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ABSTRACT

Over the past decade, wireless data traffic has experienced an exponential growth, especially with

multimedia traffic becoming the dominant traffic, and such growth is expected to continue in the

near future. This unprecedented growth has led to an increasing demand for high-rate wireless

communications. Key solutions for addressing such demand include extreme network densifica-

tion with more small-cells, the utilization of high frequency bands, such as the millimeter wave

(mmWave) bands and terahertz (THz) bands, where more bandwidth is available, and unmanned

aerial vehicle (UAV)-enabled cellular networks. With this motivation, different types of advanced

wireless networks are considered in this thesis. In particular, mmWave cellular networks, networks

with hybrid THz, mmWave and microwave transmissions, and UAV-enabled networks are studied,

and performance metrics such as the signal-to-interference-plus-noise ratio (SINR) coverage, en-

ergy coverage, and area spectral efficiency are analyzed. In addition, UAV path planning in cellular

networks are investigated, and deep reinforcement learning (DRL) based algorithms are proposed

to find collision-free UAV trajectory to accomplish different missions.

In the first part of this thesis, mmWave cellular networks are considered. First, K-tier hetero-

geneous mmWave cellular networks with user-centric small-cell deployments are studied. Partic-

ularly, a heterogeneous network model with user equipments (UEs) being distributed according

to Poisson cluster processes (PCPs) is considered. Distinguishing features of mmWave communi-

cations including directional beamforming and a detailed path loss model are taken into account.

General expressions for the association probabilities of different tier base stations (BSs) are deter-

mined. Using tools from stochastic geometry, the Laplace transform of the interference is charac-

terized and general expressions for the SINR coverage probability and area spectral efficiency are

derived. Second, a distributed multi-agent learning-based algorithm for beamforming in mmWave

multiple input multiple output (MIMO) networks is proposed to maximize the sum-rate of all UEs.

Following the analysis of mmWave cellular networks, a three-tier heterogeneous network is



considered, where access points (APs), small-cell BSs (SBSs) and macrocell BSs (MBSs) transmit

in THz, mmWave, microwave frequency bands, respectively. By using tools from stochastic ge-

ometry, the complementary cumulative distribution function (CCDF) of the received signal power,

the Laplace transform of the aggregate interference, and the SINR coverage probability are deter-

mined.

Next, system-level performance of UAV-enabled cellular networks is studied. More specifi-

cally, in the first part, UAV-assisted mmWave cellular networks are addressed, in which the UE

locations are modeled using PCPs. In the downlink phase, simultaneous wireless information and

power transfer (SWIPT) technique is considered. The association probability, energy coverages

and a successful transmission probability to jointly determine the energy and SINR coverages are

derived. In the uplink phase, a scenario that each UAV receives information from its own cluster

member UEs is taken into account. The Laplace transform of the interference components and the

uplink SINR coverage are characterized. In the second part, cellular-connected UAV networks is

investigated, in which the UAVs are aerial UEs served by the ground base stations (GBSs). 3D

antenna radiation combing the vertical and horizontal patterns is taken into account.

In the final part of this thesis, deep reinforcement learning based algorithms are proposed for

UAV path planning in cellular networks. Particularly, in the first part, multi-UAV non-cooperative

scenarios is considered, where multiple UAVs need to fly from initial locations to destinations,

while satisfying collision avoidance, wireless connectivity and kinematic constraints. The goal is

to find trajectories for the cellular-connected UAVs to minimize their mission completion time.

The multi-UAV trajectory optimization problem is formulated as a sequential decision making

problem, and a decentralized DRL approach is proposed to solve the problem. Moreover, multiple

UAV trajectory design in cellular networks with a dynamic jammer is studied, and a learning-based

algorithm is proposed. Subsequently, a UAV trajectory optimization problem is considered to

maximize the collected data from multiple Internet of things (IoT) nodes under realistic constraints.

The problem is translated into a Markov decision process (MDP) and dueling double deep Q-

network (D3QN) is proposed to learn the decision making policy.
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1

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 MmWave and Terahertz Communication Networks

In the presence of the severe spectrum shortage in conventional cellular bands, millimeter wave

(mmWave) frequencies between 30 and 300 GHz have been attracting growing attention for de-

ployment in next-generation wireless heterogeneous networks [1]. Larger bandwidths available in

mmWave frequency bands make them attractive to meet the exponentially growing demand in data

traffic [2]. On the other hand, communication in mmWave frequency bands has several limitations

such as increase in free-space path loss with increasing frequency and poor penetration through

solid materials. However, with the use of large antenna arrays by utilizing the shorter wavelengths

of mmWave frequency bands, and enabling beamforming at the transmitter and receiver, frequency

dependent path loss can be compensated [3]. Additionally, with the employment of directional an-

tennas, out-of-cell interference can be substantially reduced.

Furthermore, to realize the vision of next-generation 6G wireless networks supporting, there

is interest in moving to even higher frequencies in the terahertz (THz) band of 0.1 - 10 THz.

However, THz transmissions also encounter a challenging propagation environment. For instance,
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compared to the ultra-high frequency and mmWave frequency bands, electromagnetic waves in

THz bands experience high molecular absorption loss in addition to spreading loss and scattering

attenuation [4–7]. The ultimate effect is a more complex path loss model that additionally includes

an exponential decay in power [8]. Human-body blockage effects also have a strong impact on the

communication quality of THz channels [6]. Moreover, THz waves cannot reach objects that are

behind obstacles whose dimensions are greater than the wavelength. Effectively, any object whose

size is greater than few millimeters including users themselves, acts as a blocker. Transceivers

operating in THz bands are expected to be characterized by high antenna directivities in both

transmit and receive directions [8] to compensate such severe path loss. And this would in turn

have significant influence on the interference levels and the coverage performance [6].

1.1.2 User-Centric Deployment of Small Cells in Heterogeneous Net-

works

Heterogeneous cellular wireless networks are being developed to support higher data rates to sat-

isfy the increasing user equipment (UE) demand for broadband wireless services, by supporting

the coexistence of denser but lower power small-cell base stations (BSs) with the conventional

high-power and low density macrocell BSs [9–12].

While macrocell BSs were deployed fairly uniformly to provide a ubiquitous coverage blanket,

the small-cell BSs are deployed to complement capacity of the cellular networks or to patch the

coverage dead zones [13]. A common approach is to model the locations of BSs and UEs ran-

domly and independently using the Poisson point process (PPP) distribution. However, assuming

BS and UE locations independent from each other may not be quite accurate all the time. In prac-

tice, while macrocell BSs are deployed fairly uniformly to provide a ubiquitous coverage blanket,

several types of small-cells, such as picocells, are deployed to enhance coverage and capacity [14].

Therefore, the small-cell BSs are expected to be deployed in crowded areas or hotspots to patch

coverage dead-zones. In addition, in such areas (high-density areas and hotspots), UEs are very

likely to be clustered, e.g., in coffee shops, bookstores, subway/bus stations, sports/concert cen-
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ters. Moreover, PPP-based models will not correctly reflect the locations of the non-uniformly

distributed UEs. In such cases, it is important to accurately capture not only the non-uniformity

but also the coupling across the locations of the UEs and small-cell BSs [15]. In such architectures,

one can envision the small-cells being deployed to serve clusters of UEs. Such models have been

used by the standardization bodies, such as third generation partnership project (3GPP). 3GPP has

considered the clustered configurations in which locations of the user and small-cell BSs are cou-

pled, in addition to the uniformly distributed UEs [16]. Among different point processes, Poisson

cluster processes (PCPs) have been shown to lead to realistic and accurate models for character-

izing the statistical nature of user-centric BS deployments and clustered UE distributions in urban

areas [17]. The authors in [13] have proved that the model in which UEs are distributed according

to PCP around PPP distributed small-cell BSs closely resemblances the 3GPP configuration of sin-

gle small-cell BS per UE hotspot in a heterogeneous network. Therefore, user-centric deployment

of small cells is becoming an important part of future wireless architectures [18] in heterogeneous

networks.

1.1.3 UAV-Enabled Networks

Unmanned aerial vehicles (UAVs), also commonly known as drones, are aircrafts piloted by remote

control or embedded computer programs without human onboard [19]. UAVs have been one of the

main targets of industrial and academic research in recent years. Initially, UAVs were primarily

used in military applications. With the advances in the technology, UAVs have become lighter,

cheaper and easier to deploy, and have gradually entered civilian life. In particular, due to their

mobility, autonomy and flexibility, UAVs can be used in a variety of real-world scenarios, such

as delivery of medical supplies, disaster relief, environment monitoring, aerial surveillance and

inspection, traffic control, and emergency search and rescue [20, 21]. If properly deployed and

operated, UAVs can also provide reliable and cost-effective wireless communications, such as

in large-scale temporary events and disaster scenarios, and support capacity enhancement in the

occasional demand of super dense base stations [22, 23]. Therefore, UAVs are expected to be
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integrated into next-generation wireless networks.

Due to the advantages of UAVs, UAV-enabled communication is expected to be a critical part

of future wireless communication networks. More specifically, in order to take advantage of flex-

ible deployment opportunities and high possibility of LoS connections with ground UEs, UAVs

can deployed as BSs/relays to support wireless connectivity and improve the performance of cel-

lular networks [23]. The flexibility of aerial BSs/relays allows them to adapt their locations to

the demand of UEs, leading to a UAV-assisted cellular network architecture. On the other hand,

UAVs in certain applications will be regarded as aerial UEs that need to be supported by the ground

communication infrastructure, which brings both opportunities and challenges to cellular commu-

nications. These aerial UEs can be referred to as cellular-connected UAVs that access the cellular

network from the sky for data communications [24].

As aerial BSs, UAVs can be used as (quasi-)stationary aerial communication plateforms which

remain static for a very long period of time once deployed [19]. Under such a setup, extensive

research effort has been devoted to UAV placement optimization and performance analysis by

taking into account the unique characteristics of air–to-ground channels. One important issue is

to validate/evaluate its performance after/before the deployment [19]. This can be achieved by

conducting experimental field test [25], and computer-based simulations [26, 27] or theoretical

analysis [28–30], respectively. Specifically, theoretical performance analysis can not only pre-

dict the expected performance of the system to be deployed without extensive simulations time,

but also provide useful guidelines and insights to design the UAV-assisted system. On the other

hand, UAVs can be used as dynamic BSs to serve stationary/mobile UEs in static/changing envi-

ronments. UAVs have shown particular promising in collecting data from distributed Internet of

Thing (IoT) sensor nodes, as IoT operators can deploy UAV data harvester in the absence of other

expensive cellular infrastructure nearby [31]. UAV trajectory design scheme allows the UAVs to

adapt their movement based on the rate requirements of both the UAV-UEs and the ground UEs,

thus improving the overall network performance [32].

Cellular-connected UAV is a cost-effective solution since it reuses the millions of ground base
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stations (GBSs) without the need of building new infrastructure [19]. As aerial UEs, the UAVs need

efficient trajectories and also should keep connected with GBSs during their flights. Therefore, the

trajectory of cellular-connected UAVs need to be carefully designed to meet their mission speci-

fications, while at the same time ensuring that the communication requirements are satisfactorily

met.

In scenarios involving multiple UAVs or more generally multiple autonomous systems, a fun-

damental challenge is to safely control the interactions with other dynamic agents in the environ-

ment. Specifically, it is important for the autonomous devices (e.g., robots and drones) to navigate

in an environment with or without obstacles, and stay free of collisions with each other and the

obstacles, based on local observations of the environment. Finding solutions to this problem is

challenging, since one robot’s action is based on others’ motions (intents) and policies which are

in general unknown, and, furthermore, explicit communication of such hidden quantities is often

impractical due to physical limitations. In addition, the UAV-enabled wireless communication sys-

tems can be easily vulnerable to jamming and eavesdropping attacks due to the broadcast nature

of wireless transmissions [33]. In particular, jamming is a malicious attack whose objective is to

disrupt the communication in the victim network by intentionally causing interference at the re-

ceiver side [34]. Once attacked, the quality of communication will decline, leading even to link

loss and mission interruptions. Therefore, finding jamming-resilient UAV trajectory is challenging

and important.

1.1.4 Deep Reinforcement Learning

Reinforcement learning (RL) is the study of how an agent can interact with its environment to

learn a policy which maximizes expected cumulative rewards for a task [35]. RL has experienced

dramatic growth recently due to promising results in areas like: controlling continuous systems

in robotics [36], playing Go [37], Atari [38], and competitive video games [39, 40], communica-

tions and networking [41]. However, regular RL algorithms can require substantial time to reach

the best policies as they have to explore and gain knowledge of an entire system [41], making
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them unsuitable and inapplicable to solve problems with large-scale state/action spaces. In deep

learning, deep neural networks can automatically find compact low-dimensional representations

(features) of high-dimensional data (e.g., images, text and audio) [42]. As a result, deep reinforce-

ment learning (DRL), a combination of RL with deep learning, has been developed to overcome

the shortcomings of RL. In the areas of communications and networking, DRL has been recently

used as an emerging tool to effectively address various problems and challenges . In particular,

DRL has been applied to solve problems in networks, such as IoT networks [43–45], heteroge-

neous networks [46–48], and UAV networks [49–54], in which the network entities such as IoT

devices, mobile UEs, and UAVs need to make local and autonomous decisions, e.g., spectrum ac-

cess, data rate selection, transmit power control, BS association, and path planning, to achieve the

goals.

1.2 Related Prior Work

1.2.1 MmWave Cellular Networks

Heterogeneous mmWave cellular networks have been addressed in several recent studies. An

energy-efficient mmWave backhauling scheme for small cells in 5G is considered in [55], where

the small cells are densely deployed and a macrocell is coupled with small cells to some extent.

Mobile users are associated with BSs of the small cells, and have the communication modes of both

fourth-generation access and mmWave backhauling operation. The macrocell BS and small-cell

BSs are also equipped with directional antennas both for 4G communications and transmissions in

the mmWave band. A general multi-tier mmWave cellular network is studied in [56] and [57]. The

BSs in each tier are distributed according to a homogeneous PPP with certain densities. Moreover,

in [56] a two-ball approximation is considered, modeling the state of links in line-of-sight (LOS),

non-LOS (NLOS), and outage. In [57], a K-tier heterogeneous mmWave cellular network is con-

sidered, and signal-to-interference-plus-noise-ratio (SINR) coverage probability is derived by in-

corporating the distinguishing features of mmWave communications, and a D-ball approximation
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for blockage modeling is employed. In [58], authors investigate an ultra dense heterogeneous net-

work, and study the energy efficient BS deployment considering LOS and NLOS transmission. [59]

discusses how to combine a realistic mmWave channel model with a tractable network analysis,

and derives the signal-to-interference ratio (SIR) coverage probability. The coverage probability

in urban areas is derived for a heterogeneous mmWave network in [60].

Recent studies have addressed the uplink analysis in mmWave networks. In [61], a frame-

work to evaluate the SINR coverage in the uplink of mmWave cellular networks with fractional

power control (FPC) is presented. Conventional path loss based FPC and distance based FPC are

considered. The locations of LOS UEs and NLOS UEs are modeled as two independent non-

homogeneous PPPs which are independent of the locations of BSs. A hybrid network with tradi-

tional sub-6 GHz macrocells coexisting with mmWave small-cells is addressed in [62] and [63].

The authors in [62] have analyzed the decoupled downlink and uplink association strategies.

In [63], different decoupled uplink and downlink cell association strategies are investigated based

on two different criteria, namely maximum biased received power and maximum achievable rates.

Similarly as in mmWave studies, a path loss model incorporating both LOS and NLOS transmis-

sions in uplink of dense small-cell networks is considered in [64]. Additionally, the UE density

is assumed to be higher than the BS density, while they are still spatially distributed according to

independent PPPs. Moreover, the energy efficiency maximization problem were investigated for

uplink mmWave systems with non-orthogonal multiple access (NOMA) in [65, 66].

1.2.2 Terahertz Communication Networks

Recently, there has been increasing interest in THz communications. In [67], the authors have

derived a expression for the coverage probability of downlink transmission in THz communication

systems within a three-dimensional (3D) environment. A 3D propagation model that took into

account the molecular absorption loss, 3D directional antennas at both access points (APs) and

UEs, interference from nearby access points and dynamic blockages caused by moving humans,

was established. Coverage probability was evaluated based on the dominant interference analysis.
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In [68], on the basis of THz channel modeling, the interference from surrounding omnidirectional

nanosensors and beamforming base stations were derived in closed-form by using stochastic ge-

ometry methods. SINR coverage probability was obtained. The authors in [7] studied the systems

operating in the mmWave and THz bands by explicitly capturing three phenomena inherent at these

frequencies: 1) high directivity of the transmit and receive antennas; 2) molecular absorption; and

3) blocking of high-frequency radiation. A cone model and a cone-plus-sphere model were consid-

ered for antenna radiation patterns. Mean interference and SINR were investigated. In [4], mean

interference power and probability of outage in THz networks were studied. The authors showed

that the log-logistic distribution provided a good fit for the SIR distribution in the case of two di-

mensional (2D) path loss, but failed to estimate the interference distribution for 3D path loss. [8]

provided analytical approximations for the probability density function (PDF) of interference from

a randomly chosen node, and derived the Laplace transform of the aggregated interference and the

SIR of the network. The authors showed that failure to capture the atmospheric absorption, block-

ing or antenna directivity leads to significant modeling errors. In the aforementioned prior studies,

small-scale fading was not considered, and the distance from the typical UE to the serving AP was

assumed fixed and known. A more general model is addressed in [6], where the typical UE was

assumed to be served by the nearest AP, and the exact distribution of the received signal power

and the approximated distribution of the interference with its moments were derived. However,

the coexistence of the transmission in microwave and mmWave frequency bands are not taken into

account either.

1.2.3 User-Centric Small Cell Deployment

Several recent studies have attempted to model the UEs as clustered around the small-cell BSs. A

unified HetNet model in which a fraction of UEs and some BS tiers are modeled as PCPs is de-

veloped in [13] to reduce the gap between the real-word deployments and the popular PPP-based

analytical model. In [69], the authors consider Neyman-Scott cluster process, in which the centers

of the clusters and cluster members are assumed to be distributed according to some stationary
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PPP independent from each other. Although the cluster process is considered, the correlation be-

tween the locations of the cluster centers and members is not taken into account. In [70], PPP-PCP

model is employed in which macrocell BS locations are modeled according to a PPP, while pico-

cell BS locations are distributed according to a PCP. Authors investigate the effect of the distance

between the BS and UEs on coverage probability. In [71], a multi-cell uplink non-orthogonal mul-

tiple access system is provided. BSs are distributed according to a homogeneous PPP, and UEs

are uniformly clustered around the BSs within a circular region. Three scenarios are considered

in [71], including perfect successive interference cancellation (SIC), imperfect SIC and imperfect

worst case SIC at the receiver side. Moreover, the Laplace transform of the interference is ana-

lyzed. In [72], authors consider a K-tier heterogeneous network model with user-centric small cell

deployments in which the locations of UEs are modeled by a PCP with one small-cell BS located at

the center of each cluster process, and discover the coverage probability of the network. In addition

to modeling locations of UEs as a PCP, small-cell BS clustering is considered in [15] to capture the

correlation between the large-cell and small-cell BS locations. However, these prior studies that

considered clustered users have not addressed transmission in mmWave frequency bands. A clus-

tered mmWave network in which NOMA techniques are employed, is introduced in [73], where

the NOMA UEs are modeled as PCP distributed and each cluster contains a BS located at the cen-

ter. Three distance-dependent UE selection strategies are proposed in this chapter to evaluate the

impact of the path loss on the network performance.

PCPs are also used in device-to-device (D2D) networks, e.g. [74–78], where the locations of

the D2D devices were modeled as PCPs. For instance, D2D enabled mmWave cellular networks

with clustered UEs are analyzed in [77] and [78] , transceivers are modeled according to a PCP in

[77], and both PPP-distributed cellular UEs and PCP-distributed D2D UEs are considered in [78].

Coverage probability and area spectral efficiency of the networks are analyzed in both papers.

Moreover, uplink analysis in PCP distributed networks has recently been conducted in several

studies. The authors in [79] have provided a framework to analyze single-tier multi-cell uplink

NOMA systems where the UE locations are modeled following a Matérn cluster process. Rate cov-
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erage probability of NOMA users and the mean rate coverage probability of all users in a cell are

characterized. [80] considered a decoupled downlink and uplink access scenario in a heterogeneous

network, where the distribution of UEs are modeled as a Matern cluster process. Closed-from ex-

pressions for system coverage probability, spectral efficiency and energy efficiency are obtained.

We note that these prior studies have not considered uplink analysis in mmWave networks.

1.2.4 Beamforming in MIMO Networks

Leveraging recent advances in machine learning, optimal beamforming schemes can be determined

in real time with low computational complexity using learning techniques. For instance, the au-

thors in [81] have considered a network where a number of distributed BSs simultaneously serve

one mobile UE. The UE ideally transmits one uplink training pilot sequence to all BSs equipped

with omni or quasi-omni directional beam patterns, and the deep-learning model leverages the sig-

nals to train its neural network. After training, the deep-learning predicts the BS radio frequency

(RF) beamforming vectors in downlink data transmission. [82] has proposed an algorithm that

combines three neural networks for performance optimization in massive multiple input multiple

output (MIMO) beamforming. In the proposed system, one neural network is trained to generate

realistic user mobility patterns, which are then used by a second neural network to produce relevant

antenna diagrams. Meanwhile, a third neural network estimates the efficiency of the generated an-

tenna diagrams and returns the corresponding reward to both networks. The authors in [83] have

proposed a deep learning framework for the optimization of downlink beamforming. In particular,

the solution is obtained based on convolutional neural networks and exploitation of expert knowl-

edge, such as the uplink-downlink duality and the structure of known optimal solutions. In [84], a

neural network architecture is used to jointly sense the millimeter wave channel and design hybrid

precoding matrices. The neural network is first trained in a supervised manner, where a dataset

of the mmWave channels and the corresponding RF beamforming/combining matrices are con-

structed and fed as the input and the target of the neural network, respectively. Then the trained

neural network is applied online. Reinforcement learning is also shown to be a useful tool for
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beamforming schemes. For instance, the authors in [85] used deep Q learning algorithm to jointly

optimize the beamforming vectors and the transmit power of the BSs, and eventually to maximize

the SINR of UEs. [86] presented a deep reinforcement learning framework to optimize MIMO

broadcast beams autonomously and dynamically based on users’ mobility patterns or changes in

user distribution, which can vary periodically. Using ray-tracing data, deep reinforcement learning

engine is first trained offline, and then deployed online for real-time operation.

1.2.5 System-Level Analysis of UAV-Enabled Networks

The system-level analysis of UAV-assisted networks has also attracted much attention in recent

literature. For instance, references [87], [23] and [88] considered a 2D PPP UAV-assisted cellular

network, where UAVs were distributed according to a PPP at the same height in the air. In [87], the

downlink coverage probability was explored, as well as the influence of UAV height and density. In

[23], different path loss models for high-altitude, low-altitude and ultra-low-altitude models were

discussed. In addition to the coverage probability, the area spectral efficiency was investigated.

The model in [88] also took into account the system parameters such as building density and UAV

antenna beamwidth. Besides the 2D PPP distributed UAV-assisted cellular networks, the authors

in [22] considered a network in which a serving UAV was assumed to be located at fixed altitude,

while a given number of interfering UAVs were assumed to have 3D mobility based on the mixed

random waypoint mobility. Moreover, [89] considered a finite UAV network which was modeled

as a uniform binomial point process (BPP). Several limiting cases were discussed, including the

no fading case and the dominant interferer based case.

PCP models have also been considered in the system-level analysis of UAV-assisted networks.

In [90], the UAVs were assumed to form a PCP with the destroyed macro BSs as the parent nodes.

The downlink network performance, i.e. the SINR coverage probability, area spectral efficiency

and energy efficiency, were investigated. In [91], UAVs were considered as BSs serving the users.

The UE locations were considered as PCPs. SINR coverage probability was investigated as the

network performance metric. [92] considered the UAV networks in mmWave communications.
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The UAVs were the parent nodes and were 3D deployed at same height, while the UEs were

the daughter nodes and their locations formed a Thomas cluster process. [93] proposed a unified

3D spatial framework to evaluate the average performance of UAV-aided networks with mmWave

communications. The UAVs and BSs were assumed to be PPP distributed and the UEs were

distributed according to a PCP. During communication, a UAV received a message from a UE in

the uplink transmission and forwarded the message to a ground BS in the downlink transmission.

The heights of the UAVs were all assumed to be the same.

Integration of UAVs as aerial UEs would require a system-level understanding to both modify

and extend the existing terrestrial network infrastructure [94]. The network performance of the

cellular-connected UAV has been investigated recently. For instance, the authors in [95] considered

a heterogeneous network comprising aerial and terrestrial base stations, where the GBSs were

assumed to be distributed according to an infinite 2D PPP, while the locations of the aerial-BSs

were modeled as a finite 3D binomial point process deployed at a particular height. The downlink

coverage probability and average achievable rate of an aerial UE were analyzed. Similarly, [24]

considered homogeneous PPP distributed GBSs serving an aerial UAV-UE, and investigated the

SINR coverage probability, achievable throughput and the area spectral efficiency of the network.

Additionally, a tilted directional antenna was considered for the UAVs.

In UAV-enabled celluar networks, one of the key questions that have not been adequately ex-

plored in the existing state of the art is the impact of UAV antenna configuration on their con-

nectivity to GBSs [96, 97]. The antenna of the UAVs should be carefully designed, since the

variation in antenna design will significantly affect the network performance [98]. In particular,

the use of different antenna patterns can have significant impact on the interference levels and

hence can help alleviate the severe air-to-ground interference issue due to strong LOS links [99].

However, capturing the antennas’ movement and orientation is challenging in air-to-ground chan-

nel modeling [21]. 3D beamforming can significantly improve the performance compared to the

conventional 2D beamforming methods [100]. A 3D antenna pattern was considered in [101], and

the authors assumed the UAV was equipped with a directional antenna whose boresight direction
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was pointing downward to the ground. The authors in [102] considered the 3D antenna pattern

for the GBSs in a multiple-input single-output downlink single UE system, where the antenna gain

was controlled by adjusting the boresight of the antennas in directional transmissions. In [103], the

authors adopted a 3D antenna pattern for GBSs in a cellular massive multiple-input multiple-output

network. Different heights for UEs were considered in the 3D environment. A 3D system model

for the UAV-GBS uplink/downlink communications was studied in [99]. 3D antenna patterns of

the GBSs and UAV, and 3D air-to-ground channel were taken into account. Three different types

of antennas were compared in [96]. These were an omni-directional antenna with antenna gain set

at 1; a directional antenna tilted down to give a cone-shaped radiation lobe directly beneath the

UAV; and a directional antenna which the UAV could intelligently steer and align with its serving

GBS.

1.2.6 Trajectory Design for Cellular-Connected UAVs

Trajectory design for cellular-connected UAVs has been extensively investigated in the literature.

For instance, the authors in [104] studied the trajectory design for a single cellular connected UAV

under delay-limited communication.The authors in [105] applied convex optimization and linear

programming to find the optimal set of waypoints and speed for a UAV to ensure the minimum

connection time constraint with the ground terminals. A circular trajectory with optimized flight

radius and speed for a UAV was considered in [106] to maximize the energy efficiency. [107]

aimed to find UAV path planning strategy to optimize the wireless coverage for the UAV. In [108],

the UAV trajectory optimization was studied to minimize the total propulsion related power con-

sumption while satisfying a cellular-connectivity constraint. A connectivity-aware UAV path plan-

ning problem was formulated in [109] to find the shortest path subject to connectivity constraints.

Three-dimensional path planning for a cellular-connected UAV was studied in [110] to minimize

its flying distance from initial to final locations, while satisfying an expected SINR requirement,

and also an SINR map was constructed. In [111], the authors formulated a problem to minimize

the UAV mission completion time by jointly optimizing the UAV trajectory and UAV-GBS associ-
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ation order. In addition, the authors in [112,113] considered how to determine the optimal path for

the UAV to minimize its mission completion time, subject to wireless connectivity constraint. Op-

timization techniques, graph theory and dynamic programming were used to solve the single-UAV

path planning problems formulated in these prior studies.

Reinforcement learning has also been utilized to obtain solutions to trajectory optimization

for cellular-connected UAVs in the literature. The authors in [114] proposed a double Q-learning

method to solve the UAV trajectory optimization problem under a maximum continuous discon-

nection time constraint or a total disconnection time constraint. In [115], a dueling double deep

Q network with multi-step learning algorithm was formulated as a solution to the UAV trajectory

optimization problem to minimize the weighted sum of its mission completion time and expected

communication outage duration. Additionally, an interference-aware path planning scheme for a

network of cellular-connected UAVs was proposed in [32] to achieve a trade-off between maximiz-

ing energy efficiency and minimizing both wireless latency and the interference. A deep reinforce-

ment learning algorithm, based on echo state network cells, was developed to solve the problem.

However, these prior works considered single-UAV scenarios as well.

Different approaches for the collision avoidance of multiple UAVs have also been developed

in the literature. For instance, a rolling horizon approach using dynamic programming was used

to solve the problem in a multi-agent cooperative system in [116]. A neuro-dynamic program-

ming algorithm is proposed in [117] for multi-UAV cooperative path planning. A mixed integer

linear programming method is used in [118]. Partially observable Markov decision process based

methods are applied in [119–121] for UAV collision avoidance. In addition, authors in [122] used

reachable sets to represent the collection of possible trajectories of the obstacle aircraft. Once a

collision is detected, a sampling-based method is used to generate a collision avoidance path for

the UAV. In [123], predictive state space was utilized to present the waypoints of the UAVs, with

which initial collision-free trajectories are generated and then improved by a rolling optimization

algorithm to minimize the trajectory length. Artificial potential field method with an additional

control force was proposed for multi-UAV path planning in [124]. The authors in [125] presented
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path planning algorithms using rapidly-exploring random trees to generate paths for multiple UAVs

in obstacles rich environment. Moreover, the authors in [31] used DDQN algorithm to solve the

UAV path planning problem for data collection from distributed IoT nodes. However, considering

collision avoidance in multiple cellular-connected UAV navigation with wireless communication

requirements, addressing these challenges via deep reinforcement learning methods, and obtaining

decentralized solutions have not been adequately explored yet.

1.2.7 UAV Path Planning for Data Collection

Effective UAV trajectory planning allows the UAVs to adapt their movement based on the commu-

nication requirements of both the UAVs and the ground UEs, thus improving the overall network

performance [32], and therefore UAV path plans and control policies need to be carefully designed

such that the application requirements are satisfied [112, 113]. UAV trajectory design for data col-

lection in IoT networks has been extensively studied in the literature. For example, to minimize

the weighted sum of the propulsion energy consumption and operation costs of all UAVs, and the

energy consumption of all sensor nodes, the nodes’ wake-up time allocation and the transmit power

and the UAV trajectories were jointly optimized in [126], and collision avoidance constraint was

also considered in this paper. In [127], the authors aimed to minimize the energy consumption

of IoT devices by jointly optimizing the UAV trajectory and device transmission scheduling over

time. In [128], the UAV trajectory, altitude, velocity and data links with the ground UEs were

optimized to minimize the total mission time for UAV-aided data collection. The authors in [129]

aimed to optimize the UAV trajectory and the radio resource allocation to maximize the number

of served IoT devices, where each device has a data upload deadline. The minimum through-

put over all ground UEs in downlink communication was maximized in [130], by optimizing the

multiuser communication scheduling and association jointly with the UAV’s trajectory and power

control. Moreover, UAV path planning for data collection has also been investigated in [131–134].

Traditional optimization techniques were adopted to solve the problems in these studies.

Specifically, RL-based algorithms have recently been proposed as solutions to UAV path plan-
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ning for data collection tasks. For example, [135–140] addressed the trajectory optimization in

single-UAV data collection scenarios. In [135], the authors used double deep Q-network (DDQN)

algorithms to find the optimal flight trajectory and transmission scheduling to minimize the weighted

sum of the age of the information. In [136], the authors used Deep Q-network (DQN) algorithms

to decide the UAV trajectory to collect the required data, and determine the charging car trajectory

to arrive its destination to charge the UAV. DQN was also used in [137] to decide the transmis-

sion schedule to minimize the data loss, given the waypoint of the UAV’s trajectory. The authors

in [138] first used deep deterministic policy gradient (DDPG) algorithm to find the trajectory with

no collision with obstacles, and then used Q-learning (QL) to find the scheduling strategy to min-

imize the data collection time. Authors in [139] provided a Q-learning framework as an energy-

efficient solution for the UAV trajectory optimization. Moreover, Q-learning was also used in [140]

to find the UAV trajectory to maximize the sum rate of transmissions.

Multi-UAV control with reinforcement learning techniques has also been investigated in the

literature. For example, the authors in [141] studied the joint problem of dynamic multi-UAV

altitude control and multi-cell wireless channel access management of IoT devices. Online model-

free constrained deep reinforcement learning (CDRL) algorithm based on Lagrangian primal-dual

policy optimization was proposed to solve the problem. In [142], the authors developed a deep

DRL-based self regulation approach to maximize the accumulated user satisfaction score in multi-

UAV networks with UAV and UE dynamics. Moreover, authors in [143] proposed learning-based

algorithms to solve the problem of joint trajectory design and power control for multiple UAVs with

the goal to maximize the instantaneous sum transmission rate of mobile UEs. However, collision

avoidance constraint was not taken into account in these papers.

Different RL-based path planning approaches for data collection in multi-UAV networks have

been developed in the literature as well, such as in [31, 143, 144]. Particularly, the authors in [31]

used the DDQN algorithm to solve the UAV path planning problem to maximize the collected data

from IoT nodes, subject to flying time and collision avoidance constraints. However, the learning

was centralized, and the UAVs were cooperative, i.e., the UAVs needed to share their information
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and a part of their reward with each other. The authors in [144] considered a scenario where the

UAVs took charge of delivering objects in the forward path, and collected data from IoT devices

in the backward path. Q-learning was used to solve the forward collision avoidance problem,

and auxiliary no-return traveling salesman algorithm was used to find the shortest backward path.

However, the collision avoidance and communication constraints were not taken into account to-

gether. Moreover, authors in [143] considered the problem of joint trajectory design and power

control for multi-UAVs for maximizing the instantaneous sum transmit rate of mobile UEs. To

solve the problem, a framework that involves a multi-agent QL-based placement algorithm for

initial deployment of UAVs, an echo state network based algorithm for predicting the mobility of

UEs, and a multi-agent QL-based trajectory-acquisition and power control algorithm for UAVs, is

proposed. However, collision avoidance constraint was not taken into account in this paper. In

these works, all agents were assumed to use the same policy and operate cooperatively. The key

challenge for these models is that they cannot generalize well to crowded scenarios or scenarios

with non-cooperating agents.

1.2.8 Path Design for UAVs in the Presence of Jamming Attacks

A series of strategies to resist jamming attacks have been proposed in wireless networks, which are

generally divided into two categories: 1) adapting to the jamming signal; 2) retreating away from

or avoiding the jammer [145].

In the first category, physical-layer security has emerged as a promising approach to secure

UAV communications against jamming attacks. For instance, authors in [146] proposed deep

Q-learning based UAV power allocation strategies to improve the static UAV-enabled communi-

cations against smart jamming attacks. In [147], a reinforcement learning based power control

algorithm was proposed to improve the performance of the multi-UAV relay communication sys-

tems in the presence of a random jammer. The authors in [148] introduced a UAV as a friendly

jammer in the UAV-enabled network to work against multiple eavesdroppers, aiming to maximize

the minimum average secrecy rate over all information receivers.
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Owing to the mobility and flexibility of UAVs, it is also feasible to use the avoidance strat-

egy against jamming attacks. Furthermore, spatial evasion based methods do not impose high

requirements on communications devices [145]. By taking advantage of the mobility of UAVs,

jamming-resistant trajectory designs in UAV-enabled communication systems have been studied

in the literature. For instance, authors in [149] investigated the maximization of the uplink data

throughput of UAV-enabled communication in presence of a potential jammer. An alternating al-

gorithm that leverages the block coordinate descent method, successive convex approximation,

and S-procedure, was proposed to optimize the UAV trajectory. A similar problem was studied

in [150], where the goal is to improve the minimum uplink data throughput for multi-UAV en-

abled communication in the presence of jammers with imperfect location information. In [151],

the authors aimed to maximize the minimum (average) expected data collection rate from ground

sensors in the presence of a malicious ground jammer, by jointly optimizing the ground sensor

transmission schedule and UAV horizontal and vertical trajectories over a finite flight duration.

In [152], the authors had the objective to maximize the sum throughput received by the UAV in

the presence of jammer signals, by designing the UAV deployment and trajectory planning in 3D

space. [153] proposed a deep Q-learning based UAV trajectory and power control scheme against

smart jamming attacks on transmissions with ground nodes, given the predefined UAV sensing

waypoints. The prior work in this area has mostly concentrated on either single-UAV scenarios

or multiple UAVs operating as aerial BSs, and hence has not addressed cellular-connected UAVs,

connectivity constraints and collisions avoidance requirements especially with a jammer present,

using a learning framework.

1.3 Outline and Main Contributions

In Chapter 2, we provide a detailed overview on point processes, channel modeling, and reinforce-

ment learning. More specifically, Poisson point processes and Neyman-Scott cluster processes are

introduced, as well as their properties. General channel modeling approaches involving e.g., path
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loss, shadowing, small-scale fading, and antenna gains are summarized. Finally, we provide basics

of reinforcement learning and introduce some widely used RL algorithms.

In Chapter 3, we analyze a K-tier heterogeneous downlink mmWave cellular network with

UE-centric small cell deployments. We develop a new and more practical heterogeneous mmWave

cellular network model by considering the correlation between the locations of UEs and BSs. Cell

association probabilities are determined by employing a cell association criterion based on the

long-term average biased received power. General expressions for association probabilities with

each tier BS including the cluster center BS are provided. In addition, we provide simpler expres-

sions for association probabilities by considering several special cases to provide more insight on

the impact of different system parameters. For example, we show that our model specializes to

the PPP-based model when the cluster size grows without bound. We characterize the Laplace

transform of the interferences. General expressions for SINR coverage probabilities for each tier

BS including the cluster center BS are also derived. The coverage probability expressions are also

applicable to any PCP. Upper and lower bounds on the Laplace transform of the interference from

the cluster center BS are obtained, leading to bounds on the total coverage probability of the entire

network. It is also demonstrated that as the cluster size increases, performance within the PCP

model approaches that of the PPP-based model. Area spectral efficiency (ASE) of the entire net-

work is determined based on the derived coverage probabilities. Moreover, several extensions on

the coverage analysis are provided to the baseline model by considering the more practical antenna

gain patterns and also shadowing.

In Chapter 4, we present a mathematical framework for evaluating the performance of multi-

tier heterogeneous uplink mmWave cellular networks. We employ PCPs to accurately model the

locations of the clustered UEs. In particular, Thomas cluster process is adopted, with which the

UEs are clustered around the small-cell BSs according to a Gaussian distribution. Coupled asso-

ciation strategy is considered, and the UEs are assumed to be served by BSs which provide the

strongest long-term averaged biased received power in downlink. Then, with this association strat-

egy, we characterize: 1) the association probability of BSs in each tier; and 2) the distance from
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the typical UE to each serving BS. Subsequently, we derive the Laplace transforms of the inter-

cell interference and the interference from the cluster member UE. In addition, we derive general

expressions for the SINR coverage probability. We extend the analysis to incorporate Nakagami

fading and also consider several special cases, e.g., the noise-limited case, interference-limited

case, and one-tier model. Furthermore, we provide extensions to include fractional power control

in the analysis and reformulate the Laplace transforms of the interference in this case. Average

ergodic spectral efficiency of the network is also analyzed.

In Chapter 5, we consider a general setting and propose a distributed multi-agent DDQN so-

lution for beamfoming in mmWave MIMO networks, where multiple BSs serve multiple mobile

UEs. In this system, UEs move to different locations at each time, and may be served by different

BSs according to the adopted largest received power association criterion. Each BS is a reinforce-

ment learning agent and has its own DDQN. BSs, at each time, can only get information from

the associated UEs, based on which the BSs predict the UEs mobility pattern and choose their

beamforming vectors.

In Chapter 6, we consider a three-tier heterogeneous network, in which access points (APs),

small-cell base stations (SBSs) and macrocell BSs (MBSs) transmit in THz, mmWave, microwave

frequency bands, respectively. We incorporate the distinguishing features of transmission in each

type of frequency band, and consider a path loss based association criterion for UEs. As main

contributions, we analyze and derive general expressions for three key system performance met-

rics: 1) complementary cumulative distribution function (CCDF) of the received signal power; 2)

the Laplace transform of the aggregate interference; and 3) the SINR coverage probability of the

whole network.

In Chapter 7, a practical UAV-assisted mmWave cellular network with PCP distributed UEs

is addressed and studied in detail. In addition to GBSs, UAVs are also deployed according to

a PPP distribution, and the UEs are considered to be clustered around the projections of UAVs

according to PCPs. We jointly consider the downlink SWIPT scenario and uplink information

transmission, where in downlink phase UEs both harvest energy and decode the information from



21

the same received signal provided by the associated BS (either a UAV or a GBS), and in the uplink

phase the UAVs collect data from their cluster member UEs. In the downlink phase, the largest

received power association criterion is adopted and the power splitting technique is considered for

the SWIPT scenario. Association probability and energy coverage of the proposed network are an-

alyzed and general expressions are provided. Laplace transform of the interference is determined.

We also define a realistic successful transmission probability to jointly address the energy cover-

age and SINR coverage performances of the considered network. In the uplink phase, each UAV is

assumed to communicate with its cluster member UEs. According to the harvested energy of each

UE in the downlink phase, UEs in the uplink phase are considered to be in either active mode or in-

active mode. The Laplace transform of the inter-cell interference is again determined and the SINR

coverage probability is derived. In addition, the average uplink throughput subject to a constraint

on the downlink throughput is investigated to jointly address the downlink and uplink network per-

formance. We provide an extension to multi-tier multi-height networks. Additionally, we address

the special case of noise-limited networks and derive closed-form expressions for the uplink SINR

coverage probability and the optimal power splitting factor ρ, maximizing the downlink successful

transmission probability. Extension to UAV-assisted cellular networks with 3D antenna patterns in

downlink transmission is provided.

In Chapter 8, we consider cellular-connected UAV networks and compare the performances

of different antenna patterns for UAVs in different environments. In addition, practical 3D air-to-

ground channel model is also taken into account for the links between the UAV and GBSs. More

specifically, antenna patterns combing the vertical and horizontal gains are taken into account for

the GBSs. Also, four types of 3D antenna patterns are considered for the UAVs. In particular,

we compare the performances of a omni-directional pattern, a doughnut-shaped sine pattern, a

doughnut-shaped cosine pattern, and a directional pattern with tilting angle toward the serving

GBS.

In Chapter 9, we study multi-UAV trajectory optimization to minimize the UAVs’ mission

completion time under realistic constraints, e.g., collision avoidance, wireless connectivity, and
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kinematic constraints, while also taking into account antenna patterns and interference levels. Par-

ticularly, in Section 9.1, we formulate the problem as a sequential decision making problem, and

develop a decentralized deep reinforcement learning algorithm to solve it. We formulate the prob-

lem as a Markov decision process (MDP) with properly designed state space, action space, and

reward function. We optimize the value function of the MDP to find the optimal policy, and design

a value neural network to approximate the value function. Due to the fact that the UAVs do not

communicate with each other in the considered network, uncertainty exists in the UAVs’ unob-

servable intents. Thus, we employ a velocity filter to estimate the UAVs’ intentions to address

this uncertainty. In addition, we further design an SINR-prediction neural network to estimate the

SINRs experienced at the UAVs. Particularly, using accumulated SINR measurements obtained

when interacting with the cellular network, the SINR-prediction network is learned to map the

nearby GBSs’ locations into the SINR levels in order to predict the UAV’s SINR. We delineate

the initialization, refining, and training steps of the algorithm and describe the real-time navigation

process. In Section 9.2, we aim to find collision-free paths for multiple cellular-connected UAVs,

while satisfying requirements of connectivity with GBSs in the presence of a dynamic jammer.

We propose an offline temporal difference (TD) learning algorithm with online SINR mapping to

solve the problem.

