

atomistic resolution and evaluated their molecular interactions in the bottleneck conformation. In 

biapenem, the molecule is oriented tail first with 𝑑𝑧 = −1.0 at 𝑠 = 5.4 nm, and then fliped to 𝑑𝑧 =

0.9 after the bottleneck (Figure S13). At 𝑠 = 5.4 nm, biapenem showed interactions with Y169, 

N172, F334, and M339. These interactions were also observed as high frequency contacts (90th 

percentile) in the contact map (Figure S7). 

Doripenem was in a folded-state with the β-lactam ring pointing towards the periplasm at 

𝑠 = 6.1  nm, which corresponds to the bottleneck region (Figure S14). The contacting pore 

residues are N163, P165, Y169, and F334; the former three residues can be found from the high 

(90th percentile) contacts and F334 belongs to the group of the highest (99th percentile) frequency 

contacts (Figure S8). 

The ertapenem molecule is fully extended and is aligned with its tail pointing towards the 

periplasm (Figure S15). This orientation is maintained for much of the constriction zone for 

𝑠 from 4.5 to 6.5 nm beyond which the molecule eases out of the fixed orientation as it diffuses 

out to the periplasmic region. As expected, ertapenem is the largest carbpenem we studied (MW 
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474.5 Da), and it does experience the highest energy barrier to the translocation. At 𝑠 = 5.7 nm, 

the molecule makes multiple contacts with pore-lining residues. These residues include the bulky 

Y169 and F334 that constrict the channel, and polar residues N172, S331, and S338 that provide 

stabilization. 

Imipenem is the smallest of the six carbapenems and is able to translocate through the pore 

in an oblique orientation with 𝑑𝑧 = −0.5 (Figure S16). The primary residue contacts at the highest 

point in energy profile are I170, S331, and F334, which unlike the other five carbapenems, does 

not include Y169. As a result of the small size of imipenem, fewer bulky contacts are experienced 

and therefore, reducing the energy barrier to translocation. 

Meropenem has an orientational profile similar to imipenem. The contacting residues at 

𝑠 = 5.6 nm include the bulky Y169 and F334 residues, nonpolar I170, polar S168, and charged 

D171 (Figure S17). The orientation of the molecule causes it be in contact with residues that have 

high variability in their side chain size and polarity. Despite the slightly bigger size of meropenem 

from the six carbapenems, it has a quite small energy barrier. 

Panipenem is a relatively small carbapenem (MW 339 Da) and it underwent only a few 

orientational flips as it navigated the constriction zone. At the highest energy point, the molecule 

adopted an L-shaped geometry with 𝑑𝑧 = 1.0 (Figure S18). The contacting residues include four 

bulky groups Y169, Y217, Y326, F334, and polar D171. 

This work demonstrates that the differences in the carbapenem orientation, contacting 

residues, and location of the bottleneck along the translocation path are the contributing factors to 

the varibality in the energy barrier and the translocation rates. This detailed analysis is possible 
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due to the robustness of the CLASP alogirthm that can provide the on-demand reverse mapped 

structure of the simualtion system at atomistic-level precision. 

2.5.4 Carbapenems have lower permeation barrier through OccD3m 

The free energy profile of each carbapenem through OccD3m (Figure 5, red lines) show 

lower barriers than through OccD3. The barrier heights and rate constants results of carbapenems 

via OccD3m and OccD3 channels are provided in Table 2-1. 

Interestingly, the largest change in barrier height for translocation occurred in ertapenem 

(ΔBH = 21 kcal mol−1), the largest carbapenem in the group studied. In contrast, one of the smallest 

changes in all six carbapenems occurred with imipenem (ΔBH = 6 kcal mol−1), the smallest 

carbapenem in the group. A close up view of ertapenem's molecular interactions with OccD3 and 

OccD3m at 𝑠 = 5.8 nm, the highest energy point, reveals the reason for the change in free energy 

Figure 2-8. Comparison of reserve-mapped atomistic structure and orientation of ertapenem 

in the bottleneck region, 𝑠 = 5.8 nm of (a) OccD3 and (b) OccD3m channel. The contacts 

the molecules make with the pore-lining residues in their highest energy conformation. The 

porin is shown in ribbon representation (blue to red from N-term to C-term) and ertapenem 

is shown as sticks (C cyan; O red; H white; S gold; and N blue). The pore-lining residues are 

shown in stick representation Y217 and A217 (C green), and F334 and A334 (C orange); the 

other atoms have same color scheme as in ertapenem. 
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(Figure 2-8). The minimum in OccD3m is possible because the large ertapenem molecule is 

stabilized by the added volume created by concurrent Y217A and F334A mutations; none of the 

other five carbapenems were large enough to experience this dual volume increase. 

Furthermore, the orientational profile comparison of the six carbapenems through OccD3 

and OccD3m supports our hypothesis that Y217 and F334 influence the translocation behavior. 

The carbapenem orientational analysis for translocation through the OccD3m pore shows a higher 

number of flips in the constriction region (Figure S19). The widening of the pore provides small 

pockets for the molecules to orient in different conformations as they navigate the translocation 

coordinate. 

2.6 Conclusions 

Here we report the developement of a new computational screening platform called 

CLASP that is designed to accelerate the antibiotic discovery process. This computational platform 

provides an automated screening of small molecules by quantifying their permeabilities through 

the bacterial outer membrane porins. The CLASP outputs comprehensive thermodynamic data, 

which includes, potential of mean force profile, energy barrier, translocation rate constant, contact 

analysis of the molecule with the pore-lining residues, orientation analysis of the molecule within 

the porin, and the overall mechanism of the antibiotic uptake. Additionally, the fast turnaround 

times will enable the establishment of structure-property relationships among molecular species 

that have high bacterial membrane permeability. 

In this first application of CLASP, we demonstrate the permeability profile of six, well-

established antibiotics from the carbapenem family through P. aeruginosa‘s OccD3 channel. The 

proof-of-concept study was undertaken to use the known literature and illustrate the permeability 
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profiles for biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem. The results 

show excellent agreement with the barrier heights, the key residues, and the translocation rate 

constants of the drug molecules. We were able to identify critical pore-lining residues in the OccD3 

channel that provide steric gating. Mutation of these residues to less bulky groups enhanced the 

predicted rates. Moreover, the wall-clock time to simulate one antibiotic molecule was less than 

two hours based on the current computational resource. 

In conclusion, our goal was to advance strategies that will facilitate the identification of 

new antibiotics. This work has enabled comprehensive characterization of antibiotic uptake 

through bacterial envelope. In the future, we  plan to employ CLASP to screen large natural 

compound libraries to identify the new potential antibiotics. 
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2.8 Supporting Information 

The contents include description of the CLASP python scripts, coarse grain-mapping of 

the six antibiotics, simulation setup details, contact maps, and reversed mapped orientational 

analysis of the antibiotics in OccD3 channel, and orientational analysis of carbapenems along the 

translocation coordinate in OccD3m. 

2.8.1 Description of the CLASP python scripts 

The CLASP program is designed to facilitate high-throughput screening of small molecule 

solutes that have the potential of being antibiotic drugs. The solute molecules can include 

compounds available in natural compound libraries and other synthetic compounds that can be 

transported into the bacterial periplasm through the porin channels. The salient features of CLASP 

program are: 

− automates the tedious umbrella sampling simulation set up. The user provides the desired 

number of umbrella sampling windows (𝑁)  and length  (𝐿𝑠)  of the translocation 

coordinate, which roughly corresponds to the length of the porin channel. 

− minimizes the amount of effort to prepare the simulation set up. Only structure of the solute 

molecule and the porin need to be provided. 

− streamlines the input and output workflow. All programs are executed by simple command 

line. No additional programming is required. CLASP offers user-friendly organization of 

output as separate labeled folders of the simulation runs will be generated and well labeled. 

All necessary topologies and parameter files needed for the simulation are added 

automatically to the simulation folders. 
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− accelerates the simulations of transport mechanisms. CLASP reaches 3 µs/day based on 

the current resources. 

