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ABSTRACT

Over the past decade, wireless data traffic has experienced an exponential growth, especially with
multimedia traffic becoming the dominant traffic, and such growth is expected to continue in the
near future. This unprecedented growth has led to an increasing demand for high-rate wireless
communications. Key solutions for addressing such demand include extreme network densifica-
tion with more small-cells, the utilization of high frequency bands, such as the millimeter wave
(mmWave) bands and terahertz (THz) bands, where more bandwidth is available, and unmanned
aerial vehicle (UAV)-enabled cellular networks. With this motivation, different types of advanced
wireless networks are considered in this thesis. In particular, mmWave cellular networks, networks
with hybrid THz, mmWave and microwave transmissions, and UAV-enabled networks are studied,
and performance metrics such as the signal-to-interference-plus-noise ratio (SINR) coverage, en-
ergy coverage, and area spectral efficiency are analyzed. In addition, UAV path planning in cellular
networks are investigated, and deep reinforcement learning (DRL) based algorithms are proposed
to find collision-free UAV trajectory to accomplish different missions.

In the first part of this thesis, mmWave cellular networks are considered. First, K -tier hetero-
geneous mmWave cellular networks with user-centric small-cell deployments are studied. Partic-
ularly, a heterogeneous network model with user equipments (UEs) being distributed according
to Poisson cluster processes (PCPs) is considered. Distinguishing features of mmWave communi-
cations including directional beamforming and a detailed path loss model are taken into account.
General expressions for the association probabilities of different tier base stations (BSs) are deter-
mined. Using tools from stochastic geometry, the Laplace transform of the interference is charac-
terized and general expressions for the SINR coverage probability and area spectral efficiency are
derived. Second, a distributed multi-agent learning-based algorithm for beamforming in mmWave
multiple input multiple output (MIMO) networks is proposed to maximize the sum-rate of all UEs.

Following the analysis of mmWave cellular networks, a three-tier heterogeneous network is



considered, where access points (APs), small-cell BSs (SBSs) and macrocell BSs (MBSs) transmit
in THz, mmWave, microwave frequency bands, respectively. By using tools from stochastic ge-
ometry, the complementary cumulative distribution function (CCDF) of the received signal power,
the Laplace transform of the aggregate interference, and the SINR coverage probability are deter-
mined.

Next, system-level performance of UAV-enabled cellular networks is studied. More specifi-
cally, in the first part, UAV-assisted mmWave cellular networks are addressed, in which the UE
locations are modeled using PCPs. In the downlink phase, simultaneous wireless information and
power transfer (SWIPT) technique is considered. The association probability, energy coverages
and a successful transmission probability to jointly determine the energy and SINR coverages are
derived. In the uplink phase, a scenario that each UAV receives information from its own cluster
member UEs is taken into account. The Laplace transform of the interference components and the
uplink SINR coverage are characterized. In the second part, cellular-connected UAV networks is
investigated, in which the UAVs are aerial UEs served by the ground base stations (GBSs). 3D
antenna radiation combing the vertical and horizontal patterns is taken into account.

In the final part of this thesis, deep reinforcement learning based algorithms are proposed for
UAV path planning in cellular networks. Particularly, in the first part, multi-UAV non-cooperative
scenarios is considered, where multiple UAVs need to fly from initial locations to destinations,
while satisfying collision avoidance, wireless connectivity and kinematic constraints. The goal is
to find trajectories for the cellular-connected UAVs to minimize their mission completion time.
The multi-UAV trajectory optimization problem is formulated as a sequential decision making
problem, and a decentralized DRL approach is proposed to solve the problem. Moreover, multiple
UAV trajectory design in cellular networks with a dynamic jammer is studied, and a learning-based
algorithm is proposed. Subsequently, a UAV trajectory optimization problem is considered to
maximize the collected data from multiple Internet of things (IoT) nodes under realistic constraints.
The problem is translated into a Markov decision process (MDP) and dueling double deep Q-

network (D3QN) is proposed to learn the decision making policy.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 MmWave and Terahertz Communication Networks

In the presence of the severe spectrum shortage in conventional cellular bands, millimeter wave
(mmWave) frequencies between 30 and 300 GHz have been attracting growing attention for de-
ployment in next-generation wireless heterogeneous networks [1]. Larger bandwidths available in
mmWave frequency bands make them attractive to meet the exponentially growing demand in data
traffic [2]. On the other hand, communication in mmWave frequency bands has several limitations
such as increase in free-space path loss with increasing frequency and poor penetration through
solid materials. However, with the use of large antenna arrays by utilizing the shorter wavelengths
of mmWave frequency bands, and enabling beamforming at the transmitter and receiver, frequency
dependent path loss can be compensated [3]. Additionally, with the employment of directional an-
tennas, out-of-cell interference can be substantially reduced.

Furthermore, to realize the vision of next-generation 6G wireless networks supporting, there
is interest in moving to even higher frequencies in the terahertz (THz) band of 0.1 - 10 THz.

However, THz transmissions also encounter a challenging propagation environment. For instance,



compared to the ultra-high frequency and mmWave frequency bands, electromagnetic waves in
THz bands experience high molecular absorption loss in addition to spreading loss and scattering
attenuation [4-7]. The ultimate effect is a more complex path loss model that additionally includes
an exponential decay in power [8]. Human-body blockage effects also have a strong impact on the
communication quality of THz channels [6]. Moreover, THz waves cannot reach objects that are
behind obstacles whose dimensions are greater than the wavelength. Effectively, any object whose
size is greater than few millimeters including users themselves, acts as a blocker. Transceivers
operating in THz bands are expected to be characterized by high antenna directivities in both
transmit and receive directions [8] to compensate such severe path loss. And this would in turn

have significant influence on the interference levels and the coverage performance [6].

1.1.2 User-Centric Deployment of Small Cells in Heterogeneous Net-

works

Heterogeneous cellular wireless networks are being developed to support higher data rates to sat-
isfy the increasing user equipment (UE) demand for broadband wireless services, by supporting
the coexistence of denser but lower power small-cell base stations (BSs) with the conventional
high-power and low density macrocell BSs [9-12].

While macrocell BSs were deployed fairly uniformly to provide a ubiquitous coverage blanket,
the small-cell BSs are deployed to complement capacity of the cellular networks or to patch the
coverage dead zones [13]. A common approach is to model the locations of BSs and UEs ran-
domly and independently using the Poisson point process (PPP) distribution. However, assuming
BS and UE locations independent from each other may not be quite accurate all the time. In prac-
tice, while macrocell BSs are deployed fairly uniformly to provide a ubiquitous coverage blanket,
several types of small-cells, such as picocells, are deployed to enhance coverage and capacity [14].
Therefore, the small-cell BSs are expected to be deployed in crowded areas or hotspots to patch
coverage dead-zones. In addition, in such areas (high-density areas and hotspots), UEs are very

likely to be clustered, e.g., in coffee shops, bookstores, subway/bus stations, sports/concert cen-



ters. Moreover, PPP-based models will not correctly reflect the locations of the non-uniformly
distributed UEs. In such cases, it is important to accurately capture not only the non-uniformity
but also the coupling across the locations of the UEs and small-cell BSs [15]. In such architectures,
one can envision the small-cells being deployed to serve clusters of UEs. Such models have been
used by the standardization bodies, such as third generation partnership project (3GPP). 3GPP has
considered the clustered configurations in which locations of the user and small-cell BSs are cou-
pled, in addition to the uniformly distributed UEs [16]. Among different point processes, Poisson
cluster processes (PCPs) have been shown to lead to realistic and accurate models for character-
izing the statistical nature of user-centric BS deployments and clustered UE distributions in urban
areas [17]. The authors in [13] have proved that the model in which UEs are distributed according
to PCP around PPP distributed small-cell BSs closely resemblances the 3GPP configuration of sin-
gle small-cell BS per UE hotspot in a heterogeneous network. Therefore, user-centric deployment
of small cells is becoming an important part of future wireless architectures [18] in heterogeneous

networks.

1.1.3 UAV-Enabled Networks

Unmanned aerial vehicles (UAVs), also commonly known as drones, are aircrafts piloted by remote
control or embedded computer programs without human onboard [19]. UAVs have been one of the
main targets of industrial and academic research in recent years. Initially, UAVs were primarily
used in military applications. With the advances in the technology, UAVs have become lighter,
cheaper and easier to deploy, and have gradually entered civilian life. In particular, due to their
mobility, autonomy and flexibility, UAVs can be used in a variety of real-world scenarios, such
as delivery of medical supplies, disaster relief, environment monitoring, aerial surveillance and
inspection, traffic control, and emergency search and rescue [20, 21]. If properly deployed and
operated, UAVs can also provide reliable and cost-effective wireless communications, such as
in large-scale temporary events and disaster scenarios, and support capacity enhancement in the

occasional demand of super dense base stations [22, 23]. Therefore, UAVs are expected to be



integrated into next-generation wireless networks.

Due to the advantages of UAVs, UAV-enabled communication is expected to be a critical part
of future wireless communication networks. More specifically, in order to take advantage of flex-
ible deployment opportunities and high possibility of LoS connections with ground UEs, UAVs
can deployed as BSs/relays to support wireless connectivity and improve the performance of cel-
lular networks [23]. The flexibility of aerial BSs/relays allows them to adapt their locations to
the demand of UEs, leading to a UAV-assisted cellular network architecture. On the other hand,
UAVs in certain applications will be regarded as aerial UEs that need to be supported by the ground
communication infrastructure, which brings both opportunities and challenges to cellular commu-
nications. These aerial UEs can be referred to as cellular-connected UAVs that access the cellular
network from the sky for data communications [24].

As aerial BSs, UAVs can be used as (quasi-)stationary aerial communication plateforms which
remain static for a very long period of time once deployed [19]. Under such a setup, extensive
research effort has been devoted to UAV placement optimization and performance analysis by
taking into account the unique characteristics of air—to-ground channels. One important issue is
to validate/evaluate its performance after/before the deployment [19]. This can be achieved by
conducting experimental field test [25], and computer-based simulations [26, 27] or theoretical
analysis [28-30], respectively. Specifically, theoretical performance analysis can not only pre-
dict the expected performance of the system to be deployed without extensive simulations time,
but also provide useful guidelines and insights to design the UAV-assisted system. On the other
hand, UAVs can be used as dynamic BSs to serve stationary/mobile UEs in static/changing envi-
ronments. UAVs have shown particular promising in collecting data from distributed Internet of
Thing (IoT) sensor nodes, as IoT operators can deploy UAV data harvester in the absence of other
expensive cellular infrastructure nearby [31]. UAV trajectory design scheme allows the UAVs to
adapt their movement based on the rate requirements of both the UAV-UEs and the ground UEs,
thus improving the overall network performance [32].

Cellular-connected UAV is a cost-effective solution since it reuses the millions of ground base



stations (GBSs) without the need of building new infrastructure [19]. As aerial UEs, the UAVs need
efficient trajectories and also should keep connected with GBSs during their flights. Therefore, the
trajectory of cellular-connected UAVs need to be carefully designed to meet their mission speci-
fications, while at the same time ensuring that the communication requirements are satisfactorily
met.

In scenarios involving multiple UAVs or more generally multiple autonomous systems, a fun-
damental challenge is to safely control the interactions with other dynamic agents in the environ-
ment. Specifically, it is important for the autonomous devices (e.g., robots and drones) to navigate
in an environment with or without obstacles, and stay free of collisions with each other and the
obstacles, based on local observations of the environment. Finding solutions to this problem is
challenging, since one robot’s action is based on others’ motions (intents) and policies which are
in general unknown, and, furthermore, explicit communication of such hidden quantities is often
impractical due to physical limitations. In addition, the UAV-enabled wireless communication sys-
tems can be easily vulnerable to jamming and eavesdropping attacks due to the broadcast nature
of wireless transmissions [33]. In particular, jamming is a malicious attack whose objective is to
disrupt the communication in the victim network by intentionally causing interference at the re-
ceiver side [34]. Once attacked, the quality of communication will decline, leading even to link
loss and mission interruptions. Therefore, finding jamming-resilient UAV trajectory is challenging

and important.

1.1.4 Deep Reinforcement Learning

Reinforcement learning (RL) is the study of how an agent can interact with its environment to
learn a policy which maximizes expected cumulative rewards for a task [35]. RL has experienced
dramatic growth recently due to promising results in areas like: controlling continuous systems
in robotics [36], playing Go [37], Atari [38], and competitive video games [39,40], communica-
tions and networking [41]. However, regular RL algorithms can require substantial time to reach

the best policies as they have to explore and gain knowledge of an entire system [41], making



them unsuitable and inapplicable to solve problems with large-scale state/action spaces. In deep
learning, deep neural networks can automatically find compact low-dimensional representations
(features) of high-dimensional data (e.g., images, text and audio) [42]. As a result, deep reinforce-
ment learning (DRL), a combination of RL with deep learning, has been developed to overcome
the shortcomings of RL. In the areas of communications and networking, DRL has been recently
used as an emerging tool to effectively address various problems and challenges . In particular,
DRL has been applied to solve problems in networks, such as IoT networks [43-45], heteroge-
neous networks [46—48], and UAV networks [49-54], in which the network entities such as IoT
devices, mobile UEs, and UAVs need to make local and autonomous decisions, e.g., spectrum ac-
cess, data rate selection, transmit power control, BS association, and path planning, to achieve the

goals.

1.2 Related Prior Work

1.2.1 MmWave Cellular Networks

Heterogeneous mmWave cellular networks have been addressed in several recent studies. An
energy-efficient mmWave backhauling scheme for small cells in 5G is considered in [55], where
the small cells are densely deployed and a macrocell is coupled with small cells to some extent.
Mobile users are associated with BSs of the small cells, and have the communication modes of both
fourth-generation access and mmWave backhauling operation. The macrocell BS and small-cell
BSs are also equipped with directional antennas both for 4G communications and transmissions in
the mmWave band. A general multi-tier mmWave cellular network is studied in [56] and [57]. The
BSs in each tier are distributed according to a homogeneous PPP with certain densities. Moreover,
in [56] a two-ball approximation is considered, modeling the state of links in line-of-sight (LOS),
non-LOS (NLOS), and outage. In [57], a K -tier heterogeneous mmWave cellular network is con-
sidered, and signal-to-interference-plus-noise-ratio (SINR) coverage probability is derived by in-

corporating the distinguishing features of mmWave communications, and a D-ball approximation



for blockage modeling is employed. In [58], authors investigate an ultra dense heterogeneous net-
work, and study the energy efficient BS deployment considering LOS and NLOS transmission. [59]
discusses how to combine a realistic mmWave channel model with a tractable network analysis,
and derives the signal-to-interference ratio (SIR) coverage probability. The coverage probability
in urban areas is derived for a heterogeneous mmWave network in [60].

Recent studies have addressed the uplink analysis in mmWave networks. In [61], a frame-
work to evaluate the SINR coverage in the uplink of mmWave cellular networks with fractional
power control (FPC) is presented. Conventional path loss based FPC and distance based FPC are
considered. The locations of LOS UEs and NLOS UEs are modeled as two independent non-
homogeneous PPPs which are independent of the locations of BSs. A hybrid network with tradi-
tional sub-6 GHz macrocells coexisting with mmWave small-cells is addressed in [62] and [63].
The authors in [62] have analyzed the decoupled downlink and uplink association strategies.
In [63], different decoupled uplink and downlink cell association strategies are investigated based
on two different criteria, namely maximum biased received power and maximum achievable rates.
Similarly as in mmWave studies, a path loss model incorporating both LOS and NLOS transmis-
sions in uplink of dense small-cell networks is considered in [64]. Additionally, the UE density
is assumed to be higher than the BS density, while they are still spatially distributed according to
independent PPPs. Moreover, the energy efficiency maximization problem were investigated for

uplink mmWave systems with non-orthogonal multiple access (NOMA) in [65, 66].

1.2.2 Terahertz Communication Networks

Recently, there has been increasing interest in THz communications. In [67], the authors have
derived a expression for the coverage probability of downlink transmission in THz communication
systems within a three-dimensional (3D) environment. A 3D propagation model that took into
account the molecular absorption loss, 3D directional antennas at both access points (APs) and
UEs, interference from nearby access points and dynamic blockages caused by moving humans,

was established. Coverage probability was evaluated based on the dominant interference analysis.



In [68], on the basis of THz channel modeling, the interference from surrounding omnidirectional
nanosensors and beamforming base stations were derived in closed-form by using stochastic ge-
ometry methods. SINR coverage probability was obtained. The authors in [7] studied the systems
operating in the mmWave and THz bands by explicitly capturing three phenomena inherent at these
frequencies: 1) high directivity of the transmit and receive antennas; 2) molecular absorption; and
3) blocking of high-frequency radiation. A cone model and a cone-plus-sphere model were consid-
ered for antenna radiation patterns. Mean interference and SINR were investigated. In [4], mean
interference power and probability of outage in THz networks were studied. The authors showed
that the log-logistic distribution provided a good fit for the SIR distribution in the case of two di-
mensional (2D) path loss, but failed to estimate the interference distribution for 3D path loss. [8]
provided analytical approximations for the probability density function (PDF) of interference from
a randomly chosen node, and derived the Laplace transform of the aggregated interference and the
SIR of the network. The authors showed that failure to capture the atmospheric absorption, block-
ing or antenna directivity leads to significant modeling errors. In the aforementioned prior studies,
small-scale fading was not considered, and the distance from the typical UE to the serving AP was
assumed fixed and known. A more general model is addressed in [6], where the typical UE was
assumed to be served by the nearest AP, and the exact distribution of the received signal power
and the approximated distribution of the interference with its moments were derived. However,
the coexistence of the transmission in microwave and mmWave frequency bands are not taken into

account either.

1.2.3 User-Centric Small Cell Deployment

Several recent studies have attempted to model the UEs as clustered around the small-cell BSs. A
unified HetNet model in which a fraction of UEs and some BS tiers are modeled as PCPs is de-
veloped in [13] to reduce the gap between the real-word deployments and the popular PPP-based
analytical model. In [69], the authors consider Neyman-Scott cluster process, in which the centers

of the clusters and cluster members are assumed to be distributed according to some stationary



PPP independent from each other. Although the cluster process is considered, the correlation be-
tween the locations of the cluster centers and members is not taken into account. In [70], PPP-PCP
model is employed in which macrocell BS locations are modeled according to a PPP, while pico-
cell BS locations are distributed according to a PCP. Authors investigate the effect of the distance
between the BS and UEs on coverage probability. In [71], a multi-cell uplink non-orthogonal mul-
tiple access system is provided. BSs are distributed according to a homogeneous PPP, and UEs
are uniformly clustered around the BSs within a circular region. Three scenarios are considered
in [71], including perfect successive interference cancellation (SIC), imperfect SIC and imperfect
worst case SIC at the receiver side. Moreover, the Laplace transform of the interference is ana-
lyzed. In [72], authors consider a K -tier heterogeneous network model with user-centric small cell
deployments in which the locations of UEs are modeled by a PCP with one small-cell BS located at
the center of each cluster process, and discover the coverage probability of the network. In addition
to modeling locations of UEs as a PCP, small-cell BS clustering is considered in [15] to capture the
correlation between the large-cell and small-cell BS locations. However, these prior studies that
considered clustered users have not addressed transmission in mmWave frequency bands. A clus-
tered mmWave network in which NOMA techniques are employed, is introduced in [73], where
the NOMA UEs are modeled as PCP distributed and each cluster contains a BS located at the cen-
ter. Three distance-dependent UE selection strategies are proposed in this chapter to evaluate the
impact of the path loss on the network performance.

PCPs are also used in device-to-device (D2D) networks, e.g. [74—78], where the locations of
the D2D devices were modeled as PCPs. For instance, D2D enabled mmWave cellular networks
with clustered UEs are analyzed in [77] and [78] , transceivers are modeled according to a PCP in
[77], and both PPP-distributed cellular UEs and PCP-distributed D2D UEs are considered in [78].
Coverage probability and area spectral efficiency of the networks are analyzed in both papers.

Moreover, uplink analysis in PCP distributed networks has recently been conducted in several
studies. The authors in [79] have provided a framework to analyze single-tier multi-cell uplink

NOMA systems where the UE locations are modeled following a Matérn cluster process. Rate cov-
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erage probability of NOMA users and the mean rate coverage probability of all users in a cell are
characterized. [80] considered a decoupled downlink and uplink access scenario in a heterogeneous
network, where the distribution of UEs are modeled as a Matern cluster process. Closed-from ex-
pressions for system coverage probability, spectral efficiency and energy efficiency are obtained.

We note that these prior studies have not considered uplink analysis in mmWave networks.

1.2.4 Beamforming in MIMO Networks

Leveraging recent advances in machine learning, optimal beamforming schemes can be determined
in real time with low computational complexity using learning techniques. For instance, the au-
thors in [81] have considered a network where a number of distributed BSs simultaneously serve
one mobile UE. The UE ideally transmits one uplink training pilot sequence to all BSs equipped
with omni or quasi-omni directional beam patterns, and the deep-learning model leverages the sig-
nals to train its neural network. After training, the deep-learning predicts the BS radio frequency
(RF) beamforming vectors in downlink data transmission. [82] has proposed an algorithm that
combines three neural networks for performance optimization in massive multiple input multiple
output (MIMO) beamforming. In the proposed system, one neural network is trained to generate
realistic user mobility patterns, which are then used by a second neural network to produce relevant
antenna diagrams. Meanwhile, a third neural network estimates the efficiency of the generated an-
tenna diagrams and returns the corresponding reward to both networks. The authors in [83] have
proposed a deep learning framework for the optimization of downlink beamforming. In particular,
the solution is obtained based on convolutional neural networks and exploitation of expert knowl-
edge, such as the uplink-downlink duality and the structure of known optimal solutions. In [84], a
neural network architecture is used to jointly sense the millimeter wave channel and design hybrid
precoding matrices. The neural network is first trained in a supervised manner, where a dataset
of the mmWave channels and the corresponding RF beamforming/combining matrices are con-
structed and fed as the input and the target of the neural network, respectively. Then the trained

neural network is applied online. Reinforcement learning is also shown to be a useful tool for
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beamforming schemes. For instance, the authors in [85] used deep Q learning algorithm to jointly
optimize the beamforming vectors and the transmit power of the BSs, and eventually to maximize
the SINR of UEs. [86] presented a deep reinforcement learning framework to optimize MIMO
broadcast beams autonomously and dynamically based on users’ mobility patterns or changes in
user distribution, which can vary periodically. Using ray-tracing data, deep reinforcement learning

engine is first trained offline, and then deployed online for real-time operation.

1.2.5 System-Level Analysis of UAV-Enabled Networks

The system-level analysis of UAV-assisted networks has also attracted much attention in recent
literature. For instance, references [87], [23] and [88] considered a 2D PPP UAV-assisted cellular
network, where UAVs were distributed according to a PPP at the same height in the air. In [87], the
downlink coverage probability was explored, as well as the influence of UAV height and density. In
[23], different path loss models for high-altitude, low-altitude and ultra-low-altitude models were
discussed. In addition to the coverage probability, the area spectral efficiency was investigated.
The model in [88] also took into account the system parameters such as building density and UAV
antenna beamwidth. Besides the 2D PPP distributed UAV-assisted cellular networks, the authors
in [22] considered a network in which a serving UAV was assumed to be located at fixed altitude,
while a given number of interfering UAVs were assumed to have 3D mobility based on the mixed
random waypoint mobility. Moreover, [89] considered a finite UAV network which was modeled
as a uniform binomial point process (BPP). Several limiting cases were discussed, including the
no fading case and the dominant interferer based case.

PCP models have also been considered in the system-level analysis of UAV-assisted networks.
In [90], the UAV's were assumed to form a PCP with the destroyed macro BSs as the parent nodes.
The downlink network performance, i.e. the SINR coverage probability, area spectral efficiency
and energy efficiency, were investigated. In [91], UAVs were considered as BSs serving the users.
The UE locations were considered as PCPs. SINR coverage probability was investigated as the

network performance metric. [92] considered the UAV networks in mmWave communications.
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The UAVs were the parent nodes and were 3D deployed at same height, while the UEs were
the daughter nodes and their locations formed a Thomas cluster process. [93] proposed a unified
3D spatial framework to evaluate the average performance of UAV-aided networks with mmWave
communications. The UAVs and BSs were assumed to be PPP distributed and the UEs were
distributed according to a PCP. During communication, a UAV received a message from a UE in
the uplink transmission and forwarded the message to a ground BS in the downlink transmission.
The heights of the UAVs were all assumed to be the same.

Integration of UAVs as aerial UEs would require a system-level understanding to both modify
and extend the existing terrestrial network infrastructure [94]. The network performance of the
cellular-connected UAV has been investigated recently. For instance, the authors in [95] considered
a heterogeneous network comprising aerial and terrestrial base stations, where the GBSs were
assumed to be distributed according to an infinite 2D PPP, while the locations of the aerial-BSs
were modeled as a finite 3D binomial point process deployed at a particular height. The downlink
coverage probability and average achievable rate of an aerial UE were analyzed. Similarly, [24]
considered homogeneous PPP distributed GBSs serving an aerial UAV-UE, and investigated the
SINR coverage probability, achievable throughput and the area spectral efficiency of the network.
Additionally, a tilted directional antenna was considered for the UAVs.

In UAV-enabled celluar networks, one of the key questions that have not been adequately ex-
plored in the existing state of the art is the impact of UAV antenna configuration on their con-
nectivity to GBSs [96,97]. The antenna of the UAVs should be carefully designed, since the
variation in antenna design will significantly affect the network performance [98]. In particular,
the use of different antenna patterns can have significant impact on the interference levels and
hence can help alleviate the severe air-to-ground interference issue due to strong LOS links [99].
However, capturing the antennas’ movement and orientation is challenging in air-to-ground chan-
nel modeling [21]. 3D beamforming can significantly improve the performance compared to the
conventional 2D beamforming methods [100]. A 3D antenna pattern was considered in [101], and

the authors assumed the UAV was equipped with a directional antenna whose boresight direction
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was pointing downward to the ground. The authors in [102] considered the 3D antenna pattern
for the GBSs in a multiple-input single-output downlink single UE system, where the antenna gain
was controlled by adjusting the boresight of the antennas in directional transmissions. In [103], the
authors adopted a 3D antenna pattern for GBSs in a cellular massive multiple-input multiple-output
network. Different heights for UEs were considered in the 3D environment. A 3D system model
for the UAV-GBS uplink/downlink communications was studied in [99]. 3D antenna patterns of
the GBSs and UAV, and 3D air-to-ground channel were taken into account. Three different types
of antennas were compared in [96]. These were an omni-directional antenna with antenna gain set
at 1; a directional antenna tilted down to give a cone-shaped radiation lobe directly beneath the
UAYV; and a directional antenna which the UAV could intelligently steer and align with its serving

GBS.

1.2.6 Trajectory Design for Cellular-Connected UAVs

Trajectory design for cellular-connected UAVs has been extensively investigated in the literature.
For instance, the authors in [104] studied the trajectory design for a single cellular connected UAV
under delay-limited communication.The authors in [105] applied convex optimization and linear
programming to find the optimal set of waypoints and speed for a UAV to ensure the minimum
connection time constraint with the ground terminals. A circular trajectory with optimized flight
radius and speed for a UAV was considered in [106] to maximize the energy efficiency. [107]
aimed to find UAV path planning strategy to optimize the wireless coverage for the UAV. In [108],
the UAV trajectory optimization was studied to minimize the total propulsion related power con-
sumption while satisfying a cellular-connectivity constraint. A connectivity-aware UAV path plan-
ning problem was formulated in [109] to find the shortest path subject to connectivity constraints.
Three-dimensional path planning for a cellular-connected UAV was studied in [110] to minimize
its flying distance from initial to final locations, while satisfying an expected SINR requirement,
and also an SINR map was constructed. In [111], the authors formulated a problem to minimize

the UAV mission completion time by jointly optimizing the UAV trajectory and UAV-GBS associ-
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ation order. In addition, the authors in [112, 113] considered how to determine the optimal path for
the UAV to minimize its mission completion time, subject to wireless connectivity constraint. Op-
timization techniques, graph theory and dynamic programming were used to solve the single-UAV
path planning problems formulated in these prior studies.

Reinforcement learning has also been utilized to obtain solutions to trajectory optimization
for cellular-connected UAVs in the literature. The authors in [114] proposed a double Q-learning
method to solve the UAV trajectory optimization problem under a maximum continuous discon-
nection time constraint or a total disconnection time constraint. In [115], a dueling double deep
Q network with multi-step learning algorithm was formulated as a solution to the UAV trajectory
optimization problem to minimize the weighted sum of its mission completion time and expected
communication outage duration. Additionally, an interference-aware path planning scheme for a
network of cellular-connected UAV's was proposed in [32] to achieve a trade-off between maximiz-
ing energy efficiency and minimizing both wireless latency and the interference. A deep reinforce-
ment learning algorithm, based on echo state network cells, was developed to solve the problem.
However, these prior works considered single-UAV scenarios as well.

Different approaches for the collision avoidance of multiple UAVs have also been developed
in the literature. For instance, a rolling horizon approach using dynamic programming was used
to solve the problem in a multi-agent cooperative system in [116]. A neuro-dynamic program-
ming algorithm is proposed in [117] for multi-UAV cooperative path planning. A mixed integer
linear programming method is used in [118]. Partially observable Markov decision process based
methods are applied in [119-121] for UAV collision avoidance. In addition, authors in [122] used
reachable sets to represent the collection of possible trajectories of the obstacle aircraft. Once a
collision is detected, a sampling-based method is used to generate a collision avoidance path for
the UAV. In [123], predictive state space was utilized to present the waypoints of the UAVs, with
which initial collision-free trajectories are generated and then improved by a rolling optimization
algorithm to minimize the trajectory length. Artificial potential field method with an additional

control force was proposed for multi-UAV path planning in [124]. The authors in [125] presented
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path planning algorithms using rapidly-exploring random trees to generate paths for multiple UAVs
in obstacles rich environment. Moreover, the authors in [31] used DDQN algorithm to solve the
UAV path planning problem for data collection from distributed IoT nodes. However, considering
collision avoidance in multiple cellular-connected UAV navigation with wireless communication
requirements, addressing these challenges via deep reinforcement learning methods, and obtaining

decentralized solutions have not been adequately explored yet.

1.2.7 UAV Path Planning for Data Collection

Effective UAV trajectory planning allows the UAVs to adapt their movement based on the commu-
nication requirements of both the UAVs and the ground UEs, thus improving the overall network
performance [32], and therefore UAV path plans and control policies need to be carefully designed
such that the application requirements are satisfied [112,113]. UAV trajectory design for data col-
lection in IoT networks has been extensively studied in the literature. For example, to minimize
the weighted sum of the propulsion energy consumption and operation costs of all UAVs, and the
energy consumption of all sensor nodes, the nodes’ wake-up time allocation and the transmit power
and the UAV trajectories were jointly optimized in [126], and collision avoidance constraint was
also considered in this paper. In [127], the authors aimed to minimize the energy consumption
of IoT devices by jointly optimizing the UAV trajectory and device transmission scheduling over
time. In [128], the UAV trajectory, altitude, velocity and data links with the ground UEs were
optimized to minimize the total mission time for UAV-aided data collection. The authors in [129]
aimed to optimize the UAV trajectory and the radio resource allocation to maximize the number
of served IoT devices, where each device has a data upload deadline. The minimum through-
put over all ground UEs in downlink communication was maximized in [130], by optimizing the
multiuser communication scheduling and association jointly with the UAV’s trajectory and power
control. Moreover, UAV path planning for data collection has also been investigated in [131-134].
Traditional optimization techniques were adopted to solve the problems in these studies.

Specifically, RL-based algorithms have recently been proposed as solutions to UAV path plan-
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ning for data collection tasks. For example, [135-140] addressed the trajectory optimization in
single-UAV data collection scenarios. In [135], the authors used double deep Q-network (DDQN)
algorithms to find the optimal flight trajectory and transmission scheduling to minimize the weighted
sum of the age of the information. In [136], the authors used Deep Q-network (DQN) algorithms
to decide the UAV trajectory to collect the required data, and determine the charging car trajectory
to arrive its destination to charge the UAV. DQN was also used in [137] to decide the transmis-
sion schedule to minimize the data loss, given the waypoint of the UAV’s trajectory. The authors
in [138] first used deep deterministic policy gradient (DDPG) algorithm to find the trajectory with
no collision with obstacles, and then used Q-learning (QL) to find the scheduling strategy to min-
imize the data collection time. Authors in [139] provided a Q-learning framework as an energy-
efficient solution for the UAV trajectory optimization. Moreover, Q-learning was also used in [140]
to find the UAV trajectory to maximize the sum rate of transmissions.

Multi-UAV control with reinforcement learning techniques has also been investigated in the
literature. For example, the authors in [141] studied the joint problem of dynamic multi-UAV
altitude control and multi-cell wireless channel access management of 10T devices. Online model-
free constrained deep reinforcement learning (CDRL) algorithm based on Lagrangian primal-dual
policy optimization was proposed to solve the problem. In [142], the authors developed a deep
DRL-based self regulation approach to maximize the accumulated user satisfaction score in multi-
UAV networks with UAV and UE dynamics. Moreover, authors in [143] proposed learning-based
algorithms to solve the problem of joint trajectory design and power control for multiple UAVs with
the goal to maximize the instantaneous sum transmission rate of mobile UEs. However, collision
avoidance constraint was not taken into account in these papers.

Different RL-based path planning approaches for data collection in multi-UAV networks have
been developed in the literature as well, such as in [31, 143, 144]. Particularly, the authors in [31]
used the DDQN algorithm to solve the UAV path planning problem to maximize the collected data
from IoT nodes, subject to flying time and collision avoidance constraints. However, the learning

was centralized, and the UAVs were cooperative, i.e., the UAVs needed to share their information
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and a part of their reward with each other. The authors in [144] considered a scenario where the
UAVs took charge of delivering objects in the forward path, and collected data from IoT devices
in the backward path. Q-learning was used to solve the forward collision avoidance problem,
and auxiliary no-return traveling salesman algorithm was used to find the shortest backward path.
However, the collision avoidance and communication constraints were not taken into account to-
gether. Moreover, authors in [143] considered the problem of joint trajectory design and power
control for multi-UAVs for maximizing the instantaneous sum transmit rate of mobile UEs. To
solve the problem, a framework that involves a multi-agent QL-based placement algorithm for
initial deployment of UAVs, an echo state network based algorithm for predicting the mobility of
UEs, and a multi-agent QL-based trajectory-acquisition and power control algorithm for UAVs, is
proposed. However, collision avoidance constraint was not taken into account in this paper. In
these works, all agents were assumed to use the same policy and operate cooperatively. The key
challenge for these models is that they cannot generalize well to crowded scenarios or scenarios

with non-cooperating agents.

1.2.8 Path Design for UAVs in the Presence of Jamming Attacks

A series of strategies to resist jamming attacks have been proposed in wireless networks, which are
generally divided into two categories: 1) adapting to the jamming signal; 2) retreating away from
or avoiding the jammer [145].

In the first category, physical-layer security has emerged as a promising approach to secure
UAV communications against jamming attacks. For instance, authors in [146] proposed deep
Q-learning based UAV power allocation strategies to improve the static UAV-enabled communi-
cations against smart jamming attacks. In [147], a reinforcement learning based power control
algorithm was proposed to improve the performance of the multi-UAV relay communication sys-
tems in the presence of a random jammer. The authors in [148] introduced a UAV as a friendly
jammer in the UAV-enabled network to work against multiple eavesdroppers, aiming to maximize

the minimum average secrecy rate over all information receivers.
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Owing to the mobility and flexibility of UAVs, it is also feasible to use the avoidance strat-
egy against jamming attacks. Furthermore, spatial evasion based methods do not impose high
requirements on communications devices [145]. By taking advantage of the mobility of UAVs,
jamming-resistant trajectory designs in UAV-enabled communication systems have been studied
in the literature. For instance, authors in [149] investigated the maximization of the uplink data
throughput of UAV-enabled communication in presence of a potential jammer. An alternating al-
gorithm that leverages the block coordinate descent method, successive convex approximation,
and S-procedure, was proposed to optimize the UAV trajectory. A similar problem was studied
in [150], where the goal is to improve the minimum uplink data throughput for multi-UAV en-
abled communication in the presence of jammers with imperfect location information. In [151],
the authors aimed to maximize the minimum (average) expected data collection rate from ground
sensors in the presence of a malicious ground jammer, by jointly optimizing the ground sensor
transmission schedule and UAV horizontal and vertical trajectories over a finite flight duration.
In [152], the authors had the objective to maximize the sum throughput received by the UAV in
the presence of jammer signals, by designing the UAV deployment and trajectory planning in 3D
space. [153] proposed a deep Q-learning based UAV trajectory and power control scheme against
smart jamming attacks on transmissions with ground nodes, given the predefined UAV sensing
waypoints. The prior work in this area has mostly concentrated on either single-UAV scenarios
or multiple UAVs operating as aerial BSs, and hence has not addressed cellular-connected UAVs,
connectivity constraints and collisions avoidance requirements especially with a jammer present,

using a learning framework.

1.3 Outline and Main Contributions

In Chapter 2, we provide a detailed overview on point processes, channel modeling, and reinforce-
ment learning. More specifically, Poisson point processes and Neyman-Scott cluster processes are

introduced, as well as their properties. General channel modeling approaches involving e.g., path
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loss, shadowing, small-scale fading, and antenna gains are summarized. Finally, we provide basics
of reinforcement learning and introduce some widely used RL algorithms.

In Chapter 3, we analyze a K-tier heterogeneous downlink mmWave cellular network with
UE-centric small cell deployments. We develop a new and more practical heterogeneous mmWave
cellular network model by considering the correlation between the locations of UEs and BSs. Cell
association probabilities are determined by employing a cell association criterion based on the
long-term average biased received power. General expressions for association probabilities with
each tier BS including the cluster center BS are provided. In addition, we provide simpler expres-
sions for association probabilities by considering several special cases to provide more insight on
the impact of different system parameters. For example, we show that our model specializes to
the PPP-based model when the cluster size grows without bound. We characterize the Laplace
transform of the interferences. General expressions for SINR coverage probabilities for each tier
BS including the cluster center BS are also derived. The coverage probability expressions are also
applicable to any PCP. Upper and lower bounds on the Laplace transform of the interference from
the cluster center BS are obtained, leading to bounds on the total coverage probability of the entire
network. It is also demonstrated that as the cluster size increases, performance within the PCP
model approaches that of the PPP-based model. Area spectral efficiency (ASE) of the entire net-
work is determined based on the derived coverage probabilities. Moreover, several extensions on
the coverage analysis are provided to the baseline model by considering the more practical antenna
gain patterns and also shadowing.

In Chapter 4, we present a mathematical framework for evaluating the performance of multi-
tier heterogeneous uplink mmWave cellular networks. We employ PCPs to accurately model the
locations of the clustered UEs. In particular, Thomas cluster process is adopted, with which the
UEs are clustered around the small-cell BSs according to a Gaussian distribution. Coupled asso-
ciation strategy is considered, and the UEs are assumed to be served by BSs which provide the
strongest long-term averaged biased received power in downlink. Then, with this association strat-

egy, we characterize: 1) the association probability of BSs in each tier; and 2) the distance from
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the typical UE to each serving BS. Subsequently, we derive the Laplace transforms of the inter-
cell interference and the interference from the cluster member UE. In addition, we derive general
expressions for the SINR coverage probability. We extend the analysis to incorporate Nakagami
fading and also consider several special cases, e.g., the noise-limited case, interference-limited
case, and one-tier model. Furthermore, we provide extensions to include fractional power control
in the analysis and reformulate the Laplace transforms of the interference in this case. Average
ergodic spectral efficiency of the network is also analyzed.

In Chapter 5, we consider a general setting and propose a distributed multi-agent DDQN so-
lution for beamfoming in mmWave MIMO networks, where multiple BSs serve multiple mobile
UEs. In this system, UEs move to different locations at each time, and may be served by different
BSs according to the adopted largest received power association criterion. Each BS is a reinforce-
ment learning agent and has its own DDQN. BSs, at each time, can only get information from
the associated UEs, based on which the BSs predict the UEs mobility pattern and choose their
beamforming vectors.

In Chapter 6, we consider a three-tier heterogeneous network, in which access points (APs),
small-cell base stations (SBSs) and macrocell BSs (MBSs) transmit in THz, mmWave, microwave
frequency bands, respectively. We incorporate the distinguishing features of transmission in each
type of frequency band, and consider a path loss based association criterion for UEs. As main
contributions, we analyze and derive general expressions for three key system performance met-
rics: 1) complementary cumulative distribution function (CCDF) of the received signal power; 2)
the Laplace transform of the aggregate interference; and 3) the SINR coverage probability of the
whole network.

In Chapter 7, a practical UAV-assisted mmWave cellular network with PCP distributed UEs
is addressed and studied in detail. In addition to GBSs, UAVs are also deployed according to
a PPP distribution, and the UEs are considered to be clustered around the projections of UAVs
according to PCPs. We jointly consider the downlink SWIPT scenario and uplink information

transmission, where in downlink phase UEs both harvest energy and decode the information from
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the same received signal provided by the associated BS (either a UAV or a GBS), and in the uplink
phase the UAVs collect data from their cluster member UEs. In the downlink phase, the largest
received power association criterion is adopted and the power splitting technique is considered for
the SWIPT scenario. Association probability and energy coverage of the proposed network are an-
alyzed and general expressions are provided. Laplace transform of the interference is determined.
We also define a realistic successful transmission probability to jointly address the energy cover-
age and SINR coverage performances of the considered network. In the uplink phase, each UAV is
assumed to communicate with its cluster member UEs. According to the harvested energy of each
UE in the downlink phase, UEs in the uplink phase are considered to be in either active mode or in-
active mode. The Laplace transform of the inter-cell interference is again determined and the SINR
coverage probability is derived. In addition, the average uplink throughput subject to a constraint
on the downlink throughput is investigated to jointly address the downlink and uplink network per-
formance. We provide an extension to multi-tier multi-height networks. Additionally, we address
the special case of noise-limited networks and derive closed-form expressions for the uplink SINR
coverage probability and the optimal power splitting factor p, maximizing the downlink successful
transmission probability. Extension to UAV-assisted cellular networks with 3D antenna patterns in
downlink transmission is provided.