In Chapter 10, we study the UAV trajectory optimization to maximize the collected data from

distributed IoT nodes in multi-UAV non-cooperative scenarios under realistic constraints, e.g., col-

lision avoidance, mission completion deadline, and kinematic constraints. The considered multi-

UAV non-cooperative scenarios involve random number of other UAVs in addition to the typical

UAV, and UAVs do not communicate and share information among each other. Due to the uncer-

tainty in the environment, other UAVs’ existence and unobservable intents, the considered problem

is translated to an MDP with parameterized states, permissible actions and detailed reward func-

tions. Dueling double deep Q network (D3QN) framework is proposed for learning the policy

without any prior knowledge of the environment and other UAVs.
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CHAPTER 2

PRELIMINARIES

2.1 Point Processes

A point process can be depicted as a random collection of points in space.

2.1.1 Poisson Point Process

Poisson point processes (PPPs) provide a computational framework for different network quantities

of interest [154]. The homogeneous PPP may be considered as the simplest point process. The

homogeneous PPP has the following properties [4] :

• It has evenly and homogeneously distributed nodes.

• It is stationary, which means that the PPP is independent of translations.

• It is simple in the sense that there cannot be multiple points at the same location.

• It is isotropic, which means that the PPP is independent on rotations.

• The superposition of two or more independent PPPs is again a ppp.

• The independent thinning of a PPP is again a PPP.
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Intensity of the Thinned PPP

The point process obtained by displacing point Xi independently of everything else according to

some Markov kernel K(Xi, ·) that defines the distribution of the displaced position of the point Xi

yields another PPP. The intensity of the resulting PPP can be obtained in closed form from that of

the initial PPP and the involved transformations (e.g., the thinning probability or the kernel K). If

ρ(x, ·) is the probability density pertaining to the Markov kernel applied to a PPP of intensity λ(x)

on Rd, the displaced points form a PPP of intensity

λ′(y) =

∫
Rd
λ(x)ρ(x, y)dx. (2.1)

Laplace Transform

The Laplace functional is defined for a general point process Φ as

LΦ(f) , E
[
e−

∫
Rd f(x)Φ(dx)

]
= E

[
e
∑
X∈Φ f(X)

]
, (2.2)

where f is a non-negative function on Rd. In the Poisson case,

LΦ(f) = exp

(
−
∫

Rd

(
1− e−f(x)

)
λ(dx)

)
. (2.3)

Characterization of Distance

Let x denote the distance from origin to the nearest node in Φ, which is a homogeneous PPP.

Then the complementary cumulative distribution function (CCDF) and probability density function

(PDF) of x are given as

CCDF: F (x) = exp(−πλx2), (x ≥ 0), (2.4)

PDF: f(x) = 2πλx exp(−πλx2), (x ≥ 0), (2.5)
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where λ is the density of PPP Φ.

2.1.2 Neyman-Scott Cluster Process

Neyman-scott cluster processes are Poisson cluster processes (PCPs) that result from homoge-

neous independent clustering applied to a stationary PPP [155, 156], i.e., the parent points form a

stationary PPP Φp = {p1, p2, ...} of intensity λp. The clusters are of the form Np = N +p for each

p ∈ Φp. Np is a family of i.i.d. finite point sets with distribution independent of the parent process.

The complete process Φd is given by

Φd =
⋃
p∈Φp

Np. (2.6)

The parent points themselves are not included. It is assumed that the scattering density of the

daughter process is isotropic. This makes the process Φd isotropic. The intensity of the cluster

process λd = λp(p̄), where p̄ is the average number of the points in the representative cluster.

We further focus on more specific models for the representative cluster, namely Thomas cluster

processes and Matérn cluster processes. Let us use x to denote the distance from a daughter node to

the parent node in the representative cluster. For Thomas cluster processes, each point is scattered

according to a symmetric normal distribution with variance σ2 around the origin. Then, the CCDF

and PDF of x are given as

CCDF: F (x) = exp

(
−x2

2σ2

)
, (x ≥ 0), (2.7)

PDF: f(x) =
x

σ2
exp

(
−x2

2σ2

)
, (x ≥ 0), (2.8)

In Matérn cluster processes, each point is uniformly distributed in a ball of radius Rc around the

origin. So, the CCDF and the PDf of x are given as

CCDF : F (x) = 1− x2

R2
c

, (0 ≤ x ≤ Rc), (2.9)
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PDF : f(x) =
2x

R2
c

, (0 ≤ x ≤ Rc). (2.10)

The illustrations for PPP and PCPs are shown in Fig. 2.1, where the black stars are distributed

according to a homogeneous PPP. In Fig. 2.1(a) the red dots are distributed according to an in-

dependent homogeneous PPP. In Figs. 2.1(b) and (c), the red dots are distributed according to a

Thomas cluster process and a Matérn cluster process, respectively, where the black stars are the

parent nodes. The average number of user equipments (UEs) per cluster is 10 in Figs. 2.1(b) and

(c).

(a) Poisson point process. (b) Thomas cluster process. (c) Matérn cluster process.

Fig. 2.1: Illustrations for PPP and PCPs.

2.2 Channel Modeling

2.2.1 Path Loss

Path loss characteristics generally depend on whether the link is line-of-sight (LOS) or non-line-

of-sight (NLOS). A LOS link occurs when there is no blockage between the transmitter and the

receiver, while a NLOS link occurs if blockage exists. Typically, LOS probabilities are assumed

to be independent between different links, i.e., the potential correlations of blockage effects be-

tween links are not taken into account. Note that the LOS probabilities for different links are not

independent in reality. For instance, neighboring base stations might be blocked by a large build-

ing simultaneously. Numerical results in [157], however, indicated that ignoring such correlations
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causes a minor loss in accuracy in the network performance evaluation.

Millimeter Wave (mmWave) Transmissions

Differences between LOS and NLOS paths are significant in mmWave communications [1]. Mea-

surements in [158, 159], showed that mmWave signals propagate as in free space with a path loss

exponent of 2. The situation was however different for NLOS paths where a log distance model was

fitted with a higher path loss exponent and additional shadowing [158, 159]. The NLOS path loss

laws tend to be more dependent on the scattering environment. The attenuation and atmospheric

and molecular absorption characteristics of mmWave propagation limit the range of mmWave com-

munications [160]. However, with smaller cell sizes applied to improve spectral efficiency today,

the attenuation and atmospheric absorption do not create significant additional path loss for cell

sizes on the order of 200 m [161].

The LOS probability function in a network can be derived from field measurements or stochas-

tic blockage models, where the blockage parameters are characterized by some random distribu-

tions. The LOS probability in mmWave transmissions can be formulated as [160]

pL(x) = e−εx (2.11)

where ε is a parameter determined by the density and the average size of the blockages. A multi-

ball approximation with piece-wise LOS probability functions is adopted in [56, 57, 162]. As

shown in Fig. 2.2, a link is in LOS state with probability p(x) = β1 inside the first ball with

radius R1, while NLOS state occurs with probability 1−β1. Similarly, LOS probability is equal to

p(x) = βd for x between Rd−1 and Rd for d = 2, . . . , D, and all links with distances greater than

RD are assumed to be in outage state. Additionally, LOS and NLOS links have different path loss

exponents in different ball layers. Therefore, the D-ball approximation model can be formulated
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as

pL(x) =



β1, if x ≤ R1

β2, if R1 ≤ x ≤ R2

...

βDif RD−1 ≤ x ≤ RD

0, if x ≥ RD.

(2.12)

Typical UE

1
2

= 1

= 2

= 0 ( )

=

−1

Fig. 2.2: LOS ball model

In mmWave transmissions, the path loss can be formulated as

L(x) =


κLxα

L w.p. pL(x)

κNxα
N w.p. 1− pL(x)

(2.13)

where x is the distance of the link, αL and αN are the LOS and NLOS path loss exponents, respec-

tively, κL and κN are the path loss of LOS and NLOS links at a distance of 1 meter, respectively,

and pL(x) is the probability of LOS at distance x.



32

Terahertz (THz) Transmissions

THz transmissions encounter a more challenging propagation environment. Compared to the ultra

high frequency and mmWave frequency bands, electromagnetic waves in THz bands experience

high molecular absorption loss in addition to spreading loss and scattering attenuation [4–7]. The

ultimate effect is a more complex path loss model that additionally includes an exponential decay in

power [8]. Human-body blockage effects also have a strong impact on the communication quality

of THz channels [6]. Moreover, THz waves cannot reach objects that are behind obstacles whose

dimensions are greater than the wavelength. Effectively, any object whose size is greater than few

millimeters including users themselves, acts as a blocker. Transceivers operating in THz bands are

expected to be characterized by high antenna directivities in both transmit and receive directions [8]

to compensate such severe path loss. And this would in turn have significant influence on the

interference levels and the coverage performance [6].

In the terabit wireless local area networks, the links between base stations (BSs) and UEs (both

the main link and the interfering links) can be easily blocked by other UEs (due to human body

blockage) and the BSs [6, 7]. When the LOS path from a BS to a UE is cut off by any part of the

blockers, the LOS channel is converted to the NLOS channel. The blockers can be modeled as

circular objects with a radius of RB. According to [7, 8, 67], the probability of non-blocking can

be formulated as

pL(x) = e−λB(x−RB)RB (2.14)

where x is the link distance, λB = λUE +
∑
λBS , and λUE and λBS are the densities of the UEs

and BSs, respectively.

An exponential power loss propagation model is introduced to describe the path loss in the THz
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band [5, 6]. In particular, the path loss is formulated as

L(x) =


κLeκxxα

L for LOS with prob. (w.p.) pL(x),

κNeκxxα
N for NLOS w.p. pN(x),

(2.15)

where κ indicates the molecular absorption coefficient.

Microwave Transmissions

Due to their more favorable propagation characteristics, microwave transmissions experience com-

parable path loss in LOS and NLOS links. With this, the links in microwave transmissions are

assumed to be LOS, i.e. pL = 1. The path loss can be expressed as

L(x) = xα. (2.16)

Air-to-Ground Links

Links between the UAV and the ground UEs/BSs all experience LOS or NLOS. Similarly as in

[163], we formulate the probability of the LOS link between the UAVs and the ground UEs/BSs as

pL(x) =
1

1 + C exp(−B(θ − C))
(2.17)

where θ = 180
π

arcsin(H
x

) is the elevation angle, H denotes the height of the UAVs, x is the link

distance, and B and C are specific constants that depend on the environment (rural, urban, dense

urban, etc.). The path gain of the links are be formulated the same as 2.13.

2.2.2 Shadowing

The shadowing can be incorporated by scaling the path loss with a given v and then taking the

expectation of coverage probability with respect to v. Shadowing can be modeled as a log-normal

random variable 10 log v ∼ N(µ, σ2).
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2.2.3 Small-Scale Fading

Nakagami-m fading1 is a general fading model suitable under various conditions [87]. Denoted

by hs, the small-scale fading gains (i.e., magnitude-squares of fading coefficients) follow Gamma

distributions hl ∼ Γ(Nl, 1/Nl) for LOS, while hn ∼ Γ(Nn,
1
Nn

) for NLOS, where Nl, Nn are the

Nakagami fading parameters for LOS and NLOS links, respectively, and are assumed to be positive

integers.

2.2.4 Antenna Gain

To compensate frequency-dependent path and penetration losses, antenna arrays can be enabled at

the transmitter and receiver. [3, 164]. As the wavelength decreases, antenna sizes also decrease,

reducing the antenna aperture [160], therefore it is possible to pack multiple antenna elements into

the limited space at transceivers. With large antenna arrays, mmWave/THz cellular systems can

implement beamforming at the transmitter and receiver to provide array gain that compensates for

the frequency dependent path loss, overcomes additional noise power, and as a bonus also reduces

out-of-cell interference [165]. MmWave/THz links are inherently directional. By controlling the

phase of the signal transmitted by each antenna element, the antenna array steers its beam towards

any direction electronically and to achieve a high gain at this direction, while offering a very low

gain in all other directions [55].

Two-Dimensional (2D) Antenna Patterns

The followings are the 2D array gain functions recently discussed in the literature.

• Actual antenna pattern [166]

G(x) =
sin2(πN2

t x)

Nt sin2(πx)
(2.18)

1Note that Nakagami fading specializes to Rayleigh fading when m = 1.
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• Sinc antenna pattern [166]

G(x) =
sin2(πNtx)

(πNtx)2
(2.19)

• Cosine antenna pattern [166]

G(x) =


cos2

(
πNtx

2

)
|x| ≤ 1

Nt

0 otherwise
(2.20)

• Multi-cosine antenna pattern [167]

G(x) =


cos2

(
πNtx

2

)
|x| ≤ 1

Nt

Gact(φ) cos2 (πNt(|x| − φ)) k
Nt
< |x| < k+1

Nt

0 otherwise

(2.21)

where Nt is total number of the antenna elements, φ = 2k+1
2Nt

, and k ∈ [0, bNt
2
c − 1].

• Sectored antenna pattern approximation

The sectored antenna model2 is a well-used approximation in the literature. M∗ and m∗

are the the main lobe gain and side lobe gain, respectively, and ∗ ∈ {b, u} denotes the BS

side or the UE side. It is assumed that the antenna gain between the UE and the serving

BS can achieve the maximum antenna gain G0 = MbMu, due to the directionality. The

beam direction of the interfering links can be modeled as uniformly distribution over [0, 2π).

2Note that the sectored antenna model is also called the corn-shaped model.
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Therefore, we can formulate the antenna gain of an interfering link as [160]

G =



MbMu w.p. pMbMu = ( θb
2π

)( θu
2π

)

Mbmu w.p. pMbmu = ( θb
2π

)(1− θu
2π

)

mbMu w.p. pmbMu = (1− θb
2π

)( θu
2π

)

mbmu w.p. pmbmu = (1− θb
2π

)(1− θu
2π

),

(2.22)

where θ∗ for ∗ ∈ {b, u} denotes the main lobe beamwidth.

Three-Dimensional (3D) Antenna Pattern at the GBSs

According to [168], the 3D antenna pattern at the GBSs can be divided into horizontal and vertical

components. In the horizontal plane, the antenna attenuation can be expressed in dB as

GH(φ) = min

[
12

(
φ

φ3dB

)2

, Gm

]
(2.23)

where φ indicates the horizontal angle between the BS antenna boresight and the UE, φ3dB is the

horizontal 3 dB beamwidth, and Gm is the maximum attenuation of the BS. On the other hand, the

vertical antenna attenuation can be written as

GV (θ) = min

[
12

(
θ − θetilt
θ3dB

)2

, Gm

]
(2.24)

where θ = arcsin(H
x

) is the vertical angel, θetilt stands for the electrical antenna downtilting angle,

and θ3dB represents the vertical 3 dB beamwidth of the GBS antennas. Then, combining the

antenna attenuation in two planes and the maximum antenna gain G0 at the antenna boresight, we

can formulate the 3D antenna gain from the BS to the UE in dB as

G(φ, θ) = G0 −min(GH(φ) +GV (θ), Gm). (2.25)



37

Fig. 2.3: Illustrations of the antenna pattern of GBSs on the vertical plane.

(a) Sine pattern.
(b) Cosine pattern. (c) Directional pattern.

Fig. 2.4: An illustration of the vertical antenna configuration at the UAVs, whereH is the height difference.

The vertical antenna pattern at GBSs is illustrated in Fig. 2.3.

3D Antenna Pattern at the UAVs

Four types of antenna patterns that the UAV may use to communicate with the GBSs/GUEs. The

3D antenna pattern of the UAV can be determined by considering the gains in the vertical and

horizontal planes. It is assumed that on the horizontal plane, the antenna gain is omni-directional

with 0 dB. In the vertical plane, the expressions of the antenna patterns are provided in detail in

the subsections below. For a given GBS/GUE, the different UAV vertical antenna patterns are

illustrated in Fig. 2.4.

• Omni-directional pattern:

If the UAV is equipped with an omni-directional antenna, the antenna gain can be formulated
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as

G(x) = 1 (2.26)

• Sine pattern:

If the UAV is equipped with an ultra-wideband receiver with a horizontally oriented antenna,

a simple analytical approximation as a function of the elevation angle θ can be expressed

as [169]

G(x) = G0 sin(θ) = G0 H√
x2 +H2

(2.27)

where G0 is the maximum antenna gain of the UAV when sin(θ) is 1, i.e., when the UAV is

right above the GBS.

• Cosine pattern:

If the UAV is equipped with an ultra-wideband receiver with a vertically oriented antenna,

the antenna gain can be written as [169]

G(x) = G0 cos(θ) = G0 x√
x2 +H2

. (2.28)

It is worth noting that this cosine approximation is a more general formulation for a direc-

tional antenna pattern with a fixed beamwidth, i.e. the directional antenna is tilting down to

give a cone-shaped radiation lobe directly beneath the UAV and the main lobe and side lobe

provide constant antenna gains.

• Directional pattern with tilting angle:

If the UAV is equipped with a directional antenna which can be intelligently steered and

aligned with the serving GBS [96], the serving GBS is in the main lobe and has antenna gain
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G = 16π
ψ2
w

. In addition, the antenna gain of the interfering GBS can be given as

G(x) =
16π

ψ2
w

1

(
min

(
π

2
,
ψw
2

+ θUtilt

)
≥ θ ≥

∣∣∣θUtilte − ψw
2

∣∣∣)
=

16π

φ2
w

1

(
H tan

(
min

(
π

2
,
ψw
2

+ θUtilt

))
≥ x ≥ H tan

(∣∣∣θUtilt − ψw
2

∣∣∣)) (2.29)

where θUtilt = θ = arctan(H/D0) is the tilting angle of the UAV antenna, ψw ∈ (0, π] is the

beamwidth of the main lobe, and D0 is the horizontal distance from the typical UAV to the

serving GBS/GUE. The antenna gain of the side lobe (i.e. outside the beamwidth) is 0.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a class of machine learning methods that can be utilized for solv-

ing sequential decision making problems with unknown state-transition dynamics [170] [171].

Typically, a sequential decision making problem can be formulated as a Markov decision process

(MDP) [172], which is described by the tuple 〈S,A,P ,R, γ〉, where S is the state space, A is

the action space, P is the state-transition model, R is the reward function, and γ ∈ [0, 1] is a

discount factor that trades-off the importance of the immediate and future rewards. More specif-

ically, at each time step, an agent, in state st ∈ S, chooses an action at ∈ A, transitions to next

state st+1, and receives reward Rt from the environment E . A policy, π, is a mapping from states,

s, and actions a, to the probability π(s, a) of taking action a when in state s. An illustration of

reinforcement learning scheme is displayed in Fig. 2.5.

Almost all reinforcement learning algorithms are based on estimating value functions, i.e.,

functions of states or state-action pairs, that estimate how good it is for the agent to be in a given

state or how good it is to perform a given action in a given state [172]. For MDPs, the state-value

function, denoted as V π(st), is defined as the value of a state st under a policy π. The cumulative
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Fig. 2.5: An illustration of reinforcement learning Scheme.

discounted rewardRC
t is

RC
t ,

∞∑
τ=0

γτRt+τ . (2.30)

The state-value is the expected return when starting st and following π, and can be expressed as

V π(st) , Eπ[RC
t |st] = Eπ

[
∞∑
τ=0

γτRt+τ |st

]
. (2.31)

Similarly, the state-action-value, denoted as Qπ(st, at), is the value of taking action a in state s

under a polity π, and can be expressed as

Qπ(st, at) , Eπ[RC
t |st, at] = Eπ

[
∞∑
τ=0

γτRt+τ |st, at

]
. (2.32)

The value functions satisfies the Bellman optimality equation [172]

V π(st) = Eπ[rt + γV π(st+1)|st] (2.33)

Qπ(st, at) = Eπ[rt + γmax
a′

Qπ(st+1, a
′)|st, at]. (2.34)

The essential task of many RL algorithms is to seek the optimal policy, π∗, that maximizes the

expected cumulative discounted reward, i.e., to find the optimal value functions

V ∗(s) = max
π

V π(s) (2.35)
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or

Q∗(s, a) = max
π

Qπ(s, a). (2.36)

Q-learning is one of the most widely used algorithms for RL. In traditional Q-learning, a table

(referred to Q-table) is constructed, in which the component in row s and column a is the Q-value

Q(s, a). The Q-learning update rule can be written as [173]

Q(s, a)← Q(s, a) + α[R+ γmax
a′

Q(s′, a′)−Q(s, a)], (2.37)

where α is a scalar step size, s′ is the state in the next time step.

In problems with large state and action spaces, it becomes infeasible to use the Q-table. A

typical approach is to convert the update problem of Q-table into a function fitting problem, i.e., we

can learn a parameterized value function Q(s, a; ξ) ≈ Q(s, a) with parameters ξ. When combined

with deep learning, this leads to DQN. The operation of DQN consists of an online deep Q-learning

phase and an offline deep neural network (DNN) construction phase, which is used to learn the

value function Q(s, a; ξ). Generally, the parameter set ξ is optimized by minimizing the following

loss function [174]

Lt(ξt) = E[(yt −Q(st, at; ξt))
2], (2.38)

where yt = Rt + γmaxa′ Q(st+1, a
′; ξ−t ) is the target, and ξ−t is copied at certain steps from ξt.

The maximization operator in standard Q-learning and DQN uses the same values both to select

and to evaluate an action, which increases the probability to select overestimated values and results

in overoptimistic value estimates. DDQN can be used to mitigate the above problem by using the

following target [175]

yt = Rt + γQ(st+1, argmax
a′

Q(st+1, a
′; ξt); ξ

−
t ), (2.39)
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Fig. 2.6: The structure of the dueling deep Q-network.

where ξt is used for action selection, and ξ−t is used to evaluate the value of the policy, and ξ−t can

be updated symmetrically by switching the roles of ξt and ξ−t .

Furthermore, considering that Q-value measures how beneficial a particular action a is when

taken in state s, the dueling architecture is introduced to obtain a value V (s) and an advantage

A(s, a) = Q(s, a)− V (s) [176]. The value V (s) is to measure how good it is in a particular state

s. The advantage A(s, a) describes the advantage of the action a compared with other possible

actions while in state s [177]. Therefore, the difference in dueling DQN, compared with DQN, is

that the last layer of the DQN is split into two separate layers, ξV and ξA. ξV is used to obtain

the value V (s; ξ, ξV ), and the output of ξA is the advantage for each action A(s, a; ξ, ξA). The

Q-value in dueling DQN can be expressed as [176]

Q(s, a; ξ, ξV , ξA)

= V (s; ξ, ξV ) + A(s, a; ξ, ξA)− 1

|A|
∑
a′

A(s, a′; ξ, ξA). (2.40)

The general structure of dueling DQN is displayed in Fig. 2.6. Dueling DDQN (D3QN) is a

combination of dueling DQN and DDQN.
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CHAPTER 3

COVERAGE IN DOWNLINK

HETEROGENEOUS MMWAVE CELLULAR

NETWORKS WITH USER-CENTRIC SMALL

CELL DEPLOYMENT

3.1 System Model

3.1.1 Base Station Distribution Modeling

In this chapter, a K-tier heterogeneous downlink mmWave cellular network is considered. BSs

in all tiers are distributed according to a homogeneous PPP (more specifically, the BSs in the

jth tier are distributed according to PPP Φj of density λj on the Euclidean plane for j ∈ K =

{1, 2, ..., K}), and are assumed to be transmitting in a mmWave frequency band. BSs in the jth tier

are distinguished by their transmit power Pj , biasing factor Bj , and blockage model parameters.
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3.1.2 User Distribution Modeling

We consider a realistic network scenario where the UEs are clustered around the smaller cell BSs.

In this network scenario, smaller cell BSs are parent nodes and are located at the center of the

clustered UEs where the locations of the UEs are modeled as a PCP. UEs in each cluster are called

cluster members. Cluster members are assumed to be symmetrically independently and identically

distributed (i.i.d.) around the cluster center. Assume that the cluster center is a BS in the jth tier,

then the union of the cluster members’ locations forms a PCP, denoted by Φj
u. In this chapter ,

Φj
u is modeled as either (i) a Thomas cluster process, where the UEs are scattered according to a

Gaussian distribution with variance σ2
j , or (ii) a Matérn cluster process, where the UEs are scattered

according to a uniform distribution, i.e., UEs are symmetrically uniformly spatially distributed

around the cluster center within a circular disc of radius Rj .

Let Y0 and Yj denote the distance from typical UE to the cluster center BS and the nearest

BS in the jth tier, respectively. Therefore, the CCDF and PDF of Y0 are given as (2.7) (2.9) and

(2.8) (2.10), respectively. And the CCDF and PDF of Yj are given in (2.4) and (2.5), respectively.

Similar to [72], to distinguish the difference between the distributions of Y0 and Yj , we form an

additional tier, named as 0th tier, which includes the cluster center BS of the typical UE. Thus, our

model is denoted as a K1 = {0} ∪ K = {0, 1, 2, ..., K} tier model.

3.1.3 Channel Modeling

In this setting, we have the following assumptions regarding the antenna and channel models of

the K-tier heterogeneous downlink mmWave cellular network:

Directional Beamforming

Antenna arrays at all BSs and UEs are assumed to perform directional beamforming. For analytical

tractability, sectored antenna model is employed where M , m, θ denote the main lobe directivity

gain, side lobe gain and beamwidth of the main lobe, respectively [57, 160, 178]. The effective
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antenna gain G between the typical UE and an interfering BS are provided in (2.22), where Mb =

Mu = M and mb = mu = m.

Path Loss and Blockage Modeling

The D-ball approximation model for LOS probability in (2.12) is adopted in this chapter. Con-

sider an arbitrary link of length yj (j ∈ K), and define the LOS probability function p(yj) as the

probability that the link is LOS. Therefore, the path loss on each link in the jth tier (j ∈ K) can be

expressed as follows:

Lj(yj) =




κL1 yj

αjL1 with prob. βj1

κN1 yj
αjN1 with prob. (1− βj1)

if yj ≤ Rj1


κL2 yj

αjL2 with prob. βj2

κN2 yj
αjN2 with prob. (1− βj2)

if Rj1 ≤ yj ≤ Rj2

...
κLDyj

αjLD with prob. βjD

κNDyj
αjND with prob. (1− βjD)

if Rj(D−1) ≤ yj ≤ RjD

outage if yj ≥ RjD,

(3.1)

where αjLd , α
jN
d are the LOS and NLOS path loss exponents, respectively, for the dth ball of the

jth tier, κLd , κNd are the path loss of LOS and NLOS links at a distance of 1 meter in the dth ball,

respectively, and Rjd is the radius for dth ball in the jth tier (j ∈ K), for d = 1, 2, ..., D.

For the 0th tier, there is only one BS, called the 0th tier BS, at the cluster center and cluster

members are clustered around it. Since the link distance between the cluster center BS and cluster

members is generally relatively small, we assume that the link between the cluster center BS and

the cluster members can be either LOS or NLOS with path loss exponents α0L
1 or α0N

1 , respectively,

without an outage state. Therefore, the path loss of the link in the 0th tier can be expressed as
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follows:

L0(y0) =


κL1 y0

α0L
1 with prob. β01,

κN1 y0
α0N

1 with prob. (1− β01),

(3.2)

where similar notations are used for path loss parameters.

We note that shadowing is not taken into account in our baseline model for computational

tractability in the main analysis similarly as in [57], [160], and [178]. However, our model can

be extended by incorporating log-normal shadowing, and the analysis for this extended channel

model is addressed in section 3.4.7.

3.2 Path Loss Statistics

In this section, the CCDF and the PDF of the path loss for all tiers are characterized.

3.2.1 Path Loss in the 0th Tier

Lemma 3.1. The CCDF and PDF of the path loss from a typical UE to the LOS/NLOS BS in the

0th tier can be expressed as follows:

(i) If Φj
u is a Thomas cluster process,

CCDF : FL0,s(x) = exp

(
− 1

2σ2
j

(
x

κs1

) 2

α0s
1

)
, (3.3)

PDF : fL0,s(x) =
x

2

α0s
1
−1

α0s
1 κ

s
1

2

α0s
1 σ2

j

exp

(
− 1

2σ2
j

(
x

κs1

) 2

α0s
1

)
, (3.4)

where x > 0, s ∈ {LOS,NLOS}, and σ2
j is the variance of the Gaussian UE distribution.
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(ii) If Φj
u is a Matérn cluster process,

CCDF : FL0,s(x) = 1− x
2

αks1

κs1

2

αks1 R2
j

, (0 ≤ x ≤ κs1R
αks1
j ), (3.5)

PDF : fL0,s(x) =
2x

2

αks1

−1

αks1 κ
s
1

2

αks1 R2
j

, (0 ≤ x ≤ κs1R
αks1
j ), (3.6)

where s ∈ {LOS,NLOS}, and Rj is the radius of the cluster.

Proof: See Appendix 1.

Therefore, the CCDF and PDF of the path loss from a typical UE to the BS in the 0th tier can

be expressed as

FL0(x) =
∑

s∈{LOS,NLOS}

pL0,sFL0,s(x), (3.7)

where pL0,LOS = β01 and pL0,NLOS = 1 − β01 are the LOS and NLOS probabilities in the 0th tier,

respectively.

3.2.2 Path Loss in the jth Tier (j ∈ K)

The CCDF of the path loss from the typical UE to the LOS/NLOS BS in the jth tier can be

formulated as [57, Lemma 2]

FLj,s(x) = exp
(
− Λj,s

(
[0, x)

))
, for j ∈ K, (3.8)

where s ∈ {LOS,NLOS} and Λj,s([0, x)) is expressed in (3.9) and (3.10) for LOS and NLOS

links, respectively.

Λj,LOS
(
[0, x)

)
= πλj

D∑
d=1

βjd

[ (
R2
jd −R2

j(d−1)

)
1

(
x > κLdR

αjLd
jd

)
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+

((
x

κLd

) 2

α
jL
d −Rj(d−1)

2

)
1

(
κLdR

αjLd
j(d−1) < x < κLdR

αjLd
jd

)]
, (3.9)

Λj,NLOS
(
[0, x)

)
= πλj

D∑
d=1

(1− βjd)
[ (
R2
jd −R2

j(d−1)

)
1

(
x > κNd R

αjNd
jd

)

+

((
x

κNd

) 2

α
jN
d −Rj(d−1)

2

)
1

(
κNd R

αjNd
j(d−1) < x < κNd R

αjNd
jd

)]
. (3.10)

Therefore, the CCDF and PDF of the path loss from a typical UE to the BS in the jth tier can be

expressed as

FLj(x) = exp
(
− Λj

(
[0, x)

))
, for j ∈ K, (3.11)

where

Λj

(
[0, x)

)
= Λj,LOS

(
[0, x)

)
+ Λj,NLOS

(
[0, x)

)
. (3.12)

Also, the PDF of Lj,s(y), denoted by fLj,s is given by

fLj,s(x) = −
dFLj,s(x)

dx
= Λ′j,s

(
[0, x)

)
exp

(
− Λj,s

(
[0, x)

))
, for j ∈ K, (3.13)

where

Λ′j,LOS

(
[0, x)

)
= 2πλj

D∑
d=1

βjdx
2

α
jL
d

−1

αjLd κ
L
d

2

α
jL
d

1

(
κLdR

αjLd
j(d−1) < x < κLdR

αjLd
jd

)
, (3.14)

and

Λ′j,NLOS

(
[0, x)

)
= 2πλj

D∑
d=1

(1− βjd)x
2

α
jN
d

−1

αjNd κNd

2

α
jN
d

1

(
κNd R

αjNd
j(d−1) < x < κNd R

αjNd
jd

)
. (3.15)

3.3 User Association
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3.3.1 Association Criterion

UEs are assumed to be associated with the BS offering the strongest long-term average biased

received power similarly as in [179]. This can be mathematically expressed as

P = max
j∈K1,i∈Φj

Pj,iBj,iG0L
−1
j,i (3.16)

where P is the average biased received power of the typical UE, Pj,i, Bj,i, L
−1
j,i are the transmission

power, biasing factor, and path loss of the ith BS in the jth tier, respectively, and G0 is the effective

antenna gain. Since Pj,i andBj,i are the same for all BSs in the jth tier, the strongest average biased

received power within each tier comes from the BS providing the minimum path loss. Therefore,

we can write

P = max
j∈K1

PjBjG0L
−1
j,min (3.17)

where Lj,min is the minimum path loss of the typical UE from a BS in the jth tier.

3.3.2 Association Probability

Association probability is defined as the probability that a typical UE is associated with a LOS/NLOS

BS in the jth tier for j ∈ K1. The association probabilities with a BS in the jth tier are provided in

the following lemma.

Lemma 3.2. The probability that the typical UE is associated with a LOS/NLOS BS in the jth tier

for j ∈ K1, is

Aj,s =


EL0,s

[
pL0,s

(
K∏
k=1

FLk (Ck,0l0,s)

)]
, for j = 0,

ELj,s

FLj,s′
(lj,s)

FL0 (C0,jlj,s)
K∏
k=1
k 6=j

FLk (Ck,jlj,s)

 , for j ∈ K,
(3.18)

where s, s′ ∈ {LOS,NLOS}, s 6= s′, Ck,j = PkBk
PjBj

, lj,s is the path loss from a LOS/NLOS BS in the
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jth tier, FL0(·) is given by (3.7), (3.3) or (3.5) (depending on the cluster process), and FLk(·), and

FLj,s′
(·) are given by (3.11) and (3.8), respectively.

Proof. See Appendix 2.

Corollary 3.1. When Φj
u is a Thomas cluster process, the association probability with a LOS/NLOS

BS in the jth tier for j ∈ K1, is given in (3.19), where s ∈ {LOS, NLOS}, Λk([0, ·)) is given in

(3.12), Λ′j,LOS([0, ·)) and Λ′j,NLOS([0, ·)) are given in (3.14) and (3.15), respectively.

Aj,s =



pL0,s

α0s
1 κs1

2
α0s

1 σ2
j

∫ ∞
0

e

− 1

2σ2
j

(
l0,s
κs1

) 2
α0s

1 −
∑K
k=1 Λk

([
0,
PkBk
P0B0

l0,s
))

dl0,s, for j = 0,

∫ ∞
0

 ∑
m∈{LOS,NLOS}

pL0,me
− 1

2σ2
j

(
P0B0lj,s
PjBjκ

m
1

) 2

α
0,m
1

Λ′j,s′([0, lj,s))

e

(
−
∑K
k=1 Λk

([
0,
PkBk
PjBj

lj,s

)))
dll,s, for j ∈ K.

(3.19)

Proof. The proof follows by substituting (3.3), (3.7), (3.8), and (3.11) into (3.18).

Corollary 3.2. When Φj
u is a Matérn cluster process, the association probability with a LOS/NLOS

BS in the jth tier for j ∈ K1, is given as.

Aj,s =



2pL0,s

αks1 κs1

2

αks1 R2
j

∫ κs1R
αks1
j

0

l

2

αks1

−1

0,s e
−
∑K
k=1 Λk

([
0,
PkBk
P0B0

l0,s
))
dl0,s, for j = 0,

∫ ∞
0

 ∑
m∈{LOS,NLOS}

pL0,m

(
1− 1

R2
j

(
P0B0lj,s
PjBjκm1

)
2

α
k,m
1

)Λ′j,s′([0, lj,s))

e

(
−
∑K
k=1 Λk

([
0,
PkBk
PjBj

lj,s

)))
dll,s, for j ∈ K.

(3.20)

Proof. The proof follows by substituting (3.5), (3.7), (3.8), and (3.11) into (3.18).

Furthermore, given that the serving BS is from the jth tier and in a LOS/NLOS transmission,

the PDF of the path loss from the typical UE to its serving BS is provided in the following Lemma.

Lemma 3.3. Given that the typical UE is associated with a LOS/NLOS BS from the jth tier, the
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PDF of the path loss is

f̂Lj,s(x) =


pL0,s

A0,s
fL0,s(x)

(
K∏
k=1

FLk (Ck,0x)

)
, for j = 0,

1
Aj,s

fLj,s(x)FLj,s′
(x)

FL0(C0,jx)
K∏
k=1
k 6=j

FLk (Ck,jx)

 , for j ∈ K.
(3.21)

where Ck,j = PkBk
PjBj

.

Proof. See Appendix 3.

3.3.3 Analysis of Special Cases for Association Probability

In this section, we provide simplified association probability expressions for several special cases

to give more insights on the impact of different system parameters. Specifically, we consider a 2-

tier model, where the UEs are clustered around the 1st tier BSs. We further consider a 1-ball model

with radiiR1 andR2 for tiers 1 and 2, respectively, and assume that the probability of LOS is equal

to one inside the ball while outage occurs outside the ball. In addition, the path loss exponent αL

is set as 2. Performing several algebraic operations and assuming that the standard deviation of

the Gaussian UE distribution is σ, we simplify the association probability expressions in (3.19)

(obtained for the Thomas cluster process) as follows:

A0 =
1

2σ2κL

∫ ∞
0

e
− l

2κLσ2−Λ1([0,l))−Λ2

([
0,
P2B2
P1B1

l
))
dl (3.22)

A1 =

∫ ∞
0

Λ′1([0, l))e
− l

2κLσ2−Λ1([0,l))−Λ2

([
0,
P2B2
P1B1

l
))
dl (3.23)

A2 =

∫ ∞
0

Λ′2([0, l))e
− lP1B1

2κLσ2P2B2
−Λ1

([
0,
P1B1
P2B2

l
))
−Λ2([0,l))

dl (3.24)

where

Λj([0, x)) = πλj

(
R2
j1(x > κLR2

j ) +
x

κL
1(x < κLR2

j )
)

(3.25)

Λ′j([0, x)) =
πλj
κL

1(x < κLR2
j ). (3.26)
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Moreover, if we let R1 and R2 grow without bound, i.e., we have R1 → ∞, R2 → ∞, we can

simplify the expressions further and obtain the following closed-form expressions:

A0 =
P1B1

P1B1 + 2πσ2(λ1P1B1 + λ2P2B2)
(3.27)

A1 =
2πσ2λ1P1B1

P1B1 + 2πσ2(λ1P1B1 + λ2P2B2)
(3.28)

A2 =
2πσ2λ2P2B2

P1B1 + 2πσ2(λ1P1B1 + λ2P2B2)
. (3.29)

The association probability expressions above are simple functions of the key system parameters

such as transmission power Pi, biasing factor Bi, BS density λi for tiers i = 1, 2 as well as

the variance σ2 of the Gaussian cluster distribution, and the impact of these parameters can be

determined immediately. For instance, we readily note that as the UEs are spread more widely

around the cluster center, i.e., as the variance σ2 grows, association probability A0 to the cluster

center diminishes, as expected. Indeed, in the limit as σ2 approaches infinity, UEs are no longer

clustered around BSs, and correspondingly our model specializes to the 2-tier PPP model for which

association probabilities become (in addition to having A0 ≈ 0)

A1 ≈
λ1P1B1

λ1P1B1 + λ2P2B2

(3.30)

A2 ≈
λ2P2B2

λ1P1B1 + λ2P2B2

, (3.31)

recovering the results in [12] and [57] obtained for the PPP model with no clustered users.

On the other hand, if we consider a 2-tier Matérn cluster process model with cluster radius R,

association probabilities in (3.20) can be simplified as

A0 =
1

κLR2

∫ κLR2

0

e
−Λ1[0,l)−Λ2

[
0,
P2B2
P1B1

l
)
dl (3.32)

A1 =

∫ ∞
0

(1− l

R2
)Λ′1[0, l)e

−Λ1[0,l)−Λ2

[
0,
P2B2
P1B1

l
)
dl (3.33)

A2 =

∫ ∞
0

(1− lP1B1

R2P2B2

)Λ′2[0, l)e
−Λ1

[
0,
P1B1
P2B2

l
)
−Λ2[0,l)

dl. (3.34)
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If the radiiR1, R2 and the cluster radiusR all grow without bound, we obtain the same expressions

as in (3.30) and (3.31) for the association probabilities.

3.4 SINR Coverage Probability Analysis

In this section, an analytical framework is developed to analyze the downlink SINR coverage

probability for a typical UE of Φj
u using stochastic geometry and employing the results obtained in

Section III.

3.4.1 Signal to Interference Plus Noise Ratio

According to the association policy, a typical UE is served by the BS providing the strongest

average biased received power. Therefore, if the typical UE is served by a BS in the jth tier located

at a distance yj , there exists no BSs in the kth tier (∀k ∈ K1), within a disc Qk whose center is the

location of the typical UE and whose radius is proportional to PkBk
PjBj

lj,s. We refer to this disc as the

exclusion disc throughout this chapter .

If the typical UE is associated with a BS in the jth tier, the interference is due to the BSs lying

beyond the exclusion disc. Therefore, the interference from the BSs in the kth tier can be expressed

as

Ij,k =
∑

i∈Φk\Qk

PkGk,ihk,iL
−1
k,i (3.35)

where Pk is the transmit power of the BSs in the kth tier, andGk,i, hk,i, Lk,i are the effective antenna

gain, the small-scale fading gain and the path loss from the ith BS in the kth tier, respectively. We

assume that all links are subject to independent Nakagami fading, and hence the small-scale fading

gain h is the magnitude-square of the Nakagami fading coefficient.

The SINR experienced at a typical UE associated with a LOS/NLOS BS in the jth tier can
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expressed as

SINRj,s =
PjG0hjL

−1
j,s

σ2
n,j +

K∑
k=0

∑
i∈Φk\Qk

PkGk,ihk,iL
−1
k,i

(3.36)

where s ∈ {LOS,NLOS}, Pj is the transmit power in the jth tier, G0 is the effective antenna gain

of the link between the serving BS and the typical UE which is assumed to be MM , hj is the

fading gain from the serving BS to the typical UE and σ2
n,j is the variance of the additive white

Gaussian noise component.

3.4.2 SINR Coverage Probability

A typical UE is said to be in coverage if the received SINR is larger than a certain threshold Tj > 0

required for successful reception.

Definition 3.1. Given that the typical UE is associated with a LOS/NLOS BS in the jth tier, the

conditional SINR coverage probability of the jth tier is defined as

P c
Cj,s

= P(SINRj,s > Tj|t = j) (3.37)

where t indicates the associated tier and s ∈ {LOS,NLOS}. Therefore, the total SINR coverage

probability of the K-tier heterogeneous mmWave cellular network with user-centric small cell

deployment can be defined as follows:

PC =
K∑
j=0

PCj =
∑

s∈{LOS,NLOS}

A0,sP
c
C0,s

+
K∑
j=1

∑
s∈{LOS,NLOS}

Aj,sP
c
Cj,s

(3.38)

where Aj,s is the association probability of a LOS/NLOS BS in the jth tier, which is given in 3.18.

PCj is the coverage probability of each tier and PCj =
∑

s∈{LOS,NLOS}
Aj,sP

c
Cj,s

.

The exact expressions for the coverage probabilities of each tier are given in the following

theorem.
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Theorem 3.1. Given that the UE is associated with a LOS/NLOS BS from the jth tier (j ∈ K1),

the conditional SINR coverage probabilities are given in (3.39) at the top of the page, where s, a ∈

{LOS,NLOS}, Ns is the Nakagami fading factor, µj,s =
nηsTj lj,s
PjG0

, ηs = Ns(Ns!)
− 1
Ns , Isj,k is the

interference from the LOS/NLOS BSs in the kth tier to the jth tier, Ij,0 is the interference form the

0th tier to the jth tier, and LIsj,k(µj,s) is the Laplace transform of Isj,k evaluated at µj,s.

P c
Cj,s

=

EL0,s

[
Ns∑
n=1

(−1)n+1
(
Ns

n

)
e−µ0,sσ2

n,0

K∏
k=1

(
LILOS

0,k
(µ0,s)LINLOS

0,k
(µ0,s)

)]
, for j = 0,

ELj,s

[
Ns∑
n=1

(−1)n+1
(
Ns

n

)
e−µj,sσ

2
n,j

(∑
a

pL0,aLIaj,0(µj,s)

)
K∏
k=1

(
LILOS

j,k
(µj,s)LINLOS

j,k
(µj,s)

)]
,

for j ∈ K.

(3.39)

Proof. See Appendix 4.

Lemma 3.4. Suppose the typical UE is associated with a LOS/NLOS BS in the jth(j ∈ K1)

tier, the Laplace transform of the interference from a LOS/NLOS BS in the kth(k ∈ K1) tier

can be expressed as in (3.40) provided at the top of the page, where s ∈ {LOS,NLOS} and

a ∈ {LOS,NLOS} indicating whether the associated BS and interfering BS, respectively, are LOS

or NLOS.