− analyses simulation results as CLASP provides a variety of outputs, including the potential 

of mean force, transport barriers, molecular orientations during translocation, and contact 

map of molecule-protein residues, etc. 

The description of the input and output scripts are as follows: 

C_setup.py generates umbrella sampling configurations. 

The C_setup.py script takes the membrane-embedded, solvated, and equilibrated porin 

structure as input along with two user defined parameters: 

(a) length, 𝐿𝑠, of the translocation coordinate (𝑠), which roughly corresponds to one and a 

half times of the length of the porin channel; default value = 11 nm 

(b) 𝑁, the number of umbrella sampling (US) windows, default value is 100. The user can 

change 𝑁 to check for convergence. 

The C_setup.py script then prepares 𝑁 independent US windows with spacing of  𝐿𝑠 𝑁⁄  

nm. In each window, 𝑊𝑖 , the script inserts the probe substrate molecule using gmx insert-

molecules utility available in GROMACS. The coordinates for the insertion of substrate 

molecule in each window is computed relative to the center-of-mass (COM) of the porin. 

Given the hourglass shape of the porin, the COM lies in the middle of the porin channel. 

The location of the COM is considered 𝑊𝑁 2⁄ , with equal number of windows on either 

side. 

Next, the C_setup.py script generates 𝑁 separate folders, each with unique location of the 

substrate molecule defined within 𝑊𝑖 , totaling the length 𝐿𝑠  along the translocation 
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coordinate. Each folder is set up to execute energy minimization and umbrella sampling 

simulations independently. The 𝑁 jobs run concurrently on separate nodes for maximum 

efficiency and shortest run completion times. 

C_PMF.py generates potential of mean force profile along the transport coordinate. 

The C_PMF.py script combines the 𝑁 umbrella sampling simulation run-input files (.tpr 

files) into one file (tpr.dat) and combines the 𝑁 umbrella sampling simulation output files 

(*f.xvg files) into one file (fxvg.dat). The two combined files are used as the two input files 

with gmx wham, a GROMACS built-in utility, along with the error analysis (bootstrap) to 

generate the potential of mean force plot. Bootstrap analysis is the error analysis available 

from the gmx wham program to estimate statistical uncertainty. In this study, 200 

bootstraps were used as recommended from the GROMACS manual to calculate the 

standard deviations. 

C_Dz.py generates the orientational analysis of the molecule along the transport coordinate.  

The C_Dz.py script reads the x-, y- and z-axis coordinates of the solute molecule during 

the transport process using gmx distance, a built-in Gromacs utility with one of its options, 

-oxyz. Then the script extracts the z-component data and calculates the average and the 

standard deviation. Finally, the z component is converted to the molecular orientation, 

which is explained in the main paper. 

C_contact.py generates the contact map of the molecule with the protein residues along the 

transport coordinate. 
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The C_contact.py script calculates the cumulative number of contacts made by the solute 

molecule with each protein residue throughout the whole trajectory as described in the 

main paper. Then the script plots the contact map based on the numbers. 

In summary, the CLASP is designed to work with GROMACS 5.0 package and later. The 

CLASP is developed to support outer membrane porins of all bacterial species with porin, provided 

the porin structure is available. The porins can be embedded in lipopolysaccharide-rich, 

asymmetric lipid membrane using the BOB.py script, which currently has MARTINI coarse-

grained parameters of ten Gram-negative bacterial lipids. The CLASP can be easily extended to 

include new bacterial species once their lipid parameters become available. 
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2.8.2 Supporting Tables 

 

Figure 2-9 Biapenem 

Table 2-2 CG mapping and parameters for Biapenem 

Bond R(nm) Kbond (kJ mol-1 nm-2) 

1-2 0.297 5000 

1-3 0.420 5000 

2-3 0.332 5000 

2-4 0.295 5000 

3-4 0.334 5000 

3-5 0.464 5000 

5-6 0.252 5000 

 

Angle θ (deg) Kangle (kJ mol-1) 

1-2-4 145 50 

1-3-4 96 50 

1-3-5 148 50 

2-3-5 112 50 

4-3-5 67 50 

3-5-6 152 50 
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Figure 2-10 Doripenem 

Table 2-3 CG mapping and parameters for Doripenem 

Bond R(nm) Kbond (kJ mol-1 nm-2) 

1-2 0.292 5000 

1-3 0.422 5000 

2-3 0.329 5000 

2-4 0.300 5000 

3-4 0.334 5000 

3-5 0.371 5000 

5-6 0.247 5000 

6-7 0.324 5000 

 

Angle θ (deg) Kangle (kJ mol-1) 

1-2-4 146 50 

1-3-4 96 50 

1-3-5 150 50 

2-3-5 129 50 

4-3-5 84 50 

3-5-6 137 50 

5-6-7 134 50 
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Figure 2-11 Ertapenem 

Table 2-4 CG mapping and parameters for Ertapenem 

Bond R(nm) Kbond (kJ mol-1 nm-2) 

1-2 0.268 5000 

1-3 0.566 5000 

2-3 0.304 5000 

2-4 0.325 5000 

3-4 0.339 5000 

4-5 0.362 5000 

5-6 0.279 5000 

6-7 0.385 5000 

7-8 0.312 Constrained 

 

Angle θ (deg) Kangle (kJ mol-1) 

1-2-3 104 50 

1-3-4 56 50 

2-4-5 128 50 

3-4-5 87 50 

4-5-6 119 50 

5-6-7 134 50 

6-7-8 103 50 
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Figure 2-12 Imipenem 

Table 2-5 CG mapping and parameters for Imipenem 

Bond R(nm) Kbond (kJ mol-1 nm-2) 

1-2 0.293 5000 

1-3 0.434 5000 

2-3 0.316 5000 

2-4 0.301 5000 

3-4 0.305 5000 

3-5 0.494 5000 

 

Angle θ (deg) Kangle (kJ mol-1) 

1-2-4 149 50 

1-3-4 99 50 

1-3-5 134 50 

2-3-5 122 50 

4-3-5 85 50 
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Figure 2-13 Meropenem 

Table 2-6 CG mapping and parameters for Meropenem 

Bond R(nm) Kbond (kJ mol-1 nm-2) 

1-2 0.297 5000 

1-3 0.410 5000 

2-3 0.329 5000 

2-4 0.303 5000 

3-4 0.334 5000 

3-5 0.494 5000 

5-6 0.343 5000 

 

Angle θ (deg) Kangle (kJ mol-1) 

1-2-4 143 50 

1-3-4 99 50 

2-4-5 114 50 

3-4-5 55 50 

4-5-6 106 50 
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Figure 2-14 Panipenem 

Table 2-7 CG mapping and parameters for Panipenem 

Bond R(nm) Kbond (kJ mol-1 nm-2) 

1-2 0.293 5000 

1-3 0.434 5000 

2-3 0.316 5000 

2-4 0.301 5000 

3-4 0.334 5000 

3-5 0.403 5000 

5-6 0.311 5000 

 

Angle θ (deg) Kangle (kJ mol-1) 

1-2-4 146 50 

1-3-4 99 50 

1-3-5 138 50 

2-3-5 143 50 

4-3-5 103 50 

3-5-6 142 50 
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Table 2-8 Composition of the system with embedded OccD3 protein 

Antibiotic 
outer  inner  W  Ions 

LPS DPPE  DPPE  W WF  Ca2+ Na+ 

Biapenem 54 6  141  5625 625  58 1 

Doripenem 54 6  141  5625 625  58 1 

Ertapenem 54 6  141  5625 625  58 1 

Imipenem 54 6  141  5625 625  58 1 

Meropenem 54 6  141  5625 625  58 1 

Panipenem 54 6  141  5625 625  58 1 
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Table 2-9 Values of Umbrella sampling windows (N) used for the six carbapenem  simulations 

Antibiotic N value 

Biapenem 400 

Doripenem 400 

Ertapenem 400 

Imipenem 400 

Meropenem 400 

Panipenem 400 

 

An optimal number for N depends on both the size of the drug molecule, and the length 

of the reaction coordinate. A poor sampling will appear as a gap area in the histogram. When N 

is inadequate, there will be gaps in the histograms. The user needs to adjust the value of N to 

achieve better sampling along the entire reaction coordinate. In this study, 100, 200, and 400 for 

N were tested and the data was converged at 200. In the interest of maximum statistical data, the 

results for N = 400 are provided.  
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The black dots denote identity. The key pore-lining residues identified in OccD3 are 

marked in blue outlines. 