In Chapter 8, we consider cellular-connected UAV networks and compare the performances
of different antenna patterns for UAVs in different environments. In addition, practical 3D air-to-
ground channel model is also taken into account for the links between the UAV and GBSs. More
specifically, antenna patterns combing the vertical and horizontal gains are taken into account for
the GBSs. Also, four types of 3D antenna patterns are considered for the UAVs. In particular,
we compare the performances of a omni-directional pattern, a doughnut-shaped sine pattern, a
doughnut-shaped cosine pattern, and a directional pattern with tilting angle toward the serving
GBS.

In Chapter 9, we study multi-UAV trajectory optimization to minimize the UAVs’ mission

completion time under realistic constraints, e.g., collision avoidance, wireless connectivity, and



22

kinematic constraints, while also taking into account antenna patterns and interference levels. Par-
ticularly, in Section 9.1, we formulate the problem as a sequential decision making problem, and
develop a decentralized deep reinforcement learning algorithm to solve it. We formulate the prob-
lem as a Markov decision process (MDP) with properly designed state space, action space, and
reward function. We optimize the value function of the MDP to find the optimal policy, and design
a value neural network to approximate the value function. Due to the fact that the UAVs do not
communicate with each other in the considered network, uncertainty exists in the UAVs’ unob-
servable intents. Thus, we employ a velocity filter to estimate the UAVs’ intentions to address
this uncertainty. In addition, we further design an SINR-prediction neural network to estimate the
SINRs experienced at the UAVs. Particularly, using accumulated SINR measurements obtained
when interacting with the cellular network, the SINR-prediction network is learned to map the
nearby GBSs’ locations into the SINR levels in order to predict the UAV’s SINR. We delineate
the initialization, refining, and training steps of the algorithm and describe the real-time navigation
process. In Section 9.2, we aim to find collision-free paths for multiple cellular-connected UAVs,
while satisfying requirements of connectivity with GBSs in the presence of a dynamic jammer.
We propose an offline temporal difference (TD) learning algorithm with online SINR mapping to
solve the problem.

In Chapter 10, we study the UAV trajectory optimization to maximize the collected data from
distributed IoT nodes in multi-UAV non-cooperative scenarios under realistic constraints, e.g., col-
lision avoidance, mission completion deadline, and kinematic constraints. The considered multi-
UAV non-cooperative scenarios involve random number of other UAVs in addition to the typical
UAYV, and UAVs do not communicate and share information among each other. Due to the uncer-
tainty in the environment, other UAVs’ existence and unobservable intents, the considered problem
is translated to an MDP with parameterized states, permissible actions and detailed reward func-
tions. Dueling double deep Q network (D3QN) framework is proposed for learning the policy

without any prior knowledge of the environment and other UAVs.
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CHAPTER 2

PRELIMINARIES

2.1 Point Processes

A point process can be depicted as a random collection of points in space.

2.1.1 Poisson Point Process

Poisson point processes (PPPs) provide a computational framework for different network quantities
of interest [154]. The homogeneous PPP may be considered as the simplest point process. The

homogeneous PPP has the following properties [4] :

It has evenly and homogeneously distributed nodes.

It is stationary, which means that the PPP is independent of translations.

It is simple in the sense that there cannot be multiple points at the same location.

It is isotropic, which means that the PPP is independent on rotations.

The superposition of two or more independent PPPs is again a ppp.

The independent thinning of a PPP is again a PPP.
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The point process obtained by displacing point X; independently of everything else according to

some Markov kernel K (X, -) that defines the distribution of the displaced position of the point X

yields another PPP. The intensity of the resulting PPP can be obtained in closed form from that of

the initial PPP and the involved transformations (e.g., the thinning probability or the kernel K). If

p(z,-) is the probability density pertaining to the Markov kernel applied to a PPP of intensity A(x)

on RY, the displaced points form a PPP of intensity

V) = [ Mot

Laplace Transform

The Laplace functional is defined for a general point process ® as
Lo(f)2E [e— Jra f(x)ﬂb(dx)} — E [eXxee /O]

where f is a non-negative function on R%. In the Poisson case,

calf) =exp (= [ (1= @) ) )

Characterization of Distance

2.1

(2.2)

(2.3)

Let x denote the distance from origin to the nearest node in ®, which is a homogeneous PPP.

Then the complementary cumulative distribution function (CCDF) and probability density function

(PDF) of z are given as

CCDF: F(r) = exp(—7mAz?), (x >0),

PDF: f(z) = 2n v exp(—7Az?), (v >0),

(2.4)

(2.5)
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where A is the density of PPP ©.

2.1.2 Neyman-Scott Cluster Process

Neyman-scott cluster processes are Poisson cluster processes (PCPs) that result from homoge-
neous independent clustering applied to a stationary PPP [155, 156], i.e., the parent points form a
stationary PPP ®,, = {py, ps, ...} of intensity \,. The clusters are of the form N = N + p for each
p € ®,. N?is a family of 1.i.d. finite point sets with distribution independent of the parent process.

The complete process @, is given by

o= | V7. (2.6)
pe®,
The parent points themselves are not included. It is assumed that the scattering density of the
daughter process is isotropic. This makes the process ®,; isotropic. The intensity of the cluster
process A\ = \,(p), where p is the average number of the points in the representative cluster.

We further focus on more specific models for the representative cluster, namely Thomas cluster
processes and Matérn cluster processes. Let us use x to denote the distance from a daughter node to
the parent node in the representative cluster. For Thomas cluster processes, each point is scattered
according to a symmetric normal distribution with variance o2 around the origin. Then, the CCDF

and PDF of x are given as

_ —?

CCDF: F(x) = exp (ﬁ) : (x >0), (2.7)
2

PDF: f(z) = % exp <TZ> : (x >0), (2.8)

In Matérn cluster processes, each point is uniformly distributed in a ball of radius R, around the

origin. So, the CCDF and the PDf of = are given as

1'2

ﬁ7

c

CCDF : Flr)=1— (0 <2 <R, (2.9)
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PDF : flz) = (0 <z <R,). (2.10)

Ea

C

The illustrations for PPP and PCPs are shown in Fig. 2.1, where the black stars are distributed
according to a homogeneous PPP. In Fig. 2.1(a) the red dots are distributed according to an in-
dependent homogeneous PPP. In Figs. 2.1(b) and (c), the red dots are distributed according to a
Thomas cluster process and a Matérn cluster process, respectively, where the black stars are the

parent nodes. The average number of user equipments (UEs) per cluster is 10 in Figs. 2.1(b) and

(c).

*
£x
*¥
*

(a) Poisson point process. (b) Thomas cluster process. (C) Matérn cluster process.

Fig. 2.1: Illustrations for PPP and PCPs.

2.2 Channel Modeling

2.2.1 Path Loss

Path loss characteristics generally depend on whether the link is line-of-sight (LOS) or non-line-
of-sight (NLOS). A LOS link occurs when there is no blockage between the transmitter and the
receiver, while a NLOS link occurs if blockage exists. Typically, LOS probabilities are assumed
to be independent between different links, i.e., the potential correlations of blockage effects be-
tween links are not taken into account. Note that the LOS probabilities for different links are not
independent in reality. For instance, neighboring base stations might be blocked by a large build-

ing simultaneously. Numerical results in [157], however, indicated that ignoring such correlations
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causes a minor loss in accuracy in the network performance evaluation.

Millimeter Wave (mmWave) Transmissions

Differences between LOS and NLOS paths are significant in mmWave communications [1]. Mea-
surements in [158, 159], showed that mmWave signals propagate as in free space with a path loss
exponent of 2. The situation was however different for NLOS paths where a log distance model was
fitted with a higher path loss exponent and additional shadowing [158, 159]. The NLOS path loss
laws tend to be more dependent on the scattering environment. The attenuation and atmospheric
and molecular absorption characteristics of mmWave propagation limit the range of mmWave com-
munications [160]. However, with smaller cell sizes applied to improve spectral efficiency today,
the attenuation and atmospheric absorption do not create significant additional path loss for cell
sizes on the order of 200 m [161].

The LOS probability function in a network can be derived from field measurements or stochas-
tic blockage models, where the blockage parameters are characterized by some random distribu-

tions. The LOS probability in mmWave transmissions can be formulated as [160]

pH(z) = (2.11)

where € is a parameter determined by the density and the average size of the blockages. A multi-
ball approximation with piece-wise LOS probability functions is adopted in [56, 57, 162]. As
shown in Fig. 2.2, a link is in LOS state with probability p(z) = f; inside the first ball with
radius R, while NLOS state occurs with probability 1 — 3;. Similarly, LOS probability is equal to
p(z) = By for x between Ry 1 and R, for d = 2,..., D, and all links with distances greater than
Rp are assumed to be in outage state. Additionally, LOS and NLOS links have different path loss

exponents in different ball layers. Therefore, the D-ball approximation model can be formulated
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as

B, if <R

Go, if Ry <x <Ry

pi(x) =14 (2.12)
Bpif Rp_1 <2 < Rp

O, if T Z RD'

\

Typical UE

p() = 0 (outage)

Fig. 2.2: LOS ball model

In mmWave transmissions, the path loss can be formulated as

kL wp. ph(z)

L(z) = (2.13)

N wp. 1 — pE(x)

where z is the distance of the link, o and oV are the LOS and NLOS path loss exponents, respec-
tively, k' and x” are the path loss of LOS and NLOS links at a distance of 1 meter, respectively,

and p”(z) is the probability of LOS at distance .
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Terahertz (THz) Transmissions

THz transmissions encounter a more challenging propagation environment. Compared to the ultra
high frequency and mmWave frequency bands, electromagnetic waves in THz bands experience
high molecular absorption loss in addition to spreading loss and scattering attenuation [4—7]. The
ultimate effect is a more complex path loss model that additionally includes an exponential decay in
power [8]. Human-body blockage effects also have a strong impact on the communication quality
of THz channels [6]. Moreover, THz waves cannot reach objects that are behind obstacles whose
dimensions are greater than the wavelength. Effectively, any object whose size is greater than few
millimeters including users themselves, acts as a blocker. Transceivers operating in THz bands are
expected to be characterized by high antenna directivities in both transmit and receive directions [8]
to compensate such severe path loss. And this would in turn have significant influence on the
interference levels and the coverage performance [6].

In the terabit wireless local area networks, the links between base stations (BSs) and UEs (both
the main link and the interfering links) can be easily blocked by other UEs (due to human body
blockage) and the BSs [6,7]. When the LOS path from a BS to a UE is cut off by any part of the
blockers, the LOS channel is converted to the NLOS channel. The blockers can be modeled as
circular objects with a radius of Rp. According to [7, 8, 67], the probability of non-blocking can

be formulated as

pl(z) = e el Re)Rs (2.14)

where x is the link distance, A\ = A\yr + >_ Aps, and A\yg and Apg are the densities of the UEs
and BSs, respectively.

An exponential power loss propagation model is introduced to describe the path loss in the THz
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band [5, 6]. In particular, the path loss is formulated as

L _kx

rkLertze”  for LOS with prob. (w.p.) p(z),
L(z) = (2.15)

kNerr ™ for NLOS w.p. pN (),

where x indicates the molecular absorption coefficient.

Microwave Transmissions

Due to their more favorable propagation characteristics, microwave transmissions experience com-
parable path loss in LOS and NLOS links. With this, the links in microwave transmissions are

assumed to be LOS, i.e. p” = 1. The path loss can be expressed as
L(z) = z*. (2.16)

Air-to-Ground Links

Links between the UAV and the ground UEs/BSs all experience LOS or NLOS. Similarly as in

[163], we formulate the probability of the LOS link between the UAV's and the ground UEs/BSs as

1

PH() = 1+ Cexp(—B(0 —(C))

(2.17)

where 0 = % arcsin(%) is the elevation angle, H denotes the height of the UAVs, x is the link

distance, and B and C' are specific constants that depend on the environment (rural, urban, dense

urban, etc.). The path gain of the links are be formulated the same as 2.13.

2.2.2 Shadowing

The shadowing can be incorporated by scaling the path loss with a given v and then taking the
expectation of coverage probability with respect to v. Shadowing can be modeled as a log-normal

random variable 10logv ~ N(u,0?).
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2.2.3 Small-Scale Fading

Nakagami-m fading' is a general fading model suitable under various conditions [87]. Denoted
by hs, the small-scale fading gains (i.e., magnitude-squares of fading coefficients) follow Gamma
distributions h; ~ T'(N;, 1/N;) for LOS, while h,, ~ T'(N,, Nin) for NLOS, where N, N,, are the
Nakagami fading parameters for LOS and NLOS links, respectively, and are assumed to be positive

integers.

2.2.4 Antenna Gain

To compensate frequency-dependent path and penetration losses, antenna arrays can be enabled at
the transmitter and receiver. [3, 164]. As the wavelength decreases, antenna sizes also decrease,
reducing the antenna aperture [160], therefore it is possible to pack multiple antenna elements into
the limited space at transceivers. With large antenna arrays, mmWave/THz cellular systems can
implement beamforming at the transmitter and receiver to provide array gain that compensates for
the frequency dependent path loss, overcomes additional noise power, and as a bonus also reduces
out-of-cell interference [165]. MmWave/THz links are inherently directional. By controlling the
phase of the signal transmitted by each antenna element, the antenna array steers its beam towards
any direction electronically and to achieve a high gain at this direction, while offering a very low

gain in all other directions [55].

Two-Dimensional (2D) Antenna Patterns

The followings are the 2D array gain functions recently discussed in the literature.
* Actual antenna pattern [166]

_ sin®*(7N7x)

Gle) = N, sin?(7z)

(2.18)

'Note that Nakagami fading specializes to Rayleigh fading when m = 1.



* Sinc antenna pattern [166]
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sin? (7 Nyx)
G(x) = 2.19
(x) (7 Ny2)? (2.19)
* Cosine antenna pattern [166]
cos? (Thez lz| < +
G(z) = (5% N (2.20)
0 otherwise
* Multi-cosine antenna pattern [167]
(
cos? (“NT”) lz| < N%
G(2) = Gaet(9) cos® (TNy(Jz| — ¢) £ < || < 52 (221)
0 otherwise

\

where N, is total number of the antenna elements, ¢ = 25 and k € [0, | 3] — 1].

2Ny

* Sectored antenna pattern approximation

The sectored antenna model? is a well-used approximation in the literature. M, and m,

are the the main lobe gain and side lobe gain, respectively, and * € {b,u} denotes the BS

side or the UE side. It is assumed that the antenna gain between the UE and the serving

BS can achieve the maximum antenna gain Gy = M, M, due to the directionality. The

beam direction of the interfering links can be modeled as uniformly distribution over [0, 27).

Note that the sectored antenna model is also called the corn-shaped model.
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Therefore, we can formulate the antenna gain of an interfering link as [160]

(

MbMu w.p. PmyMm, = (2%—)(9_:1-)
Mymy,  w.p. Prym, = (2)(1 — )
G 2.22)

mpMy,  w.p. Py, = ( _3_;)(3_;)

\mbmu W.p. Pmymy = ( - 29_;)(1 o g_:r)’

where 0, for x € {b, u} denotes the main lobe beamwidth.

Three-Dimensional (3D) Antenna Pattern at the GBSs

According to [168], the 3D antenna pattern at the GBSs can be divided into horizontal and vertical

components. In the horizontal plane, the antenna attenuation can be expressed in dB as

2
Gy (4) = min [12 (i) yem (2.23)

3dB

where ¢ indicates the horizontal angle between the BS antenna boresight and the UE, ¢3,45 is the
horizontal 3 dB beamwidth, and G,,, is the maximum attenuation of the BS. On the other hand, the
vertical antenna attenuation can be written as

2
Gy (6) = min [12 (m) ,Gm] (2.24)

O34p

where 0 = arcsin(%) is the vertical angel, 0..;;; stands for the electrical antenna downtilting angle,
and 345 represents the vertical 3 dB beamwidth of the GBS antennas. Then, combining the
antenna attenuation in two planes and the maximum antenna gain G° at the antenna boresight, we

can formulate the 3D antenna gain from the BS to the UE in dB as

G(4,0) = G° — min(Gy(¢) + Gv(0),Gy). (2.25)
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(C) Directional pattern.

(a) Sine pattern (b) Cosine pattern.

Fig. 2.4: Anillustration of the vertical antenna configuration at the UAVs, where H is the height difference.

The vertical antenna pattern at GBSs is illustrated in Fig. 2.3.

3D Antenna Pattern at the UAVs

Four types of antenna patterns that the UAV may use to communicate with the GBSs/GUEs. The
3D antenna pattern of the UAV can be determined by considering the gains in the vertical and
horizontal planes. It is assumed that on the horizontal plane, the antenna gain is omni-directional
with 0 dB. In the vertical plane, the expressions of the antenna patterns are provided in detail in
the subsections below. For a given GBS/GUE, the different UAV vertical antenna patterns are

illustrated in Fig. 2.4.

* Omni-directional pattern:

If the UAV is equipped with an omni-directional antenna, the antenna gain can be formulated
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as

G(z) =1 (2.26)

Sine pattern:
If the UAV is equipped with an ultra-wideband receiver with a horizontally oriented antenna,
a simple analytical approximation as a function of the elevation angle ¢ can be expressed

as [169]

H

_ 0 _ 0
G([L’) = G sm(@) = G \/ﬁ

(2.27)

where G is the maximum antenna gain of the UAV when sin(f) is 1, i.e., when the UAV is

right above the GBS.

Cosine pattern:
If the UAV is equipped with an ultra-wideband receiver with a vertically oriented antenna,

the antenna gain can be written as [169]

T

_ 0 _ 0
G(z) = G cos(f) = G Neawich

(2.28)

It is worth noting that this cosine approximation is a more general formulation for a direc-
tional antenna pattern with a fixed beamwidth, i.e. the directional antenna is tilting down to
give a cone-shaped radiation lobe directly beneath the UAV and the main lobe and side lobe

provide constant antenna gains.

Directional pattern with tilting angle:
If the UAV is equipped with a directional antenna which can be intelligently steered and

aligned with the serving GBS [96], the serving GBS is in the main lobe and has antenna gain
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G = 197 In addition, the antenna gain of the interfering GBS can be given as
16 w
G(z) = 11 (min (Z Yu + Hglt) >0 >

U ww
W2 97 9 Oritee — 7‘)
1
= g1<Htan (min (g, % + 6%)) > x > Htan <

where 07, = 0 = arctan(H /D) is the tilting angle of the UAV antenna, v, € (0, 7] is the

0L — %D ) (229)

beamwidth of the main lobe, and Dy is the horizontal distance from the typical UAV to the

serving GBS/GUE. The antenna gain of the side lobe (i.e. outside the beamwidth) is 0.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a class of machine learning methods that can be utilized for solv-
ing sequential decision making problems with unknown state-transition dynamics [170] [171].
Typically, a sequential decision making problem can be formulated as a Markov decision process
(MDP) [172], which is described by the tuple (S, A, P, R, ), where S is the state space, A is
the action space, P is the state-transition model, R is the reward function, and v € [0,1] is a
discount factor that trades-off the importance of the immediate and future rewards. More specif-
ically, at each time step, an agent, in state s; € S, chooses an action a; € A, transitions to next
state s, 1, and receives reward R; from the environment £. A policy, 7, is a mapping from states,
s, and actions a, to the probability 7 (s, a) of taking action a when in state s. An illustration of
reinforcement learning scheme is displayed in Fig. 2.5.

Almost all reinforcement learning algorithms are based on estimating value functions, i.e.,
functions of states or state-action pairs, that estimate how good it is for the agent to be in a given
state or how good it is to perform a given action in a given state [172]. For MDPs, the state-value

function, denoted as V7 (s;), is defined as the value of a state s; under a policy 7. The cumulative
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State Reward Action

Environment ]47
|

Fig. 2.5: An illustration of reinforcement learning Scheme.

discounted reward R¢ is

R 2D YV Rigr. (2.30)

T7=0

The state-value is the expected return when starting s; and following 7, and can be expressed as

Z ”YTRtJrT‘St] . (2.31)
7=0

Similarly, the state-action-value, denoted as Q™ (s, a;), is the value of taking action a in state s

under a polity 7, and can be expressed as

Qﬂ-(sfd at) £ Eﬂ[RtC|St> at] = Eﬂ'

> 1 Resrlsi, at] . (2.32)
7=0
The value functions satisfies the Bellman optimality equation [172]

V™(s1) = Ex[re + V™ (5141)]s4] (2.33)

Q" (50 ar) = Exlry + ymax Q" (sp11,a)|sy, ar]. (2.34)

The essential task of many RL algorithms is to seek the optimal policy, 7, that maximizes the

expected cumulative discounted reward, i.e., to find the optimal value functions

V*(s) = max V"(s) (2.35)

™
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or

Q*(s,a) = max Q" (s, a). (2.36)

Q-learning is one of the most widely used algorithms for RL. In traditional Q-learning, a table
(referred to Q-table) is constructed, in which the component in row s and column a is the Q-value

Q(s,a). The Q-learning update rule can be written as [173]

Q(s,a) + Q(s,a) + a[R + 7 max Q(s',d) — Q(s,a)l, (2.37)

where « is a scalar step size, s’ is the state in the next time step.

In problems with large state and action spaces, it becomes infeasible to use the Q-table. A
typical approach is to convert the update problem of Q-table into a function fitting problem, i.e., we
can learn a parameterized value function Q(s, a; €) ~ (s, a) with parameters £&. When combined
with deep learning, this leads to DQN. The operation of DQN consists of an online deep Q-learning
phase and an offline deep neural network (DNN) construction phase, which is used to learn the
value function Q)(s, a; §). Generally, the parameter set £ is optimized by minimizing the following

loss function [174]

Li(&) = El(ys — Q(s1, a13 €))%, (2.38)

where y; = Ry + vy max, Q(s¢y1,a’; &, ) is the target, and &, is copied at certain steps from &;.
The maximization operator in standard Q-learning and DQN uses the same values both to select

and to evaluate an action, which increases the probability to select overestimated values and results

in overoptimistic value estimates. DDQN can be used to mitigate the above problem by using the

following target [175]

Y = Ri + vQ(S141, argmax Q(si41,0" &) &), (2.39)
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Value

Q-value

Advantage

Dueling Architecture

Fig. 2.6: The structure of the dueling deep Q-network.

where &; is used for action selection, and &, is used to evaluate the value of the policy, and &, can
be updated symmetrically by switching the roles of &; and &, .

Furthermore, considering that Q-value measures how beneficial a particular action a is when
taken in state s, the dueling architecture is introduced to obtain a value V' (s) and an advantage
A(s,a) = Q(s,a) — V(s) [176]. The value V' (s) is to measure how good it is in a particular state
s. The advantage A(s,a) describes the advantage of the action a compared with other possible
actions while in state s [177]. Therefore, the difference in dueling DQN, compared with DQN, is
that the last layer of the DQN is split into two separate layers, £ and £€4. &V is used to obtain
the value V (s;&,¢"), and the output of € is the advantage for each action A(s, a; €, &€4). The

Q-value in dueling DQN can be expressed as [176]

Q(s,a;€, €7, €")

=V(s;&,") + A(s,a;€,€7) !

A D Als €, €Y. (2.40)

The general structure of dueling DQN is displayed in Fig. 2.6. Dueling DDQN (D3QN) is a

combination of dueling DQN and DDQN.
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CHAPTER 3

COVERAGE IN DOWNLINK
HETEROGENEOUS MMWAVE CELLULAR
NETWORKS WITH USER-CENTRIC SMALL

CELL DEPLOYMENT

3.1 System Model

3.1.1 Base Station Distribution Modeling

In this chapter, a K-tier heterogeneous downlink mmWave cellular network is considered. BSs
in all tiers are distributed according to a homogeneous PPP (more specifically, the BSs in the
j™" tier are distributed according to PPP ®; of density ); on the Euclidean plane for j € K =
{1,2,..., K}), and are assumed to be transmitting in a mmWave frequency band. BSs in the j" tier

are distinguished by their transmit power F;, biasing factor B, and blockage model parameters.
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3.1.2 User Distribution Modeling

We consider a realistic network scenario where the UEs are clustered around the smaller cell BSs.
In this network scenario, smaller cell BSs are parent nodes and are located at the center of the
clustered UEs where the locations of the UEs are modeled as a PCP. UEs in each cluster are called
cluster members. Cluster members are assumed to be symmetrically independently and identically
distributed (i.i.d.) around the cluster center. Assume that the cluster center is a BS in the j* tier,
then the union of the cluster members’ locations forms a PCP, denoted by CDZL. In this chapter ,
®J is modeled as either (i) a Thomas cluster process, where the UEs are scattered according to a
Gaussian distribution with variance 0]2-, or (i1) a Matérn cluster process, where the UEs are scattered
according to a uniform distribution, i.e., UEs are symmetrically uniformly spatially distributed
around the cluster center within a circular disc of radius ;.

Let Y and Y denote the distance from typical UE to the cluster center BS and the nearest
BS in the j!" tier, respectively. Therefore, the CCDF and PDF of Y; are given as (2.7) (2.9) and
(2.8) (2.10), respectively. And the CCDF and PDF of Y are given in (2.4) and (2.5), respectively.
Similar to [72], to distinguish the difference between the distributions of Y and Y);, we form an
additional tier, named as 0" tier, which includes the cluster center BS of the typical UE. Thus, our

model is denoted as a Iy = {0} UK = {0, 1,2, ..., K} tier model.

3.1.3 Channel Modeling

In this setting, we have the following assumptions regarding the antenna and channel models of

the K -tier heterogeneous downlink mmWave cellular network:

Directional Beamforming

Antenna arrays at all BSs and UEs are assumed to perform directional beamforming. For analytical
tractability, sectored antenna model is employed where M, m, 6 denote the main lobe directivity

gain, side lobe gain and beamwidth of the main lobe, respectively [57, 160, 178]. The effective
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antenna gain GG between the typical UE and an interfering BS are provided in (2.22), where M, =

M, =M and my, = m,, = m.

Path Loss and Blockage Modeling

The D-ball approximation model for LOS probability in (2.12) is adopted in this chapter. Con-
sider an arbitrary link of length y; (j € K), and define the LOS probability function p(y;) as the
probability that the link is LOS. Therefore, the path loss on each link in the j** tier (j € K) can be

expressed as follows:

¢ (
kEy;1" with prob. B

if y; < Rj
,{{Vyjalewith prob. (1 — ;1)
’

JL .,

Kky;%2 with prob. Bj,

if Rj <y; < Rjo

RéVyjaéNwith prob. (1 — f3;2)
\ 3.1

/

kky,;°D with prob. 8;p '
if Rjip-1) <y; < Rjp

,{gyjaijwith prob. (1 — B;p)
\

outage ify; > R;p,
\

where aff, ale are the LOS and NLOS path loss exponents, respectively, for the d'* ball of the
Jt tier, k%, k1 are the path loss of LOS and NLOS links at a distance of 1 meter in the d'" ball,
respectively, and R, is the radius for d'" ball in the %" tier (j € K), ford = 1,2, ..., D.

For the 0" tier, there is only one BS, called the 0" tier BS, at the cluster center and cluster
members are clustered around it. Since the link distance between the cluster center BS and cluster
members is generally relatively small, we assume that the link between the cluster center BS and
0z 0N

the cluster members can be either LOS or NLOS with path loss exponents o™ or ;"' respectively,

without an outage state. Therefore, the path loss of the link in the 0" tier can be expressed as
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follows:

rlyeet” with prob. o1,
Lo(yo) = (3.2)
kot with prob. (1 — By),

where similar notations are used for path loss parameters.

We note that shadowing is not taken into account in our baseline model for computational
tractability in the main analysis similarly as in [57], [160], and [178]. However, our model can
be extended by incorporating log-normal shadowing, and the analysis for this extended channel

model is addressed in section 3.4.7.

3.2 Path Loss Statistics

In this section, the CCDF and the PDF of the path loss for all tiers are characterized.

3.2.1 Path Loss in the 0'" Tier

Lemma 3.1. The CCDF and PDF of the path loss from a typical UE to the LOS/NLOS BS in the
0™ tier can be expressed as follows:

(i) If ®J is a Thomas cluster process,

— 1 €T QE)S
CCDF : Fp, (z) =exp | —55 | — : (3.3)
’ 205 \ K]
(2)3_1 1 %
xal .x o S
PDF: fr, (z) = —————exp <_F (—S) ' ) ; (3.4)
0s .5 aVs _2 g5 K1
QK11 0 J

where © > 0, s € {LOS,NLOS}, and 0]2- is the variance of the Gaussian UE distribution.
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(ii) If ®J is a Matérn cluster process,

CCDF - Fro,(2)=1————  (0<z<wmRT), (3.5)
K51 R
is_l
2.%‘&1‘ aks
PDF : fLO,s(m) =T 2 (0 S < Hile )7 (3.6)

ks .5 aks D2
i’k RS

where s € {LOS,NLOS}, and R; is the radius of the cluster.

Proof: See Appendix 1.

Therefore, the CCDF and PDF of the path loss from a typical UE to the BS in the 0" tier can

be expressed as

Fro(@)= > prg.Fu,. (), (3.7)

s€{LOS,NLOS}

where pr, s = for and pr, s = 1 — fo1 are the LOS and NLOS probabilities in the 07" tier,

respectively.

3.2.2 Path Loss in the j* Tier (j € K)

The CCDF of the path loss from the typical UE to the LOS/NLOS BS in the jth tier can be

formulated as [57, Lemma 2]
Fp, . (x) = exp ( - Aj,s([o,x))) for j € K, (3.8)

where s € {LOS,NLOS} and A; ([0, z)) is expressed in (3.9) and (3.10) for LOS and NLOS

links, respectively.

D iL
Ajros([0,2)) = A Z Bjq { (R3, — R§(d_1)) 1 (x > ng;’; )
d=1
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ol é 2 L pelt L pal”
d
D N
Ajnios([0,2)) = 7A; 2(1 — Bjd) { (R3;— R )1 (x > kiy Ry )
d=1
X %,LN 9 N aglN N a{iN
+ iy — Rja-1)" | 1| kg Rj(dfl) <z < Ky Rjd ) (3.10)
d

Therefore, the CCDF and PDF of the path loss from a typical UE to the BS in the j** tier can be

expressed as

Fp, (z) = exp ( — A;(Do, x))), for j € K, G.11)
where

Aj([ov m)) - Aj,LOS([Oa x)) + Aj,NLos([O, 96)) (3.12)

Also, the PDF of L; ,(y), denoted by f;, _ is given by

dFp, (x .
fr,.(v) = —;—;() = A’ ([0, 2)) exp ( — Aj,s([O,x))>, forj € K, (3.13)
where
D 15} $é71 iL L
jd fo' fo'
Nos([0,2)) =200 ]——Ll </<;§Rj(t§i_1) <z <kKyRd ) : (3.14)
d=1 afiL/-q,é’aZi
and
b -
(1= B
Ninros (0, 2)) = 270> - 1 iR <@ < k)R (3.15)
J o’

=1y kg Yl

3.3 User Association
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3.3.1 Association Criterion

UEs are assumed to be associated with the BS offering the strongest long-term average biased
received power similarly as in [179]. This can be mathematically expressed as

P = max P],zB],ZGOLJ_’Zl (316)

jEKl,iGCDj

where P is the average biased received power of the typical UE, P;;, B} ;, L;Z-l are the transmission
power, biasing factor, and path loss of the i’ BS in the ;" tier, respectively, and G, is the effective
antenna gain. Since P;; and B;; are the same for all BSs in the j" tier, the strongest average biased
received power within each tier comes from the BS providing the minimum path loss. Therefore,
we can write

P = max P;B;GoL;, (3.17)

jeKa 7,min

where L i, is the minimum path loss of the typical UE from a BS in the ;%" tier.

3.3.2 Association Probability

Association probability is defined as the probability that a typical UE is associated with a LOS/NLOS
BS in the j* tier for j € ;. The association probabilities with a BS in the j*" tier are provided in

the following lemma.

Lemma 3.2. The probability that the typical UE is associated with a LOS/NLOS BS in the " tier

forj € Ky, is
_ K
ELO,S PrLos (H FLk (Clc,OlO,s)):| ) Jforj =0,
i k=1
Ajs = K (3.18)
Er,. | £, (i) | Fro (Coglys) IT Fr, (Crjlis) || forj €K,
E=1
L k#j

where s, s’ € {LOS,NLOS},s # §', Cy,; = ?’?—g’?,
J=7

l; s is the path loss from a LOS/NLOS BS in the
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jth tier, F1,(+) is given by (3.7), (3.3) or (3.5) (depending on the cluster process), and F 1, (), and
FL],YS, (+) are given by (3.11) and (3.8), respectively.
Proof. See Appendix 2.

Corollary 3.1. When ®7 is a Thomas cluster process, the association probability with a LOS/NLOS
BS in the j™ tier for j € Ky, is given in (3.19), where s € {LOS, NLOS}, Ai([0,)) is given in

(3.12), N 105([0,-)) and N’ y; 55(10, -)) are given in (3.14) and (3.15), respectively.

dlo,s> fOrj = Oa

2
1 (los el K [ LB )
PLos /OO e( 275 ( " ) Zh=1 Ak( 0- BBy 0.0
2 J0

PoBolj,s> 0,m

0 __1 [ 1020%,s |\ oy’
Aj’s ) / Z pLo,me 2(7]2‘ (PijKT ' (319)
0

A ([0, 45))
me{LOS,NLOS}
K A (0,P’?B’?l]-,s ))
e< k=t { Fi% ) dly s, forj € K.

Proof. The proof follows by substituting (3.3), (3.7), (3.8), and (3.11) into (3.18).

Corollary 3.2. When ®J is a Matérn cluster process, the association probability with a LOS/NLOS

BS in the j'" tier for j € K,, is given as.

¢ ks

HSR(.Il 2 _
allgsﬁi Dt]fs R? 0 ’
o0 2
A, = / Z (1 1 RyBoljs ak) A , (3.20)
8 pLO,m 2( . . m) 1 j,S’([07l‘77s))
0 me{LOS,NLOS} R B Bjn
72}(: A <07Mlj,s >>
e< el [o s diy,., forj e k.

Proof. The proof follows by substituting (3.5), (3.7), (3.8), and (3.11) into (3.18).

Furthermore, given that the serving BS is from the j* tier and in a LOS/NLOS transmission,

the PDF of the path loss from the typical UE to its serving BS is provided in the following Lemma.

Lemma 3.3. Given that the typical UE is associated with a LOS/NLOS BS from the j'" tier; the



PDF of the path loss is
Pry,s s il y
AO;, fLo,s(x) FLk (O&ol’) ) fOl’] = 07
. ’ k=1
T, (@) F L, (2) | Fro(Coz) [ Fr, (Cryo) |
‘ k=1
k#j
where Cy, ; = ];’;gf.

Proof. See Appendix 3.

3.3.3 Analysis of Special Cases for Association Probability

forj e K.
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(3.21)

In this section, we provide simplified association probability expressions for several special cases

to give more insights on the impact of different system parameters. Specifically, we consider a 2-

tier model, where the UEs are clustered around the 1% tier BSs. We further consider a 1-ball model

with radii 17, and R; for tiers 1 and 2, respectively, and assume that the probability of LOS is equal

to one inside the ball while outage occurs outside the ball. In addition, the path loss exponent a,

is set as 2. Performing several algebraic operations and assuming that the standard deviation of

the Gaussian UE distribution is o, we simplify the association probability expressions in (3.19)

(obtained for the Thomas cluster process) as follows:

where

Ag= —b /OO o~ mtar M0 -A2([0.52521))
202k J,

A= /Oo A&([O,l))efﬁ*/\l([o’l))*m([O’Eg?l>>dl
0

A= / AL ([0, 1))e” et~ (0 rE ) A 00) gy
0

A;([0,2)) = TA; <R§1(x > K'R2) + %1@ < mLR?)>

, A,
AL([0,7)) = H—le(x < /ﬁLRjz.).

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Moreover, if we let Ry and R, grow without bound, i.e., we have Ry — oo, Ry — 00, we can

simplify the expressions further and obtain the following closed-form expressions:

P By

Ay = 3.27

* 7 PB; + 2102(\M P, By + A P2 Bs) (3-27)
27TO'2)\1P131

A = 3.28

' PBy + 210%2(\MPLB; + M\ Py By) (3.28)
2702 \o P, B

Ay mo Aol By (3.29)

- PlBl + 27T0'2()\1P131 + )\QPQBZ) '

The association probability expressions above are simple functions of the key system parameters
such as transmission power P;, biasing factor B;, BS density \; for tiers © = 1,2 as well as
the variance o2 of the Gaussian cluster distribution, and the impact of these parameters can be
determined immediately. For instance, we readily note that as the UEs are spread more widely
around the cluster center, i.e., as the variance o grows, association probability A to the cluster
center diminishes, as expected. Indeed, in the limit as o approaches infinity, UEs are no longer
clustered around BSs, and correspondingly our model specializes to the 2-tier PPP model for which

association probabilities become (in addition to having A, ~ 0)

M\ P, B,
A ~ 3.30
YN PLB, + M\PoBs (330)
A, Mo Bs (3.31)

T MNP.B; + \PBy’

recovering the results in [12] and [57] obtained for the PPP model with no clustered users.
On the other hand, if we consider a 2-tier Matérn cluster process model with cluster radius R,

association probabilities in (3.20) can be simplified as

L p2
1 K" R B B PoB
A= T / e N (3.32)
0
> Py By
Ay = / (1- #)A’1 0, 1)e MDA [0 B g (3.33)
0

o0 I[P, B, —A [o —P131l>—A [0,0)
A= (- A! 0 ) 00 gy, 34
9 /0 ( R2P232> 5[0,0)e 252 dl (3.34)
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If the radii R, R> and the cluster radius R all grow without bound, we obtain the same expressions

as in (3.30) and (3.31) for the association probabilities.

3.4 SINR Coverage Probability Analysis

In this section, an analytical framework is developed to analyze the downlink SINR coverage
probability for a typical UE of ®/ using stochastic geometry and employing the results obtained in

Section II1.

3.4.1 Signal to Interference Plus Noise Ratio

According to the association policy, a typical UE is served by the BS providing the strongest
average biased received power. Therefore, if the typical UE is served by a BS in the j** tier located
at a distance y;, there exists no BSs in the Et tier (Vk € K;), within a disc Q;, whose center is the
location of the typical UE and whose radius is proportional to %lms. We refer to this disc as the
exclusion disc throughout this chapter .

If the typical UE is associated with a BS in the j'" tier, the interference is due to the BSs lying

beyond the exclusion disc. Therefore, the interference from the BSs in the £ tier can be expressed

as

Li= Y PGrilLi} (3.35)

1€ \Qx
where P, is the transmit power of the BSs in the kth tier, and G ki, i, Ly ; are the effective antenna
gain, the small-scale fading gain and the path loss from the i** BS in the k'" tier, respectively. We
assume that all links are subject to independent Nakagami fading, and hence the small-scale fading

gain h is the magnitude-square of the Nakagami fading coefficient.

The SINR experienced at a typical UE associated with a LOS/NLOS BS in the j'* tier can
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expressed as
P;iGoh;L,

K
oLt 2 Pkahk,iL;;}

k=04i€®;\Qx

SINR]’S -

(3.36)

where s € {LOS,NLOS}, P; is the transmit power in the j* tier, Gy is the effective antenna gain
of the link between the serving BS and the typical UE which is assumed to be MM, h; is the
fading gain from the serving BS to the typical UE and og’ ; 1s the variance of the additive white

Gaussian noise component.

3.4.2 SINR Coverage Probability

A typical UE is said to be in coverage if the received SINR is larger than a certain threshold 75 > 0

required for successful reception.

Definition 3.1. Given that the typical UE is associated with a LOS/NLOS BS in the j*" tier; the

conditional SINR coverage probability of the j'" tier is defined as

P¢,, = P(SINR;s > Tj|t = j) (3.37)

where t indicates the associated tier and s € {LOS,NLOS}. Therefore, the total SINR coverage
probability of the K-tier heterogeneous mmWave cellular network with user-centric small cell

deployment can be defined as follows:

K K
Po=Y Poy= > AP4. +>. > AP (3.38)
Jj=0 s€{LOS,NLOS} Jj=1 se{LOS,NLOS}

where A; ; is the association probability of a LOS/NLOS BS in the gt tier, which is given in 3.18.

P, is the coverage probability of each tier and Pc; = > A PE.
s€{LOS,NLOS} ”

The exact expressions for the coverage probabilities of each tier are given in the following

theorem.
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Theorem 3.1. Given that the UE is associated with a LOS/NLOS BS from the j™* tier (j € K1),
the conditional SINR coverage probabilities are given in (3.39) at the top of the page, where s, a €
{LOS,NLOS}, N; is the Nakagami fading factor, ;s = %, N = NS(NS!)fNLs, I3 is the

interference from the LOS/NLOS BSs in the k'™ tier to the j'" tier, 1, is the interference form the

th . th . .
0" tier to the 3" tier, and L I, (pjs) is the Laplace transform of 1 i evaluated at pui; 5.

Péj,s =
( N, K
ELO,S { 71(_1)n+1 <1:7Ls> —Ho, SG kH <,CILOS(IMOS)£INLOS([LOS)>:| s fOl’j = 0,
S «
ELj,s [ _1( 1)n+ e —Hj,s0 nj ( L0a£[ /Lj’s)) kljl (EIJLS’CS(Mj,S)ﬁlé\%’S(Mj,S)):| ,
forj e K.
(3.39)

Proof. See Appendix 4.