LIaj,k =


∑

G pG
∫∞
P0B0
PjBj

lj,s

1

(1+µj,sP0Gl
−1
0,aN

−1
a )

Na

fL0,a
(l0,a)

FL0,a

(
P0B0
PjBj

lj,s

)dl0,a for j = 0,

e
−
∑
G

∫∞
PkBk
PjBj

lj,s

1− 1

(1+µj,sPkGl
−1
k,a

N−1
a )

Na

pGΛ′k,a([0,dlk,a))

, for j ∈ K.

(3.40)

Proof. See Appendix 5.

The general coverage probability expressions in Theorem 3.1 specialized to Thomas and Matérn

cluster processes can be readily obtained by substituting (3.4) - (3.6) into (3.39) and (3.40).



56

Next, we provide upper and lower bounds on the Laplace transform of the interference.

Lemma 3.5. The Laplace transform of the interference from the cluster center LOS/NLOS BS,

LIs,Gj,0
, is bounded as

(
1 +

nηsGBjTj
G0B0Ns

)−Ns
≤ LIs,Gj,0 ≤ 1. (3.41)

Proof. See Appendix 6.

We note that the result in Lemma 5 can be used to obtain upper and lower bounds on the

coverage probability PC of the network.

3.4.3 Analysis of Special Cases for Coverage Probability

In this section, we again analyze (similarly as in Section 3.3.3) the special case in which the

cluster size grows without bound. As defined before, y0 is the distance from the typical UE to its

own cluster center, and l0,s = κsy
αs
0 is the path loss of the link given the link is in a LOS/NLOS

transmission. When the cluster size increases, the typical UE moves farther away from its cluster

center with high probability. One way to model this notion is to scale the distance to the cluster

center as ς ′y′0 (see e.g., [13, Section IV-B]), and also scale l0,s = ςl′0,s where ς = ς ′αs . As the

cluster size tends to infinity, we let ς →∞.

Lemma 3.6. As the cluster size goes to infinity, the Laplace transform of the interference from the

cluster center BS satisfies LIaj,0 → 1.

Proof. See Appendix 7.

From Section III-C, we know that when the cluster size approaches infinity, association prob-

ability with the 0th tier BS satisfies A0 → 0. Then, since P c
C0
≤ 1, the coverage probability of

the cluster center approaches zero as well, i.e., PC0 → 0. Moreover, we can obtain the coverage
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probability of the jth tier BSs (j ∈ K) as

PCj,s = Aj,sELj,s

[
Ns∑
n=1

(−1)n+1
(
Ns

n

)
e−µj,sσ

2
n,j

K∏
k=1

(
LILOS

j,k
(µj,s)LINLOS

j,k
(µj,s)

)]
(3.42)

which is the same as the coverage result in [57] obtained for the PPP-based model with no clustered

users. Therefore, we can conclude that when the cluster size tends to infinity, our PCP model

performs similar to a PPP-based model.

3.4.4 Analysis of Noise-Limited Networks

In previous sections, we have addressed the general case in which both noise and interference are

taken into account. In this section, we provide coverage expressions for noise-limited networks.

When interference is ignored, SNR coverage probabilities of jth tier BSs given that the typical UE

is associated with this tier can be expressed as

P c
Cj,s

= ELj,s

[
Ns∑
n=1

(−1)n+1
(
Ns

n

)
e−µj,sσ

2
n,j

]
. (3.43)

Similarly as in Section 3.3.3, we consider a 2-tier model and assume only LOS links for all

BSs with αL = 2. Then, for Thomas cluster processes, coverage probabilities simplify to

P c
C0

=
P1G0

2TκLσ2
n,0σ

2 + P1G0

, (3.44)

P c
C1

=
πλ1P1G0

TκLσ2
n,1 + πλ1P1G0

, (3.45)

P c
C2

=
πλ2P2G0

TκLσ2
n,2 + πλ2P2G0

. (3.46)

For Matérn cluster processes, we have

P c
C0

=
P1G0

TκLσ2
n,0R

2

(
1− e−

TκLσ2
n,0R

2

P1G0

)
, (3.47)
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and P c
C1

and P c
C2

are the same as (3.45) and (3.46), respectively. When the cluster size tends to

infinity, we have P c
C0
≈ 0 while P c

C1
and P c

C2
do not change. And the SNR coverage probability of

the entire network can be expressed as PC = A1P
c
C1

+ A2P
c
C2

, where A1 and A2 are provided in

(3.30) and (3.31), respectively.

3.4.5 Area Spectral Efficiency Analysis

In the preceding analysis, we have obtained the downlink SINR coverage probability expressions

for clustered UEs. In this section, we consider another performance metric, namely area spectral

efficiency (ASE), to measure the network capacity. ASE is defined as the average achievable data

rate per unit bandwidth per unit area [180], and it is a useful metric to measure the quality of the

network performance especially for dense networks. Therefore, in order to evaluate the network

performance, we formulate the ASE based on the SINR coverage probability results.

Note that we have an additional 0th tier in our network model. We suppose that the typical UE

clustered around the 0th tier BS is from the jth tier, and therefore ASE is defined as follows:

R(λj, T ) =

(
λj
(
PCj(T ) + PC0(T )

)
+

K∑
i=1,i 6=j

λiPCi(T )

)
log2(1 + T ) (3.48)

which implicitly assumes a fixed rate transmission from all BSs in the network, and has the units

of bps/Hz/km2. PCj(T ) and λj are the coverage probability and density of the jth (j ∈ K1) tier,

respectively.

3.4.6 Analysis of Practical Antenna Radiation Patterns

In this section, we extend our analysis by considering several more practical antenna pattern for-

mulations provided in (2.18)-(2.21).

Because of the perfect beam alignment assumption between the typical UE and its serving BS,

the antenna gain of the serving link is still constant even when we consider these antenna gain

functions. Therefore, these more practical antenna patterns affect only the interference power as
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follows:

Ij,k =
∑

i∈Φk\Qk

PkG0G

(
d

λ
θk,i

)
hk,iL

−1
k,i (3.49)

where d is the antenna spacing, λ is the wavelength and θ is a uniformly distributed random variable

over [-1,1].

The general expression for the coverage probability given in Theorem 3.1 remains same, while

the Laplace transform of the interference in Lemma 3.4 is modified as follows:

LIaj,k =


∫
θ

∫∞
C0

fθ(θ)

(1+µj,sP0G0G( dλ θk,i)l
−1
0,aN

−1
a )

Na

fL0,a
(l0,a)

FL0,a
(C0)

dl0,adθ for j = 0,

e
−
∫
θ fθ(θ)

∫∞
Ck

1− 1

(1+µj,sPkG0G( dλ θk,i)l−1
k,a

N−1
a )

Na

Λ′k,a([0,dlk,a))dθ

, for j ∈ K.

(3.50)

where C0 = P0B0

PjBj
lj,s, Ck = PkBk

PjBj
lj,s and the PDF of θ fθ(x) = 1

2
for x ∈ [−1, 1].

3.4.7 Analysis with Shadowing

In the preceding analysis, shadowing is not considered in the channel modeling. However, associ-

ation and coverage probability analyses can be extended to incorporate shadowing. In this section,

we describe how we can obtain the association and coverage probability results with shadowing

which is modeled as a log-normal random variable, i.e. 10 log v ∼ N(µv, σ
2
v) with µv and σ2

v being

the mean and variance of the channel power under shadowing, respectively. When shadowing is

taken into account, the received power P ′ at the typical UE can be written as

P ′ = PjBjGhjvjL
−1
j = PjBjGhjL

′−1
j (3.51)

where the scaled path loss (that now includes shadowing) is expressed as L′j = v−1
j Lj .

PDF and CCDF of the scaled path loss L′j can be obtained by conditioning on the shadowing
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gain vj as fL′j |vj(x) = vjfLj(vjx) and FL′j |vj(x) = FLj(vjx), where x > 0. Then, we can

obtain the conditional association probability Aj,s|vj and coverage probability P c
Cj,s|vj using the

same analysis in the previous sections with the modified fL′j |vj(x) and FL′j |vj(x). Finally, coverage

probability can be obtained by deconditioning on shadowing gain vj , i.e. by averaging over the

distribution of vj , as PCj,s = Evj [PCj,s|vj ].

3.5 Numerical Results and Discussions

In this section, we present several numerical results based on our analyses in sections 3.3 and 3.4.

Simulation results are also provided to validate the accuracy of our analysis.

In the numerical evaluations and simulations, a 2-tier heterogeneous network model with an

additional 0th tier, which is the cluster center of the typical UE, is considered. For this 2-tier

scenario, j = 1 and j = 2 correspond to the picocell BSs and microcell BSs, respectively. In other

words, a relatively high-power microcell network coexists with denser but lower-power picocell.

UEs are clustered around the picocell BSs. Therefore, transmit power of BSs in the 0th tier is the

same as in the 1st tier. For both 1st and 2nd tiers, D-ball approximation is used withD = 2, and the

ball parameters are learned from [56]. In the numerical evaluations and simulations, unless stated

otherwise, the parameter values listed in Table 3.1 are used.

Table 3.1: Parameter Values Table

Parameters Values
P0, P1, P2 33dBm, 33dBm, 53dBm
B0, B1, B2 1, 1, 1

λ1, λ2 102, 101 (1/km2)
(R11, R12), (β11, β12) (40, 60), (1, 0)
(R21, R22), (β21, β22) (50, 200), (0.8, 0.2)

αj,Ld , αj,Nd ∀j, ∀d 2, 4 [162]
NL, NN 3, 2 [160]
M,m, θ 10dB, -10dB, π/6 [1] [160]
Carrier frequency (Fc) 28 GHz
κLd = κNd ∀d (Fc/4π)

2

σ2
n,j ∀j -174dbm/Hz +10log10(W) + 10dB
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(a) Thomas cluster process.
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Fig. 3.1: Association probabilities as a function of the cluster size.
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(b) Matérn cluster process.

Fig. 3.2: SINR coverage probability of each tier as a function of the SINR threshold when the cluster size
is 30 (i.e., σu = 30 and Rclu = 30).

3.5.1 Association and Coverage Probabilities

First, we analyze the effect of UE distribution on the association probability (AP). In Fig. 3.1, we

plot the APs as a function of the cluster size, which is quantified by the standard deviation σu of

Gaussian UE distribution for the Thomas cluster process, and is given by the cluster size Rclu of

the Matérn cluster process. Since cluster size increases with the increase in σu and Rclu, UEs are

located relatively farther away from their own cluster center for larger σu andRclu. Therefore, UEs

become more likely to connect with the BSs in other picocells and microcells. In other words, AP

with the 0th tier, A0, decreases, while APs with the 1st and 2nd tiers, A1 and A2, increase with the
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Fig. 3.3: SINR coverage probability as a function of the cluster size when T = 30dB.

increasing cluster size. However, note that UEs are still more likely to associate with the 0th tier

rather than 1st and 2nd tiers. We further note that we generally have excellent agreement between

simulation and analytical results.

Moreover, we notice in Fig. 3.1(a) that for the Thomas cluster process, when σu is less than a

certain value (which is approximately σu = 38 for this setting), AP with the 1st tier is less than that

with the 2nd tier, while the opposite happens as σu exceeds 38. Note again that with the increase in

σu, UEs are more likely to be located farther away from their own cluster center. Since picocell BSs

are more densely deployed than microcell BSs, UEs are more likely to be close to other picocell

BSs. Thus, A1 becomes greater than A2 for σu > 38. However, for the Matérn cluster process,

since UEs are uniformly distributed around the cluster center inside a circular disc, UEs cannot be

located outside the clusters as shown in Fig. 1(c), and are more compactly distributed. Therefore,

A2 is larger than A1 for Rclu < 56, owing primarily to the larger power in the microcell tier (i.e.,

the second tier). Note that P2 = 53 dBm > P1 = 33 dBm as assumed in Table II. The cluster

size difference between two cluster processes is because of the fact that for Thomas cluster process

with σu = 38, UEs can still go beyond this size. But for Matérn cluster process, UEs cannot go

further than Rclu.

In Fig. 3.2, we plot the SINR coverage probability (CP) as a function of the threshold for both

Thomas cluster process (upper sub-figure) and Matérn cluster process (lower sub-figure). Because
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of the definition of CP, PC diminishes with the increasing threshold. Moreover, when comparing

the CP of each tier, we find that the cluster center BSs provide the largest CP (i.e., PC0 is the

largest), indicating that the UEs are more likely to be covered by their cluster center BSs. In Fig.

3.3, we plot the SINR CP as a function of the cluster size σu for Thomas cluster process andRclu for

Matérn cluster process. As cluster size increases, we note in both Fig. 3.3(a) and Fig. 3.3(b) that

the total SINR CP decreases. When UEs are close to their cluster center, they are mostly covered

by the cluster center BS (i.e., the 0th tier BS). As UEs are distributed further away, probability of

being covered by the cluster center BS goes down rapidly while SINR CP of the 1st tier PC1 and

2nd tier PC2 increase. However, the increase in PC1 and PC2 cannot compensate the rapid decrease

in PC0 , and hence the total SINR CP decreases.
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Fig. 3.4: SINR coverage probability as a function of the SINR threshold for Nakagami and Rayleigh
fading.

3.5.2 Impact of the Small-Scale Fading and Shadow Fading

In Fig. 3.4, we investigate the effect of small-scale fading type on the coverage performance and

plot the SINR CPs when small-scale fading for all paths are considered as either Nakagami or

Rayleigh fading. Rayleigh fading is a special case of Nakagami fading with parameters NL =

NN = 1. As clearly seen in the figures, better CP is achieved with Nakagami fading than Rayleigh

fading because Nakagami fading leads to more favorable channel conditions. However, the dif-
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Fig. 3.5: SNR coverage probability as a function of the threshold when shadowing is considered for
Thomas cluster process.

ference in the CPs for these two different fading distributions is interestingly not very significant.

Moreover, it is shown in [181] that a more general fading such as Nakagami fading does not pro-

vide additional design insight, and [158] also shows that small-scale fading has a relatively little

effect on mmWave communications. Therefore, together with our observation in Fig. 3.4, we

consider Rayleigh fading in the following subsections for lower computational complexity. In Fig.

3.5, we investigate the effect of the log-normal shadowing for different values of the σ2
v . In par-

ticular, we plot the SNR coverage probability with and without shadowing taken into account. We

again observe excellent agreements with the simulation results. We also notice that for σ2
v = 10,

shadowing can help improve the SNR coverage performance slightly, indicating that fluctuations

due to log-normal shadowing can lead to small increases in the coverage probability. On the other

hand, when the variance is increased to σ2
v = 100, we have lower coverage probability with respect

to the case without shadowing at small values of the threshold T while we have increased cover-

age probability for larger values of T . We note that the coverage probability at large values of T

is already very small without shadowing taken into account. Therefore, fluctuations that tend to

increase the received power in some cases result in higher coverage probabilities comparatively.
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Fig. 3.6: Comparison of SINR coverage probability and SNR coverage probability as a function of the
threshold for different values of the cluster size.

3.5.3 Impact of the Interference

In Fig. 3.6, we plot the total SINR CP and SNR CP as a function of the threshold in dB for different

values of standard deviation of UE distribution for Thomas cluster process or the cluster size for

Matérn cluster process. In our model, when UE is connected to a picocell or microcell BS outside

of its cluster, interference from the 0th tier BS at the cluster center is not necessarily negligible due

to the relative proximity in the clustered distributions. As expected, relatively large gaps between

SINR CP and SNR CP are seen in Fig. 3.6, indicating that interference has noticeable influence

on the CP performance in this clustered system model. We note that this is a departure from

mmWave studies with PPP-distributed users, where performance is regarded as noise-limited as

in [56], [57], [182] rather than being interference-limited. Moreover, the impact of interference is

slightly larger for small sized clusters as shown in Fig. 3.6(a) and Fig. 3.6(b).

3.5.4 Impact of Antenna Modeling

We also investigate the effect of the main lobe gainM and the main lobe beamwidth θ on the SINR

CP performance in the sectored antenna model. In Fig. 3.7 (a), the M m and θ are the same for all

BSs and UEs. As shown in the figure, improved SINR coverage is achieved when the main lobe

gain M is increased for the same value of θ. The long term averaged received power of the typical



66

0 10 20 30 40 50 60 70

T (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
IN

R
 C

o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

Analy: θ=π/6

Analy: M=10dB

Sim: θ=π/6

Sim: M=10dB

M=20dB,

 θ=π/6    

M=0dB, 

θ=π/6   

M=10dB,    

θ=(π/2,π/3,π/6)

(a) Thomas cluster process (σu = 10).

0 10 20 30 40 50 60 70

T (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
IN

R
 C

o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

Analy: M
1
=M

2
=10, 

1
=

2
= /4

Analy: M
1
=10,

1
= /4; M

2
=20,

2
= /12

Analy: M
1
=15,

1
= /6; M

2
=20,

2
= /12

Sim

(b) Thomas cluster process (σu = 10).

Fig. 3.7: SINR coverage probability as a function of the threshold in dB for different values of antenna
main lobe gain M and the beamwidth of the main lobe θ.

UE greatly increases with the increase inM while the interference does not change much, and thus

SINR becomes larger with increasing M resulting in a better coverage performance. On the other

hand, when the main lobe beamwidth θ increases for the same value of M , SINR CP decreases as

a result of the growing impact of the interference.

Fig. 3.7 (b) presents a relatively more general case where M , m and θ are different for the

UEs and different tier BSs. In particular, we have Mu = 10 dB, mu = −10 dB, θu = π
2

for the

UEs [160], and for the BSs, we set mj = −10dB, while different values of Mj , θj are considered

as shown in the figure legend. From this figure, we essentially draw the same conclusions as in Fig.

3.7 (a). In addition, this result demonstrates that our analysis can be readily applied to a model in

which antenna parameters are different for UEs and BSs.

We also investigate the impact of the practical cosine antenna pattern, using the same param-

eters as in [166], where the antenna spacing is d = λ
4

and the total number of antenna elements

is Nt = 64. As shown in Fig. 3.8, compared to the sectored antenna model, the cosine antenna

gain pattern results in a relatively larger coverage probability while exhibiting similar performance

trends. The improved coverage with the cosine radiation pattern can be attributed to the fact that

the side lobe gains decay faster and become smaller compared to the sectored antenna sidelobe

gain (which is fixed), leading to smaller interference at the receivers.
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Fig. 3.8: SINR coverage probability as a function of the threshold in dB for Thomas cluster process
(σu = 10) considering sectored and cosine antenna radiation patterns.
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Fig. 3.9: Association probability and coverage probability as a function of B1/B2 when T = 30dB for
the Thomas cluster process. (b) plots the total coverage of the network with different cluster sizes.

3.5.5 Biasing Factor Design of the Picocell BSs

In Fig. 3.9, we investigate the impact of biasing factor of picocell BSs B1 on the coverage per-

formance for a fixed B2 = 0 dB, considering the Thomas cluster process. First, in Fig. 3.9 (a),

we plot the APs as a function of B1/B2. With the increasing biasing factor ratio B1/B2, UEs are

more likely to be associated with picocell BSs. Therefore, in the figure, A0 and A1 are increasing.

Another observation is that both A0 and A2 all converge to constants while A2 diminishes to zero,

indicating that further increase in the biasing factor of all picocell BSs will not influence the AP

with each tier.
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Fig. 3.10: Association probability, SNR coverage probability of each tier, and SINR coverage probability
of each tier as a function of λ1/λ2 for the Matérn cluster process when the cluster size is 30 and T = 30dB.

Fig. 3.9 (b) displays the total SINR CPs with different cluster sizes. Interestingly, total SINR

CPs exhibit different behaviors for the different values of the cluster size. In particular, the total

SINR CPs increase with increasing B1/B2 for small values of the cluster size. On the other hand,

larger values of the cluster size result in a decrease in the total SINR CP. When cluster size is small,

the distance between the typical UE and the cluster center picocell BS is relatively small and the

typical UE is already more likely to be associated with its cluster center BS. Therefore, increasing

the biasing ratio B1/B2 encourages the typical UE to connect with its cluster center BS which is

not far away, and leads to a small increase in the coverage performance. However, the opposite

happens for larger values of the cluster size. The typical UE is forced to be associated with its

cluster center BS which is located relatively far away due to larger value of the cluster size. As

a result, the total SINR CP decreases. We finally note that a recent work [183] has employed a

random-restart hill-climbing algorithm to find the optimal biasing factor to achieve near-optimal

SINR coverage probability. The authors conclude that with certain blockage conditions, such as

the LOS radii, the optimal basing factor exists. However, in our case, as shown in Fig. 3.9, the

total coverage probability is maximized at the extremes of very small or large values of B1/B2.
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Fig. 3.11: Area spectrum efficiency as a function of λ1/λ2 for the Matérn cluster process, when the cluster
size is 30 and T = 30dB.

3.5.6 Dense Networks

In Fig. 3.10, we consider the Matérn cluster process and investigate the network performance of an

ultra dense network by fixing the density of microcell BSs to λ2 = 10 (1/km2) and increasing the

density λ1 of picocell BSs. In Fig. 3.10(a), we plot the AP as a function of λ1/λ2. As can be seen,

AP with the 1st tier, A1, increases, while APs with the 0th and 2nd tiers, A0 and A2, decrease with

the increasing λ1/λ2. Since the cluster size is relatively large meaning that UEs are not located

closer to cluster center BSs, the typical UE is more likely to be associated with the 1st tier BSs due

to their increasing density, λ1. When the network become ultradense, i.e., λ1 is very large, almost

all UEs are associated with the 1st tier BSs, and the APs with the 0th and 2nd tier BSs approach

zero.

Total SINR CPs converge to zero with the increase in λ1 as shown in Fig. 3.10(b) due to the

growing impact of interference. It is obvious that interference has a significant impact on the to-

tal coverage performance. Therefore, coverage performance of the proposed model is sensitive to

the density of picocell BSs. This result is consistent with [184], where the authors indicate that

if the picocell BS density is larger than 10 BSs/km2, then the mmWave network is interference-

dominated, and it becomes interference-limited when the density goes larger than a certain thresh-

old. It is also shown in [162] and [185] that when λ1 goes to infinity, CP diminishes to zero.

Finally, considering both Thomas and Matérn cluster processes, we present the ASE as a func-
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Fig. 3.12: SINR coverage probability as a function of (a) the SINR threshold, (b) B1/B2 and (c) λ1/λ2

for three different types of UE distribution, namely, Poisson point process (PPP), Thomas cluster process
(TCP) with σu = 30 and Matérn cluster process (MCP) with Rclu = 30 except (c).

tion of λ1/λ2, when we fix λ2 = 10 (1/km2) and the cluster size is 10. Fig. 3.11 shows that the

ASE performance increases with increasing λ1, indicating that adding more picocell BSs greatly

benefits the ASE of the network. This is because as shown, for instance in Fig. 3.10 (c), even

in ultra dense networks, the coverage probability is not exactly zero and the decrease in coverage

probability is slower than the increase in the picocell BS density.

3.5.7 Comparison between PCP Model and PPP Model

In Fig. 3.12, we investigate the effect of UE clustering on the coverage performance. In other

words, we compare the SINR CPs for PPP and PCP distributed UEs. The black dot-dashed curve

represents the scenario in which UEs are uniformly distributed according to a homogeneous PPP

and their locations are independent of BS locations. Red dashed and blue solid curves are for

PCP models with UEs being distributed according to a Thomas cluster process and Matérn cluster

process, respectively. Although the cluster sizes are relatively large meaning that UEs are widely

spread, the SINR CPs of the PCP models are still much higher than the SINR CP of the PPP model.

In addition, the performance trends for Thomas and Matérn cluster processes are similar, while the

performance trends for the PPP-based model are quite different, as shown in the figures. For in-

stance, as seen in Fig. 3.12 (b), while the coverage probability with PCP distributed UEs decreases

with increasing density (primarily due to increased interference), coverage probability with PPP
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distributed UEs initially increases and then starts diminishing. These show that considering the

correlation between the UEs and the BSs influences the system performance significantly.
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CHAPTER 4

UPLINK COVERAGE IN HETEROGENEOUS

MMWAVE CELLULAR NETWORKS WITH

CLUSTERED USERS

4.1 System Model

In this section, we introduce the system model of the considered network. BS and UE spatial

distributions, and the channel models are described in detail.

4.1.1 Base Station Distribution Modeling

Same as in previous chapter, we consider aK-tier heterogeneous uplink mmWave cellular network.

K = {1, 2, ..., K} is used to denote the set of tier indices. BSs in the ith tier are distributed

according to the independent homogeneous PPP Φi. BSs in different tiers differ in spatial density

λi, transmit power Pi and biasing factor Bi (which is used to describe the association priority), and

they are assumed to transmit in mmWave frequency bands. Out of K tiers, it is assumed that there

are Ku tiers of small-cell BSs, around which UEs are clustered, and we denote the set as Ku.



73

Fig. 4.1: Two-tier heterogeneous network model, where macrocells (blue triangles) and small-cells (black
squares) are distributed as independent PPPs, and UEs are distributed around small-cells according to a
Gaussian distribution. The average number of UEs per cluster is 5.

4.1.2 User Equipment Distribution Modeling

UEs are assumed to be clustered around the small-cell BSs. In each cluster, small-cell BS and the

UEs are regarded as the cluster center and cluster members, respectively. Assume that the cluster

center is a BS from the ith tier, then the cluster members are regarded as the ith tier UEs, and then

we can useKu denote the set of tire indices for UEs. The union of the cluster members form a PCP,

denoted as Φi
u. In this chapter Φi

u is modeled as a Thomas cluster process with standard deviation

σi. Initially, in the main analysis of this chapter , we do not consider power control for the UEs,

and the UEs are assumed to transmit at the same power level of Pu. Subsequently, we extend the

analysis to incorporate fractional power control in section 4.5.2. We use 0th tier to stand for the

cluster center to the UEs, or the cluster members to the BSs. Two different two-tier heterogeneous

network models are depicted in Fig. 4.1.

4.1.3 Directional Beamforming

In mmWave networks, BSs and UEs are equipped with directional antenna arrays to compensate

the high path loss. We assume that the antenna arrays at the BSs and UEs perform directional

beamforming, and the sectored antenna pattern given in this chapter. Therefore, the antenna gain

of the main link can achieve the largest antenna gain G0 = MbMu, and the antenna gain between
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Fig. 4.2: An illustration of different distances from the BSs to UEs.

the typical BS and the interfering UEs can be expressed as in (2.22). Let pG denote the probability

of having antenna gain G ∈ {MbMu,Mbmu,mbMu,mbmu}.

4.1.4 Channel Model

Blockage models and path loss models given in (2.11) and (2.13) are considered in this chapter.

All transmission links are assumed to experience independent Rayleigh fading with unit mean,

i.e., channel fading power is exponentially distributed, h ∼ exp(1). However, our analysis can be

extended by incorporating Nakagami fading for the main transmission link, and this extension is

addressed in section 4.5.1.

4.2 Distance Characterization

In this section, we statistically describe the distances between the BSs and UEs. A representative

scenario displaying different distances is shown in Fig. 4.2. Assume that the typical UE is from

the ith tier and is located at the origin. The PDF and CCDF of these distances are discussed below,

and will be used in the analysis of association probability and the system performance matrices.
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4.2.1 Distance from the Typical UE to its Cluster Center BS ri0 (i ∈ Ku)

Lemma 4.1. Given the link is in s ∈ {LOS,NLOS} channel, the PDF and CCDF of ri0 can be

expressed as

frsi0(x) = psαi(x)fri0(x)/Ds
i0 (4.1)

F rsi0
(x) =

∫ ∞
x

psαi(x)frsi0(t)dt/Ds
i0 (4.2)

where Ds
i0 = Eri0 [psαi(ri0)] is the probability that the link between the UEs and their cluster cluster

center small-cell BSs is in s channel.

Proof : See Appendix 8.

4.2.2 Distance from the Typical UE (the origin) to the Nearest jth Tier

LOS/NLOS BS rj (j ∈ K)

Given that the typical UE can observe at least one LOS/NLOS BS in the jth tier, the PDF and

CCDF of the distance can be expressed as [160]

F rsj
(x) = e−2πλj

∫ x
0 tpsαj(t)dt/Ds

j (4.3)

frsj (x) = 2πλjxp
s
αj(x)e−2πλj

∫ x
0 tpsαj(t)dt/Ds

j (4.4)

where Ds
j = 1 − e−2πλj

∫∞
0 xpsαj(x)dx is the probability that the typical UE has at least one s ∈

{LOS,NLOS} jth BS around.

4.2.3 Distance from the kth Tier UE to the jth tier BSs rjk (j ∈ K, k ∈ Ku)

For a UE from the kth tier, the distance from the cluster center BS to the jth tier BSs is notated by

vjk Since the cluster members are distributed according to a Gaussian distribution with variance
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σ2
k, the conditional distribution of rjk given vjk is a Rice distribution, and the PDF is given by [74]

frjk(r|vjk) = Ricepdf(r, vjk;σ2
k) (r ≥ 0) (4.5)

where Ricepdf(a, b;σ2) = a
σ2 exp(−a2+b2

2σ2 )I0( ab
σ2 ) and I0(·) is the modified Bessel function of the

first kind with order zero. This distance formulation is used in the analysis of interference.

4.3 Association Probability

In this section, we first describe the downlink-uplink coupled association strategy, then derive

expressions for the association probability, and finally provide discussions on the conditional PDF

of the distance from the typical UE to the reference BSs. Since the typical UE can be served by its

cluster center BS, other small-cell BSs, and the macrocell BSs, we have three types of reference

BSs in the network. Association probability describes the probability that the typical UE is served

by a reference BS. In Section V, we investigate the coverage probabilities at each reference BS,

and together with the association probability we eventually investigate the coverage performance

of the entire network.

4.3.1 Association Criterion

Coupled association strategy is adopted in this chapter , which constrains the serving BS to be

the same in both uplink and downlink. More specifically, all BSs send pilot signals to the UEs

in downlink transmission, and the UEs choose the BS providing the largest long-term averaged

biased received power [62] to connect in both downlink and uplink transmissions. Here, long-

term averaging indicates that we average over the small-scale fading. Biasing factor describes the

association priority of each UEs to different tiers of BSs, and is denoted by Bj for the jth tier BSs.

LargerBj indicates that UEs have higher preference to be associated with jth tier BSs. This largest
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long-term averaged biased received power at a UE can be formulated as

P = max
j∈(K∪0),n∈Φj

Pj,nBj,nG0L
−1
j,n (4.6)

where Pj,n, Bj,n, Lj,n are the transmit power, biasing factor, and the path loss of the nth BS in the

jth tier, respectively. G0 is the effective antenna gain. Since in the jth tier, the transmit power and

the biasing factor are the same, the BS in this tier with the minimum path loss to the UE provides

the maximum received power P . Now, we can rewrite

P = max
j∈(K∪0)

PjBjG0L
−1
j,min (4.7)

where Lj,min = κrαmin is the minimum path loss in the jth tier.

4.3.2 Association Probability

Based on the coupled association strategy, we can define the association probability (denoted by

Aij,s) as the probability that an ith tier UE is served by a jth tier BS in s channel, indicating that this

BS provides the largest long-term averaged biased received power to the typical UE in downlink

transmission. We define the event Sij,s = {the typical UE from the ith tier is served by a BS from

the jth tier with a s ∈ {LOS,NLOS} link}. Again, we note that the typical UE can be served by

its cluster center BS and in this case we set j = 0.

Lemma 4.2. The probability that the typical UE from the ith tier is associated with a BS from the

jth tier in a LOS/NLOS transmission is given by the following expressions in two different cases:

Aij,s =
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

Ds
i0Ersi0

[∏K

k=1

∏
bD

b
kF rbk

[(Cbs
k0r

s
i0
αs)

1
αb ]
]
, j = 0,

Ersj

[
Ds
jD

s′
j F rs

′
j

(
κs′
κs
rsj

αs
αs′

) [∑
aD

a
i0F rsi0

((Cas
0j r

s
j
αs)

1
αa )
] [∏K

k=1
k 6=i

∏
bD

b
kF rbk

((Cbs
kjr

s
j
αs)

1
αb )

]]
,

j ∈ K,

(4.8)

where s, s′, a, b ∈ {LOS,NLOS}, Csb
kj = PkBkκs

PjBjκb
,Db

k = 1−e−2πλk
∫∞
0 xpbαk(x)dx is the probability that

a UE has at least one b ∈ {LOS,NLOS} kth tier BS around, Ds
i0 = Eri0 [psαi(ri0)] is the probability

that the link from the typical UE to its cluster center BS is in s ∈ {LOS,NLOS} condition, and

F r(x) is the CCDF of r given in (4.2) and (4.3) in Section III.

Proof : See Appendix 9.

4.3.3 Conditional PDF of the Distance from the Typical UE to the As-

sociated BS rij,s Given Sij,s

The conditional CDF of rij,s given Sij,s can be expressed as

F̂rij,s(x) = P(rij,s < x|Sij,s) =
P(rij,s < x, Sij,s)

P(Sij,s)
=

P(rij,s < x, Sij,s)

Aij,s
(4.9)

Following a similar approach as in the analysis of the association probability, we obtain the condi-

tional PDF as

f̂rij,s(x) =
F̂rij,s(x)

dx
=

frs
i0

(x)

Ai0,s
Ds
i0

∏K

k=1

∏
bD

b
kF rbk

[(Cbs
k0x

αs)
1
αb ], j = 0,

frs
j
(x)

Aij,s
Ds
jD

s′
j F rs

′
j

(
κs′
κs
x
αs
αs′

) [∑
aD

a
i0F rsi0

((Cas
0j x

αs)
1
αa )
] [∏K

k=1
k 6=i

∏
bD

b
kF rbk

((Cbs
kjx

αs)
1
αb )

]
,

j ∈ K.

(4.10)
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4.4 Coverage Analysis

In this section, coverage probabilities are analyzed. First by utilizing tools from stochastic ge-

ometry, we provide general expressions for coverage probabilities. Subsequently, the Laplace

transforms of the inter-cell interference terms are characterized for Thomas cluster processes.

4.4.1 Signal-to-Interference-Plus-Noise Ratio

Due to orthogonal resource allocation among users in a cell, there is only one UE from each outside

cell causing interference to a reference BS. We note that if the reference BS is the cluster center

BS to the typical UE, this BS only experiences inter-cell interference; otherwise the reference

BS experiences both inter-cell and the interference from a cluster member UE. We model the

interfering UEs as Φ′uk.

Therefore, the interference can be expressed as follows:

Inter-cell interference: Ijk =
∑
n∈Φ′uk

PuGk,nhk,nκ
−1r−αk,n (4.11)

Interference from a cluster member UE: Ij0 = PuGhκ
−1r−αj0 (4.12)

where Pu is the transmit power of the UEs, and Gk,n and hk,n are the effective antenna gain and the

small-scale fading gain of the nth interfering UE in Φ′uk, respectively. We note that if the reference

BS is the cluster center BS, Ij0 = 0.

The SINR experienced at the reference BS can be expressed as

SINRij,s =
PuG0hjκsr

−αs

σ2
n + Ij0 +

∑
k∈Ku

Ijk
(4.13)

where s ∈ {LOS,NLOS}, G0 = MbMu and σ2
n is the variance of the additive white Gaussian

noise component.
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4.4.2 SINR Coverage Probability

The association probability is the probability that the typical UE is served by a reference BS. In

this subsection, we analyze the SINR coverage probability P c
Cij,s

which is defined as the probability

that the experienced SINR at the reference BS is above a certain threshold T > 0 given Sij,s, i.e.,

P c
Cij,s

= P(SINRij,s > T |Sij,s). The coverage probability of the entire network can be formulated

as

PC =
K∑
j=0

PCij =
K∑
j=0

∑
s∈{L,N}

P(SINRij,s > T |Sij,s)P(Sij,s) =
K∑
j=0

∑
s∈{L,N}

P c
Cij,s

Aij,s (4.14)

where Aij,s is the association probability given in (4.8). The following result characterizes the

coverage probabilities.

Theorem 4.1. Given the event Sij,s = {the typical UE from the ith tier is served by a BS from the

jth tier with an s ∈ {LOS,NLOS} link}, the SINR coverage probability is formulated as

P c
Cij,s

= P(SINRij,s > Tj|Sij,s) = Erij,s

[
e−µ

s
ijσ

2
nLIj0(µsij)

Ku∏
k=1

LIjk(µsij)

]
, (4.15)

where s ∈ {LOS,NLOS}, µsij =
Tjκsr

αs
ij,s

PuG0
, Ijk is the interference from the UEs in the kth tier to

the reference BS in the jth tier, Ii0 is the interference to the reference BS from its cluster members.

LI(µ) = E{exp(−µI)} is the Laplace transform of I evaluated at µ, and LIi0(µ) = 1 when

Ii0 = 0.

Proof: See Appendix 10.

4.4.3 Laplace Transforms of the Interference Terms

In this subsection, we provide characterizations for the Laplace transforms of the interference

terms.

Theorem 4.2. If the UEs are distributed around small cell BSs according to Gaussian distribu-
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tions, the Laplace transform of the inter-cell interference is given by the following:

1) If the interference arises from the cluster member, we have

LIj0(µsij) =
∑
G

∑
a∈{L,N}

pGD
a
j0LIGaj0 (µsij) (4.16)

where

LIGaj0 (µsij) =

∫ ∞
0

1

1 + µsijPuGκ
−1
a r−αaj0

fRsj0(rj0)drj0. (4.17)

2) If the interference arises from the UEs in the kth(k ∈ Ku) tier, we have

LIjk(µsij) =
∏
G

∏
a∈{L,N}

LIGajk (µsij) (4.18)

where

LIGajk (µsij) = e
−2π

∫∞
0 λkpGp

a
αk(rjk,n)

(
1

1+(µs
ij
PuGκ

−1
a r
−αa
jk,n

)−1

)
rjk,ndrjk,n

. (4.19)

Above, s, a ∈ {LOS,NLOS}, G ∈ {MbMu,Mbmu,mbMu,mbmu} is the antenna gain, pG is

probability of having different antenna gains.

Proof: See Appendix 11.

4.5 Extensions and Special Cases

In this section, we extend our analysis to incorporate Nakagami fading and also fractional power

control. We also address average ergodic spectral efficiency. Finally, we consider special cases for

which we obtain simplified expressions for the association and coverage probabilities.



82

4.5.1 Extension to Nakagami Fading

It is well known that Rayleigh fading is a special case of Nakagami fading and is obtained by

setting the Nakagami parameter Ns = 1. Hence, Nakagami is a more general fading distribution

that provides a better fit to several practical scenarios and experimental results. In this subsection,

we extend the coverage analysis to Nakagami fading.

Corollary 4.1. When small-scale Nakagami fading with Nakagami parameter Ns (where s ∈

{LOS, NLOS}) is considered for the main link, the SINR coverage probability of each tier is given

by the following:

P c
Cij,s

= Erij,s

[
Ns∑
n=1

(−1)n+1
(
Ns

n

)
e−µ

s
ijσ

2
nLIj0(µsij)

Ku∏
k=1

LIjk(µsij)

]
. (4.20)

where when j = 0, Ij0 = 0 and LIj0(µsij) = 1. In the above coverage probability expressions, the

Laplace transforms of the interference terms follow (4.16)-(4.19) with the same expressions.

Proof: The proof follows along the same lines as in the proof of Theorem 4.1. The only change

is that the moment generating function (MGF) of the now gamma-distributed fading gain h is

applied in the computation of the expectation Eh[·].

4.5.2 Extension to UE Fractional Power Control

Two types of fractional power control can be considered for UEs: 1) path loss based fractional

power control is performed by compensating the path loss of the UE irrespective of whether its

path to the serving BS is LOS or NLOS; 2) distance based fractional power control is performed

by inverting with the LOS path loss exponent [61]. The transmit power of UEs can be expressed

as follows:

P ′u =


Put

ταL , if distance based,

PuL
τ , if path loss based,

(4.21)
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where τ ∈ [0, 1] is the power control factor, t is the distance from the UE to its serving BS, αL is

the LOS path loss exponent, and L is the path loss of the link. When τ = 0, no power control is

performed. We consider the path loss based fractional power control as in LTE [186].

With fractional power control, the general expression for SINR coverage probability essentially

remains the same as in (4.14) and (4.15), with only Pu replaced by P ′u. However, the Laplace

transform of the interference should be modeled differently. To determine the Laplace transforms

of interference terms, we need to make an assumption as in [187] [188]. Since there is only one

UE in one cell inflicting interference, we assume that the active users also form a PPP, i.e., Φ′uk is

a PPP, and the density of interfering UEs is set to be equal to the small cell BS density λk in the

kth tier. Because of the blockage model, the interfering links can be LOS/NLOS. Therefore, the

density of LOS/NLOS inter-cell interfering UEs in the kth tier be modeled as [186]

λjkus(r) = λkp
s
αk(r) (4.22)

where λk is the density of the reference BSs in the kth tier, r is the distance from the reference BS

to the interfering UE.

Let us use IGajk to denote the interference from the kth tier UEs to a jth tier reference BS.

Since the transmit power of UEs depend on the path loss from its serving BS (the cluster center

BS, small-cell BSs, or macro BSs), we need to distinguish different cases considering the transmit

power of interfering UEs. Therefore, we have

IGajk =
K∑
m=0
m 6=j

(IGajkmL + IGajkmN) (4.23)

where interference IGajkmL occurs when the kth tier interfering UEs are served by an mth tier BS

over a LOS link. Next we characterize the Laplace transforms of the interference terms.
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Lemma 4.3. 1) If the interference arises from the cluster member, we have

LIj0(µsij) =
∑
G

∑
a∈{L,N}

K∑
m=1

∑
b∈{L,N}

pGD
a
j0Akm,bLIGaj0mb(µ

s
ij) (4.24)

where

LIGaj0 (µsij) =

∫ ∞
0

∫ ∞
0

1

1 + µsijPu(κbt
αb)τGκ−1

a r−αaj0

f̂rkm,b(t)fRsj0(rj0)dtdrj0. (4.25)

2) If the interference arises from the UEs in the kth(k ∈ Ku) tier, we have

LIjk(µsij) =
∏
G

∏
a∈{L,N}

K∏
m=0
m6=j

∏
b∈{L,N}

LIGajkmb(µ
s
ij) (4.26)

where

LIGajkmb(µ
s
ij) = e

−2πAkm,b
∫∞
0 λkpGp

a
αk(rjk,n)

(
1−
(∫∞

0

f̂rkm,b(t)

1+µs
ij
Pu(κbt

αb )τGκ−1
a r
−αa
jk,n

dt

))
rjk,ndrjk,n

, (4.27)

where µsij =
Tj(κsr

αs
ij,s)

1−τ

PuG0
, t is the distance from the interfering UE to its serving BS, and rjk,n is

the distance from the interfering UE to the reference BS.

Proof: See Appendix 12.

4.5.3 Average Ergodic Spectral Efficiency

According to [61] [157], given the SINR coverage probability PC(Tj), the average ergodic spectral

efficiency of the uplink of a mmWave cellular network can be expressed as

R =
1

ln 2

∫ ∞
0

PC(T )

1 + T
dT =

1

ln 2

∫ ∞
0

∑K
j=0

∑
s∈{L,N}Aij,sP

c
Cij,s

(T )

1 + T
dT

=
K∑
j=0

∑
s∈{L,N}

Aij,s
ln 2

∫ ∞
0

P c
Cij,s

(T )

1 + T
dT =

K∑
j=0

∑
s∈{L,N}

Aij,sRc
ij,s. (4.28)
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The average achievable rate can be computed as WR, where W is the bandwidth assigned to a

UE.

4.5.4 Special Cases

To simplify the general expressions provided in the previous sections, we now address several

special cases.

Noise-Limited Scenario

When the mmWave network is not densely deployed and the impact of interference is negligible

(due to blockages experienced in mmWave bands), the network can be assumed to be noise-limited.

In this case, the coverage probability of each tier can be simplified to

P c
Cij,s

= Erij,s
[
e−µ

s
ijσ

2
n

]
. (4.29)

Next we consider a further simplified case, specifically a two-tier heterogeneous network, in-

cluding one tier of small-cell BSs with UEs clustered around, and one tier of macrocell BSs; all

links are LOS and the path loss exponent is α = 2; and only noise is considered. Then, we can

obtain the association probability and SNR coverage probability as in the following lemma.