Table 2-10 Pairwise sequence alignment of OccD3 and OccD1 
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2.8.3 Supporting Figures 

 

Figure S 1 Histogram of Biapenem with OccD3 
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Figure S 2 Histogram of Doripenem with OccD3 
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Figure S 3 Histogram of Ertapenem with OccD3 
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Figure S 4 Histogram of Imipenem with OccD3 
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Figure S 5 Histogram of Meropenem with OccD3 
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Figure S 6 Histogram of Panipenem with OccD3 
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Figure S 7 Contact map of Biapenem with (a) OccD3 and (b) OccD3m 
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Figure S 8 Contact map of Doripenem with (a) OccD3 and (b) OccD3m 
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Figure S 9 Contact map of Ertapenem with (a) OccD3 and (b) OccD3m 
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Figure S 10 Contact map of Imipenem with (a) OccD3 and (b) OccD3m 
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Figure S 11 Contact map of Meropenem with (a) OccD3 and (b) OccD3m 
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Figure S 12 Contact map of Panipenem with (a) OccD3 and (b) OccD3m 
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Figure S 13Reserve mapped atomistic structure and orientation of Biapenem in the (a) OccD3 

channel and the (b) contacts the molecule makes with the pore-lining residues in the highest energy 

conformation at s=5.4 nm. 
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Figure S 14 Reserve mapped atomistic structure and orientation of Doripenem in the (a) OccD3 

channel and the (b) contacts the molecule makes with the pore-lining residues in the highest energy 

conformation at s=6.1 nm. 

 

  



 

 

 66  

 

 

Figure S 15 Reserve mapped atomistic structure and orientation of Ertapenem in the (a) OccD3 

channel and the (b) contacts the molecule makes with the pore-lining residues in the highest energy 

conformation at s=5.7 nm. 
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Figure S 16 Reserve mapped atomistic structure and orientation of Imipenem in the (a) OccD3 

channel and the (b) contacts the molecule makes with the pore-lining residues in the highest energy 

conformation at s=5.9 nm. 
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Figure S 17 Reserve mapped atomistic structure and orientation of Meropenem in the (a) OccD3 

channel and the (b) contacts the molecule makes with the pore-lining residues in the highest energy 

conformation at s=5.6 nm. 
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Figure S 18 Reserve mapped atomistic structure and orientation of Panipenem in the (a) OccD3 

channel and the (b) contacts the molecule makes with the pore-lining residues in the highest energy 

conformation at s=6.0 nm. 
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Figure S 19 Orientational analysis of carbapenems along the translocation coordinate in OccD3m. 

The variation in d_z for (a) biapenem, (b) doripenem, (c) ertapenem, (d) imipenem, (e) 

meropenem, and (f) panipenem as a function of s. The mean d_z valued are denoted 
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FINGERPRINTING PLASMA MEMBRANE 

LIPIDOME OF HUMAN RED BLOOD CELLS USING 

COMPUTATIONAL MODELING TECHNIQUES 
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3.1 Abstract 

Although asymmetry in plasma membrane leaflets is well-established, the comprehensive 

understanding of this asymmetry in the physicochemical properties and biological function of the 

membrane is lacking. Here we report a molecular-level description of the human red blood cell 

(RBC) plasma membrane that replicates the experimentally determined composition of the lipid 

families that constitute the exoplasmic and cytoplasmic leaflets. Cholesterol exhibits an affinity 

for sphingomyelin lipids resulting in a 5:3 distribution between leaflets in favor of the exoplasmic 

leaflet (EL) leading to the formation of nanodomains. On the other hand, the cytoplasmic leaflet 

(CL) lacks nanodomains due to the presence of fewer saturated lipids. With the facilitation of 

cholesterols, EL containing more saturated lipids is more densely packed comparing to CL. We 

further illustrated this observation with several characterization methods, including Voronoi 

tessellation, lipid order parameter, and leaflet density map. Furthermore, we performed thermal 

annealing simulations to study temperature-triggered membrane asymmetry properties. 

Interestingly, cholesterols flip between the leaflets at an increasing rate while the overall 

distribution maintains the same. We noticed that the membrane lipids can be capable of  tolerating 

moderate temperature changes from the environment. In summary, fingerprinting the RBC plasma 

membrane lipidome elucidates the complex relationships among different lipid families in 

conferring asymmetric properties to the membrane. 
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3.2 Introduction 

Advances in membrane lipidomics have revealed a rich chemical diversity and leaflet 

asymmetry in eukaryotic cells.66-73 These observations contrast to the rudimentary fluid-mosaic 

model of cell membranes that depicted the membrane as a simple mixture of lipids that 

accommodated membrane proteins.74-75 Besides being a cell's first line of defense, the plasma 

membrane is a highly functional interface where many signal transduction events occur mediated 

via the peripheral and membrane-embedded proteins.76-80 The plasma membrane leaflet 

asymmetry is evident in various eukaryotic cells—red blood cells (RBCs), platelets, and neuronal 

cells. 

The lipid diversity manifests in two ways: (i) chemical structure of the lipids—charge, and 

type of the headgroups, length of the acyl chains, and the number and location of double bonds in 

the acyl chain backbone; and (ii) compositional diversity—the proportion of lipids in membrane 

leaflets.81 These variations confer each leaflet its distinct biophysical property to interface with the 

cell's external and internal environment.69-70 Alteration in leaflet composition can lead to a loss in 

cell function and even apoptosis.70, 82 

A recent study reported human RBC plasma membrane's leaflet asymmetry and distinct 

compositions of the exoplasmic and cytosolic leaflets.83 The results showed that compared to the 

cytosolic leaflet (CL), the exoplasmic leaflet (EL) is more densely packed and rich in lipids with 

a higher percentage of saturated lipids. In particular, the EL is composed of phosphatidylcholine 

(PC), sphingomyelins (SM), and a small percentage of phosphatidylserine (PS) and 

phosphatidylethanolamine plasmalogen (PEP). In contrast, the CL has higher lipid head group 

diversity, including phosphatidylethanolamine (PE), PEP, PS, PC, SM, and phosphatidylinositols 

(PI). Although cholesterol was reported in both leaflets, the experimental analysis did not directly 
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provide the cholesterol distribution.83 The detailed lipid distribution within the major lipid families 

is reproduced in Figure 3-1. 

 

Despite the evidence of plasma membrane leaflet asymmetry, a comprehensive 

understanding of the RBC membrane leaflet's physicochemical properties and biological function 

is lacking. The unique lipid composition of each leaflet impacts the membrane's biophysical 

properties: cholesterol distribution (flip-flop rate and domain formation); membrane density (area 

per lipid); surface charge (lipid headgroup distribution); membrane protein distribution (protein 

Figure 3-1. RBC plasma membrane composition distribution in exoplasmic leaflet and 

cytoplasmic leaflet. Lipids separated by category, phosphatidylcholine (PC, cyan), sphingomyelin 

(SM, dark cyan), phosphatidylserine (PS, red), phosphatidylethanolamine (PE, blue), 

phosphatidylethanolamine plasmalogen (PEP, yellow), and phosphatidylinositol (PI, orange). 

Lipid species annotated as (total number of carbon atoms in the acyl chain):(total number of double 

bonds in acyl chains);(total number of hydroxyl groups in the long acyl chain). 
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hydrophobic thickness and shape); and membrane protein's post-translational modifications (CL 

versus EL). 