Lemma 3.4. Suppose the typical UE is associated with a LOS/NLOS BS in the j"(j € K;)
tier, the Laplace transform of the interference from a LOS/NLOS BS in the k'(k € K,) tier
can be expressed as in (3.40) provided at the top of the page, where s € {LOS,NLOS} and
a € {LOS, NLOS} indicating whether the associated BS and interfering BS, respectively, are LOS

or NLOS.
Yore [ 1 Poe e iy forj =0
A T e T A CTT R |
_ @\ FiBi

ﬁm’k - ->c /B ( L ) A, ([0,dlk q))

¢lpP B 1- ———— 7, | Pe o ((0,dlka
e PkBk e (1+#j’SPkle’;Na 1) 5 fOI"j c /C

(3.40)

Proof. See Appendix 5.

The general coverage probability expressions in Theorem 3.1 specialized to Thomas and Matérn

cluster processes can be readily obtained by substituting (3.4) - (3.6) into (3.39) and (3.40).
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Next, we provide upper and lower bounds on the Laplace transform of the interference.

Lemma 3.5. The Laplace transform of the interference from the cluster center LOS/NLOS BS,

L ,s.c, is bounded as
3,0

B.T:\
<1 n M) < Lo <1 (3.41)

Proof. See Appendix 6.

We note that the result in Lemma 5 can be used to obtain upper and lower bounds on the

coverage probability P of the network.

3.4.3 Analysis of Special Cases for Coverage Probability

In this section, we again analyze (similarly as in Section 3.3.3) the special case in which the
cluster size grows without bound. As defined before, ) is the distance from the typical UE to its
own cluster center, and lp ; = Ksy,* is the path loss of the link given the link is in a LOS/NLOS
transmission. When the cluster size increases, the typical UE moves farther away from its cluster
center with high probability. One way to model this notion is to scale the distance to the cluster
center as 'y (see e.g., [13, Section IV-B]), and also scale lp, = <l , where ¢ = ¢'*. As the

cluster size tends to infinity, we let ¢ — oo.

Lemma 3.6. As the cluster size goes to infinity, the Laplace transform of the interference from the
cluster center BS satisfies L e, = 1.

Proof. See Appendix 7.

From Section III-C, we know that when the cluster size approaches infinity, association prob-
ability with the 0™ tier BS satisfies Ay — 0. Then, since P¢, < 1, the coverage probability of

the cluster center approaches zero as well, i.e., P, — 0. Moreover, we can obtain the coverage
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probability of the j™* tier BSs (j € K) as

N K
chys = Aj,sEL]-ys [Z(_l)n—i-l (JZS> e_ﬂj,sﬂgl,j H (EI;’%S(MJ}S)LI;Z?S (/Lj’s)> ] (3.42)
n=1 k=1

which is the same as the coverage result in [57] obtained for the PPP-based model with no clustered
users. Therefore, we can conclude that when the cluster size tends to infinity, our PCP model

performs similar to a PPP-based model.

3.4.4 Analysis of Noise-Limited Networks

In previous sections, we have addressed the general case in which both noise and interference are
taken into account. In this section, we provide coverage expressions for noise-limited networks.
When interference is ignored, SNR coverage probabilities of j* tier BSs given that the typical UE

is associated with this tier can be expressed as
N,
Ns\ 02 .
P, =Eu,, [Z(—l)"“( )e “va"w] . (3.43)
S ’ n
n=1

Similarly as in Section 3.3.3, we consider a 2-tier model and assume only LOS links for all

BSs with a;, = 2. Then, for Thomas cluster processes, coverage probabilities simplify to

PGy
P, = 3.44
Co 2TI€LO'72L,00'2 + P1G07 ( )
7T)\1P1G0
G = 3.45
= TI{LO',?LJ—f—’YT)\lPlGO’ ( )
c W)\QPQGO (3 46)

G TI{LU%’Q + 7T>\2PQGO ’

For Matérn cluster processes, we have

PG _TrloR o R
pe = 170 (1 e e |, (3.47)

“ " TkLo2  R?
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and g, and Pg, are the same as (3.45) and (3.46), respectively. When the cluster size tends to
infinity, we have P¢ ~ 0 while P, and P¢, do not change. And the SNR coverage probability of
the entire network can be expressed as Po = A P¢, + Ao Pg,, where A; and Aj are provided in

(3.30) and (3.31), respectively.

3.4.5 Area Spectral Efficiency Analysis

In the preceding analysis, we have obtained the downlink SINR coverage probability expressions
for clustered UEs. In this section, we consider another performance metric, namely area spectral
efficiency (ASE), to measure the network capacity. ASE is defined as the average achievable data
rate per unit bandwidth per unit area [180], and it is a useful metric to measure the quality of the
network performance especially for dense networks. Therefore, in order to evaluate the network
performance, we formulate the ASE based on the SINR coverage probability results.

Note that we have an additional 0" tier in our network model. We suppose that the typical UE

clustered around the 0" tier BS is from the ;" tier, and therefore ASE is defined as follows:

R\, T) = (Aj (Pe,(T) + Pe,(T)) + Y AiPci(T)> log,(1 +T) (3.48)

i=1,i#j

which implicitly assumes a fixed rate transmission from all BSs in the network, and has the units
of bps/Hz/km?. Pc,(T) and \; are the coverage probability and density of the " (j € Ky) tier,

respectively.

3.4.6 Analysis of Practical Antenna Radiation Patterns

In this section, we extend our analysis by considering several more practical antenna pattern for-
mulations provided in (2.18)-(2.21).

Because of the perfect beam alignment assumption between the typical UE and its serving BS,
the antenna gain of the serving link is still constant even when we consider these antenna gain

functions. Therefore, these more practical antenna patterns affect only the interference power as
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follows:

= ) RGG ( 0,“> hioiLys (3.49)

1€Pp\Qr

where d is the antenna spacing, \ is the wavelength and ¢ is a uniformly distributed random variable
over [-1,1].
The general expression for the coverage probability given in Theorem 3.1 remains same, while

the Laplace transform of the interference in Lemma 3.4 is modified as follows:

0o fo(0) fLoa( lo a) .
JoJes (11,6 PoGoG (4011 )1 ANa ) Fro.a 2y lo,add for j =0,

a

gk

— Jo fo(0) [& | 1— ! a)A’ o([0,dlg 0))d0
e ' DN (rmgaricoo(Fo ) hva )™ ) 7 forj € K.

(3.50)

where Cy = PoB ljs, C, = P’“Bkljs and the PDF of 0 fy(x) = % forz € [—1,1].

3.4.7 Analysis with Shadowing

In the preceding analysis, shadowing is not considered in the channel modeling. However, associ-
ation and coverage probability analyses can be extended to incorporate shadowing. In this section,
we describe how we can obtain the association and coverage probability results with shadowing
which is modeled as a log-normal random variable, i.e. 10logv ~ N (i, 02) with z1, and o2 being
the mean and variance of the channel power under shadowing, respectively. When shadowing is

taken into account, the received power P’ at the typical UE can be written as
P'= P;B;Ghjv;L;" = P;B;Gh; L} (3.51)

where the scaled path loss (that now includes shadowing) is expressed as L; = vj_le.

PDF and CCDF of the scaled path loss L; can be obtained by conditioning on the shadowing
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gain v as fri,, (2) = v;fi;(v;z) and FL“U].(Z’) = Fp,(vjz), where * > 0. Then, we can
obtain the conditional association probability A; ., and coverage probability ng v using the
same analysis in the previous sections with the modified f:,, (z)and F Ll (x). Finally, coverage

probability can be obtained by deconditioning on shadowing gain v;, i.e. by averaging over the

distribution of vj, as Pg, | = Ey,[Pe; jv;]-

3.5 Numerical Results and Discussions

In this section, we present several numerical results based on our analyses in sections 3.3 and 3.4.
Simulation results are also provided to validate the accuracy of our analysis.

In the numerical evaluations and simulations, a 2-tier heterogeneous network model with an
additional 0" tier, which is the cluster center of the typical UE, is considered. For this 2-tier
scenario, 7 = 1 and j = 2 correspond to the picocell BSs and microcell BSs, respectively. In other
words, a relatively high-power microcell network coexists with denser but lower-power picocell.
UEs are clustered around the picocell BSs. Therefore, transmit power of BSs in the 0" tier is the
same as in the 1°¢ tier. For both 1°¢ and 2™ tiers, D-ball approximation is used with D = 2, and the
ball parameters are learned from [56]. In the numerical evaluations and simulations, unless stated

otherwise, the parameter values listed in Table 3.1 are used.

Table 3.1: Parameter Values Table

Parameters Values

Py, Py, P, 33dBm, 33dBm, 53dBm
Bg,Bl,BQ 1,1,1

A, A2 102,10! (1/km?)

(Ri1, Ri2), (B11, B12) | (40,60), (1,0)
(Ra1, R22), (B21, B22) | (50,200),(0.8,0.2)

o, ol Vi, vd 2,4[162]

Np, Ny 3,2[160]

M, m, 0 10dB, -10dB, 7 /6 [1] [160]
Carrier frequency (F.) | 28 GHz

kL =k vd (F./4m)*

o Vi -174dbm/Hz +10log10(W) + 10dB
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(a) Thomas cluster process. (b) Matérn cluster process.

Fig. 3.2: SINR coverage probability of each tier as a function of the SINR threshold when the cluster size
is 30 (i.e., 0, = 30 and R, = 30).

3.5.1 Association and Coverage Probabilities

First, we analyze the effect of UE distribution on the association probability (AP). In Fig. 3.1, we
plot the APs as a function of the cluster size, which is quantified by the standard deviation o, of
Gaussian UE distribution for the Thomas cluster process, and is given by the cluster size R, of
the Matérn cluster process. Since cluster size increases with the increase in o, and R, UEs are
located relatively farther away from their own cluster center for larger o, and R,;,. Therefore, UEs
become more likely to connect with the BSs in other picocells and microcells. In other words, AP

with the 0" tier, Ay, decreases, while APs with the 15 and 2"¢ tiers, A; and A, increase with the
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Fig. 3.3: SINR coverage probability as a function of the cluster size when 7' = 30dB.

increasing cluster size. However, note that UEs are still more likely to associate with the 0" tier
rather than 1°¢ and 2"? tiers. We further note that we generally have excellent agreement between
simulation and analytical results.

Moreover, we notice in Fig. 3.1(a) that for the Thomas cluster process, when o, is less than a
certain value (which is approximately o, = 38 for this setting), AP with the 1% tier is less than that
with the 2" tier, while the opposite happens as o, exceeds 38. Note again that with the increase in
o, UEs are more likely to be located farther away from their own cluster center. Since picocell BSs
are more densely deployed than microcell BSs, UEs are more likely to be close to other picocell
BSs. Thus, A; becomes greater than A, for o, > 38. However, for the Matérn cluster process,
since UEs are uniformly distributed around the cluster center inside a circular disc, UEs cannot be
located outside the clusters as shown in Fig. 1(c), and are more compactly distributed. Therefore,
Aj is larger than A, for R, < 56, owing primarily to the larger power in the microcell tier (i.e.,
the second tier). Note that P, = 53dBm > P; = 33 dBm as assumed in Table II. The cluster
size difference between two cluster processes is because of the fact that for Thomas cluster process
with o, = 38, UEs can still go beyond this size. But for Matérn cluster process, UEs cannot go
further than R,.

In Fig. 3.2, we plot the SINR coverage probability (CP) as a function of the threshold for both

Thomas cluster process (upper sub-figure) and Matérn cluster process (lower sub-figure). Because
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of the definition of CP, P diminishes with the increasing threshold. Moreover, when comparing
the CP of each tier, we find that the cluster center BSs provide the largest CP (i.e., P, is the
largest), indicating that the UEs are more likely to be covered by their cluster center BSs. In Fig.
3.3, we plot the SINR CP as a function of the cluster size o, for Thomas cluster process and R, for
Matérn cluster process. As cluster size increases, we note in both Fig. 3.3(a) and Fig. 3.3(b) that
the total SINR CP decreases. When UEs are close to their cluster center, they are mostly covered
by the cluster center BS (i.e., the 0" tier BS). As UEs are distributed further away, probability of
being covered by the cluster center BS goes down rapidly while SINR CP of the 1* tier Pr, and
274 tier Pr, increase. However, the increase in Fp, and P, cannot compensate the rapid decrease

in FPr,, and hence the total SINR CP decreases.
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Fig. 3.4: SINR coverage probability as a function of the SINR threshold for Nakagami and Rayleigh
fading.

3.5.2 Impact of the Small-Scale Fading and Shadow Fading

In Fig. 3.4, we investigate the effect of small-scale fading type on the coverage performance and
plot the SINR CPs when small-scale fading for all paths are considered as either Nakagami or
Rayleigh fading. Rayleigh fading is a special case of Nakagami fading with parameters N; =
Ny = 1. As clearly seen in the figures, better CP is achieved with Nakagami fading than Rayleigh

fading because Nakagami fading leads to more favorable channel conditions. However, the dif-
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Thomas cluster process.

ference in the CPs for these two different fading distributions is interestingly not very significant.
Moreover, it is shown in [181] that a more general fading such as Nakagami fading does not pro-
vide additional design insight, and [158] also shows that small-scale fading has a relatively little
effect on mmWave communications. Therefore, together with our observation in Fig. 3.4, we
consider Rayleigh fading in the following subsections for lower computational complexity. In Fig.
3.5, we investigate the effect of the log-normal shadowing for different values of the o2. In par-
ticular, we plot the SNR coverage probability with and without shadowing taken into account. We
again observe excellent agreements with the simulation results. We also notice that for o2 = 10,
shadowing can help improve the SNR coverage performance slightly, indicating that fluctuations
due to log-normal shadowing can lead to small increases in the coverage probability. On the other
hand, when the variance is increased to o> = 100, we have lower coverage probability with respect
to the case without shadowing at small values of the threshold 7" while we have increased cover-
age probability for larger values of 7'. We note that the coverage probability at large values of T’
is already very small without shadowing taken into account. Therefore, fluctuations that tend to

increase the received power in some cases result in higher coverage probabilities comparatively.
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Fig. 3.6: Comparison of SINR coverage probability and SNR coverage probability as a function of the
threshold for different values of the cluster size.

3.5.3 Impact of the Interference

In Fig. 3.6, we plot the total SINR CP and SNR CP as a function of the threshold in dB for different
values of standard deviation of UE distribution for Thomas cluster process or the cluster size for
Matérn cluster process. In our model, when UE is connected to a picocell or microcell BS outside
of its cluster, interference from the 0" tier BS at the cluster center is not necessarily negligible due
to the relative proximity in the clustered distributions. As expected, relatively large gaps between
SINR CP and SNR CP are seen in Fig. 3.6, indicating that interference has noticeable influence
on the CP performance in this clustered system model. We note that this is a departure from
mmWave studies with PPP-distributed users, where performance is regarded as noise-limited as
in [56], [57], [182] rather than being interference-limited. Moreover, the impact of interference is

slightly larger for small sized clusters as shown in Fig. 3.6(a) and Fig. 3.6(b).

3.5.4 Impact of Antenna Modeling

We also investigate the effect of the main lobe gain M and the main lobe beamwidth # on the SINR
CP performance in the sectored antenna model. In Fig. 3.7 (a), the M m and 6 are the same for all
BSs and UEs. As shown in the figure, improved SINR coverage is achieved when the main lobe

gain M is increased for the same value of 6. The long term averaged received power of the typical
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Fig. 3.7: SINR coverage probability as a function of the threshold in dB for different values of antenna
main lobe gain M and the beamwidth of the main lobe 6.

UE greatly increases with the increase in M while the interference does not change much, and thus
SINR becomes larger with increasing M resulting in a better coverage performance. On the other
hand, when the main lobe beamwidth 6 increases for the same value of M, SINR CP decreases as
a result of the growing impact of the interference.

Fig. 3.7 (b) presents a relatively more general case where M, m and 6 are different for the
UEs and different tier BSs. In particular, we have M, = 10 dB, m, = —10dB, 6, = g for the
UEs [160], and for the BSs, we set m; = —10dB, while different values of ), 0; are considered
as shown in the figure legend. From this figure, we essentially draw the same conclusions as in Fig.
3.7 (a). In addition, this result demonstrates that our analysis can be readily applied to a model in
which antenna parameters are different for UEs and BSs.

We also investigate the impact of the practical cosine antenna pattern, using the same param-
eters as in [166], where the antenna spacing is d = % and the total number of antenna elements
is N; = 64. As shown in Fig. 3.8, compared to the sectored antenna model, the cosine antenna
gain pattern results in a relatively larger coverage probability while exhibiting similar performance
trends. The improved coverage with the cosine radiation pattern can be attributed to the fact that
the side lobe gains decay faster and become smaller compared to the sectored antenna sidelobe

gain (which is fixed), leading to smaller interference at the receivers.
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Fig. 3.9: Association probability and coverage probability as a function of By /By when T' = 30dB for
the Thomas cluster process. (b) plots the total coverage of the network with different cluster sizes.

3.5.5 Biasing Factor Design of the Picocell BSs

In Fig. 3.9, we investigate the impact of biasing factor of picocell BSs B; on the coverage per-
formance for a fixed B, = 0 dB, considering the Thomas cluster process. First, in Fig. 3.9 (a),
we plot the APs as a function of B;/Bs. With the increasing biasing factor ratio By /B>, UEs are
more likely to be associated with picocell BSs. Therefore, in the figure, Ay and A; are increasing.
Another observation is that both Ay and A all converge to constants while A, diminishes to zero,
indicating that further increase in the biasing factor of all picocell BSs will not influence the AP

with each tier.
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Fig. 3.10: Association probability, SNR coverage probability of each tier, and SINR coverage probability
of each tier as a function of \; /A2 for the Matérn cluster process when the cluster size is 30 and 7" = 30dB.

Fig. 3.9 (b) displays the total SINR CPs with different cluster sizes. Interestingly, total SINR
CPs exhibit different behaviors for the different values of the cluster size. In particular, the total
SINR CPs increase with increasing B; /B, for small values of the cluster size. On the other hand,
larger values of the cluster size result in a decrease in the total SINR CP. When cluster size is small,
the distance between the typical UE and the cluster center picocell BS is relatively small and the
typical UE is already more likely to be associated with its cluster center BS. Therefore, increasing
the biasing ratio B; /B, encourages the typical UE to connect with its cluster center BS which is
not far away, and leads to a small increase in the coverage performance. However, the opposite
happens for larger values of the cluster size. The typical UE is forced to be associated with its
cluster center BS which is located relatively far away due to larger value of the cluster size. As
a result, the total SINR CP decreases. We finally note that a recent work [183] has employed a
random-restart hill-climbing algorithm to find the optimal biasing factor to achieve near-optimal
SINR coverage probability. The authors conclude that with certain blockage conditions, such as
the LOS radii, the optimal basing factor exists. However, in our case, as shown in Fig. 3.9, the

total coverage probability is maximized at the extremes of very small or large values of B;/Bs.
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3.5.6 Dense Networks

In Fig. 3.10, we consider the Matérn cluster process and investigate the network performance of an
ultra dense network by fixing the density of microcell BSs to A\, = 10 (1/km?) and increasing the
density A; of picocell BSs. In Fig. 3.10(a), we plot the AP as a function of A\, /\;. As can be seen,
AP with the 1% tier, A;, increases, while APs with the 0** and 2" tiers, A, and A, decrease with
the increasing A;/Ao. Since the cluster size is relatively large meaning that UEs are not located
closer to cluster center BSs, the typical UE is more likely to be associated with the 1 tier BSs due
to their increasing density, A\;. When the network become ultradense, i.e., \; is very large, almost
all UEs are associated with the 1% tier BSs, and the APs with the 0" and 2"¢ tier BSs approach
ZEero0.

Total SINR CPs converge to zero with the increase in A\; as shown in Fig. 3.10(b) due to the
growing impact of interference. It is obvious that interference has a significant impact on the to-
tal coverage performance. Therefore, coverage performance of the proposed model is sensitive to
the density of picocell BSs. This result is consistent with [184], where the authors indicate that
if the picocell BS density is larger than 10 BSs/km?, then the mmWave network is interference-
dominated, and it becomes interference-limited when the density goes larger than a certain thresh-
old. It is also shown in [162] and [185] that when \; goes to infinity, CP diminishes to zero.

Finally, considering both Thomas and Matérn cluster processes, we present the ASE as a func-
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(TCP) with o,, = 30 and Matérn cluster process (MCP) with R.;,, = 30 except (c).

tion of A;/A2, when we fix Ay = 10 (1/km?) and the cluster size is 10. Fig. 3.11 shows that the
ASE performance increases with increasing \;, indicating that adding more picocell BSs greatly
benefits the ASE of the network. This is because as shown, for instance in Fig. 3.10 (c), even
in ultra dense networks, the coverage probability is not exactly zero and the decrease in coverage

probability is slower than the increase in the picocell BS density.

3.5.7 Comparison between PCP Model and PPP Model

In Fig. 3.12, we investigate the effect of UE clustering on the coverage performance. In other
words, we compare the SINR CPs for PPP and PCP distributed UEs. The black dot-dashed curve
represents the scenario in which UEs are uniformly distributed according to a homogeneous PPP
and their locations are independent of BS locations. Red dashed and blue solid curves are for
PCP models with UEs being distributed according to a Thomas cluster process and Matérn cluster
process, respectively. Although the cluster sizes are relatively large meaning that UEs are widely
spread, the SINR CPs of the PCP models are still much higher than the SINR CP of the PPP model.
In addition, the performance trends for Thomas and Matérn cluster processes are similar, while the
performance trends for the PPP-based model are quite different, as shown in the figures. For in-
stance, as seen in Fig. 3.12 (b), while the coverage probability with PCP distributed UEs decreases

with increasing density (primarily due to increased interference), coverage probability with PPP
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distributed UEs initially increases and then starts diminishing. These show that considering the

correlation between the UEs and the BSs influences the system performance significantly.
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CHAPTER 4

UPLINK COVERAGE IN HETEROGENEOUS
MMWAVE CELLULAR NETWORKS WITH

CLUSTERED USERS

4.1 System Model

In this section, we introduce the system model of the considered network. BS and UE spatial

distributions, and the channel models are described in detail.

4.1.1 Base Station Distribution Modeling

Same as in previous chapter, we consider a K -tier heterogeneous uplink mmWave cellular network.
K = {1,2,...,K} is used to denote the set of tier indices. BSs in the i'" tier are distributed
according to the independent homogeneous PPP ®;. BSs in different tiers differ in spatial density
A\;, transmit power P; and biasing factor B; (which is used to describe the association priority), and
they are assumed to transmit in mmWave frequency bands. Out of K tiers, it is assumed that there

are K, tiers of small-cell BSs, around which UEs are clustered, and we denote the set as /C,,.
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Fig. 4.1: Two-tier heterogeneous network model, where macrocells (blue triangles) and small-cells (black
squares) are distributed as independent PPPs, and UEs are distributed around small-cells according to a
Gaussian distribution. The average number of UEs per cluster is 5.

4.1.2 User Equipment Distribution Modeling

UEs are assumed to be clustered around the small-cell BSs. In each cluster, small-cell BS and the
UEs are regarded as the cluster center and cluster members, respectively. Assume that the cluster
center is a BS from the i tier, then the cluster members are regarded as the it" tier UEs, and then
we can use /C,, denote the set of tire indices for UEs. The union of the cluster members form a PCP,
denoted as ®',. In this chapter @/, is modeled as a Thomas cluster process with standard deviation
o;. Initially, in the main analysis of this chapter , we do not consider power control for the UEs,
and the UEs are assumed to transmit at the same power level of P,. Subsequently, we extend the
analysis to incorporate fractional power control in section 4.5.2. We use 0" tier to stand for the
cluster center to the UEs, or the cluster members to the BSs. Two different two-tier heterogeneous

network models are depicted in Fig. 4.1.

4.1.3 Directional Beamforming

In mmWave networks, BSs and UEs are equipped with directional antenna arrays to compensate
the high path loss. We assume that the antenna arrays at the BSs and UEs perform directional
beamforming, and the sectored antenna pattern given in this chapter. Therefore, the antenna gain

of the main link can achieve the largest antenna gain Gy = M} M, and the antenna gain between
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Fig. 4.2: An illustration of different distances from the BSs to UEs.

the typical BS and the interfering UEs can be expressed as in (2.22). Let ps denote the probability

of having antenna gain G' € { M, M,,, Mym,,, my M, mym,, }.

4.1.4 Channel Model

Blockage models and path loss models given in (2.11) and (2.13) are considered in this chapter.
All transmission links are assumed to experience independent Rayleigh fading with unit mean,
i.e., channel fading power is exponentially distributed, » ~ exp(1). However, our analysis can be
extended by incorporating Nakagami fading for the main transmission link, and this extension is

addressed in section 4.5.1.

4.2 Distance Characterization

In this section, we statistically describe the distances between the BSs and UEs. A representative
scenario displaying different distances is shown in Fig. 4.2. Assume that the typical UE is from
the 7! tier and is located at the origin. The PDF and CCDF of these distances are discussed below,

and will be used in the analysis of association probability and the system performance matrices.



75

4.2.1 Distance from the Typical UE to its Cluster Center BS r;, (: € KC,)

Lemma 4.1. Given the link is in s € {LOS,NLOS} channel, the PDF and CCDF of r;y can be

expressed as

Jriy (@) = Poi() frio(x)/ Diy (4.1)

Fs (x) = / Do () frs, (t)dt/ D}y (4.2)

where D3, = E,. [p3;(1i0)] is the probability that the link between the UEs and their cluster cluster
center small-cell BSs is in s channel.

Proof : See Appendix 8.

4.2.2 Distance from the Typical UE (the origin) to the Nearest ;" Tier

LOS/NLOS BS 7; (j € K)
Given that the typical UE can observe at least one LOS/NLOS BS in the ;" tier, the PDF and

CCDF of the distance can be expressed as [160]

E;.(x) = ¢ 2 Jo tray ()t D3 4.3)

frj (z) = 2\ Tps, (x)eiQﬂ)‘j Jo (t)dt/D;; 4.4)

where D} = 1 — e~ 2N JoT 22 @) g the probability that the typical UE has at least one s €

{LOS,NLOS} ;" BS around.

4.2.3 Distance from the k" Tier UE to the ;" tier BSs r;; (j € K, k € K,)

For a UE from the k" tier, the distance from the cluster center BS to the j** tier BSs is notated by

v;i, Since the cluster members are distributed according to a Gaussian distribution with variance
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a,%, the conditional distribution of rj; given vj, is a Rice distribution, and the PDF is given by [74]

o (T|vj) = Ricepdf(r, vj; o) (r>0) (4.5)

) 1p( %) and Io(-) is the modified Bessel function of the

a
202

where Ricepdf(a, b; 0?) = % exp(—

first kind with order zero. This distance formulation is used in the analysis of interference.

4.3 Association Probability

In this section, we first describe the downlink-uplink coupled association strategy, then derive
expressions for the association probability, and finally provide discussions on the conditional PDF
of the distance from the typical UE to the reference BSs. Since the typical UE can be served by its
cluster center BS, other small-cell BSs, and the macrocell BSs, we have three types of reference
BSs in the network. Association probability describes the probability that the typical UE is served
by a reference BS. In Section V, we investigate the coverage probabilities at each reference BS,
and together with the association probability we eventually investigate the coverage performance

of the entire network.

4.3.1 Association Criterion

Coupled association strategy is adopted in this chapter , which constrains the serving BS to be
the same in both uplink and downlink. More specifically, all BSs send pilot signals to the UEs
in downlink transmission, and the UEs choose the BS providing the largest long-term averaged
biased received power [62] to connect in both downlink and uplink transmissions. Here, long-
term averaging indicates that we average over the small-scale fading. Biasing factor describes the
association priority of each UEs to different tiers of BSs, and is denoted by B; for the ;" tier BSs.

Larger B; indicates that UEs have higher preference to be associated with j t" tier BSs. This largest
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long-term averaged biased received power at a UE can be formulated as

P = P;,Bi,GoL7} 4.6
jE(ICILIJl(%,);elI’j gm0 g n (4.6)

where P; ., B, L; . are the transmit power, biasing factor, and the path loss of the n'" BS in the
4 tier, respectively. Gy is the effective antenna gain. Since in the ;%" tier, the transmit power and
the biasing factor are the same, the BS in this tier with the minimum path loss to the UE provides

the maximum received power P. Now, we can rewrite

P = max P;B;G,L;} 4.7)

FE(KU0) i

«
mwn

where L; pmin = K75, 1S the minimum path loss in the 5t tier.

4.3.2 Association Probability

Based on the coupled association strategy, we can define the association probability (denoted by
A;j ) as the probability that an i tier UE is served by a j'" tier BS in s channel, indicating that this
BS provides the largest long-term averaged biased received power to the typical UE in downlink
transmission. We define the event S;; ; = {the typical UE from the i*" tier is served by a BS from
the j* tier with a s € {LOS, NLOS} link}. Again, we note that the typical UE can be served by

its cluster center BS and in this case we set 7 = 0.

Lemma 4.2. The probability that the typical UE from the i*" tier is associated with a BS from the

4t tier in a LOS/NLOS transmission is given by the following expressions in two different cases:

Aijs =
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(4.8)

where s, s',a,b € {LOS,NLOS}, C}b = ];’“gk:‘* Db = 1—e 2% Jo~ wor@)de s the probability that

a UE has at least one b € {LOS,NLOS} k' tier BS around, D3, = E,. [p:,(ri)] is the probability
that the link from the typical UE to its cluster center BS is in s € {LOS,NLOS} condition, and
F,.(x) is the CCDF of r given in (4.2) and (4.3) in Section III.

Proof: See Appendix 9.

4.3.3 Conditional PDF of the Distance from the Typical UE to the As-
sociated BS r;; ; Given 5

The conditional CDF of r;; ; given S;; ; can be expressed as

~ P(ri‘s<wasi's> P(Ti's<xasi's)
Fri's(ﬂj) — P(T’L s < x|S’L ‘,S) — J> Js — 7> Js (49)
: ’ ! P(Sijs) Aijs

Following a similar approach as in the analysis of the association probability, we obtain the condi-

tional PDF as
r Fri's(x)
fTij,s<x> - Zi—x -
( fr$ ( ) b b .
AZ?OS 0 k 1 HbD [(Cks ag)& ], J=0,
frs (@)

DDy F, (0t ) [ X, DYF, mwwﬂmmwmwwm7

jekK.

(4.10)
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4.4 Coverage Analysis

In this section, coverage probabilities are analyzed. First by utilizing tools from stochastic ge-
ometry, we provide general expressions for coverage probabilities. Subsequently, the Laplace

transforms of the inter-cell interference terms are characterized for Thomas cluster processes.

4.4.1 Signal-to-Interference-Plus-Noise Ratio

Due to orthogonal resource allocation among users in a cell, there is only one UE from each outside
cell causing interference to a reference BS. We note that if the reference BS is the cluster center
BS to the typical UE, this BS only experiences inter-cell interference; otherwise the reference
BS experiences both inter-cell and the interference from a cluster member UE. We model the
interfering UEs as @/, .

Therefore, the interference can be expressed as follows:

Inter-cell interference: [, = Z Pqu,nhkﬁnm_lrkﬁ “4.11)
ned!
Interference from a cluster member UE: [, = PuGh/-@_lrj_Oa 4.12)

where P, is the transmit power of the UEs, and G, ,, and hy, ,, are the effective antenna gain and the
small-scale fading gain of the n'" interfering UE in ®/ , , respectively. We note that if the reference
BS is the cluster center BS, ;o = 0.

The SINR experienced at the reference BS can be expressed as

PuGoth{ST‘ias

o2+ Lo+ > L
keky

(4.13)

SINR; , =

where s € {LOS,NLOS}, Gy = M,M,, and &2 is the variance of the additive white Gaussian

noise component.
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4.4.2 SINR Coverage Probability

The association probability is the probability that the typical UE is served by a reference BS. In
this subsection, we analyze the SINR coverage probability Paj,s which is defined as the probability
that the experienced SINR at the reference BS is above a certain threshold 7' > 0 given S, ,, i.e.,
Pa-j,s = P(SINR;; s > T'|S;js). The coverage probability of the entire network can be formulated

as

K K K
Pe=) Po,=) P(SINRy;s > T[S )P(Sijs) = Y Y P65 Ay (414)
: : prl

e{L,N}

where A;; ; is the association probability given in (4.8). The following result characterizes the

coverage probabilities.

Theorem 4.1. Given the event S;; s = {the typical UE from the i'" tier is served by a BS from the

jt tier with an s € {LOS,NLOS} link}, the SINR coverage probability is formulated as

Ky
Pgi]’,s - P(SINR”LLS > ijlsij,8> - ETz‘j,s eiufjaiﬁfjo (Mzs]) HLIjk (:U’f]) ’ (415)
k=1
Tjksry,

2= [y, is the interference from the UEs in the Kt tier to

where s € {LOS,NLOS}, i3; = PuClo

the reference BS in the j'" tier, I, is the interference to the reference BS from its cluster members.
Lr(p) = E{exp(—ul)} is the Laplace transform of I evaluated at n, and Lr,,(n) = 1 when
[iO == 0

Proof: See Appendix 10.

4.4.3 Laplace Transforms of the Interference Terms

In this subsection, we provide characterizations for the Laplace transforms of the interference

terms.

Theorem 4.2. If the UEs are distributed around small cell BSs according to Gaussian distribu-
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tions, the Laplace transform of the inter-cell interference is given by the following:

1) If the interference arises from the cluster member, we have

Mzg Z Z pGDjO‘CIG“ Mzg) (416)
G ae{L,N}
where
L) = [ 1 i, (rio)d @17)
a 7)) = T T50. .
Ij% Hij 0 1+M7,]P GH 17”704‘1 Rjo 1 30/%750

2) If the interference arises from the UEs in the k' (k € KC,,) tier, we have

) =11 11 L) (4.18)

G ae{L,N}

where

-2 [\ @ (r; 1 Tik ndr;
f() kpGpak( gk,n) 1+(uijqu51r;k“Z)_l jk,nATjk,n

Lrga(pi;) = (4.19)

Above, s,a € {LOS,NLOS}, G € {M,M,, Mym.,, myM,, mym,} is the antenna gain, pg is
probability of having different antenna gains.

Proof: See Appendix 11.

4.5 Extensions and Special Cases

In this section, we extend our analysis to incorporate Nakagami fading and also fractional power
control. We also address average ergodic spectral efficiency. Finally, we consider special cases for

which we obtain simplified expressions for the association and coverage probabilities.
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4.5.1 Extension to Nakagami Fading

It is well known that Rayleigh fading is a special case of Nakagami fading and is obtained by
setting the Nakagami parameter Ny = 1. Hence, Nakagami is a more general fading distribution
that provides a better fit to several practical scenarios and experimental results. In this subsection,

we extend the coverage analysis to Nakagami fading.

Corollary 4.1. When small-scale Nakagami fading with Nakagami parameter N, (Where s €
{LOS, NLOS}) is considered for the main link, the SINR coverage probability of each tier is given

by the following:

n

Ns Ky
c n Ny —us.o S S
Poij,s =B, [Z(_1> H( )e Hd i‘CIjO (Nz‘j) H'Cljk (:uij) : (4.20)
k=1

n=1

where when j = 0, I;o = 0 and Efjo(,ufj) = 1. In the above coverage probability expressions, the

Laplace transforms of the interference terms follow (4.16)-(4.19) with the same expressions.

Proof: The proof follows along the same lines as in the proof of Theorem 4.1. The only change
is that the moment generating function (MGF) of the now gamma-distributed fading gain h is

applied in the computation of the expectation Ey|].

4.5.2 Extension to UE Fractional Power Control

Two types of fractional power control can be considered for UEs: 1) path loss based fractional
power control is performed by compensating the path loss of the UE irrespective of whether its
path to the serving BS is LOS or NLOS; 2) distance based fractional power control is performed
by inverting with the LOS path loss exponent [61]. The transmit power of UEs can be expressed

as follows:

P,t™L if distance based,
P = (4.21)

P,L7, if path loss based,
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where 7 € [0, 1] is the power control factor, ¢ is the distance from the UE to its serving BS, «a, is
the LOS path loss exponent, and L is the path loss of the link. When 7 = 0, no power control is
performed. We consider the path loss based fractional power control as in LTE [186].

With fractional power control, the general expression for SINR coverage probability essentially
remains the same as in (4.14) and (4.15), with only P, replaced by P.. However, the Laplace
transform of the interference should be modeled differently. To determine the Laplace transforms
of interference terms, we need to make an assumption as in [187] [188]. Since there is only one
UE in one cell inflicting interference, we assume that the active users also form a PPP, i.e., @/, is
a PPP, and the density of interfering UEs is set to be equal to the small cell BS density \; in the
k' tier. Because of the blockage model, the interfering links can be LOS/NLOS. Therefore, the

density of LOS/NLOS inter-cell interfering UEs in the k" tier be modeled as [186]
Nia(r) = Nepi(7) (4.22)

where ) is the density of the reference BSs in the k" tier, r is the distance from the reference BS
to the interfering UE.

Let us use / ij“ to denote the interference from the k" tier UEs to a j'* tier reference BS.
Since the transmit power of UEs depend on the path loss from its serving BS (the cluster center
BS, small-cell BSs, or macro BSs), we need to distinguish different cases considering the transmit

power of interfering UEs. Therefore, we have

K
IGE = (IG5, + Ihen) (4.23)

m=0
m#j

where interference 1%, ; occurs when the k'™ tier interfering UEs are served by an m' tier BS

over a LOS link. Next we characterize the Laplace transforms of the interference terms.



Lemma 4.3. 1) If the interference arises from the cluster member, we have

Lo (1i;) = Z Z Z Z Pe Do AkmpLiGe , (1175)

G a€{L,N} m=1be{L,N}

where

o0 oo 1 N
Lca(ps:) = , t) frs (1i0)dtdrsg.
i (155) /0 /0 L+ g1 Pkt ) Grig g Frons (0 g (o)t

2) If the interference arises from the UEs in the k' (k € K,,) tier, we have

) =T1 T1 1T 1T 2.09)

G ac{L,N} m= ObE{L N}
m£j

where

s Pu(mbtab)"'Gma Tikm

Tj(msr%‘fs)lfT

L J—
where (i7; = joxen

the distance from the interfering UE to the reference BS.

Proof: See Appendix 12.

4.5.3 Average Ergodic Spectral Efficiency

27 A % \ppap® Trim.p (1) d d
=27 Agmp fo ApaP (k) | 1= Jo7 I —az | |7jk,ndrikn
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(4.24)

(4.25)

(4.26)

(4.27)

, t is the distance from the interfering UE to its serving BS, and rjy ,, is

According to [61] [157], given the SINR coverage probability P (T ), the average ergodic spectral

efficiency of the uplink of a mmWave cellular network can be expressed as

L/“’ Po(T / Z] ozse{LN}AwsPCm(T)
o 14T T In2 1+7T

Ai',s OOP’L]S
=2 2 1nj2/ 1+ 7 HoDar - Z 2 AuRi

j=0 se{L,N}

ar

(4.28)
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The average achievable rate can be computed as WR, where W is the bandwidth assigned to a

UE.

4.54 Special Cases

To simplify the general expressions provided in the previous sections, we now address several

special cases.

Noise-Limited Scenario

When the mmWave network is not densely deployed and the impact of interference is negligible
(due to blockages experienced in mmWave bands), the network can be assumed to be noise-limited.

In this case, the coverage probability of each tier can be simplified to
O S (4.29)

Next we consider a further simplified case, specifically a two-tier heterogeneous network, in-
cluding one tier of small-cell BSs with UEs clustered around, and one tier of macrocell BSs; all
links are LOS and the path loss exponent is @ = 2; and only noise is considered. Then, we can

obtain the association probability and SNR coverage probability as in the following lemma.

Lemma 4.4. In the above described simplified two-tier network model with LOS links, path loss
exponent o = 2, and no interference, we have the association and coverage probabilities given by
the following:

1) Association probability:

1 P,B,
Ay = = 4.30
079020, ~ P+ By + 2102\ P, By + 27020y Py By (4.30)
A oo\ P, B
Ay =20 o To A1 431)
O() PlBl + 27T0'2/\1P1B1 + 27TO'2>\2PQBQ
A 22\ Py B
Apy = 22 57 A2 a (4.32)

T C,  P.B,+ 2102\ P.B; + 2102\, P, B,
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2) SNR coverage probability:

P = . (4.33)
202(00 + PuG%o)Alo
Pu Al (4.34)
To2
(Co + 5.a > An
A
Pi s (4.35)

where \i and )\, are the densities of small-cell BSs and macrocell BSs, respectively, o is the

variance of the UE distribution, Cy = # + 7N +TNE2B2 and Oy = LB 4 1\

P B
P.B.’ 202 P> Bo B T TAs.

Proof: See Appendix 13.

Results in (4.30) - (4.35) provide closed-form expressions for the association probabilities and
SNR coverage probabilities as functions of the key system/network parameters, e.g., the standard
deviation of the UE distribution o, the transmit powers of the UEs and BSs, the densities of the
BSs in each tier. From the expressions, we can directly identify the impact of these parameters on
the network performance. For instance, we note that SNR coverage probability is a monotonically
increasing function of P, and GG, and a monotonically decreasing function of the SNR threshold
T'. Additionally, we see that when the UEs are more and more sparsely distributed (i.e., 0 — 00),

Ay and Py approach 0.

Interference-Limited Scenario

In cases in which the interference power satisfies I >> o2 , the thermal noise can be ignored and

the coverage probability of each tier can be expressed as
K?J.