Lemma 4.4. In the above described simplified two-tier network model with LOS links, path loss

exponent α = 2, and no interference, we have the association and coverage probabilities given by

the following:

1) Association probability:

A10 =
1

2σ2C0

=
P1B1

P1 +B1 + 2πσ2λ1P1B1 + 2πσ2λ2P2B2

(4.30)

A11 =
πλ1

C0

=
2πσ2λ1P1B1

P1B1 + 2πσ2λ1P1B1 + 2πσ2λ2P2B2

(4.31)

A12 =
πλ2

C2

=
2πσ2λ2P2B2

P1B1 + 2πσ2λ1P1B1 + 2πσ2λ2P2B2

(4.32)
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2) SNR coverage probability:

P10 =
1

2σ2(C0 + Tσ2
n

PuG0
)A10

(4.33)

P11 =
πλ1(

C0 + Tσ2
n

PuG0

)
A11

(4.34)

P12 =
πλ2(

C2 + Tσ2
n

PuG0

)
A12

(4.35)

where λ1 and λ2 are the densities of small-cell BSs and macrocell BSs, respectively, σ2 is the

variance of the UE distribution, C0 = 1
2σ2 + πλ1 + πλ2

P2B2

P1B1
, and C2 = P1B1

2σ2P2B2
+ πλ1

P1B1

P2B2
+ πλ2.

Proof: See Appendix 13.

Results in (4.30) - (4.35) provide closed-form expressions for the association probabilities and

SNR coverage probabilities as functions of the key system/network parameters, e.g., the standard

deviation of the UE distribution σ, the transmit powers of the UEs and BSs, the densities of the

BSs in each tier. From the expressions, we can directly identify the impact of these parameters on

the network performance. For instance, we note that SNR coverage probability is a monotonically

increasing function of Pu and G0, and a monotonically decreasing function of the SNR threshold

T . Additionally, we see that when the UEs are more and more sparsely distributed (i.e., σ →∞),

A10 and P10 approach 0.

Interference-Limited Scenario

In cases in which the interference power satisfies I � σ2
n , the thermal noise can be ignored and

the coverage probability of each tier can be expressed as

P c
Cij,s

= Erij,s

[
LIj0(µsij)

Ku∏
k=1

LIjk(µsij)

]
. (4.36)

In this interference-limited case, since the noise term e−µ
s
ijσ

2
n is removed, expression (4.36) is

relatively easier to compute than the general case given in (4.15).
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Cluster Center Association Scenario

In the scenarios that the clusters are sparsely distributed, e.g. in rural areas, it is reasonable to re-

quire the UEs to be associated with their cluster center BSs. In such case, the coverage probability

can be expressed as

PCi,s =

∞∫
0

e−µ
s
iσ

2
n

Ku∏
k=1

LIik(µsi0)frsi0(rsi0)drsi0. (4.37)

Additionally, in this case there is no need to find the association probabilities and the conditional

PDFs of the distances from UEs to the associated BSs, since UEs are connected with their cluster

centers BSs. The use of frsi0(rsi0) makes (4.37) much easier to compute than (4.15).

4.6 Numerical Results

In this section we present numerical and simulation results to confirm our analytical characteriza-

tions and further study the performance levels in the considered mmWave network model.

In the numerical evaluations and simulations, unless specified otherwise, we consider a two-

tier heterogeneous network model in the uplink scenario. More specifically, BSs in the 1st tier are

assumed to operate with relatively smaller transmit power but have larger density, and are regarded

as small-cell BSs, while BSs in the 2nd tier are assumed to have larger transmit power but smaller

density, and are regarded as macrocell BSs. Besides, UEs are considered to cluster around small-

cell BSs. Some notations are defined as follows: A10, PC10 are the association probability (AP) that

a UE is served by its cluster center BS and the coverage probability (CP) of this link, respectively;

A11, PC11 are the AP that a UE is served by a small-cell BS from other clusters and the CP of this

link, respectively; and A12, PC12 are the AP that a a UE is served by a macrocell BS the CP of this

link, respectively. Parameter values are listed in Table 4.1 below.
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Table 4.1: Parameters Table

Parameters Values
P0, P1, P2 30dBm, 30dBm, 46dBm [62]
Pu 23dBm [62]
B0, B1, B2 1, 1, 1

ε
√
2/200

αj,Ld , αj,Nd ∀j, ∀d 2, 4

λ1, λ2, λu 10−4, 10−5, 5× 10−4 /m2

M,m, θ 10dB, -10dB, π/6
Career frequency Fc 28 GHz
κL = κN (Fc/4π)

2

σ2
n,j ∀j -174dBm/Hz + 10 log10(W ) + 10dB
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Fig. 4.3: APs and SINR CPs as a function of the standard derivation of UE distribution when T = 10dB.

4.6.1 Impact of the Cluster Size

In this section, we investigate the impact of the cluster size (i.e. the standard deviation σ of the UE

distribution) on the system performance. In Fig. 4.3, we observe that the simulation results match

with the analytical results when σ ≤ 30, and hence we verify our analysis. Then we can say our

analysis can be applied to practical PCP-based uplink mmWave networks, providing reliable and

useful insights.
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Association Probability (AP)

Fig. 4.3(a) shows the APs of each tier as a function of σ. When σ becomes larger, UEs are getting

spread further away from their own cluster center and moving closer to other BSs, which can be

either small-cell or macrocell BSs. As a result, small-cell BSs become less likely to serve their

cluster members and more likely to serve UEs from other clusters. Macrocell BSs become more

likely to serve a UE as well. Therefore, A10 is expected to decrease, and A11 and A12 to increase

with the growing σ, and this is observed in Fig. 4.3(a).

On the other hand, initially when σ is small and therefore UEs are more tightly clustered around

their cluster center, A10 is larger than both A11 and A12. Also, since the macrocell BSs have much

larger transmit power than small-cell BSs, A12 is larger than A11.

Coverage Probability (CP)

Fig. 4.3(b) plots the SINR CP as a function of σ. Again, increasing σ implies that the UEs are

more widely distributed. Thus, the path loss from a small-cell BS to its cluster member increases

on average, while the path loss to other UEs as well as the path loss from a macrocell BS to a UE

decrease. As a result, we observe in Fig. 4.3(b) decreasing PC10 and increasing PC11 and PC12 .

And since the decrease in PC10 is not compensated, the overall SINR CP diminishes as well.

A Three-Tier Heterogeneous Network

Fig. 4.4 plots the AP and SINR CP as a function of σ in a three-tier heterogeneous network. In this

network, we add one more tier of small-cell BSs, referred to as the 2nd tier with density λ2 = 10−5

/m2 and UE transmission power P2 =30 dBm. The macrocell BSs are now referred to as the 3rd

tier. Again, increasing σ implies that the UEs are more widely distributed. In Fig. 4.4, we observe

similar performances as in Fig. 4.3. Since the density and transmit power of the 2nd tier small-cell

BSs are not very large, the presence of this tier does not influence the performance significantly.
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(b) SINR coverage probability.

Fig. 4.4: APs and SINR CPs as a function of σ when T = 10dB in a three-tier heterogeneous network.
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Fig. 4.5: SINR CPs as a function of threshold T .

Comparison with PPP

Fig. 4.5 shows the SINR CP of the considered network when σ →∞ (PC10 = 0 is not shown in the

figure) and SINR CP of the same network when the UEs are uniformly distributed according to a

PPP. This figure demonstrates that as σ →∞ the performance of the considered network converges

to the performance in the PPP-based model, indicating that our analysis can be specialized to

determine the performance of the PPP-based model (where the density of UEs is φi′u = φi) by

setting σ =∞.
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Fig. 4.6: SNR and SINR CPs as a function of threshold for different cluster size σ.

4.6.2 Impact of Interference and the Small-Scale Fading

Impact of Interference

We next investigate the influence of interference in the considered heterogeneous mmWave net-

work. Fig. 4.6 exhibits the total SNR and SINR coverage probabilities of the entire network as a

function of the threshold for different values of σ. While Fig. 4.6(a) is obtained without any power

control (i.e., transmission power is fixed), fractional power control is employed in the performance

results in Fig. 4.6(b). It is obvious that the interference has a significant impact on the coverage

performance as shown in this figure. From Fig. 4.6(b) we observe that if path loss based fractional

power control is used by the UEs, the impact of interference becomes more pronounced. Note that

SINR CPs (described in the legend as “with" as in “with interference") are lower than SNR CPs

(denoted with “w/o").

Impact of Small-Scale Fading

In Fig. 4.7, we compare the performances with different types of small-scale fading. In particular,

we consider Rayleigh fading and Nakagami fading with parameters NL = 3 for LOS and NN = 2

for NLOS links. We observe from the figure that two types of small-scale fading lead to similar

performance trends. However, since Nakagami fading implies more favorable channel conditions,
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Fig. 4.7: SNR and SINR CPs as a function of threshold for different cluster size σ.
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Fig. 4.8: APs and SINR CPs for different tier as a function of the LOS probability function exponent ε
when σ = 25 and T = 10dB.

higher CP is achieved with Nakagami fading.

4.6.3 Impact of the LOS Probability Exponent ε

In this subsection, we investigate the impact of the LOS probability exponent ε. Note that the

smaller ε is, the sparser the environment will be, leading to higher LOS probabilities. And we aim

to obtain insights on how the building deployments influence the system performance.
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Association Probability

Fig. 4.8(a) shows the AP as a function of ε. When ε = 0, all links are LOS and the signals are not

attenuated significantly during transmission. Since macrocell BSs provide larger transmit power,

we can observe from the figure that A12,L > A10,L > A11,L. When ε is increased, more links

become NLOS. Thus A12,L decreases dramatically. In the meantime, small-cell BSs have more

chance to serve the UEs, and we notice increasing A10,L and A11,L initially. When we increase ε

further, more and more links become NLOS. Consequently, we have increasing A10,N , A11,N and

A12,N , as well as decreasing A10,L, A11,L and A12,L. Additionally, when more links are NLOS,

signals are attenuated considerably during transmission. And since the distance between UEs and

their cluster center BSs are relatively smaller, A10,N increases more than A11,N and A12,N .

Coverage Probability

Fig. 4.8 (b) plots the SINR CP as a function of ε. The first observation shown in the figure is that

similar to the performance trends with respect to AP, with increasing ε, we have increasing PC10,N
,

PC11,N
and PC12,N

. In addition, PC10,L
and PC11,L

increase initially and then start diminishing,

while PC12,L
decreases continuously. The second observation is that PC10,s > PC11,s > PC12,s is

always satisfied. This is due to the following reasons: 1) no matter which BS the UE is associated

with depending on the averaged received power of the UE, in the uplink phase, UE is transmitting

information to BSs with the same transmit power; 2) the distance between the UEs and their

cluster center BS is generally smaller than to other small-cell BSs and macrocell BSs, leading

to the conditional CP of the cluster center being much larger than those of other BSs. The third

observation is that the total CP increases at the beginning and then decreases. This is because that

PC10,L
and PC11,L

increase initially, and then the increase in the coverage with NLOS Links cannot

compensate the decrease in the coverage with LOS links.
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Fig. 4.9: APs as a function of the biasing factor ratio B1/B2 and the BS transmit power ratio P1/P2 when
σ = 25 and T = 10dB.

4.6.4 Impact of the Biasing Factor and Transmit Power

Association Probability

Fig. 4.9(a) displays the AP as a function of the biasing factor ratio B1/B2 in dB, where B1 and B2

are the biasing factors of the small-cell BSs and the macrocell BSs, respectively. When B1 = B2,

we have A10 > A11 > A12 since UEs are relatively closer to the cluster centers. On the other hand,

when we fix B2 = 1 and increase B1, we observe, as expected, that A10 and A11 grow, while A12

diminishes.

Fig. 4.9(b) shows the AP as a function of the transmit power ratio P1/P2 in dB. At the begin-

ning, since P2 is much larger than P1, even though the distance between the macrocell BSs and

UEs are large, the macrocell BSs still have a high probability to connect with the UEs. When we

fix P2 and increase P1, the small-cell BSs start having larger transmit power, and as a result A10

and A11 increase.

Coverage Probability

Due to their impact on the association probabilities, biasing factor ratio and the BS transmit power

ratio influence the choice of the associated reference BS, and consequently affect the SINR cov-

erage probability of each reference BS. Fig. 4.10 plots the conditional SINR coverage probabil-
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Fig. 4.10: SINR CP as a function of B1/B2 when σ = 25 and T = 10dB.

ity (P c
Cij

) of each tier of reference BSs, and the SINR coverage probability of each tier (PCij =

P c
Cij
Aij)). From Fig. ??(a), we can observe that the conditional SINR coverage probability of the

cluster center BSs P c
C10,s

and other small-cell BSs P c
C11,s

decrease, while that of the macrocell BSs

P c
C12,s

increases with increasing B1/B2. The reason is that, as B1/B2 gets large, UEs increasingly

prefer to associate with small cell BSs, and consequently the small-cell BSs start having larger

association priority, while the macrocell BSs have small association priority. In this case, if the

typical UE is still associated with a macrocell BS, then that link should be in really good condition,

and hence has large coverage probability. Therefore, with increasing B1/B2, given that the typical

UE is associated to the macrocell BS, the macrocell BS should provide strong power and have

larger coverage probability, leading to increasing P c
C12,s

. Conversely, for large B1/B2, small-cell

BSs, which do not need large power to get associated to UEs, have smaller coverage.

On the other hand, due to the variations in the association probability of each tier shown in Fig.

4.9(a), we have the performance in Fig. 4.10(b). In particular, we note that PC10 and PC11 both

increase, because A10 and A11 grow significantly with increasing B1/B2. Since the increment in

PC10 and PC11 is larger than the decrease in PC12 , we have a growing total network CP.. Therefore,

total SINR CP of the network is an increasing function of B1/B2. Regarding the transmit power,

if we increase the transmit power of small-cell BSs, the total CP of the network will also increase.
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Fig. 4.11: APs as a function of the density of small-cell BSs λ1, when σ = 25 and T = 10dB.

4.6.5 Impact of the Density of BSs

Association Probability

Fig. 4.11 shows the AP as a function of λ1 when λ2 = 10 / km2 and σu = 25. Initially, the

density of small-cell BSs is small, UEs are still clustered around them, and the macrocell BSs

are not densely distributed. Hence, the UEs are likely to be served by their cluster center BSs,

i.e. A10 > A12 > A11. When we increase λ1, more and more small-cell BSs are deployed. The

distance between the UEs and their cluster center BS does not change, while the distance from the

UEs to other small-cell BSs becomes smaller. Hence, the USs become more and more likely to be

served by other small-cell BSs. In other word, A11 increases, while A10 and A12 both decrease.

Coverage Probability

Fig. 4.12(a) shows the SINR CP as a function of λ1. Via the CP of each tier, we can observe

that with an increasing λ1, PC10 and PC12 diminish, while PC11 grows. Initially, the increase in

PC11 is larger than the decrease in PC10 and PC12 , leading to the result that total CP increases. As

we increase λ1 further since the interference grows, the increase in PC11 cannot compensate the

decrease in PC10 and PC12 , and consequently the total CP decreases.

Fig. 4.12(b) plots the SINR CP vs. small-cell BS density λ1 for different densities λ2 of the

macrocell BSs. From the figure, we observe that when λ1 = 1 BS/km2 which is small, increas-
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Fig. 4.12: SINR CPs of each tier and the entire network as a function of the density of small-cell BSs λ1,
when σ = 25 and T = 10dB.

ing λ2 improves the total network coverage. This is expected since we have a sparse network

and interference can be ignored, and increasing the number BSs results in network performance

improvement. On the other hand, when λ1 = 100 BSs/km2, increasing λ2 lowers the SINR CP

performance. In this case, the network have more small-cell BSs, including the cluster center BSs

and other small-cell BSs, which together can provide good coverage. Increasing the macrocell BS

density will lead to more interference, and also will result in UEs getting connected to macrocell

BSs with potentially larger link distances. Thus, in this case, the total SINR coverage generally

diminishes when λ2 is increased.

These two figures give us the following useful insights: 1) when the macrocell BSs are sparsely

deployed (e.g., λ2 ≤ 10 BSs/km2), there is an optimal density of small-cell BSs to maximize

the uplink SINR CP of the entire network; while when the macrocell BSs are densely deployed,

increasing the small-cell BS density will lead to smaller uplink SINR CP; 2) when the small-cell

BSs are sparsely deployed, increasing the density of macro BS will improve the uplink CP; while

the opposite will happen for densely deployed small-cell BS networks.
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CHAPTER 5

MULTI-AGENT DOUBLE DEEP

Q-LEARNING FOR BEAMFORMING IN

MMWAVE MIMO NETWORKS

5.1 System Model

In this section, we describe the considered mmWave MIMO network.

5.1.1 System Model

We consider multi-BS multi-UE MIMO networks, where J BSs are simultaneously serving K

mobile UEs. Each BS is equipped with Nt antennas and NRF RF chains. We assume that the

BSs apply analog-only beamforming using networks of phase shifters, and each RF chain is fully-

connected with each antenna.

In this analog-only beamforming network, the BS up-converts the data stream to the carrier

frequency by passing it through NRF RF chains. Following this, the BS uses an Nt × NRF RF

precoder VRF, which is implemented using analog phase shifters, i.e., with |VRF(a, b)|2 = 1
Nt

, to

construct the final transmitted signal. Note that VRF(a, b) = 1√
Nt
ejφph where φph is the phase shift
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angle. For the k-th user, the received signal can be modeled as

yk =
J∑
j=1

HkjVRFjskj + nkj (5.1)

where skj is the data stream vector for the k-th UE from the j-th BS. We assume that E[skjsHkj] =

PjINs , and the noise factor nkj ∼ CN (0, σ2INt). Hkj is the channel response from the jth BS to

the kth UE. VRFj is the RF precoder of the jth BS.

5.1.2 Channel Model

We adopt a channel model with L paths. L is a small number for mmWave communications, and

we assume L = 1 for LOS links. Now, the mmWave MIMO channel H can be expressed as

H =

√
NtNr

L

L∑
l=1

αl
pl

ar(φlr)aHt (φlt) (5.2)

where αl and pl are the complex gain and the path loss of path l, respectively. at and ar are the array

response vectors at the BS and the UE sides, respectively. φlt and φlr are the angles of departure

and arrival of the lth path, respectively.

Array response

While the algorithms introduced in this paper can be applied to arbitrary antenna arrays, we provide

the following two illustrative examples of commonly-used antenna arrays. For an N element

uniform linear array (ULA) on the y-axis, the array response vector can be written as [189]

aULAy(φ) =
1√
N

[
1, ejkd sin(φ), ..., ej(N−1)kd sin(φ)

]
(5.3)

where k = 2π
λ

, λ is the wavelength, and d is the inter-element spacing. In the case of a uniform

planar array (UPA) in the yz-plane with W and H elements on the y and z axes respectively, the
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array response vector is given by

aUPA(φ, θ) =
1√
N

[
1, ..., ejkd(m sin(φ) cos(θ)+n sin(φ) sin(θ)),

..., ejkd((W−1) sin(φ) cos(θ)+(H−1) sin(φ) sin(θ))
]

(5.4)

where 0 < m < W and 0 < n < H are the y and z indices of an antenna element respectively and

the antenna array size is N = WH . In this paper, we primarily concentrate on ULA.

Path Loss

Link between a UE and a BS can be either LOS or NLOS. The path loss model is formulated as

pl(r) =


κlosrα

los
(r) with prob. plos(r)

κnlosrα
nlos

(r) with prob. pnlos(r) = (1− plos(r))
(5.5)

where r is the two-dimensional distance between the UE and BS. αlos, αnlos are the path loss ex-

ponents for LOS and NLOS links, respectively, κlos, κnlos are the intercepts of the LOS and NLOS

path loss formulas, respectively, and plos(r) is the probability that the link has a LOS transmission

at distance r.

Following the 3GPP standards described in [190], we express the probability of LOS link

between the BSs and the UEs as

plos(r) = min(18/r, 1)× (1− exp(−r/63)) + exp(−r/63). (5.6)

Shadowing is also taken into account in the channel model, and is modeled as a log-normal

random variable, i.e., 10 log v ∼ N (µv, σ
2
v) with µv and σ2

v being the mean and variance of the

channel power under shadowing, respectively.
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5.1.3 Achievable Rate

In the multi-BS multi-UE mmWave MIMO network, beside the serving BS, other BSs inflict in-

terference to the UEs. We can express the rate of the k-th UE when associated with the j-th BS

as [85] [191] [192]

Rk = log2

1 +
Pj|HkjVRFjV

H
RFjH

H
kj|

σ2 +
J∑

i=1,i 6=j
Pi|HkiVRFiV

H
RFiH

H
ki|

 (5.7)

where superscript H and | · | denote the conjugate transpose and the determinant of a matrix,

respectively. Then, the sum-rate of all UEs is Rsum =
K∑
k=1

Rk.

Our goal is to maximize the sum-rate of all UEs, and therefore we consider the following

optimization problem:

max
VRFj ,j∈J

K∑
k=1

Rk (5.8)

subject to |VRFj(a, b)|2 =
1

Nt

∀j, (8a)

where VRFj is the analog beamforming vector of the j-th BS.

5.2 Distributed multi-agent DDQN for mmWave MIMO

networks

The algorithm of the distributed multi-agent DDQN for mobile UEs is provided in Algorithm

1. Before providing the definitions of states, actions, and rewards, the environment should be

introduced first. In the environment E , BSs are located with a certain distance in between. UEs

move from different initial locations in different directions with different speeds. In each episode,

UEs do not change their speed and direction until they move out of the coverage region of all
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Fig. 5.1: An illustration of the procedure in one time step.

BSs, and the episode ends. In each episode, at each time step, UEs move to new locations. We

assume that at the beginning of each time step, in a very short time slot τ , each BS uses an omni-

directional antenna pattern, and transmits pilot signals to all UEs. Therefore, each UE receives

pilot signals from all BSs, and chooses to associate with the BS providing the strongest pilot signal,

and computes the immediate rate under the omni-directional pattern, and sends it to the serving

BS, indicating the association condition with itself. It is assumed that each UE is equipped with a

memory containing prior information (e.g., the location history, the omni-directional rate in the last

Tm time steps), and each UE can send this information to the associated BS as well. Subsequently,

the BS performs beamforming according to our algorithm, and serves the associated UEs. Then

the UEs learn the immediate rate achieved with beamforming, and feed this information back to

the serving BS. The procedure in one time step is illustrated in Fig. 5.1.

In the multi-agent DDQN model, each BS is an agent and the state, action, and reward tuple

of the j-th BS is denoted by (sjt , a
j
t , r

j
t ) . These states, actions and rewards are described in detail

below:

5.2.1 State

At each time step, each BS serves multiple UEs, and is able to obtain the information in the memory

of each UE. This information of all associated UEs constitute as state at time t, noted as sjt for the
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Algorithm 1: Distributed multi-agent DDQN
Require:

1: Initialize replay memory Dj of DDQN, j ∈ J , to capacity N for every BS.
2: Initialize online network with random parameter ξj , j ∈ J .
3: Initialize target nework with parameter ξj− = ξj , j ∈ J .

Ensure:
4: for episode = 0: total episode do
5: Reset environment E .
6: Initialize sj1 for j ∈ J .
7: for t = 1 : T do
8: for j = 1 : J do
9: Obtain association condition and the sum-rate of all associated UEs Roj

t by
association procedure.

10: Sample c from Uniform (0,1)
11: if c ≤ ε then
12: Select an action (beamforming vector index) randomly from the codebook F .
13: else
14: Select the action ajt = argmaxaQ

∗
j(s

j
t , a; ξjt ).

15: end if
16: Execute action ajt , i.e. apply the selected beamforming vector on the antenna arrays of

j-th BS.
17: Observing the resulting state sjt+1 and the immediate sum-rate of all associated UEs

Rj
t .

18: Compute the immediate reward rjt , i.e. Rojt
Rjt
× 100%.

19: Store the experience tuple (sjt , a
j
t , r

j
t , s

j
t+1) in Dj .

20: Sample random minibatch of experience (sjτ , a
j
τ , r

j
τ , s

j
τ+1) from Dj .

21: Update
yjτ =
rjτ if episode terminates at step τ + 1

rjτ + γQ(sjτ+1, argmaxa′ Q(sjτ+1, a
′; ξjτ ); ξ

j−
τ )

otherwise
22: Perform a gradient descent step on (yjτ −Q(sjτ , a; ξjτ ))

2 with respect to the network
parameters ξjτ

23: For every Nn steps reset target network parameter ξj− = ξj

24: end for
25: end for
26: end for
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j-th BS. Assume that the length of history in each memory is Tm, and there are K UEs in this

network, then the state sjt = [m0
t−Tm ,m

0
t−Tm+1, ...,m

0
t−1, ...,m

K
t−1]. It is worth noting that for UEs

not associated with the j-th BS, m∗t−∗ is set to be 0. In other words, the BSs only need information

from the associated UEs. In this paper, we denote the rate achieved with the omni-directional

antenna pattern as m∗t−∗ . If the location information of each UE is also available, we denote the

omni-directional pattern rate and the location information together as state sjt . In Section IV, we

provide performance results with and without location information.

5.2.2 Action

At each time step, each BS chooses an analog beamforming vector VRF. Due to the constraints on

the RF hardware, such as the availability of only certain quantized angles for the RF phase shifters,

the analog beamforming vectors can take only certain values. Hence, finite-size codebooks for

the candidate beamforming vectors are needed. In practice, the beamforming vectors are spatial

matched filters for the single-path channels [192]. Thus, they have the same form of the array

response vector and can be parameterized by a simple angle. While the algorithm in this paper can

be applied to arbitrary finite-size codebooks, we adopt the codebook, denoted by F , consisting of

the steering vectors at(φQ) where φQ is the quantized angle. The beamforming vector index in the

codebook is defined as the action ajt .

5.2.3 Reward

As noted before, at the beginning of each time step, each BS learns the immediate rate, Roj
t , pro-

vided to all associated UEs with the omni-directional antenna radiation pattern. After performing

beamforming, each BS also learns the immediate rate Rj
t achieved with beamforming. We regard

the ratio of two rates, Rjt
Rojt

as the immediate reward rjt of the j-th BS when this BS takes action ajt

in state sjt .

Setting the analog beamforming vector codebook F , the optimization problem can be refor-
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mulated as

max
VRFj [t],j∈J

K∑
k=1

Rk[t] (5.9)

subject to VRFj [t] ∈ F ,∀j, (12a)

where VRFj [t] is the analog beamforming vector of the jth BS at time t.

5.3 Performance Evaluation

In this section, we provide simulation results and evaluate the performance of the proposed multi-

agent DDQN for mmWave MIMO beamforming.

5.3.1 Environment Setting

The considered environment is illustrated in Fig. 5.2. As shown in the figure, we have two inter-

secting streets. The BSs are located along the streets, while the UEs are moving from the beginning

of either street in either direction. UEs move at random speeds. The length of each street is set as

100m, starting from -50m to 50m on each axis. The width of the road is set as 8m, i.e., (-4m, 4m).

The speed of the UEs can be between 2 to 5 m/s. The locations of BSs are set at the coordinates

of [(5,-5),(-25,-5)]. In addition, the number of antennas at the base stations and the UEs are set,

respectively, as Nt = 16, Nr = 1. Finally, the number of RF chains is NRF = 2.

5.3.2 Hyperparameters

In our experiment, we construct the DDQN via three-layered neural networks using Adam opti-

mizer to evaluate the gradient descent of the evaluated and target networks. Our input size depends

on the number of UEs in the environment, i.e., the input size is KTm when K is the number of

UEs and Tm is the length of historic/prior information at of each UE, and is set to be 8 in the

simulation. The output size should be the size of the action notebook F . The number of neurons
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Fig. 5.2: An illustration of the simulation environment.

of the three layers are 12K, 8K and 8, respectively. The discount factor is 0.95, batch size is 32,

and the learning rate for two BSs are 0.0001 and 0.005, respectively. We also use ε-greedy policy

and the maximum value of ε is 0.9 and the minimum is 0.1.

5.3.3 Experiment results

Fig. 5.3 plots the sum-rate as a function of the number of UEs for different number of BSs.

Results from exhaustive search among all possible beamforming directions and also random se-

lection are provided as two benchmark results. Note that the exhaustive search requires perfect

channel state information (CSI), and in random selection the BSs randomly choose actions from

the codebook. Figs. 5.3(a) and 5.3(b) (in which we consider the cases of a single BS and two

BSs, respectively) show that DDQN can achieve better performance than random selection, and

comparable results with exhaustive search which has high computational complexity and incurs

potentially large delays especially in mobile scenarios. In addition, in both figures, we provide

the performance curves when the location information is available and unavailable. The perfor-

mance with location information given is only slightly better, indicating that such information is

not critical for our algorithm. Furthermore, when the number of UEs increases, the sum-rate grows

almost linearly, demonstrating that the proposed algorithm can handle multiple UEs without much

decrease in the data rate experienced at each UE. On the other hand, when we compare Figs. 5.3(a)

and 5.3(b), we notice that for the same number of UEs, two BSs can provide higher sum-rate than
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(b) Two Base Stations.

Fig. 5.3: Sum-rate as a function of number of UEs for different number of BSs.

in the case of a single BS. Even though there is interference when there are multiple BSs, two BSs

can provide larger coverage, leading to higher SINR levels and rates with effective beamforming.

We also notice that random selection performs rather poorly especially in the presence of two BSs.

Fig. 5.4 displays the sum-rate performances during testing, when the DDQN is trained for

the exact number of UEs used in the tests and also when DDQN is trained considering 6 UEs

regardless of how many UEs we have in the test period. When the DDQN is trained for 6 UEs, if

the real number of UEs is less than 6 in the testing, we need to do zero padding in the input of the

DDQN; if the actual number of UEs is more than 6, we just randomly choose 6 UEs and make a

decision. From Fig. 5.4, we observe that when the DDQN is trained for the actual number of UEs ,

the testing performance is slightly better than that of the other case, indicating that the pre-trained

model does not need to be restricted to a certain number of UEs and can be applied to scenarios in
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Fig. 5.4: A performance comparison of testing results, when the DDQN is trained for the exact number of
UEs and the DDQN is trained for 6 UEs. The number of BS is one.

which the number of UEs in the test is different from that in the training period.
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CHAPTER 6

COVERAGE IN NETWORKS WITH HYBRID

TERAHERTZ, MILLIMETER WAVE, AND

MICROWAVE TRANSMISSIONS

6.1 System Model

In this section, distributions of BSs and UEs, and the key features of transmission in different

frequency bands are introduced.

6.1.1 Deployment Model

We assume that there are three tiers of BSs, including a tier of access points (APs), denoted as the

1st tier, a tier of small-cell BSs (SBSs), denoted as the 2nd tier, and a tier of macrocell BSs (MBSs),

denoted as the 3rd tier. The APs are assumed to be transmitting in the THz frequency bands, SBSs

transmit in the mmWave frequency bands, while the MBSs transmit in conventional microwave

frequency bands. BSs in the jth(j ∈ {1, 2, 3}) tier are assumed to be distributed according to the

Poisson point processes Φj with density λj . The APs, SBSs and MBSs are assumed to have heights

H1, H2 and H3, respectively. Since THz APs are expected to be placed at much lower heights (due
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Fig. 6.1: An illustration of a three-tier HetNet.

to the limited range of THz transmissions), we approximate H1 = 0. BSs in the jth tier are also

distinguished by their transmit power Pj .

The UEs are assumed to be distributed according to a stationary Poisson point process ΦU with

density λU , which is independent of the distributions of the BSs in the network. In this chapter,

we focus on the analysis of the outdoor networks. The UEs are assumed to be located outdoors,

and the indoor-to-outdoor penetration loss is assumed to be strong enough so that the UEs cannot

receive signal or interference from the indoor BSs.

An illustration of the considered three-tier heterogeneous network (HetNet) is provided in Fig.

6.1.

6.1.2 Channel Modeling

Different path loss laws are applied to LOS and NLOS links from BSs in each tier to the UEs. The

blockage model and path gain are provided in 2.2.1. Nakagami-m fading is adopted in this chapter.

It is assumed that the UEs used omni-directional antenna pattern with gain 0dB.

THz APs

Antenna arrays are deployed at the APs to perform directional beamforming. For tractability of

the analysis, the actual antenna array pattern is approximated by a cone-shaped model, which has
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been widely used in THz communication networks [4] [8] [6] [7]. In this cone-shaped model, the

array gains are assumed to be a constant Gmax
1 for all angles in the main lobe, and to be a smaller

constant Gmin
1 for all angels in the side lobe. The antenna gain can be mathematically expressed as

in (2.22), and denoted by G1 with θ1 being the half power beamwidth of the APs’ antennas.

SBSs

According to [168], the 3D antenna pattern from the SBSs to the UE can be divided into horizontal

and vertical components. The vertical antenna gain can be written as (2.24), and denoted by

Gv
2(x) = 10

−1.2

(
arctan(

H2
x )−φetilt2
φ3dB

2

)2

. The horizontal antenna pattern is assumed to be cone-shaped,

and denoted by Gh
2 with θ2 being the horizontal half power beamwidtch of the SBSs’ antennas.

Therefore, the antenna gain can be expressed as

G2(x) =


Gmax

2 10
−1.2

(
arctan(

H2
x )−φetilt2
φ3dB

2

)2

, w.p. pmax2 ,

Gmin
2 10

−1.2

(
arctan(

H2
x )−φetilt2
φ3dB

2

)2

, w.p. pmin2 .

(6.1)

MBSs

MBSs will be essential in providing umbrella coverage to guarantee consistent service to UEs

[193], and therefore omni-directional antenna pattern is considered at MBSs, i.e., G3 = 1.

To parameterize the antenna models, we need to provide the antenna gain Gmax
j for the main

lobe with beamwidth θj , and Gmin
j for the side lobe gain with beamwidth 2π − θj . Introducing

gj = Gmax
j /Gmin

j , according to [7], we have


Gmax
j = 2[(1− cos(θj/2)) + gj(1 + cos(θj/2))]−1,

Gmin
j = gjG

max
j .

(6.2)

We now have the relations to specify the antenna gain of the main lobe and the side lobe as a

function of θj and gj in such a way that the total transmit power does not change with the antenna
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directivity. Then, we can have a fair comparison of the impact of the system parameters. It is

also assumed that, after association, the APs and the SBSs can steer their horizontal antenna array

directions to the UEs they serve so that the UEs can obtain maximum horizontal antenna gain

Gmax
j .

6.2 Path Loss Based Association

In the considered three-tier HetNet, BSs in each tier have different transmit power levels, and their

transmissions experience different path loss. Therefore, we adopt the path loss based association

criterion for the UEs. First, we introduce the characterization of the nearest distance from a typical

UE to the nearest BS in each tier. Subsequently, we provide the association criterion, and determine

the association probability.

6.2.1 Characterization of the Nearest 2D Distance

Note that considering the LOS/NLOS links, the original PPP of APs and SBSs can be thinned into

two independent PPPs Φs
j with density λjpsj(x) for j = 1, 2 and s ∈ {LOS,NLOS}. Without

loss of generality, we randomly choose a UE as the typical UE, and assume that it is located at

the origin. With this, the CCDF and the PDF of the distance from this typical UE to the nearest

LOS/NLOS jth(j = 1, 2) tier BS can be given as (4.3) and (4.4). The CCDF and PDF of distance

from the typical UE to the nearest 3rd tier BS are given by (2.4) and (2.5).

6.2.2 Association Criterion

By adopting the path loss based association criterion, the UEs are assumed to be associated with

the BS providing the largest received power Pjlsj . This criterion can be formulated as

{j∗, s∗} = argmax
j=1,2,3
s=L,N

Pjl
s
j . (6.3)
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6.2.3 Association Probabilities

Since the path loss depends on the link distance that is a random variable, we characterize the

association to each tier statistically. More specifically, the association probability of each tier is

defined as the probability that the typical UE is served by a BS in that tier, i.e.

Asj = P(j∗ = j, s∗ = s). (6.4)

Theorem 6.1. The probabilities of associating with a BS in the 1st, 2nd and 3rd tiers are given,

respectively, by

A1 =
∑
s=L,N

As1 =
∑
s=L,N

ERs1 [Ains1 (x)] (6.5)

A2 =
∑
s=L,N

As2 =
∑
s=L,N

ERs2 [Ains2 (x)] (6.6)

A3 = ER3 [Ain3 (x)] (6.7)

where ER is the expectation with respect to R, and FR is the CCDF of R provided in Section III.A,

N sb
jk (x) =

((
Pkκ

b
k

Pjκsj
(x2 +H2

j )
αsj
2

) 2

αb
k −H2

k

) 1
2

, and

Ains1 (x) = FRs
′

1
[N ss′

11 (x)]FRL2
[N sL

12 (x)]FRN2
[N sN

12 (x)]FR3 [N sL
13 (x)],

Ains2 (x) = FRs
′

2
[N ss′

22 (x)]FRL1
[N sL

21 (x)]FRN1
[N sN

21 (x)]FR3 [N sL
23 (x)],

Ain3 (x) = FRL1
[N LL

31 (x)]FRN1
[N LN

31 (x)]FRL2
[N LL

32 (x)]FRN2
[N LN

32 (x)].

P roof : Appendix 14.

We note that in the derivation of the characterizations in Theorem 6.1, we have neglected the

exponential term in the path loss given in (2.14) as a simplifying assumption whose accuracy is

demonstrated via numerical and simulation results.
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6.2.4 Conditional PDF of the Distance of the Main Link

Given that the typical UE is served by a jth tier BS and the link is in s ∈ {LOS,NLOS} transmis-

sion for j = 1, 2, the conditional PDF of the distance from the typical UE to its serving BS can be

expressed as

F̂Rsj (x) = P(r < x|j, s) =
P(r < x, j, s)

P(j, s)
=

P(r < x, j, s)

Asj
. (6.8)

Following the similar approach as in the analysis of the association probability, we obtain the

conditional PDF as

f̂Rsj (x) =
dF̂Rsj (x)

dx
=


fRsj (x)Ainsj (x)/Asj , j = 1, 2,

fR3(x)Ain3 (x)/A3, j = 3.

(6.9)

6.3 Coverage Analysis

To evaluate the performance of the HetNet, we in this section determine the CCDF of the received

signal power from the serving BS, the Laplace transform of the aggregated interference, and the

SINR coverage probability experienced at the typical UE.

6.3.1 Distribution of the Received Signal Power

By combining the path gain, small-scale fading, and the antenna gain, the received signal power

experienced at the typical UE from its serving BS in the jth tier with a s ∈ {LOS,NLOS} link can

be expressed as

Pms
j = PjG

m
j h

slsj(r) (6.10)

where r is the 2D distance from the UE to its serving BS. Pj is the transmit power, Gm
j (r) denotes

the antenna gain of the main link, hs is the small-scale fading, and lsj(r) is the path gain of the main
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link.

Theorem 6.2. The CCDF of the received signal power of the main link can be expressed as

M(T ) =
∑
j=1,2,3

Mj(T ) =
∑
j=1,2,3

∑
s=L,N

M s
j (T )Asj (6.11)

where M s
j is the CCDF of Pms

j , given that the typical UE is associated with a jth tier BS and the

link is in s ∈ {LOS,NLOS} transmission, and

M s
j (T ) = P(Pms

j > T ) = Er[P(Pms
j > T |r)]

=
Ns∑
n=1

(−1)n+1

(
N s

n

)∫ ∞
0

e
− nξsN

sT
PjG

m
j
ls
j
(r) f̂Rsj (r)dr (6.12)

where ξs = N s(N s!)
1
Ns , and f̂Rsj (x) is given in (6.9).

Proof : Appendix 15.

6.3.2 Laplace Transform of the Aggregate Interference

Besides the received power from the serving BS, the typical UE also receives interfering signals

from other BSs. The interference from the ith BS in the kth tier can be formulated as

I ik = PkG
i
kh

ilk(ri) (6.13)

where ri is the 2D distance from the typical UE to the interfering BS. Given that the distance of

the main link is r, there is an exclusive disc Q(0, R) in which no interferer exists. If the serving BS

is from the jth tier and the interferers are from the kth tier, the radius of the disc can be expressed

as R = N sa
jk (r), where s, a ∈ {LOS,NLOS} denote the LOS/NLOS connectivity for the main link

and the interfering link, respectively. If j, k ∈ {1, 2}, we have s, a ∈ {LOS,NLOS}, and if j = 3
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or k = 3, we have s = LOS or a = LOS. Therefore, the aggregate interference is expressed as

Ik =
∑
s=L,N

∑
i∈Φsk\Q

PkG
i
kh

ilsk(ri). (6.14)

To evaluate the aggregated interference, we analyze the Laplace transform of the interference,

which can be formulated as

LIk(µ) = E[e−µIk ] (6.15)

Theorem 6.3. The Laplace transform of the interference from the kth tier evaluated at µ can be

expressed as

LIk(µ) = exp

(
−
∑
s=L,N

∑
G

∫ ∞
Rc(r)

(1− (1 + µPkG
G
k (x)lsk(x)N s)−N

s

)psk(x)pGk (x)λk2πxdx

)
(6.16)

Proof : Appendix 16.

6.3.3 SINR Coverage Probability

Given that the typical UE is associated with a jth tier BS and the link is in s ∈ {LOS,NLOS}

transmission, the SINR experienced at the typical UE can be expressed as

SINRs
j =

PjG
m
j h

slsj(r)

N +
∑

i∈Φj\Q(r) PjG
i
jh

ilj(ri)
(6.17)

where N is the noise power.

The SINR coverage probability is defined as the SINR experienced at the UE being larger than

a certain threshold T . Since in this heterogeneous network, UEs are possible to be associated with
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BS from each tier, the SINR coverage probability of the network can be written as

C =
∑
j=1,2,3

Cj =
∑
j=1,2,3

∑
s=L,N

Cs
jA

s
j (6.18)

where Cj is the SINR coverage probability of the jth tier, Cs
j is the conditional SINR coverage

probability given that the UE is associated with a BS in the jth tier and the link is in s transmission.

Theorem 6.4. Given that the UE is served by an s ∈ {LOS,NLOS} BS in the jth tier, the condi-

tional SINR coverage probability can be formulated as

Cs
j =

Ns∑
n=1

(−1)n+1

(
N s

n

)∫ ∞
0

e
− nξsN

sTN
PjG

m
j
ls
j
(r)LIj

(
nξsN

sT

PjGm
j l

s
j(r)

)
f̂Rsj (r)dr (6.19)

where r is the distance from a UE to its serving BS, the PDF of which is f̂Rsj (r) given in (6.9), and

N s is the Nakagami fading parameter.

Proof : Appendix 17.

6.4 Numerical Results

In this section, we elaborate on the analysis of the CCDF of the received signal power and the SINR

coverage probability in the HetNet. Simulation results with Monte-Carlo methods are provided to

validate the numerical evaluations of the derived expressions. Unless stated otherwise, the used

parameters values are listed in Table 6.1 below. In the figures, we depict the performance by

analyzing 1) the conditional CCDF of the received signal power M s
j and the conditional SINR

coverage probability Cs
j , given the typical UE is associated with a BS in the jth tier with s ∈

{LOS,NLOS} connectivity; 2) the CCDF of the received power of each tier Mj and the entire

network M ; and 3) the SINR coverage probability of each tier Cj and the entire network C.
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Table 6.1: Table of Parameters

Parameters Values
P1, P2, P3 20dBm, 24dBm, 43dBm [168]
λ2, λ3, λU 10−4/m2, 10−6/m2, 10−2/m2

H1, H2, H3 0m, 10m, 32m [168]
αL1 , αN1 , κL1 , κN1 2, 4, 0.1, 0.1
αL2 , αN2 , κL2 , κN2 2, 4, 1, 1
κ, β, α3, RB 0.01 [7], 1/141.4 [160], 3, 0.3m
φetilt2 , φ3dB

2 , θ2 15◦ [168], 30◦, 30◦

g1, g2 0.05, 0.1
NL, NN , N 3, 2, 10−8 dB
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Fig. 6.2: Association probability as a function of the density of the APs.

6.4.1 Impact of the Density of THz APs

Fig. 6.2 shows the association probabilities Aj of each tier as functions of the density λ1 of the

THz APs. We observe that as λ1 increases, the association probability of the APs increases, while

those of the other two tiers decrease. It is worth noting that, in the simulations, we use the true

path loss to find the association. And the simulation results match with association probabilities

in (6.5)-(6.7), although in the derivation we have neglected the exponential term in the path loss.

This indicates that the approximation is accurate and does not lead to much difference in the system

performance analysis. In addition, in Fig. 6.2, we see that the association probabilities of the APs

and SBSs are much larger than that of the MBSs, due to the much larger link distances from a

MBS to the typical UE and the resulting much smaller path gain. The numerical results also show



119

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

0

0.2

0.4

0.6

0.8

1

C
C

D
F

 o
f 
re

c
e
iv

e
d
 s

ig
n
a
l 
p
o
w

e
r

Analy: M
L

1

Analy: M
L

2

Analy: M
3

Analy: M
N

1

Analy: M
N

2

Simulation

 10-2

(a) Conditional CCDF of the received singal power.
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(b) CCDF of the received singal power.