Several computational studies have focused on the structure and dynamics of model cell 

membranes with variable lipid complexities and compositions.84-101 Ingólfsson et al. modeled an 

idealized plasma membrane consisting of 63 different lipid species that were asymmetrically 

distributed across the two leaflets.91 Other computational studies have investigated asymmetric 

cholesterol distribution in the lipid bilayers.102-108 A recent study correlated cholesterol distribution 

with the leaflet's lipid order; the more ordered the leaflet, the higher its cholesterol concentration—

the type of lipids in the leaflet influence the cholesterol distribution and the flip-flop rate between 

the leaflets.108 The model membranes have been foundational in deciphering molecular level lipid-

lipid interactions. 

However, the human RBC plasma membrane lipidome is more complex than an idealized 

model membrane previously investigated by computational techniques. The recently reported 

RBC membrane lipidome's unique feature is the highly saturated PC and SM lipids, which 

constitute ~56 mol% of the EL.83 The abundance of these lipid acyl chains and their molecular 

interplay within the EL and lipids of the opposing CL remains unexplored. 

Here, we investigate the structural and compositional diversities in RBC membrane leaflets 

using molecular dynamics at the coarse-grained (CG) resolution. We employed the Martini force 

field parameters,47, 50, 113 which have been widely used to investigate biomembranes19, 51, 53-54, 94, 

108, 114 and proteins.50-51, 108, 115-121 We modeled a subset of SM, PE, PEP, and PI lipids unavailable 

in the Martini force field. The results show the membrane asymmetry in terms of the lipid order 

parameters in each membrane leaflet, cholesterol distribution, leaflet densities, and membrane 
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thickness. The methods used and the results of the simulations are provided in sections 3.3 and 

3.4, respectively. 

3.3 Methods 

Martini Force Field Parameters. The Martini CG parameters are based on a many-to-

one mapping scheme, in which four neighboring non-hydrogen atoms are mapped into one CG 

bead.47-48, 50, 52, 113 Martini has some flexibility to adopt a three-to-one or five-to-one mapping 

scheme, if required, to preserve some properties in the chemical structures. The RBC membrane 

constitutes of several lipids (Table S1) with the following lipid families: PC (PIPC, PAPC, POPC, 

and DPPC); SM (DPSM, PLSM, and PNSM); PEP (PEP1 and PEP2); PE (POPE, PUPE, and 

PEPE); PS (PAPS); and PI (PIP2). 

The Martini force field parameters are available for most of the RBC membrane lipids 

(PIPC, PAPC, POPC, DPPC, DPSM, PNSM, POPE, PUPE, PAPS, and CHOL). For the remaining 

lipids, the parameters were constructed using the Martini headgroup and acyl chain bead types. 

Unlike the available PE lipids, the PEP lipids possess a vinyl-ether linkage at the sn-1 position 

instead of an ester linkage and an ester linkage at the sn-2 position,122 for which Martini parameters 

had to be developed. The parameter sets for the newly developed lipids—PLSM, PEP1, PEP2, 

PEPE, and PIP2 (Table 3-2 – 3-6) are available for download from our research website. 

Lipid Membrane. A 30×30 nm2 patch membrane mimicking the human RBC plasma 

membrane composition was constructed in the CG presentation using a locally 

modified insane.py script.60 The newly developed lipids are included in this modified insane.py 

script. The membrane EL and CL consisted of distinct lipid compositions. The membrane was 
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placed in a 30×30×15 nm3 simulation box and solvated with standard Martini water (9:1 of W:WF) 

and 150 mM NaCl. The molecular composition of the simulation box is provided in Table 3-7. 

CG MD Simulations. The GROMACS 5.1.2 package56 was used for all MD simulations. 

The system was energy minimized until the maximum force on any bead was below the tolerance 

parameter of 10 kJmol−1nm−1. The minimization was followed by equilibration in the isothermal-

isochoric (NVT) conditions for 25 ns, followed by a two-step isothermal-isobaric NPT (NPT1 and 

NPT2) equilibration for 30 and 45 ns, respectively. Position restraints were used at lipid PO4 

headgroup beads in NVT, NPT1, and NPT2 with a force constant set at 100, 10, and 5 kJmol−1nm−2, 

respectively. A 20-fs time step was used for the equilibration and production runs. The temperature 

was maintained at 300 K for all systems using the v-rescale123 thermostat with τt = 1 ps. A semi-

isotropic pressure coupling of 1 bar was maintained using Parrinello-Rahman barostat124 with τp = 

8 ps. Both the nonbonded van der Waals and the electrostatic interaction cut-offs were set to 1.1 

nm. The potential-shift-Verlet algorithm was applied to shift the van der Waals interactions beyond 

the cut-off. The Coulombic interactions were calculated using the reaction-field algorithm. 

Periodic boundary conditions were applied in all three dimensions. All position restraints were 

removed in the production runs. Flat-bottomed position restraints were applied to the phosphate 

beads of the lipid at 2.5 nm above and below the membrane with force constant of 1000 

kJmol−1nm−2. The simulations were performed in triplicates, each for five microseconds, 

determined by the convergence of the mixing parameters (Figures 3-8 – 3-14). Thermal annealing 

simulations were performed from 280 K to 320 K with 5 K interval; each temperature step was 

equilibrated for 500 ns. 
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3.4 Results and Discussion 

3.4.1 Plasma membrane lipid families confer distinct physicochemical 

properties to the EL and CL leaflets 

The physicochemical properties of the RBC membrane were evaluated based on lipid-lipid 

interactions among the different lipid families (Figure 3-17). The lateral assembly of a lipid within 

the family (self-association) or with other lipid families (co-localization) was determined in two 

ways—local area density and lipid mixing parameters. The local area density was computed for 

each lipid family in a leaflet and is represented by the Voronoi plots.125 If the area density of two 

or more lipid families coincided in a region, it suggested co-localization. In addition, if the area 

density was contiguous over an extended patch of the membrane, it indicated domain formation. 

On the other hand, the lipid mixing parameters provided a comparison of a lipid's affinity to 

establish self and cross interactions among various lipid types (Section 3.7.1). For example, in a 

well-equilibrated, homogenous lipid membrane, each lipid type will have an equal representation 

of all other lipids within its interacting distance. Conversely, a domain-forming lipid will exclude 

different lipid types from its interaction radius to the greatest extent possible. 

The SM and PC families, key lipid families in the RBC membrane’s EL, exhibit a 

heterogeneous lipid distribution (Figure 3-15). The SM lipids tend to self-associate and co-localize 

with cholesterol to form nanodomains. These nanodomains do not extend more than 3-4 nm and 

are separated by PC lipids (Figure 3-2a). The SM’s tendency to form nanodomains is supported 

by the mixing parameters analysis. SM lipids have the highest proportion of self-association (44%) 

followed by a mixing affinity with cholesterol (30%) and PC (22%). The other lipid families 
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collectively represent <4% mixing. The SM concentration in the CL is negligible to form clusters 

(Figure 3-2a). 

 

Figure 3-2. Voronoi tessellation of (a) SM, (b) PC, (c) PS, and (d) PEP lipids in the EL (left panel) 

and CL (center panel). The lipid density varies from high (darker shades) to low (lighter shades).  

The mixing parameters (right panel) of the lipid within its family and with other lipid families is 

shown in the donut charts. The name of each reference lipid is in the center of its respective donut. 

Lipid families that have low mixing (< 3%) with the reference lipid are omitted for clarity. 
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The PC lipids self-associate to a lesser extent than the SM. As a result, the PC lipids in the 

EL fill the area not occupied by the SM nanodomains leading to some local clustering (Figure 3-

2b). The PC clustering in the CL is characteristically distinct from the EL; here the PC lipids are 

much more dispersed due to the lack of SM nanodomains in the CL and lower mole fraction. The 

remaining lipid families in the EL have a less significant contribution to the exterior surface of the 

RBC. 

The negatively charged PS lipids have a self-associating affinity, but their clustering is not 

continuous to form domains (Figure 3-15). The PS lipids have almost equal mixing with PC, PE, 

and PEP lipids as indicated by their mixing parameters (Figure 3-2c). 