Pa'j,s = E"'ij,s [‘ijo (:ufj) H Eljk (:LLZS])] . (436)
k=1

. . . . —_usS. o2 . . .
In this interference-limited case, since the noise term e *i% is removed, expression (4.36) is

relatively easier to compute than the general case given in (4.15).
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Cluster Center Association Scenario

In the scenarios that the clusters are sparsely distributed, e.g. in rural areas, it is reasonable to re-
quire the UEs to be associated with their cluster center BSs. In such case, the coverage probability

can be expressed as

o0

Ky
—pso? s s s
Po. = [ T La ) o i)y (437)
0 k=1
Additionally, in this case there is no need to find the association probabilities and the conditional
PDFs of the distances from UEs to the associated BSs, since UEs are connected with their cluster

centers BSs. The use of fo-O (r5,) makes (4.37) much easier to compute than (4.15).

4.6 Numerical Results

In this section we present numerical and simulation results to confirm our analytical characteriza-
tions and further study the performance levels in the considered mmWave network model.

In the numerical evaluations and simulations, unless specified otherwise, we consider a two-
tier heterogeneous network model in the uplink scenario. More specifically, BSs in the 1% tier are
assumed to operate with relatively smaller transmit power but have larger density, and are regarded
as small-cell BSs, while BSs in the 2"¢ tier are assumed to have larger transmit power but smaller
density, and are regarded as macrocell BSs. Besides, UEs are considered to cluster around small-
cell BSs. Some notations are defined as follows: A, P, are the association probability (AP) that
a UE is served by its cluster center BS and the coverage probability (CP) of this link, respectively;
A11, Pe,, are the AP that a UE is served by a small-cell BS from other clusters and the CP of this
link, respectively; and A;5, Pr,, are the AP that a a UE is served by a macrocell BS the CP of this

link, respectively. Parameter values are listed in Table 4.1 below.



88

Table 4.1: Parameters Table

Parameters Values
Py, P, P, 30dBm, 30dBm, 46dBm [62]
P, 23dBm [62]
30731732 17171
€ V/2/200
,, L N\ -
ail’ , ozfi’ Vi, Vd 2,4
A, A2, Ay 1074,107°,5 x 10~* /m?
M, m,0 10dB, -10dB, 7 /6
Career frequency F, | 28 GHz
2
K], = KN (FC/47T)
2 .
T j V) -174dBm/Hz + 10 log1o(W) + 10dB
1 ‘ ; 18—
09 . Analy: A 0| | 09l ‘{)\\O
G\& —— — Analy:A,, ’ “eo
0.8 e ——Analy: Ay, | 4 08 ~ o
~ O sim = S
> 507 0.
E 0.6 b\o\g %;, 0.6 Analyi e \o\\u .
505 ~o gosf |- AmrPe o
G 04 o oo 4 Soat | AP Tl
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<03 o o o % 03+ o s 2
oo im ‘ .
02 o /e/g/@‘{y‘@ ] 02f I 848’3/@ 85
01t ° Z/ﬁ/g/ﬂ 1 04t . o’/fy,ze"ﬁre
o=8 ‘ ‘ ‘ (BT ‘ ‘ ‘
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(a) Association Probability. (b) SINR coverage probability.

Fig. 4.3: APs and SINR CPs as a function of the standard derivation of UE distribution when 7" = 10dB.

4.6.1 Impact of the Cluster Size

In this section, we investigate the impact of the cluster size (i.e. the standard deviation o of the UE
distribution) on the system performance. In Fig. 4.3, we observe that the simulation results match
with the analytical results when ¢ < 30, and hence we verify our analysis. Then we can say our
analysis can be applied to practical PCP-based uplink mmWave networks, providing reliable and

useful insights.
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Association Probability (AP)

Fig. 4.3(a) shows the APs of each tier as a function of . When o becomes larger, UEs are getting
spread further away from their own cluster center and moving closer to other BSs, which can be
either small-cell or macrocell BSs. As a result, small-cell BSs become less likely to serve their
cluster members and more likely to serve UEs from other clusters. Macrocell BSs become more
likely to serve a UE as well. Therefore, Ay, is expected to decrease, and A;; and A;5 to increase
with the growing o, and this is observed in Fig. 4.3(a).

On the other hand, initially when o is small and therefore UEs are more tightly clustered around
their cluster center, Ay is larger than both A;; and A;5. Also, since the macrocell BSs have much

larger transmit power than small-cell BSs, A;5 is larger than A;.

Coverage Probability (CP)

Fig. 4.3(b) plots the SINR CP as a function of ¢. Again, increasing o implies that the UEs are
more widely distributed. Thus, the path loss from a small-cell BS to its cluster member increases
on average, while the path loss to other UEs as well as the path loss from a macrocell BS to a UE
decrease. As a result, we observe in Fig. 4.3(b) decreasing Fr,, and increasing FPr,, and Fr,,.

And since the decrease in P, is not compensated, the overall SINR CP diminishes as well.

A Three-Tier Heterogeneous Network

Fig. 4.4 plots the AP and SINR CP as a function of ¢ in a three-tier heterogeneous network. In this
network, we add one more tier of small-cell BSs, referred to as the 2"¢ tier with density Ao = 1075
/m? and UE transmission power P, =30 dBm. The macrocell BSs are now referred to as the 3"
tier. Again, increasing o implies that the UEs are more widely distributed. In Fig. 4.4, we observe
similar performances as in Fig. 4.3. Since the density and transmit power of the 2" tier small-cell

BSs are not very large, the presence of this tier does not influence the performance significantly.
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Fig. 4.4: APs and SINR CPs as a function of o when 7" = 10dB in a three-tier heterogeneous network.
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Fig. 4.5: SINR CPs as a function of threshold 7.

Comparison with PPP

Fig. 4.5 shows the SINR CP of the considered network when o — oo (F¢,, = 0 is not shown in the
figure) and SINR CP of the same network when the UEs are uniformly distributed according to a
PPP. This figure demonstrates that as o — oo the performance of the considered network converges
to the performance in the PPP-based model, indicating that our analysis can be specialized to
determine the performance of the PPP-based model (where the density of UEs is qﬁg = ¢;) by

setting o = 0.
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Fig. 4.6: SNR and SINR CPs as a function of threshold for different cluster size o.

4.6.2 Impact of Interference and the Small-Scale Fading
Impact of Interference

We next investigate the influence of interference in the considered heterogeneous mmWave net-
work. Fig. 4.6 exhibits the total SNR and SINR coverage probabilities of the entire network as a
function of the threshold for different values of 0. While Fig. 4.6(a) is obtained without any power
control (i.e., transmission power is fixed), fractional power control is employed in the performance
results in Fig. 4.6(b). It is obvious that the interference has a significant impact on the coverage
performance as shown in this figure. From Fig. 4.6(b) we observe that if path loss based fractional
power control is used by the UEs, the impact of interference becomes more pronounced. Note that
SINR CPs (described in the legend as “with" as in “with interference") are lower than SNR CPs

(denoted with “w/o0").

Impact of Small-Scale Fading

In Fig. 4.7, we compare the performances with different types of small-scale fading. In particular,
we consider Rayleigh fading and Nakagami fading with parameters N; = 3 for LOS and Ny = 2
for NLOS links. We observe from the figure that two types of small-scale fading lead to similar

performance trends. However, since Nakagami fading implies more favorable channel conditions,
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when o = 25 and 7' = 10dB.

higher CP is achieved with Nakagami fading.

4.6.3 Impact of the LOS Probability Exponent ¢

In this subsection, we investigate the impact of the LOS probability exponent €. Note that the

smaller € is, the sparser the environment will be, leading to higher LOS probabilities. And we aim

to obtain insights on how the building deployments influence the system performance.
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Association Probability

Fig. 4.8(a) shows the AP as a function of e. When € = 0, all links are LOS and the signals are not
attenuated significantly during transmission. Since macrocell BSs provide larger transmit power,
we can observe from the figure that Ao, > Ay > Ajir. When € is increased, more links
become NLOS. Thus A;s ;, decreases dramatically. In the meantime, small-cell BSs have more
chance to serve the UEs, and we notice increasing Ao 1, and Ay, ;, initially. When we increase e
further, more and more links become NLOS. Consequently, we have increasing Ao n, A1 v and
Aqo N, as well as decreasing Ay, A1,z and Ayo 1. Additionally, when more links are NLOS,
signals are attenuated considerably during transmission. And since the distance between UEs and

their cluster center BSs are relatively smaller, A;( x increases more than Ay y and Ao .

Coverage Probability

Fig. 4.8 (b) plots the SINR CP as a function of €. The first observation shown in the figure is that
similar to the performance trends with respect to AP, with increasing €, we have increasing Pc,,
Pey, v and FPgy, . In addition, Pg,,, and Pc,, , increase initially and then start diminishing,
while Pc,, , decreases continuously. The second observation is that Fe,,, > Pcy,, > Poy,, 18
always satisfied. This is due to the following reasons: 1) no matter which BS the UE is associated
with depending on the averaged received power of the UE, in the uplink phase, UE is transmitting
information to BSs with the same transmit power; 2) the distance between the UEs and their
cluster center BS is generally smaller than to other small-cell BSs and macrocell BSs, leading
to the conditional CP of the cluster center being much larger than those of other BSs. The third
observation is that the total CP increases at the beginning and then decreases. This is because that
Pey, , and Fg,, , increase initially, and then the increase in the coverage with NLOS Links cannot

compensate the decrease in the coverage with LOS links.
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4.6.4 Impact of the Biasing Factor and Transmit Power
Association Probability

Fig. 4.9(a) displays the AP as a function of the biasing factor ratio B; /B, in dB, where B; and B,
are the biasing factors of the small-cell BSs and the macrocell BSs, respectively. When By = B,
we have Ay > A1 > Ay, since UEs are relatively closer to the cluster centers. On the other hand,
when we fix By = 1 and increase B;, we observe, as expected, that A;q and A;; grow, while Ay
diminishes.

Fig. 4.9(b) shows the AP as a function of the transmit power ratio P; /P, in dB. At the begin-
ning, since P, is much larger than P, even though the distance between the macrocell BSs and
UEs are large, the macrocell BSs still have a high probability to connect with the UEs. When we
fix P, and increase P;, the small-cell BSs start having larger transmit power, and as a result A;q

and A;; increase.

Coverage Probability

Due to their impact on the association probabilities, biasing factor ratio and the BS transmit power
ratio influence the choice of the associated reference BS, and consequently affect the SINR cov-

erage probability of each reference BS. Fig. 4.10 plots the conditional SINR coverage probabil-



95

1 1 : :
]
o o ° ° © °

095 o8, o
= b
2 08F Analy: P
S 09 >
=4 = _ _ _ _Analy: PC
a S07f o
[} ©
2 0. o —— Analy: P,
g 08 o6 O o _ o__0 _0__4
o Q. L I PO Analy: P, o -Q0-—" 7777
8 g |- S
o 08 e &05¢[ o sim
o« o © -
z g o
@ 0.75 - a 8041
K] — o o o _.¢
S AnalFe,, Z03 o Oem 0O Qe
T 07 © ——— Analy: P, @ R
Q . " 0.2
Coest = e Analy: P, | |

. ) 12 01

O sim ' 00{)
06 ‘ ‘ ‘ , ‘ ‘ ‘ ‘ ‘ D@ syl
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
B,/B, B,/B,
(a) Conditional SINR coverage probabiliy. (b) SINR coverage probabiliy.

Fig. 4.10: SINR CP as a function of By /By when o = 25 and T = 10dB.

ity (Pa,j) of each tier of reference BSs, and the SINR coverage probability of each tier (Fg;, =
Pa_j A;j;)). From Fig. ??(a), we can observe that the conditional SINR coverage probability of the
cluster center BSs F¢, |~ and other small-cell BSs /¢, | = decrease, while that of the macrocell BSs
F¢,, , increases with increasing B / By. The reason is that, as B; /B, gets large, UEs increasingly
prefer to associate with small cell BSs, and consequently the small-cell BSs start having larger
association priority, while the macrocell BSs have small association priority. In this case, if the
typical UE is still associated with a macrocell BS, then that link should be in really good condition,
and hence has large coverage probability. Therefore, with increasing B; /By, given that the typical
UE is associated to the macrocell BS, the macrocell BS should provide strong power and have
larger coverage probability, leading to increasing F¢, . Conversely, for large B, / Bs, small-cell
BSs, which do not need large power to get associated to UEs, have smaller coverage.

On the other hand, due to the variations in the association probability of each tier shown in Fig.
4.9(a), we have the performance in Fig. 4.10(b). In particular, we note that Fr,, and P, both
increase, because A and A;; grow significantly with increasing B;/Bs. Since the increment in
Pe,, and F¢,, is larger than the decrease in Pr,,, we have a growing total network CP.. Therefore,
total SINR CP of the network is an increasing function of B;/B,. Regarding the transmit power,

if we increase the transmit power of small-cell BSs, the total CP of the network will also increase.
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4.6.5 Impact of the Density of BSs

Association Probability

Fig. 4.11 shows the AP as a function of A\; when \; = 10 / km? and o, = 25. Initially, the
density of small-cell BSs is small, UEs are still clustered around them, and the macrocell BSs
are not densely distributed. Hence, the UEs are likely to be served by their cluster center BSs,
ie. Ajg > A2 > A1, When we increase A;, more and more small-cell BSs are deployed. The
distance between the UEs and their cluster center BS does not change, while the distance from the
UEs to other small-cell BSs becomes smaller. Hence, the USs become more and more likely to be

served by other small-cell BSs. In other word, A;; increases, while A,y and A5 both decrease.

Coverage Probability

Fig. 4.12(a) shows the SINR CP as a function of \;. Via the CP of each tier, we can observe
that with an increasing A1, Pc,, and Pc,, diminish, while P, grows. Initially, the increase in
Pe,, is larger than the decrease in Pr,, and Fr,,, leading to the result that total CP increases. As
we increase \; further since the interference grows, the increase in P, cannot compensate the
decrease in P, and P,,, and consequently the total CP decreases.

Fig. 4.12(b) plots the SINR CP vs. small-cell BS density \; for different densities A\, of the

macrocell BSs. From the figure, we observe that when A\; = 1 BS/km? which is small, increas-
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ing A\ improves the total network coverage. This is expected since we have a sparse network
and interference can be ignored, and increasing the number BSs results in network performance
improvement. On the other hand, when \; = 100 BSs/km?, increasing )\, lowers the SINR CP
performance. In this case, the network have more small-cell BSs, including the cluster center BSs
and other small-cell BSs, which together can provide good coverage. Increasing the macrocell BS
density will lead to more interference, and also will result in UEs getting connected to macrocell
BSs with potentially larger link distances. Thus, in this case, the total SINR coverage generally
diminishes when )\, is increased.

These two figures give us the following useful insights: 1) when the macrocell BSs are sparsely
deployed (e.g., Ay < 10 BSs/km?), there is an optimal density of small-cell BSs to maximize
the uplink SINR CP of the entire network; while when the macrocell BSs are densely deployed,
increasing the small-cell BS density will lead to smaller uplink SINR CP; 2) when the small-cell
BSs are sparsely deployed, increasing the density of macro BS will improve the uplink CP; while

the opposite will happen for densely deployed small-cell BS networks.
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CHAPTER 5

MULTI-AGENT DOUBLE DEEP
(Q-LEARNING FOR BEAMFORMING IN

MMWAVE MIMO NETWORKS

5.1 System Model

In this section, we describe the considered mmWave MIMO network.

5.1.1 System Model

We consider multi-BS multi-UE MIMO networks, where J BSs are simultaneously serving K
mobile UEs. Each BS is equipped with /V; antennas and Ngr RF chains. We assume that the
BSs apply analog-only beamforming using networks of phase shifters, and each RF chain is fully-
connected with each antenna.

In this analog-only beamforming network, the BS up-converts the data stream to the carrier
frequency by passing it through Ngg RF chains. Following this, the BS uses an N; x Ngg RF
2 =

precoder Vgg, which is implemented using analog phase shifters, i.e., with |Vgg(a,b)|* = Nit, to

construct the final transmitted signal. Note that Vgg(a,b) = \/LNjej »i where ¢y, is the phase shift
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angle. For the k-th user, the received signal can be modeled as

7
Vi = ZijVRFjskj + ny; (5.1)

j=1

where sy;; is the data stream vector for the k-th UE from the j-th BS. We assume that E[skjsg] =
PjIy,, and the noise factor ny; ~ CAN(0,0°1y,). Hy; is the channel response from the j BS to

the k™ UE. Vg, is the RF precoder of the ;' BS.

5.1.2 Channel Model

We adopt a channel model with L paths. L is a small number for mmWave communications, and

we assume L = 1 for LOS links. Now, the mmWave MIMO channel H can be expressed as

NN G
H= /=772 ar(d))al(9) (5.2)

=1

where «; and p; are the complex gain and the path loss of path [, respectively. a; and a,. are the array
response vectors at the BS and the UE sides, respectively. ¢. and ¢! are the angles of departure

and arrival of the [*" path, respectively.

Array response

While the algorithms introduced in this paper can be applied to arbitrary antenna arrays, we provide
the following two illustrative examples of commonly-used antenna arrays. For an N element

uniform linear array (ULA) on the y-axis, the array response vector can be written as [189]

1 j i j(N— sin
aULAy (¢) = [17 ejde1n(¢)7 cey ej(N Dkd (d))} (53)

VN

where k£ = 27“, A is the wavelength, and d is the inter-element spacing. In the case of a uniform

planar array (UPA) in the yz-plane with W and H elements on the y and 2 axes respectively, the
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array response vector is given by

aUPA((ba 9) — \/N 1, - e]kd(msm(tj)) cos(0)+nsin(¢) s1n(9))’
- 6jkd((VV—l) sin(¢) cos(0)+(H—1) sin(¢) sin(0)) (54)

where 0 < m < W and 0 < n < H are the y and z indices of an antenna element respectively and

the antenna array size is N = W H. In this paper, we primarily concentrate on ULA.

Path Loss

Link between a UE and a BS can be either LOS or NLOS. The path loss model is formulated as

plospales (r) with prob.  p'°s(r)
p(r) = (5.5)

grlosre™ () with prob.  p*(r) = (1 — p'*(r))

where 7 is the two-dimensional distance between the UE and BS. o!°, o™°* are the path loss ex-
ponents for LOS and NLOS links, respectively, %, s™° are the intercepts of the LOS and NLOS
path loss formulas, respectively, and p'°*(r) is the probability that the link has a LOS transmission
at distance 7.

Following the 3GPP standards described in [190], we express the probability of LOS link

between the BSs and the UEs as

P (r) = min(18/r,1) x (1 — exp(—7r/63)) + exp(—r/63). (5.6)

Shadowing is also taken into account in the channel model, and is modeled as a log-normal
random variable, i.e., 10logv ~ N (p,, 02) with u, and o2 being the mean and variance of the

channel power under shadowing, respectively.
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5.1.3 Achievable Rate

In the multi-BS multi-UE mmWave MIMO network, beside the serving BS, other BSs inflict in-
terference to the UEs. We can express the rate of the k-th UE when associated with the j-th BS

as [85] [191] [192]

P;[Hy; Ve, Vi HY,

Ry =log, | 1+ 5 (5.7)
o2+ > Pi[HuVee, Vi Hy;
i=1,i#j
where superscript H and | - | denote the conjugate transpose and the determinant of a matrix,

K
respectively. Then, the sum-rate of all UEs is Ry, = > Rk.
k=1
Our goal is to maximize the sum-rate of all UEs, and therefore we consider the following

optimization problem:

K

yma ; Ry, (5.8)
1

subject to Vi, (a,b)]* = FW, (3a)
t

where Vgg, is the analog beamforming vector of the j-th BS.

5.2 Distributed multi-agent DDQN for mmWave MIMO
networks

The algorithm of the distributed multi-agent DDQN for mobile UEs is provided in Algorithm
1. Before providing the definitions of states, actions, and rewards, the environment should be
introduced first. In the environment £, BSs are located with a certain distance in between. UEs
move from different initial locations in different directions with different speeds. In each episode,

UEs do not change their speed and direction until they move out of the coverage region of all
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directional pattern

Each BS: perform omni- ‘

[ Each UE: get associated J

Fig. 5.1: An illustration of the procedure in one time step.

BSs, and the episode ends. In each episode, at each time step, UEs move to new locations. We
assume that at the beginning of each time step, in a very short time slot 7, each BS uses an omni-
directional antenna pattern, and transmits pilot signals to all UEs. Therefore, each UE receives
pilot signals from all BSs, and chooses to associate with the BS providing the strongest pilot signal,
and computes the immediate rate under the omni-directional pattern, and sends it to the serving
BS, indicating the association condition with itself. It is assumed that each UE is equipped with a
memory containing prior information (e.g., the location history, the omni-directional rate in the last
T,, time steps), and each UE can send this information to the associated BS as well. Subsequently,
the BS performs beamforming according to our algorithm, and serves the associated UEs. Then
the UEs learn the immediate rate achieved with beamforming, and feed this information back to
the serving BS. The procedure in one time step is illustrated in Fig. 5.1.

In the multi-agent DDQN model, each BS is an agent and the state, action, and reward tuple
of the j-th BS is denoted by (s{ , a{ ) r{ ) . These states, actions and rewards are described in detail

below:

5.2.1 State

At each time step, each BS serves multiple UEs, and is able to obtain the information in the memory

of each UE. This information of all associated UEs constitute as state at time ¢, noted as 3{ for the
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Algorithm 1: Distributed multi-agent DDQN

Require:
1: Initialize replay memory D’ of DDQN, j € J, to capacity N for every BS.
2: Initialize online network with random parameter ¢/, j € J.
3: Initialize target nework with parameter £/~ = &7, 5 € J.
Ensure:
4: for episode = 0: total episode do
5:  Reset environment £.
6: Initialize 5] for j € .J.
7. fort=1:Tdo
8 for;=1:Jdo
9 Obtain association condition and the sum-rate of all associated UEs RtOj by
association procedure.

10: Sample ¢ from Uniform (0,1)
11: if ¢ < e then
12: Select an action (beamforming vector index) randomly from the codebook F.
13: else
14: Select the action a! = argmax, Q;(s{ La;€l).
15: end if
16: Execute action a{ , 1.e. apply the selected beamforming vector on the antenna arrays of
j-th BS.
17: Observing the resulting state s{ 41 and the immediate sum-rate of all associated UEs
Rl ,
18: Compute the immediate reward r{ ,Le. RR—;: x 100%.
t
19: Store the experience tuple (s{ , a{ , rg , s{ 41)in D7,
20: Sample random minibatch of experience (s, aZ, 77, 57 ;) from D’
21: Update
Yr =
i if episode terminates at step 7 + 1
L +9Q (s}, argmaxy, Q(s7,1,a'5€1);€17)
otherwise
22: Perform a gradient descent step on (y2 — Q(s?, a; £2))? with respect to the network
parameters &/
23: For every N,, steps reset target network parameter £/~ = &7
24: end for
25:  end for

26: end for
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j-th BS. Assume that the length of history in each memory is 7}, and there are /' UEs in this
network, then the state s} = [m_ ,m{ . . ...,m{ ,,...,m,]. Itis worth noting that for UEs
not associated with the j-th BS, m;_, is set to be 0. In other words, the BSs only need information
from the associated UEs. In this paper, we denote the rate achieved with the omni-directional
antenna pattern as my_, . If the location information of each UE is also available, we denote the

omni-directional pattern rate and the location information together as state s/ . In Section IV, we

provide performance results with and without location information.

5.2.2 Action

At each time step, each BS chooses an analog beamforming vector Vgg. Due to the constraints on
the RF hardware, such as the availability of only certain quantized angles for the RF phase shifters,
the analog beamforming vectors can take only certain values. Hence, finite-size codebooks for
the candidate beamforming vectors are needed. In practice, the beamforming vectors are spatial
matched filters for the single-path channels [192]. Thus, they have the same form of the array
response vector and can be parameterized by a simple angle. While the algorithm in this paper can
be applied to arbitrary finite-size codebooks, we adopt the codebook, denoted by F, consisting of
the steering vectors a;(¢¢) where ¢, is the quantized angle. The beamforming vector index in the

codebook is defined as the action a{ .

5.2.3 Reward

As noted before, at the beginning of each time step, each BS learns the immediate rate, Rtoj , pro-
vided to all associated UEs with the omni-directional antenna radiation pattern. After performing
beamforming, each BS also learns the immediate rate R{ achieved with beamforming. We regard
the ratio of two rates, % as the immediate reward 7 of the j-th BS when this BS takes action a

in state sj.

Setting the analog beamforming vector codebook F, the optimization problem can be refor-
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mulated as
K
VRFI?[% ?eJ ; Rylt] (5.9)
subject to Vrr, [t] € F,Vj, (122)

where Vgg, [t] is the analog beamforming vector of the j th BS at time .

5.3 Performance Evaluation

In this section, we provide simulation results and evaluate the performance of the proposed multi-

agent DDQN for mmWave MIMO beamforming.

5.3.1 Environment Setting

The considered environment is illustrated in Fig. 5.2. As shown in the figure, we have two inter-
secting streets. The BSs are located along the streets, while the UEs are moving from the beginning
of either street in either direction. UEs move at random speeds. The length of each street is set as
100m, starting from -50m to 50m on each axis. The width of the road is set as 8m, i.e., (-4m, 4m).
The speed of the UEs can be between 2 to 5 m/s. The locations of BSs are set at the coordinates
of [(5,-5),(-25,-5)]. In addition, the number of antennas at the base stations and the UEs are set,

respectively, as N; = 16, N,. = 1. Finally, the number of RF chains is Ngg = 2.

5.3.2 Hyperparameters

In our experiment, we construct the DDQN via three-layered neural networks using Adam opti-
mizer to evaluate the gradient descent of the evaluated and target networks. Our input size depends
on the number of UEs in the environment, i.e., the input size is K7, when K is the number of
UEs and 7, is the length of historic/prior information at of each UE, and is set to be 8 in the

simulation. The output size should be the size of the action notebook F. The number of neurons
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Fig. 5.2: An illustration of the simulation environment.

of the three layers are 12K, 8 K and 8, respectively. The discount factor is 0.95, batch size is 32,
and the learning rate for two BSs are 0.0001 and 0.005, respectively. We also use e-greedy policy

and the maximum value of € is 0.9 and the minimum is 0.1.

5.3.3 Experiment results

Fig. 5.3 plots the sum-rate as a function of the number of UEs for different number of BSs.
Results from exhaustive search among all possible beamforming directions and also random se-
lection are provided as two benchmark results. Note that the exhaustive search requires perfect
channel state information (CSI), and in random selection the BSs randomly choose actions from
the codebook. Figs. 5.3(a) and 5.3(b) (in which we consider the cases of a single BS and two
BSs, respectively) show that DDQN can achieve better performance than random selection, and
comparable results with exhaustive search which has high computational complexity and incurs
potentially large delays especially in mobile scenarios. In addition, in both figures, we provide
the performance curves when the location information is available and unavailable. The perfor-
mance with location information given is only slightly better, indicating that such information is
not critical for our algorithm. Furthermore, when the number of UEs increases, the sum-rate grows
almost linearly, demonstrating that the proposed algorithm can handle multiple UEs without much
decrease in the data rate experienced at each UE. On the other hand, when we compare Figs. 5.3(a)

and 5.3(b), we notice that for the same number of UEs, two BSs can provide higher sum-rate than
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Fig. 5.3: Sum-rate as a function of number of UEs for different number of BSs.

in the case of a single BS. Even though there is interference when there are multiple BSs, two BSs
can provide larger coverage, leading to higher SINR levels and rates with effective beamforming.
We also notice that random selection performs rather poorly especially in the presence of two BSs.

Fig. 5.4 displays the sum-rate performances during testing, when the DDQN is trained for
the exact number of UEs used in the tests and also when DDQN is trained considering 6 UEs
regardless of how many UEs we have in the test period. When the DDQN is trained for 6 UEs, if
the real number of UEs is less than 6 in the testing, we need to do zero padding in the input of the
DDQN; if the actual number of UEs is more than 6, we just randomly choose 6 UEs and make a
decision. From Fig. 5.4, we observe that when the DDQN is trained for the actual number of UEs ,
the testing performance is slightly better than that of the other case, indicating that the pre-trained

model does not need to be restricted to a certain number of UEs and can be applied to scenarios in
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Fig. 5.4: A performance comparison of testing results, when the DDQN is trained for the exact number of
UEs and the DDQN is trained for 6 UEs. The number of BS is one.

which the number of UEs in the test is different from that in the training period.
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CHAPTER 6

COVERAGE IN NETWORKS WITH HYBRID
TERAHERTZ, MILLIMETER WAVE, AND

MICROWAVE TRANSMISSIONS

6.1 System Model

In this section, distributions of BSs and UEs, and the key features of transmission in different

frequency bands are introduced.

6.1.1 Deployment Model

We assume that there are three tiers of BSs, including a tier of access points (APs), denoted as the
1%t tier, a tier of small-cell BSs (SBSs), denoted as the 2"¢ tier, and a tier of macrocell BSs (MBSs),
denoted as the 3" tier. The APs are assumed to be transmitting in the THz frequency bands, SBSs
transmit in the mmWave frequency bands, while the MBSs transmit in conventional microwave
frequency bands. BSs in the j*(j € {1,2,3}) tier are assumed to be distributed according to the
Poisson point processes ®; with density A;. The APs, SBSs and MBSs are assumed to have heights

H,, Hy and Hj3, respectively. Since THz APs are expected to be placed at much lower heights (due
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Fig. 6.1: An illustration of a three-tier HetNet.

to the limited range of THz transmissions), we approximate //, = 0. BSs in the j'" tier are also
distinguished by their transmit power ;.

The UEs are assumed to be distributed according to a stationary Poisson point process @ with
density Ay, which is independent of the distributions of the BSs in the network. In this chapter,
we focus on the analysis of the outdoor networks. The UEs are assumed to be located outdoors,
and the indoor-to-outdoor penetration loss is assumed to be strong enough so that the UEs cannot
receive signal or interference from the indoor BSs.

An illustration of the considered three-tier heterogeneous network (HetNet) is provided in Fig.

6.1.

6.1.2 Channel Modeling

Different path loss laws are applied to LOS and NLOS links from BSs in each tier to the UEs. The
blockage model and path gain are provided in 2.2.1. Nakagami-m fading is adopted in this chapter.

It is assumed that the UEs used omni-directional antenna pattern with gain OdB.

THz APs

Antenna arrays are deployed at the APs to perform directional beamforming. For tractability of

the analysis, the actual antenna array pattern is approximated by a cone-shaped model, which has



111

been widely used in THz communication networks [4] [8] [6] [7]. In this cone-shaped model, the
array gains are assumed to be a constant G7'** for all angles in the main lobe, and to be a smaller
constant G7"" for all angels in the side lobe. The antenna gain can be mathematically expressed as

in (2.22), and denoted by GG; with 6, being the half power beamwidth of the APs’ antennas.

SBSs

According to [168], the 3D antenna pattern from the SBSs to the UE can be divided into horizontal

and vertical components. The vertical antenna gain can be written as (2.24), and denoted by

. 2
arctan( % )— d)S“lt

~1.2
GY(xz) = 10 < 43 > . The horizontal antenna pattern is assumed to be cone-shaped,
and denoted by G? with , being the horizontal half power beamwidtch of the SBSs’ antennas.

Therefore, the antenna gain can be expressed as

1 o aretan(52) gt ’
Gmaz1() ¢318 max
? ) W.p. Pa 7,
G2<x> B arccan(%),q%tilt 2 (61)
Gmin 10 1.2 < ¢gdB ) -
2 ,  W.p. py.

MBSs

MBSs will be essential in providing umbrella coverage to guarantee consistent service to UEs
[193], and therefore omni-directional antenna pattern is considered at MBSs, i.e., G3 = 1.

To parameterize the antenna models, we need to provide the antenna gain G7'** for the main
lobe with beamwidth ¢;, and G;-”m for the side lobe gain with beamwidth 27 — ;. Introducing

g; = G** /G, according to [7], we have

Ger = 2[(1 = cos(6;/2)) + g;(1 + cos(6;/2))] 7,
(6.2)

min __ , /imax
G = g; G

We now have the relations to specify the antenna gain of the main lobe and the side lobe as a

function of 6; and g; in such a way that the total transmit power does not change with the antenna
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directivity. Then, we can have a fair comparison of the impact of the system parameters. It is
also assumed that, after association, the APs and the SBSs can steer their horizontal antenna array

directions to the UEs they serve so that the UEs can obtain maximum horizontal antenna gain

max
G] .

6.2 Path Loss Based Association

In the considered three-tier HetNet, BSs in each tier have different transmit power levels, and their
transmissions experience different path loss. Therefore, we adopt the path loss based association
criterion for the UEs. First, we introduce the characterization of the nearest distance from a typical
UE to the nearest BS in each tier. Subsequently, we provide the association criterion, and determine

the association probability.

6.2.1 Characterization of the Nearest 2D Distance

Note that considering the LOS/NLOS links, the original PPP of APs and SBSs can be thinned into
two independent PPPs ®% with density A;p$(z) for j = 1,2 and s € {LOS,NLOS}. Without
loss of generality, we randomly choose a UE as the typical UE, and assume that it is located at
the origin. With this, the CCDF and the PDF of the distance from this typical UE to the nearest
LOS/NLOS jth( j = 1,2) tier BS can be given as (4.3) and (4.4). The CCDF and PDF of distance

from the typical UE to the nearest 3" tier BS are given by (2.4) and (2.5).

6.2.2 Association Criterion

By adopting the path loss based association criterion, the UEs are assumed to be associated with

the BS providing the largest received power P;l;. This criterion can be formulated as

{77, 8"} = argmax Pl (6.3)
j=1,2,3
s=L,N
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6.2.3 Association Probabilities

Since the path loss depends on the link distance that is a random variable, we characterize the
association to each tier statistically. More specifically, the association probability of each tier is

defined as the probability that the typical UE is served by a BS in that tier, i.e.
A =P(j" =48 =s). (6.4)

Theorem 6.1. The probabilities of associating with a BS in the 1°¢,2"% and 3" tiers are given,

respectively, by

A=) A= > EglAP(x)] (6.5)

s=L,N s=L,N

Ay= Y A= )" EpgAP*(x)] (6.6)
s=L,N s=L,N

As = Ep,[AY(2)] (6.7)

where Ep, is the expectation with respect to R, and F i, is the CCDF of R provided in Section IILA,
1

s\ o7 2
NiR(z) = <(};’“—:%(1:2+H]2)2]) g —H,f) , and

i

Proof : Appendix 14.

We note that in the derivation of the characterizations in Theorem 6.1, we have neglected the
exponential term in the path loss given in (2.14) as a simplifying assumption whose accuracy is

demonstrated via numerical and simulation results.
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6.2.4 Conditional PDF of the Distance of the Main Link

Given that the typical UE is served by a j** tier BS and the link is in s € {LOS,NLOS} transmis-
sion for j = 1, 2, the conditional PDF of the distance from the typical UE to its serving BS can be

expressed as

~ P . P .
FRS(lL'):P(T<:E|j’3): (7"<$,j73) . (7“<33,]73).

= 6.8
j PU.s) A @

Following the similar approach as in the analysis of the association probability, we obtain the

conditional PDF as

. dFps s (z) Ains A% g =1,2,
@) = L) _ [ AT (6.9)

fry (@) Ay (x) /A3, j =3.

6.3 Coverage Analysis

To evaluate the performance of the HetNet, we in this section determine the CCDF of the received
signal power from the serving BS, the Laplace transform of the aggregated interference, and the

SINR coverage probability experienced at the typical UE.

6.3.1 Distribution of the Received Signal Power

By combining the path gain, small-scale fading, and the antenna gain, the received signal power
experienced at the typical UE from its serving BS in the ;" tier with a s € {LOS, NLOS} link can
be expressed as

P = PG hE(r) (6.10)

J

where 7 is the 2D distance from the UE to its serving BS. P is the transmit power, G'}' (1) denotes

the antenna gain of the main link, A° is the small-scale fading, and /3(r) is the path gain of the main
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link.

Theorem 6.2. The CCDF of the received signal power of the main link can be expressed as

M(T)= > M(T)= Y > MT)A; (6.11)
§=1,2,3 j=1,2,3 s=L,N
where M3 is the CCDF of P["*, given that the typical UE is associated with a 4t tier BS and the
link is in s € {LOS, NLOS} transmission, and

M3(T) = P(P™ > T) = E,[P(P™ > T|r)]

J

nésNST

N* NS o0 o N
_ Z(_l)n—i—l( y ) / e PjGTIE(r) fR; (T)d?” (6_12)
n=1 0

where £, = N*(N*)~*, and ij(x) is given in (6.9).
Proof : Appendix 15.

6.3.2 Laplace Transform of the Aggregate Interference

Besides the received power from the serving BS, the typical UE also receives interfering signals

from other BSs. The interference from the it BS in the k" tier can be formulated as
I = PG R (ry) (6.13)

where r; is the 2D distance from the typical UE to the interfering BS. Given that the distance of
the main link is r, there is an exclusive disc Q(0, R) in which no interferer exists. If the serving BS
is from the j'" tier and the interferers are from the k'" tier, the radius of the disc can be expressed
as R = N (r), where s,a € {LOS,NLOS} denote the LOS/NLOS connectivity for the main link

and the interfering link, respectively. If j, k € {1,2}, we have s,a € {LOS,NLOS}, and if j = 3
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or k = 3, we have s = LOS or a = LOS. Therefore, the aggregate interference is expressed as

= > > BGHL(r). (6.14)

s=L,N ic®;\Q

To evaluate the aggregated interference, we analyze the Laplace transform of the interference,

which can be formulated as
Lr, (1) = E[e "] (6.15)

Theorem 6.3. The Laplace transform of the interference from the k' tier evaluated at i can be

expressed as

cfkw):exp( > / (1= (14 uBGE @) <x>Ns>N“>pz<x>p§<x>xk2mdx)

(6.16)

Proof : Appendix 16.

6.3.3 SINR Coverage Probability

Given that the typical UE is associated with a j* tier BS and the link is in s € {LOS,NLOS}

transmission, the SINR experienced at the typical UE can be expressed as

PjG;”hSlj(r)

SINR® = ___
TN+ Yieapam FiGR (i)

(6.17)

where N is the noise power.
The SINR coverage probability is defined as the SINR experienced at the UE being larger than

a certain threshold 7'. Since in this heterogeneous network, UEs are possible to be associated with
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BS from each tier, the SINR coverage probability of the network can be written as

C= Y C=> > A (6.18)

§=1,2,3 §=1,2,3 s=L,N

where C; is the SINR coverage probability of the ;™ tier, C7 is the conditional SINR coverage

probability given that the UE is associated with a BS in the j*" tier and the link is in s transmission.

Theorem 6.4. Given that the UE is served by an s € {LOS, NLOS} BS in the j*" tier, the condi-
tional SINR coverage probability can be formulated as
Ns N oo 7% nf N3T R

n PiGT(r)

n=1

where 1 is the distance from a UE to its serving BS, the PDF of which is fR§_ (r) given in (6.9), and

N? is the Nakagami fading parameter.

Proof : Appendix 17.

6.4 Numerical Results

In this section, we elaborate on the analysis of the CCDF of the received signal power and the SINR
coverage probability in the HetNet. Simulation results with Monte-Carlo methods are provided to
validate the numerical evaluations of the derived expressions. Unless stated otherwise, the used
parameters values are listed in Table 6.1 below. In the figures, we depict the performance by
analyzing 1) the conditional CCDF of the received signal power M7 and the conditional SINR
coverage probability C*¢, given the typical UE is associated with a BS in the j tier with s €
{LOS,NLOS} connectivity; 2) the CCDF of the received power of each tier M, and the entire

network A; and 3) the SINR coverage probability of each tier C; and the entire network C'
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Table 6.1: Table of Parameters

Parameters Values
P, Py, Ps 20dBm, 24dBm, 43dBm [168]
A2, A3, Ay 10~%/m?, 10~5/m?, 10~2/m?
Hq, Hy, Hg Om, 10m, 32m [168]

ok, oV, kb kN |2,4,0.1,0.1

a%,aév, /@5, /ﬁé\f 2.4,1,1
K, B,as, Rg | 0.01[7], 1/141.4 [160], 3, 0.3m
5, 9378, 0, | 15° [168], 30°, 30°
g1, 92 0.05, 0.1
NE NN N |3,2,10°%dB

1 T T T T T T T T T
D
2081
§ Analy: A1
[S) O.6C Analy: A, |4
o
g Analy: A3
E 0'4C O  Simulation |4
%}
o
7
< 0.2
o Q O D
O Q. O o) O O o )Y O Q) O O O O O o O o O a
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
A x 102

Fig. 6.2: Association probability as a function of the density of the APs.

6.4.1 Impact of the Density of THz APs

Fig. 6.2 shows the association probabilities A; of each tier as functions of the density \; of the
THz APs. We observe that as \; increases, the association probability of the APs increases, while
those of the other two tiers decrease. It is worth noting that, in the simulations, we use the true
path loss to find the association. And the simulation results match with association probabilities
in (6.5)-(6.7), although in the derivation we have neglected the exponential term in the path loss.
This indicates that the approximation is accurate and does not lead to much difference in the system
performance analysis. In addition, in Fig. 6.2, we see that the association probabilities of the APs
and SBSs are much larger than that of the MBSs, due to the much larger link distances from a

MBS to the typical UE and the resulting much smaller path gain. The numerical results also show
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Fig. 6.3: CCDF of the receive signal power as a function of the density of APs, when 7' = —30 dB and
01 = 15°.

that the association probability of the NLOS BSs are close to zero, i.e. A; ~ AJL. Due to this, we
have not separately plotted A} and AY.