Fig. 6.3: CCDF of the receive signal power as a function of the density of APs, when T = −30 dB and
θ1 = 15◦.

that the association probability of the NLOS BSs are close to zero, i.e. Aj ≈ ALj . Due to this, we

have not separately plotted ALj and ANj .

Fig. 6.3 shows the CCDF of the received signal power as a function of λ1. As we increase λ1,

there are more APs in the network, and the average distance between the typical UE and the APs

decreases, leading to increasing path gain for both LOS and NLOS APs. Thus, we can observe

increasing ML
1 and MN

1 . However, since there are more APs in the network, SBSs and MBSs need

to be more appealing to the typical UE so that they can be associated with the UEs. In other words,

they need to provide larger signal to the typical UE. Thus, if the typical UE is associated with a SBS

or MBS, the received signal power is also increased with an increasing λ1. Therefore, ML
1 , MN

1 ,
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Fig. 6.4: SINR coverage probability as a function of the density of APs, when T = −5 dB and θ1 = 15◦.

ML
2 , and M3 increase in Fig. 6.3(a). Since the received signal power of the NLOS SBSs is really

small, MN
2 is close to zero when T = −30 dB. Combined with the association probability, we can

observe in Fig. 6.3(b) that M1 increases, M2 decreases, while M3 is zero, since the association

probability also plays an important role. Due to the reason that the increase in M1 can make up the

decrease in M2, the received signal power experienced at the typical UE M increases.

Fig. 6.4 shows the SINR coverage probability as a function of λ1. When there are more APs

in the network, the interference from the APs increases. Even through the received signal power

of the APs M s
1 also grows substantially, the increase in the interference is greater than that of

M s
1 . However, as λ1 increases, more and more UEs are served by the APs. Therefore, the SINR

coverage probability of the APs C1 increases. On the other hand, the interference from the APs

does not impact the coverage of SBSs and MBSs greatly, but due to the decreases in A2 and A3,

both C2 and C3 decrease. Since the ascent in C1 can not compensate the descent in C2 and C3, the

SINR coverage probability of the network decreases with an increasing λ1.

6.4.2 Impact of the Beamwidth of the Main Lobe at the THz APs

Fig. 6.5 shows the CCDF of the received signal power as a function of the beamwidth θ1 of the

main lobe at the APs. Since the total antenna gain is fixed to be 1, the antenna gain of the main

lobe Gmax
1 will decrease if we increase θ1. Therefore, the received signal power of the APs M s

1
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(a) Conditional CCDF of the received singal power.
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(b) CCDF of the received singal power.

Fig. 6.5: CCDF of the receive signal power as a function of beamwidth of the main lobe at the APs, when
T = −30 dB and λ1 = 10−2/m2.

decreases, while ML
2 and M3 do not change. The antenna gain does not influence the association

probability, and hence the association probability does not change with increasing θ1. As a result,

Mj displays the same performance trends in Fig. 6.5(b) as M s
j . And M decreases with increasing

θ1 since UEs are mostly served by the APs and M1 increases.

Fig. 6.6 shows the SINR coverage probability as a function of θ1. As θ1 is initially increased,

the beamwidth of the main lobe at APs grows, and more interferers will generate interference with

the main lobe gain Gmax
1 . Thus, the interference from APs increases. Since the received signal

power from APs M1 decreases, the SINR coverage probability of APs C1 decreases. On the other

hand, the change in θ1 does not influence the coverage of SBSs and MBSs. Therefore, the SINR
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Fig. 6.6: SINR coverage probability as a function of beamwidth of the main lobe at the APs, when T = −5
dB and λ1 = 10−2/m2.

coverage probability of the network decreases with an increasing θ1.
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CHAPTER 7

COVERAGE ANALYSIS FOR

ENERGY-HARVESTING UAV-ASSISTED

MMWAVE CELLULAR NETWORKS

7.1 System Model

In this section, we describe the considered UAV-assisted mmWave cellular network with PCP

distributed UEs.

7.1.1 BS and UE Deployment

UAV and GBS Modeling

The UAVs and GBSs are assumed to be distributed according to homogeneous PPPs ΦU and ΦG

with densities λU and λG, respectively. All UAVs and GBSs are assumed to be transmitting in a

mmWave frequency band and have transmit powers PU and PG, biasing factors to UEs BU and

BG, respectively. The biasing factor indicates the association preference of the tier, i.e. when we

increase the B of a tier, the UEs becomes more likely to be associated with the BS in that tier. All
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UAVs are assumed to be located at the same height H . We assume that all UAVs have enough

energy resources to arrive at its 3D position in the air, communicate with UEs, and fly back.

UE Modeling

The locations of the UEs are assumed to form a PCP denoted by Φu, and the ground projections of

the UAVs are the parent nodes. In this chapter, we also adopt two particular PCPs: Thomas cluster

processes and Matérn cluster processes.

Without loss of generality, in the downlink phase a random UE from a random cluster is chosen

to be the typical UE and is assumed to be at the origin. To differentiate the distance from the typical

UE to its cluster center UAV and the distance to other UAVs, we denote the cluster center as the 0th

tier UAV to the typical UE, and other UAVs and GBSs are the 1st and 2nd tier BSs, respectively. In

the uplink phase, a UAV from a random cluster is chosen to be the typical BS. The descriptions of

different tiers in the downlink phase are provided below in Table 7.1.

Table 7.1: Tiers in the Network

Downlink phase
0th tier The cluster center UAV of the typical UE
1st tier Other PPP-distributed UAVs
2nd tier The PPP-distributed GBSs
K = {0, 1, 2} The set of all tiers of UAVs and GBSs

7.1.2 Downlink and Uplink Transmission

In this chapter, we jointly consider downlink and uplink transmissions, where the UEs harvest

energy and decode information from its downlink associated BS during downlink phase, and then

send data to its cluster center UAV during uplink phase. The total time duration for downlink and

uplink is assumed to be T (seconds). As shown in Fig. 7.1, each time frame of T seconds is divided

into downlink and uplink time slots with durations τ and (T − τ), respectively. In the downlink

phase, SWIPT scenario is considered, and more specifically the power splitting technique is used.

Employing this technique, the UEs can harvest energy and decode the information by splitting the
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Fig. 7.1: An illustration of the system model of a UAV-assisted mmWave cellular network.

received signal into two streams. The power splitting parameter that represents the power fraction

used for information processing is denoted by ρ. It’s assumed the UEs have enough battery storage

to store the harvested energy. In the uplink phase, UEs use the harvested energy to send data to

their cluster center UAVs. It is worth noting that when τ = T , our model specializes to a downlink

SWIPT network. Additionally, when ρ = 0, we recover the network model with downlink energy

harvesting and uplink data transmission (i.e. the WPCN scenario).

7.1.3 Path Loss Modeling

The path loss model is formulated as in (2.13), and denoted byLsj(r) (j ∈ K and s ∈ {LOS,NLOS}).

Air-to-Ground

We formulate the probability of the LOS link between the UAVs and the UEs as (2.17), and denoted

by pLU(r) = 1
1+C exp(−B(θ−C))

. Note that since the 0th and 1st tier BSs are UAVs, we have pL0 (r) =

pL1 (r) = pLU(r).
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Ground-to-Ground

We can formulate the probability of LOS link between the GBSs and the UEs as in (2.11), and

denoted by pL2 (r) = pLG(r) = e−εr.

It’s worth noting that since we distinguish the links between the UEs to the GBS as either LOS

or NLOS, we assume the BSs in the 1st and 2nd tiers are divided into two independent PPPs Φs
j for

s ∈ {LOS,NLOS}.

7.1.4 Antenna Gain

The sectored antenna model given in (2.22) is considered in this chapter.

7.1.5 Small-Scale Fading

Nakagami-m fading is adopted in this chapter, and Nl, Nn are the Nakagami fading parameters for

LOS and NLOS links, respectively, and are assumed to be positive integers.

7.2 Distance Distributions

In this section, we characterize the CCDF and the PDF of the distance from the typical UE to UAVs

and GBSs in each tier. Fig. 7.2 provides an illustration of different distances.

7.2.1 The Distance R0 from the Typical UE to the 0th Tier UAV

The distance from the typical UE to the projection of its cluster center UAV on the ground is

denoted as D. Then the distribution of D can be expressed for different PCPs is given in 2.8 and

2.10.

Lemma 7.1. Given that the link between the typical UE and its cluster center UAV is in s ∈

{LOS,NLOS} transmission, the CCDF and PDF of Rs
0 can be expressed as follows:
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Fig. 7.2: An illustration of difference distance in the network.

(i) Thomas cluster process:

CCDF: FRs0
(x) =

∫ ∞
√
x2−H2

psU(
√
d2 +H2)fD(d) dd/Ds

0, (x ≥ H) (7.1)

PDF: fRs0(x) =
xpsU(x)

σ2Ds
0

exp

(
H2 − x2

2σ2

)
(x ≥ H), (7.2)

(ii) Matérn cluster process:

CCDF: FRs0
(x) =

∫ Rc

√
x2−H2

psU(
√
d2 +H2)fD(d) dd/Ds

0, (H ≤ x ≤
√
H2 +R2

c), (7.3)

PDF: fRs0(x) =
2xpsU(x)

R2
cD

s
0

, (H ≤ x ≤
√
H2 +R2

c), (7.4)

where Ds
0 =

∫∞
0
psU(
√
d2 +H2)fD(d)dd is the probability that the link is in s ∈ {LOS,NLOS}

transmission.

Proof : See Appendix 18.

Therefore, we can obtain the CCDF and PDF of R0 as follows:

FR0(x) =
∑
s

Ds
0FRs0

(x)

=


exp

(
H2−x2

2σ2

)
(x ≥ H) for Thomas cluster process,

1− x2−H2

R2
c

(H ≤ x ≤
√
H2 +R2

c) for Matérn cluster process,
(7.5)
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fR0(x) = −dFR0(x)

dx

=


x
σ2 exp

(
H2−x2

2σ2

)
(x ≥ H) for Thomas cluster process,

2x
R2
c

(H ≤ x ≤
√
H2 +R2

c) for Matérn cluster process.
(7.6)

7.2.2 The Distance Rs
U from the Typical UE to the Nearest LOS/NLOS

UAV from the 1st Tier

Given that the typical UE can observe at least one LOS/NLOS UAV in the 1st tier, the CCDF and

PDF of Rs
U can be expressed as follows:

CCDF: FRsU
(x) = e−2πλU

∫ x
H tpsU (t)dt/Ds

U , (7.7)

PDF: fRsU (x) = 2πλUxp
s
U(x)e−2πλU

∫ x
H tpsU (t)dt/Ds

U , (7.8)

where x ≥ H , Ds
U = 1 − e−2πλU

∫∞
H tpsU (t)dt is the probability that the typical UE has at least one

LOS/NLOS UAV around.

7.2.3 The Distance Rs
G from the Typical UE to the Nearest LOS/NLOS

GBS from the 2nd Tier

Given that the typical UE can observe at least one LOS/NLOS BS in the 2st tier, the CCDF and

PDF of Rs
G can be given as (4.3) and (4.4)

7.2.4 The Distance RUU from a UE to the Other Cluster Center UAV

For Thomas cluster process, the PDF of the distance V from a UE to the ground projection of other

cluster center UAV, given the distance W from the UE’s cluster center UAV to the corresponding
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UAV, can be expressed as [74]

fV (v|w) =
v

σ2
exp

(
−v

2 + w2

2σ2

)
I0

(vw
σ2

)
, (7.9)

where I0(·) is the modified Bessel function with order zero. For Matérn cluster process, the PDF

can be expressed as [194]

fV (v|w) =
2v

πRc

arccos
v2 + w2 −R2

c

2vw
1 (|Rc − w| ≤ v ≤ Rc + w) +

2v

R2
c

1(v < Rc − w). (7.10)

Then the PDF of RUU can be obtained as

fRUU (x|w) =
x√

x2 −H2
fV (
√
x2 −H2|w). (7.11)

7.3 User Association

In this section, we focus on the downlink and uplink UE association, and also provide the downlink

association probability of each tier, from which we can determine how the UEs connect with the

UAVs and GBSs.

7.3.1 Downlink Association

In the downlink phase, UEs need to harvest energy and decode the information from the associated

BS (e.g., a UAV or a GBS). The strongest biased average power association criterion [179] [195]

is utilized, i.e. the UEs are assumed to be associated with the BS providing the strongest long-term

biased average received power. Since the antenna gain of the main link is assumed to achieve the

maximum value G0, the received power of the main link can be expressed as

Pm = argmax
j∈K,i∈Φ

PjG0BjL
−1
ji

(a)
= argmin

j∈K,s
PjG0Bj(κ

s
j(r

s
j)
αsj ) (7.12)
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where rsj is the distance from the typical UE to the nearest LOS/NLOS BS in the jth tier, and (a)

follows from the fact that in each tier the transmit power and the biasing factor are the same, and

therefore the maximum received power is from the nearest LOS/NLOS BS.

Lemma 7.2. The probability that the typical UE is associated with a LOS/NLOS BS in the jth tier

is given by

Aj,s =
ERs0

[
Ds

0

∏
k

∏
b

Db
kFRbk

(
Qsb
k0(r0)

)]
, for j = 0,

Ds
jERsj

[
Ds′
j FRs

′
j

(
Qss′
jj (rj)

)(∑
b

Db
0FRb0

(
Qsb

0j(rj)
))∏

b

Db
kFRbk

(
Qsb
kj(rj)

) ]
, for j = 1, 2,

(7.13)

where s, s′, b ∈ {LOS,NLOS}, s′ 6= s, k = 1, 2, Qsb
kj(r) =

(
PkBkκ

s
j

PjBjκbk
rα

s
j

) 1

αb
k , Ds

j and FRsj
(x) are

given in section 7.2.

Proof : See Appendix 19.

Remark 7.1. In order to characterize the link level performance of the UAV-assisted network, we

will need to find the distance distribution give that link. Therefore, given that the typical UE is

associated with a LOS/NLOS BS in the jth tier, the PDFs of the distances from the typical UE to

the associated BS can be expressed as follows:

f̂Rsj (x) =
fRs0

(x)

A0,s
Ds

0

∏
k

∏
b

Db
kFRbk

(
Qsb
k0(x)

)
, for j = 0,

fRs
j
(x)

Aj,s
Ds
jD

s′
j FRs

′
j

(
Qss′
jj (x)

)(∑
b

Db
0FRb0

(
Qsb

0j(x)
))∏

b

Db
kFRbk

(
Qsb
kj(x)

)
, for j = 1, 2.

(7.14)

And the proof follows the same way as the association probability in Appendix 19.
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7.3.2 Uplink Association

In the uplink phase, each UAV aims to collect data from one cluster, and hence the UAV is assumed

to communicate with its own cluster member UEs. It is further assumed that different UEs in one

cell are served using orthogonal resources, and hence no intra-cell interference exists. UEs from

other clusters can inflict interference. It is worth noting that UEs may not be associated with the

same BSs in downlink and uplink phases, due to the adoption of the strongest biased average power

association criterion in the downlink phase.

7.4 Downlink Coverage Analysis

In this section, we first investigate the interference in the downlink phase, then analyze the net-

work performance by the energy coverage and SINR coverage of each tier. Finally, we provide

a successful transmission probability which can jointly consider both energy coverage and SINR

coverage and can represent the downlink performance of the UAV-assisted cellular network.

7.4.1 Interference

Since the typical UE is assumed to be served by a BS which provides the largest biased received

power Pm, then if a UE is associated with a LOS/NLOS BS from the jth tier at distance r, there

exists an exclusive disc q(0, Qsb
kj(r)) in which no interfering BS exists. Therefore, the experienced

interference at the typical UE can be expressed as follows:

I = I0 + I1 + I2 (7.15)

I0 = P0Gh0(κbUr
αbU
0 )−1 (7.16)

Ik =
∑
b

∑
i∈Φbk\q

PkGihk(κ
b
kr
αbk
k,i)
−1 (7.17)

where b ∈ {LOS,NLOS}, k = 1, 2, r0 denotes the distance from the UE to its cluster center, and

rk,i stands for the distance from the UE to the ith BS in the kth tier. It is worth noting that when
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the serving BS is from the 0th tier, we have I0 = 0, since there’s only one BS in this tier.

7.4.2 Harvested Energy and Signal to Interference Plus Noise Ratio

Since power splitting technique is employed with parameter ρ, the total harvested energy of the

typical UE in the downlink phase can be expressed as

Ehv
j,s = τ(1− ρ)(Pm + I) (7.18)

where τ is the time duration used for downlink phase, and Pm = PjG0hj(κ
s
jr
αsj )−1 denotes the

received power of the main link from the serving BS. We neglect the additive white Gaussian noise

(AWGN) term in energy harvesting. It is worth noting that we assume linear energy harvesting,

and the case of non-linear energy harvesting remains as future work.

Moreover, the experienced SINR at the typical UE can be expressed as

SINRj,s =
ρPm

σ2
c + ρ(σ2

n + I)
=

Pm
σ2
c

ρ
+ σ2

n + I
(7.19)

where σ2
n is the variance of the Gaussian thermal noise component and σ2

c is the noise factor due

to the conversion of the received bandpass signal to baseband.

7.4.3 Energy Coverage Probability

The energy coverage probability can be defined as the probability that the harvested energy is larger

than a certain threshold γE > 0. Therefore, given the event Sj,s = {The typical UE is associated

with a LOS/NLOS BS in the jth tier}, the conditional energy coverage can be expressed as

P c
Ej,s

(ρ, τ, γE) = P(Ehv
j,s > γE|Sj,s). (7.20)
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Hence, the energy coverage probability of the entire network can be obtained by

PE(ρ, τ, γE) =
∑
j∈K

PEj(ρ, τ, γE) =
∑
j∈K

∑
s

P c
Ej,s

(ρ, τ, γE)Aj,s (7.21)

where Aj,s is the association probability given in (7.13), and

PEj(ρ, τ, γE) =
∑

s P
c
Ej,s

(ρ, τ, γE)Aj,s is the energy coverage of tier j.

Theorem 7.1. Conditioned on that the typical UE is associated with a LOS/NLOS BS in the jth

tier, the energy coverage probability can be expressed as follows:

P c
Ej,s

(ρ, τ, γE) =


N∑
n=0

(−1)n
(
N

n

) ∞∫
H

ζG0
j,s (r)f̂Rs0(r)

∏
k

LIk(â)dr for j = 0,

N∑
n=0

(−1)n
(
N

n

) ∞∫
Bd1

ζG0
j,s (r)f̂Rsj (r)LI0(â)

∏
k

LIk(â)dr for j = 1, 2,

(7.22)

where s, b ∈ {LOS,NLOS}, â = anτ(1−ρ)
γE

, a = N(N !)−
1
N , Bd1 = H for j = 1, Bd1 = 0 for j = 2,

ζGj,s(r) =
(
1 + âPjG(κsjr

αsjNs)
−1
)−Ns , and f̂Rsj (r) is the conditional PDF of distances given in

(7.14). The Laplace transforms of the interference can be expressed as follows:

LI0(â) =
∑
G

∑
b

∫ ∞
max{H,Qsb0j(r)}

pGfRb0(r0)dr0(
1 + âP0G(κb0r

αb0
0 Nb)−1

)Nb
FRb0

(Qsb
0j(r))

(7.23)

LIk(â) =
∏
G

∏
b

e
−2πλkpG

∫∞
Bd2

(
1−
(

1+âPkG(κbkr
αbk
k Nb)

−1

)−Nb)
pbk(rk)rkdrk

(7.24)

where Bd2 = max(H,Qsb
kj(r)) for k = 1, and Bd2 = Qsb

kj(r) for k = 2.

Proof : See Appendix 20.

Remark 7.2. We note that the provided analysis and expressions are general. To find the energy

coverage probability of the Thomas cluster process and Matérn cluster process, we only need to

substitute the corresponding PDFs and CCDFs in Section III for each cluster process in (7.22).

Remark 7.3. Since the harvested energy is a linear funcion of the downlink duration τ , the energy
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coverage is a monotonically increasing function of τ . On the other hand, the energy coverage

probability is monotonically decreasing function of the power splitting parameter ρ.

7.4.4 SINR Coverage Probability

The SINR coverage probability is defined as the probability that the received SINR is larger than

a certain threshold γsinr > 0. Therefore, given the event Sj,s, the conditional SINR coverage

probability of each tier can be determined using [195, Theorem 1] and expressed as follows:

P c
SINRj,s

(ρ, τ, γsinr) = P(SINRj,s > γsinr|Sj,s) =
Ns∑
n=1

(−1)n+1
(
Ns

n

) ∞∫
H

f̂Rs0(r)e
−µsj

(
σ2
c
ρ

+σ2
n

)∏
k

LIk(µsj)dr for j = 0,

Ns∑
n=1

(−1)n+1
(
Ns

n

) ∞∫
Bd1

f̂Rsj (r)e
−µsj

(
σ2
c
ρ

+σ2
n

)
LI0(µsj)

∏
k

LIk(µsj)dr for j = 1, 2,

(7.25)

where µsj =
nηsγsinrκ

s
jr
αsj

PjG0
, ηs = Ns(Ns!)

− 1
Ns , Ns is the Nakagami fading parameter.

Remark 7.4. From the downlink SINR expression, we can conclude that the SINR coverage prob-

ability is independent of τ . On the other hand, it is a monotonically increasing function of ρ.

7.4.5 Successful Transmission Probability

In general, the transmission is successful if the UE can both harvest enough energy to charge

itself and has sufficient SINR levels for information decoding. Therefore, we define the successful

transmission probability (STP) as follows.

Definition 7.1. Given that the typical UE is associated with a LOS/NLOS BS from the jth tier, the

conditional successful transmission probability is defined as

P c
STj,s

(ρ, τ, γE, γsinr) = P
(
Ehv
j,s > γE, SINRj,s > γsinr

∣∣Sj,s). (7.26)



135

Therefore, the total STP of the UAV-assisted mmWave network can be expressed as

PST (ρ, τ, γE, γsinr) =
∑
j∈K

PSTj(ρ, τ, γE, γsinr) =
∑
j∈K

∑
s

P c
STj,s

(ρ, τ, γE, γsinr)Aj,s. (7.27)

Theorem 7.2. Given that the typical UE is associated with a LOS/NLOS BS from the jth tier, the

conditional successful transmission probability of each tier can be expressed as

P c
STj,s

(ρ, τ, γE, γsinr) = P c
Ej,s

(ρ, τ, γE)(1− F̂I(ω)) + P c
SINRj,s

(ρ, τ, γsinr)F̂I(ω) (7.28)

where ω = 1
1+γsinr

(
γE

τ(1−ρ)
− γsinr

(
σ2
c

ρ
+ σ2

n

))
, P c

Ej,s
(ρ, τ, γE) is the conditional energy coverage

probability given in (7.22), P c
SINRj,s

(ρ, τ, γsinr) is the conditional SINR coverage probability given

in (7.25), and F̂I(x) is the CCDF of I given event Sj,s, whose expression is as follows:

F̂I(x) =


N∑
n=0

(−1)n
(
N

n

) ∞∫
H

f̂Rs0(r)
∏
k

LIk(â′)dr for j = 0,

N∑
n=0

(−1)n
(
N

n

) ∞∫
Bd1

f̂Rsj (r)LI0(â′)
∏
k

LIk(â′)dr for j = 1, 2,

(7.29)

where â′ = an
x

.

Proof : See Appendix 21.

7.5 Uplink Coverage Analysis

In the uplink phase, UEs use the energy harvested in the downlink phase to transmit data to the

cluster center UAVs. We assume all UEs transmit at the fixed power level of PUL
t . Then, for

successful uplink transmission, the harvested energy Ehv for a UE should satisfy

Ehv ≥ (T − τ)PUL
t . (7.30)
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If this condition is not satisfied, then the UE is assumed to be in inactive mode in the uplink phase,

i.e. the UE is not able to transmit; otherwise the UE is in active mode. Therefore, we can obtain

the probability that the UE is in active mode from the energy coverage probability derived in the

previous section as follows:

pactive = PE
(
(T − τ)PUL

t

)
. (7.31)

7.5.1 Uplink SINR Coverage

A UAV from a random cluster is chosen as the typical BS, and a random active UE from the

cluster is selected to be the transmitting UE. Note that the active UEs from other clusters will

cause interference. Since the links between the typical UAV and the interfering UEs can also

be LOS or NLOS, and at most one UE from one cluster inflicts interference, UE can be divided

into groups of UEs with LOS and NLOS links, and these groups form PPPs ΦL
user and ΦN

user with

densities λLuser = pactivep
L
UλU and λNuser = pactivep

N
U λU , respectively. Therefore, the experienced

SINR at the typical UAV can be expressed as

SINRUL =
PUL
t G0h0(ksUr

αsU
0 )−1

σ2
n +

∑
b

∑
i∈Φbuser

PUL
t Gihi(κbUr

αbU
i )−1

. (7.32)

where b ∈ {LOS,NLOS}. The uplink SINR coverage probability, given the serving UE is in active

mode, can be expressed as

PUL
SINR(γUL) = P(SINRUL ≥ γUL|active). (7.33)

Theorem 7.3. Given that the serving UE is in active mode, then the uplink SINR coverage proba-

bility of the network can by expressed as

PUL
SINR(γUL) =

Ns∑
n=0

(−1)n+1

(
Ns

n

)∫ ∞
H

e−µ
UL
s σ2

nLILuser(µ
UL
s )LINuser(µ

UL
s )fRs0(r0)dr0 (7.34)
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where µULs =
nηsγULr

αsU
0

PULt G0ksU
. LIbuser(µ

UL
s ) is the Laplace transform expression which can be expressed

as follows:

LIbuser(µ
UL
s ) =

∏
G

e
−2πpGλ

b
user

∫∞
0

1−
∫∞
0

(
1+µULs PULt Gi(κ

b
U (v2+H2)

αbU
2 Nb)

−1

)−Nb
f(v|w)dv

wdw
(7.35)

Proof : See Appendix 22.

Remark 7.5. If the small-sale fading hi of the interfering links are assumed to be Rayleigh dis-

tributed, i.e., Nb = 1, by utilizing the Rician property
∫∞

0
f(v|w)wdw = v (when Thomas cluster

processes are considered), the Laplace transform can be expressed as

LIbuser(µ
UL
s ) =

∏
G

exp

−2π

∫ ∞
0

pGλ
b
user

1 + (µULs PUL
t G)−1κbU(v2 +H2)

αb
U
2

vdv

 . (7.36)

7.5.2 Average Throughput

The average uplink throughput of the network can be expressed as

RUL = E
[
(T − τ)W log(1 + γUL)1(SINRUL ≥ γUL)pactive

]
= (T − τ)W log(1 + γUL)PUL

SINR(γUL)pactive (7.37)

where W is the bandwidth of each channel. It is also worth noting that pactive is related to the

energy coverage probability in the downlink phase, and therefore the average uplink throughput

has dependence also on the downlink phase. With this, we formulate the following optimization

problem to maximize RUL subject to a lower bound constraint on the downlink throughput

max
τ

(T − τ)W log(1 + γUL)PUL
SINR(γUL)pactive

s.t. RDL ≥ Rmin (7.38)
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where RDL = τW log(1 + γUL)PSINR(γsinr) is the average donwlink throughput, Rmin is the

minimum average throughput requirement for the downlink transmission. We numerically solve

this problem in the Section VIII.

7.6 Generalizations and Special Cases

While we have assumed in the previous sections that the UAVs fly at the same height, our analysis

and approach are relatively broad. To demonstrate this, we extend our analysis to a multi-tier

multi-height model in this section. Additionally, we address the special case of the noise-limited

network and derive closed-form characterizations with practical implications.

7.6.1 Multi-Tier Multi-Height Model

In practice, UAVs can fly at different heights depending on the applications and regulations. For

instance, UAV heights may differ in urban areas with high-rise buildings compared to suburban

environments. With this motivation, we consider a multi-tier multi-height model, in which we have

multiple tiers of UAVs and UAVs in the jth tier are distinguished with their density λj , transmit

power Pj , biasing factor Bj and height Hj . Next, we discuss how our previous analysis can be

adapted to this model.

Suppose we have KU = {1, 2, ..., K} tiers of UAVs. Then we introduce two notations: KG =

{GBS} ∪ KU and K = {0} ∪ {GBS} ∪ KU . Since we still use the same downlink association

criterion, the received power can be re-expressed as

Pm = argmin
j∈K,s

PjG0Bj(κ
s
j(r

s
j)
αsj ). (7.39)

Now, the probability that the typical UE is associated with a LOS/NLOS BS in the jth tier can be

modified from (7.13) as

Aj,s =
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

ERs0

[
Ds

0

∏
k∈KG

∏
b

Db
kFRbk

(
Qsb
k0(r0)

)]
, for j = 0,

Ds
jERsj

[
Ds′
j FRs

′
j

(
Qss′
jj (rj)

)(∑
b

Db
0FRb0

(
Qsb

0j(rj)
)) ∏

k∈KG
k 6=j

∏
b

Db
kFRbk

(
Qsb
kj(rj)

) ]
,

for j ∈ K1.

(7.40)

Similarly, the energy coverage, SINR coverage and the successful transmission probabilities can

be modified from (7.22), (7.25) and (7.28), respectively, by letting k ∈ KG. The CCDFs and PDFs

of the distances remain the same.

7.6.2 Noise-Limited Model

In this subsection, we investigate the network performance metrics when the interference is neg-

ligible. When interference I ≈ 0, the energy coverage and SINR coverage probabilities can be

simplified by removing the Laplace transform terms in (7.22) and (7.25), respectively. With this,

the STP specializes to

P c
STj,s

(ρ, τ, γE, γsinr) =

P c
Ej,s

(ρ, τ, γE)1 (F (ρ, τ, γE, γsinr) ≥ 0) + P c
SINRj,s

1 (F (ρ, τ, γE, γsinr) < 0) (7.41)

where F (ρ, τ, γE, γsinr) = γE
τ(1−ρ)

− γsinr
(
σ2
c

ρ
+ σ2

n

)
. The partial derivative of F with respect to ρ

can be expressed as

∂F

∂ρ
=

γE
τ(1− ρ)2

+
γsinrσ

2
c

ρ2
> 0. (7.42)

Hence F is a monotonically increasing function of ρ. Therefore, depending on the values of τ , γE

and γsinr, there are three cases: 1) if Fmax < 0, P c
STj,s

= P c
SINRj,s

; 2) if Fmin > 0, P c
STj,s

= P c
Ej,s

;

3) if Fmax > 0 and Fmin < 0, then in region of F < 0 we have P c
STj,s

= P c
SINRj,s

, which is a
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monotonically increasing function of ρ, while in region of F > 0 we have P c
STj,s

= P c
Ej,s

, which

is a monotonically decreasing function of ρ, therefore, with increasing ρ, P c
STj,s

first increases then

decreases, and F = 0 gives the maximum of P c
STj,s

, i.e. when

ρ∗ =
−(γE + τγsinrσ

2
c − τγsinrσ2

n) +
√

(γE + τγsinrσ2
c − τγsinrσ2

n)2 − 4τ 2γ2
sinrσ

2
cσ

2
n

2τγsinrσ2
n

. (7.43)

When we further assume that the uplink between the typical UAV and its cluster member UE

is in LOS, and the path-loss exponent is αLU = 2 and the small-scale fading is Rayleigh fading, the

uplink SNR coverage probability admits the following simpler expression:

PUL
SINR(γUL) =


e−C

′H2

1+2C′σ2 for Thomas cluster process,

e−C
′H2

C′R2
c

(
1− e−C′R2

c

)
for Matérn cluster process,

(7.44)

where C ′ = γULσ2
n

PULt G0kLU
.

7.7 Extensions to UAV-assisted IoT Networks with 3D An-

tenna Patterns

The analysis can be extended to consider 3D antenna patterns in the downlink transmission.

7.7.1 3D Antenna Pattern

We adopt a doughnut-shaped antenna radiation pattern, using an ultra-wideband transmitter at the

UAV. The antenna gain at the UAV can be expressed as in (2.27). 3D antenna pattern are adopted at

the GBSs as in (2.25). Similarly as in [102], we assume Gm = ∞ and GH(φ) = 0 dB to simplify

the analysis. Then, we can rewrite the 3D antenna gain as

GG(r) = G0
G −GV (θG)(dB) = G0

G10
−1.2

(
θG−θetilt
θ3dB

)2
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= G0
G10

−1.2
(

arcsin(H/r)−θetilt
θ3dB

)2

. (7.45)

7.7.2 Association analysis

With the 3D antenna patterns, the association probability are modified in the following Lemma.

Lemma 7.3. The probability that the typical UE is associated with a LOS/NLOS BS in the jth tier

is given by

Aj,s =
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21(rU)

(∑
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0FRb0

(
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))]
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0F
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02(rG)
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]
, for j = 2,

(7.46)

where s, s′, b ∈ {LOS,NLOS}, s 6= s′, Qsb(r) =
(
κsU
κbU
rα

s
U+1
) 1

αb
U

+1 , Ds
j , FRsU

(x) and FRsG
(x) are

given in Section III, Csb
kj =

PkBkκ
s
j

PjBjκbk
, Gk is the antenna gain of the BSs in the kth tier, and

F sb
kj (x) =

∫ ∞
Hk

fRbk(t)1
(
G−1
k (t)tα

b
k > Csb

kjG
−1
j (x)xα

s
j

)
dt. (7.47)

Given that the typical UE is associated with a LOS/NLOS BS in the jth tier, the PDFs of the

distances are given as

f̂Rsj (x) =

fRs0
(x)
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∏
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12(rG), for j = 2.

(7.48)



142

7.7.3 Successful Transmission Probability

The analysis of the energy and SINR coverage probabilities of the proposed system and the suc-

cessful transmission probability are similar as in (7.4).

7.8 Numerical Results

In this section, we provide numerical results to evaluate the performance of the considered UAV-

assisted mmWave cellular network and identify the impact of key network parameters on the per-

formance. Unless stated otherwise, the parameter values are listed in Table 7.2.

Table 7.2: Table of Parameter Values

Notations Description
Pu, PG, P

UL
t 24 dBm [23], 34 dBm, 1 dBm

λU , λG 10−4 /m2, 10−5 /m2

H,C,B 50 m, 11.95, 0.136 [23] [196]
κLj , κ

N
j , α

L
j , α

N
j 103.08, 100.27, 2.09, 3.75 [23] [196]

1/β 141.4 [160] [197]
Carrier frequency, W 28 GHz, 100 MHz [160] [197]
σ2
n, σ

2
c -174 dBm/Hz+10log10(W )+10 dB, -80 dB [160] [197]

NL, NN 2, 3
T 1 s

7.8.1 Impact of the Cluster Size

First we investigate the influence of the cluster size on the network performance. The cluster size

here is the spatial size of the cluster. More specifically, for the Thomas cluster process, 68.27%

of UEs are located inside a circular region with radius σ, and 95.45% of UEs are located insider a

circular region with radius 2σ, and we choose σ as the cluster size. For Matérn cluster process, Rc

is the cluster size.
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(a) Thomas cluster process.
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(b) Matérn cluster process.

Fig. 7.3: Association probability as functions of the cluster size with parameter values listed in Table 7.2.
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(a) Thomas cluster process.
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(b) Matérn cluster process.

Fig. 7.4: STP of the network and each tier BSs as a function of the cluster size when τ = T , γE = −40
dB, γsinr = 0 dB and ρ = 0.5.

Downlink Association Probability

Fig. 7.3 shows the association probability (AP) as a function of the cluster size in the downlink

phase. As shown in the figure, when we increase σ andRc, A0 decreases whileA1 andA2 increase.

As σ and Rc increase, the UEs move further away from the projection of the cluster center UAV

and hence are more spread away. As a result, the UEs move closer to other UAVs and GBSs.

Therefore, A0 decreases. On the other hand, because of the LOS probability function, the link

between the UE and the UAVs are more likely to be LOS, and consequently the UEs prefer to be

served by UAVs with higher probability. For this reason, A1 increases faster than A2. We also
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(a) Thomas cluster process.
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(b) Matérn cluster process.

Fig. 7.5: STP, EC and SINRC probabilities as functions of the cluster size when τ = T , γE = −40 dB,
γsinr = 0 dB. And ρ = 0.5 for the SWIPT scenario.

note that in Fig. 7.3 (and in the subsequent figures in this section), simulation results are plotted

with ∗ markers and we generally observe excellent agreements with the analytical results, further

confirming, for instance, our characterizations in Lemma 7.2 in this case.

Downlink Coverage Probabilities

Fig. 7.4 shows the successful transmission probability (STP) as a function of the cluster size. Since

the STP, energy coverage (EC), SINR coverage (SINRC) performances of each tier BS are similar,

we evaluate the STP performance of each tier in the figure. In this figure, total STP decreases

with increasing σ and Rc. As expected, when σ and Rc become larger, PST0 (i.e., the successful

transition probability in tier 0) diminishes while PST1 and PST2 increase. However, since the cluster

center UAV can provide the maximum conditional coverage, the increase in PST1 and PST2 is not

able to compensate the decrease in PST0 , leading to the decrease in total STP.

In Fig. 7.5, we observe that STP, EC and SINRC are all monotonically decreasing functions

of σ and Rc. Additionally, we note that since we consider the SWIPT scenario with ρ = 0.5, we

divide the received power of the typical UE into two streams, one for energy harvesting and the

other for information decoding. Due to this, the STP performance is lower compared to only EC or

SINRC, where it is assumed that entire received power is used for energy harvesting or information
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(b) Matérn cluster process.

Fig. 7.6: Uplink SINR coverage probability as a function of the cluster size when τ = 0.5T , ρ = 0,
γUL = −20dB, and σ = 10.

decoding only.

Uplink Coverage Probability

We observe from Fig. 7.6 that the uplink SINRC is a monotonically decreasing function of the

cluster size, similarly as in the downlink phase. When compared with the downlink SINRC (blue

dashed line) in Fig. 7.5, we notice in Fig. 7.6 that the uplink SINRC drops faster than the downlink

SINRC for larger thresholds. This is due to the different association criteria in different phases. In

the downlink phase, because of the strongest long-term averaged received power association crite-

rion, when the UEs are more spread away from their cluster center UAVs, they can get associated

with other UAVs and GBSs to get the strongest received power. But in the uplink phase, UAVs are

receiving information from their cluster member UEs, and therefore when the UEs are far away,

the uplink SINRC decreases substantially.

Again, we note that simulation results are also provided in all the figures using markers, and

these results match with the analytical results, further validating the accuracy of our coverage

analysis. Additionally, we observe in the numerical results that Thomas cluster processes and

Matérn cluster processes generally lead to similar network performance trends, which gives us the

insight that considering PCP rather than PPP is the key to capture the UE distribution. Therefore,
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(a) Association probability.
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(b) Successful transmission probability.

Fig. 7.7: Association probability and STP as a function of σ for Thomas cluster process, when γE = −40
dB, γsinr = 0 dB, ρ = 0.5 and heights for 0th-3rd tier UAVs are 50m, 50m, 60m, and 70m, respectively.
The GBS is regarded as the 4th tier.

for brevity, we will just provide numerical results considering Thomas cluster processes in the

following subsections.

Multi-Tier Multi-Height Model

In this part, we assume there are three tiers of UAVs with heights 50m, 60m, and 70m, respectively,

and density 3 × 10−5/m2. And all UAVs have their own clustered UEs on the ground. There is a

tier of GBSs with parameter values listed in Table III. We randomly choose a UE from a cluster of

the 50m-high UAVs, and provide the association probability and STP in Figs. 7.7(a) and 7.7(b),

respectively. In Fig. 7.7(a), we observe that the association probability of the GBS does not

change much when compared with the one-tier UAV model. And as σ increases, the association

probabilities of 1st, 2nd and 3rd tier UAVs increase. Fig. 7.7(b) shows the similar performance

levels as in Fig. 7.4. And the STP of the 1st, 2nd and 3rd all increase with increasing σ.

7.8.2 Impact of the Interference

In this section, we investigate the impact of the interference. In Fig. 7.8, we plot the EC, coverage

probability and STP as a function of the threshold in the downlink phase. Since the GBSs with
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Fig. 7.8: STP, EC and SINRC as a function of the threshold when σ = 10, τ = T and ρ = 0.5 for the
SWIPT scenario.

large transmit power are relatively far from the typical UE and the UAVs which are relatively

denser and closer but with low transmit power, the interference is negligible. Thus the interference

has little impact on the uplink SINRC. Therefore, as expected the interference does not lead to a

significant difference on the probabilities. In the uplink phase, the interference from the UEs is

small and has unnoticeable impact on the uplink SINRC.

7.8.3 Impact of the UAV Height

In this subsection, we investigate the impact of the UAV height on the network performance.

Downlink Association Probability

Fig. 7.9 depicts the AP of each tier BS as a function of H . When H = 0, the UAVs are located

on the ground. Since the UAVs are more densely distributed than the GBSs, we have A0 > A2 >

A1. Also because pLU is a monotonically increasing function of H , the LOS probability of UAVs

increases with increasing H . Therefore, as H becomes slightly larger, AP with the cluster center

UAV, A0, and AP with other UAVs, A1, increase while AP with GBSs, A2, decreases. On the

other hand, when we increase H substantially (e.g., beyond approximately 20m), the UAVs start

being high above the sky. Therefore, even though the LOS probabilities have grown, the distances

between the UAVs and UEs have increased as well (increasing the path loss), while the distance
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Fig. 7.9: Association probability as a function of the UAV height with parameter values listed in Table 7.2.
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(a) Successful transmission probability.
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(b) STP, EC and SINRC performances.

Fig. 7.10: STP, EC and SINRC as functions of the UAV height H when σ = 10, τ = T , γE = −40 dB,
γsinr = 0 dB. And ρ = 0.5 for the SWIPT scenario.

between the UEs and GBSs have not changed. Due to this, we observe that A0 and A1 decrease

whereas A2 starts increasing.

Downlink Coverage Probabilities

The STP performance curves of each tier BS shown in Fig. 7.10(a) demonstrate the same trends

as the association probability in Fig. 7.9. In addition, the total STP initially grows, achieves its

maximum around H ≈ 20m, and then decreases because of the increased distance between the

UEs and UAVs when the UAV height H becomes larger. At these larger height levels, the increase

in PST2 cannot compensate the decrease in PST0 and PST1 . Fig. 7.10(b) shows that the EC and
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Fig. 7.11: Uplink SINR coverage probability as a function of the UAV height, when τ = 0.5T , ρ = 0,
γUL = −20 dB, and σ = 10.

SINRC performances follow the same trends as for STP.

Uplink Coverage Probability

In the uplink phase, the UAVs are receiving data from their cluster member UEs. When UAVs are at

relatively lower height, the transmission are NLOS with high probability because of the blockage

from buildings and other large objects. Since the blockage becomes less when we increase the

UAV height, the SINRC increases. However, above a certain height, the distance between the UAV

and the serving UEs becomes large enough that the path loss starts dominating and as a result,

SINRC diminishes. Therefore, as shown in Fig. 7.11, SINRC increases at first and then decreases,

and there exists an optimal height, which is not the same but very close to the optimal height in the

downlink phase.

7.8.4 Impact of the Power Splitting Component

In this subsection, we investigate the impact of the power splitting parameter ρ on the network

performance. From Fig. 7.12, we can conclude that EC is a monotonically decreasing function

of ρ and SINRC is an increasing function of ρ, due to the facts that larger ρ means that more

power is used for harvesting energy and less power for information decoding. Using the given set

of parameter values, we observe that there exists an optimal ρ value that maximizes the system
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(a) Energy coverage.
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(b) SINR coverage.
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(c) Successful transmission probability.

Fig. 7.12: STP, EC and SINRC as functions of the power splitting parameter ρ when σ = 10, τ = T ,
γE = −40 dB, γsinr = −15 dB. To show the impact of ρ, we use σc = −10 dB in this figure .
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Fig. 7.13: Averaged uplink throughput as a function of τ and ρ for Thomas cluster process, when γE =

−40 dB, γsinr = 0 dB, γUL = −20 dB, and σ = 10.

downlink performance. Since in this model, the interference is negligible, we can use (7.43) to

approximately find the optimal value of ρ. By substituting the parameter values provided in (7.43),

we obtain ρ = 0.7603 and this is consistent with what we have from the numerical result.