The PE lipids are exclusively in CL and heterogeneously distributed with minimal self-

association or clustering. The PE molecules do not exhibit affinity to any specific lipid family in 

the CL (Figure 3-3a). The PEP is a subclass of the PE lipid that shares the same headgroup but has 

a vinyl ether linkage for one of its carbon chains. The area density and mixing parameters mimic 

the PE lipid properties in the CL (Figure 3-2d). PEP constitutes less than 3% of the EL lipids and 

similar to PS, lacking the nanodomain formation in the EL (Figure 3-2d). 
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Figure 3-3 Voronoi tessellation of (a) PE and (b) PI lipids in the CL. The lipid density varies from 

high (darker shades) to low (lighter shades).  The mixing parameters of the lipid within its family 

and with other lipid families is shown in the donut charts. The name of each reference lipid is in 

the center of its respective donut. Lipid families that have low mixing (< 3%) with the reference 

lipid are omitted for clarity. 

Besides PE lipids, PI is also exclusive in the CL. The highly charged PI lipids have been 

the focus of several computational studies.126-127 The PI lipids are in tiny mole fractions in the CL 

and do not exhibit colocalization with any lipid family. A few examples of PI clusters in the 

membrane protein interface have been reported.128-129 The PI family forms non-specific 

interactions with the membrane lipids, which is evident in the Voronoi plot and the mixing 

parameters (Figure 3-3b). 
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The results display that human RBC plasma membrane leaflets have very distinct surface 

properties. The EL has distinct SM nanodomains while the CL has a near random distribution of 

PS, PE, and PEP lipid families. 

3.4.2 Membrane cytoplasmic leaflet has lower lipid order than the exoplasmic 

leaflet 

Membrane asymmetry is reflected in terms of membrane composition. Comparing lipid 

orders in EL and CL is another approach to show lipid packing in this asymmetric RBC plasma 

membrane. The order parameter, SCD, was generated for the acyl chain beads for each lipid. Within 

each leaflet, the cumulative SCD is calculated from the same set of carbon beads (Figure 3-4). The 

SCD decreases as the acyl chain beads of interest move from headgroups towards lipid tails, 

meaning the farther the carbon bead is located away from the headgroups, the less ordered it gets. 

This trend holds true for both leaflets. Overall, EL has a larger SCD and contains more ordered 

lipids than the CL, which is consistent with the latest reports.83, 108 

After analyzing order parameters from the perspective of position of the carbon beads, we 

computed the order parameter of each acyl chain in the lipid molecules (Table 3-8). It is evident 

from the order parameters that saturated and unsaturated acyl chains have remarkably different 

contribution to a lipids shape and packing in the membrane (Figure 3-16). The box plots of lipids 

in EL and CL are shown in Figure 3-5a and Figure 3-5b, respectively. For example, PAPC’s 16:0 

acyl chain is much more ordered (0.52±0.258) than the 20:4 (0.13±0.214) chain. There is 

remarkable disparity in the median values of the PUPE lipid’s order parameters; the shorter 

saturated (16:0) chain is ordered (0.41±0.281), while the longer, unsaturated (22:6) is highly 

disordered (0.04±0.196). The PEP1 and PEP2 acyl chains also show differences in the vinyl ester 
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linked chain versus the ether linked acyl chain. Interestingly, the saturated DPPC lipid (16:0-16:0), 

sequestered in the CL in the plasma membrane, has high order parameters (0.49±0.272 and 

0.46±0.274) for both acyl chains. Overall, the boxes in the EL are located higher than those in the 

CL, which can be used to reflect that the order parameters of lipids in the EL in general are higher 

than those in the CL. This observation is consistent with the profile from Figure 3-4, which again 

confirms that lipids in the EL are more ordered. 

 

Figure 3-4 Order parameters of all lipids in EL (black) and CL (red), excluding cholesterols. The 

dashed line (gray) indicates the membrane’s mid-plane. 

The statistical analysis of the lipid order parameters highlight three important aspects: (a) 

the lipids adopt ordered-disordered-ordered layering of the membrane in EL, mid-plane, CL 

direction; (b) on average lipids in EL are more ordered than those in CL; (c) between the two acyl 
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chains of a lipid, the shorter and saturated acyl chain is more ordered than the longer, unsaturated 

acyl chain. 

 

Figure 3-5 Order parameters of all lipids in EL (a) and CL (b) are shown as a box-whisker plot. 

Lipid species in (a) from left to right are PIPC, POPC, PAPC, PNSM, PLSM, DPSM, PAPS, and 

PEP1. Lipid species in (b) from left to right include PIPC, POPC, DPPC, POPE, PUPE, PEPE, 

PEP1, PEP2, DPSM, PAPS, and PIP2. The two acyl chains of a lipid are distinguished by solid 

and striped boxes. 
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The pairing of short/long, saturated/unsaturated, and charged/zwitterionic lipids along with 

asymmetric lipid compositions of the leaflets is critical in unique biophysical properties of the 

RBC plasma membrane. 

3.4.3 Cholesterol flips between leaflets with preference for the exoplasmic 

leaflet 

Several simulation studies have focused on evaluating the interaction of cholesterol with 

the lipids and the flip-flop dynamics between the membrane leaflets. Analyzing this dynamic 

behavior of cholesterol is experimentally challenging due to multiple confounding factors.105, 130-

131 The use of computational tools can capture the cholesterol flip-flop behavior.102-104, 106-108 

 

Figure 3-6 Quantitative analysis of cholesterol partitioning in the RBC membrane. (a) Number of 

cholesterol flips from CL to EL (back), from EL to CL (red), and the total number of flip-flops 

(green) as a function of simulation time. (b) Percent cholesterols in EL (black) and in CL (red) 

over the five microseconds. (c) Mixing parameters of cholesterol with other lipid families. 

In the initial system set-up, cholesterol was distributed equally in each leaflet. In the pre-

equilibrium NVT and NPT stages of the simulation, more molecules of cholesterol flipped from 

the CL to the EL than vice-versa. At equilibrium, the rate of cholesterol flip-flop between the 

two leaflets reached a stable distribution (Figure 3-6a and 3-6b); the EL and CL cholesterol 

distribution is 63±3% and 37±3%, respectively. 
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Previous experimental and computational studies have demonstrated the preferred 

interaction of cholesterol with the saturated lipids.133 It has been suggested that the interaction 

between cholesterol molecules and SM lipids lead to the formation of lipid domains.134-135 The 

lipid mixing parameters revealed the lateral association of cholesterol with membrane lipids: SM 

(27%), PC (25%), cholesterol (28%), PS (7%), PE (6%), PEP (6%), and PI (1%), as shown in 

Figure 3-6c. The preferential association of cholesterol with the SM and PC lipids is established 

within the first few microseconds of the simulations and remains unchanged after equilibration. 

The triplicate simulation runs show the same cholesterol lipid mixing trends. Thus, cholesterol 

localization occurs disproportionately in the SM-enriched EL. 

3.4.4 Exoplasmic and cytosolic leaflets differ as temperature changes 

We performed thermal annealing simulations to further characterize membrane asymmetry 

properties. First, EL and CL have different area per lipid values regardless of temperature. Due to 

variations in shapes and surface areas of different lipids, the EL has a smaller area per lipid (0.45± 

0.04 lipids nm−2) relative to the CL (0.55± 0.03 lipids nm−2), which is consistent with earlier 

reports. The change in the area per lipid versus temperature in 280-320 K was evaluated. The area 

per lipid values increased linearly for both leaflets (Figure 3-7a); in the meantime, the rate of 

increase of area per lipid for EL is nearly identical to that of CL. On the other hand, as the 

temperature increases, lipids become more fluid and dynamic, which leads to the lateral expansion 

of the membrane patch and the transverse reduction in membrane bilayer thickness (Figure 3-7b). 
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The observations match well with each other, which show that the entire membrane stretch and 

become thinner in response to increasing temperature. 