Fig. 6.3 shows the CCDF of the received signal power as a function of \;. As we increase \q,
there are more APs in the network, and the average distance between the typical UE and the APs
decreases, leading to increasing path gain for both LOS and NLOS APs. Thus, we can observe
increasing ML and M;". However, since there are more APs in the network, SBSs and MBSs need
to be more appealing to the typical UE so that they can be associated with the UEs. In other words,
they need to provide larger signal to the typical UE. Thus, if the typical UE is associated with a SBS

or MBS, the received signal power is also increased with an increasing \;. Therefore, ML, MV,
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Fig. 6.4: SINR coverage probability as a function of the density of APs, when 7" = —5 dB and #; = 15°.

MZF, and M3 increase in Fig. 6.3(a). Since the received signal power of the NLOS SBSs is really
small, M2 is close to zero when T' = —30 dB. Combined with the association probability, we can
observe in Fig. 6.3(b) that M, increases, M, decreases, while Mj is zero, since the association
probability also plays an important role. Due to the reason that the increase in M, can make up the
decrease in M,, the received signal power experienced at the typical UE M increases.

Fig. 6.4 shows the SINR coverage probability as a function of A\;. When there are more APs
in the network, the interference from the APs increases. Even through the received signal power
of the APs M7 also grows substantially, the increase in the interference is greater than that of
M7. However, as \; increases, more and more UEs are served by the APs. Therefore, the SINR
coverage probability of the APs (] increases. On the other hand, the interference from the APs
does not impact the coverage of SBSs and MBSs greatly, but due to the decreases in A, and As,
both C'; and (5 decrease. Since the ascent in C'; can not compensate the descent in Cs and C}, the

SINR coverage probability of the network decreases with an increasing A;.

6.4.2 Impact of the Beamwidth of the Main Lobe at the THz APs

Fig. 6.5 shows the CCDF of the received signal power as a function of the beamwidth 6, of the
main lobe at the APs. Since the total antenna gain is fixed to be 1, the antenna gain of the main

lobe G7*** will decrease if we increase #;. Therefore, the received signal power of the APs M7
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Fig. 6.5: CCDF of the receive signal power as a function of beamwidth of the main lobe at the APs, when
T = —30dB and A\; = 10~ %/m?.
decreases, while M1 and M; do not change. The antenna gain does not influence the association
probability, and hence the association probability does not change with increasing #,. As a result,
M displays the same performance trends in Fig. 6.5(b) as M. And M decreases with increasing
6, since UEs are mostly served by the APs and M, increases.

Fig. 6.6 shows the SINR coverage probability as a function of 6. As 6, is initially increased,
the beamwidth of the main lobe at APs grows, and more interferers will generate interference with
the main lobe gain G7"**. Thus, the interference from APs increases. Since the received signal
power from APs M/, decreases, the SINR coverage probability of APs C'; decreases. On the other

hand, the change in #; does not influence the coverage of SBSs and MBSs. Therefore, the SINR
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Fig. 6.6: SINR coverage probability as a function of beamwidth of the main lobe at the APs, when 7' = —5
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coverage probability of the network decreases with an increasing 6.
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CHAPTER 7

COVERAGE ANALYSIS FOR
ENERGY-HARVESTING UAV-ASSISTED

MMWAVE CELLULAR NETWORKS

7.1 System Model

In this section, we describe the considered UAV-assisted mmWave cellular network with PCP

distributed UEs.

7.1.1 BS and UE Deployment
UAV and GBS Modeling

The UAVs and GBSs are assumed to be distributed according to homogeneous PPPs &, and ¢4
with densities Ay and Ag, respectively. All UAVs and GBSs are assumed to be transmitting in a
mmWave frequency band and have transmit powers P and P, biasing factors to UEs By and
B¢, respectively. The biasing factor indicates the association preference of the tier, i.e. when we

increase the B of a tier, the UEs becomes more likely to be associated with the BS in that tier. All
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UAVs are assumed to be located at the same height /7. We assume that all UAVs have enough

energy resources to arrive at its 3D position in the air, communicate with UEs, and fly back.

UE Modeling

The locations of the UEs are assumed to form a PCP denoted by ®,,, and the ground projections of
the UAVs are the parent nodes. In this chapter, we also adopt two particular PCPs: Thomas cluster
processes and Matérn cluster processes.

Without loss of generality, in the downlink phase a random UE from a random cluster is chosen
to be the typical UE and is assumed to be at the origin. To differentiate the distance from the typical
UE to its cluster center UAV and the distance to other UAVs, we denote the cluster center as the 0"
tier UAV to the typical UE, and other UAVs and GBSs are the 1! and 2" tier BSs, respectively. In
the uplink phase, a UAV from a random cluster is chosen to be the typical BS. The descriptions of

different tiers in the downlink phase are provided below in Table 7.1.

Table 7.1: Tiers in the Network

Downlink phase

0" tier The cluster center UAV of the typical UE
15t tier Other PPP-distributed UAVs

274 tier The PPP-distributed GBSs

K ={0,1,2} | The set of all tiers of UAVs and GBSs

7.1.2 Downlink and Uplink Transmission

In this chapter, we jointly consider downlink and uplink transmissions, where the UEs harvest
energy and decode information from its downlink associated BS during downlink phase, and then
send data to its cluster center UAV during uplink phase. The total time duration for downlink and
uplink is assumed to be 7" (seconds). As shown in Fig. 7.1, each time frame of 7" seconds is divided
into downlink and uplink time slots with durations 7 and (7" — 7), respectively. In the downlink
phase, SWIPT scenario is considered, and more specifically the power splitting technique is used.

Employing this technique, the UEs can harvest energy and decode the information by splitting the
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Fig. 7.1: An illustration of the system model of a UAV-assisted mmWave cellular network.

received signal into two streams. The power splitting parameter that represents the power fraction
used for information processing is denoted by p. It’s assumed the UEs have enough battery storage
to store the harvested energy. In the uplink phase, UEs use the harvested energy to send data to
their cluster center UAVs. It is worth noting that when 7 = 7', our model specializes to a downlink
SWIPT network. Additionally, when p = 0, we recover the network model with downlink energy

harvesting and uplink data transmission (i.e. the WPCN scenario).

7.1.3 Path Loss Modeling

The path loss model is formulated as in (2.13), and denoted by L3(r) (j € K and s € {LOS, NLOS}).

Air-to-Ground

We formulate the probability of the LOS link between the UAVs and the UEs as (2.17), and denoted

by p5(r) = 1+Cexp(£B(970))' Note that since the 0" and 1°! tier BSs are UAVs, we have p§ (r) =

pi(r) = pp(r).
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Ground-to-Ground

We can formulate the probability of LOS link between the GBSs and the UEs as in (2.11), and

T

denoted by pk(r) = p&(r) = e~
It’s worth noting that since we distinguish the links between the UEs to the GBS as either LOS
or NLOS, we assume the BSs in the 15! and 2" tiers are divided into two independent PPPs ¢ for

s € {LOS,NLOS}.

7.1.4 Antenna Gain

The sectored antenna model given in (2.22) is considered in this chapter.

7.1.5 Small-Scale Fading

Nakagami-m fading is adopted in this chapter, and N;, N,, are the Nakagami fading parameters for

LOS and NLOS links, respectively, and are assumed to be positive integers.

7.2 Distance Distributions

In this section, we characterize the CCDF and the PDF of the distance from the typical UE to UAVs

and GBSs in each tier. Fig. 7.2 provides an illustration of different distances.

7.2.1 The Distance R, from the Typical UE to the 0" Tier UAV

The distance from the typical UE to the projection of its cluster center UAV on the ground is
denoted as D. Then the distribution of D can be expressed for different PCPs is given in 2.8 and

2.10.

Lemma 7.1. Given that the link between the typical UE and its cluster center UAV is in s €

{LOS,NLOS} transmission, the CCDF and PDF of R{ can be expressed as follows:
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(i) Thomas cluster process:

CCDF: Fps(x)

/m Py (VET I fo(d)dd/D;, (2> H)  (1.1)

CL’27H2
. _apy(x) H? — 22
PDF: fry(x) = 72D exp < 52 (x > H), (7.2)
(ii) Matérn cluster process:
Rc
CCDF: Frya) = [ pt(VE o dd/D5, (<o < VETH R, (13)
r2_H2
2 S
PDF:  fg(x) = f%f), (H<w</H+R), (74
c—0

where Dy = [ py,(Vd? + H?) fp(d)dd is the probability that the link is in s € {LOS,NLOS}
fransmission.

Proof: See Appendix 18.

Therefore, we can obtain the CCDF and PDF of R as follows:

Fry() =Y DyFs(x)

exp (H;;2x2> (x> H) for Thomas cluster process, (1.5)

1— 12%{2 (H <z <./H?>+ R?) for Matérn cluster process,
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dFR ($)
e
e <H;;2:B2) (x> H) for Thomas cluster process, 76
2 (H <z <\/H?*+ R?) for Matérn cluster process.

7.2.2 The Distance i}, from the Typical UE to the Nearest LOS/NLOS

UAV from the 1% Tier

Given that the typical UE can observe at least one LOS/NLOS UAV in the 1% tier, the CCDF and

PDF of Rj; can be expressed as follows:

CCDF:  Fpy () = e 2w atru®®  pe (1.7)

PDF:  fg (2) = 2m\papy (x)e >0 Ja o4t ) D5 (7.8)

where x > H, Dj, = 1 — e~ 2™v [ () jg the probability that the typical UE has at least one

LOS/NLOS UAV around.

7.2.3 The Distance 37, from the Typical UE to the Nearest LOS/NLOS

GBS from the 2" Tier

Given that the typical UE can observe at least one LOS/NLOS BS in the 2% tier, the CCDF and

PDF of R/, can be given as (4.3) and (4.4)

7.2.4 The Distance Ry from a UE to the Other Cluster Center UAV

For Thomas cluster process, the PDF of the distance V' from a UE to the ground projection of other

cluster center UAV, given the distance W from the UE’s cluster center UAV to the corresponding
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UAY, can be expressed as [74]

2 2
fv(v|w) = %eXp (—U o )Io (g) , (7.9)

202 o2

where [j(-) is the modified Bessel function with order zero. For Matérn cluster process, the PDF

can be expressed as [194]

2 2 _ p2 9
arccosul (|IR. —w| <v < R.+w) + —Ul(v < R.—w). (7.10)

frlelw) = = -

TR, 20w

Then the PDF of Ry can be obtained as

fryy (T|w) = \/ﬁfv(vxz—Hzlw). (7.11)

7.3 User Association

In this section, we focus on the downlink and uplink UE association, and also provide the downlink
association probability of each tier, from which we can determine how the UEs connect with the

UAVs and GBSs.

7.3.1 Downlink Association

In the downlink phase, UEs need to harvest energy and decode the information from the associated
BS (e.g., a UAV or a GBS). The strongest biased average power association criterion [179] [195]
is utilized, i.e. the UEs are assumed to be associated with the BS providing the strongest long-term
biased average received power. Since the antenna gain of the main link is assumed to achieve the

maximum value G, the received power of the main link can be expressed as

P, = argmax P;GoB; L} @ argmin PjGOBj(fij(rj-)“?) (7.12)
jeK ied jEK.s
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where 7 is the distance from the typical UE to the nearest LOS/NLOS BS in the 4t tier, and (a)
follows from the fact that in each tier the transmit power and the biasing factor are the same, and

therefore the maximum received power is from the nearest LOS/NLOS BS.
Lemma 7.2. The probability that the typical UE is associated with a LOS/NLOS BS in the j" tier

is given by

Ajs
[T DL (@i4(r0)| forj =0,
D3Eng: D; A CHG) (ZD Fry (on(m))l;[DzFRg (@zl;m-))],forj:l,z,

(7.13)

1
Py Bik b —
JT%) £, D; and Fs(x) are

where s,s',b € {LOS,NLOS}, s' # s, k = 1,2, Qi(r) = (PB 4
k

given in section 7.2.

Proof: See Appendix 19.

Remark 7.1. In order to characterize the link level performance of the UAV-assisted network, we
will need to find the distance distribution give that link. Therefore, given that the typical UE is
associated with a LOS/NLOS BS in the j*" tier, the PDFs of the distances from the typical UE to

the associated BS can be expressed as follows:

fR;(x) =

OHI;[DZFRg (Qi5(2)) forj =0,
DY Ty (@) (z DiF g (O3 >)) DLy (@) orj = 1.2

(7.14)

f()

And the proof follows the same way as the association probability in Appendix 19.
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7.3.2 Uplink Association

In the uplink phase, each UAV aims to collect data from one cluster, and hence the UAV is assumed
to communicate with its own cluster member UEs. It is further assumed that different UEs in one
cell are served using orthogonal resources, and hence no intra-cell interference exists. UEs from
other clusters can inflict interference. It is worth noting that UEs may not be associated with the
same BSs in downlink and uplink phases, due to the adoption of the strongest biased average power

association criterion in the downlink phase.

7.4 Downlink Coverage Analysis

In this section, we first investigate the interference in the downlink phase, then analyze the net-
work performance by the energy coverage and SINR coverage of each tier. Finally, we provide
a successful transmission probability which can jointly consider both energy coverage and SINR

coverage and can represent the downlink performance of the UAV-assisted cellular network.

7.4.1 Interference

Since the typical UE is assumed to be served by a BS which provides the largest biased received
power P,,, then if a UE is associated with a LOS/NLOS BS from the j** tier at distance r, there
exists an exclusive disc ¢(0, Q3 (r)) in which no interfering BS exists. Therefore, the experienced

interference at the typical UE can be expressed as follows:

[=I+1+1 (7.15)

Iy = PyGho(r?r00)~! (7.16)

=33 PGi(sirit)™ (7.17)
b iefI’Z\q

where b € {LOS,NLOS}, k = 1,2, ry denotes the distance from the UE to its cluster center, and

ry; stands for the distance from the UE to the i'" BS in the k' tier. It is worth noting that when
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the serving BS is from the 0" tier, we have I, = 0, since there’s only one BS in this tier.

7.4.2 Harvested Energy and Signal to Interference Plus Noise Ratio

Since power splitting technique is employed with parameter p, the total harvested energy of the

typical UE in the downlink phase can be expressed as
hv
Eie=1(1—p)(Ppn+1) (7.18)

where 7 is the time duration used for downlink phase, and F,, = PjGohj(/fj-ro‘j)*l denotes the
received power of the main link from the serving BS. We neglect the additive white Gaussian noise
(AWGN) term in energy harvesting. It is worth noting that we assume linear energy harvesting,
and the case of non-linear energy harvesting remains as future work.

Moreover, the experienced SINR at the typical UE can be expressed as

P, P,
SINR,, = —F = (7.19)
Cooitplon D) E4e24]

where o2 is the variance of the Gaussian thermal noise component and o2 is the noise factor due

to the conversion of the received bandpass signal to baseband.

7.4.3 Energy Coverage Probability

The energy coverage probability can be defined as the probability that the harvested energy is larger
than a certain threshold vz > 0. Therefore, given the event S; ; = {The typical UE is associated

with a LOS/NLOS BS in the j'" tier}, the conditional energy coverage can be expressed as

Pg. (p,m,v8) = P(E}Y > 7p]S;.). (7.20)
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Hence, the energy coverage probability of the entire network can be obtained by

w(p. 7, 7E) = Y P, (p.m96) = > Y P (07, 78) Ajs (7.21)

jeEK JjEK s
where A, ; is the association probability given in (7.13), and
Pg,(p,7,7) = >, Pg, | (p, 7,vE)A; s is the energy coverage of tier j.

Theorem 7.1. Conditioned on that the typical UE is associated with a LOS/NLOS BS in the j™"

tier, the energy coverage probability can be expressed as follows:

n

17 (%) €20 ) LT £, (@0 for j =0,
P, (p,7,78) = "

M21M2

]
o
3

<N> f fRS r)Lr,(a) [T L1, (a)dr forj=1,2,
Ba1 k

(7.22)

where s,b € {LOS,NLOS}, i = % a=N(N)"~, By =Hforj=1, By =0forj=2
C(r) = (1+ deG(/fjr"‘st)*l)_Ns, and fR}s(r) is the conditional PDF of distances given in

(7.14). The Laplace transforms of the interference can be expressed as follows:

X o0 pafre(ro)dro
£10 (a) = Z Z/ B - 0 Ny (723)
=< mmm%wﬂ(1+d%amny04) Fre(Qg(r))

—2T PG f};?n
=1111e
G b

b —Np
<1 <1+&PkG(ankko)_1) >p2(7“k)1“kdrk (7 24)

where By = max(H, Q{(r)) for k =1, and Bgy = Q}(r) for k = 2.
Proof: See Appendix 20.

Remark 7.2. We note that the provided analysis and expressions are general. To find the energy
coverage probability of the Thomas cluster process and Matérn cluster process, we only need to

substitute the corresponding PDFs and CCDFs in Section 11l for each cluster process in (7.22).

Remark 7.3. Since the harvested energy is a linear funcion of the downlink duration T, the energy
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coverage is a monotonically increasing function of T. On the other hand, the energy coverage

probability is monotonically decreasing function of the power splitting parameter p.

7.4.4 SINR Coverage Probability

The SINR coverage probability is defined as the probability that the received SINR is larger than
a certain threshold 7, > 0. Therefore, given the event S, ,, the conditional SINR coverage

probability of each tier can be determined using [195, Theorem 1] and expressed as follows:

PEINR]-“S (;07 T, ’y‘sinr) = P(SINR],S > /ysinr|5j,s) =

Ng oo 8 ﬁ-ﬁ-oﬁ '

> (1) () [ frg(r)e 05 11, for j =0,

" " (2 )k (7.25)
2 Ns r 7“; TC Ug’ S S y
S () T Fasloe L0, T L3 (5)drforj = 1,2

n= d1

5,00
nNsYsinr Hj rJ

PG s = NS(NS!)_N%:, Ny is the Nakagami fading parameter.

where i =

Remark 7.4. From the downlink SINR expression, we can conclude that the SINR coverage prob-

ability is independent of T. On the other hand, it is a monotonically increasing function of p.

7.4.5 Successful Transmission Probability

In general, the transmission is successful if the UE can both harvest enough energy to charge
itself and has sufficient SINR levels for information decoding. Therefore, we define the successful

transmission probability (STP) as follows.

Definition 7.1. Given that the typical UE is associated with a LOS/NLOS BS from the j'" tier; the

conditional successful transmission probability is defined as

PgTj’S <p7 T,VE, ’Vsinr) =P (Ejh,g > YE, SINRj,S > f}/sinr‘ Sj,s)- (726)
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Therefore, the total STP of the UAV-assisted mmWave network can be expressed as

Pst(p, T, VB, Vsinr) = Z Psr, (0, T, VB, Ysinr) = Z Z Péc*Tj,S (05 T, VB, Vsinr) Ajs- (1.277)

jex jEK s

Theorem 7.2. Given that the typical UE is associated with a LOS/NLOS BS from the j'" tier, the

conditional successful transmission probability of each tier can be expressed as

Pgijs (p7 7, VE, Wsin'r) - PE]»’S (IO7 T, VE)(l - F](w)> + PSC'INRjys (pa T, fysinT)F](w> (728)

where w = - — <T(1Ep) — Vsinr <7 + Gn)>, Pg. (p,7,7E) is the conditional energy coverage

probability given in (7.22), P§;y Ry (p, T, Ysinr) is the conditional SINR coverage probability given

in(7.25), and F 7(z) is the CCDF of I given event S; s, whose expression is as follows:

A > (<17 (") J fagl) T £, (@) forj =0,
Fy(x) =" n g (7.29)
EO(‘I)"(]Z ) S nen@ I Ln@)dr— forj=1,2,

where &' = o,

Proof: See Appendix 21.

7.5 Uplink Coverage Analysis

In the uplink phase, UEs use the energy harvested in the downlink phase to transmit data to the
cluster center UAVs. We assume all UEs transmit at the fixed power level of PUZ. Then, for

successful uplink transmission, the harvested energy E™ for a UE should satisfy

E" > (T —7)PY*. (7.30)
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If this condition is not satisfied, then the UE is assumed to be in inactive mode in the uplink phase,
i.e. the UE is not able to transmit; otherwise the UE is in active mode. Therefore, we can obtain
the probability that the UE is in active mode from the energy coverage probability derived in the

previous section as follows:

Pactive = PE ((T - T)PtUL) . (731)

7.5.1 Uplink SINR Coverage

A UAV from a random cluster is chosen as the typical BS, and a random active UE from the
cluster is selected to be the transmitting UE. Note that the active UEs from other clusters will
cause interference. Since the links between the typical UAV and the interfering UEs can also
be LOS or NLOS, and at most one UE from one cluster inflicts interference, UE can be divided

into groups of UEs with LOS and NLOS links, and these groups form PPPs &L and ®¥  with

user user

densities A2 = puctiveEAr and A = PactivePd) Au» respectively. Therefore, the experienced

SINR at the typical UAV can be expressed as

ﬂULGoho(/ff'ﬁS%)_l
02+ Y PUEGhi(kbrit)

b ieq)z.se'r

SINRYL = (7.32)

where b € {LOS, NLOS}. The uplink SINR coverage probability, given the serving UE is in active

mode, can be expressed as
PYA Rr(YYE) = P(SINRYE > AVE|active). (7.33)

Theorem 7.3. Given that the serving UE is in active mode, then the uplink SINR coverage proba-

bility of the network can by expressed as

N,
o Ns & UL 42
Pgiyr(or) =Z(—1)"“( ) /H e oLy (uS ) Loy, () frg(ro)drg  (7.34)

n
n=0
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S
UL,“
L _ ViV

U
where Hs ™ = PtUL—Gok[SJ

.., (uY%) is the Laplace transform expression which can be expressed

as follows:

b —Np
U
—21pe N, ger [ <l—fo°° <1+u£’ LPULG (kb (v2+H?) 2 Nb>—1> f(vlw)dv> wdw

L, (") =]]e (7.35)

a
Proof: See Appendix 22.
Remark 7.5. If the small-sale fading h; of the interfering links are assumed to be Rayleigh dis-

tributed, i.e., N, = 1, by utilizing the Rician property [~ f(v|w)wdw = v (when Thomas cluster

processes are considered), the Laplace transform can be expressed as

b
.. (uvr Hexp —27r/ PG user ——vdv | . (7.36)
L (EPORG) (0 + )Y

7.5.2 Average Throughput

The average uplink throughput of the network can be expressed as

RYL = E[(T — )W log(1 + 7VE)L(SINRYE > /Y5 pocrine]

= (T — )W log(1 + V%) P{A s (VW) Pactive (71.37)

where W is the bandwidth of each channel. It is also worth noting that pg,.,e 1s related to the
energy coverage probability in the downlink phase, and therefore the average uplink throughput
has dependence also on the downlink phase. With this, we formulate the following optimization

problem to maximize RY” subject to a lower bound constraint on the downlink throughput

Hl?X (T - T)W log(l + ’YUL)PSI‘JI%VR (’7UL)pactive

s.t. RPE > R (7.38)
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where RPE = 7W log(1 + YY) Psing(Vsinr) is the average donwlink throughput, R, is the
minimum average throughput requirement for the downlink transmission. We numerically solve

this problem in the Section VIII.

7.6 Generalizations and Special Cases

While we have assumed in the previous sections that the UAVs fly at the same height, our analysis
and approach are relatively broad. To demonstrate this, we extend our analysis to a multi-tier
multi-height model in this section. Additionally, we address the special case of the noise-limited

network and derive closed-form characterizations with practical implications.

7.6.1 Multi-Tier Multi-Height Model

In practice, UAVs can fly at different heights depending on the applications and regulations. For
instance, UAV heights may differ in urban areas with high-rise buildings compared to suburban
environments. With this motivation, we consider a multi-tier multi-height model, in which we have
multiple tiers of UAVs and UAVs in the j** tier are distinguished with their density Aj, transmit
power P;, biasing factor B; and height H;. Next, we discuss how our previous analysis can be
adapted to this model.

Suppose we have Ky = {1,2, ..., K'} tiers of UAVs. Then we introduce two notations: Kg =
{GBS} UKy and K = {0} U {GBS} U Ky. Since we still use the same downlink association

criterion, the received power can be re-expressed as

Py, = argmin P;GoB;(k5(r5)%7). (7.39)

JEK,s

Now, the probability that the typical UE is associated with a LOS/NLOS BS in the j" tier can be
modified from (7.13) as

Ajs =
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Er; [DS [ [ID}Fr (QZ%(TO))] 7 for j = 0,
kea b
! DiEs [D;’FR;/ (@3 7) (S DfFm (@) ) TT TIDEF g (@150 |
E#J‘G
for j € K.
\
(7.40)

Similarly, the energy coverage, SINR coverage and the successful transmission probabilities can
be modified from (7.22), (7.25) and (7.28), respectively, by letting & € K. The CCDFs and PDFs

of the distances remain the same.

7.6.2 Noise-Limited Model

In this subsection, we investigate the network performance metrics when the interference is neg-
ligible. When interference / =~ 0, the energy coverage and SINR coverage probabilities can be
simplified by removing the Laplace transform terms in (7.22) and (7.25), respectively. With this,

the STP specializes to

PgTj,S (:07 T,VE, /ysinr) -

ng’s (107 T, /VE)]- (F(p7 T, ’7E7’73in7”) Z 0) + PEINRJ"S]- (F(P» T, VE, ’U/sim") < 0) (741)

where F'(p, T, Vg, Vsinr) = ﬁ — Ysinr (UT? + ai). The partial derivative of F' with respect to p

can be expressed as

OF sim"0-2
_ YE . + Y c

% = Ti=7) 7 > 0. (7.42)

Hence F' is a monotonically increasing function of p. Therefore, depending on the values of 7, vg
and 7s;n,, there are three cases: 1) if Fi.x < 0, PgTj .= P§iy Ry 2)if Fim > 0, PgTj L= ng 5

3) if Flaax > 0 and Fi;;, < 0, then in region of F' < 0 we have PgTj_S = P§INRJ_S, which is a
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monotonically increasing function of p, while in region of /' > 0 we have Pg, = Pp, , which
is a monotonically decreasing function of p, therefore, with increasing p, PgTj_s first increases then

decreases, and F' = 0 gives the maximum of PgTj B i.e. when

2 2 2
o OB+ TV = TYsinr0n) + (V8 + Tsinr 02 — Tsinr02)? — 47292,,0202
27—751‘717‘0-7%

(7.43)

When we further assume that the uplink between the typical UAV and its cluster member UE
is in LOS, and the path-loss exponent is «; = 2 and the small-scale fading is Rayleigh fading, the

uplink SNR coverage probability admits the following simpler expression:

—c'H?
Trociae for Thomas cluster process,
pPUL ULy _ +2C70 7 44
sive(Y ") = L, (7.44)
—C'H _ ' p2 2
SR (1 —e ¢ Rc) for Matérn cluster process,
UL 2
where C' = 21
¢ PULGokL

7.7 Extensions to UAV-assisted IoT Networks with 3D An-
tenna Patterns

The analysis can be extended to consider 3D antenna patterns in the downlink transmission.

7.7.1 3D Antenna Pattern

We adopt a doughnut-shaped antenna radiation pattern, using an ultra-wideband transmitter at the
UAV. The antenna gain at the UAV can be expressed as in (2.27). 3D antenna pattern are adopted at
the GBSs as in (2.25). Similarly as in [102], we assume G, = oo and G (¢) = 0 dB to simplify

the analysis. Then, we can rewrite the 3D antenna gain as

2
9G*9etilt)

Galr) = G% — Gy (0 (dB) = G210~ 2"
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arcsin(H/7) =0 4414 ) 2

_ qo10 (U (7.45)

7.7.2 Association analysis

With the 3D antenna patterns, the association probability are modified in the following Lemma.

Lemma 7.3. The probability that the typical UE is associated with a LOS/NLOS BS in the j*" tier

is given by

D11 Dl[}FRzZ] (Q**(ro)) DL Fsh (7"0):| , forj =0,
L b

{ Ery, | Dy Dy F gy (Q“'(TU))IZID%FQS{’(TU) <; DEF gy (QSb(Tu)))], forj =1, (7.46)

En, | D5 DEFS (re) (z DSF5§<rG>) I;ID"UFf’é’(rc)] , forj =2,

1

where s,s',b € {LOS,NLOS}, s # s/, Q*(r) = (%Ta?J*l)W, Ds, Frs (z) and Frs (x) are

ko

given in Section 111, C’,ﬁ? = %, G, is the antenna gain of the BSs in the k" tier, and
I3k
F@)= [ fm()l (G;l(t)tai > cggc;;l(x)xa?) dt. (7.47)
Hy,

Given that the typical UE is associated with a LOS/NLOS BS in the j*" tier, the PDFs of the

distances are given as

fR;(x) =

Irg® Tt (e ) |
Z%,s Dys 1;[ leJFRbU (Q b<T0)) DF33 (ro) forj =0,

frs (z) 1= ’ - .
< I}i - DSUDSUFR‘;]' (st (TU)) HD%F;{)(TU) (Z DSFRS (QSb(T’U))> , fOI'j — 17 (748)
’ b b

frs (417) s s Tss’ s s .
B DDy (re) (S D4F(re) ) T D P for j =2
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7.7.3 Successful Transmission Probability

The analysis of the energy and SINR coverage probabilities of the proposed system and the suc-

cessful transmission probability are similar as in (7.4).

7.8 Numerical Results

In this section, we provide numerical results to evaluate the performance of the considered UAV-
assisted mmWave cellular network and identify the impact of key network parameters on the per-

formance. Unless stated otherwise, the parameter values are listed in Table 7.2.

Table 7.2: Table of Parameter Values

Notations Description

Py, Pg, PV 24 dBm [23], 34 dBm, 1 dBm

AU, A\a 10~4 /m?, 107° /m?

H,C B 50m, 11.95, 0.136 [23] [196]

kY, EY al ol 10398,100-27,2.09, 3.75 [23] [196]

1/p 141.4 [160] [197]

Carrier frequency, W | 28 GHz, 100 MHz [160] [197]

o2, o2 -174 dBm/Hz+10log, (W )+10 dB, -80 dB [160] [197]
N, Ny 2,3

T 1s

7.8.1 Impact of the Cluster Size

First we investigate the influence of the cluster size on the network performance. The cluster size
here is the spatial size of the cluster. More specifically, for the Thomas cluster process, 68.27%
of UEs are located inside a circular region with radius o, and 95.45% of UEs are located insider a
circular region with radius 20, and we choose o as the cluster size. For Matérn cluster process, .

is the cluster size.
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Fig. 7.3: Association probability as functions of the cluster size with parameter values listed in Table 7.2.
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Fig. 7.4: STP of the network and each tier BSs as a function of the cluster size when 7 = T, yg = —40
dB, Ysinr = 0dB and p = 0.5.

Downlink Association Probability

Fig. 7.3 shows the association probability (AP) as a function of the cluster size in the downlink
phase. As shown in the figure, when we increase o and R,.., Ag decreases while A; and A increase.
As o and R, increase, the UEs move further away from the projection of the cluster center UAV
and hence are more spread away. As a result, the UEs move closer to other UAVs and GBSs.
Therefore, Ay decreases. On the other hand, because of the LOS probability function, the link
between the UE and the UAVs are more likely to be LOS, and consequently the UEs prefer to be

served by UAVs with higher probability. For this reason, A; increases faster than A,. We also
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Fig. 7.5: STP, EC and SINRC probabilities as functions of the cluster size when 7 = T, vg = —40 dB,
Ysinr = 0 dB. And p = 0.5 for the SWIPT scenario.

note that in Fig. 7.3 (and in the subsequent figures in this section), simulation results are plotted
with * markers and we generally observe excellent agreements with the analytical results, further

confirming, for instance, our characterizations in Lemma 7.2 in this case.

Downlink Coverage Probabilities

Fig. 7.4 shows the successful transmission probability (STP) as a function of the cluster size. Since
the STP, energy coverage (EC), SINR coverage (SINRC) performances of each tier BS are similar,
we evaluate the STP performance of each tier in the figure. In this figure, total STP decreases
with increasing o and R.. As expected, when o and R, become larger, Psy, (i.e., the successful
transition probability in tier 0) diminishes while Ps7, and Psr, increase. However, since the cluster
center UAV can provide the maximum conditional coverage, the increase in Ps, and Pgr, 1s not
able to compensate the decrease in Psr,, leading to the decrease in total STP.

In Fig. 7.5, we observe that STP, EC and SINRC are all monotonically decreasing functions
of o and R.. Additionally, we note that since we consider the SWIPT scenario with p = 0.5, we
divide the received power of the typical UE into two streams, one for energy harvesting and the
other for information decoding. Due to this, the STP performance is lower compared to only EC or

SINRC, where it is assumed that entire received power is used for energy harvesting or information
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Fig. 7.6: Uplink SINR coverage probability as a function of the cluster size when 7 = 0.57, p = 0,
YL = —20dB, and ¢ = 10.

decoding only.

Uplink Coverage Probability

We observe from Fig. 7.6 that the uplink SINRC is a monotonically decreasing function of the
cluster size, similarly as in the downlink phase. When compared with the downlink SINRC (blue
dashed line) in Fig. 7.5, we notice in Fig. 7.6 that the uplink SINRC drops faster than the downlink
SINRC for larger thresholds. This is due to the different association criteria in different phases. In
the downlink phase, because of the strongest long-term averaged received power association crite-
rion, when the UEs are more spread away from their cluster center UAVs, they can get associated
with other UAVs and GBSs to get the strongest received power. But in the uplink phase, UAVs are
receiving information from their cluster member UEs, and therefore when the UEs are far away,
the uplink SINRC decreases substantially.

Again, we note that simulation results are also provided in all the figures using markers, and
these results match with the analytical results, further validating the accuracy of our coverage
analysis. Additionally, we observe in the numerical results that Thomas cluster processes and
Matérn cluster processes generally lead to similar network performance trends, which gives us the

insight that considering PCP rather than PPP is the key to capture the UE distribution. Therefore,
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Fig. 7.7: Association probability and STP as a function of o for Thomas cluster process, when v = —40

dB, Ysinr = 0 dB, p = 0.5 and heights for 0th-374 tier UAVs are 50m, 50m, 60m, and 70m, respectively.
The GBS is regarded as the 4% tier.

for brevity, we will just provide numerical results considering Thomas cluster processes in the

following subsections.

Multi-Tier Multi-Height Model

In this part, we assume there are three tiers of UAVs with heights 50m, 60m, and 70m, respectively,
and density 3 x 107°/m?. And all UAVs have their own clustered UEs on the ground. There is a
tier of GBSs with parameter values listed in Table III. We randomly choose a UE from a cluster of
the 50m-high UAVs, and provide the association probability and STP in Figs. 7.7(a) and 7.7(b),
respectively. In Fig. 7.7(a), we observe that the association probability of the GBS does not
change much when compared with the one-tier UAV model. And as o increases, the association
probabilities of 1°¢, 2"¢ and 3"¢ tier UAVs increase. Fig. 7.7(b) shows the similar performance

levels as in Fig. 7.4. And the STP of the 1%, 27d and 374 all increase with increasing o.

7.8.2 Impact of the Interference

In this section, we investigate the impact of the interference. In Fig. 7.8, we plot the EC, coverage

probability and STP as a function of the threshold in the downlink phase. Since the GBSs with
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Fig. 7.8: STP, EC and SINRC as a function of the threshold when o = 10, 7 = T  and p = 0.5 for the
SWIPT scenario.

large transmit power are relatively far from the typical UE and the UAVs which are relatively
denser and closer but with low transmit power, the interference is negligible. Thus the interference
has little impact on the uplink SINRC. Therefore, as expected the interference does not lead to a
significant difference on the probabilities. In the uplink phase, the interference from the UEs is

small and has unnoticeable impact on the uplink SINRC.

7.8.3 Impact of the UAV Height

In this subsection, we investigate the impact of the UAV height on the network performance.

Downlink Association Probability

Fig. 7.9 depicts the AP of each tier BS as a function of . When H = 0, the UAVs are located
on the ground. Since the UAVs are more densely distributed than the GBSs, we have Ag > A, >
Aj. Also because p is a monotonically increasing function of H, the LOS probability of UAVs
increases with increasing H. Therefore, as H becomes slightly larger, AP with the cluster center
UAV, Ay, and AP with other UAVs, A;, increase while AP with GBSs, A,, decreases. On the
other hand, when we increase H substantially (e.g., beyond approximately 20m), the UAVs start
being high above the sky. Therefore, even though the LOS probabilities have grown, the distances

between the UAVs and UEs have increased as well (increasing the path loss), while the distance
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Fig. 7.9: Association probability as a function of the UAV height with parameter values listed in Table 7.2.
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Fig. 7.10: STP, EC and SINRC as functions of the UAV height H when 0 = 10, 7 = T, vg = —40 dB,
Ysinr = 0 dB. And p = 0.5 for the SWIPT scenario.

between the UEs and GBSs have not changed. Due to this, we observe that Ay and A; decrease

whereas A, starts increasing.

Downlink Coverage Probabilities

The STP performance curves of each tier BS shown in Fig. 7.10(a) demonstrate the same trends
as the association probability in Fig. 7.9. In addition, the total STP initially grows, achieves its
maximum around H =~ 20m, and then decreases because of the increased distance between the
UEs and UAVs when the UAV height H becomes larger. At these larger height levels, the increase

in Pgp, cannot compensate the decrease in Pgz, and Psr,. Fig. 7.10(b) shows that the EC and
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SINRC performances follow the same trends as for STP.

Uplink Coverage Probability

In the uplink phase, the UAVs are receiving data from their cluster member UEs. When UAVs are at
relatively lower height, the transmission are NLOS with high probability because of the blockage
from buildings and other large objects. Since the blockage becomes less when we increase the
UAV height, the SINRC increases. However, above a certain height, the distance between the UAV
and the serving UEs becomes large enough that the path loss starts dominating and as a result,
SINRC diminishes. Therefore, as shown in Fig. 7.11, SINRC increases at first and then decreases,
and there exists an optimal height, which is not the same but very close to the optimal height in the

downlink phase.

7.8.4 Impact of the Power Splitting Component

In this subsection, we investigate the impact of the power splitting parameter p on the network
performance. From Fig. 7.12, we can conclude that EC is a monotonically decreasing function
of p and SINRC is an increasing function of p, due to the facts that larger p means that more
power is used for harvesting energy and less power for information decoding. Using the given set

of parameter values, we observe that there exists an optimal p value that maximizes the system
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Fig. 7.13: Averaged uplink throughput as a function of 7 and p for Thomas cluster process, when yg =
—40 dB, Ysinr = 0dB, YL = —20 dB, and o = 10.

downlink performance. Since in this model, the interference is negligible, we can use (7.43) to
approximately find the optimal value of p. By substituting the parameter values provided in (7.43),

we obtain p = 0.7603 and this is consistent with what we have from the numerical result.

7.8.5 Impact of the 7

In this section, we investigate the effect of the time duration 7 allocated to the downlink phase.
Fig. 7.13 shows the average uplink throughput as a function of 7 and p under the constraint that
the average downlink throughput RP* is larger than R, (addressing the optimization problem

in (7.38)). As shown in Fig. 7.13(a), RV% decreases with increasing p, since larger p means less
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Fig. 7.14: AP, EC as a function of cluster size o, when H = 50m, vg = —80 dB and 7, = —40 dB.

power for energy harvesting. On the other hand, since R”* is a monotonically increasing function
of 7, if we want to satisfy the minimum throughput requirement, there is a minimum value of 7.
Therefore, as shown in Figs. 7.13 (a) and (b), when 7 is smaller than a certain value, the minimum
downlink throughput constraint cannot be satisfied and the optimization problem in (7.38) is not
feasible. When 7 increases, the downlink constraint is satisfied, and we note that there is an optimal
7 that maximizes the average uplink throughput.

7.8.6 Numerical Results when Considering 3D Antenna Patterns

First, we investigate the impact of the cluster size ¢ on the network performance with 3D antenna
patterns. Fig. 7.14(a) shows the AP as a function of the cluster size, i.e., the standard deviation of
the UE distribution in Thomas cluster processes. As shown in the figure, when o becomes larger,
the Aq (i.e. the AP of the cluster center UAV) decreases while A; and A, increase. This is because
that, as o increases, the UEs move further away from the projection of the cluster center UAV and
hence are more spread away. As a result, the UEs move closer to other UAVs and GBSs.

Fig. 7.14(b) shows the EC probability as a function of the cluster size. In the figure, total EC
decreases with increasing 0. As expected, when o becomes larger, Pg, diminishes while P, and
Pr, increase. However, since the cluster center UAV generally provides the maximum conditional

coverage, the increase in Pp, and Pg, is not able to compensate the decrease in Pg,, leading to
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Fig. 7.15: AP, EC and SINRC as a function of UAV height H, when ¢ = 30, vyg = —80 dB and
Vsinr = —40 dB.

the decrease in total EC. We finally note that the simulation results are depicted by markers * in
Fig. 4. The generally excellent agreements with the dashed and dotted curves obtained using our
analytical characterizations in the paper further confirm our analysis and theoretical results.

Then, we investigate the impact of the UAV height H on the network performance with 3D
antenna patterns. Fig. 7.15(a) depicts the association probability of each tier BS as a function of
the UAV height H. When H is small, the UAVs are located close to the ground. Since o = 30,
i.e. the UEs are spread away, the links between UAVs and UEs are more likely to be in NLOS.
Also note that the GBS transmission power is larger than that of the UAVs. Therefore, we have
Ay > Ap > A;. We further note that since pf; is a monotonically increasing function of H, the
LOS probability of UAVs increases with increasing H. Therefore as H becomes larger, Ay and
Ay increase while Ay decreases. In addition, when we slightly increase H, the link to the cluster
center UAV is LOS with higher probability, while the link to other UAVs is more likely to be NLOS
because the signal can be obstructed by buildings. Consequently, Ay tends to be greater than A;.
When we increase H substantially, the UAVs are high above the sky and path loss becomes large
between the UAVs and UEs, leading to decreasing Ay and A; and an increasing A,.