7.8.5 Impact of the τ

In this section, we investigate the effect of the time duration τ allocated to the downlink phase.

Fig. 7.13 shows the average uplink throughput as a function of τ and ρ under the constraint that

the average downlink throughput RDL is larger than Rmin (addressing the optimization problem

in (7.38)). As shown in Fig. 7.13(a), RUL decreases with increasing ρ, since larger ρ means less
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(a) Association probability.
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(b) Energy coverage probability.

Fig. 7.14: AP, EC as a function of cluster size σ, when H = 50m, γE = −80 dB and γsinr = −40 dB.

power for energy harvesting. On the other hand, since RDL is a monotonically increasing function

of τ , if we want to satisfy the minimum throughput requirement, there is a minimum value of τ .

Therefore, as shown in Figs. 7.13 (a) and (b), when τ is smaller than a certain value, the minimum

downlink throughput constraint cannot be satisfied and the optimization problem in (7.38) is not

feasible. When τ increases, the downlink constraint is satisfied, and we note that there is an optimal

τ that maximizes the average uplink throughput.

7.8.6 Numerical Results when Considering 3D Antenna Patterns

First, we investigate the impact of the cluster size σ on the network performance with 3D antenna

patterns. Fig. 7.14(a) shows the AP as a function of the cluster size, i.e., the standard deviation of

the UE distribution in Thomas cluster processes. As shown in the figure, when σ becomes larger,

the A0 (i.e. the AP of the cluster center UAV) decreases while A1 and A2 increase. This is because

that, as σ increases, the UEs move further away from the projection of the cluster center UAV and

hence are more spread away. As a result, the UEs move closer to other UAVs and GBSs.

Fig. 7.14(b) shows the EC probability as a function of the cluster size. In the figure, total EC

decreases with increasing σ. As expected, when σ becomes larger, PE0 diminishes while PE1 and

PE2 increase. However, since the cluster center UAV generally provides the maximum conditional

coverage, the increase in PE1 and PE2 is not able to compensate the decrease in PE0 , leading to
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(a) Association probability.
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(b) Energy coverage probability.
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(c) ST, EC, and SINRC probabilities.

Fig. 7.15: AP, EC and SINRC as a function of UAV height H , when σ = 30, γE = −80 dB and
γsinr = −40 dB.

the decrease in total EC. We finally note that the simulation results are depicted by markers ∗ in

Fig. 4. The generally excellent agreements with the dashed and dotted curves obtained using our

analytical characterizations in the paper further confirm our analysis and theoretical results.

Then, we investigate the impact of the UAV height H on the network performance with 3D

antenna patterns. Fig. 7.15(a) depicts the association probability of each tier BS as a function of

the UAV height H . When H is small, the UAVs are located close to the ground. Since σ = 30,

i.e. the UEs are spread away, the links between UAVs and UEs are more likely to be in NLOS.

Also note that the GBS transmission power is larger than that of the UAVs. Therefore, we have

A2 > A0 > A1. We further note that since pLU is a monotonically increasing function of H , the

LOS probability of UAVs increases with increasing H . Therefore as H becomes larger, A0 and

A1 increase while A2 decreases. In addition, when we slightly increase H , the link to the cluster

center UAV is LOS with higher probability, while the link to other UAVs is more likely to be NLOS

because the signal can be obstructed by buildings. Consequently, A0 tends to be greater than A1.

When we increase H substantially, the UAVs are high above the sky and path loss becomes large

between the UAVs and UEs, leading to decreasing A0 and A1 and an increasing A2.

The EC performance curves of each tier BS are shown in Fig. 7.15 (b). The total EC increases

at the beginning due to the increase in PE0 and PE1 (which are the conditional energy coverage

probabilities of cluster center UAV and other UAVs, respectively, multiplied with the correspond-

ing association probability). As the height is further increased, both PE0 and PE1 start decreasing
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while PE2 keeps on increasing, following the performance in Fig. 7.15(a). However, because the

increase in PE2 just falls short of compensating the decrease in PST0 and PST2 , we have a slightly

decreasing EC. Fig. 7.15(c) shows that the SINRC and STP follow similar performance trends as

for EC. Additionally, we note that since we consider the SWIPT scenario with ρ = 0.5, we divide

the received power of the typical UE into two streams, one for energy harvesting and the other for

information decoding. Due to this, the STP performance is lower compared to only EC or SINRC,

where it is assumed that entire received power is used for energy harvesting or information decod-

ing only. Finally, we again observe excellent agreements between the analytical and simulation

results.
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CHAPTER 8

COVERAGE ANALYSIS FOR

CELLULAR-CONNECTED UAVS WITH 3D

ANTENNA PATTERNS

8.1 System Model

We consider a cellular network composed of GBSs and UAVs as the aerial UEs. The GBSs are

randomly distributed according to a homogeneous PPP Φ with density λ. GBSs are assumed to

have transmit power PU and height HG. Without loss of generality, a random UAV is chosen as the

typical UAV, and is assumed to be located above the origin at altitude HU .

8.1.1 Ground-to-Air Channel Model

Link between a UAV and a GBS can be either LOS or NLOS. The path loss model is formulated

as

Lsj(x) =


κL(H2 + x2)α

L/2 w.p. pL(x)

κN(H2 + x2)α
N/2 w.p. pN(x) = (1− pL(x))

(8.1)
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where H = |HU − HG|, x is the horizontal distance from the UAV to the GBS, αL, αN are the

path loss exponents for LOS and NLOS links, respectively, κL, κN are the intercepts of the LOS

and NLOS path loss formulas, respectively, and pL(x) is the probability that the link has a LOS

transmission at distance x, and is given in (2.17).

In addition, we assume that all links experience independent Nakagami-m fading. Thus, the

small-scale fading gain h follows a Gamma distribution h ∼ Γ(Ns, 1/Ns) where s ∈ {LOS,NLOS},

and Ns is the Nakagami fading parameter.

8.1.2 3D Antenna Patterns for GBSs/UAVs

3D antenna patterns are adopted for the GBSs and UAVs. For GBSs, the antenna gain can be

formulated as in (2.25). When assuming Gm =∞ and GH(φ) = 0 dB to simplify the analysis, 3D

antenna gain can be rewrite as

GG(r) = G0
G10

−1.2
(

arcsin(H/r)−θetilt
θ3dB

)2

. (8.2)

For the UAVs, the antenna gain can be formulated as in (2.26) (2.27) (2.28) and (2.29). The antenna

gain of the GBS-to-UAV link can be written as G(x) = GG(x)GU(x).

8.2 SINR Coverage Analysis

In this section, we first provide the formulation of the distance from the UAV to GBSs. Then, we

analyze the SINR coverage probability and provide general expressions.
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8.2.1 SINR Coverage Probability

The SINR coverage probability PC is defined as the probability that the SINR experienced at the

typical UAV is larger than a threshold γ > 0. Then, we can derive PC as follows:

PC(γ) = P(SINR > γ)

= ED0 [P(SINR > γ|D0)]

= ED0

[
P(SINR > γ|D0,LOS)DLOS + P(SINR > γ|D0,NLOS)DNLOS]

= ED0 [P(SINR > γ|D0,LOS)]DLOS + ED0 [P(SINR > γ|D0,NLOS)]DNLOS

= P LOS
C DLOS + PNLOS

C DNLOS (8.3)

where Ds is the probability that the UAV has at least one s-GBS around, P s
C is the conditional

coverage probability given D0 and the link is in s ∈ {LOS,NLOS} transmission, and can be

formulated as follows:

P s
C(γ) = ED0 [P(SINR > γ|D0,LOS)] = P

(
PG0h0κ

−1
s (H2 + d2

0)−
αs
2

σ2
n + I

> γ

)
= EDs0

[
P

(
h0 >

γκs(H
2 + d2

0)
αs
2 (σ2

n + I)

PG0

)]
(a)
= EDs0

[
Ns∑
n=1

(−1)n+1
(
Ns

n

)
e−µsσ

2
ne−µsI

L

e−µsI
N

]
(8.4)

where µs =
nηsγκs(H2+d2

0)
αs
2

PG0
, ηs = Ns(Ns!)

− 1
Ns and

LIa(µs) = EDs0 [e−µsI
a

]

(b)
= e

−2π
∞∫
d0

(
1−Ehi

[
µsPGihiκ

−1
a (H2+d2

i )
−αa2

])
λpa(di)diddi

= e
−2π

∞∫
d0

(
1−
(

1+µsPGiκ
−1
a (H2+d2

i )
−αa2 N−1

a

)−Na)
λpa(di)diddi

(8.5)
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where a ∈ {LOS,NLOS}, (a) is due to the use of the moment generating function of the Gamma

random variable and the interfering GBSs being divided into two independent PPPs Φs with density

λps for s ∈ {LOS,NLOS}, and (b) follows by computing the moment generating functional of a

PPP.

8.3 Numerical Results

In this section, we evaluate the performance of the considered cellular-connected UAV network.

We also use Monte Carlo simulations to validate the models and confirm the accuracy of the anal-

ysis. The simulation parameters are listed below in Table I.

Table 8.1: Table of Parameter Values

Parameters Values
P , λ 43 dBm [168], 10 /km2

HU 50 m
HG, a, b, c 32, 1, 6.581, 1 @suburban; 19, 1, 0.151,

1 @urban [95]
αL, αN , κL, κN 2.09, 3.75, 104.11, 103.29 [190]
G0
U , G

0
G 5 dB, 15 dB

θtilt, θ3dB , ψw 15◦, 10◦ [168], 15◦

σ2
n, NL, NN -44 dB, 2, 3

The impact of the UAV altitude is depicted in Fig. 8.1. Overall, we first observe that there

exists an optimal altitude Hopt
U for the UAV. This is because the antenna of the GBS is tilted down

with θtilt, and when the elevation angle of the link between the UAV and the serving GBS θ = θtilt,

the UAV receives the maximum antenna gain provided by the GBS, which is much larger than

the interference. Thus, we have an optimal altitude for the UAV. In different environments (i.e.

suburban, urban), since HG is different, the Hopt
U is different. Second, when we compare Figs.

8.1(a) and 8.1(b), we observe that better SINR coverage can be achieved in a suburban environment

than in the urban environment. This is due to the fact that in suburban environments more links are

in LOS, which in turn leads to larger received power over the main link, and hence larger SINR

levels. In addition, in Figs. 8.1(a) and 8.1(b), we compare the performances of different antenna
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(a) Suburban environment.
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(b) Urban environment.

Fig. 8.1: SINR coverage probability as a function of the UAV altitude in a suburban and urban environ-
ments.

patterns. It is observed that the observed antenna pattern with tilting angle toward the serving GBS

has the best performance, since this antenna pattern can provide the maximum antenna gain over

the main link and narrow beamwidth can reduce the amount of interference. On the other hand,

sine pattern results in the worst performance in this network.

Fig. 8.2 shows the influence of the tilting angle of the GBS. Since the UAV is higher than the

GBSs, when θtilt becomes larger, the decrease in the antenna gain of the main link is larger than the

decrease in the interference, and therefore, we have a diminishing SINR coverage probability. On

the other hand, for the ground UEs, when θtilt = 0, the antenna is not tilting down, and therefore

the antenna gain for the ground UEs is small. When we increase θtilt, the ground UE experiences

a higher antenna gain from the serving GBS, and as a result, the coverage probability increases

accordingly. As we keep increasing θtilt further, the ground UE (unless it is very close to the GBS)

experiences lower antenna gains and consequently, the SINR coverage probability of the ground
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Fig. 8.2: SINR coverage probability as a function of the GBS tilting angle in degrees.

UE starts decreasing after reaching its peak value. We finally note that the simulation results

(shown with circle-markers) have excellent agreements with the analytical results in both Figs. 8.1

and 8.2.
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CHAPTER 9

LEARNING-BASED TRAJECTORY

OPTIMIZATION FOR

CELLULAR-CONNECTED UAVS

9.1 Learning-Base UAV Trajectory Optimization with Col-

lision Avoidance and Connectivity Constraints

9.1.1 System Model

In this section, we introduce the system model of the multi-UAV and multi-GBS cellular networks

in detail. Note that in this section, unless specified otherwise, we remove the time index e.g., in

the position vector p(t)→ p, and the index for UAVs or GBSs, e.g., pi → p.

Deployment

We consider multi-UAV multi-GBS cellular networks as displayed in Fig. 9.1, in which J UAVs,

with potentially different missions, need to fly from starting locations to destinations over an area

containing K GBSs. Without loss of generality, we assume that the area of interest is a cubic
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volume, which can be specified by C : X × Y × Z and X , [xmin, xmax], Y , [ymin, ymax], and

Z , [zmin, zmax]. Each UAV is modeled as disc-shaped with radius r. Let p = [px, py, HV ] denote

the 3D position of the UAV, which is the center of the disc. HV is the altitude of the UAVs which

is assumed to be fixed for all UAVs. pS = [psx, psy, HV ] ∈ R3 and pD = [pgx, pgy, HV ] ∈ R3 are

used to denote the coordinates of the starting points and destinations.

Each UAV’s state is composed of an observable information vector and an unobservable (hid-

den) information vector, s = [so, sh], where the observable state can be observed by other UAVs,

while the unobservable state can not. In the global frame, observable state includes the UAV’s po-

sition, velocity v = [vx, vy], and radius r, i.e., so = [p, v, r] ∈ R6.The unobservable state consists

of the destination pD, maximum speed vmax, and orientation φ, i.e., sh = [pD, vmax, φ] ∈ R5. It

is worth noting that the UAVs do not communicate with other UAVs. Hence, we address a more

challenging non-communicating scenario.

In this cellular network, there are K GBSs providing wireless coverage simultaneously. The

kth GBS has transmit power PBk , and it is located at position pBk = [pxBk , pyBk , HB], where HB

is the height of the GBS and is assumed to be the same for all GBSs.

Fig. 9.1: An illustration of multi-UAV multi-GBS cellular networks.

Channel Modeling

For cellular-connected UAVs, due to high UAV altitude, UAV-to-GBS channels usually constitute

strong LOS links, and LOS links are dominant [19, 198]. In addition, if the UAV altitude HV
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is greater than a threshold, 3GPP specifications suggest a LOS link with probability one. For

example, in the 3GPP specifications in [199], the altitude threshold is suggested to be 40m for

RMa (Rural Macro) deployment, and 100m for UMa (Urban Macro) deployment. Therefore, we

assume that all links between the UAVs and GBSs are LOS. The path loss can be expressed as

L(d) =
(
d2 + (HB −HV )2

)α/2 (9.1)

where α is the path loss exponent.

The 3D antenna gain at the GBSs and UAVs are modeled as 2.25 and 2.27, respectively. We

assume that the antenna elements of the GBSs are only directional along the vertical dimension but

omni-directional horizontally [19]. Therefore, the antenna gain can be expressed as [168]

GB(d) = Gh +Gv (dB) = 10
−min

−1.2

(
arctan(

HB−HV
d

)−θtilt

θ3dB

)2

,Gm
10


(9.2)

where

Gh = 0 (dB) (9.3)

Gv(d) = −min

12

(
arctan(HB−HV

d
)− θtilt

θ3dB

)2

, Gm

 (dB). (9.4)

SINR and Connectivity

The UAVs receive signals from all GBSs, among one of which is the serving BS, and others con-

tribute to the interference. The received signal from the kth GBS to the ith UAV can be expressed

as PkGBk(dik)GVi(dik)L
−1(dik). The experienced SINR at the ith UAV if it is associated with the

kth GBS an be expressed as

Sri,k ,
PkGBk(dik)GVi(dik)L

−1(dik)

Ns +
∑

k′ 6=k Pk′GBk′
(dik′)GVi(dik′)L

−1(dik′)
(9.5)
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where Ns is the noise power. If the experienced SINR at a UAV is larger than a threshold Ts, then

the UAV is regarded as connected with the cellular network, and disconnected otherwise.

SINR Measurement

Along the path to destination, UAVs interact with the cellular network, measure the raw signal

from GBSs, and obtain the instantaneous SINR S ′r([p, sB];h), where h includes the random small-

scale fading coefficients with all GBSs, and p and sB = [pBk ,∀k] are the position of the UAV

and positions of all GBSs, respectively. These measurements can be obtained by leveraging the

existing soft handover mechanisms with continuous reference signal received power (RSRP) and

reference signal received quality (RSRQ) [115]. At each time t, over a very short time interval,

during which the agents’ locations can be approximately considered to be unchanged, it is assumed

that the UAV performs Nm SINR measurements. Then the empirical SINR can be obtained as

Ŝr(t) =
1

Nm

Nm∑
n=1

S ′r(t)([p(t), sB];h(t),n). (9.6)

To average over the randomness arising from small-scale fading, we can consider large Nm and

have lim
Nm→∞

Ŝr(t) = Sr(t) by applying the law of large numbers. Therefore, as long as the UAV

performs signal measurements sufficiently frequently so that Nm � 1, Sr(t) can be evaluated by

its empirical value Ŝr(t) .

9.1.2 Multi-UAV Trajectory Optimization

In this section, we first introduce the constraints and then formulate the multi-UAV trajectory

optimization problem.

Constraints

• Collision Avoidance: Collision avoidance is central to many autonomous systems. During

flight, the UAVs should not collide with others, which means that the distance between two
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agents should be larger than their radius all the time, i.e.,

||pi(t)− pj(t)||2 > ri + rj ∀j 6= i, ∀t (9.7)

where pi(t) is the location of the ith UAV at time t, and ri is its radius. Note that this radius

can also include a buffer zone in which no other UAV should be present.

• Wireless Connectivity Constraint: To support the command and control and also data

flows, UAVs have to maintain a reliable communication link to the GBSs. To achieve this

goal, we consider the connectivity constraint for the UAVs, i.e., the maximum continuous

time duration that the UAV is disconnected should not be longer than Tt time units. The

maximum continuous disconnected time duration can be mathematically expressed as

Tmax
O = max

t∈[0,T ]
t− TL(t) (9.8)

where T is the total travel time, and TL(t) is the last time that the UAV is connected with the

cellular network before time t, i.e.,

TL(t) = max τ (9.9)

s.t. τ ∈ [0, t]

Sr(τ) ≥ Ts.

Therefore, the connectivity constraint can be written as

(
max
t∈[0,T ]

t− TL(t)

)
≤ Tt. (9.10)

• Initial and Final Locations: Each UAV starts its mission from a given initial location and
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completes its flight at a given destination, i.e.,

p(0) = pS and p(T ) = pD (9.11)

• Kinematic Constraint: Kinematic constraints need to be considered for operating UAVs.

We impose the speed and rotational constraints as follows:

v(t) = [vs(t), φ(t)] (9.12)

Speed limit: vs(t) ≤ vmax (9.13)

Rotation limit: |φ(t)− φ(t−∆t)| ≤ ∆t · Tr (9.14)

where v(t), vs(t) and φ(t) are the UAV’s velocity, speed and orientation at time t. vmax is

the maximum of speed the UAV, and Tr is the maximum angle that a UAV can rotate in unit

time period. This constraint limits the direction that a UAV can travel at a given time.

• Association Constraint: Each UAV is associated with one GBS at a time, and the associated

GBS is denoted by a(t) ∈ {1, ..., K}. Largest received signal power based association is

adopted in this paper, where

a(t) = argmax
k

PkGBk(dk(t))GV (dk(t))L
−1(dk(t)). (9.15)

Problem Formulation in Continuous Time Domain

The goal of this work is to find trajectories for all UAVs in the network such that the travel/flight

time of each UAV between the initial and final locations is minimized, while the constraints are

satisfied. In the considered decentralized setting, the trajectory optimization problem for the ith

UAV can be formulated as

(P0) : argmin
{pi(t),∀t}

Ti
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s.t. (9.7), (9.10), (9.11), (9.13), (9.14)

a(t) ∈ {1, ..., K},∀t

Problem Formulation in Discrete Time Domain

Since the UAV is not permitted to be disconnected continuously for more than Tt time units, it is

sufficient to consider ∆t = Tt/nt as one time step and address the problem every nt time steps.

If, at these specific time instances, the experienced SINRs at all UAVs are higher than Ts, we

can guarantee that the connectivity constraint is satisfied. Now, the optimization problem can be

represented in discrete time domain as follows:

(P1) : argmin
{pi,t,∀t}

Ti

s.t. ||pi,t − pj,t||2 > ri + rj,∀j 6= i,∀t (P1.a)

Sri,t ≥ Ts, if t | nt (P1.b)

pi,0 = pSi ,pi,Ti = pDi ,∀i (P1.c)

vsi,t ≤ vmaxi ,∀t (P1.d)

|φi,t − φi,t−1| ≤ ∆t · Tr, ∀t (P1.e)

at ∈ {1, ..., K},∀t (P1.f)

where the integer-valued discrete time index t indicates time increments by ∆t, and t | nt signifies

that t is divisible by nt.

The non-communicating multi-agent navigation task can be formulated as a sequential decision

making problem in a reinforcement learning framework [170]. The objective then is to develop

policies, {πi : sjni,t 7→ vi,t,∀i} that select actions to minimize the expected time to destination

while satisfying all the constraints, where sjni,t and vi,t are the joint state and the action of the agent,
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respectively. Now, the optimization problem can be reformulated as

(P2) : argmin
πi

E[Ti|sjni , πj,∀j 6= i]

s.t. (P1.a)− (P1.c), (P1.f)

pi,t = pi,t−1 + ∆t · πi(sjni,t−1),∀t (P2.d)

where the expectation in the objective function in (P2) is with respect to other agents’ unobservable

states and policies, and (P2.d) is the agent’s kinematics, which satisfy the kinematic constraints in

(P1.d) and (P1.e). Further, since the agents in the considered networks have the same objective

function and constraints, we use the common assumption that each agent would follow the same

policy [170, 200, 201], i.e., π = πi.

9.1.3 Reinforcement Learning Based Approach

In this section, we first introduce reinforcement learning (RL) formulation for the multi-UAV nav-

igation problem. Then, we present the approaches used to tackle the uncertainty in the UAVs’

unobservable intents, and the interaction between the UAVs and the cellular network.

Reinforcement Learning Formulation

To estimate the high-dimensional, continuous value function, it is common to approximate it with a

deep neural network (DNN) parameterized by weights and biases, ξ. For notational simplicity, we

drop the DNN parameters from the value function notation, i.e., V(s; ξ) = V(s). And s is the joint

state of an agent which is also the input of the DNN, and V(s) is the output of the value network

given s.

By detailing each of these elements and relating to (P1.a)-(P1.c) and (P2.d), the following

provides an RL formulation for the multi-UAV navigation problem. Each UAV is an independent

agent, and in the discussions below, we use agent instead of UAV.
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• State Space: In multi-agent multi-GBS cellular networks, the agents are able to observe the

following information from the environment: 1) its own information vector si,t (for the ith

agent at time step t); 2) the observable state of the nearest Jn < J agents sjnoi,t = [soj,t : j ∈

{1, 2, ..., Jn}]; 3) the location information of the nearest Kn ≤ K GBSs, which is assumed

to be observed by the agents, and is denoted by soB = [pBk : k ∈ {1, ..., Kn}]. All the

information observed by the agent constitutes its joint state sjni,t = [si,t, sjnoi,t , soB],∀t.

• Action Space: The action space is a set of permissible velocity vectors. Ideally, the agent

can travel in any direction at any time. However, in reality the kinematic constraints in

(9.12)-(9.14) restrict the agent’s movement and should be taken into account. Then, based on

the agent’s current speed, orientation [vs,i,t, φs,i,t] and the kinematic constraints, permissible

actions v = [vs, φ] are sampled to build the action space Ai,t.

• Reward Function: Similar to the formulation of the reward function defined in [170], [202],

and [171], we define a sparse reward function, which awards the agent for reaching its goal,

and penalizes the agent for getting too close or colliding with other agents, and also penalizes

for getting close to be disconnected or already being disconnected from the cellular network.

The reward function consists of four parts: the reward, Rc, that penalizes close encounters

with other agents; the reward, Rs, that encourages keeping connectivity with the cellular

network; the reward, Rd, that encourages arrival at the destination; and a step penalty, Rt,

that encourages fast arrival. For instance, at time step t, the reward functions for the ith agent

can be expressed as follows:

Rci,t(sjni,t , vi,t) =


−α1, if dtmin

≤ ri + rj,

−α1 ×
(

1− dtmin−ri−rj
db

)
, if ri + rj < dtmin

≤ db + ri + rj,

0, otherwise,

(9.16)
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Rsi,t(sjni,t , vi,t) =


−α2, if t | nt and Sri,t+1

< Ts,

−α2/2, if t | nt and Ts ≤ Sri,t+1
< Ts + Srb ,

0, otherwise,

(9.17)

Rdi,t(sjni,t , vi,t) =


α3, if pi,t+1 = pDi ,

0, otherwise,
(9.18)

Rt = −α4, (9.19)

where dtmin
is the minimum distance to other agents within the next time step duration. α1∼4

are position constants that can be varied to adjust the weight or emphasis of each reward

term, db is a distance buffer between two agents, and Srb is an SINR buffer. Therefore, the

overall reward function can be expressed as the sum

Ri,t(sjni,t , vi,t) = Rci,t(sjni,t , vi,t) +Rsi,t(sjni,t , vi,t) +Rdi,t(sjni,t , vi,t) +Rt. (9.20)

Estimation of the Agents’ Unobservable Intents

The probabilistic state transition model is determined by the agents’ kinematics as defined in

(P2.d), other agents’ hidden states, and the other agents’ choices of action. Since the other agents’

hidden intents are unknown, the system’s state transition model is unknown as well. In addition, it

is difficult to evaluate the integral, because the other agents’ next state has an unknown distribution

(that depends on their unobservable intents). We approximate this integral by assuming that the

other agent would be traveling at a filtered velocity for a short duration ∆t, which is regarded as

a one-step lookahead procedure [170, 200, 203, 204]. This propagation step amounts to predicting

the other agent’s motion with a simple linear model, i.e., v̂j,t = filter(vj,0:t). For the ith agent, other

agents’ filtered velocities are included in the vector v̂jnoi,t = [v̂j,t : j ∈ {1, 2, ..., Jn}]. Then, the
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estimated next state of the ith agent will be

ŝjni,t+1,v = [f(si,t,∆t, v), f(sjnoi,t ,∆t, v̂
jno
j,t ), soB] (9.21)

where f(·) is the kinematic model. Then, we can select the action that has the highest value with

respect to other agents’ estimated state, which can be formulated as

argmax
v∈Ai,t

Ri,t(sjni,t , v) + γV (ŝjni,t+1,v). (9.22)

SINR Prediction

Model-free RL requires no prior knowledge about the environment. This usually leads to slow

learning process and requires a large number of agent-environment interactions, which is typically

costly or even risky to obtain [115]. Actually, each real experience obtained from the agent and

cellular network interaction not only can be used to get reward and refine the value network, but

also can be used for model learning in order to predict the agent’s SINR experienced at certain

positions. More specifically, when flying in the environment, agents interact with the cellular

network and obtain the empirical SINR Ŝr. Since there is no need to use the exact SINR for

connectivity measurement, this work uses the quantized SINR level, Lw(Ŝr), to check the agent’s

connectivity. With a finite set of measurements {〈sjnB , Lw(sjnB )〉}, where sjnB = [p, soB], a DNN can

be trained to predict the SINR level Lw(sjnB ).

A fully connected DNN with parameters ξw can be used to predict the agent’s SINR level, i.e.,

ξw is trained so that Lw(sjnB ) ≈ Lw(sjnB ; ξw). The data measurement 〈sjnB , Lw(sjnB )〉 only arrives

incrementally as the agent flies to new locations and can be saved in a database (e.g., replay mem-

ory), and a minibatch is sampled at random from the database to update the network parameter ξw.

Note that the prediction of SINR levels might be highly inaccurate initially, but can be continuously

improved as more real experience is accumulated.
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9.1.4 Decentralized Deep Reinforcement Learning Algorithm

In this section, we present the proposed decentralized deep reinforcement learning algorithm as a

solution to multi-UAV navigation with collision avoidance and wireless connectivity constraints,

including the SINR-prediction neural network. The proposed algorithm is presented in Algorithm

2, and is referred to as RLTCW-SP (RL for Trajectory optimization with Collision avoidance and

Wireless connectivity constraint and with SINR Prediction).

Parametrization

Since the optimal policy should be invariant to any coordinate plane, we follow the agent-centric

parameterization as in [170, 171, 202], where the agent is located at the origin and the x-axis is

pointing toward the agent’s destination. The states of the ith agent after transformation is

s̃i = [dgi , vmaxi , ṽxi , ṽyi , ri, φ̃i] (9.23)

s̃jnoi = [[p̃xj , p̃yj , HV , ṽxj , ṽyj , rj, dj] : j ∈ {1, 2, ..., Jn}] (9.24)

where dg is the agent’s distance to the goal, dj is the agent’s distance to the jth agent, and p̃ denotes

p in the new coordinate.

In addition, SINR experienced at an agent depends on the distance and the relative angular

direction from the agent to the GBSs, while it does not depend on the positions in global coordi-

nates. To remove this redundant dependence, the location information vector of all GBSs can be

parameterized as

p̃Bk = [p̃xBk , p̃yBk , dBk , φBk , θBk ] (9.25)

s̃Bi = [p̃Bk : k ∈ {1, ..., Kn}] (9.26)

where dBk = ||pBk−pi|| is the distance from the agent to the kth BS, φBk and θBk are the horizontal

and vertical angles of the kth BS with respect to the agent.
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Algorithm 2: RLTCW-SP Algorithm
Input: State-value pairs D

1 Initialize state-value pairs D
2 Initialize location-SINR pairs Dw

3 Initialize value network ξ with D
4 Initialize SINR-prediction network ξw
5 for episode = 0: total episode do
6 for n random training cases do
7 Initialize si,0∀i
8 while not all reached destinations do
9 for each agent i do

10 if not reached destination then
11 sjni,t ← observeEnvironment()
12 Ai,t ← sampleActionSpace()
13 c← randomSample(Uniform (0,1))
14 if c ≤ ε then
15 vi,t ← randomSample(Ai,t)
16 else
17 v̂jnoi,t ← filter(vjn0:t−1)

18 ŝjnoi,t+1 ← propagate(sjnoi,t , v̂
jno
i,t )

19 for every a in Ai,t do
20 ŝi,t+1 ← propagate(si,t, a)

21 L̂wi,t+1
= Lw(ŝjnBi,t+1

)

22 Ri,t ← getReward(ŝjni,t+1, L̂wi,t+1
)

23 Vp = Ri,t + γV(ŝjni,t+1)

24 vi,t ← argmaxa∈Ai,t Vp

25 Ri,t, si,t+1, Sri,t+1
← executeAction(vi,t)

26 for each agent i do
27 Vi,0:Ti ← updateValue(sjni,0:Ti

,Ri,0:Ti , ξ)

28 Lwi,0:Ti
← getSINRlevel(Sri,0:Ti

)

29 Update state-value pairs D with 〈sjni,0:Ti
, Vi,0:Ti〉

30 Update location-SINR pairs Dw with 〈sjnBi,0:Ti
, Lwi,0:Ti

〉

31 Sample random minibatch from D, and update value network ξ by gradient descent.
32 Sample random minibatch from Dw, and update SINR-prediction network ξw by

gradient descent.
33 return ξ, ξw
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Therefore, the joint state of the ith agent after transformation is

s̃jni = [̃si, s̃jnoi , s̃Bi ]. (9.27)

And the input of the SINR-prediction network becomes

s̃jnBi = [[dBk , φBk , θBk ] : k ∈ {1, ..., Kn}]. (9.28)

Initialization

The value network ξ can be first initialized with imitation learning using a set of experiences to

accelerate the convergence. More specifically, in this work, we use optimal reciprocal collision

avoidance (ORCA) [200] to generate a number of trajectories that contain a large set of state-value

pairs {〈sjn, V 〉}N1 , where V = γtg and tg is the time to reach the destination. The experiences are

saved in memory D (line 1 in Algorithm 2). Then, the value network is initialized by supervised

training on D (line 3). The value network is trained by back-propagation to minimize a quadratic

regression error

ξ = argmin
ξ′

N1∑
k=1

(
Vk − V(sjnk ; ξ′)

)
. (9.29)

If a set of location-SINR experiences can be downloaded from the cloud, we can save the

downloaded dataset in memory Dw (line 2), {〈sjnB , Lw〉}N2 , where Lw is the scaled SINR level

that the agent experienced. Then, the SINR-prediction network can be initialized with ξw =

argminξ′
∑N2

k=1

(
Lwk − L(sjnB ; ξ′)

)
, which is trained by back-propagation (line 4). If no dataset

is available, Dw is initialized with an empty list, and the SINR-prediction network is initialized

with random network parameters.
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Refining Process

After initialization, a refining process is performed using RL. Particularly, a set of random training

cases is generated in each episode (line 6). In each training case, each agent navigates around others

to arrive its destination, while interacting with the cellular network (line 10- line 25). It is worth

noting that the agents navigate simultaneously and with no communication among each other. At

each time step t, each agent first observes the environment, obtains the observable states of other

nearby agents and the location information of the GBSs, and then obtains its joint state sjnt (line11).

Then, based on its current velocity and kinematic constraints, each agent builds an action space At

(line 12). Using an ε-greedy policy, each agent selects a random action with probability ε from At

(line 15), or follows the value network greedily otherwise (lines 17-24). When following the value

network to choose actions, each agent performs the following: 1) estimate other nearby agents’

motion by filtering their velocities, and estimate their observable states ŝjnot+1 following equation

(9.21) (lines 17-18); 2) predict its next SINR level Lwt+1 using the SINR-prediction network ξw;

3) choose the best action in At which has the maximum Vp.

When all agents have arrived their destinations in each training case, trajectories si,0:T1∀i are

then processed to generate a set of state-value pairs 〈sjni,0:Ti
, Vi,0:Ti〉, where

Vi,t =


Ri,t + γV(sjni,1:t+1) if t+ 1 < Ti,

Ri,t if t+ 1 = Ti,

and a set of location-SINR pairs 〈[pi,0:Ti
, soB], Lwi,0:Ti

〉. The new pairs are used to update D and

Dw.

Training

We first use ORCA [200] to generate a number of trajectories that contain a large set of state-value

pairs {〈sjn, V 〉}N1 , where V = γtg and tg is the time to reach the destination. The experiences,

as input of Algorithm 2, are saved in memory D, which will be refined during training. To train
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the value network and SINR-prediction network, a set of training points is randomly sampled from

the experience set, which contains state-value pairs for ξ or location-SINR pairs for ξw from many

different trajectories. Then, the networks are finally updated by stochastic gradient descent (back-

propagation) on the sampled subsets of experience.

Real-Time Navigation

With the trained value network and SINR-prediction network, agent can execute real-time naviga-

tion. This process is provided in Algorithm 3.

Algorithm 3: Real-Time Navigation
Input: ξ, ξw

1 Initialize s0

2 while not reached destination do
3 sjnt ← observeEnvironment()
4 At ← sampleActionSpace()

5 v̂jnt ← filter(vjn0:t−1)

6 ŝjnot+1 ← propagate(sjnot , v̂jnt )
7 for every a in At do
8 ŝt+1 ← propagate(st, a)

9 L̂wt+1 = Lw([p̂t+1, sB])

10 Rt ← getReward(ŝt+1, ŝjnot+1, L̂wt+1)

11 Vp = Rt + γV(ŝjnt+1)

12 vt ← argmaxa∈At Vp
13 st+1 ← executeAction(vt)
14 return v0:T−1, s0:T

9.1.5 Numerical Results

In this section, we present the numerical results to evaluate the performance of the proposed algo-

rithms. In the illustrations of environment and trajectories in this section, the GBSs are marked by

green triangles, and the yellow areas indicate the communication coverage zones where the agents

are able to connect with the cellular network (i.e., Sr ≥ Ts). Agents’ trajectories are displayed

as a list of dots in different colors, and the destinations are marked with crosses. In each flight
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trajectory, there are four possible outcomes for the agent/UAV: 1) success, if the agent arrives its

destination successfully; 2) collision, if it collides with others; 3) disconnection, if the continuous

disconnected time is larger than the threshold Tt; 4) stuck, if the agent freezes and stops moving

and consequently does not reach the destination. In addition, we also compute the additional aver-

age time (referred to also as average more time) needed to reach the destination, when compared

with the lower bound (attained when the UAV goes straight towards the destination at the maxi-

mum speed). Therefore, we use success rate (SR), collision rate (CR), disconnection rate (DR) and

average more time (AMT) to show the performance of the algorithms.

Environment Setting and the Networks

Since the agents fly at the same altitude, the area of interest becomes two-dimensional. In the

simulations, we consider an area with 12 GBSs deployed. The GBSs transmit with power PB = 1

dBW, have a height ofHB = 32 m, and the antenna patterns are set with θtilt = 10◦ and θ3dB = 15◦.

The UAVs are assumed to fly at a fixed altitude of HV = 50 m. The noise power is Ns = 10−6,

and the SINR threshold is Ts = −3 dB. Each UAV, as an independent agent, is able to observe the

nearest 8 GBSs’ locations and at most 2 other agents’ observable states.

We construct the value network via a three-layered DNN of size (64,32,16). The exploration

parameter ε linearly decays from 0.5 to 0.1. The replay memory capacity is 30000 for the 2-agent

scenario and 100000 for scenarios with more than two agents. The SINR-prediction network is

constructed via a three-layered DNN of size (32,16,8). A standardization layer is utilized after the

input layer of both networks. ReLU activation function is used for the input layer and two hidden

layer for both networks. Both networks use Adam optimizer, and have learning rate 0.01, batch

size 200, and a regularization parameter 0.0001.

To build the action spaces Ai,t, based on the agent’s current velocity [vs,i,t, φs,i,t], 22 velocities

are chosen, including: 1) combinations [vs, φs,i,t + φ], where vs ∈ {0, 1
2
vmax, vmax} and φ ∈

{±Tr,±2
3
Tr,±1

3
Tr, 0}; and 2) current velocity. The values for α1∼4, db and Sb in reward function

are selected as follows: α1 = 1, α2 = 1, α3 = 2, α4 = 0.1, db = 0.2 and Srb = 0.1.
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(a) Value of the value netowrk. (b) Accuracy of the SINR-prediction network.

Fig. 9.2: Value of the value network and accuracy of the SINR-prediction network as functions of the
number of episodes.

Convergence in Training

Fig. 9.2 shows the value of the value network and accuracy of the SINR-prediction network as

functions of the number of episodes during training for a 2-agent scenario. Fig. 9.2(a) shows that

the value converges after around 200 episodes. From Fig. 9.2(b), we can see that the accuracy

converges after around 20 episodes, since in each episode 50 random trajectories are generated for

each agent, during which more than 15000 location-SINR pairs are collected and used to train the

SINR-prediction network.

The trajectory optimization process for two UAVs is displayed in Fig. 9.3. At episode 0, the

SINR-prediction network is initialized with random weights and bias, and is not able to predict the

accurate SINR level. Besides, the policy has not been refined by RL. As a result, the two agents are

easily getting disconnected or stuck. After 100 episodes of training, the SINR-prediction network

is well-trained and able to predict the SINR levels with 97% accuracy. Also, the value network is

trained with refined state-value pairs. Thus, the agents can reach their destinations, but with long

trajectories to avoid collisions and disconnection. As the training proceeds, the policy improves,

leading to shorter expected trajectories.

After 700 episodes of training, the AMT (for the successful trajectories) is 0.2662s. Separately,

we also compute the AMT in two different scenarios for comparison: 1) the connectivity constraint
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(a) Episode 0. (b) Episode 100. (c) Episode 200. (d) Episode 300.

(e) Episode 400. (f) Episode 500. (g) Episode 600. (h) Episode 700.

Fig. 9.3: Trajectory examples at different episodes during training.

is not considered for the two-agent trajectory design (CADRL [170]); and 2) the collision avoid-

ance constraint is not considered if there is only one agent. The AMT in these two scenarios are

0.195s, and 0.204s, respectively.

Testing of Navigation in Different Environments

In the proposed RLTCW-SP algorithm, an SINR-prediction network is trained to predict the SINR

level. In an ideal scenario, the antenna pattern information of GBSs may be available to the agents,

and then the agents are able to predict the SINR with that information. In this subsection, we com-

pare the performances of the following three algorithms: 1) the agents are able to get the antenna

pattern information of the GBSs, and then predict the SINR directly (referred to as RLTCW-AW);

2) the proposed RLTCW-SP algorithm, which uses the location-SINR memory, and trains an SINR-

prediction network to predict the SINR level; 3) the agents do not predict the SINR and only use

the value network to make decisions (referred to as RLTCW). The navigation test is done in three

types of environments: 1) the same environment as in the training; 2) the same environment but

two BSs are not operational for the UAV (due to congestion, malfunction, resource allocation to

ground users, or GBS activation schedule), an illustration of which is presented in Fig. 9.4(a); 3)

different environment with different GBS deployment, illustrations of which are presented in Figs.
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(a) DE1. (b) DE2. (c) DE3.

(d) DE1. (e) DE2. (f) DE3.

Fig. 9.4: Illustrations of different environments used in navigation testing, and trajectory examples when
using proposed RLTCW-SP algorithm. In (a) and (d), the two BSs in black are not operational for the UAVs.

9.4(b) and 9.4(c). Fig. 9.4 also presents examples of trajectories that the agents perform using the

proposed RLTCW-SP algorithm in a challenging scenario in which the destination of one UAV is

the starting point of the other UAV. Environments displayed in Figs. 9.4 (a) (b) and (c) are referred

as DE1, DE2 and DE3 (using DE as the abbreviation for different environment).

The performance of the three algorithms in different environments are presented in Table 9.1.

As expected, the RLTCW-AW with the perfect knowledge of antenna patterns has the best perfor-

mance, and the RLTCW-SP algorithm has slightly lower performance which is due to the potential

inaccuracies in the SINR prediction, while the performance of RLTCW is substantially lower com-

pared to the other two, due to very high DR (disconnection rate). In addition, the SR (success rate)

performance of the proposed RLTCW-SP algorithm decreases only slightly in different environ-

ments, and how large the decrease is depends on which environment is used in testing. When there

are large and wide out-of-coverage zones in the environment (as shown in Fig. 9.4(b)), the SR

performance decreases relatively a bit more. The reason is that the wide out-of-coverage zones are
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Table 9.1: Performance of different algorithms in different environments in terms of success rate
(SR), collision rate (CR), and disconnection rate (DR) (all rates are in %).

Same Environment DE1
SR CR DR SR CR DR

RLTCW-AW 99.15 0.85 0 98.95 0.95 0
RLTCW-SP 99.1 0.85 0.05 99.05 0.85 0.07
RLTCW 64.8 0.6 34.6 74.85 0.15 25

DE2 DE3
SR CR DR SR CR DR

RLTCW-AW 98.25 1.42 0.17 99.1 0.9 0
RLTCW-SP 98.08 1.5 0.42 99 0.92 0.08
RLTCW 60.7 0.8 38.5 69 0.33 30.67

more likely to make the agent get stuck at the edge and not be able to decide which direction to

go. Overall, in the three different environments in testing, the proposed RLTCW-SP can achieve

above 98% of SR in 2-agent scenarios.

Navigation in Different Settings

In this subsection, we present simulation results on the trajectories when the GBSs have different

antenna patterns and when the UAVs fly at different heights. The SINR threshold is Ts = −4 dB

in this subsection. In. Figs. 9.5 (a) and (d), we provide two different trajectory examples when we

have HV = 50 m, θtilt = 10◦ and θ3dB = 15◦. In Figs. 9.5 (b) and (e), UAV altitudes are increased

to HV = 100 m, and we notice that due to larger path loss and smaller antenna gains, coverage

zones shrink, which in turn potentially increases the length of the trajectories. In Figs. 9.5 (c)

and (f), GBSs have larger downtilting angle and 3dB beamwith of the main lobe. In this case, the

UAVs experience smaller received power from the main link and potentially larger interference,

leading to substantially smaller SINR levels. Therefore, the coverage zones in Figs. 9.5 (c) and (f)

are smaller than those in Figs. 9.5 (a) and (d) and even Figs. 6 (b) and (e). In all cases, we note

that UAVs successfully find different trajectories to meet the connectivity requirements and adapt

to different coverage zones.
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(a) (b) (c)

(d) (e) (f)

Fig. 9.5: Trajectory examples in environments with different settings, i.e., in (a) and (d), HV = 50 m,
θtilt = 10◦ and θ3dB = 15◦; in (b) and (e), HV = 100 m, θtilt = 10◦ and θ3dB = 15◦; and in (c) and (f),
HV = 50 m, θtilt = 15◦ and θ3dB = 35◦.