Figure 3-7 Variations in the area per lipid of EL (black) and CL (red), and thickness as a function 

of temperature in (a) and (b), respectively. (c) Cholesterol distribution between EL (black) and CL 

(red) as temperature increases from 280K to 320K. (d) Cholesterol flip-flop rate over the same 

range of temperatures. 

Furthermore, we characterized the cholesterol dynamic behavior in terms of temperature. 

We noticed that the cholesterol distribution between leaflets remains the same (63±3% in EL and 

37±3% in CL) as temperature spans from 280K to 320K (Figure 3-7c), which can be attributed to 

the unchanged lipid composition in each leaflet. This characterization can be used to prove that 

the major determinant of cholesterol distribution between asymmetric membrane leaflets is the 

respective composition, especially considering several key lipid families, such as SM and PC 
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lipids containing saturated acyl chains with higher affinity to cholesterols. However, we did 

observe that despite the constant cholesterol distribution in EL and CL, there are more 

cholesterols flipping between leaflets as the temperature increases (Figure 3-7d). It is obvious 

that the rate of cholesterol flip-flop is increasing exponentially from 2 µs−1nm−2 to 11 µs−1nm−2 

at 280K to 320K, respectively. Therefore, increasing the temperature has a large impact on 

cholesterols flipping more rapidly even though the overall distribution remains unchanged 

between asymmetric leaflets. 

3.5 Conclusions 

We report a detailed molecular description of the human RBC plasma membrane that 

replicates the experimentally determined lipid composition of each of the two asymmetric 

membrane leaflets. Interestingly, cholesterol has a high binding affinity for SMs that  results in an 

asymmetric 5:3 distribution of cholesterol in favor of the exoplasmic leaflet. The SM and PC lipids 

, and cholesterol lateral associate to form nanodomains in the exoplasmic leaflet. In contrast, the 

cytoplasmic leaflet has a near-random distribution of the PC, PS, PE, PEP, and PI families. All 

lipid families have the highest mixing parameter with the lipids of their species. As temperature 

increases, membrane bilayer becomes thinner and the area of the membrane patch stretches, 

resulting in larger area per lipid in both EL and CL. In addition to the increasing temperature, the 

rate of cholesterol flip-flop inreases while maintaining a constant distribution between the 

asymmetric leaflets. Fingerprinting the plasma membrane lipidome is pivotal in elucidating how 

cells exchange metabolites, transfer signals, and facilitate protein assembly. 
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3.6 Supporting Information 

3.6.1 Methods and Analysis 

Analyses were performed using multiple, in-house developed python scripts. Molecular 

visualization and graphics were generated using VMD and PyMOL. 

Mixing parameter. The mixing parameter of membrane lipids is calculated as 𝑝𝑖𝑗 =
𝐶𝑖𝑗

∑𝐶𝑖𝑘
, where 

𝑝𝑖𝑗 is the mixing parameter between lipid 𝑖 and lipid 𝑗, 𝐶𝑖𝑗 is the number of contacts made by lipid 

𝑖 with lipid 𝑗, and ∑𝐶𝑖𝑘  is the total contacts made by lipid 𝑖 with all surrounding lipids, including 

itself. A contact is defined to have formed between two lipid molecules if the distance between a 

lipid species and the reference lipid is within a 1.1 nm cut-off. 

Order parameter. The order parameter of lipid acyl chain is calculated from 2H NMR as 𝑆CD =

ۃ
3cos2𝜃−1

2
 where 𝑆CD is the order parameter between the carbon-hydrogen (C−D) bond, 𝜃 is the ,ۄ

angle between the C−D bond vector and a reference axis, which is the membrane normal 𝑥, 𝑦, 𝑧 =

0, 0, 1. The angular brackets determine that order parameters are weighted over time. Two types 

of order parameters were evaluated in this work, in viewpoint of carbon beads, order parameter 

was calculated between every two adjacent carbon beads and averaged over lipids of the 

exoplasmic leaflet (EL) and the cytoplasmic leaflet (CL), respectively. For the other purpose of 

analysis, each entire lipid acyl chain was calculated with one order parameter generated, averaging 

over lipids of the same type in EL and CL, respectively. 

Density analysis. The number density of CG beads in EL and CL were calculated using the 

MDAnalysis library. The density profile is approximated by discretizing the simulation box into 

areas of 1𝑛𝑚 × 1𝑛𝑚 and calculating the local number density in each region. 
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Voronoi tessellation. For each lipid type (PSM, PC, PI, PS, PE, PEP), the (x, y) coordinates of 

their C1, D1 and T1 beads on either of the leaflets were obtained using MDAnalysis package. 

These coordinates were used as input points to compute Voronoi diagram using scipy python 

package. The vertices of each Voronoi region were acquired from the scipy Voronoi object, and 

these vertices were used to calculate the polygon area using the “shoelace formula”. The individual 

regions of the Voronoi diagrams were then colored based on their respective areas. 
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3.6.2 Supporting Tables 

Table 3-1 Lipid names, corresponding head groups and tails, and assigned four letter names 

Lipid names 

Corresponding 

head groups and 

tails 

Four 

letter 

names 

1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine PC 16:0-18:2 PIPC 

1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine PC 16:0-20:4 PAPC 

1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine PC18:0-18:1 POPC 

1-palmitoyl-2-palmitoyl-d31-sn-glycero-3-phosphocholine PC 16:0-16:0 DPPC 

N-Palmitoylsphingomyelin SM 34:1;2 DPSM 

Lysosphingomyelin SM 42:1;2 PLSM 

Neutral sphingomyelinase SM 42:2;2 PNSM 

1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine PS 18:0-20:4 PAPS 

1-(1-Enyl-stearoyl)-2-adrenoyl-sn-glycero-3-

phosphoethanolamine 

PE-O 18:1-20:4 PEP1 

1-(1Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-

phosphoethanolamine 

PE-O 18:2-20:4 PEP2 

1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-

phosphoethanolamine 

PE 16:0-22:6 PUPE 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-arachidonoyl PE 18:1-20:4 PEPE 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine PE 16:0-18:1 POPE 

1-stearoyl-2-adrenoyl-sn-glycero-3-phosphoinositol PIP2 18:1-20:4 PIP2 
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Table 3-2 MARTINI CG beads and parameters for PEP1 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

7-8 0.47 1250 

8-9 0.47 1250 

4-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 100 10 

5-6-7 100 10 

6-7-8 100 10 

7-8-9 120 45 

4-10-11 180 25 

10-11-12 120 45 

11-12-13 180 25 
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Table 3-3 MARTINI CG beads and parameters for PEP2 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

7-8 0.47 1250 

8-9 0.47 1250 

4-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 100 10 

5-6-7 100 10 

6-7-8 100 10 

7-8-9 120 45 

4-10-11 180 25 

10-11-12 100 10 

11-12-13 120 45 
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Table 3-4 MARTINI CG beads and parameters for PEPE 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

7-8 0.47 1250 

8-9 0.47 1250 

4-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 100 10 

5-6-7 100 10 

6-7-8 100 10 

7-8-9 120 45 

4-10-11 180 25 

10-11-12 120 45 

11-12-13 180 25 
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Table 3-5. MARTINI CG beads and parameters for PLSM 

 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

4-8 0.47 1250 

8-9 0.47 1250 

9-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 180 45 

5-6-7 180 25 

4-8-9 180 25 

8-9-10 180 25 

9-10-11 180 25 

10-11-12 180 25 

11-12-13 180 25 
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Table 3-6. MARTINI CG beads and parameters for PIP2 

 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.40 30000 

1-3 0.40 30000 

2-3 0.40 30000 

2-5 0.30 25000 

2-6 0.35 30000 

1-5 0.40 25000 

3-6 0.31 30000 

5-6 0.60 25000 

1-4 0.35 1250 

4-7 0.47 1250 

7-8 0.37 1250 

7-9 0.47 1250 

9-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

8-14 0.47 1250 

14-15 0.47 1250 

15-16 0.47 1250 

16-17 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

1-4-7 140 25 

7-9-10 100 10 

9-10-11 100 10 

10-11-12 100 10 

11-12-13 120 45 

8-14-15 180 25 

14-15-16 120 45 

15-16-17 180 25 
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Table 3-7 Composition of RBC plasma membrane simulation system 