The EC performance curves of each tier BS are shown in Fig. 7.15 (b). The total EC increases
at the beginning due to the increase in P, and Pg, (which are the conditional energy coverage
probabilities of cluster center UAV and other UAVs, respectively, multiplied with the correspond-

ing association probability). As the height is further increased, both Py, and Pp, start decreasing
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while Pg, keeps on increasing, following the performance in Fig. 7.15(a). However, because the
increase in Pg, just falls short of compensating the decrease in Pgy, and Psp,, we have a slightly
decreasing EC. Fig. 7.15(c) shows that the SINRC and STP follow similar performance trends as
for EC. Additionally, we note that since we consider the SWIPT scenario with p = 0.5, we divide
the received power of the typical UE into two streams, one for energy harvesting and the other for
information decoding. Due to this, the STP performance is lower compared to only EC or SINRC,
where it is assumed that entire received power is used for energy harvesting or information decod-
ing only. Finally, we again observe excellent agreements between the analytical and simulation

results.
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CHAPTER 8

COVERAGE ANALYSIS FOR
CELLULAR-CONNECTED UAVS WITH 3D

ANTENNA PATTERNS

8.1 System Model

We consider a cellular network composed of GBSs and UAVs as the aerial UEs. The GBSs are
randomly distributed according to a homogeneous PPP & with density A\. GBSs are assumed to
have transmit power Py and height . Without loss of generality, a random UAYV is chosen as the

typical UAV, and is assumed to be located above the origin at altitude H,.

8.1.1 Ground-to-Air Channel Model

Link between a UAV and a GBS can be either LOS or NLOS. The path loss model is formulated

as

Li(x) = - 8.1)
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where H = |Hy — Hgl|, x is the horizontal distance from the UAV to the GBS, o, oV are the
path loss exponents for LOS and NLOS links, respectively, x*, k" are the intercepts of the LOS
and NLOS path loss formulas, respectively, and p”(z) is the probability that the link has a LOS
transmission at distance x, and is given in (2.17).

In addition, we assume that all links experience independent Nakagami-m fading. Thus, the
small-scale fading gain h follows a Gamma distribution 2 ~ I'( N, 1/N;) where s € {LOS, NLOS},

and NV is the Nakagami fading parameter.

8.1.2 3D Antenna Patterns for GBSs/UAVs

3D antenna patterns are adopted for the GBSs and UAVs. For GBSs, the antenna gain can be
formulated as in (2.25). When assuming G,,, = oo and G (¢) = 0 dB to simplify the analysis, 3D

antenna gain can be rewrite as

Go(r) = Gglo*'?( %345 (8.2)

For the UAVs, the antenna gain can be formulated as in (2.26) (2.27) (2.28) and (2.29). The antenna
gain of the GBS-to-UAV link can be written as G(z) = Gg(x)Gy(x).

8.2 SINR Coverage Analysis

In this section, we first provide the formulation of the distance from the UAV to GBSs. Then, we

analyze the SINR coverage probability and provide general expressions.
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8.2.1 SINR Coverage Probability

The SINR coverage probability P is defined as the probability that the SINR experienced at the

typical UAV is larger than a threshold v > 0. Then, we can derive P as follows:

P(v) = P(SINR > )

= Ep, [P(SINR > ~|Dy)]

= Ep, [P(SINR > 7|Dy, LOS) D*°% 4 P(SINR > 7| Dy, NLOS) DN-05]

= Ep, [P(SINR > ~|Dy, LOS)] DRos Ep, [P(SINR > ~| Dy, NLOS)] DNLOS

— Pé:OSDLOS + PgLOSDNLOS (83)

where D? is the probability that the UAV has at least one s-GBS around, P/, is the conditional
coverage probability given D, and the link is in s € {LOS,NLOS} transmission, and can be

formulated as follows:

P() = Eny[P(SINR > 7| Dy, LOS)] = P (

vhs(H? + d3)5 (02 + 1)
D4 { ( 0> PGy

Ns
@ Ep; [Z(—l)nH <Ns>€_“50%6_“51L6_“51N] (8.4)

PGQhOK;1<H2 + d%)f% >~
o2 +1

n
n=1

Qs
2

2. g2 1
where /15 = nnsws%jdo) ,Ms = Ng(Ng!)~ ™ and

Lra(ps) = Eps e+

i —lopr2, g2\— S8 a
—or [ (17E;Li [,usPGihma (H2+d2) T]),\p (d;)d;dd;
do

()
=e

oo agq —Ng
—2r [ (1_ (1+MSPGm;1 (H2+d§)—TN;1) )Ap”(di)diddi
do

(8.5)

=e
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where a € {LOS,NLOS}, (a) is due to the use of the moment generating function of the Gamma
random variable and the interfering GBSs being divided into two independent PPPs ®, with density
Ap® for s € {LOS,NLOS}, and (b) follows by computing the moment generating functional of a
PPP.

8.3 Numerical Results

In this section, we evaluate the performance of the considered cellular-connected UAV network.
We also use Monte Carlo simulations to validate the models and confirm the accuracy of the anal-

ysis. The simulation parameters are listed below in Table I.

Table 8.1: Table of Parameter Values

Parameters Values

P, 43 dBm [168], 10 /km?

HU 50 m

Hg,a,b,c 32,1, 6.581, 1 @suburban; 19, 1, 0.151,

1 @urban [95]
al o gkl kN | 2.09,3.75, 10411, 10329 [190]

GY, GY, 5dB, 15 dB
Oritts O3aB, Vo | 15°,10° [168], 15°
02, Ny, Ny -44 dB, 2, 3

The impact of the UAV altitude is depicted in Fig. 8.1. Overall, we first observe that there
exists an optimal altitude H?" for the UAV. This is because the antenna of the GBS is tilted down
with 6y;;;, and when the elevation angle of the link between the UAV and the serving GBS 6 = 6,;;,
the UAV receives the maximum antenna gain provided by the GBS, which is much larger than
the interference. Thus, we have an optimal altitude for the UAV. In different environments (i.e.
suburban, urban), since Hg is different, the H[‘}p * is different. Second, when we compare Figs.
8.1(a) and 8.1(b), we observe that better SINR coverage can be achieved in a suburban environment
than in the urban environment. This is due to the fact that in suburban environments more links are
in LOS, which in turn leads to larger received power over the main link, and hence larger SINR

levels. In addition, in Figs. 8.1(a) and 8.1(b), we compare the performances of different antenna



158

2 16 !

% \\8 Analy:Sine .

S o8t B __Anav:omn

2o 3 —-—-~Analy:Cosine

A Analy:Directional
o 0.6 .

o

o

00471

o

O

o 0.2r

Z -
= | | | | =)

0 10 20 30 40 50 60 70 80 90 100
HU (Suburban)

(a) Suburban environment.

-
Q@

e, Analy:Sine
08F \Q o, — — - Analy:Omni
' A —-—-- Analy:Cosine
\ \'\ B Analy:Directional
06 \ ) . o Sim
\

o
»~

o
o

SINR Coverage Probability

o

(b) Urban environment.

Fig. 8.1: SINR coverage probability as a function of the UAV altitude in a suburban and urban environ-
ments.

patterns. It is observed that the observed antenna pattern with tilting angle toward the serving GBS
has the best performance, since this antenna pattern can provide the maximum antenna gain over
the main link and narrow beamwidth can reduce the amount of interference. On the other hand,
sine pattern results in the worst performance in this network.

Fig. 8.2 shows the influence of the tilting angle of the GBS. Since the UAV is higher than the
GBSs, when 6,;;; becomes larger, the decrease in the antenna gain of the main link is larger than the
decrease in the interference, and therefore, we have a diminishing SINR coverage probability. On
the other hand, for the ground UEs, when 6,;;; = 0, the antenna is not tilting down, and therefore
the antenna gain for the ground UEs is small. When we increase 6,;;, the ground UE experiences
a higher antenna gain from the serving GBS, and as a result, the coverage probability increases
accordingly. As we keep increasing 6y, further, the ground UE (unless it is very close to the GBS)

experiences lower antenna gains and consequently, the SINR coverage probability of the ground
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UE starts decreasing after reaching its peak value. We finally note that the simulation results
(shown with circle-markers) have excellent agreements with the analytical results in both Figs. 8.1

and 8.2.



160

CHAPTER 9

LEARNING-BASED TRAJECTORY
OPTIMIZATION FOR

CELLULAR-CONNECTED UAVS

9.1 Learning-Base UAV Trajectory Optimization with Col-

lision Avoidance and Connectivity Constraints

9.1.1 System Model

In this section, we introduce the system model of the multi-UAV and multi-GBS cellular networks
in detail. Note that in this section, unless specified otherwise, we remove the time index e.g., in

the position vector p(¢) — p, and the index for UAVs or GBSs, e.g., p, — p-

Deployment

We consider multi-UAV multi-GBS cellular networks as displayed in Fig. 9.1, in which J UAVs,
with potentially different missions, need to fly from starting locations to destinations over an area

containing /' GBSs. Without loss of generality, we assume that the area of interest is a cubic
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volume, which can be specified by C' : X x Y x Z and X 2 [Tmin, Tmax)s V = [Yumins Ymax)» and
Z 2 [Zmin, Zmax). Bach UAV is modeled as disc-shaped with radius r. Let p = [p,, py, Hy| denote
the 3D position of the UAV, which is the center of the disc. Hy is the altitude of the UAVs which
is assumed to be fixed for all UAVs. p® = [py,, psy, Hy] € R® and pP = [p,u, pgy, Hy| € R® are
used to denote the coordinates of the starting points and destinations.

Each UAV’s state is composed of an observable information vector and an unobservable (hid-
den) information vector, s = [s°, sh], where the observable state can be observed by other UAVs,
while the unobservable state can not. In the global frame, observable state includes the UAV’s po-
sition, velocity v = [v,,v,], and radius r, i.e., s° = [p, Vv, r] € R%.The unobservable state consists
of the destination p”, maximum speed v,.x, and orientation ¢, i.e., s = [pD , Umax, @] € R5. It
is worth noting that the UAVs do not communicate with other UAVs. Hence, we address a more
challenging non-communicating scenario.

In this cellular network, there are X' GBSs providing wireless coverage simultaneously. The
k™ GBS has transmit power Pg,, and it is located at position p B, = [Pe 5, Py, » H 5|, where Hp

is the height of the GBS and is assumed to be the same for all GBSs.
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Fig. 9.1: An illustration of multi-UAV multi-GBS cellular networks.

Channel Modeling

For cellular-connected UAVs, due to high UAV altitude, UAV-to-GBS channels usually constitute
strong LOS links, and LOS links are dominant [19, 198]. In addition, if the UAV altitude Hy
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is greater than a threshold, 3GPP specifications suggest a LOS link with probability one. For
example, in the 3GPP specifications in [199], the altitude threshold is suggested to be 40m for
RMa (Rural Macro) deployment, and 100m for UMa (Urban Macro) deployment. Therefore, we

assume that all links between the UAVs and GBSs are LOS. The path loss can be expressed as

/2

L(d) = (&* + (Hp — Hy)?) 9.1)

where « is the path loss exponent.
The 3D antenna gain at the GBSs and UAVs are modeled as 2.25 and 2.27, respectively. We
assume that the antenna elements of the GBSs are only directional along the vertical dimension but

omni-directional horizontally [19]. Therefore, the antenna gain can be expressed as [168]

— . 2
arctan(%)—ﬁnlt ) Gm )

— min (—1.2(
Gp(d) =Gy, + G, (dB) = 10

93dB 710
9.2)
where
G, = 0(dB) 9.3)
, arctan(—HBgH‘/) — ptilt
G,(d) = —min [ 12 Jadb , G, | (dB). 9.4)
SINR and Connectivity

The UAVs receive signals from all GBSs, among one of which is the serving BS, and others con-
tribute to the interference. The received signal from the & GBS to the i"* UAV can be expressed
as P.Gp, (dix)Gy,(dix) L™ (d;1,). The experienced SINR at the i UAV if it is associated with the

k' GBS an be expressed as

g 2 PG, (di)Gv,(d) L™ (dir.)
N+ Y PG, (di) Gy (dig ) L (dige )

9.5)
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where N is the noise power. If the experienced SINR at a UAV is larger than a threshold 7, then

the UAV is regarded as connected with the cellular network, and disconnected otherwise.

SINR Measurement

Along the path to destination, UAVs interact with the cellular network, measure the raw signal
from GBSs, and obtain the instantaneous SINR S’.([p, sg]; #), where & includes the random small-
scale fading coefficients with all GBSs, and p and sp = [pp, , V| are the position of the UAV
and positions of all GBSs, respectively. These measurements can be obtained by leveraging the
existing soft handover mechanisms with continuous reference signal received power (RSRP) and
reference signal received quality (RSRQ) [115]. At each time ¢, over a very short time interval,
during which the agents’ locations can be approximately considered to be unchanged, it is assumed

that the UAV performs /V,,, SINR measurements. Then the empirical SINR can be obtained as

N,

~ 1 n ,

Srr = 3 2 iy (P85l by 9.6)
n=1

To average over the randomness arising from small-scale fading, we can consider large N,, and

have lim S, = S

Nm—soo ® e

, by applying the law of large numbers. Therefore, as long as the UAV

performs signal measurements sufficiently frequently so that N,, > 1, S, . can be evaluated by

®)

its empirical value S, , .

9.1.2 Multi-UAV Trajectory Optimization

In this section, we first introduce the constraints and then formulate the multi-UAV trajectory
optimization problem.

Constraints

* Collision Avoidance: Collision avoidance is central to many autonomous systems. During

flight, the UAVs should not collide with others, which means that the distance between two
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agents should be larger than their radius all the time, i.e.,

Ip;(t) —p; ()]l > ri+1; Vj#i,Vt 9.7)

where p;(t) is the location of the i*" UAV at time ¢, and r; is its radius. Note that this radius

can also include a buffer zone in which no other UAV should be present.

* Wireless Connectivity Constraint: To support the command and control and also data
flows, UAVs have to maintain a reliable communication link to the GBSs. To achieve this
goal, we consider the connectivity constraint for the UAVs, i.e., the maximum continuous
time duration that the UAV is disconnected should not be longer than 7; time units. The

maximum continuous disconnected time duration can be mathematically expressed as

To™ = t—Tr(t 8
R -

where T is the total travel time, and 77, (¢) is the last time that the UAV is connected with the

cellular network before time ¢, 1.e.,

T7(t) = max T 9.9)
s.t. 7€ 0,t]
Sy (1) > T

Therefore, the connectivity constraint can be written as
<max t— TL(t)) <T;. (9.10)
te[0,7

* Initial and Final Locations: Each UAV starts its mission from a given initial location and
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completes its flight at a given destination, i.e.,

p(0) = p® and p(T) = p” (9.11)

* Kinematic Constraint: Kinematic constraints need to be considered for operating UAVs.

We impose the speed and rotational constraints as follows:

v(t) = [vs(t), o(1)] 9.12)
Speed limit: v4(t) < Vpax (9.13)
Rotation limit: [¢(t) — ¢(t — At)| < At- T, (9.14)

where v(), vs(t) and ¢(t) are the UAV’s velocity, speed and orientation at time ¢. v,y iS
the maximum of speed the UAV, and 7, is the maximum angle that a UAV can rotate in unit

time period. This constraint limits the direction that a UAV can travel at a given time.

¢ Association Constraint: Each UAV is associated with one GBS at a time, and the associated
GBS is denoted by a(t) € {1, ..., K}. Largest received signal power based association is

adopted in this paper, where

a(t) = aIgmaX PG, (di (1) Gy (di(t)) L (di(1)). (9.15)

Problem Formulation in Continuous Time Domain

The goal of this work is to find trajectories for all UAVs in the network such that the travel/flight
time of each UAV between the initial and final locations is minimized, while the constraints are
satisfied. In the considered decentralized setting, the trajectory optimization problem for the i

UAV can be formulated as

(PO) : argmin T;
{p;(1),vt}
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s.t. (9.7), (9.10), (9.11), (9.13), (9.14)

a(t) € {1,.., K}, vt

Problem Formulation in Discrete Time Domain

Since the UAV is not permitted to be disconnected continuously for more than 7; time units, it is
sufficient to consider At = 7;/n, as one time step and address the problem every n; time steps.
If, at these specific time instances, the experienced SINRs at all UAVs are higher than 7;, we
can guarantee that the connectivity constraint is satisfied. Now, the optimization problem can be

represented in discrete time domain as follows:

(P1) : argmin T;

{p; vt}
s.t. sz‘,t - pj’t||2 >+, Vi #,Vt (P1.a)
Spy > Toy it my (P1.b)
Pio =P} Pir, = P; Vi (P1.c)
Vsiy < Vmax;» Vi (P1.d)
|Gi — Gig—r| < AL- TVt (Pl.e)
a € {1,...,K},Vt (P1.f)

where the integer-valued discrete time index ¢ indicates time increments by At, and ¢ | n, signifies
that ¢ is divisible by n;.

The non-communicating multi-agent navigation task can be formulated as a sequential decision
making problem in a reinforcement learning framework [170]. The objective then is to develop
policies, {m; : s{? — V;, Vi} that select actions to minimize the expected time to destination

while satisfying all the constraints, where s{? and v, ; are the joint state and the action of the agent,
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respectively. Now, the optimization problem can be reformulated as

(P2) : argmin E[Ti\sgn,ﬂj,Vj # 1]

Uy

s.t. (Pl.a) — (Pl.c), (P1.f)

Py = Pi_1 + At m(sly_ ), Vt (P2.d)

where the expectation in the objective function in (P2) is with respect to other agents’ unobservable
states and policies, and (P2.d) is the agent’s kinematics, which satisfy the kinematic constraints in
(P1.d) and (P1.e). Further, since the agents in the considered networks have the same objective
function and constraints, we use the common assumption that each agent would follow the same

policy [170,200,201], i.e., 7 = ;.

9.1.3 Reinforcement Learning Based Approach

In this section, we first introduce reinforcement learning (RL) formulation for the multi-UAV nav-
igation problem. Then, we present the approaches used to tackle the uncertainty in the UAVS’

unobservable intents, and the interaction between the UAVs and the cellular network.

Reinforcement Learning Formulation

To estimate the high-dimensional, continuous value function, it is common to approximate it with a
deep neural network (DNN) parameterized by weights and biases, £. For notational simplicity, we
drop the DNN parameters from the value function notation, i.e., V(s; £€) = V(s). And s is the joint
state of an agent which is also the input of the DNN, and V(s) is the output of the value network
given s.

By detailing each of these elements and relating to (P1l.a)-(P1l.c) and (P2.d), the following
provides an RL formulation for the multi-UAV navigation problem. Each UAV is an independent

agent, and in the discussions below, we use agent instead of UAV.
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 State Space: In multi-agent multi-GBS cellular networks, the agents are able to observe the
following information from the environment: 1) its own information vector s;; (for the ith
agent at time step t); 2) the observable state of the nearest J,, < J agents s{;m = [sj}t 1 j €
{1,2,..., J,}]; 3) the location information of the nearest K,, < K GBSs, which is assumed
to be observed by the agents, and is denoted by s% = [pg, : k € {1,..., K,}|. All the

information observed by the agent constitutes its joint state s{? = [si,8]7°,8%], Vt.

it

* Action Space: The action space is a set of permissible velocity vectors. Ideally, the agent
can travel in any direction at any time. However, in reality the kinematic constraints in
(9.12)-(9.14) restrict the agent’s movement and should be taken into account. Then, based on
the agent’s current speed, orientation [vs; ;, s+ and the kinematic constraints, permissible

actions v = [vy, ¢| are sampled to build the action space A, ;.

¢ Reward Function: Similar to the formulation of the reward function defined in [170], [202],
and [171], we define a sparse reward function, which awards the agent for reaching its goal,
and penalizes the agent for getting too close or colliding with other agents, and also penalizes
for getting close to be disconnected or already being disconnected from the cellular network.
The reward function consists of four parts: the reward, R., that penalizes close encounters
with other agents; the reward, R, that encourages keeping connectivity with the cellular
network; the reward, R4, that encourages arrival at the destination; and a step penalty, R,
that encourages fast arrival. For instance, at time step ¢, the reward functions for the ith agent

can be expressed as follows:

.

—Qq, lfdt ST’Z'—FT']',

min

db min —

Rci,t<sgg7vi7t) = —oq X (]_ — w) , lf’f’z +7‘j < dt < db —+ 1 —|—7”j, (916)

0, otherwise,

\
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.

—ay,  ift|n and S, <7,
R (811, Vig) = —ap/2, ift|ngand T, < S, < T+ Sy, 9.17)
0, otherwise,

\
(

. 0537 lf I),l-7 1 — I)’LD7
Ra,, (87, Viy) = v (9.18)

0, otherwise,

\

Rt = —Qy, (919)

where d; . is the minimum distance to other agents within the next time step duration. o4
are position constants that can be varied to adjust the weight or emphasis of each reward
term, d, is a distance buffer between two agents, and S,, is an SINR buffer. Therefore, the

overall reward function can be expressed as the sum

Ri(S1h, Vi) = Re, (T4, Viz) + Ry (874, Vig) + Ra, (14, Vi) + Ry (9.20)

Estimation of the Agents’ Unobservable Intents

The probabilistic state transition model is determined by the agents’ kinematics as defined in
(P2.d), other agents’ hidden states, and the other agents’ choices of action. Since the other agents’
hidden intents are unknown, the system’s state transition model is unknown as well. In addition, it
is difficult to evaluate the integral, because the other agents’ next state has an unknown distribution
(that depends on their unobservable intents). We approximate this integral by assuming that the
other agent would be traveling at a filtered velocity for a short duration At, which is regarded as
a one-step lookahead procedure [170, 200, 203,204]. This propagation step amounts to predicting
the other agent’s motion with a simple linear model, i.e., v, ; = ﬁlter(vjp:t). For the it" agent, other

agents’ filtered velocities are included in the vector Q{’ZO = [v;¢ 1 j € {1,2,...,J,}]. Then, the
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estimated next state of the i*" agent will be
$Thiny = [f(si0, ALY, f(ST7° AL VYY), 53] 9:21)

where f(-) is the kinematic model. Then, we can select the action that has the highest value with

respect to other agents’ estimated state, which can be formulated as

argmax R (s1}, v) + 7V (87}, ). (9.22)
VEA; ¢

SINR Prediction

Model-free RL requires no prior knowledge about the environment. This usually leads to slow
learning process and requires a large number of agent-environment interactions, which is typically
costly or even risky to obtain [115]. Actually, each real experience obtained from the agent and
cellular network interaction not only can be used to get reward and refine the value network, but
also can be used for model learning in order to predict the agent’s SINR experienced at certain
positions. More specifically, when flying in the environment, agents interact with the cellular
network and obtain the empirical SINR §T. Since there is no need to use the exact SINR for
connectivity measurement, this work uses the quantized SINR level, Lw(@), to check the agent’s
connectivity. With a finite set of measurements {(s’y’, L,,(s%'))}, where s};' = [p,s%], a DNN can
be trained to predict the SINR level L, (s)}).

A fully connected DNN with parameters &,, can be used to predict the agent’s SINR level, i.e.,
€, is trained so that L, (s}y') =~ L,(s%;&,). The data measurement (s, L, (s%')) only arrives
incrementally as the agent flies to new locations and can be saved in a database (e.g., replay mem-
ory), and a minibatch is sampled at random from the database to update the network parameter &,,,.

Note that the prediction of SINR levels might be highly inaccurate initially, but can be continuously

improved as more real experience is accumulated.
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9.1.4 Decentralized Deep Reinforcement Learning Algorithm

In this section, we present the proposed decentralized deep reinforcement learning algorithm as a
solution to multi-UAV navigation with collision avoidance and wireless connectivity constraints,
including the SINR-prediction neural network. The proposed algorithm is presented in Algorithm
2, and is referred to as RLTCW-SP (RL for Trajectory optimization with Collision avoidance and

Wireless connectivity constraint and with SINR Prediction).

Parametrization

Since the optimal policy should be invariant to any coordinate plane, we follow the agent-centric
parameterization as in [170, 171, 202], where the agent is located at the origin and the z-axis is

pointing toward the agent’s destination. The states of the 7' agent after transformation is

Si = [dgm Umax; 6:51-7 f}ym LED) le} (9.23)

ASjnO = Hﬁﬂcjvﬁyja HV,@xjﬂ}yj»ijdj] 1J€ {17 2., Jn}] (9.24)

7

where d,, is the agent’s distance to the goal, d; is the agent’s distance to the j*" agent, and p denotes
p in the new coordinate.

In addition, SINR experienced at an agent depends on the distance and the relative angular
direction from the agent to the GBSs, while it does not depend on the positions in global coordi-
nates. To remove this redundant dependence, the location information vector of all GBSs can be

parameterized as

i:‘iB]C = [ﬁkaaﬁyBk ) dBka ¢Bk7 eBk} (925)

85, = [P, - k€ {1,..., K.} (9.26)

where dp, = ||pp, —p,|| is the distance from the agent to the k" BS, ¢5, and 0, are the horizontal

and vertical angles of the k' BS with respect to the agent.
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Algorithm 2: RLTCW-SP Algorithm

Input: State-value pairs D
1 Initialize state-value pairs D
2 Initialize location-SINR pairs D,,
3 Initialize value network & with D
4 Initialize SINR-prediction network &,
5 for episode = 0: total episode do

6 for n random training cases do
7 Initialize s; (Vi
8 while not all reached destinations do
9 for each agent i do
10 if not reached destination then
1 s;; « observeEnvironment()
12 A+ < sampleActionSpace()
13 ¢ <— randomSample(Uniform (0,1))
14 if ¢ < e then
15 ‘ v, < randomSample(A; ;)
16 else
17 {,gftw + filter(v}, ;) | |
18 §ZZ$1 — propagate(sfgo, eg;“’)
19 for everya in A;; do
20 S;t+1 < propagate(s;, a)
A B in
21 Lwi,t+1 - Lw (SBM_,_I )
22 Rit getReward(éﬁH, L, o11)
23 Vo =Ry +V(8]1 1)
24 Vit < argmaxue s, Vp
25 RitsSit+1, Sy, < executeAction(v;,)
26 for each agent i do
27 Vior, < updateValue(s{”g’]:Ti,Ri,O;Ti, £)
28 Ly, .y < getSINRlevel(S,, ... )
29 Update state-value pairs D with (s].5., Vior,)
30 Update location-SINR pairs D,, with (s, Lu, .. )
31 Sample random minibatch from D, and update value network & by gradient descent.
32 Sample random minibatch from D,,, and update SINR-prediction network &, by
gradient descent.

33 return &, &,
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Therefore, the joint state of the i*" agent after transformation is

" =[8,,8",58)]. (9.27)

7 7

And the input of the SINR-prediction network becomes
$p = llds, 5,,05,) : k € {1,..., K,}]. (9.28)

Initialization

The value network & can be first initialized with imitation learning using a set of experiences to
accelerate the convergence. More specifically, in this work, we use optimal reciprocal collision
avoidance (ORCA) [200] to generate a number of trajectories that contain a large set of state-value
pairs {(s", V) }*1, where V' = 7o and t, is the time to reach the destination. The experiences are
saved in memory D (line 1 in Algorithm 2). Then, the value network is initialized by supervised
training on D (line 3). The value network is trained by back-propagation to minimize a quadratic

regression error

Ny

£ = argminz (Vi — V(s £)). (9.29)
S -

If a set of location-SINR experiences can be downloaded from the cloud, we can save the
downloaded dataset in memory D,, (line 2), {(s}, L,)}2, where L, is the scaled SINR level
that the agent experienced. Then, the SINR-prediction network can be initialized with &, =
argming Zgjl (Luy, — L(s): ¢ )), which is trained by back-propagation (line 4). If no dataset
is available, D,, is initialized with an empty list, and the SINR-prediction network is initialized

with random network parameters.
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Refining Process

After initialization, a refining process is performed using RL. Particularly, a set of random training
cases is generated in each episode (line 6). In each training case, each agent navigates around others
to arrive its destination, while interacting with the cellular network (line 10- line 25). It is worth
noting that the agents navigate simultaneously and with no communication among each other. At
each time step ¢, each agent first observes the environment, obtains the observable states of other
nearby agents and the location information of the GBSs, and then obtains its joint state s{" (linell).
Then, based on its current velocity and kinematic constraints, each agent builds an action space A;
(line 12). Using an e-greedy policy, each agent selects a random action with probability € from A,
(line 15), or follows the value network greedily otherwise (lines 17-24). When following the value
network to choose actions, each agent performs the following: 1) estimate other nearby agents’
motion by filtering their velocities, and estimate their observable states éﬁ‘i following equation

(9.21) (lines 17-18); 2) predict its next SINR level £ using the SINR-prediction network &,;

W41
3) choose the best action in A; which has the maximum V/,.
When all agents have arrived their destinations in each training case, trajectories s, .1, Vi are

then processed to generate a set of state-value pairs <5%:Ti> Vio.1,), Where

Ri,t + ’}/V(qu:t—l—l) if ¢ +1< EJ
Vie = ’

)

Ris ift+1="T,

and a set of location-SINR pairs ([p; .7, 53], Luw, o.r,)- The new pairs are used to update D and

D,.

Training

We first use ORCA [200] to generate a number of trajectories that contain a large set of state-value
pairs {(s’", V)}™, where V' = 7% and ¢, is the time to reach the destination. The experiences,

as input of Algorithm 2, are saved in memory D, which will be refined during training. To train
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the value network and SINR-prediction network, a set of training points is randomly sampled from
the experience set, which contains state-value pairs for £ or location-SINR pairs for &,, from many
different trajectories. Then, the networks are finally updated by stochastic gradient descent (back-

propagation) on the sampled subsets of experience.

Real-Time Navigation

With the trained value network and SINR-prediction network, agent can execute real-time naviga-

tion. This process is provided in Algorithm 3.

Algorithm 3: Real-Time Navigation
Input: &, &,

1 Initialize sg

2 while not reached destination do

3 | s/" < observeEnvironment()
4 | A; < sampleActionSpace()
s | V"« filter(V) )

6 | 877« propagate(s]"’,v]")

7 for every a in A; do

8 St+1 < propagate(s;, a)

9 Lwt+1 = £w<[f’t+l7SB])
10 R + getReward(8;,1,8]"9, Lu,,,)
u Vo =R+ W(ﬁiﬁl)

12 Vi < argmax,c 4, V)

13 St+1 <— executeAction(vy)

14 return Vo.7—1, So:T

9.1.5 Numerical Results

In this section, we present the numerical results to evaluate the performance of the proposed algo-
rithms. In the illustrations of environment and trajectories in this section, the GBSs are marked by
green triangles, and the yellow areas indicate the communication coverage zones where the agents
are able to connect with the cellular network (i.e., S, > 7). Agents’ trajectories are displayed

as a list of dots in different colors, and the destinations are marked with crosses. In each flight
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trajectory, there are four possible outcomes for the agent/UAV: 1) success, if the agent arrives its
destination successfully; 2) collision, if it collides with others; 3) disconnection, if the continuous
disconnected time is larger than the threshold 7;; 4) stuck, if the agent freezes and stops moving
and consequently does not reach the destination. In addition, we also compute the additional aver-
age time (referred to also as average more time) needed to reach the destination, when compared
with the lower bound (attained when the UAV goes straight towards the destination at the maxi-
mum speed). Therefore, we use success rate (SR), collision rate (CR), disconnection rate (DR) and

average more time (AMT) to show the performance of the algorithms.

Environment Setting and the Networks

Since the agents fly at the same altitude, the area of interest becomes two-dimensional. In the
simulations, we consider an area with 12 GBSs deployed. The GBSs transmit with power P = 1
dBW, have a height of Hg = 32 m, and the antenna patterns are set with gttt — 10° and 6348 = 15°.
The UAVs are assumed to fly at a fixed altitude of Hy, = 50 m. The noise power is N, = 1076,
and the SINR threshold is 7; = —3 dB. Each UAYV, as an independent agent, is able to observe the
nearest 8 GBSs’ locations and at most 2 other agents’ observable states.

We construct the value network via a three-layered DNN of size (64,32,16). The exploration
parameter € linearly decays from 0.5 to 0.1. The replay memory capacity is 30000 for the 2-agent
scenario and 100000 for scenarios with more than two agents. The SINR-prediction network is
constructed via a three-layered DNN of size (32,16,8). A standardization layer is utilized after the
input layer of both networks. ReLLU activation function is used for the input layer and two hidden
layer for both networks. Both networks use Adam optimizer, and have learning rate 0.01, batch
size 200, and a regularization parameter 0.0001.

To build the action spaces A, ;, based on the agent’s current velocity [vs; ¢+, ¢s.., 22 velocities
are chosen, including: 1) combinations [vs, ¢s;; + @], where v; € {0, %vmax, Umax} and ¢ €
{£T,, :I:%ﬁ, :I:%ﬁ, 0}; and 2) current velocity. The values for a4, d;, and Sy, in reward function

are selected as follows: oy = 1,9 =1,a3 = 2,04 = 0.1,d, = 0.2 and S,, = 0.1.
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Fig. 9.2: Value of the value network and accuracy of the SINR-prediction network as functions of the
number of episodes.

Convergence in Training

Fig. 9.2 shows the value of the value network and accuracy of the SINR-prediction network as
functions of the number of episodes during training for a 2-agent scenario. Fig. 9.2(a) shows that
the value converges after around 200 episodes. From Fig. 9.2(b), we can see that the accuracy
converges after around 20 episodes, since in each episode 50 random trajectories are generated for
each agent, during which more than 15000 location-SINR pairs are collected and used to train the
SINR-prediction network.

The trajectory optimization process for two UAVs is displayed in Fig. 9.3. At episode 0, the
SINR-prediction network is initialized with random weights and bias, and is not able to predict the
accurate SINR level. Besides, the policy has not been refined by RL. As a result, the two agents are
easily getting disconnected or stuck. After 100 episodes of training, the SINR-prediction network
is well-trained and able to predict the SINR levels with 97% accuracy. Also, the value network is
trained with refined state-value pairs. Thus, the agents can reach their destinations, but with long
trajectories to avoid collisions and disconnection. As the training proceeds, the policy improves,
leading to shorter expected trajectories.

After 700 episodes of training, the AMT (for the successful trajectories) is 0.2662s. Separately,

we also compute the AMT in two different scenarios for comparison: 1) the connectivity constraint
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Fig. 9.3: Trajectory examples at different episodes during training.

is not considered for the two-agent trajectory design (CADRL [170]); and 2) the collision avoid-
ance constraint is not considered if there is only one agent. The AMT in these two scenarios are

0.195s, and 0.204s, respectively.

Testing of Navigation in Different Environments

In the proposed RLTCW-SP algorithm, an SINR-prediction network is trained to predict the SINR
level. In an ideal scenario, the antenna pattern information of GBSs may be available to the agents,
and then the agents are able to predict the SINR with that information. In this subsection, we com-
pare the performances of the following three algorithms: 1) the agents are able to get the antenna
pattern information of the GBSs, and then predict the SINR directly (referred to as RLTCW-AW);
2) the proposed RLTCW-SP algorithm, which uses the location-SINR memory, and trains an SINR-
prediction network to predict the SINR level; 3) the agents do not predict the SINR and only use
the value network to make decisions (referred to as RLTCW). The navigation test is done in three
types of environments: 1) the same environment as in the training; 2) the same environment but
two BSs are not operational for the UAV (due to congestion, malfunction, resource allocation to
ground users, or GBS activation schedule), an illustration of which is presented in Fig. 9.4(a); 3)

different environment with different GBS deployment, illustrations of which are presented in Figs.
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Fig. 9.4: Nlustrations of different environments used in navigation testing, and trajectory examples when
using proposed RLTCW-SP algorithm. In (a) and (d), the two BSs in black are not operational for the UAVs.

9.4(b) and 9.4(c). Fig. 9.4 also presents examples of trajectories that the agents perform using the
proposed RLTCW-SP algorithm in a challenging scenario in which the destination of one UAV is
the starting point of the other UAV. Environments displayed in Figs. 9.4 (a) (b) and (c) are referred
as DEI1, DE2 and DE3 (using DE as the abbreviation for different environment).

The performance of the three algorithms in different environments are presented in Table 9.1.
As expected, the RLTCW-AW with the perfect knowledge of antenna patterns has the best perfor-
mance, and the RLTCW-SP algorithm has slightly lower performance which is due to the potential
inaccuracies in the SINR prediction, while the performance of RLTCW is substantially lower com-
pared to the other two, due to very high DR (disconnection rate). In addition, the SR (success rate)
performance of the proposed RLTCW-SP algorithm decreases only slightly in different environ-
ments, and how large the decrease is depends on which environment is used in testing. When there
are large and wide out-of-coverage zones in the environment (as shown in Fig. 9.4(b)), the SR

performance decreases relatively a bit more. The reason is that the wide out-of-coverage zones are
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Table 9.1: Performance of different algorithms in different environments in terms of success rate
(SR), collision rate (CR), and disconnection rate (DR) (all rates are in %).

Same Environment DEl1

SR CR | DR SR CR DR
RLTCW-AW | 99.15 | 0.85 0 98.95 | 0.95 0
RLTCW-SP 99.1 | 0.85 | 0.05 | 99.05 | 0.85 | 0.07
RLTCW 648 | 0.6 | 346 | 74.85 | 0.15 25
DE2 DE3
SR CR | DR SR CR DR
RLTCW-AW | 98.25 | 1.42 | 0.17 | 99.1 | 0.9 0
RLTCW-SP | 98.08 | 1.5 | 0.42 99 092 | 0.08
RLTCW 60.7 | 0.8 | 38.5 69 0.33 | 30.67

more likely to make the agent get stuck at the edge and not be able to decide which direction to
go. Overall, in the three different environments in testing, the proposed RLTCW-SP can achieve

above 98% of SR in 2-agent scenarios.

Navigation in Different Settings

In this subsection, we present simulation results on the trajectories when the GBSs have different
antenna patterns and when the UAVs fly at different heights. The SINR threshold is 7, = —4 dB
in this subsection. In. Figs. 9.5 (a) and (d), we provide two different trajectory examples when we
have Hy = 50 m, % = 10° and 63?% = 15°. In Figs. 9.5 (b) and (e), UAV altitudes are increased
to Hy = 100 m, and we notice that due to larger path loss and smaller antenna gains, coverage
zones shrink, which in turn potentially increases the length of the trajectories. In Figs. 9.5 (c)
and (f), GBSs have larger downtilting angle and 3dB beamwith of the main lobe. In this case, the
UAVs experience smaller received power from the main link and potentially larger interference,
leading to substantially smaller SINR levels. Therefore, the coverage zones in Figs. 9.5 (c) and (f)
are smaller than those in Figs. 9.5 (a) and (d) and even Figs. 6 (b) and (e). In all cases, we note
that UAVs successfully find different trajectories to meet the connectivity requirements and adapt

to different coverage zones.
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Fig. 9.5: Trajectory examples in environments with different settings, i.e., in (a) and (d), Hy = 50 m,
gt = 10° and 63?5 = 15°; in (b) and (e), Hy = 100 m, 6% = 10° and 63?5 = 15°; and in (c) and (f),
Hy =50 m, 0% = 15° and 6398 = 35°.

Navigation in Environments with Obstacles/No-Fly Zones

The proposed RLTCW-SP algorithm can also be used for navigation in environment with obstacles
that are regarded as non-moving agents. For instance, the trained networks for the 2-agent scenario
can be used for one agent navigation in an environment with obstacles or no-fly zones. More
specifically, the agent can observe the nearest obstacle, and takes the obstacle’s location in the
joint state for choosing actions. Fig. 9.6 displays two illustrations. In this setting, obstacles can be
considered as actual obstacles (e.g., tall buildings or structures) or they can model no-fly zones for

the UAVs.

Navigation with More Than Two UAVs

Fig. 9.7 provides the illustrations for 8-agent, 12-agent, 16-agent navigation scenarios, respec-
tively, where dotted lines are used to display the trajectories. The SR, CR, DR and AMT perfor-

mances in scenarios with 2 to 20 agents are presented in Table 9.2, when the distance buffer is
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Fig. 9.6: Trajectory examples in environments with obstacles/no-fly zones.
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Fig. 9.7: Trajectory examples for multi-agent navigation.

dp = 0.2 (default) or 1. We note that the CR increases when more agents are in the environment.
As mentioned before, the agents can observe a maximum of 2 nearest agents in the environment.
Therefore, for more crowded scenarios, several agents are non-observable and as a result the CR
can increase when compared with scenarios involving smaller number of agents. Additionally,
when there are more agents in the same area, the interactions become more complex, and chal-
lenging for the algorithm to handle. However, we note that the performance regarding the SR is
still above 90% for the 20-agent scenario. Table 9.2 further shows that the agents need more time
to reach their destinations when there are more agents in the environment. Moreover, when we
compare the performances between the scenario with d, = 0.2 and the scenario with d, = 1, we
have the following observations for larger d,: 1) the CR is reduced, since larger d;, encourages

the UAVs to stay relatively farther from each other and therefore leads to lower collision risk; and
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Number of agents 2 4 6 8 10 12 14 16 18 20
SR(%) 99.1 | 98.65 | 97.37 97 96.9 | 95.55 | 94.83 | 939 | 91.9 | 91.74
D=0 CR(%) | 085 | 1.32 | 2.18 | 273 | 3.68 | 438 | 512 | 631 | 7.06 | 8.18
o= DR(%) | 0.05 | 0.03 0.1 0.06 | 0.05 | 0.07 | 0.05 0.1 0.04 | 0.08
AMT(s) | 0.266 | 0.306 | 0.319 | 0.322 | 0.336 | 0.346 | 0.364 | 0.369 | 0.381 | 0.441
SR(%) | 99.33 | 98.92 | 98.58 | 97.67 | 97.53 | 97.28 97 96.19 | 9532 | 95
D=1 CR(%) | 0.56 1 1.25 | 2.17 | 213 | 2.67 2.5 3.62 | 4.37 4.7
b= DR(%) | 0.11 | 0.08 | 0.17 | 0.17 | 0.33 | 0.06 0.5 0.19 | 0.11 0.3
AMT(s) | 0.299 | 0.359 | 0.365 | 0.406 | 0.470 | 0.481 | 0.510 | 0.525 | 0.572 | 0.675
30 —+— Collision avoidance not considered |
—<&— Proposed - collision avoidance considered (db=0.2) ~
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%20 - //'/JZ .
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Fig. 9.8: Collision rate comparison between two methods: 1) the proposed approach, in which the collision
avoidance is taken into account in training; 2) the approach in which collision with other UAVs is not
considered in training.