Navigation in Environments with Obstacles/No-Fly Zones

The proposed RLTCW-SP algorithm can also be used for navigation in environment with obstacles

that are regarded as non-moving agents. For instance, the trained networks for the 2-agent scenario

can be used for one agent navigation in an environment with obstacles or no-fly zones. More

specifically, the agent can observe the nearest obstacle, and takes the obstacle’s location in the

joint state for choosing actions. Fig. 9.6 displays two illustrations. In this setting, obstacles can be

considered as actual obstacles (e.g., tall buildings or structures) or they can model no-fly zones for

the UAVs.

Navigation with More Than Two UAVs

Fig. 9.7 provides the illustrations for 8-agent, 12-agent, 16-agent navigation scenarios, respec-

tively, where dotted lines are used to display the trajectories. The SR, CR, DR and AMT perfor-

mances in scenarios with 2 to 20 agents are presented in Table 9.2, when the distance buffer is
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(a) Example 1. (b) Example 2.

Fig. 9.6: Trajectory examples in environments with obstacles/no-fly zones.

(a) 8-agent scenario (b) 12-agent scenario (c) 16-agent scenario

Fig. 9.7: Trajectory examples for multi-agent navigation.

db = 0.2 (default) or 1. We note that the CR increases when more agents are in the environment.

As mentioned before, the agents can observe a maximum of 2 nearest agents in the environment.

Therefore, for more crowded scenarios, several agents are non-observable and as a result the CR

can increase when compared with scenarios involving smaller number of agents. Additionally,

when there are more agents in the same area, the interactions become more complex, and chal-

lenging for the algorithm to handle. However, we note that the performance regarding the SR is

still above 90% for the 20-agent scenario. Table 9.2 further shows that the agents need more time

to reach their destinations when there are more agents in the environment. Moreover, when we

compare the performances between the scenario with db = 0.2 and the scenario with db = 1, we

have the following observations for larger db: 1) the CR is reduced, since larger db encourages

the UAVs to stay relatively farther from each other and therefore leads to lower collision risk; and
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Table 9.2: Performance for Multi-Agent Navigation

Number of agents 2 4 6 8 10 12 14 16 18 20

db=0.2

SR(%) 99.1 98.65 97.37 97 96.9 95.55 94.83 93.9 91.9 91.74
CR(%) 0.85 1.32 2.18 2.73 3.68 4.38 5.12 6.31 7.06 8.18
DR(%) 0.05 0.03 0.1 0.06 0.05 0.07 0.05 0.1 0.04 0.08
AMT(s) 0.266 0.306 0.319 0.322 0.336 0.346 0.364 0.369 0.381 0.441

db=1

SR(%) 99.33 98.92 98.58 97.67 97.53 97.28 97 96.19 95.32 95
CR(%) 0.56 1 1.25 2.17 2.13 2.67 2.5 3.62 4.37 4.7
DR(%) 0.11 0.08 0.17 0.17 0.33 0.06 0.5 0.19 0.11 0.3
AMT(s) 0.299 0.359 0.365 0.406 0.470 0.481 0.510 0.525 0.572 0.675

2 4 6 8 10 12 14 16 18 20
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Fig. 9.8: Collision rate comparison between two methods: 1) the proposed approach, in which the collision
avoidance is taken into account in training; 2) the approach in which collision with other UAVs is not
considered in training.

2) the AMT is increased, since staying further away from each other leads to longer trajectories

and correspondingly longer mission completion time. In addition, the CR is less than 5% for the

20-agent scenario when we set db = 1.

Fig. 9.8 compares the collision rates between the proposed algorithm (RLTCW-SP) and the

trajectory optimization algorithm with connectivity constraint only, i.e., collision avoidance is not

considered. It can be observed from the figure that as the number of agents in the environment

grows, CR increases accordingly. If collision avoidance is not considered in the algorithm, CR is

not only much higher (e.g., three to six times higher) but also increases much faster than the pro-

posed algorithm, which takes into account the collision avoidance. Therefore, collision avoidance

is critical in multi-UAV scenarios, especially in crowded environments, and the proposed algorithm

can significantly decrease the collision risk and hence achieve much lower collision rates.
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9.2 Jamming-Resilient Path Planning for Multiple UAVs

via Deep Reinforcement Learning

9.2.1 System Model

A multi-UAV multi-GBS cellular network is considered, in which K GBSs provide wireless con-

nectivity to the UAVs. There is also a jammer in the network that transmits jamming signals to

interfere the links between the UAVs and their serving GBSs, and hence disrupts the communica-

tion. The location and the transmit power of the jammer can vary over time. An illustration of the

cellular networks with multiple UAVs, multiple GBSs, and a jammer is provided in Fig. 9.9.

Fig. 9.9: An illustration of the cellular networks with multiple UAVs, multiple GBSs, and a jammer.

The UAVs receive desired signal from the serving GBS, interference from other GBSs and

jamming signal from the jammer. Thus, the experienced SINR at a UAV can be expressed as

Srk ,
PkGB(dk)GV (dk)L

−1(dk)

Ns + IJ(dJ) +
∑K

k′ 6=k Pk′GB(dk′)GV (dk′)L−1(dk′)
(9.30)

whereNs is the noise power, Pk is the transmit power of the kth GBS, dk is the horizontal distance

between the UAV and the kth GBS. GB is the 3D antenna gain at the GBSs. GV is the 3D antenna
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gain at the UAVs. L is the path loss

L(d) =
(
d2 + (HB −HV )2

)α/2 (9.31)

where α is the path loss exponent. In addition, IJ is the interference from the jammer, which can

be expressed as

IJ(dJ) = PJ
(
d2
J + (HJ −HV )2

)α/2 (HV −HJ)√
d2
J + (HV −HJ)2

(9.32)

where PJ and HJ are the transmit power and height of the jammer, respectively, and dJ is the

horizontal distance between the UAV and the jammer. If the SINR experienced at the UAV is

smaller than a threshold Ts, the UAV is regarded as disconnected from the network.

9.2.2 Proposed Algorithm

Problem Formulation

The goal of this work is to find policies to determine the trajectories for UAVs such that the mission

completion time is minimized and the constraints are satisfied. Therefore, the problem can be

formulated the same as in 9.1.2.

Algorithm

The proposed optimization problem is difficult to solve due to the non-convex constraints, lack of

knowledge on the jammer, and the interactions among multiple UAVs. To overcome this difficulty,

we can cast the problem into a sequential decision making problem that can be solved by RL. We

propose a offline temporal-difference (TD) algorithm with online SINR mapping for multi-UAV

path planning with jamming resiliency. The proposed algorithm consists of two modules: 1) offline

value network training by TD method with standard experience replay; 2) online SINR mapping

by supervised learning; and both modules will be introduced in detail in the following subsections.
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Offline Value Network Training

This offline learning module can be implemented on a simulator, therefore reducing the collision

risk. The environment can be modeled close to the reality, containing the following information:

GBSs which are distributed according to the real deployment; the channel modeled according to

real ray-tracing data; a dynamic jammer, which changes its location and transmit power periodi-

cally. TD learning is used to train the value network, and the MDP, i.e., 〈S,A,R〉, formulation for

the proposed problem is provided as follows:

• State Space: In multi-UAV cellular networks, the UAVs are able to observe the following

information from the environment: 1) its own information vector si,t (for the ith UAV at time

step t); 2) the observable state of the nearest Jn < J UAVs sjnoi,t = [soj,t : j ∈ {1, 2, ..., Jn}];

3) the experienced SINR Sri,t . Since the policy should not be influenced by the choice of

the coordinates, we choose an agent-centric coordinate plane, where the UAV’s location

is the origin. Then, we need to change the positions from the global frame to the chosen

coordinates. In addition, the observed information can be parameterized to provide more

information. Hence, the observations are transformed into

s̃i = [vxi , vyi , p̃dxi , p̃dyi , ddi , adi , ri, vmaxi , φi]

s̃jnoi = [[p̃xj , p̃yj , vxj , vyj , dj, aj] : j ∈ {1, 2, ..., Jn}]

S̃ri,t = Lwi,t

where p̃ denotes p in the new coordinates. ddi and adi are the distance and azimuth angle

from the typical UAV to its destination. dj and aj are the distance and azimuth angle to the

jth other UAV. Lwi,t is the quantized SINR level. All the information observed by the agent

constitutes its joint state

sjni,t = [̃si,t, s̃jnoi,t , S̃ri,t ],∀t. (9.33)
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• Action space and the reward function are defined the same as in Section 9.1.3.

The offline value network training can be done using Algorithm 2.

Online SINR Mapping

Along the path to destination, UAVs interact with the cellular network, measure the raw signal from

GBSs, and obtain the instantaneous SINR. The empirical instantaneous SINR can be processed to

obtain the SINR in (9.30). UAVs with sensors can also observe the positions of the nearby GBSs

sjnB = [pBk : k ∈ {1, ..., Kn}]. Therefore, the UAVs with sensors are able to obtain measurements

{〈sjnB ,Sr(sjnB )〉} along their paths.

It is assumed that there is a cloud computing center to where all UAVs in the area can upload

their measurements, and the cloud will keep updating the recent measurements in its memory Dw.

A DNN, denoted by ξw, can be designed to map the position information of nearby GBSs into the

SINR level by supervised learning using the recent measurements in memory. The DNN is updated

periodically based on how frequently the jammer varies.

• Input: The input of the DNN is the parameterized position information vector of the nearby

GBSs. By changing the positions into the agent-centric coordinates and processing relative

locations into distance and angles, the vector can be transformed into

s̃jnBi = [[p̃kxk , p̃kyk , dBk , φBk , θBk ] : k ∈ {1, ..., Kn}] (9.34)

where dBk , φBk , θBk are the distance, elevation angle, azimuth angle from the UAV to the

kth nearby GBS.

• Label: The label of the supervised DNN is the quantized SINR level Lw(sjnB ).

• Detection: A simple jammer change detection method can be adopted. More specifically, the

cloud can check the accuracy of the DNN periodically on the newly uploaded measurements.

The accuracy dropping significantly indicates the changes in the jammer (either its location
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or transmit power). Then, the DNN should be updated. From numerical results, this jammer

change detection method takes less than 1s.

• Training: If the parameters of the DNN ξw need to be updated, training can be done by

stochastic gradient descent (back-propagation) on mini-batches randomly sampled from Dw

for a fixed number of episodes.

Real-Time Navigation

The UAVs can perform real-time navigation with the offline trained value network and online SINR

mapping DNN downloaded from the computing cloud.

9.2.3 Numerical Results

In this section, we present the numerical results to evaluate the performance of the proposed algo-

rithm. The environment setting and the construction of the neural networks are similar as that in

9.1.5.

Training

In the offline value network training module, the jammer changes its location or transmit power

periodically. Fig. 9.10 shows the accumulated reward per episode during two distinct training.

First, we can observe from the figure that the reward in two distinct training can converge to the

same level. The relatively larger drops in the convergence phase (after 20000 episodes) are due

to the significant changes in the jammer, and the value network can learn fast and recover the

reward back to the converged level. Secondly, we can observe that our proposed algorithm can

achieve comparable reward level to the upper bound. The upper bound in this figure (presented

in green line with squared markers) is the accumulated reward if the UAVs fly straight to their

destinations, ignoring the wireless connectivity (i.e. Rsi,t = 0) and collision avoidance constraints

(i.e. Rci,t = 0). Note that when these constraints are taken into account, the UAVs need to perform
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turns or stops. Therefore, due to the negative reward Rt given to each step and the exploration

strategy (i.e. εmin = 0.1) , the reward achieved in training is smaller than the upper bound.

In the online SINR mapping module, the DNN is updated periodically using the latest uploaded

SINR measurements. Fig. 9.11 presents the accuracy during the online training period. It can be

observed that the DNN can adapt fast to the new location/transmit power of the jammer with very

high SINR mapping accuracy.
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Fig. 9.10: Accumulated reward per episode for two distinct training cases and the straight path scenario,
as functions of episode.
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(a) No jammer. (b) Jammer at (0,0) with PJ = 1W.

(c) Jammer at (25,-10) with PJ = 1W. (d) Jammer at (-30,10) with PJ = 1W.

Fig. 9.12: Illustrations of trajectories in environments, where jammer does not exit or the jammer is located
at different positions.

Real-Time Navigation

Fig. 9.12 displays the illustrations of real-time navigation trajectories, while also depicting the

trajectory changes due to the presence of jammers. In the illustrations of the environment and

trajectories, the GBSs and the jammer are marked by green triangles and a red triangle, respec-

tively. The yellow areas indicate the communication coverage zones where the agents are able to

connect with the cellular network (i.e., Sr ≥ Ts). UAV trajectories are displayed as lines with

dots in different colors, and the destinations are marked with crosses. It can be observed from the

figure that jammers can generate disconnection/no-coverage zones (the white areas), and different

jammer locations lead to different impact. Due to the jammer presence, the UAVs have to make

turns and avoid flying through the no-coverage zones, leading to different trajectories.

To evaluate the performance, we choose the following metrics: 1) success rate, where success
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Table 9.3: Performance comparison in terms of success rate, disconnection rate, and collision rate.

Jammer at (0,0), PJ = 1W Jammer at (25,-10), PJ = 1W
SR(%) DR(%) CR(%) SR(%) DR(%) CR(%)

Proposed
Algorithm 92.3 5.6 1.8 94.5 4 1.5

Outdated Map 65.3 33.7 1 77.1 27.5 1.4
Perfectly-
Updated Map 94.6 3.2 1.9 94.5 3.3 2.2

Jammer at (-30,10), PJ = 1W Jammer at (0,0), PJ = 0.5W
SR(%) DR(%) CR(%) SR(%) DR(%) CR(%)

Proposed
Algorithm 95.75 3.75 0.5 92.3 6.2 1.2

Outdated Map 78.4 21.2 0.4 73.3 25.5 1.2
Perfectly-
Updated Map 96.6 2.7 0.6 95.8 1.9 1.6

indicates one UAV arriving at its destination successfully; 2) disconnection rate, where a discon-

nection means one UAV being disconnected continuously more than Tt; 3) collision rate, which

quantifies the collisions among UAVs. Table 9.3 provides performance comparisons with bench-

marks, considering the above the three metrics. Two benchmarks are chosen: outdated map method

in which the UAVs navigate with the trained value network plus the outdated radio map of the en-

vironment without jammers; perfectly-updated map method in which the UAVs navigate with the

value network plus the perfect radio map of the current environment with jammers. The outdated

map method does not react to the existence of the jammer, and leads to the performance lower

bounds. The perfectly-updated map method is ideal, and achieves the performance upper bound.

From the results in the table, we notice that low success rates and high disconnection rates are

experienced when the outdated SINR map (which disregards the presence of the jammer) is used.

Hence, jammer can have significant impact on the performance. On the other hand, we observe

that if the perfect SINR map (which takes into account the interference introduced by the jammer)

is utilized, success rates reach above 94% and disconnection rates fall below 3.3%. Hence, per-

fect knowledge of the SINR map is an effective defensive measure against jamming attacks. We

note that even with the perfect map, path planning is performed using the deep RL agent. In our

proposed approach, we have the deep RL agent operating with an online SINR learning algorithm.

In this case, SINR map can be learned albeit imperfectly. We see in Table I that the proposed
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approach achieves almost the same performance levels as in the case of the perfectly updated map,

and hence leads to effective jamming resiliency in an online fashion. Finally, we remark that in

all cases, collision rates are very small, indicating the efficacy of the RL agent operating under

collision constraints.
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CHAPTER 10

COLLISION-AWARE UAV TRAJECTORIES

FOR DATA COLLECTION VIA

REINFORCEMENT LEARNING

10.1 System Model and Problem Formulation

In this section, we first introduce the system model in detail, and then we formulate the path

planning optimization problem for data collection.

10.1.1 System Model

We assume that the area of interest is a cubic volume, which can be specified by C : X × Y × Z

and X , [xmin, xmax], Y , [ymin, ymax], and Z , [zmin, zmax]. There are multiple no-fly zones

(obstacles) in the area through which UAVs cannot fly. And the no-fly zones are denoted as N :

XN × YN × Z.
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UAV

In the considered multi-UAV scenario, we choose one UAV as the typical one, whose mission is

to collect data from multiple ground IoT nodes. The UAV is modeled as disc-shaped with radius

r. Let p = [px, py, HV ] denote the 3D position of the UAV, where HV is the altitude of the UAV

which is assumed to be fixed. It is assumed that the typical UAV has specific areas for departure

and landing, which can be denoted by S and D, respectively. More specifically, S : XS × YS × Z,

where XS , [xSmin, x
S
max], YS , [ySmin, y

S
max], and D : XD × YD × Z, where XD , [xDmin, x

D
max],

YD , [yDmin, y
D
max]. pS = [psx, psy, HV ] and pD = [pgx, pgy, HV ] are used to denote the coordinates

of the starting point and the destination for the typical UAV, respectively. The typical UAV’s

information forms a vector that consists of the UAV’s position, current velocity v = [vx, vy], radius

r, destination pD, maximum speed vmax, and orientation φ, i.e., s = [p, v, r, pD, vmax, φ] ∈ R11.

In this multi-UAV scenario, there are also J other UAVs traveling within region C. None

of the UAVs communicate with each other. Therefore, the missions, destinations, movements,

and decision-making policies of other UAVs are unknown. It is assumed that the typical UAV is

equipped with a sensor, with which it is able to sense the existence of other UAVs when they are

closed than a certain distance. The circular sensing region is denoted by O. Specifically, if the

jth UAV is in O, some information of this UAV can be known by the typical UAV. The observable

information includes the jth UAV’s position pj = [pxj , pyj , HV ], current velocity vj = [vxj , vyj ],

and radius rj , i.e., soj = [pj, vj, rj] ∈ R6. The total number of other UAVs in O is denoted by Jo. It

is worth noting that Jo varies over time.

IoT Nodes

In this UAV-assisted network, there are N IoT nodes that need to upload data to the typical UAV

via uplink transmission. The nth node has transmit power Pn, and is located at ground position

pn = [pxn , pyn ]. Each node has a finite amount of data DL
n0 that needs to be collected over the

entire mission duration of the typical UAV. The IoT nodes have two modes: active mode, if the

node still has data to be transmitted; and silent mode, if data upload is completed.
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Fig. 10.1: An illustration of data collection in a multi-UAV scenario.

An illustration of the system model is provided in Fig. 10.1.

10.1.2 Channel Model

We assume that all links between the UAV and IoT nodes are LOS. Then, the path loss can be

expressed as

L(d) =
(
d2 +H2

V

)α/2 (10.1)

where d is the horizontal distance between the ground projection of the UAV and a node, and α is

the path loss exponent.

The IoT nodes are assumed to have the omni-directional antenna gain ofGn = 0 dB. The UAVs

are assumed to have sine antenna pattern in 2.27.

10.1.3 Signal-to-Noise Ratio (SNR) and Rate

The received signal from the nth node to the typical UAV can be expressed as P r
n = PnGV (dn)L−1(dn).

With this, the experienced SNR at the UAV if it is communicating with the nth IoT node can be
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formulated as

Sn ,
Pn
Ns

GV (dn)L−1(dn) =
Pn
Ns

HV

(
d2 +H2

V

)− 1+α
2 (10.2)

where Ns is the noise power. The maximum achievable information rate if the SNR is connected

with the nth node is

Rmax
n = log2(1 + Sn). (10.3)

To support data flows, UAV has to maintain a reliable communication link to the IoT nodes. To

achieve this, it is assumed that the experienced SNR at the UAV when connecting with a node

should be lager than a certain threshold Ts. Then, the UAV can communicate with the node suc-

cessfully. Otherwise, the UAV is not able to collect data from the node. Therefore, considering

the amount of data available at each node, DL
n , the effective information rate according to the SNR

threshold Ts can be given as

Rn =


Rmax
n , if DL

n ≥ ∆tRmax
n and Sn ≥ Ts

DL
n/∆t, if DL

n < ∆tRmax
n and Sn ≥ Ts

0, otherwise,

(10.4)

where ∆t is time duration for one time step.

10.1.4 Scheduling

Since the typical UAV needs to communicate with multiple nodes, we adopt the standard time-

division multiple access (TDMA) model. Then, the UAVs can communicate with at most one node
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at each time. Using qn ∈ {0, 1} to indicate the connection with the nth node, we have

N∑
n

qn ≤ 1. (10.5)

The scheduling is according to the largest received signal power strategy, meaning that the UAV

is connected with the active node providing the largest P r
n . We can mathematically express the

scheduling strategy as

qn =


1, if n = argmax

n′∈{active nodes}
P r
n′ ,

0, otherwise.

(10.6)

10.1.5 Problem Formulation

We can partition each mission duration in the discrete time domain to a number of time steps

t ∈ [0, T ], with each time step describing a period of ∆t. Now, the integer-valued t is used to

denote each time step. We next consider the following realistic and practical constraints in the

design of UAV trajectories:

Collision Avoidance Constraints

For collision avoidance purposes, the minimum distance between the typical UAV and any other

UAVs should not be smaller than the sum of their radii all the time. In addition, it is important for

UAVs to navigate while staying free of collisions with obstacles and non-fly zones. In this setting,

we can write the collision avoidance constraints as

||pt − pjt||2 > r + rj,∀j,∀t, (10.7)

pt /∈ N,∀t, (10.8)
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where pt is the position of the typical UAV at time step t, and pjt is the position of the jth UAV at

time t. (10.8) is to avoid collision with the obstacles and no-fly zones.

Mission Completion Deadline Constraint

A UAV with a mission has to complete the required tasks in a certain time period. Moreover, power

limitation also restricts the UAV’s flight time. Overall, the UAV has a mission completion deadline

constraint that can be described as

T ·∆t ≤ Tt (10.9)

where T is the total steps in discrete time domain, and Tt is the maximum mission completion

time.

Kinematic Constraints

In practice, the kinematic constraints should be considered in operating UAVs. We impose the

speed and rotation constraints as

vst ≤ vmax,∀t (10.10)

|φt − φt−1| ≤ ∆t · Tr,∀t (10.11)

where vmax is the maximum speed of the UAV, and Tr is the maximum rotation angle in unit time

period.

Start and Destination Constraints

A UAV with a mission should fly from a given start point and arrive at a required destination, and

hence we have

p0 = pS,pT = pD. (10.12)
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TDMA Constraint

Due to the utilization of TDMA, the UAV can communicate with at most one node at each time,

and the constraint is given in (10.5).

Our goal is to maximize the collected data from all nodes subject to these constraints. There-

fore, the objective function can be formulated as

(P1) : argmax
{pt,∀t}

T∑
t=0

N∑
n=1

qnt∆tRnt

s.t. (10.5), (10.7), (10.8), (10.9), (10.10), (10.11), (10.12).

10.2 Algorithm

In this section, we first describe the RL formulation of path planning for data collection in a multi-

UAV scenario, and then explain the proposed D3QN path planing algorithm in detail.

10.2.1 Reinforcement Learning Formulation

Considering the objective function in (P1) and the constraints in (10.5)-(10.12), we can translate

the considered problem into an MDP, and the tuple 〈S,A,R〉 is explained in detail below:

State

In multi-UAV scenarios, the typical UAV is able to obtain the following information:

• Its own full information vector st in time step t.

• The observable information vector of other UAVs in O, which is the sensing region of the

typical UAV. The total number of observed other UAVs at time step t is Jot ≥ 0, and the joint

information vector can be expressed as sot = [sojt : j ∈ {1, 2, ..., Jot }].

• The location information pnt of each IoT node, the amount of remaining data DL
nt at each
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node, and the received signal power P r
nt from each node. The joint vector is denoted by

snt = [snnt : n ∈ {1, ..., N}], where snnt = [pn, DL
nt, P

r
nt].

• The available time left for the given mission, stt.

Since the typical UAV can only observe other UAVs inside its sensing region O, the total num-

ber of observed other UAVs Jot may vary over time. However, the size of the state needs to be

fixed to be the input of the DNN. Thus, we only consider the observable information vectors of

the nearest J c (which is a fixed positive integer) other UAVs. In addition, the number of nodes in

the environment may be different for different missions. Thus, we only consider the information

vectors of the nearest N c active nodes. On the other hand, the policy should not be influenced by

the choice of coordinates. Therefore, we parameterize the position information into agent-centric

coordinates, in which the current location of the typical UAV is regarded as the origin. We can also

process the observations to provide more information. Hence, the observed information vectors

can be transformed into

s̃t = [vxt , vyt , p̃gxt , p̃gyt , dgt , agt , r, vmax, θt]

s̃ojt = [p̃xjt , p̃yjt , vxjt , vyjt , d
o
jt, a

o
jt, rj], for j ∈ {1, 2, ...,min(Jot , J

c)}

s̃nnt = [p̃xnt , p̃ynt , d
n
nt, a

n
nt, D

L
nt, P

r
nt], for n ∈ {1, ..., N c}

where p̃ is the transformed p in the new coordinate. dgt and agt are the distance and azimuth angel

of the destination, respectively. dojt and aojt are the distance and azimuth angle of the jth other UAV,

respectively. dnnt and annt are the distance and azimuth angle of the nth node, respectively. Note that

we do zero padding if Jot ≤ J c or the number of active nodes is smaller than N c. Then, the joint

parameterized state vector at t can be expressed as

s̃jnt = [̃st, [̃sojt, j ∈ {1, ..., J c}], [̃s
n
nt, n ∈ {1, ..., N c}], stt]. (10.13)
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Action

In an ideal setting, the agent can travel in any direction at any time. However, in practice, kinematic

constraints in (10.10)-(10.11) restrict the agent’s movement and should be taken into account.

Given these constraints, permissible velocities [vs, φr] are sampled to built a velocity-set, where vs

is the permissible speed, and the φr is the permissible rotation angle. The action a is the index of

each velocity in the velocity-set.

Reward

The reward can be designed according to the objective function and the constraints, and the design

plays an important role on the learning speed and quality. The reward function of this path planning

problem for data collection in the multi-UAV scenario can be expressed as

Rt = Rdt +Rct +Rot +Rtt +Rgt +Rst. (10.14)

The first term Rdt is related to the data collected from the nodes during next time duration ∆t.

This reward term is used to encourage the UAV to collect data from the IoT nodes, and can be

expressed as

Rdt = α1 ×

(
N∑
n=1

DL
nt −

N∑
n=1

DL
nt+1

)
. (10.15)

Rct is the term introduced to penalize collision with other UAVs and encourage the typical UAV

stay further away from the other UAVs. This term can be formulated as

Rct =


−α2, if dtmin

≤ r + rj,

−α2 × (1− dtmin−r−rj
db

), if r + rj < dtmin
≤ db + r + rj,

0, otherwise,

(10.16)
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where dtmin
is the minimum distance from the typical UAV to other UAVs during next time duration

∆t, and db is a constant that denotes the distance buffer. Rot is to penalize the collision with the

obstacles or entering non-fly zones, and can be expressed as

Rot =


−α3, if pt+1 ∈ N,

0, otherwise.
(10.17)

Rtt is the reward related to mission completion deadline constraint, and it encourages the UAVs to

arrive their destinations within the allowed duration of time, and can be formulated as

Rtt =


α4 × (stt+1 − Tmin

gt+1), if stt+1 < Tmin
gt+1,

0, otherwise,
(10.18)

where stt+1 is the available time left for the given mission, and Tmin
gt+1 = dgt+1/vmax is the minimum

time duration needed to reach destination at time step t+ 1 and dgt+1 is the distance to destination

at time step t+ 1. Rgt is the reward given for arriving the destination, and

Rgt =


α5, if pt+1 = pD,

0, otherwise.
(10.19)

The last term Rst = −α6 is a step penalty for each movement, and it is used to encourage fast

arrival. Note that α1∼6 are positive constants, and can be varied to adjust the weight or emphasis

of each reward term to adapt to different mission priorities.

10.2.2 D3QN Path Planning Algorithm for Data Collection

The main algorithm is summarized in Algorithm 4, where the input consists of the parameters

of the constraints and the output is the policy, i.e., a well-trained DNN ξ. In the training phase,

we first initialize the replay memory, the evaluation network parameters and the target network
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parameters (line 1 - line 3). We also build an action space A based on the kinematic constraints

(line 4). In each training episode, the typical UAV navigates around other UAVs and obstacles to

arrive its destination, while collecting data from ground IoT nodes. Particularly, at the beginning

of each episode, the environment and the UAV’s mission are reset (line 6), and the reset parameters

are

• the starts and destinations of the typical UAV;

• the locations of IoT nodes;

• the number of IoT nodes;

• the amount of data to be collected from each node;

• the number of other UAVs;

• the starts and destinations of other UAVs.

Then, at each time step t, the typical UAV observes the environment, obtains the observation vector

sjnt , and parameterizes the vector following the new agent-centric coordinate as s̃jnt (line 8 - line

9). Using an ε-greedy policy, the typical UAV selects a random action with probability ε from A

(line 12), or follows the policy greedily otherwise (line 14). The Q-value can be obtained using the

evaluation network ξ according to equation (2.40). After executing the chosen action, the typical

UAV receives reward Rt from the environment according to equation (10.14), and it obverses the

new state sjnt+1 from the updated environment (line 15). Then the replay memory can be updated

with transition tuple (̃sjnt , at,Rt, s̃jnt+1) (line 17). To train the evaluation network ξ, a minibatch of

Nb tuples can be randomly sampled from replay memory (line 18). Then, ξ can be updated by

stochastic gradient descent (back-propagation) on the sampled minibatch (line 19 - line 22), and

the target network parameters ξ− can be updated from ξ for every Nr steps (line 23). The episode

ends when the UAV arrives its destination or exceeds its mission deadline. Line 6 - line 23 can be

repeated for Ne episodes.
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After training, we obtain a policy, i.e., a well-trained DNN ξ, with which the UAV can perform

real-time navigation.

Algorithm 4: D3QN Path Planning Algorithm for Data Collection
Input: Ts, Tt, vmax, Tr

1 Initialize replay memory D
2 Initialize evaluation network ξ (including ξV and ξA)
3 Initialize target network ξ− (including ξV− and ξA−) by copping from ξ
4 A ← sampleActionSpact(vmax, Tr)
5 for episode = 0: total episode Ne do
6 E ← resetEnvironment()
7 while not done do
8 sjnt ← observeEnvironment(E)

9 s̃jnt ← parameterizeState(sjnt )
10 c← randomSample(Uniform (0,1))
11 if c ≤ ε then
12 at ← randomSample(A)
13 else
14 at ← argmax

a′∈A
Q(̃sjnt , a′; ξ)

15 Rt, st+1 ← executeAction(at)
16 s̃jnt+1 ← parameterizeState(sjnt+1)

17 Uptate D with tuple (̃sjnt , at,Rt, s̃jnt+1)
18 Sample a minibatch of Nb tuples (s, a,R, s′) ∼ Uniform(D)
19 for each tuple j do
20 Calculate target

yj =R, if s′ is terminal,
R+ γQ(s′, argmax

a′
Q(s′, a′; ξ); ξ−), o.w.

21 Do a gradient descent step with loss E[(yj −Q(s, a; ξ))2]
22 Update ξ− ← ξ every Nr steps

23 return ξ
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10.3 Numerical Results

In this section, we present the numerical and simulation results to evaluate the performance of the

proposed algorithm. The considered performance metrics are the following: 1) success rate (SR),

and a success means the UAV arrives its destination within mission completion deadline; 2) data

collection rate (DR), which is the percentage of collected data within successful missions; 3) data

collection and success rate (DSR), which is the product of data collection percentage and success

rate; and 4) collision rate (CR), and a collision event occurs when the typical UAV collides with

any of the other UAVs in the environment. In the illustration of real-time navigation scenarios,

the departure and landing areas of the typical UAV are displayed by blue and green areas, respec-

tively. The no-fly zones (obstacles) are presented in gray areas. The IoT nodes are marked by

green triangles. The trajectories of the typical UAV are presented by navy lines with dots, and the

trajectories of other UAVs in the environment are depicted in red lines with dots. The destination

of each mission is marked by a navy cross in the landing area. Note that since the UAVs may arrive

at the same location at different times, they do not necessarily collide even if their trajectories in-

tersect. In the simulations, other UAVs use optimal reciprocal collision avoidance (ORCA) [200]

in choosing actions and determining their trajectories.

10.3.1 Environment Setting and Hyperparameters

Since the agents fly at the same altitude, the area of interest becomes two-dimensional. In the

simulations, the UAV flies at height HV = 50m. The size of the area of interest is scaled to a

(100 × 100) region. The IoT nodes have same transmit power of P = 1 dBm. Noise power is

Ns = 10−6. SNR threshold is set at Ts = −5 dB (unless stated otherwise). Mission completion

deadline is Tt = 100s (unless stated otherwise). Kinematic constraints are vmax = 5 in the scaled

form and Tr = π/3. The radius of the UAV’s sensing region is 10, N c is 5, and J c is set to be 2.

Fig. 10.2 shows the accumulated reward per episode in training with different DNN structures.

We can observe from the figure that one-layer and two-layer structures can achieve similar con-
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Fig. 10.2: Accumulated reward per episode in training with different DNN structures.
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Fig. 10.3: Accumulated reward per episode, average success rate per 100 episodes and data collection rate
per episode for different training cases.

vergence speeds and reward performance, while the reward from DNN with a three-layer structure

drops after 6500 episodes and then grows back. Therefore, we choose to use two-layer DNN of

size (256, 256). ReLU function is used as the activation function, Batch-normalization is used for

each layer, and Adam optimizer is used to update parameters with learning rate 0.0003. Batch size

is 256, and the regularization parameter is 0.0001. The exploration parameter ε decays linearly

from 0.5 to 0.1. The replay memory capacity is 1000000.

10.3.2 Training

The total number of training episodes is 10000. In each episode, the following system parameters

are randomly chosen from the corresponding regions and sets of values:

• the starts and destinations of the typical UAV pS ∈ S and pD ∈ D;
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• the locations of ground IoT nodes pn ∈ C;

• the number of IoT nodes N ∈ [5, 10];

• the amount of data to be collected from each node DL
0 ∈ [1, 3] data units;

• the number of other UAVs J ∈ [2, 10];

• the starts and destinations of other UAVs pj ∈ C.

Figs. 10.3 (a), (b) and (c) show the accumulated reward per episode, success rate per 100

episodes and data collection rate per episode, respectively, during different training sessions with

two-layer DNN. These figures show that in different training sessions, similar performances (in

terms of the convergence speed and attained levels of performance metrics) are achieved, indicating

the stability of the proposed algorithm. In addition, the SR eventually converges to around 92.5%,

and the DR reaches 99.5%, even with the exploration strategy (i.e., εmin = 0.1). The simulation

is implemented on a Windows 10 with Intel Core i7-8753h CPU. In total, the training algorithm

converges after approximately 6000 episodes for this multi-UAV scenario with highly varying

parameters.

10.3.3 Testing of Navigation in Different Scenarios

With the learned policy, the UAV can perform real-time navigation in different scenarios, regarding

the various parameters described in the previous subsection. We note that all the testing in this

subsection uses the same policy, i.e., the policy can adapt to various missions and scenarios without

further training.

Different number of IoT nodes

Fig. 10.4 displays illustrations of navigation in different scenarios in which N ∈ [8, 10] IoT nodes

are randomly located, DL
0 = 1 data unit, and J ∈ [2, 10]. Fig. 10.4 shows that for different

numbers and locations of IoT nodes, different numbers and locations of other UAVs, and different
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(a) 8 nodes (b) 9 nodes (c) 10 nodes

Fig. 10.4: Illustrations of navigation in different scenarios thatN ∈ {8, 9, 10} nodes are randomly located,
and DL

0 = 1 data unit, J ∈ [2, 10].

start points and destinations, the UAV can adjust its trajectory to collect data from distributed IoT

nodes with the trained policy. Table 10.1 provides the SR, DR, DSR and CR performances in

testing for different number of nodes from which data needs to be collected. The performances are

averaged over 5000 random realizations (in each of which, we haveDL
0 ∈ [1, 3], J ∈ [2, 10], and all

UAVs have random starting points and destinations). Overall, Table 10.1 shows that the proposed

algorithm can achieve above 91% success rate (for tight mission completion deadline constraint

of Tt) and over 99.8% DR when N ∈ [5, 10]. With increasing number of nodes, generally the

UAV needs to plan a longer trajectory to get close to each node to achieve reliable communication

(Sn ≥ Tn), leading to relatively longer flight durations and higher risk for collision. Therefore,

when N increases, SR decreases due to the increase in CR and the increase in flight duration. In

addition, when we compare row 1 (smaller Tt) and row 5 (larger Tt), we notice that higher SR is

obtained if the mission completion deadline is relaxed.

Table 10.1: SR, DR, DSR and CR performance when different number of nodes (N ) need to upload
data, and DL

0 ∈ [1, 3], J ∈ [2, 10].

N=5 N=6 N=7 N=8 N=9 N=10
SR(%)
(Tt = 100s)

95.5 94.4 93.8 92.9 92.5 91.5

DR(%) 99.9 99.8 99.8 99.8 99.8 99.8
DSR(%) 95.4 94.21 93.61 95.45 92.71 91.31
CR(%) 3.3 3.4 3.9 3.9 3.9 3.7
SR(%)
(Tt = 200s)

96.7 96.2 95.8 95.8 95.8 95.9
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(a) 1 data unit (b) 2 data units (c) 3 data units

Fig. 10.5: Illustrations of navigation in different scenarios thatDL
0 ∈ {1, 2, 3} data units need to be collect

at each node, and N = 7, J = 2.

Different amount of data at each node

Fig. 10.5 depicts illustrations of navigation in different scenarios in which DL
0 ∈ [1, 3] data units

need to be collect from each node. To display the influence of the amount of data to be collected,

we fix the number of nodes as N = 7 and the number of other UAVs as J = 2 in the illustrations.

Due to the different amount of data to be collected at each node, the UAV needs to fly around each

node over different duration of time to complete the data collection, leading to different trajectories.

Table 10.2 provides the SR, DR, DSR, and CR performance in testing, when the values of DL
0 are

different. The rates are averaged over 5000 random realizations (in each of which N ∈ [5, 10],

J ∈ [2, 10], and all UAVs have random starting points and destinations). We observe similar

performance levels as in Table 10.1, i.e., when there is more data to collect, the UAV needs a

longer trajectory and a longer time period to complete the mission, leading to higher CR and lower

SR.

Table 10.2: SR, DR, and DSR performance when different amount of dataDL
0 needs to be collected

from each node, and N ∈ [5, 10], J ∈ [2, 10].

DL
0 =1 DL

0 =2 DL
0 =3

SR(%) 94.9 93.7 92.8
DR(%) 99.8 99.8 99.7
DSR(%) 94.71 93.51 92.52
CR(%) 2.8 3.7 3.9
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Different number of other UAVs

(a) 2 other UAVs (b) 10 other UAVs (c) 20 other UAVs

Fig. 10.6: Illustrations of navigation in different scenarios involving J ∈ {2, 10, 20} other UAVs, and
N = 6, DL

0 = 1 data unit.

Fig. 10.6 presents illustrations of navigation in scenarios with different number of other UAVs

J ∈ {2, 10, 20}. Again, to display the impact of different values of J , we fixN = 6 andDL
0 = 1 in

the illustrations. From Fig. 10.6, we can observe that due to the different locations and numbers of

other UAVs, the typical UAV makes decisions to avoid collisions, leading to different trajectories.

Table 10.2 presents the CR, SR, and DR performances as J varies, considering three different

hyperparameter settings: setting 1 (S1) α2 = 10, db = 0.2, Tt = 100s; setting 2 (S2) α2 = 30, db =

1, Tt = 200s, and setting 3 (S3) α2 = 50, db = 10, Tt = 200s. The rates are averaged over

5000 random realizations (with N ∈ [5, 10], DL
0 ∈ [1, 3], and all UAVs having random starting

points and destinations). From the table, we note that with increasing number of other UAVs, the

collision rate grows due to higher risk of collision. When CR performances in the three settings

are compared, we can observe that if the mission completion deadline is loosened, we can increase

the distance buffer, db, between two UAVs, and increase the penalty for collision, α2, to reduce

CR. With setting 3, 0.9% CR can be achieved for crowded scenario with J = 12. This observation

indicates that the hyperparameters can be tuned to adapt to different mission priorities.

To show the importance of considering collision avoidance in the presence of an arbitrary

number of other UAVs in the environment, Fig. 10.7 compares the CR levels achieved with the

proposed algorithm with considers collision avoidance in training and the learning algorithm that

does not address collision avoidance with other UAVs in training. The figure shows us that if colli-
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sion avoidance is not considered, we have significantly higher CR than the proposed algorithm, and

also the gap between two methods becomes larger with increasing number of other UAVs. These

observations indicate that the algorithms, which do not consider the existence of other UAVs or

only consider fixed number of known UAVs, may lead to high collision risk in crowded scenarios,

and the proposed algorithm greatly reduces that risk.

Table 10.3: CR, SR, and DR performance when different number of other UAVs J exist, and
N ∈ [5, 10], DL

0 ∈ [1, 3].

J=2 J=4 J=6 J=8 J=10 J=12

S1
CR(%) 1 2.4 3.5 5 6.3 7.9
SR(%) 96 94.6 93.9 92.2 91.5 90.7
DR(%) 99.8 99.8 99.8 99.8 99.8 99.9

S2
CR(%) 0.4 0.8 1.7 1.9 2.5 3.2
SR(%) 94.4 94 92.7 93.2 92.6 91.8
DR(%) 99.8 99.8 99.8 99.8 99.8 99.8

S3
CR(%) 0.2 0.3 0.4 0.5 0.6 0.9
SR(%) 99 98.8 98.8 98.8 98.4 98.2
DR(%) 99.7 99.7 99.7 99.7 99.8 99.7
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Fig. 10.7: Collision rate comparison in testing between two methods: 1) the proposed approach with
setting 1 and setting 2, in which the collision avoidance in the presence of arbitrary number of other UAVs
is taken into account in training; and 2) the approach in which collision with other UAVs is not considered
in training.
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(a) Ts = −5 dB (b) Ts = −4 dB

Fig. 10.8: Illustrations of navigation when SNR threshold Ts is different, and N = 5, DL
0 = 1 data unit,

J = 2.

10.3.4 Impact of the SNR Threshold

Fig. 10.8 displays the influence of the values of the SNR threshold Ts on the UAV trajectories.

Note that the UAV is able to achieve reliable communication with an IoT node only if the UAV

experiences an SNR that exceed the threshold, i.e., S ≥ Ts for that connection. Since SNR is a

function of the distance between the UAV and a node, Ts can be converted to a distance threshold.

Therefore, different values of Ts lead to different distance requirements for reliable connection.

The green dashed circles in Fig. 10.8 approximately indicate the area inside which we have S ≥

Ts. As shown in Fig. 10.8, the UAV has to reach each circle in order to collect data from the

corresponding node. We observe that with higher Ts (Fig. 10.8 (b) compared with Fig. 10.8 (a)),

the UAV needs to reach closer to each node for data collection, leading to different trajectories for

the same mission.

10.3.5 Comparison with Other Algorithms

Table 10.4 presents the performances of different deep reinforcement learning algorithms, i.e.,

D3QN, Dueling DQN, DDQN and DQN, for data collection in multi-UAV scenarios. It can be

clearly observed that D3QN has better performance than the other three, in terms of SR, DR, SDR

and CR, although the performances are not substantially different. It is worth noting that we have
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observed in training sessions that the reward of Dueling DQN, DDQN, and DQN may drop after

a certain number of episode, while D3QN does not have this issue, indicating that D3QN is more

stable than the other three algorithms when solving the considered problem.

Table 10.4: SR, and DR, DSR and CR performance of different algorithms, when N ∈ [5, 10],
DL

0 ∈ [1, 3] data unit and J ∈ [2, 10].

SR(%) DR(%) SDR(%) CR(%)
D3QN 94.1 99.8 93.91 3.5
Dueling DQN 93.5 99.7 93.22 4
DDQN 92.5 99.8 92.31 4.3
DQN 90.8 99 89.89 4.2
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CHAPTER 11

CONCLUSION AND FUTURE DIRECTIONS

11.1 Summary

In this thesis, we have studied the performance analysis and learning algorithms in advanced wire-

less networks.

In Chapter 3, we have provided a framework to compute the SINR coverage probability in aK-

tier heterogeneous downlink mmWave cellular network with user-centric small cell deployments.