Molecule/Ion  EL  CL  System Total 

PIPC  250 
 

160  
 

 

PNSM  164 
 

—  
 

 

PLSM  141 
 

—  
 

 

PAPC  93 
 

—  
 

 

POPC  118  68    

DPSM  211  22    

PAPS  22  251    

PEP1  47  160    

PIP2  —  45    

PUPE  —  137    

PEPE  —  68    

POPE  —  45    

PEP2  —  45    

DPPC  —  45    

CHOL  705  710    

W      65703  

WF      7300  

Na+      1053  

Cl−      555  

Total lipids 

excluding 

CHOL 

 1046  1046   78118 
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Table 3-8 Lipid order parameters (SCD) separated by exoplasmic and cytoplasmic leaflets and 

fatty acid tail 

  

  

 

 

Lipid 

 

 

Acyl chain 

Exoplasmic Leaflet  Cytoplasmic Leaflet 

Tail 1 (Left) Tail 2 (Right)  Tail 1 (Left) Tail 2 (Right) 

Mean 

SCD 

Mean 

SCD 

 Mean 

SCD 

Mean 

SCD 

PIPC 16:0-18:2 0.53±0.255 0.26±0.267  0.42±0.280 0.21±0.249 

DPSM 34:1;2 0.71±0.256 0.63±0.221  0.44±0.277 0.30±0.348 

PLSM 42:1;2 0.70±0.265 0.51±0.215  — — 

PNSM 42:2;2 0.71±0.259 0.47±0.187  — — 

PAPC 16:0-20:4 0.52±0.258 0.13±0.214  — — 

POPC 18:0-18:1 0.55±0.252 0.47±0.257  0.42±0.280 0.35±0.262 

PAPS 18:0-20:4 0.52±0.250 0.29±0.326  0.40±0.280 0.10±0.201 

PIP2 18:0-22:4 — —  0.32±0.259 0.13±0.199 

PEP1 18:1-22:4 0.38±0.265 0.14±0.218  0.30±0.265 0.11±0.202 

PUPE 16:0-22:6 — —  0.41±0.281 0.04±0.196 

PEPE 18:1-20:4 — —  0.31±0.264 0.11±0.203 

POPE 16:0-18:1 — —  0.41±0.280 0.34±0.264 

PEP2 18:2-20:4 — —  0.20±0.244 0.11±0.207 

DPPC 16:0-16:0 — —  0.49±0.272 0.46±0.274 



 

 

 108  

 

3.6.3 Supporting Figures 

 

Figure 3-8 Mixing parameter profile of PC 
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Figure 3-9 Mixing parameter profile of CHOL 
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Figure 3-10 Mixing parameter profile of SM 
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Figure 3-11 Mixing parameter profile of PS 
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Figure 3-8 Mixing parameter profile of PEP 
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Figure 3-9 Mixing parameter profile of PE 
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Figure 3-10 Mixing parameter profile of PI 

  



 

 

 115  

 

 

Figure 3-11 The cross-sectional profiles of equilibrated RBC plasma membrane. (a) PC, red; (b) 

SM, blue; (c) PS, orange; (d) PE, purple; (e) PEP, green; (f) PI, cyan;(g) cholesterol, gray; and (h) 

all lipid types. For clarity, all lipid headgroups (black) are shown 
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Figure 3-12 Representative lipid image after simulation  (a) PIPC, (b) DPSM, (c) PNSM, (d) 

PLSM, (e) POPC, (f) PAPC, (g) PAPS, (h) PEP1, (i) POPE, (j) PUPE, (k) PEPE, (l) PEP2, (m) 

DPPC, and (n) PIP2. Coarse-grained bead types are denoted as saturated carbon (dark gray), 

unsaturated carbon (light gray), NC3 (dark blue), PO4 (pink), GL1 and GL2 (green), AM1 and 

AM2 (cyan), CNO (light blue), C1, C2, and C3 (orange), and P1 and P2 (purple). 
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Figure 3-17 Mixing parameter (%) of each lipid with other lipid families in the membrane. The 

color in each row displays lowest (blue) to highest (red) lipid contacts. 
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4.1 Abstract 

The substrate promiscuity of an acyltransferase is leveraged to synthesize artificial 

lipoproteins bearing a non-canonical PTM (ncPTM). The non-canonical functionality of these 

lipoproteins results in a distinctive hysteretic assembly—absent from the canonical lipoproteins—

and is used to prepare hybrid multiblock materials with precise and programmable patterns of 

amphiphilicity. This study demonstrates the promise of expanding the repertoire of PTMs for the 

development of nanomaterials with a unique assembly and function. 

4.2 Introduction 

The disordered regions on polypeptide chains contribute significantly to the properties of 

natural biomaterials and inspire the design of intrinsically disordered peptide-polymers (IDPPs) 

for mimicking natural biomaterials. Contrary to common strategies of IDPPs assembly, post-

translational modifications (PTMs) are conducted to control the configuration of proteins. 

The application of PTMs in material science is a rare attempt. In this project, non-canonical 

PTM (ncPTM) is used by Mozhdehi lab at Syracuse University to develop recombinant 

nanomaterials with controlled hierarchical assembly. In comparison with the t raditional canonical 

PTM modified IDPP with myristic acid (M), ncPTM uses the artificial lipid, 12-azidododecanoic 

acid (ADA), which shows distinctive temperature-triggered emergent assembly that is absent in 

M-IDPP. We developed an in-silico model from the molecular-scale perspective to explain the 

differences in the macromolecular assembly of ADA-IDPP compared to M-IDPP, which can 

provide insights in designing novel lipoproteins. 
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4.3 Methods 

The molecular structure of M-peptide and ADA-peptide molecules were built in two-steps. 

First, the three-dimensional structure of the recognition peptide (GLYASKLFSNL) was 

determined using the I-TASSER1 webserver. In the second step, the M and ADA lipid tails were 

added to the glycine residue of the peptide using the CHARMM-GUI2 webserver. The individual 

M-peptide and ADA-peptide structures were equilibrated at 300 K using the CHARMM36 all-

atom force field available within the CHARMM-GUI workspace. 

The equilibrated structures were used to construct two explicitly solvated systems 

containing: (i) 15 molecules of M-peptide and (ii) 15 molecules of ADA-peptide using CHARMM-

GUI Builder.2 Each system contained 150 mM NaCl solution and TIP3P water molecules in a 

cubic box with a box length of 10 nm. The systems were energy minimized and equilibrated at T 

= 300 K in the isothermal-isochoric (NVT) and at P = 1 bar in isothermal-isobaric (NPT) ensemble 

constraints in the CHARMM-GUI workflow. The equilibrated output from these runs was used to 

study self-assembly behavior. 

The self-assembly molecular dynamics simulations were performed using the GROMACS 

2019.4 simulation package.3 The M-peptide and ADA-peptide molecules and ions were modeled 

using the CHARMM36 all-atom force field.4 Water was modeled using TIP3P.5 The NPT 

production runs were run for 400 ns using 2 fs timestep. The temperature was maintained at 303.15 

K using the Nose-Hoover thermostat6 with τt = 1.0 ps. The pressure was maintained at 1 bar using 

isotropic coupling with Parrinello-Rahman barostat7 with τP = 5 ps and compressibility of 4.5 x 

10−5 bar-1. Periodic boundary conditions were applied in all three dimensions. The nonbonded 

van der Waals interactions were calculated using a cutoff of 1.2 nm. The long-range electrostatic 

interactions were studied with particle mesh Ewald (PME) algorithm at a 1.2 nm cutoff.8  Further, 
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thermal annealing simulations were performed for both systems over 280−360 K temperature 

range (280, 290, 300, 310, 320, 330, 340, 350, and 360 K) over a total simulation time of 400 ns. 