2) the AMT is increased, since staying further away from each other leads to longer trajectories
and correspondingly longer mission completion time. In addition, the CR is less than 5% for the
20-agent scenario when we set d, = 1.

Fig. 9.8 compares the collision rates between the proposed algorithm (RLTCW-SP) and the
trajectory optimization algorithm with connectivity constraint only, i.e., collision avoidance is not
considered. It can be observed from the figure that as the number of agents in the environment
grows, CR increases accordingly. If collision avoidance is not considered in the algorithm, CR is
not only much higher (e.g., three to six times higher) but also increases much faster than the pro-
posed algorithm, which takes into account the collision avoidance. Therefore, collision avoidance
is critical in multi-UAV scenarios, especially in crowded environments, and the proposed algorithm

can significantly decrease the collision risk and hence achieve much lower collision rates.
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9.2 Jamming-Resilient Path Planning for Multiple UAVs

via Deep Reinforcement Learning

9.2.1 System Model

A multi-UAV multi-GBS cellular network is considered, in which K GBSs provide wireless con-
nectivity to the UAVs. There is also a jammer in the network that transmits jamming signals to
interfere the links between the UAVs and their serving GBSs, and hence disrupts the communica-

tion. The location and the transmit power of the jammer can vary over time. An illustration of the

cellular networks with multiple UAVs, multiple GBSs, and a jammer is provided in Fig. 9.9.
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Fig. 9.9: An illustration of the cellular networks with multiple UAVs, multiple GBSs, and a jammer.

The UAVs receive desired signal from the serving GBS, interference from other GBSs and

jamming signal from the jammer. Thus, the experienced SINR at a UAV can be expressed as

S, & PyGp(di) Gy (di) L™ (i)

CON+I(dy) + Z@k Py Gp(dy)Gy (dy ) L= (dy)

(9.30)

where N, is the noise power, P, is the transmit power of the k' GBS, d, is the horizontal distance

between the UAV and the k" GBS. G is the 3D antenna gain at the GBSs. Gy is the 3D antenna
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gain at the UAVs. L is the path loss
L(d) = (& + (Hp — Hy)*)"" 9.31)

where « is the path loss exponent. In addition, [ is the interference from the jammer, which can

be expressed as

a/2 (HV _H])

I;(dy) = Py (dj + (H; — Hy)?) VA% + (Hy — Hy)?

(9.32)

where P; and H; are the transmit power and height of the jammer, respectively, and d; is the
horizontal distance between the UAV and the jammer. If the SINR experienced at the UAV is

smaller than a threshold 7, the UAV is regarded as disconnected from the network.

9.2.2 Proposed Algorithm

Problem Formulation

The goal of this work is to find policies to determine the trajectories for UAVs such that the mission
completion time is minimized and the constraints are satisfied. Therefore, the problem can be

formulated the same as in 9.1.2.

Algorithm

The proposed optimization problem is difficult to solve due to the non-convex constraints, lack of
knowledge on the jammer, and the interactions among multiple UAVs. To overcome this difficulty,
we can cast the problem into a sequential decision making problem that can be solved by RL. We
propose a offline temporal-difference (TD) algorithm with online SINR mapping for multi-UAV
path planning with jamming resiliency. The proposed algorithm consists of two modules: 1) offline
value network training by TD method with standard experience replay; 2) online SINR mapping

by supervised learning; and both modules will be introduced in detail in the following subsections.
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Offline Value Network Training

This offline learning module can be implemented on a simulator, therefore reducing the collision
risk. The environment can be modeled close to the reality, containing the following information:
GBSs which are distributed according to the real deployment; the channel modeled according to
real ray-tracing data; a dynamic jammer, which changes its location and transmit power periodi-
cally. TD learning is used to train the value network, and the MDP, i.e., (S, A, R), formulation for

the proposed problem is provided as follows:

 State Space: In multi-UAV cellular networks, the UAVs are able to observe the following
information from the environment: 1) its own information vector s; ; (for the ith UAV at time
step t); 2) the observable state of the nearest J,, < J UAVs sgftw =[s5;:7€{1,2,...,Ju}ls
3) the experienced SINR S, ,. Since the policy should not be influenced by the choice of
the coordinates, we choose an agent-centric coordinate plane, where the UAV’s location
is the origin. Then, we need to change the positions from the global frame to the chosen
coordinates. In addition, the observed information can be parameterized to provide more

information. Hence, the observations are transformed into

S; = [Ul‘m Uy, » pdzi ) pdyi 5 ddia Qd;y iy Umax; ) ¢z]

gzm = [[ﬁxwﬁywvzj’ Vy;s dj’ aj] WS {1’ 2, Jn}]
SN’I”Z',t = Lwi,t

where p denotes p in the new coordinates. dg4, and a4, are the distance and azimuth angle
from the typical UAV to its destination. d; and a; are the distance and azimuth angle to the
5t other UAV. L, is the quantized SINR level. All the information observed by the agent
constitutes its joint state

Sf,? = Ei,tjgzgovs

Tizt

1, vt. 9.33)
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* Action space and the reward function are defined the same as in Section 9.1.3.

The offline value network training can be done using Algorithm 2.

Online SINR Mapping

Along the path to destination, UAVs interact with the cellular network, measure the raw signal from
GBSs, and obtain the instantaneous SINR. The empirical instantaneous SINR can be processed to
obtain the SINR in (9.30). UAVs with sensors can also observe the positions of the nearby GBSs
s = [p B, - k €{1,..., K,}]. Therefore, the UAVs with sensors are able to obtain measurements
{(s),S,(s7))} along their paths.

It is assumed that there is a cloud computing center to where all UAVs in the area can upload
their measurements, and the cloud will keep updating the recent measurements in its memory D,,.
A DNN, denoted by &, can be designed to map the position information of nearby GBSs into the
SINR level by supervised learning using the recent measurements in memory. The DNN is updated

periodically based on how frequently the jammer varies.

 Input: The input of the DNN is the parameterized position information vector of the nearby
GBSs. By changing the positions into the agent-centric coordinates and processing relative

locations into distance and angles, the vector can be transformed into

§5 = [[Pra, + Py » dByr 05, 05,) 1 ke € {1, ..., K, ] (9.34)
where dp,, ¢p,., 0p, are the distance, elevation angle, azimuth angle from the UAV to the
k" nearby GBS.

« Label: The label of the supervised DNN is the quantized SINR level L, (s}').

* Detection: A simple jammer change detection method can be adopted. More specifically, the
cloud can check the accuracy of the DNN periodically on the newly uploaded measurements.

The accuracy dropping significantly indicates the changes in the jammer (either its location
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or transmit power). Then, the DNN should be updated. From numerical results, this jammer

change detection method takes less than 1s.

* Training: If the parameters of the DNN &, need to be updated, training can be done by
stochastic gradient descent (back-propagation) on mini-batches randomly sampled from D,,

for a fixed number of episodes.

Real-Time Navigation

The UAVs can perform real-time navigation with the offline trained value network and online SINR

mapping DNN downloaded from the computing cloud.

9.2.3 Numerical Results

In this section, we present the numerical results to evaluate the performance of the proposed algo-
rithm. The environment setting and the construction of the neural networks are similar as that in

9.15.

Training

In the offline value network training module, the jammer changes its location or transmit power
periodically. Fig. 9.10 shows the accumulated reward per episode during two distinct training.
First, we can observe from the figure that the reward in two distinct training can converge to the
same level. The relatively larger drops in the convergence phase (after 20000 episodes) are due
to the significant changes in the jammer, and the value network can learn fast and recover the
reward back to the converged level. Secondly, we can observe that our proposed algorithm can
achieve comparable reward level to the upper bound. The upper bound in this figure (presented
in green line with squared markers) is the accumulated reward if the UAVs fly straight to their
destinations, ignoring the wireless connectivity (i.e. R, = 0) and collision avoidance constraints

(i.e. R, = 0). Note that when these constraints are taken into account, the UAVs need to perform
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turns or stops. Therefore, due to the negative reward R; given to each step and the exploration
strategy (1.e. €y, = 0.1), the reward achieved in training is smaller than the upper bound.

In the online SINR mapping module, the DNN is updated periodically using the latest uploaded
SINR measurements. Fig. 9.11 presents the accuracy during the online training period. It can be
observed that the DNN can adapt fast to the new location/transmit power of the jammer with very

high SINR mapping accuracy.

Accumulated Reward Per Episode

Proposed - 1 |
Proposed - 2
—+&— Straight Path

2 25 3 35 4 45 5
Episode «10%

Fig. 9.10: Accumulated reward per episode for two distinct training cases and the straight path scenario,
as functions of episode.
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Fig. 9.11: Accuracy of the SINR mapping DNN as a function of training time.
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Fig. 9.12: Tllustrations of trajectories in environments, where jammer does not exit or the jammer is located
at different positions.

Real-Time Navigation

Fig. 9.12 displays the illustrations of real-time navigation trajectories, while also depicting the
trajectory changes due to the presence of jammers. In the illustrations of the environment and
trajectories, the GBSs and the jammer are marked by green triangles and a red triangle, respec-
tively. The yellow areas indicate the communication coverage zones where the agents are able to
connect with the cellular network (i.e., S, > 7T;). UAV trajectories are displayed as lines with
dots in different colors, and the destinations are marked with crosses. It can be observed from the
figure that jammers can generate disconnection/no-coverage zones (the white areas), and different
jammer locations lead to different impact. Due to the jammer presence, the UAVs have to make
turns and avoid flying through the no-coverage zones, leading to different trajectories.

To evaluate the performance, we choose the following metrics: 1) success rate, where success
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Table 9.3: Performance comparison in terms of success rate, disconnection rate, and collision rate.

Jammer at (0,0), P; = 1W Jammer at (25,-10), Py = 1W
SR(%) | DR(%) CR(%) SR(%) | DR(%) CR(%)
Proposed
Algorithm 92.3 5.6 1.8 94.5 4 1.5
Outdated Map | 65.3 33.7 1 77.1 27.5 1.4
Perfectly-
Updated Map 94.6 32 1.9 94.5 33 2.2
Jammer at (-30,10), Py = 1W | Jammer at (0,0), P; = 0.5W
SR(%) | DR(%) CR(%) SR(%) | DR(%) CR(%)
Proposed
Algorithm 95.75 3.75 0.5 92.3 6.2 1.2
Outdated Map | 78.4 21.2 0.4 73.3 25.5 1.2
Perfectly-
Updated Map 96.6 2.7 0.6 95.8 1.9 1.6

indicates one UAV arriving at its destination successfully; 2) disconnection rate, where a discon-
nection means one UAV being disconnected continuously more than 7;; 3) collision rate, which
quantifies the collisions among UAVs. Table 9.3 provides performance comparisons with bench-
marks, considering the above the three metrics. Two benchmarks are chosen: outdated map method
in which the UAVs navigate with the trained value network plus the outdated radio map of the en-
vironment without jammers; perfectly-updated map method in which the UAVs navigate with the
value network plus the perfect radio map of the current environment with jammers. The outdated
map method does not react to the existence of the jammer, and leads to the performance lower
bounds. The perfectly-updated map method is ideal, and achieves the performance upper bound.
From the results in the table, we notice that low success rates and high disconnection rates are
experienced when the outdated SINR map (which disregards the presence of the jammer) is used.
Hence, jammer can have significant impact on the performance. On the other hand, we observe
that if the perfect SINR map (which takes into account the interference introduced by the jammer)
is utilized, success rates reach above 94% and disconnection rates fall below 3.3%. Hence, per-
fect knowledge of the SINR map is an effective defensive measure against jamming attacks. We
note that even with the perfect map, path planning is performed using the deep RL agent. In our
proposed approach, we have the deep RL agent operating with an online SINR learning algorithm.

In this case, SINR map can be learned albeit imperfectly. We see in Table I that the proposed
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approach achieves almost the same performance levels as in the case of the perfectly updated map,
and hence leads to effective jamming resiliency in an online fashion. Finally, we remark that in
all cases, collision rates are very small, indicating the efficacy of the RL agent operating under

collision constraints.
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CHAPTER 10

COLLISION-AWARE UAV TRAJECTORIES
FOR DATA COLLECTION VIA

REINFORCEMENT LEARNING

10.1 System Model and Problem Formulation

In this section, we first introduce the system model in detail, and then we formulate the path

planning optimization problem for data collection.

10.1.1 System Model

We assume that the area of interest is a cubic volume, which can be specified by C : X x Y x Z
and X 2 [Zuin, Tmax)» Y 2 [Yumin, Ymax)» a0d Z 2 [2in, Zmax). There are multiple no-fly zones
(obstacles) in the area through which UAVs cannot fly. And the no-fly zones are denoted as N :

XN x YN x Z.
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UAV

In the considered multi-UAV scenario, we choose one UAV as the typical one, whose mission is
to collect data from multiple ground IoT nodes. The UAV is modeled as disc-shaped with radius
r. Let p = [p., py, Hv] denote the 3D position of the UAV, where Hy is the altitude of the UAV
which is assumed to be fixed. It is assumed that the typical UAV has specific areas for departure
and landing, which can be denoted by S and D, respectively. More specifically, S : X¥ x Y¥ x Z,

where X% & [9. 23 1, Y9 &[5 4S 1 and D : XP x YP x Z, where XP & [2D. 2P ],

min’ *max min’ ““max

YD é [yrgim yﬁax

|- p° = [pses Psy, Hy] and pP = [pys, pgy, Hy| are used to denote the coordinates
of the starting point and the destination for the typical UAV, respectively. The typical UAV’s
information forms a vector that consists of the UAV’s position, current velocity v = [v,, v, |, radius
r, destination p”, maximum speed v, and orientation ¢, i.e., s = [p,V, 7, p”, Vmax, ¢] € R

In this multi-UAV scenario, there are also J other UAVs traveling within region C'. None
of the UAVs communicate with each other. Therefore, the missions, destinations, movements,
and decision-making policies of other UAVs are unknown. It is assumed that the typical UAV is
equipped with a sensor, with which it is able to sense the existence of other UAVs when they are
closed than a certain distance. The circular sensing region is denoted by O. Specifically, if the
4" UAV is in O, some information of this UAV can be known by the typical UAV. The observable
information includes the j** UAV’s position P; = [Ps;, Py, Hy], current velocity v; = [v,,, v,
and radius 7, i.e., s} = [p;, v;,7;] € R®. The total number of other UAVs in O is denoted by .J°. It

is worth noting that .J° varies over time.

IoT Nodes

In this UAV-assisted network, there are N IoT nodes that need to upload data to the typical UAV
via uplink transmission. The n'* node has transmit power P,, and is located at ground position
P,, = [Pu.:Dy,]- Each node has a finite amount of data DZ; that needs to be collected over the
entire mission duration of the typical UAV. The IoT nodes have two modes: active mode, if the

node still has data to be transmitted; and silent mode, if data upload is completed.
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Fig. 10.1: Anillustration of data collection in a multi-UAV scenario.

An illustration of the system model is provided in Fig. 10.1.

10.1.2 Channel Model

We assume that all links between the UAV and IoT nodes are LOS. Then, the path loss can be

expressed as

a/2

L(d) = (d® + Hy) (10.1)

where d is the horizontal distance between the ground projection of the UAV and a node, and « is
the path loss exponent.
The IoT nodes are assumed to have the omni-directional antenna gain of G,, = 0 dB. The UAVs

are assumed to have sine antenna pattern in 2.27.

10.1.3 Signal-to-Noise Ratio (SNR) and Rate

The received signal from the n'" node to the typical UAV can be expressed as P7 = B,Gy (d,)L~(d,,).

With this, the experienced SNR at the UAV if it is communicating with the n*" IoT node can be
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formulated as

Gv(d,) L™ *(d,) = %HV (& + HY)

Py
N

_lta
2

S, & (10.2)

where N, is the noise power. The maximum achievable information rate if the SNR is connected

with the n'” node is

R™ = log,(1 + S,). (10.3)

To support data flows, UAV has to maintain a reliable communication link to the IoT nodes. To
achieve this, it is assumed that the experienced SNR at the UAV when connecting with a node
should be lager than a certain threshold 7;. Then, the UAV can communicate with the node suc-
cessfully. Otherwise, the UAV is not able to collect data from the node. Therefore, considering
the amount of data available at each node, Dﬁ, the effective information rate according to the SNR

threshold 7 can be given as

(

Rmax, if DL > AtR™@ and S, > T,
Ry = DE/At, if DI < AtR™ and S,, > 7T, (10.4)
0, otherwise,

\

where At is time duration for one time step.

10.1.4 Scheduling

Since the typical UAV needs to communicate with multiple nodes, we adopt the standard time-

division multiple access (TDMA) model. Then, the UAVs can communicate with at most one node
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at each time. Using ¢,, € {0, 1} to indicate the connection with the n'" node, we have

N
d g <L (10.5)

The scheduling is according to the largest received signal power strategy, meaning that the UAV
is connected with the active node providing the largest ;. We can mathematically express the
scheduling strategy as

1, ifn= argmax P/,

Gn = n’€{active nodes} ( 106)

0, otherwise.

10.1.5 Problem Formulation

We can partition each mission duration in the discrete time domain to a number of time steps
t € [0,T], with each time step describing a period of At. Now, the integer-valued ¢ is used to
denote each time step. We next consider the following realistic and practical constraints in the

design of UAV trajectories:

Collision Avoidance Constraints

For collision avoidance purposes, the minimum distance between the typical UAV and any other
UAVs should not be smaller than the sum of their radii all the time. In addition, it is important for
UAVs to navigate while staying free of collisions with obstacles and non-fly zones. In this setting,

we can write the collision avoidance constraints as

[P — Pjell2 > 7+ 15, V5, VL, (10.7)

p; ¢ N,Vt, (10.8)
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where p, is the position of the typical UAV at time step ¢, and p,, is the position of the §" UAV at
time ¢. (10.8) is to avoid collision with the obstacles and no-fly zones.
Mission Completion Deadline Constraint

A UAV with a mission has to complete the required tasks in a certain time period. Moreover, power
limitation also restricts the UAV’s flight time. Overall, the UAV has a mission completion deadline

constraint that can be described as

T-At<T, (10.9)

where T is the total steps in discrete time domain, and 7; is the maximum mission completion
time.
Kinematic Constraints

In practice, the kinematic constraints should be considered in operating UAVs. We impose the

speed and rotation constraints as

Vs, < Umax, VE (10.10)

|y — dpa| < At- T,V (10.11)

where v, is the maximum speed of the UAV, and 7, is the maximum rotation angle in unit time

period.

Start and Destination Constraints

A UAV with a mission should fly from a given start point and arrive at a required destination, and

hence we have

po=p°.pr =p". (10.12)
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TDMA Constraint

Due to the utilization of TDMA, the UAV can communicate with at most one node at each time,
and the constraint is given in (10.5).
Our goal is to maximize the collected data from all nodes subject to these constraints. There-

fore, the objective function can be formulated as

T N
(P1) : argmax Z Z [TSYAN 7 s

{p¢, vt} t=0 n=1

sit. (10.5),(10.7), (10.8), (10.9), (10.10), (10.11), (10.12).

10.2 Algorithm

In this section, we first describe the RL formulation of path planning for data collection in a multi-

UAV scenario, and then explain the proposed D3QN path planing algorithm in detail.

10.2.1 Reinforcement Learning Formulation

Considering the objective function in (P1) and the constraints in (10.5)-(10.12), we can translate

the considered problem into an MDP, and the tuple (S, A, R) is explained in detail below:

State

In multi-UAV scenarios, the typical UAV is able to obtain the following information:
* Its own full information vector s, in time step ?.

* The observable information vector of other UAVs in O, which is the sensing region of the
typical UAV. The total number of observed other UAVs at time step ¢ is J > 0, and the joint

information vector can be expressed as s{ = [s%, : j € {1,2,..., J/}].

¢ The location information p,,, of each 10T node, the amount of remaining data D%, at each
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node, and the received signal power P, from each node. The joint vector is denoted by

sp=1[s", :n€{l,..,N}], where s”, = [p,,, DL, P",].

nt’

* The available time left for the given mission, Sy;.

Since the typical UAV can only observe other UAVs inside its sensing region O, the total num-
ber of observed other UAVs J? may vary over time. However, the size of the state needs to be
fixed to be the input of the DNN. Thus, we only consider the observable information vectors of
the nearest /¢ (which is a fixed positive integer) other UAVs. In addition, the number of nodes in
the environment may be different for different missions. Thus, we only consider the information
vectors of the nearest V¢ active nodes. On the other hand, the policy should not be influenced by
the choice of coordinates. Therefore, we parameterize the position information into agent-centric
coordinates, in which the current location of the typical UAV is regarded as the origin. We can also
process the observations to provide more information. Hence, the observed information vectors

can be transformed into

S = [Uac“ Uyt 9 ﬁga)t ) ﬁgyw dgw agzv Ty Umax, Qt]
~o0 : 0 c
Sj [pivjt’py]t’ vﬂ@yt’ /Uy]ﬁ d]t’ ]t’ ] for j € {1 2 mln( to J )}

Snt = [ﬁ$7lt’ﬁy7Lt’ deJ nt?Dﬁtv PT] for n € {17 "'7NC}

where p is the transformed p in the new coordinate. d,, and a4, are the distance and azimuth angel
of the destination, respectively. d7, and a7, are the distance and azimuth angle of the 4" other UAV,
respectively. d”, and a”, are the distance and azimuth angle of the n'" node, respectively. Note that
we do zero padding if J7 < J¢ or the number of active nodes is smaller than N°. Then, the joint

parameterized state vector at ¢ can be expressed as

Stn: Et7[§?taj S {17-"7‘76}]7mt7n€ {1 Nc}]75tt]' (1013)
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Action

In an ideal setting, the agent can travel in any direction at any time. However, in practice, kinematic
constraints in (10.10)-(10.11) restrict the agent’s movement and should be taken into account.
Given these constraints, permissible velocities [vg, ¢, are sampled to built a velocity-set, where v,
is the permissible speed, and the ¢, is the permissible rotation angle. The action a is the index of

each velocity in the velocity-set.

Reward

The reward can be designed according to the objective function and the constraints, and the design
plays an important role on the learning speed and quality. The reward function of this path planning

problem for data collection in the multi-UAV scenario can be expressed as
Ri=Ra +Ret + Rot + Ry + Ryt + R (10.14)

The first term R4 is related to the data collected from the nodes during next time duration At.
This reward term is used to encourage the UAV to collect data from the IoT nodes, and can be

expressed as

N N
Rar = ay X <Z DL - D,LM) . (10.15)
n=1 n=1

R 1s the term introduced to penalize collision with other UAVs and encourage the typical UAV

stay further away from the other UAVs. This term can be formulated as

¢

—Qa, ifd, . <r-+rj,

min

Ret = —Qg X (]. - _dtmind_br_m)v ifr+ Ty < dtmin <dp+1r+ T, (10.16)

0, otherwise,
\
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where d;_. is the minimum distance from the typical UAV to other UAVs during next time duration
At, and dj, is a constant that denotes the distance buffer. R, is to penalize the collision with the

obstacles or entering non-fly zones, and can be expressed as

—Qs, ifthrl S N7
Rot = (10.17)

0, otherwise.

R 1s the reward related to mission completion deadline constraint, and it encourages the UAVs to
arrive their destinations within the allowed duration of time, and can be formulated as
oy X (1 — Topty),  if sug < Toi,

g

0, otherwise,

where s 1s the available time left for the given mission, and ;?3:‘1 = dgt+1/Vmax 1S the minimum
time duration needed to reach destination at time step ¢ + 1 and d. 1 is the distance to destination

at time step ¢ + 1. %y is the reward given for arriving the destination, and

s, if pt+1 = pD7
Ry = (10.19)

0, otherwise.

The last term Ry, = —ag is a step penalty for each movement, and it is used to encourage fast
arrival. Note that o1 are positive constants, and can be varied to adjust the weight or emphasis

of each reward term to adapt to different mission priorities.

10.2.2 D3QN Path Planning Algorithm for Data Collection

The main algorithm is summarized in Algorithm 4, where the input consists of the parameters
of the constraints and the output is the policy, i.e., a well-trained DNN &. In the training phase,

we first initialize the replay memory, the evaluation network parameters and the target network
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parameters (line 1 - line 3). We also build an action space A based on the kinematic constraints
(line 4). In each training episode, the typical UAV navigates around other UAV's and obstacles to
arrive its destination, while collecting data from ground IoT nodes. Particularly, at the beginning
of each episode, the environment and the UAV’s mission are reset (line 6), and the reset parameters

are

the starts and destinations of the typical UAV;

the locations of IoT nodes;

the number of IoT nodes;

the amount of data to be collected from each node;

the number of other UAVs;

the starts and destinations of other UAVs.

Then, at each time step ¢, the typical UAV observes the environment, obtains the observation vector
s{”, and parameterizes the vector following the new agent-centric coordinate as Asz'" (line 8 - line
9). Using an e-greedy policy, the typical UAV selects a random action with probability € from .A
(line 12), or follows the policy greedily otherwise (line 14). The Q-value can be obtained using the
evaluation network & according to equation (2.40). After executing the chosen action, the typical
UAV receives reward R; from the environment according to equation (10.14), and it obverses the
new state s{il from the updated environment (line 15). Then the replay memory can be updated
with transition tuple (§i", a,, Rt,Asﬁl) (line 17). To train the evaluation network &, a minibatch of
N, tuples can be randomly sampled from replay memory (line 18). Then, & can be updated by
stochastic gradient descent (back-propagation) on the sampled minibatch (line 19 - line 22), and
the target network parameters £~ can be updated from & for every [V, steps (line 23). The episode
ends when the UAV arrives its destination or exceeds its mission deadline. Line 6 - line 23 can be

repeated for IV, episodes.
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After training, we obtain a policy, i.e., a well-trained DNN &, with which the UAV can perform

real-time navigation.

Algorithm 4: D3QN Path Planning Algorithm for Data Collection
Input: 7, T;, Umax, 7T
1 Initialize replay memory D
2 Initialize evaluation network £ (including £V and &%)
3 Initialize target network £~ (including £V~ and £€4~) by copping from &
4 A < sampleActionSpact(vpax, 7r)
5 for episode = 0: total episode N, do

6 & < resetEnvironment()

7 while not done do

8 s]" « observeEnvironment(E)

9 §/" + parameterizeState(s!")

10 ¢ < randomSample(Uniform (0,1))

11 if ¢ < e then

12 | a, < randomSample(.A)

13 else

14 L a, < argmax Q(s]", a’; )

a’'cA

15 R, 8141 <+ executeAction(ay)

16 )", < parameterizeState(s" )

17 Uptate D with tuple (s]",a;, Ry, 5} ,)

18 Sample a minibatch of NN, tuples (s,a, R,s’) ~ Uniform(D)
19 for each tuple j do

20 Calculate target

yj =
R, if 8’ is terminal,
R +~vQ(s',argmax Q(s',a’;€); €7), o.w.
"

21 Do a gradient descent step with loss F[(y; — Q(s, a; €))?]
22 Update £~ < £ every N, steps

23 return &
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10.3 Numerical Results

In this section, we present the numerical and simulation results to evaluate the performance of the
proposed algorithm. The considered performance metrics are the following: 1) success rate (SR),
and a success means the UAV arrives its destination within mission completion deadline; 2) data
collection rate (DR), which is the percentage of collected data within successful missions; 3) data
collection and success rate (DSR), which is the product of data collection percentage and success
rate; and 4) collision rate (CR), and a collision event occurs when the typical UAV collides with
any of the other UAVs in the environment. In the illustration of real-time navigation scenarios,
the departure and landing areas of the typical UAV are displayed by blue and green areas, respec-
tively. The no-fly zones (obstacles) are presented in gray areas. The IoT nodes are marked by
green triangles. The trajectories of the typical UAV are presented by navy lines with dots, and the
trajectories of other UAVs in the environment are depicted in red lines with dots. The destination
of each mission is marked by a navy cross in the landing area. Note that since the UAV's may arrive
at the same location at different times, they do not necessarily collide even if their trajectories in-
tersect. In the simulations, other UAVs use optimal reciprocal collision avoidance (ORCA) [200]

in choosing actions and determining their trajectories.

10.3.1 Environment Setting and Hyperparameters

Since the agents fly at the same altitude, the area of interest becomes two-dimensional. In the
simulations, the UAV flies at height Ay, = 50m. The size of the area of interest is scaled to a
(100 x 100) region. The 10T nodes have same transmit power of P = 1 dBm. Noise power is
N, = 1075. SNR threshold is set at 7, = —5 dB (unless stated otherwise). Mission completion
deadline is 7; = 100s (unless stated otherwise). Kinematic constraints are v,,,x = 5 in the scaled
form and 7, = /3. The radius of the UAV’s sensing region is 10, N¢is 5, and J€ is set to be 2.
Fig. 10.2 shows the accumulated reward per episode in training with different DNN structures.

We can observe from the figure that one-layer and two-layer structures can achieve similar con-
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Fig. 10.2: Accumulated reward per episode in training with different DNN structures.
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Fig. 10.3: Accumulated reward per episode, average success rate per 100 episodes and data collection rate
per episode for different training cases.

vergence speeds and reward performance, while the reward from DNN with a three-layer structure
drops after 6500 episodes and then grows back. Therefore, we choose to use two-layer DNN of
size (256, 256). ReLLU function is used as the activation function, Batch-normalization is used for
each layer, and Adam optimizer is used to update parameters with learning rate 0.0003. Batch size
is 256, and the regularization parameter is 0.0001. The exploration parameter ¢ decays linearly

from 0.5 to 0.1. The replay memory capacity is 1000000.

10.3.2 Training

The total number of training episodes is 10000. In each episode, the following system parameters

are randomly chosen from the corresponding regions and sets of values:

* the starts and destinations of the typical UAV p° € S and p” € D;
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the locations of ground IoT nodes p,, € C;

the number of 10T nodes N € [5, 10];

the amount of data to be collected from each node D} € [1, 3] data units;

the number of other UAVs J € [2,10];

the starts and destinations of other UAVs p,; € C.

Figs. 10.3 (a), (b) and (c) show the accumulated reward per episode, success rate per 100
episodes and data collection rate per episode, respectively, during different training sessions with
two-layer DNN. These figures show that in different training sessions, similar performances (in
terms of the convergence speed and attained levels of performance metrics) are achieved, indicating
the stability of the proposed algorithm. In addition, the SR eventually converges to around 92.5%,
and the DR reaches 99.5%, even with the exploration strategy (i.e., €,y = 0.1). The simulation
is implemented on a Windows 10 with Intel Core 17-8753h CPU. In total, the training algorithm
converges after approximately 6000 episodes for this multi-UAV scenario with highly varying

parameters.

10.3.3 Testing of Navigation in Different Scenarios

With the learned policy, the UAV can perform real-time navigation in different scenarios, regarding
the various parameters described in the previous subsection. We note that all the testing in this
subsection uses the same policy, i.e., the policy can adapt to various missions and scenarios without

further training.

Different number of IoT nodes

Fig. 10.4 displays illustrations of navigation in different scenarios in which N € [8,10] ToT nodes
are randomly located, Df = 1 data unit, and J € [2,10]. Fig. 10.4 shows that for different

numbers and locations of IoT nodes, different numbers and locations of other UAVs, and different
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(a) 8 nodes (b) 9 nodes (C) 10 nodes

Fig. 10.4: Ilustrations of navigation in different scenarios that N € {8,9, 10} nodes are randomly located,
and D¥ = 1 data unit, J € [2,10].

start points and destinations, the UAV can adjust its trajectory to collect data from distributed IoT
nodes with the trained policy. Table 10.1 provides the SR, DR, DSR and CR performances in
testing for different number of nodes from which data needs to be collected. The performances are
averaged over 5000 random realizations (in each of which, we have D} € [1, 3], J € [2, 10], and all
UAVs have random starting points and destinations). Overall, Table 10.1 shows that the proposed
algorithm can achieve above 91% success rate (for tight mission completion deadline constraint
of 7;) and over 99.8% DR when N € [5,10]. With increasing number of nodes, generally the
UAV needs to plan a longer trajectory to get close to each node to achieve reliable communication
(S, > T,), leading to relatively longer flight durations and higher risk for collision. Therefore,
when NV increases, SR decreases due to the increase in CR and the increase in flight duration. In
addition, when we compare row 1 (smaller 7;) and row 5 (larger 7;), we notice that higher SR is

obtained if the mission completion deadline is relaxed.

Table 10.1: SR, DR, DSR and CR performance when different number of nodes (/V) need to upload
data, and D} € [1,3], J € [2,10].

N=5| N=6 | N=7 | N=8 | N=9 | N=10
SR(%)
(Ti = 100s) 955 | 944 | 938 | 929 | 925 | 915
DR(%) 99.9 | 99.8 | 99.8 | 99.8 | 99.8 | 99.8
DSR(%) 95.4 | 9421 | 93.61 | 9545 | 92.71 | 91.31
CR(%) 33 34 39 39 39 3.7
SR(%)
(T = 200s) 96.7 | 96.2 | 958 | 95.8 | 95.8 | 959
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(a) 1 data unit (b) 2 data units (C) 3 data units

Fig. 10.5: Tlustrations of navigation in different scenarios that D& € {1,2,3} data units need to be collect
ateachnode,and N =7, J = 2.

Different amount of data at each node

Fig. 10.5 depicts illustrations of navigation in different scenarios in which D} € [1, 3] data units
need to be collect from each node. To display the influence of the amount of data to be collected,
we fix the number of nodes as N = 7 and the number of other UAVs as J = 2 in the illustrations.
Due to the different amount of data to be collected at each node, the UAV needs to fly around each
node over different duration of time to complete the data collection, leading to different trajectories.
Table 10.2 provides the SR, DR, DSR, and CR performance in testing, when the values of D/ are
different. The rates are averaged over 5000 random realizations (in each of which N € [5,10],
J € [2,10], and all UAVs have random starting points and destinations). We observe similar
performance levels as in Table 10.1, i.e., when there is more data to collect, the UAV needs a
longer trajectory and a longer time period to complete the mission, leading to higher CR and lower
SR.

Table 10.2: SR, DR, and DSR performance when different amount of data Dé needs to be collected
from each node, and N € [5,10], J € [2,10].

Di=1] D=2 | Di=3
SR(%) 94.9 93.7 92.8
DR(%) 99.8 99.8 99.7
DSR(%) | 94.71 | 93.51 | 92.52
CR(%) 2.8 3.7 3.9
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Different number of other UAVs

(@) 2 other UAVs (b) 10 other UAVs (C) 20 other UAVs

Fig. 10.6: Tllustrations of navigation in different scenarios involving J € {2,10,20} other UAVs, and
N =6, Df = 1 data unit.

Fig. 10.6 presents illustrations of navigation in scenarios with different number of other UAVs
J € {2,10,20}. Again, to display the impact of different values of .J, we fix N = 6 and D} = 1 in
the illustrations. From Fig. 10.6, we can observe that due to the different locations and numbers of
other UAVs, the typical UAV makes decisions to avoid collisions, leading to different trajectories.
Table 10.2 presents the CR, SR, and DR performances as J varies, considering three different
hyperparameter settings: setting 1 (S1) ay = 10, d, = 0.2,T; = 100s; setting 2 (S2) as = 30, d, =
1,7, = 200s, and setting 3 (S3) as = 50,d, = 10,7; = 200s. The rates are averaged over
5000 random realizations (with N € [5,10], Df € [1, 3], and all UAVs having random starting
points and destinations). From the table, we note that with increasing number of other UAVs, the
collision rate grows due to higher risk of collision. When CR performances in the three settings
are compared, we can observe that if the mission completion deadline is loosened, we can increase
the distance buffer, d;, between two UAVs, and increase the penalty for collision, as, to reduce
CR. With setting 3, 0.9% CR can be achieved for crowded scenario with J = 12. This observation
indicates that the hyperparameters can be tuned to adapt to different mission priorities.

To show the importance of considering collision avoidance in the presence of an arbitrary
number of other UAVs in the environment, Fig. 10.7 compares the CR levels achieved with the
proposed algorithm with considers collision avoidance in training and the learning algorithm that

does not address collision avoidance with other UAVs in training. The figure shows us that if colli-
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sion avoidance is not considered, we have significantly higher CR than the proposed algorithm, and
also the gap between two methods becomes larger with increasing number of other UAVs. These
observations indicate that the algorithms, which do not consider the existence of other UAVs or
only consider fixed number of known UAV's, may lead to high collision risk in crowded scenarios,

and the proposed algorithm greatly reduces that risk.

Table 10.3: CR, SR, and DR performance when different number of other UAVs J exist, and
N € [5,10], Dt € [1, 3].

J=2 | J=4 | J=6 | J=8 | J=10 | J=12
CR(%) | 1 24 | 35 5 6.3 7.9
S1 | SR(%) | 96 | 946 | 939|922 | 915 | 90.7
DR(%) | 99.8 | 99.8 | 99.8 | 99.8 | 99.8 | 99.9
CR(%) | 04 | 08 | 1.7 | 19 | 25 3.2
S2 | SR(%) | 944 | 94 | 9277|932 | 92.6 | 91.8
DR(%) | 99.8 | 99.8 | 99.8 | 99.8 | 99.8 | 99.8
CR(%) | 02 | 0.3 | 04 | 0.5 0.6 0.9
S3 | SR(%) | 99 | 98.8 | 98.8 | 98.8 | 98.4 | 98.2
DR(%) | 99.7 | 99.7 | 99.7 | 99.7 | 99.8 | 99.7

80 —+&—— Collision not considered in training
—<O— Proposed S1 -- Collision considered in training
25 Proposed S2 -- Collision considered in training 1
. —&A— Proposed S3 -- Collision considered in training
X
<20
2
&
- 15
<}
°
© 10
(G
5
0 T Il Il Il

2 4 6 8 10 12 14 16 18 20
Number of other UAVs (J)

Fig. 10.7: Collision rate comparison in testing between two methods: 1) the proposed approach with
setting 1 and setting 2, in which the collision avoidance in the presence of arbitrary number of other UAVs
is taken into account in training; and 2) the approach in which collision with other UAVs is not considered
in training.
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(a) T: = -5dB (b) 7: = —4dB
Fig. 10.8: Illustrations of navigation when SNR threshold 7 is different, and N = 5, Dé = 1 data unit,
J=2.

10.3.4 Impact of the SNR Threshold

Fig. 10.8 displays the influence of the values of the SNR threshold 7 on the UAV trajectories.
Note that the UAV is able to achieve reliable communication with an IoT node only if the UAV
experiences an SNR that exceed the threshold, i.e., S > 7T, for that connection. Since SNR is a
function of the distance between the UAV and a node, 7, can be converted to a distance threshold.
Therefore, different values of 7, lead to different distance requirements for reliable connection.
The green dashed circles in Fig. 10.8 approximately indicate the area inside which we have S >
Ts. As shown in Fig. 10.8, the UAV has to reach each circle in order to collect data from the
corresponding node. We observe that with higher 7, (Fig. 10.8 (b) compared with Fig. 10.8 (a)),
the UAV needs to reach closer to each node for data collection, leading to different trajectories for

the same mission.

10.3.5 Comparison with Other Algorithms

Table 10.4 presents the performances of different deep reinforcement learning algorithms, i.e.,
D3QN, Dueling DQN, DDQN and DQN, for data collection in multi-UAV scenarios. It can be
clearly observed that D3QN has better performance than the other three, in terms of SR, DR, SDR

and CR, although the performances are not substantially different. It is worth noting that we have
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observed in training sessions that the reward of Dueling DQN, DDQN, and DQN may drop after
a certain number of episode, while D3QN does not have this issue, indicating that D3QN is more

stable than the other three algorithms when solving the considered problem.

Table 10.4: SR, and DR, DSR and CR performance of different algorithms, when N € [5,10],
Dk € [1,3] data unit and J € [2, 10].

SR(%) | DR(%) | SDR(%) | CR(%)

D3QN 94.1 99.8 93.91 3.5
Dueling DON | 93.5 99.7 93.22 4
DDQN 92.5 99.8 92.31 4.3

DQN 90.8 99 89.89 4.2
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CHAPTER 11

CONCLUSION AND FUTURE DIRECTIONS

11.1 Summary

In this thesis, we have studied the performance analysis and learning algorithms in advanced wire-
less networks.