A heterogeneous network model is considered, with BSs in each tier being distributed according

to PPPs, while UEs being deployed according to a PCP. Distinguishing features of mmWave have

been incorporated into the analysis, including directional beamforming and a sophisticated path

loss model addressing both LOS and NLOS transmissions. In addition, a D-ball approximation

is applied, to characterize the blockage model, with different path loss exponents being assigned

to LOS and NLOS links. We have determined general expressions for the association probability

of each tier. Simplified association probability expressions for several special cases are provided

to give more insight on the impact of different system parameters. We have also characterized the

Laplace transforms of the interferences and derived the SINR coverage probability of the entire

network using the stochastic geometry framework. The obtained analytical results are general,

and they can be applied to any PCP distribution. We have specialized the results to two popular
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PCPs, namely (i) Thomas cluster process, and (ii) Matérn cluster process. In addition, through

numerical results, we have provided some interfering insights. We also demonstrated that when the

cluster size tends to infinity, our PCP-based model specializes to a PPP-based model. Moreover,

we extend our work to more general cases, i.e. when more practical antenna gain patterns are

considered and when the shadowing is taken into account. Finally, the analytical and numerical

results demonstrate that considering the correlation between the UE and BS locations is important

when modeling the UE distribution, but the type of PCP does not have significant impact. The

type of small-scale fading (e.g., Nakagami vs. Rayleigh fading) also has limited influence on

the coverage performance of our model, while interference plays an important role. Moreover, we

show that several system parameters have significant impact on coverage probability, e.g., coverage

performance can be improved, by decreasing the size of UE clusters around BSs (or equivalently

having UEs more compactly clustered), decreasing the beamwidth of the main lobe, or increasing

the main lobe directivity gain. In addition, the effects of the biasing factor of the small-cell BSs is

investigated. An extension to the dense networks is also addressed. In particular, we have shown

that our analysis is applicable to dense networks, in which the small-cell BSs play an important role

in terms of the coverage performance. Analysis of the uplink performance of this heterogeneous

mmWave cellular network model is interesting and remains as future work. Investigating a hybrid

network including both PCP and PPP distributed UEs is also considered as future work.

In Chapter 4, we have studied a K-tier heterogeneous mmWave uplink cellular network with

clustered UEs. In particular, the correlation between the locations of the user UEs and BSs is

characterized according to a Gaussian distribution, leading to the Thomas cluster processes. Spe-

cific and practical LOS and NLOS models are adopted with different parameters for different tiers.

We have first characterized the PDFs and CCDFs of different distances from BSs to UEs. Then,

we have considered the coupled association strategy, meaning that the UEs are associated with the

same BS for both downlink and uplink. Largest long-term averaged biased received power criterion

is considered in this chapter , and general expressions for association probabilities of different BSs

to different UEs are also provided. Following the identification of the association probabilities, we
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have characterized the Laplace transforms of the inter-cell interference and the interference from

the cluster. Using tools from stochastic geometry, we have provided general expressions of the

SINR coverage probability in each tier. Additionally, we have extended our work to the Nakagami

fading model and the case in which fractional power control is adopted by the UEs. Moreover,

we have addressed several special cases, e.g., the noise-limited case, interference-limited case, and

one-tier model. Finally, we have addressed the average ergodic spectral efficiency. Via numerical

and simulation results, we have confirmed the analytical characterizations and the derived expres-

sions, and investigated the impact of important system parameters. For instance, we have observed

that the interference has a noticeable influence on the coverage performance and the type of fading

has a certain impact on the SINR coverage performance but Nakagami and Rayleigh fading lead to

similar performance trends. Coverage probability can be improved by decreasing the cluster size,

increasing the biasing factor and the transmit power of the small-cell BSs. The densities of BSs

also affect the system performance.

In Chapter 5, we have proposed a multi-agent DDQN algorithm for beamforming in mmWave

MIMO networks. Largest received power association criterion has been considered for BS asso-

ciation of the UEs. BSs act as reinforcement learning agents, and according to the limited infor-

mation obtained from the associated UEs, they automatically and dynamically adjust their beams

to improve the received power of the associated UEs. Via simulations, we have demonstrated that

the proposed algorithm can achieve comparable network performance with respect to exhaustive

search, and better performance than the random selection, which leads to especially poor perfor-

mance when there are multiple BSs. We have noted that location information is not critical in our

algorithm. In addition, the pre-trained model is not restricted to the same number of UEs as in the

testing phase and can be applied to multiple testing scenarios with different number of UEs.

In Chapter 6, a three-tier HetNet has been studied, where APs, SBSs and MBSs transmit in

THz, mmWave, microwave frequency bands, respectively. Distinguishing features of transmission

in each frequency band are taken into account, including the blockage model, path loss model,

beamforming and small-scale fading. To make the UEs receive larger signal power from the serv-
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ing BS, path loss based association criterion has been considered. By using tools from stochastic

geometry, the CCDF of the received signal power, the Laplace transform of the aggregate inter-

ference, and the SINR coverage probability are investigated, and general expressions have been

derived. The analysis has been validated via Monte-Carto simulation. Finally, numerical results

demonstrate the following: making the APs more densely distributed can enhance the received

signal power but decrease the SINR coverage probability; and narrower beamwidth of the main

lobe at the APs leads to larger received signal power and the SINR coverage probability.

In Chapter 7, we have jointly considered the downlink SWIPT and uplink information trans-

mission in UAV-assisted mmWave cellular networks, in which the UE locations are modeled using

Thomas cluster processes and Matérn cluster processes. Distinguishing features of mmWave com-

munications, such as different path loss models for LOS and NLOS links, and directional trans-

missions, are taken into account. We have characterized the CCDF and PDF of the distance from

the typical UE to its own cluster center UAV, the nearest PPP-distributed UAV and the nearest

GBS. In the downlink phase, we have determined the association probabilities of each tier BS. In

addition, we have considered the power splitting technique in the SWIPT scenario, which allows

the UEs to harvest energy and decode information simultaneously using the same received signal.

We have characterized the energy and SINR coverage probabilities of the considered UAV-assisted

mmWave cellular network. Moreover, we have defined the successful transmission probability to

jointly analyze the energy and SINR coverages and we have provided general expressions. In the

uplink phase, we have considered the scenario that each UAV receives information from its own

cluster member UEs. SINR coverage has been derived and general expressions are provided. In

addition, we have formulated the average uplink throughput, aiming to find the optimal time divi-

sion multiplexing for downlink and uplink phases. Extensions to UAV-assisted cellular networks

with realistic 3D antenna patterns have been provided. Finally, via numerical results we have in-

vestigated the impact of key system parameters on the network performance. We have shown that

the system performance is improved when the cluster size becomes smaller. In addition, we have

analyzed the optimal height of UAVs and optimal power splitting value that maximize the sys-
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tem performance. Optimal time division has also been addressed to maximize the average uplink

throughput. We have verified that Thomas cluster processes and Matérn cluster processes can lead

to similar system performance trends.

In Chapter 8, we have investigated cellular-connected UAV networks with 3D antenna patterns,

in which the UAVs are aerial UEs served by the GBSs. A realistic ground-to-air channel model has

been incorporated into the analysis, where LOS and NLOS transmissions are distinguished. 3D an-

tenna patterns have been considered for both GBSs and UAVs. More specifically, antenna patterns

combing the vertical and horizontal gains are taken into account for the GBSs. Also, four types of

3D antenna patterns are considered for the UAVs. In particular, we compare the performances of

a omni-directional pattern, a doughnut-shaped sine pattern, a doughnut-shaped cosine pattern, and

a directional pattern with tilting angle toward the serving GBS. Via numerical results, we demon-

strate that the directional pattern with tilting angle provides the best SINR coverage probability.

We have also seen that the optimal UAV altitude varies depending on the environment and antenna

patterns.

In Chapter 9, we have studied multi-UAV trajectory optimization with collision avoidance and

wireless connectivity constraints. In establishing the wireless connectivity, we have taken into

account the antenna radiation patterns, path loss, and SINR levels. In Section 9.1, we have formu-

lated trajectory optimization as a sequential decision making problem and proposed a decentralized

deep reinforcement learning algorithm. Particularly, a value neural network has been developed

to obtain the values from the agent’s joint states. An SINR-prediction neural network has been

designed, using accumulated SINR measurements obtained when interacting with the cellular net-

work, to map the GBS locations into the SINR levels in order to predict the UAV’s SINR levels. We

have investigated the performance in terms of success rate, collision rate, disconnection rate, and

average more time. In the numerical results, we have considered various scenarios (e.g., with GBS

deployments different from the setting in the training environment, different UAV heights, different

antenna patterns, and obstacles/no-fly zones) and we have shown that with the value network and

SINR-prediction network, real-time navigation for multi-UAVs can be efficiently performed in dif-
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ferent environments with high success rates. In Section 9.2, we have addressed jamming-resilient

trajectory design for multiple cellular-connected UAVs. We proposed an offline TD learning algo-

rithm for the RL agent with online SINR mapping to solve the problem. More specifically, a value

network has been trained offline by TD method to encode the interactions among the UAVs and

between the UAVs and the environment; and an online SINR mapping DNN has been constructed

and trained by supervised learning, to encode the influence of the jammer. Numerical results have

shown that, without any information on the jammer, the proposed algorithm can achieve perfor-

mance levels close to that of the ideal scenario with the perfect SINR-map. Hence, real-time

navigation for multi-UAVs can be efficiently performed with high success rates, and collisions are

avoided.

In Chater 10, we have studied the UAV trajectory optimization to maximize the collected data

form distributed IoT nodes in a multi-UAV scenario under realistic constraints, e.g., collision

avoidance, mission completion deadline, and kinematic constraints. In establishing the wireless

connection, we have taken into account the antenna radiation pattern, path loss, SNR, and largest

received signal power based scheduling strategy. We have translated the considered problem into

an MDP with parameterized states, permissible actions and detailed reward functions. D3QN is

utilized for learning the policy, without any prior knowledge of the environment (e.g., channel

propagation model, locations of the obstacles) and other UAVs (e.g., their missions, movements,

and policies). We have shown that the proposed algorithm has high adaptive capability. More

specifically, without further training, the offline learned policy can be used for real-time navigation

for various missions with different numbers and locations of IoT nodes, different amount of data to

collect, in various scenarios with different number and locations of other UAVs. Through numeri-

cal results, we have demonstrated that real-time navigation can be efficiently performed with high

success rate, high data collection rate and low collision rate. We also showed that the proposed

algorithm can achieve much lower collision rate in testing compared with the learning algorithm

that does not consider collision avoidance. Furthermore, we have demonstrated that D3QN has

better performance than Dueling DQN, DDQN, and DQN when solving the considered problem.



220

11.2 Future Research Directions

11.2.1 UAV-to-UAV Communications

In Chapter 7, we have analyzed the coverage probabilities in UAV-assisted cellular networks, where

the UAVs are aerial BSs serving ground UEs. In Chapter 8, we have studied the coverage in

cellular-connected UAV networks, where the UAVs are aerial UEs served by GBSs. Coverage

analysis in UAV-enabled networks where the UAVs communicate with other UAVs is interesting,

and is considered as future work.

11.2.2 Power Constrained UAV Trajectory Design

The power constraint of UAVs poses critical limits on their endurance and communication capabil-

ities. In Chapter 9, we have aimed to reduce UAV power consumption by minimizing the mission

completion time. In Chapter 10, we have considered the mission completion deadline to restrict

the power consumption. Directly considering the power constraint in UAV path planning problems

is one of our future directions.

11.2.3 Three-Dimensional (3D) UAV Path Planning

In Chapters 9 and 10, we have assumed that the UAVs fly at the same height. However, UAVs are

able to travel in 3D area in practice. Therefore, finding 3D UAV trajectory is considered as future

work.

11.2.4 Jamming Attacks in UAV-Enabled Networks

The LOS-dominant air-to-ground links make UAV communications more susceptible to the jam-

ming/eavesdropping attacks by malicious ground nodes compared to the terrestrial communica-

tions. In Section 9.2, we have investigated the cellular-connected UAV path design in the presence

of a dynamic jammer. Finding jamming-resilient path for UAVs, as either UEs or BSs, in the
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presence of intelligent jamming attacks is motivated to be one of our future research directions.
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APPENDIX A

PROOF OF THEOREMS AND LEMMAS

1 Proof of Lemma 3.1

The CCDF of path loss L0,s (for s ∈ {LOS,NLOS}) from the typical UE to a LOS/NLOS BS in

the 0th tier can be expressed as

FL0,s(x) = P(l0,s ≥ x)
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(A.1)

where (a) follows from the expression of path loss L0 in (3.2) on the link in the 0th tier, (b) follows

from the definition of CCDF, and (c) is due to the the expressions of F Y0(y0) given in (2.7) and

(2.9) for Thomas cluster process and Matérn cluster process, respectively.
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Thus, the PDF of path loss L0,s can be obtained as follows:

fL0,s(x) = −
dFL0,s(x)

dx
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2 Proof of Lemma 3.2

We first define two events, S1 = {The typical UE is associated with a jth tier BS } and S2 =

{The associated link is in s ∈ {LOS,NLOS} transmission}. Then the association probability of a

LOS/NLOS BS in the jth tier is

Aj,s = P(S1 and S2) = P(S2|S1)P(S1)
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= P(PjBjL
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where s′ ∈ {LOS,NLOS}, s 6= s′, (a) follows from the definition of association probability, and

(b) is due to the fact that the distributions of {Lk} are independent.

For the 0th Tier (j=0)
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where (a) follows the definition of CCDF of the path loss Lk by noting the fact that there is only

one BS in the 0th tier, and therefore P(L0,s′ > L0,s) can be expresses as pL0,LOS and pL0,NLOS for LOS

and NLOS links, respectively.

For the jth Tier (j ∈ K)
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where (a) follows from the definition of the CCDF of the path loss Lk and CCDF of the path loss

Lj,s′ and (b) is due to the fact that the CCDF of the path loss L0 is different from the CCDF of the

path loss Lk, hence they are separately considered.

3 Proof of Lemma 3.3

Define the event S = {The typical UE is associated with a LOS/NLOS BS in the jth tier}. Given

the event S, we can mathematically express the CDF of the path loss Lj,s as
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where, (a) is due to Bayes’s rule, and (b) follows from the definition of association probability and

the independence of Lj,s, Lj,s′ and Lk. Therefore,
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4 Proof of Theorem 3.1

Given that the typical UE is associated with a LOS/NLOS BS in the jth tier, the coverage proba-

bility can be expressed as
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where µj,s =
nηsTj lj,s
PjG0

, ηs = Ns(Ns!)
− 1
Ns , (a) follows from the fact that if the typical UE is as-

sociated with a jth tier BS, then SINRj,s =
PjG0hj l

−1
j,s

σj2+
K∑
k=0

Ij,k

, (b) follows from the moment generating

function (MGF) of the gamma random variable hj , (c) is due to the independence of noise and

interference terms, and follows from the fact that for the 0th tier main link, interference links come

from all K tier BSs, while for the jth tier (j ∈ K) main link, interference links come from the 0th

tier BS in addition to all K tier BSs, and (d) is obtained by taking into account that there is only

one BS in the 0th tier, and hence we rewrite the Laplace transform expression, LIj,0(µj,s), as

LIj,0(µj,s) = pL0,LOSLILOS
j,0

(µj,s) + pL0,NLOSLINLOS
j,0

(µj,s)

=
∑

a∈{LOS,NLOS}

pL0,aLIaj,0(µj,s), (A.9)

and for the jth tier, since LOS and NLOS links are independent, Laplace transform LIj,k(µj,s) can

be rewritten as

LIj,k(µj,s) = LILOS
j,k

(µj,s)LINLOS
j,k

(µj,s). (A.10)

5 Proof of Lemma 3.4

Interference from the kth Tier (k ∈ K)

Tools from stochastic geometry can be applied to compute the Laplace transform of the interference

from the LOS/NLOS BSs in the kth tier, by splitting the interference into three independent PPPs

for each effective antenna gain G ∈ {MM,Mm,mm} as follows:

Iaj,k = Ia,MM
j,k + Ia,Mm

j,k + Ia,mmj,k =
∑

G∈{MM,Mm,mm}

Ia,Gj,k , (A.11)

where a ∈ {LOS,NLOS}, Ia,Gj,k denotes the interference with random effective antenna gain G

given in (2.22) and it has a density of λjpG according to the thinning theorem of Poisson process
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[57].

Hence, Laplace transform of the interference from the kth tier can be expressed as

LIaj,k(uj,s) = E exp
(
−µj,sIaj,k

)
= E exp

(
−µj,s

∑
G

Ia,Gj,k

)

=
∏
G

E exp
(
−µj,sIa,Gj,k

)
=
∏
G

LIa,Gj,k (µj,s) , (A.12)

where G ∈ {MM,Mm,mm}, and LIa,Gj,k (µj,s) can be calculated using stochastic geometry as

follows:

LIa,Gj,k (µj,s) = e
−
∫∞
PkBk
PjBj

lj,s
(1−Ehj [exp(−µj,sPjhjGl−1

j,a)])pGΛ′k,a([0,dlk,a))

(a)
= e

−
∫∞
PkBk
PjBj

lj,s

1− 1

(1+µj,sPkGl
−1
k,a

N−1
a )

Na

pGΛ′k,a([0,dlk,a))

, (A.13)

where Na is Nakagami fading parameter and (a) follows by computing the MGF of the gamma

random variable hj .

Interference from the 0th Tier (k=0)

Since there is only one BS in the 0th tier, Laplace transform of the interference from the 0th tier

BS in a ∈ {LOS,NLOS} link, LIaj,0(µj,s), can be obtained as

LIaj,0(µj,s) = E exp(−µj,sIaj,0) = EG
[
E exp(−µj,sIa,Gj,0 )

]
=

∑
G∈{MM,Mm,mm}

pGE exp(−µj,sIa,Gj,0 ) =
∑
G

pGLIa,Gj,0 (µj,s), (A.14)

where LIs,Gj,0 (µj,s) is computed as follows:

LIa,Gj,0 (µj,s)
(a)
= EL0,a

[
Eh0

[
exp(−µj,sP0h0Gl

−1
0,a)
] ∣∣∣∣l0,a > P0B0

PjBj

lj,s

]
(b)
= EL0,a

[
1(

1 + µj,sP0Gl
−1
0,aN

−1
a

)Na
∣∣∣∣l0,a > P0B0

PjBj

lj,s

]
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(c)
=

∫ ∞
P0B0
PjBj

lj,s

1(
1 + µj,sP0Gl

−1
0,aN

−1
a

)Na fL0,a

(
l0,a

∣∣∣∣l0,a > P0B0

PjBj

lj,s

)
dl0,a

=

∫ ∞
P0B0
PjBj

lj,s

1(
1 + µj,sP0Gl

−1
0,aN

−1
a

)Na fL0,a (l0,a)

FL0,a

(
P0B0

PjBj
lj,s

)dl0,a (A.15)

where, (a) follows from the expression of Ia,Gj,0 , (b) follows from the MGF of the gamma random

variable, (c) follows from the definition of expected value with respect to L0,a.

6 Proof of Lemma 3.5

Defining the function f(l0,a) = 1

(1+µj,sP0Gl
−1
0,aN

−1
a )

Na , we have

LIa,Gj,0 (µj,s) = EL0,a

[
f(l0,a)

∣∣∣∣l0,a > P0B0

PjBj

lj,s

]
. (A.16)

Since P0B0

PjBj
lj,s ≤ l0,a ≤ ∞ and f(l0,a) is a monotone increasing function with respect to l0,a in the

region, we obtain

f

(
P0B0

PjBj

lj,s

)
≤ LIa,Gj,0 ≤ f(∞), (A.17)

leading to the bounds in Lemma 5.

7 Proof of Lemma 3.6

Using a scale parameter ς , we can express the path loss as l0,a = ςl′0,a. Again defining the function

f(l0,a) = 1

(1+µj,sP0Gl
−1
0,aN

−1
a )

Na , when the cluster size tends to infinity, we have

lim
l0,a→∞

LIaj,0 = lim
l0,a→∞

∑
G

pGEL0,a

[
f(l0,a)

∣∣∣∣l0,a > P0B0

PjBj

lj,s

]
(a)
=
∑
G

pG lim
ς→∞

EL′0,a

[
f(ςl′0,a)

∣∣∣∣ςl′0,a > P0B0

PjBj

lj,s

]
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(b)
=
∑
G

pG lim
ς→∞

∫ ∞
P0B0
ςPjBj

lj,s

f(ςl′0,a)
fL′0,a

(
l′0,a
)

FL′0,a

(
P0B0

ςPjBj
lj,s

)dl′0,a
(c)
=
∑
G

pG

∫ ∞
0

fL′0,a
(
l′0,a
)
dl′0,a

=
∑
G

pG = 1 (A.18)

where (a) is because we can change the order of summation and limit, (b) is obtained by plugging in

l0,a = ςl′0,a, (c) is obtained because as ς →∞, FL′0,a
(
P0B0

ςPjBj
lj,s

)
→ FL′0,a(0) = 1, and f(ςl′0,a)→ 1.

8 Proof for Lemma 4.1

We have

F rsi0
(x) = P(r > x|the link is s) =

P(r > x, the link is s)
P(the link is s)

=
Er[P(r > x|s)P(s)]

Ds
i0

= Ds
i0
−1

∞∫
x

fri0(r)psαi(r)dr, (A.19)

where Ds
i0 = P(s) = Eri0 [psαi(r)] is the probability that the link between the BS and its cluster

member is s. Then, we can obtain the PDF as

frsi0(x) = −
F rsi0

(x)

dx
= Ds

i0
−1fri0(x)psαi(x). (A.20)

9 Proof for Lemma 4.2

For j = 0, the probability that the typical UE is served by its own cluster center BS can

be determined as follows

Ai0,s = P(Si0,s)

(a)
= P(the typical UE is served by the cluster center BS |s)
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× P( the link is in s transmission)

(b)
= Ersi0

[
P(P0B0κ

−1
s rsi0

−αs ≥ PkBkκ
−1r−αk for k ∈ K)psαi(r

s
i0)
]

(c)
= Ds

i0Ersi0

[
P(rk ≥

(
PkBkκs
P0B0κ

rsi0
αs

) 1
α

for k ∈ K)

]
(d)
= Ds

i0Ersi0

[
K∏
k=1

∏
b

Db
kP

(
rbk ≥ (

PkBkκs
P0B0κb

rsi0
αs)

1
αb

)]
(e)
= Ds

i0Ersi0

[
K∏
k=1

∏
b

Db
kF rbk

[(Cbs
k0r

s
i0
αs)

1
αb ]

]
(A.21)

where Cbs
kj = PkBkκs

PjBjκb
, and Db

k = 1− e−2πλk
∫∞
0 xpbαk(x)dx is the probability that a UE has at least one

b ∈ {LOS,NLOS} BS in the kth tier. (a) arises from the definition of association probability and

the conditional probability. (b) is from the association criterion that in this case the 0th tier BS (the

cluster center BS) provides the largest long-term averaged biased received power. (c) comes from

that Ds
i0 = Eri0 [psαi(ri0)] is the probability that the link is in s transmission. (d) is due to the fact

that the distributions of {rbk} are independent, i.e., BSs in each tier are independent, and in the kth

tier, the LOS/NLOS BSs can be regarded as independent ( [61] has proved the dependence is weak

and can be ignored in analysis). (e) is by the application of the definition of CCDF.

For j ∈ K, similarly as in the derivation ofAi0,s, the probability that the typical UE (from

the ith tier) is associated with a LOS/NLOS BS in the jth tier can be obtained as follows

Aij,s = P(Sij,s)

(a)
= P(the typical UE is served by a LOS/NLOS BS in the jth tier BS |s)

× P( the link is in s transmission)

(b)
= Ersj

[
Ds
jP((rsj)

−αs ≥ (rs
′

j )−αs′ )P(PjBjκ
−1
s rs−αsj ≥ P0B0κ

−1r−αi0 )

× P(PjBjκ
−1
s rs−αsj ≥ PkBkκ

−1r−αk )
]

(c)
= Ersj

[
Ds
jD

s′

j P

(
rs
′

j ≥
κs′

κs
(rsj)

αs
αs′

)[∑
a

Da
i0P
(
rai0 ≥

(
Cas

0j r
sαs
j

) 1
αa

)]
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×

 K∏
k=1
k 6=j

∏
b

Db
kP
(
rbk ≥

(
Cbs
kjr

sαs
j

) 1
αb

)]

(d)
= Ersj

[
Ds
jD

s′

j F rs
′
j

(
κs′

κs
rsi

αs
αs′

)[∑
a

Da
i0F rsi0

((Cas
0j r

s
j
αs)

1
αa )
]

×

 K∏
k=1
k 6=i

∏
b

Db
kF rbk

((Cbs
kjr

s
j
αs)

1
αb )

] (A.22)

where (a) is due to the definition of association probability. In the expectation in (b), the first two

terms come from P(s), the third term is due to that the associated BS should provide larger power

than the cluster center BS of the typical UE, and the fourth term is due to that the associated BS

should provide larger power than the kth(k 6= j) tier BSs. In (c), the second term is due to the fact

that there is only one cluster center and P(rj0 > (Crαs)
1
α ) = P(rj0 > (Crαs)

1
αLOS |LOS)P(LOS) +

P(rj0 > (Crαs)
1

αnLOS |NLOS)P(NLOS), and the third term follows the same reason as in part 1)

step (d). (d) is by the application of the definition of CCDF.

10 Proof of Theorem 4.1

Given Sij,s, the SINR coverage probability can be obtained as follows:

P c
Cij,s

= P(SINRij,s > Tj|Sij,s)
(a)
= P

 PuG0hjκ
−1
s r−αsij,s

σ2
n + Ij0 +

Ku∑
k=1

Ijk

> Tj


= P

(
hj >

Tjκsr
αs
ij,s

PuG0

(
σ2
n + Ij0 +

Ku∑
k=1

Ijk

))
(b)
= Erij,s

[
exp

(
−
Tjκsr

αs
ij,s

PuG0

(
σ2
n + Ij0 +

Ku∑
k=1

Ijk

))]
(c)
= Erij,s

[
e−µ

s
ijσ

2
nLIi0(µsij)

Ku∏
k=1

LIik(µsij)

]
, (A.23)
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where µsij =
Tiκsr

αs
ij,s

PuG0
, and LI(µ) = Eexp(−µI) is the Laplace transform of I evaluated at µ. (a)

follows from the expression of SINR given Sij,s is true. (b) follows from the MGF of h ∼ exp(1).

(c) is due to the fact that the noise component and the interference from each tier are independent

of each other. Note that when Ij0 = 0, LIi0(µsij) = 1.

11 Proof of Theorem 4.2

1) For k ∈ K, we have LIik(µsij) =
∏

G

∏
a∈{L,N} LIGaik (µsij). Using xjk,n to denote the vector from

the reference BS to the nth BS in the kth tier, and yk0 to denote the vector from the kth tier BS to

its active cluster member UE, we get rjk,n = ||xjk,n + yk0||.

LIGajk (µsij) = E[exp(−µsijIGajk )]
(a)
= E

[
exp

(
−µsij

∑
n∈Φk

PuGhkκ
−1
a r−αajk,n

)]

= E

[∏
n∈Φk

Ehk
[
exp(−µsijPuGhkκ−1

a r−αajk,n )
]] (b)

= E

[∏
n∈Φk

1

1 + µsijPuGκ
−1
a r−αajk,n

]

= E

[∏
n∈Φk

1

1 + µsijPuGκ
−1
a ||xjk,n + yk0||−αa

]

= Exjk,n

[∏
n∈Φk

Eyk0

[
1

1 + µsijPuGκ
−1
a ||xik,n + yk0||−αa

]]

(c)
= e

−
∫

R2 λ
′
u

(
1−Eyk0

[
1

1+µs
ij
PuGκ

−1
a ||xjk,n+yk0||−αa

])
dxjk,n

(d)
= e

−
∫

R2 λ
′
uEyk0

[
1

1+(µs
ij
PuGκ

−1
a ||xjk,n+yk0||−αa )−1

]
dxik,n

(e)
= e

−
∫

R2

∫
R2 λ

′
u

(
1

1+(µs
ij
PuGκ

−1
a ||xjk,n+yk0||−αa )−1

)
fY (yk0)dyk0]dxjk,n

(f)
= e

−2π
∫∞
0

∫∞
0 λ′u

(
1

1+(µs
ij
PuGκ

−1
a r
−αa
jk,n

)−1

)
fR(rjk,n|vjk,n)drjk,nvjk,ndvjk,n

(g)
= e

−2π
∫∞
0 λkpGp

a
αk(rjk,n)

(
1

1+(µs
ij
PuGκ

−1
a r
−αa
jk,n

)−1

)
rjk,ndrjk,n

(A.24)
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where λ′u = pGλ
jk
us(r) = pGp

s
αk(r)λk. By the definition of interference, we obtain (a). (b) follows

from the fact that h ∼ exp(1). (c) is due to the computation of the probability generating function

(PGFL) of PPP, which describes the distribution of BSs, since we compute the expectation with

respect to xjk,n in this step. (d) is determined from the fact that 1− E[ 1
1+x

] = E[ x
1+x

] = E[ 1
1+x−1 ].

(e) follows by plugging in the expression of the expected value with respect to yk0. (f) is obtained

by converting the coordinates from Cartesian to polar, and vjk,n = ||xjk,n||. (g) follows from an

approximation based on the property of the Rician distribution that
∫∞

0
fR(r|v)vdv = r.

2) For k = 0, we have

LIj0(µsij) =
∑
G

∑
a∈{L,N}

pGD
a
j0LIGaj0 (µsij) (A.25)

and since only one UE in the cluster inflicts interference, which can be via either a LOS or NLOS

link, and the antenna gain is selected from {MM,Mm,mm}, we can express

LIGaj0 (µsij) = Eexp(−µsijIGaj0 ) = Eexp
[
−µsijPuGhκ−1

a r−αaj0

]
(a)
=

∫ ∞
0

1

1 + µsijPuGκ
−1
a r−αaj0

fRsj0(rj0)drj0 (A.26)

where (a) is obtained by using the MGF of h ∼ exp(1).

12 Proof of Lemma 4.3

1) For the interfering cluster member UEs k = 0, we have

LIGaj0mb(µ
s
ij) = Eexp(−µsijIGaj0 ) = Eexp

[
−µsij(κbtαb)τGhκ−1

a r−αaj0

]
(a)
=

∫ ∞
0

∫ ∞
0

1

1 + µsij(κbt
αb)τGκ−1

a r−αaj0

f̂rkm,b(t)fRsj0(rj0)dtdrj0 (A.27)

where (a) is obtained by computing the expectation with respect to t and applying the MGF of h.
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2) For k ∈ Ku, we have

LIGajkmb(µ
s
ij) = E[exp(−µsijIGajkmb)] = E

[
exp

(
−µsij

∑
n∈Φk

(κbt
αb)τGhkκ

−1
a r−αajk,n

)]

= E

[∏
n∈Φk

E
[
exp(−µsij(κbtαb)τGhkκ−1

a r−αajk,n )
]] (a)

= E

[∏
n∈Φk

Et

[
1

1 + µsij(κbt
αb)τGκ−1

a r−αajk,n

]]

(b)
= e

−2πAkm,b
∫∞
0 λkpGp

a
αk(rjk,n)

(
1−Et

[
1

1+µs
ij

(κbt
αb )τGκ−1

a r
−αa
jk,n

])
rjk,ndrjk,n

(c)
= e

−2πAkm,b
∫∞
0 λkpGp

a
αk(rjk,n)

(
1−
(∫∞

0

f̂rkm,b(t)

1+µs
ij

(κbt
αb )τGκ−1

a r
−αa
jk,n

dt

))
rjk,ndrjk,n

(A.28)

where (a) is obtained by applying the MGF of h, (b) is due to the computation of the PGFL of

PPP, and (c) is the expectation with respect to t, which is the distance from the interfering UE to

its serving BS.

13 Proof of Lemma 4.4

Given the special case, we have

A10 = Eri0

[
F r1(r)F r2

((
P2B2

P1B1

) 1
2

r

)]
=

∫ ∞
0

eπλ1r2

e
πλ1r2 P2B2

P1B1
r

σ2
e−

r2

2σ2 dr

=
1

σ2

∫ ∞
0

re
−(πλ1+πλ1

P2B2
P1B1

+ 1
2σ2 )r2

dr =
1

σ2

∫ ∞
0

re−C0r2

dr

=
1

σ2

(
− 1

2C0

e−C0r2

) ∣∣∣∣∞
0

=
1

2C0σ2
(A.29)

Following a similar approach, we can obtain A11 and A12. Then, we can have the PDFs of the

conditional distances as f̂r10(x) = x
σ2 e
−C0x2

/A10, f̂r11(x) = 2πλ1xe
−C0x2

/A11, and f̂r12(x) =

2πλ2xe
−C2x2

/A12, where C0 and C2 are given in Lemma 4. Using the PDFs, we can be calculate

the SNR coverage probability as

P c
C10

= Er10

[
e−µσ

2
n

]
=

∫ ∞
0

e
− Tσ2

n
PuG0

r2 r

σ2
e−C0r2

/A10dr =
1

2σ2(C0 + Tσ2
n

PuG0
)A10

. (A.30)
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P c
C11

and P c
C12

can be obtained similarly.

14 Proof of Theorem 6.1

Given that the typical UE is associated with a s ∈ {L,N} BS in the 1st tier, the association

probability can be derived as follows:

As1 = P(Ss1)
(a)
= P(P1l

s
1 > P1l

s′

1 ∩ P1l
s
1 > P2l

L
2 ∩ P1l

s
1 > P2l

N
2 ∩ P1L

s
1 > P3l3)

(b)
= P(P1l

s
1 > P1l

s′

1 )P(P1l
s
1 > P2l

L
2 )P(P1l

s
1 > P2l

N
2 )P(P1L

s
1 > P3l3)

= P(κs1e
−κxx−α

s
1 > κs

′

1 e
−κxr

−αs′1
1 )P(P1κ

s
1e
−κxx−α

s
1 > P2κ

L
2 (r2

2 +H2
2 )−α

L
2 /2)

P(P1κ
s
1e
−κxx−α

s
1 > P2κ

N
2 (r2

2 +H2
2 )−α

N
2 /2)P(P1κ

s
1e
−κxx−α

s
1 > P3κ

3(r2
3 +H2

3 )−α3/2)

(c)
≈ P(κs1x

−αs1 > κs
′

1 r
−αs′1
1 )P(P1κ

s
1x
−αs1 > P2κ

L
2 (r2

2 +H2
2 )−α

L
2 /2)

P(P1κ
s
1x
−αs1 > P2κ

N
2 (r2

2 +H2
2 )−α

N
2 /2)P(P1κ

s
1x
−αs1 > P3κ

3(r2
3 +H2

3 )−α3/2)

= P

(
r1 >

(
κs
′

1

κs1
xα

s
1

) 1

αs
′

1

)
P

r2 >

((
P2κ

L
2

P1κs1
xα

s
1

) 2

αL2 −H2
2

) 1
2


P

r2 >

((
P2κ

N
2

P1κs1
xα

s
1

) 2

αN2 −H2
2

) 1
2

P

r3 >

((
P3κ3

P1κs1
xα

s
1

) 2
α3

−H2
3

) 1
2


(d)
= ERs1

[
FRs

′
1

[(
κs
′

1

κs1
xα

s
1

) 1

αs
′

1

]
FRL2

((P2κ
L
2

P1κs1
xα

s
1

) 2

αL2 −H2
2

) 1
2


FRN2

((P2κ
N
2

P1κs1
xα

s
1

) 2

αN2 −H2
2

) 1
2

FR3

((P3κ3

P1κs1
xα

s
1

) 2
α3

−H2
3

) 1
2

]

(A.31)

where (a) is due to the definition of association probability. (b) is due to the fact that the thinned

PPPs can be assumed independent. We replace the exponential decay with 1 for analysis tracka-

bility in (c), and this approximation is proved suitable through numerical simulation in Section V.

And (d) is due to the fact the if the nearest distance from a jth tier BS to the typical UE rj is larger
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than a certain value, then all the distances in that tier is larger than that value, and then we can use

CCDFs of the nearest distances provided in (4.3) and (2.4). Using the same method, we can derive

As2 and A3.

15 Proof of Theorem 6.2

According to [160, 197, 205], for a normalized Gamma random variable u ∼ Γ(N, 1
N

), the prob-

ability P(u < x) can be tightly upper-bounded by P(u < x) < (1 − e−ax)N , where the constant

x > 0 and a = N(N !)
1
N . Therefore, we have

M s
j = P(Pms

j > T ) = Er[P(Pms
j > T |r)]

=

∫ ∞
0

P(PjG
m
j h
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j l

s
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(a)
≈
∫ ∞

0

(
1− (1− e

− ξNsT
PjG

m
j
ls
j
(r) )N
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sT
PjG

m
j
ls
j
(r)

)
f̂Rsj (r)dr

=
Ns∑
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(
N s
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)∫ ∞
0

e
− nξsN

sT
PjG

m
j
ls
j
(r) f̂Rsj (r)dr (A.32)

where (a) is obtained by using the Gamma random variable approximation, and (b) is due to the

Binomial theorem and the assumption that Ns is an integer.

16 Proof of Theorem 6.3

The Laplace transform of the interference from the kth tier can be derived as follows:

LIk(µ) = E[e−µIk ]

= E[es
∑
i∈Φk\Q(r) I

i
k ]
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(a)
= exp

(
−
∫
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(1− E[e−µI
i
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)
(b)
= exp
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(A.33)

where r is the distance of the main link and x is the 2D length of one interfering link. (a) is due

to the moment generating functional (MGFL) of PPP. (b) follows the fact that each interfering

link can be in LOS/NLOS transmission and the antenna gain can be GG
j . We expressed the area

increment dS by distance increment 2πxdx in (c). And (d) comes from the application of the

moment generating function (MGF) of gamma distribution E[e−µI
i
j ] = E[e−µPjG

G
j h

ilsj (x)] = (1 +

µPjG
G
j l
s
j(x))N s)−N

s .

17 Proof of Theorem 6.4

Given the typical UE is served by a s BS in the jth tier, the SINR can be expressed in (6.17).

Therefore, the conditional SINR coverage probability can be derived as follows:
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(A.34)
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where r is the distance from a UE to its serving BS, the PDF of which is f̂Rsj (r) given in (6.9). (a)

is due to the MGF of hs, and (b) is obtained by using the expectation with respect to r.

18 Proof of Lemma 7.1

We can express the CCDF as

FRs0
(x) = P(r > x|the link can be s) =

P(r > x, the link is s)
P(the link can be s)

=
ED[P(r > x|s,D)P(s|D)]

Ds
0

= (Ds
0)−1ED[P(

√
D2 +H2 > x|s,D)psj(
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D2 +H2)]

= (Ds
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√
x2 −H2)psj(

√
D2 +H2)]

= (Ds
0)−1

∫ ∞
√
x2−H2

psj(
√
d2 +H2)fD(d) dd (A.35)

where x ≥ H , s ∈ {LOS,NLOS}, and Ds
0 =

∫∞
0
psU(r)fR0(r)dr is the probability that the link

between the typical UE and its cluster center UAV is in s transmission.

Therefore, we can get the PDF as follows:

fRs0(x) = −
dFRs0

(x)

dx
=

x√
x2 −H2

psU(x)fD(
√
x2 −H2)/Ds

0.

19 Proof of Lemma 7.2

Let us define two events S1 = {The typical UE is associated with a jth tier BS} and S2 = {The

associated link is in s ∈ {LOS,NLOS} transmission}. Now we have

Aj,s
(a)
= P(S1S2)

(b)
= P(S2)P(S1|S2) (A.36)

where (a) is due to the definition of the association probability, and (b) follows from the Bayes’

theorem.
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The association probability of the 0th tier UAV

A0,s
(a)
= Ds

0P(P0B0L
−1
0,s > PkBkL

−1
k , k ∈ {1, 2}) = Ds
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(A.37)

where Ckj = PkBk
PjBj

, Qsb
kj(r) =

(
PkBkκ

s
j

PjBjκbk
rα

s
j

) 1

αb
k , Ds

0 =
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0
psU(r)fR0(r)dr is the probability that the

link from the typical UE to its own cluster center UAV can be in s transmission, and (a) is due to

the fact that there is only one UAV in the 0th tier and the LOS BSs and NLOS BSs in the 1st and

2nd tier are independent.

The association probability of the jth tier BSs

Aj,s = P(L−1
j,s > L−1
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(A.38)

where s, s′ ∈ {LOS,NLOS}, s′ 6= s, Ds
j = 1 − e−2πλj

∫∞
0 tpsj(t)dt is the probability that the typical

UE has at least one LOS/NLOS jth tier BS around.
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20 Proof of Theorem 7.1

Given Sj,s = {The typical UE is associated with a LOS/NLOS BS in the jth tier}, we can express

the conditional energy coverage probability as

P c
Ej,s

(ρ, τ, γE)
(a)
= P(τ(1− ρ)(Pm + I > γE|Sj,s)

(b)
=

N∑
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(
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n
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E
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(
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(−1)n
(
N

n

)
E

[ (
1 + âPjG(κsjr

αsjNs)
−1
)−Ns∏

k

LIk(â)

]
(A.39)

where Pm is the received power of the main link, I = I0 + I1 + I2 is the total interference,

â = anτ(1−ρ)
T

, a = N(N !)−
1
N . (a) follows from the definition of energy coverage. (b) is modified

from [197, Appendix A]. (c) is due to the independence of Pm, I0, I1 and I2 given Sj,s. (d) is

calculated by using the MGF of a normalized Gamma random variable.

For I0

Since I0 only exists when the typical UE is associated with the 1th tier UAVs or the 2nd tier GBSs,

we have

LI0(â)
(a)
=
∑
G

∑
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pGD
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(â) (A.40)
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where s, b ∈ {LOS,NLOS},G ∈ {MbMu,Mbmu,mbMu,mbmu, }, pG is the probability forG, (a)

is due to the fact that there is only one BS in the 0th tier which can be in LOS or NLOS transmission

with antenna gain G, and (b) is because of the MGF of a normalized Gamma random variable.

For Ik (k = 1, 2)

LIk(â) =
∏
G

∏
b

LIbGk (â) (A.42)

LIbG0
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= e
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1+âPkG(κbkr
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k Nb)

−1

)−Nb)
pbk(rk)rkdrk

(A.43)

where Bd2 = max(H,Qsb
kj(r)) for k = 1, and Bd2 = Qsb

kj for k = 2. (a) follows by computing the

MGFL of PPP.

Therefore, by substituting (A.40) - (A.43) into (A.39), we can obtain (7.22).

21 Proof of Theorem 7.2

Given Sj,s, we can express the conditional successful transmission probability as

P c
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= P c
Ej,s

(ρ, γE)(1− F̂I (ω)) + P c
SINRj,s

(ρ, γsinr)F̂I (ω) (A.44)

where T1 = γE
τ(1−ρ)

− I , T2 = γsinr

(
σ2
c

ρ
+ σ2

n + I
)

, ω = 1
1+γsinr

(
γE

τ(1−ρ)
− γsinr

(
σ2
c

ρ
+ σ2

n

))
,

F̂I(x) is the CCDF of I , (a) follows from the definition of the successful transmission probability,

(b) is due to the fact that given I , the indicator function is a constant and is independent to Pm,

(c) follows from the definition of energy and SINR coverage probability and ω is obtained by

γE
τ(1−ρ)

− I > γsinr

(
σ2
c

ρ
+ σ2

n + I
)

.

Since F̂I(x) = P(I > x) and this is similar as the energy coverage probability when Pm = 0,

we can obtain the expression of F̂I(x) following the derivation in Appendix 7.1 by replacing γE

and ρ with x and 0.

22 Proof of Theorem 7.3

We can express the SINR coverage probability in the uplink phase as

PUL
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(A.45)

where µULs =
nηsγULr

αsU
0

PULt G0ksU
and (a) follows by computing the MGF of the gamma random variable

h0. LIbuser(µ
UL
s ) is the Laplace transform expression and can be further analyzed as follows:

LIbuser(µ
UL
s ) =

∏
G

LIbGuser(µ
UL
s ) (A.46)
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where
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(A.47)

where y is the coordinate of the interfering UE with respect to the projection of its cluster center, x

is the coordinate of the ground projection of that cluster center with respect to the ground projection

of the typical UAV, and w = ||x|| and v = ||x + y||. (a) is due to the MGF of hi. (b) follows from

the definition of expectation. (c) is due to the computation of the PGFL of PPP. (d) is obtained by

converting the coordinates from Cartesian to polar.
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