Analyses of the results from thermal annealing simulations, including radius of gyration (Rg) and 

solvent accessible surface area (SASA), were performed using GROMACS built -in utilities. 

Molecular visualization was performed using VMD software.9 

4.4 Results and Discussion 

 

Figure 4-1 Result of in silico self-assembly of M–peptide and ADA–peptide molecules using all-

atom molecular dynamics simulations. a) Snapshot of 15 M–peptide molecules showing core-shell 

structure with myristoyl chains (green) in the core and peptides (purple) forming the shell at 40 

°C. b) Snapshot of 15 ADA–peptide aggregate with ADA chains (green) and terminal azide (blue) 

on the surface of aggregate along with the peptides (purple) at 40 °C. c) The variation in the radius 

of gyration (Rg) of the M–peptide (black) and ADA–peptide (red) aggregates over 30–60 °C. d) 

The variation in the solvent accessible surface area (SASA) of the M–peptide (black) ADA–

peptide (red) aggregates over 30–60 °C. 

We developed an in-silico model to explain the differences in the self-assembly of ADA-

IDPP compared to canonical lipoprotein (M-IDPP)—hysteresis and non-equilibrium assembly 

into fibers— and to bridge our understanding from a molecular structure level to macromolecular 

assembly. Given the 99.5% similarity between the two lipoproteins, we confined our atomistic 

simulations to the N-terminal amphiphilic region (lipid–recognition sequence peptide); the single 
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letter amino acid sequence of the recognition peptide used is GLYASKLFSNL. The aggregation 

of the M–peptides occurs via the hydrophobic interactions of the myristoyl chains (shown in green) 

that form a micellar core while the peptides (purple) form the shell (Figure 4-1a). In contrast, in 

ADA–peptide assembly, the charged azide (-N3) groups (blue beads in Figure 4-1b) are 

hydrophilic and remain solvent-exposed, preventing efficient packing and formation of a lipid 

core. Further, the ADA–peptide aggregate has a consistently higher radius of gyration (Rg) and 

solvent accessible surface area (SASA) compared to M–peptide aggregate (Figure 4-1c,d) over the 

30–60 °C temperature range. The Combination of computational and experimental results show 

for the first time that despite the increased hydrophilicity of the ADA (compared to the canonical 

lipid), it can drive the self-assembly of the recombinant lipoprotein into micelles. 

4.5 Conclusions 

In summary, the well-documented substrate-promiscuity of lipidation machinery has been 

extensively leveraged in the field of chemical biology.10-12 We applied this strategy to design novel 

lipoproteins with emergent material properties such as a stimuli-responsive shape-shifting 

nanomorphology. We foresee several opportunities for the design of dynamic nano-biomaterials 

in this untapped chemical design space. For example, a programmable morphological change from 

nanoparticles to fibers can be used to simultaneously release encapsulated cargo and provide a 

scaffold for cell-adhesion and growth. Non-canonical lipids can also be used as chemical handles 

for structural elaboration and synthesis of hybrid materials with a unique and precise amphiphilic 

pattern. These hybrid systems can be programmed to assemble into complex 2D and 3D 

morphologies to form materials with unique optical and mechanical properties. 
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5.1 Conclusions 

In our research, we have adopted Multiscale MD modeling, which combines the all-atom 

(AA) and the coarse-grained (CG) resolutions, along with other advanced MD techniques, to apply 

computational simulations to the biomolecular field of study and provide molecular insights that 

are undetectable via currently available experimental methods. In this work, we described the 

development and validation of a computational method to accelerate the antibiotic discovery 

pipeline, we performed comprehensive investigation of plasma membrane lipidome asymmetry of 

human red blood cells to unveil physicochemical perperties and biological functions, we 

collaborated with an experimental group to understand variations in self-assembly of canonical 

and non-canonical lipoproteins at a molecular-level for inspiring macro-scale design of novel 

biomaterials. 

In Chapter 2, we report the development of a new computational screening platform 

(CLASP) that is designed to accelerate the antibiotic discovery process. The CLASP outputs 

comprehensive thermodynamic and kinetic data, which includes free energy profile, energy 

barrier, translocation rate constant, contact analysis of the molecule with the pore-lining residues, 

orientation analysis of the molecule within the porin, and the overall mechanism of the antibiotic 

uptake. In this first application of CLASP, we demonstrate the translocation profile of six well-

established antibiotics from the carbapenem family through P. Aeruginosa‘s OccD3 channel. The 

results show excellent agreement with the barrier heights, the key residues, and the translocation 

rates of the drug molecules. We were able to identify critical pore-lining residues in the OccD 

channel that provide steric gating. Mutation of these residues to less bulky groups enhanced the 

predicted rates. 
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In Chapter 3, we report a detailed molecular description of the human RBC plasma 

membrane that replicates the experimentally determined lipid composition of each of the two 

asymmetric membrane leaflets. We demonstrated distinct physicochemical properties to the 

exoplasmic and cytoplasmic leaflets conferred by plasma membrane lipid families. We 

characterized the membrane asymmetry by studying lipid mixing parameters and order parameters, 

cholesterol flip-flop dynamics, membrane thickness and area per lipid. Fingerprinting the plasma 

membrane lipidome is pivotal in elucidating how cells exchange metabolites, transfer signals, and 

facilitate protein assembly. 

In Chapter 4, we developed in-silico models of canonical and non-canonical post-

translational modified intrinsically disordered peptide-polymers. We characterized temperature-

triggered self-assembly of natural and artificial lipoproteins via thermal annealing atomistic 

simulations. Agreement between computational and experimental results reinforced the robustness 

of computational modeling and simulation, which bridges the understanding between micro- to 

macro-scale self-assembly phenomenon and provides insights in designing novel nano-

biomaterials with unique physical and chemical properties. 

In summary, the physics-driven computational simulation method in conjunction of 

enhanced sampling technique, multiscale modeling, and other supportive computational tools and 

high performance computing resources are becoming a robust engine and a necessity in 

understanding biological processes at molecular-level and solve scaled-up real life problems. 
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5.2 Future Work 

For the ongoing CLASP project, we are focusing on the study of small molecule 

translocation through another major family of Outer membrane Carboxylate Channel (Occ) from 

P. aeruginosa, the OccK subfamily, which is distinct from OccD subfamily by phylogenetic 

analysis.1 The porin size of OccK channels are substantially larger than those of OccD subfamily 

and are less selective for substrates.2 We have some preliminary results at this stage. Figure 5-1 

shows the visual representation of homology modeled and well equilibrated structures of OccK1-

8. We plan to conduct a systematic comparison between different OccK porins, and with OccD 

subfamily porins. We expect to provide further knowledge to the free energy profile and interaction 

pattern between drug molecules and porin residues. 
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Figure 5-1 Homology modeled P. aeruginosa porin structures displayed in front and top view. (a) 

OccK1, (b) OccK2, (c) OccK3, (d) OccK4, (e) OccK5, (f) OccK6, (g) OccK7, and (h) OccK8. The 

porin surface is displayed as a transparent shadow. 

 

  



 

 

 141  

 

On the other hand, the major limitation and the potential challenge for the application of 

CLASP is its heavy dependency on molecular database, which may either be unavailable or 

incompatible with the current CLASP algorithm. We envision to establish a database of 

experimentally solved and homology modeled membrane proteins embedded in biological 

membrane lipid systems. Here is a few features we would like to achieve as enhancements for the 

current CLASP platform: 

• We would like to develop a graphical user interface for CLASP so that it can be freely 

distributed and serve as a robust engine in screening and identifying highly permeable 

antibiotic candidates. 

• In the meantime, we would like to establish more well-equilibrated protein inserted 

membrane systems at both all-atom and coarse-grained models to ensure they are ready 

for use at different resolutions. 

• Ultimately, we expect to collaborate with industry to publish CLASP as a crucial step to 

state-of-the-art high-throughput virtual screening method to identify drug candidates. 
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