In Chapter 3, we have provided a framework to compute the SINR coverage probability in a K-
tier heterogeneous downlink mmWave cellular network with user-centric small cell deployments.
A heterogeneous network model is considered, with BSs in each tier being distributed according
to PPPs, while UEs being deployed according to a PCP. Distinguishing features of mmWave have
been incorporated into the analysis, including directional beamforming and a sophisticated path
loss model addressing both LOS and NLOS transmissions. In addition, a D-ball approximation
is applied, to characterize the blockage model, with different path loss exponents being assigned
to LOS and NLOS links. We have determined general expressions for the association probability
of each tier. Simplified association probability expressions for several special cases are provided
to give more insight on the impact of different system parameters. We have also characterized the
Laplace transforms of the interferences and derived the SINR coverage probability of the entire
network using the stochastic geometry framework. The obtained analytical results are general,

and they can be applied to any PCP distribution. We have specialized the results to two popular
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PCPs, namely (i) Thomas cluster process, and (ii) Matérn cluster process. In addition, through
numerical results, we have provided some interfering insights. We also demonstrated that when the
cluster size tends to infinity, our PCP-based model specializes to a PPP-based model. Moreover,
we extend our work to more general cases, i.e. when more practical antenna gain patterns are
considered and when the shadowing is taken into account. Finally, the analytical and numerical
results demonstrate that considering the correlation between the UE and BS locations is important
when modeling the UE distribution, but the type of PCP does not have significant impact. The
type of small-scale fading (e.g., Nakagami vs. Rayleigh fading) also has limited influence on
the coverage performance of our model, while interference plays an important role. Moreover, we
show that several system parameters have significant impact on coverage probability, e.g., coverage
performance can be improved, by decreasing the size of UE clusters around BSs (or equivalently
having UEs more compactly clustered), decreasing the beamwidth of the main lobe, or increasing
the main lobe directivity gain. In addition, the effects of the biasing factor of the small-cell BSs is
investigated. An extension to the dense networks is also addressed. In particular, we have shown
that our analysis is applicable to dense networks, in which the small-cell BSs play an important role
in terms of the coverage performance. Analysis of the uplink performance of this heterogeneous
mmWave cellular network model is interesting and remains as future work. Investigating a hybrid
network including both PCP and PPP distributed UE:s is also considered as future work.

In Chapter 4, we have studied a K -tier heterogeneous mmWave uplink cellular network with
clustered UEs. In particular, the correlation between the locations of the user UEs and BSs is
characterized according to a Gaussian distribution, leading to the Thomas cluster processes. Spe-
cific and practical LOS and NLOS models are adopted with different parameters for different tiers.
We have first characterized the PDFs and CCDFs of different distances from BSs to UEs. Then,
we have considered the coupled association strategy, meaning that the UEs are associated with the
same BS for both downlink and uplink. Largest long-term averaged biased received power criterion
is considered in this chapter , and general expressions for association probabilities of different BSs

to different UEs are also provided. Following the identification of the association probabilities, we
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have characterized the Laplace transforms of the inter-cell interference and the interference from
the cluster. Using tools from stochastic geometry, we have provided general expressions of the
SINR coverage probability in each tier. Additionally, we have extended our work to the Nakagami
fading model and the case in which fractional power control is adopted by the UEs. Moreover,
we have addressed several special cases, e.g., the noise-limited case, interference-limited case, and
one-tier model. Finally, we have addressed the average ergodic spectral efficiency. Via numerical
and simulation results, we have confirmed the analytical characterizations and the derived expres-
sions, and investigated the impact of important system parameters. For instance, we have observed
that the interference has a noticeable influence on the coverage performance and the type of fading
has a certain impact on the SINR coverage performance but Nakagami and Rayleigh fading lead to
similar performance trends. Coverage probability can be improved by decreasing the cluster size,
increasing the biasing factor and the transmit power of the small-cell BSs. The densities of BSs
also affect the system performance.

In Chapter 5, we have proposed a multi-agent DDQN algorithm for beamforming in mmWave
MIMO networks. Largest received power association criterion has been considered for BS asso-
ciation of the UEs. BSs act as reinforcement learning agents, and according to the limited infor-
mation obtained from the associated UEs, they automatically and dynamically adjust their beams
to improve the received power of the associated UEs. Via simulations, we have demonstrated that
the proposed algorithm can achieve comparable network performance with respect to exhaustive
search, and better performance than the random selection, which leads to especially poor perfor-
mance when there are multiple BSs. We have noted that location information is not critical in our
algorithm. In addition, the pre-trained model is not restricted to the same number of UEs as in the
testing phase and can be applied to multiple testing scenarios with different number of UEs.

In Chapter 6, a three-tier HetNet has been studied, where APs, SBSs and MBSs transmit in
THz, mmWave, microwave frequency bands, respectively. Distinguishing features of transmission
in each frequency band are taken into account, including the blockage model, path loss model,

beamforming and small-scale fading. To make the UEs receive larger signal power from the serv-
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ing BS, path loss based association criterion has been considered. By using tools from stochastic
geometry, the CCDF of the received signal power, the Laplace transform of the aggregate inter-
ference, and the SINR coverage probability are investigated, and general expressions have been
derived. The analysis has been validated via Monte-Carto simulation. Finally, numerical results
demonstrate the following: making the APs more densely distributed can enhance the received
signal power but decrease the SINR coverage probability; and narrower beamwidth of the main
lobe at the APs leads to larger received signal power and the SINR coverage probability.

In Chapter 7, we have jointly considered the downlink SWIPT and uplink information trans-
mission in UAV-assisted mmWave cellular networks, in which the UE locations are modeled using
Thomas cluster processes and Matérn cluster processes. Distinguishing features of mmWave com-
munications, such as different path loss models for LOS and NLOS links, and directional trans-
missions, are taken into account. We have characterized the CCDF and PDF of the distance from
the typical UE to its own cluster center UAV, the nearest PPP-distributed UAV and the nearest
GBS. In the downlink phase, we have determined the association probabilities of each tier BS. In
addition, we have considered the power splitting technique in the SWIPT scenario, which allows
the UEs to harvest energy and decode information simultaneously using the same received signal.
We have characterized the energy and SINR coverage probabilities of the considered UAV-assisted
mmWave cellular network. Moreover, we have defined the successful transmission probability to
jointly analyze the energy and SINR coverages and we have provided general expressions. In the
uplink phase, we have considered the scenario that each UAV receives information from its own
cluster member UEs. SINR coverage has been derived and general expressions are provided. In
addition, we have formulated the average uplink throughput, aiming to find the optimal time divi-
sion multiplexing for downlink and uplink phases. Extensions to UAV-assisted cellular networks
with realistic 3D antenna patterns have been provided. Finally, via numerical results we have in-
vestigated the impact of key system parameters on the network performance. We have shown that
the system performance is improved when the cluster size becomes smaller. In addition, we have

analyzed the optimal height of UAVs and optimal power splitting value that maximize the sys-
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tem performance. Optimal time division has also been addressed to maximize the average uplink
throughput. We have verified that Thomas cluster processes and Matérn cluster processes can lead
to similar system performance trends.

In Chapter 8, we have investigated cellular-connected UAV networks with 3D antenna patterns,
in which the UAVs are aerial UEs served by the GBSs. A realistic ground-to-air channel model has
been incorporated into the analysis, where LOS and NLOS transmissions are distinguished. 3D an-
tenna patterns have been considered for both GBSs and UAVs. More specifically, antenna patterns
combing the vertical and horizontal gains are taken into account for the GBSs. Also, four types of
3D antenna patterns are considered for the UAVs. In particular, we compare the performances of
a omni-directional pattern, a doughnut-shaped sine pattern, a doughnut-shaped cosine pattern, and
a directional pattern with tilting angle toward the serving GBS. Via numerical results, we demon-
strate that the directional pattern with tilting angle provides the best SINR coverage probability.
We have also seen that the optimal UAV altitude varies depending on the environment and antenna
patterns.

In Chapter 9, we have studied multi-UAV trajectory optimization with collision avoidance and
wireless connectivity constraints. In establishing the wireless connectivity, we have taken into
account the antenna radiation patterns, path loss, and SINR levels. In Section 9.1, we have formu-
lated trajectory optimization as a sequential decision making problem and proposed a decentralized
deep reinforcement learning algorithm. Particularly, a value neural network has been developed
to obtain the values from the agent’s joint states. An SINR-prediction neural network has been
designed, using accumulated SINR measurements obtained when interacting with the cellular net-
work, to map the GBS locations into the SINR levels in order to predict the UAV’s SINR levels. We
have investigated the performance in terms of success rate, collision rate, disconnection rate, and
average more time. In the numerical results, we have considered various scenarios (e.g., with GBS
deployments different from the setting in the training environment, different UAV heights, different
antenna patterns, and obstacles/no-fly zones) and we have shown that with the value network and

SINR-prediction network, real-time navigation for multi-UAV's can be efficiently performed in dif-
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ferent environments with high success rates. In Section 9.2, we have addressed jamming-resilient
trajectory design for multiple cellular-connected UAVs. We proposed an offline TD learning algo-
rithm for the RL agent with online SINR mapping to solve the problem. More specifically, a value
network has been trained offline by TD method to encode the interactions among the UAVs and
between the UAVs and the environment; and an online SINR mapping DNN has been constructed
and trained by supervised learning, to encode the influence of the jammer. Numerical results have
shown that, without any information on the jammer, the proposed algorithm can achieve perfor-
mance levels close to that of the ideal scenario with the perfect SINR-map. Hence, real-time
navigation for multi-UAV's can be efficiently performed with high success rates, and collisions are
avoided.

In Chater 10, we have studied the UAV trajectory optimization to maximize the collected data
form distributed 10T nodes in a multi-UAV scenario under realistic constraints, e.g., collision
avoidance, mission completion deadline, and kinematic constraints. In establishing the wireless
connection, we have taken into account the antenna radiation pattern, path loss, SNR, and largest
received signal power based scheduling strategy. We have translated the considered problem into
an MDP with parameterized states, permissible actions and detailed reward functions. D3QN is
utilized for learning the policy, without any prior knowledge of the environment (e.g., channel
propagation model, locations of the obstacles) and other UAVs (e.g., their missions, movements,
and policies). We have shown that the proposed algorithm has high adaptive capability. More
specifically, without further training, the offline learned policy can be used for real-time navigation
for various missions with different numbers and locations of IoT nodes, different amount of data to
collect, in various scenarios with different number and locations of other UAVs. Through numeri-
cal results, we have demonstrated that real-time navigation can be efficiently performed with high
success rate, high data collection rate and low collision rate. We also showed that the proposed
algorithm can achieve much lower collision rate in testing compared with the learning algorithm
that does not consider collision avoidance. Furthermore, we have demonstrated that D3QN has

better performance than Dueling DQN, DDQN, and DQN when solving the considered problem.
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11.2 Future Research Directions

11.2.1 UAV-to-UAV Communications

In Chapter 7, we have analyzed the coverage probabilities in UAV-assisted cellular networks, where
the UAVs are aerial BSs serving ground UEs. In Chapter 8, we have studied the coverage in
cellular-connected UAV networks, where the UAVs are aerial UEs served by GBSs. Coverage
analysis in UAV-enabled networks where the UAVs communicate with other UAVs is interesting,

and is considered as future work.

11.2.2 Power Constrained UAV Trajectory Design

The power constraint of UAV's poses critical limits on their endurance and communication capabil-
ities. In Chapter 9, we have aimed to reduce UAV power consumption by minimizing the mission
completion time. In Chapter 10, we have considered the mission completion deadline to restrict
the power consumption. Directly considering the power constraint in UAV path planning problems

1s one of our future directions.

11.2.3 Three-Dimensional (3D) UAV Path Planning

In Chapters 9 and 10, we have assumed that the UAVs fly at the same height. However, UAVs are
able to travel in 3D area in practice. Therefore, finding 3D UAV trajectory is considered as future

work.

11.2.4 Jamming Attacks in UAV-Enabled Networks

The LOS-dominant air-to-ground links make UAV communications more susceptible to the jam-
ming/eavesdropping attacks by malicious ground nodes compared to the terrestrial communica-
tions. In Section 9.2, we have investigated the cellular-connected UAV path design in the presence

of a dynamic jammer. Finding jamming-resilient path for UAVs, as either UEs or BSs, in the
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presence of intelligent jamming attacks is motivated to be one of our future research directions.
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APPENDIX A

PROOF OF THEOREMS AND LEMMAS

1 Proof of Lemma 3.1

The CCDF of path loss L s (for s € {LOS,NLOS}) from the typical UE to a LOS/NLOS BS in

the 0" tier can be expressed as

et () 2 ()
K3 K
2 5
exp (_# (:%) ag}é) (x> 0), for Thomas cluster process,
© . 5 (A1)
1- I; (0<z< fif{R?l ) for Matérn cluster process,
K§ T R2

where (a) follows from the expression of path loss L in (3.2) on the link in the 0*" tier, (b) follows
from the definition of CCDF, and (c) is due to the the expressions of Fyo(yo) given in (2.7) and

(2.9) for Thomas cluster process and Matérn cluster process, respectively.



223

Thus, the PDF of path loss L s can be obtained as follows:

—1 2
[e% a0s
T 17 exp (_# (%) ! ) (.’L‘ Z 0)7
J

sk af® 42
dFp, (z) for Thomas cluster process,
oo, (o) = =72 = Y
i — (0 <o < KR ),

for Matérn cluster process.

2 Proof of Lemma 3.2

We first define two events, S; = {The typical UE is associated with a j** tier BS } and Sy =
{The associated link is in s € {LOS,NLOS} transmission}. Then the association probability of a

LOS/NLOS BS in the ;' tier is

Aj,s = P(Sl and 52) = P(SQ|51)P(81)

Y P(PB,L;} > PB;L;LP(PB L > PuBLi ' k € Kk # )

P.B
= P(L;y > L;,)P (Lk > %Lw ke k# j)

]

17

0 - P.B
= P(Lv > L) [P <Lk > P’“B’“ Lj,s) , (A.3)
k=0

k)
where s’ € {LOS,NLOS}, s # s/, (a) follows from the definition of association probability, and

(b) is due to the fact that the distributions of { L} are independent.

For the 0™ Tier (j=0)

K K
P.B . _ (P.B
Ags = P(Loy > Los) [[ P (Lk > P’;B’; Loﬂs) @ Pro.ErLo. [<| [FL, <—P’; Bz m))] :

k=1
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where (a) follows the definition of CCDF of the path loss Lj by noting the fact that there is only
one BS in the 0" tier, and therefore P(Lg , > Lo ) can be expresses as pr, os and pr, s for LOS

and NLOS links, respectively.

For the j™" Tier (j € K)

(a) = = Py By,
Ajs =By, | Fros) | [T P (PB zjs)
— 17
=
K
(b) — — PyB — P.B
=Ep,. || Fryw(lis)Frg (%lm) [1[F. (Pk-Bé lj,s ) (A.5)
g k1 g
k]

where (a) follows from the definition of the CCDF of the path loss L; and CCDF of the path loss
L; ¢ and (b) is due to the fact that the CCDF of the path loss Ly is different from the CCDF of the

path loss Ly, hence they are separately considered.

3 Proof of Lemma 3.3

Define the event S = {The typical UE is associated with a LOS/NLOS BS in the j" tier}. Given

the event S, we can mathematically express the CDF of the path loss L; ; as

K
Pllis < 2)P(Liw > 1ss) 11 P (Le = B415,)

A @ P(ljs < 2,9) @) =
By (x) = P(l; @ 71 )
LJ,s ('T) (l]73 < ‘T’S) P(S) Aj75
K —_—
ﬁ,s fox fLo,s(ZO,s)pLo,s (k;Hl FLk <§;g§ ; )> le,sv for j =0,

y fr ) F ey o (s) | g <PB lj ) H Fp, (P’“B’“l ) dlys, forj e K,
k#J

(A.6)
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where, (a) is due to Bayes’s rule, and (b) follows from the definition of association probability and

the independence of L; s, L; s+ and Ly. Therefore,

~

ij,s (‘/L‘) =

dFy, (x)
N dz
1 K = P.B .
Ag,s fLo,s (x)pLO,s (knl FLk (PI;BIS :C)) for j =0,

4 Proof of Theorem 3.1

Given that the typical UE is associated with a LOS/NLOS BS in the j* tier, the coverage proba-

bility can be expressed as

Cc _
PCJ',S o

—
S}
~

()

—
)
N2

—
=

P(SINR; ; > T}|t = j)

P;Goh;l; ! Tl K
M>Tj :P<hj>]j—é’s<a,2m+21j,k
. j 0

2
Un,j + Z []k?
k=0

A .
) HO-o nOH‘CIOk(MUS)] fOI‘jZO,

]gnJEIOILLJS)H’Clyk(IuJS)] for j =K,

n

)e
% )it <N> e 05700 H <£ILOS(M0 s)ﬁlNLOS (#o, s)) ] , forj =0,
)

N
s n—|-1 (NQ
n

K
e HaeTn (Z Pro.Lre (/v‘j,s)> I (EILOS(“j’s)['INLOS(Mj’S)>
k=1 N OF o
forj =K,

(A.8)
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where ;5 = ”@Télo] Ns = NS(NS!)_N%, (a) follows from the fact that if the typical UE is as-
J
) g1
sociated with a j* tier BS, then SINR; ; = Lﬁjl“s, (b) follows from the moment generating
0%+ 3 ik
k=0

function (MGF) of the gamma random variable h;-, (c) is due to the independence of noise and
interference terms, and follows from the fact that for the 0*” tier main link, interference links come
from all K tier BSs, while for the j* tier (j € K) main link, interference links come from the 0%
tier BS in addition to all K tier BSs, and (d) is obtained by taking into account that there is only

one BS in the 0" tier, and hence we rewrite the Laplace transform expression, £ Ijo ( ,uj,s), as

’CIJ',O (,um) = PLo,Los ‘CI;%S (MJ}S) + pLo,NLos‘CI}‘f(L)OS (:uj,s)

= D> prLry, (i), (A.9)

ac{LOS,NLOS}

and for the j'" tier, since LOS and NLOS links are independent, Laplace transform £ 1, (1j,s) can

be rewritten as

Ly (15s) = Lrvos (p.s) Lpseos (1j.s) (A.10)

5 Proof of Lemma 3.4

Interference from the k'™ Tier (k € K)

Tools from stochastic geometry can be applied to compute the Laplace transform of the interference
from the LOS/NLOS BSs in the k'" tier, by splitting the interference into three independent PPPs
for each effective antenna gain G € {M M, Mm, mm} as follows:

];k _ I]a’,kMM + I]a’,ka + I;,]:nm _ Z Ia,G (All)

j?k ’
Ge{MM,Mm,mm}

where ¢ € {LOS,NLOS}, I;f}f denotes the interference with random effective antenna gain ¢

given in (2.22) and it has a density of A;pq according to the thinning theorem of Poisson process



227

[57].

Hence, Laplace transform of the interference from the k*" tier can be expressed as

:HEeXp< ujsjk) Hﬁlac [L.s) (A.12)
G

where G € {MM, Mm,mm}, and L 146 (pjs) can be calculated using stochastic geometry as

follows:

~ By, (1-Enj[exp(—p;,s Pih;GL; )] )pa, 4 (10.dlk.0)
Lroc(pjs) =e T
Js

-8, <1- . )ma (0.0
L ] -1 y—1\Nea @ ’
@ e FiBids (Huj,stle,aNa ) , (A13)

where N, is Nakagami fading parameter and (a) follows by computing the MGF of the gamma

random variable /.

Interference from the 0" Tier (k=0)

Since there is only one BS in the 0" tier, Laplace transform of the interference from the 0" tier

BS in a € {LOS,NLOS} link, £ 12, (1j.5), can be obtained as

Lis (15) = Eexp(—ps170) = Ec[Eexp(—psL777)]
— Z pcEexp(—p; SIJaOG Zpgﬁ a6 (s, (A.14)

Ge{M M ,Mm,mm}

where L ..c(f1;,5) is computed as follows:
7,0

a ~ P,B
Lo (j1s) @ ErLo. {E,m [exp(—115,s PohoGIg )] |l > o %,S}
70 P B;
(b) 1 PyBy
=Ep,. 0,a = —l‘,s
"L (14 PGl AN P;B;
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—
~

PyBy
log > —=1;s | dlp,
b pB; ) o

c /°° 1 F (l

— Lo o 0,a
et (L4 g PoGlo N )™

/OO 1 fLO a (lo a)

s (U i PGT N ) P, (B0,.)

dly . (A.15)

where, (a) follows from the expression of ]“ OG , (b) follows from the MGF of the gamma random

variable, (c) follows from the definition of expected value with respect to Ly ,.

6 Proof of Lemma 3.5

Defining the function f(ly,) = Comar Glrlel)N"’ we have
7,808 g4Va

‘CIJ‘.’”OG (:Uj,s) = ELo,a |:f(l0,a) (A16)

PyB,
“”Eﬁ4~

PO Bo

Since l] s <lpa < ooand f(ly,) is a monotone increasing function with respect to /o , in the

region, we obtain

P;B,

77

f (%lj,s) S ‘C]C,L’OG S f(oo)v (A17)

leading to the bounds in Lemma 5.

7 Proof of Lemma 3.6

Using a scale parameter ¢, we can express the path loss as Iy, = <l ,. Again defining the function

l = L , when the cluster size tends to infinity, we have
f( O,G) (1+Nj,sPOGla’;N¢;1)Na Y.

. B Py By
o s = i 3 160> T2
(a) . / POBO ‘
- EG ba gli)rgo EL6,a |:f<gl0 a) lO a PJB] l.775:|
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® [ o T (ol)

=Y pelim [ f(s,) o\ Hoa
G Py By e Ly,a (ngBj lj S>

IS e [ g () i,
G 0

=> pe=1 (A.18)
G

where (a) is because we can change the order of summation and limit, (b) is obtained by plugging in

lo,a = slp 4» (c) is obtained because as ¢ — oo, Fy (g%‘? lj,$> — Fry (0) =1,and f(sl;,) — 1.
’ ,a iy ,a )

8 Proof for Lemma 4.1

We have

o o P(r > x, the link is s)
Fp.(x) =P the link is s) = —
i (x) (r > z|the link is s) P(the link is s)

B E.[P(r > x|s)P(
a Dy,

Lot [ hmoar (A1)

where D, = P(s) = E,[p5;(r)] is the probability that the link between the BS and its cluster

member is s. Then, we can obtain the PDF as

Friso (I)

2 = Dy o (0)P5 (). (A.20)

frf()(x) ==

9 Proof for Lemma 4.2
For j = 0, the probability that the typical UE is served by its own cluster center BS can

be determined as follows

AiO,s - P(Si(),s)

@ P(the typical UE is served by the cluster center BS |s)
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x P( the link is in s transmission)

O Es [P(PyBok, 'y~ > PyBpr ™ 'r @ for k € K)pl,;(r5)]

r 1
©) s PyBrks 4o, \©
= D'LOET’;5 P(Tk‘ Z ( POBOK/ Tio ) fOI‘ k € IC)
@ S b PkBkKS S Qg al
_DiOET%O HHD ( POBOfibTZ ) b>]
k=1 b
(e s S,.8 Qs
(©) D3E,s HHDbF L [(CoSrs, ) ]] (A.21)
where C’,’;j = I;kgk:s and D} =1 — e~ 2™ Jo" =P @)de i the probability that a UE has at least one

b € {LOS,NLOS} BS in the k" tier. (a) arises from the definition of association probability and
the conditional probability. (b) is from the association criterion that in this case the 0" tier BS (the
cluster center BS) provides the largest long-term averaged biased received power. (¢) comes from
that D, = E,, [p5,;(ri0)] is the probability that the link is in s transmission. (d) is due to the fact
that the distributions of {r,‘i} are independent, i.e., BSs in each tier are independent, and in the kth
tier, the LOS/NLOS BSs can be regarded as independent ( [61] has proved the dependence is weak

and can be ignored in analysis). (e) is by the application of the definition of CCDF.

For j € K, similarly as in the derivation of A, s, the probability that the typical UE (from

the i'" tier) is associated with a LOS/INLOS BS in the j*" tier can be obtained as follows

Aij,s - P(Sij,s)

@ P(the typical UE is served by a LOS/NLOS BS in the ;' tier BS |s)
x P( the link is in s transmission)

(®) s s\ —as s'\—a.s -1, .s—as -1,.—«

= Erj- [Djp((rj) > (Tj )% )P(P;Bjk lrj > PoBok 17’1’0 )

X P(P By, 1™ = BB 7;”)|

(e) s s’ s 57 as,.sas al
:ET;[DJ.DJ.P(@ > = ) [ZD (v = (Ciry) )]
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—
Sy
=

ss' T % as,.ss L
Dij Frj"‘f’ ( ) [ZD CO] i )Qa)]

HHDka (Chraos) o) ] (A.22)

k=1 b
k#i

where (a) is due to the definition of association probability. In the expectation in (b), the first two
terms come from P(s), the third term is due to that the associated BS should provide larger power
than the cluster center BS of the typical UE, and the fourth term is due to that the associated BS
should provide larger power than the k' (k # j) tier BSs. In (c), the second term is due to the fact
that there is only one cluster center and P(r;y > (Cro)a) = P(r;0 > (C’r%)fos ILOS)P(LOS) +
P(rjo > (C’r%)m INLOS)P(NLOS), and the third term follows the same reason as in part 1)

step (d). (d) is by the application of the definition of CCDF.

10 Proof of Theorem 4.1

Given S 5, the SINR coverage probability can be obtained as follows:

c (a) PuGoh IiilTZ]Oés5
Pcij,s = P(SINRZ]’S > 7}|S,L]7S) = P > jjj

o2 + Lo + Z Iy,
k=1

Y P L P +§Ku

_ ]

77 PGy 7t Lo e
Ky

Ky
—ps o2
Tij,s € MZ]J”LLQ(MSJ)HEI’LR(M?JSJ)

k=1

) (A.23)
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) Qs
Tmsrijys

where yij; = —5-z2*, and L;(p) = Eexp(—pul) is the Laplace transform of I evaluated at . (a)

follows from the expression of SINR given .S;; ; is true. (b) follows from the MGF of h ~ exp(1).
(c) is due to the fact that the noise component and the interference from each tier are independent

of each other. Note that when ;o = 0, L, (115;) = 1.

11 Proof of Theorem 4.2

1) For k € K, we have Ly, (15;) = [1g [Laeqr,ny L1ga(15;)- Using X;p, to denote the vector from
the reference BS to the n'* BS in the k" tier, and yy to denote the vector from the k%" tier BS to

its active cluster member UE, we get 7%, = ||Xjk.n + Yol

s s a (a)
ﬁlﬁg (Mij) = E[exp(_ﬂz‘j[ij )] =E

exp (—ufj Z Puth/iglrj_k‘f‘;>]

=E E [ (_ s P Gh -1 —aa)} (_) E 1
E e PTG B3| 1+ 5, P,Grg %
Lnedy nedy, /*’sz u a 'jkn
]I 1
= - — . —
L ned), L+ ’uijP“G’ia ||Xjk7n + Yk0|| @
1
e EXjk,n H EYkO |:1 + s P G _1|| ] —l— ||—O¢a
nedy HijLuGRg “ || Xikn T Y0
_ N [1-E 1 .
(é) e Jee u( YKo L*“z@jP"G“aHxjk,nerkolaa}) Xk,
- AuE : d ik,n
@ e fR2 u=Yk0 |:1+(“ij“0";1|"]'&71+5’1€0|O‘a)1:| Xik,
B A - dyroldx;x
(;) . Jr2 Jr2 u<1+<uf]-PuG~alli'k,n+yko|aa)1>fY(yk0) YioldXjk,n

o0 OO y/ 1
o) Rk >\u<1+(M$.PuGKa1r-kaa)1)fR(Tjk’”|vjk,n)drjk,nvjk7ndvjk7n
= e ij jk,n

=27 [5° Aepapy (Tikn) , L Tik,ndTjk
(g;) o fo ak\Tjk,n 1+(“ij“0“&1’“]‘£’2)71 jk,naTjk,n

(A.24)
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where X, = peNX(r) = paps,(r) A\ By the definition of interference, we obtain (a). (b) follows
from the fact that h ~ exp(1). (c) is due to the computation of the probability generating function
(PGFL) of PPP, which describes the distribution of BSs, since we compute the expectation with
respect to  ,, in this step. (d) is determined from the fact that 1 — E[H%] = E[;] = E[H%]
(e) follows by plugging in the expression of the expected value with respect to yx. (f) is obtained
by converting the coordinates from Cartesian to polar, and v;x,, = ||X;kn||- (g) follows from an

approximation based on the property of the Rician distribution that [ fr(r|v)vdv = 7.

2) For k = 0, we have

L) =Y > paDjoLyge () (A.25)

G ae{L,N}
and since only one UE in the cluster inflicts interference, which can be via either a LOS or NLOS
link, and the antenna gain is selected from { M M, Mm, mm}, we can express

Elj%a (ufj) = Eexp(—ufjlj%“) = Eexp [—uijuGhmglfr’j_Oa“}

@ [~ 1
- /0 T3 0 PGty e o (730) 0 (A.26)
gyt u a 'j

where (a) is obtained by using the MGF of h ~ exp(1).

12 Proof of Lemma 4.3

1) For the interfering cluster member UEs k£ = 0, we have

Ly (15;) = Bexp(—pi;I5") = Eexp [—puf;(rot™)" Ghisg 156 ]

(a) 00 %) 1 .
@ /0 /0 e Frooms (8) fe, (o) dtdrso (A.27)
ij

b)TGK;L,,j—Oaa

where (a) is obtained by computing the expectation with respect to ¢ and applying the MGF of h.
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2) For k € K,,, we have

EIG“ (sz) E[exp( Mz]Iﬁc??zb)] =E [exp <_/’ij Z (Hbtab)TthK ,r]k n)]

nedy,

1
=E E [exp(—p; (kpt™) Ghiry 'r kn)] E,
Lle!k J J nl;{[)k 1+ pg; (Rpt)TGr; 17’J,m
(_i) 6_277Akm,b 157 Mepaply, (Tik,n) <1_Et [H“ (nbtab)lTGna T]kaff ] >Tjk,nd7"jk,n

T b (1)
) =] km,b . .
(c) 72#Akm’b fo )\kpGka(rjk’n) (1 (fo 1+u§v(ﬁbto‘b)7Gn;1r7aa dt rjk’ndr]k’n
= e (%] Jjk,n

(A.28)

where (a) is obtained by applying the MGF of h, (b) is due to the computation of the PGFL of
PPP, and (c) is the expectation with respect to ¢, which is the distance from the interfering UE to

its serving BS.

13 Proof of Lemma 4.4

Given the special case, we have

1
= I \NT PyBs \ 2 % a2 a2 B 2

Aqg = En'o FTl(T)F’/‘Q <<P1B1) 7")] :/0 ™M MR 026 %er
- i2 pe” (Mt %g%ﬁ)rzdr = % re= %" qr

0~ Jo 0” Jo

]. 1 700 2 o 1
N e— r g — A.29

o2 ( 2006 ) 0 2000'2 ( )

Following a similar approach, we can obtain A;; and A;,. Then, we can have the PDFs of the
conditional distances as frm(x) = %6700952/1410, fm@) = 27r)\1:):efcox2/A11, and frlg(x) =
27T/\2xe_02’”2 /A12, where Cyy and C are given in Lemma 4. Using the PDFs, we can be calculate

the SNR coverage probability as

1

02(00 + gaéo)Al().

oo TU%
P¢,, = Eno [e*“"%} = / e PuGoT2£efc°T2/A10dr = (A.30)
0
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P¢,, and g, can be obtained similarly.

14 Proof of Theorem 6.1

Given that the typical UE is associated with a s € {L, N} BS in the 1* tier, the association

probability can be derived as follows:

A5 =P(S5) Y PP > PUE NP> BIEAPE > P N PLE > Pyly)

—~
=
=

= P(P,l5 > PI3)P(P > PyL)P(PE > Pyl )P(PLLS > Pyls)
= P(kie ™z~ > ﬁ‘i,e_mr;ai VP(Pyrie "~ > Pyrl(rs + HQQ)_%L/?)

P(Pikie ™21 > Pyl (r2 + HQQ)_‘”Q{/Q)P(Pl/{ie_’mzx_o‘i > Pyrd(r2 + H2)~/2)
(c)

!
~ P(kiz~ > k5r “DP(PikSz > Pyl (r2 + H2)~0%/?)

P(Pikiz™ > Pkl (r2 + H2) 2 ?\P(Pria—1 > Pyr3(r2 + H2)~o3/2)

(A.31)

where (a) is due to the definition of association probability. (b) is due to the fact that the thinned
PPPs can be assumed independent. We replace the exponential decay with 1 for analysis tracka-
bility in (c), and this approximation is proved suitable through numerical simulation in Section V.

And (d) is due to the fact the if the nearest distance from a ;' tier BS to the typical UE r; is larger
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than a certain value, then all the distances in that tier is larger than that value, and then we can use
CCDFs of the nearest distances provided in (4.3) and (2.4). Using the same method, we can derive

Aj and As.

15 Proof of Theorem 6.2

According to [160, 197,205], for a normalized Gamma random variable u ~ I'(N, %), the prob-
ability P(u < z) can be tightly upper-bounded by P(u < x) < (1 — e~**)N, where the constant

2> 0and a = N(N!)~. Therefore, we have

M; = P(PI™ > T) = E,[P(P/™ > T|r)]

J

- /0 N P(P,Gy L (r) > T) fas (r)dr

0 T .
= P{h > —> fre(r)dr
/0 ( oyt ) s
o) [% _P-égjyﬁngs‘m N\ ¢
~ 1—(1—e 5%57) frs (r)dr
0

(:/OO i(—l)"+1 N\ o rd frs(r)dr
0 n o

—

=

n=1
Al N*® ®° _meNTT
= Z(—l)nﬂ( n ) / e Fi%G0 fR;:(T)dT (A.32)
n=1 0

where (a) is obtained by using the Gamma random variable approximation, and (b) is due to the

Binomial theorem and the assumption that /N, is an integer.

16 Proof of Theorem 6.3

The Laplace transform of the interference from the k'" tier can be derived as follows:

‘ka (ﬂ) = E[e_ﬂlk]

= E[@S ZZE‘%\Q(T) Ii]
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@ exp (— / (1- E[e“”ﬂ)Ade)

= exp< BNl / Ele#14] pkpG/\de>

s=L,N G

(;) e Zs:LyN >a ch(r)(l—E[ B k]) (I)Pk( T) A2 zde

@ - el frum (- (Hupkcg(;ﬂz(zwsws )p; (@)pf (2) A 2mede (A33)
where 7 is the distance of the main link and x is the 2D length of one interfering link. (a) is due
to the moment generating functional (MGFL) of PPP. (b) follows the fact that each interfering
link can be in LOS/NLOS transmission and the antenna gain can be G]G. We expressed the area
increment dS' by distance increment 27zdz in (¢). And (d) comes from the application of the
moment generating function (MGF) of gamma distribution E[e */i] = E[e * S @] = (1 +

HP, G ())N*) N

17 Proof of Theorem 6.4

Given the typical UE is served by a s BS in the j tier, the SINR can be expressed in (6.17).

Therefore, the conditional SINR coverage probability can be derived as follows:

<

P,GheI3
C5 =P(SINR; > T) =P (fﬂ_ﬂm > T)

N+ 1
= E [P (BGyRL(r) > T(N +1))]

=[P (m%)}

NS N 7n55Nb$(N+I)_
E. D (—1)"“( N )e EER

n=1

—
S
N

nEs NSTN r nEsNSTI

NS
N3 0 _n&sN7T —B.oms A
(_i) Z(_l)n—H( . ) / e FICTHOE e BETHM ij (T)d?"
0 L

(A.34)
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where r is the distance from a UE to its serving BS, the PDF of which is f RS (r) given in (6.9). (a)

is due to the MGF of /?, and (b) is obtained by using the expectation with respect to .

18 Proof of Lemma 7.1

We can express the CCDF as

P(r > x,the link is )

Fps(x) = P(r > zlthe link can be s) =

P(the link can be s)
_ EplP(r> ”31‘;’ DIPGID) _ (pey B P(VDZ T 1 > ols, D)pi(VD? T 12)]
0
= (D§) 'Ep[P(D > Va? — H?)p3(VD? + H?)]
= (Dp)™ / ) p;(Vd* + H?) fp(d) dd (A.35)

where © > H, s € {LOS,NLOS}, and Dj = [ pi;(r) fr,(r)dr is the probability that the link

between the typical UE and its cluster center UAV is in s transmission.

Therefore, we can get the PDF as follows:

frgle) = T - L )V 1)

19 Proof of Lemma 7.2

Let us define two events S; = {The typical UE is associated with a j* tier BS} and Sy = {The

associated link is in s € {LOS,NLOS} transmission}. Now we have
(@) ®
Ajs = P(5152) = P(5)P(51152) (A.36)

where (a) is due to the definition of the association probability, and (b) follows from the Bayes’

theorem.



239

The association probability of the 0" tier UAV

Py By,
PyBy

Aoy DEP(PyByLg! > PuBiLy' k € {1,2}) = DiP (Lk > Lo,k € {1, 2})

(A.37)

= Ep; [DS HHD,@P(/@ZTZz > Clokirod } = Eps [DSHHDkFRb w0(r0))
kb

1
. r%) *k, Dg = [ pt,(r) fr, (r)dr is the probability that the

where Cy; = —f;igf;, Qi(r) = (
link from the typical UE to its own cluster center UAV can be in s transmission, and (a) is due to
the fact that there is only one UAV in the 0*" tier and the LOS BSs and NLOS BSs in the 1°* and

274 tier are independent.

The association probability of the j' tier BSs

A, = P(ij; > L;j,)P(P-B-Lfl > PyByLi ' k€ {0,1,2},k # j)

Py By, :
A Lisk € {0,121k # )

1

= P(Lj’S/ > Lj,s)P(LO,L > COij,s or LO,N > Coijﬁ)

- P(L%s/ > L]7S)P(Lk

X P(Ly,, > Cy;Ljsand Ly y > CyjLjs, k # j)

/ ’ S al s Oz‘;-
= DjEg: | D] P(k] r (Z DiP (/@07"0 > Cojkir; )) HDZP(/-@ZT,J“ > CyiRjr )]
L b
— DiEg D;’FR;' ( ) (ZD Fr (Q65(r)) ) HDkFRb ij(r]))] (A.38)
where s, s’ € {LOS,NLOS}, s’ # s, D§ = =274 o~ (8t ig the probability that the typical

UE has at least one LOS/NLOS ;" tier BS around.
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20 Proof of Theorem 7.1

Given S; s = {The typical UE is associated with a LOS/NLOS BS in the j*" tier}, we can express

the conditional energy coverage probability as

N
C (a) b 7& .
Py (p,7,78) £ P(r(1 = p)(P + I > 7p1S;.) ® Z ( ) (Pact1)]

Eho aPm H 7aIk ]

k

@ i(_n” (JDE[( +aP;G(rr*i N,) H/:Ik } (A.39)

where P, is the received power of the main link, I = [y + I} + I, is the total interference,

w, a= N(N !)*%. (a) follows from the definition of energy coverage. (b) is modified

Q>

from [197, Appendix A]. (c) is due to the independence of P, Iy, I; and I, given S;,. (d) is

calculated by using the MGF of a normalized Gamma random variable.

POV]()

Since I only exists when the typical UE is associated with the 1** tier UAVs or the 2" tier GBSs,

we have

£1,(@) 2SS peDbLpe(@) (A.40)
b

G

N —1
‘CISG (&) = ET0|Sj,s |:Eh0 {eXp (—dPOGhO (H8T30> ):|:|

N,
OE,s. {(1 + dPOG(ngrgng)’l) }

B /oo fry (rolro > Q3(r))
max(H,Q3(r) (1 + dPOG(mgrgng)_1>
/oo fry(ro)drg
maz(H,Qgk(r)) (1 + &POG(Kgrgng)_l>Nb Dngg(QSI}(T))

d?“o

Ny

(A41)
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where s,b € {LOS,NLOS}, G € {MyM,, Mym,,, myM,, mym,, }, pc is the probability for G, (a)
is due to the fact that there is only one BS in the 0" tier which can be in LOS or NLOS transmission

with antenna gain (7, and (b) is because of the MGF of a normalized Gamma random variable.

For I, (k=1,2)

L@ =]]]]£uea) (A.42)
G b
EI(I;G (&) = ETk|Sj,s |:<1 + &PkG(nkrkko 1

a) —QW/\kprgz < (1+aPkG(fik7"kko) 1) >p1];(rk)7‘kd’r‘k
= e

—

(A.43)

where By, = max(H, QS (r)) for k =1, and By = Qzl; for k = 2. (a) follows by computing the
MGEFL of PPP.

Therefore, by substituting (A.40) - (A.43) into (A.39), we can obtain (7.22).

21 Proof of Theorem 7.2

Given S; 5, we can express the conditional successful transmission probability as

5)

Sj,s) +P (Pm > Th

)

+E [P (Pm > T,

pscucjys (pa T, VE, 75inr)
P,

@P T(l_p)(Pm+I) > VE; o2 > Vsinr
~ 4o+l

Sj,s)

Sj,s) 1 <T1 > 75

:P<Pm>T1,Pm>T2

:P(Pm ST,

Sj,s) 1 (T1 <

sj,s)

o EIHCEES)
)

O, [P (Pm >,

Sj,s)] E, [1 <T1 > T

N [1 (I <w

yysﬂ + PSing,, (0s Vsinr)Er [1 <f > w
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= Pﬁ%j,s (p7 ’}/E)(l - FI (w>) + PKSCVINRJ-J (pa Vsinr)pl (W) (A44)
_ _E _ a2 2 _ 1 ol a2 2
where T} = a-p I, Ty = Ysine (7 + o5, +[>, W= 1o (m — Vsinr (7 +0n)>,

F (x) is the CCDF of I, (a) follows from the definition of the successful transmission probability,
(b) is due to the fact that given I, the indicator function is a constant and is independent to F,,,,

(c) follows from the definition of energy and SINR coverage probability and w is obtained by

7(1—p)

Since Fy(x) = P(I > x) and this is similar as the energy coverage probability when P,, = 0,

E— — [ > Yyinr (%?—f—aﬁ—i—]).

we can obtain the expression of Fl(x) following the derivation in Appendix 7.1 by replacing vg

and p with z and 0.

22 Proof of Theorem 7.3

We can express the SINR coverage probability in the uplink phase as

Pifvr(wr) =P ( 2+

VULTS% 2
=P hy > =575 Iuser
0 = PtULGOkgv (Un + )

N ayy
@ Epe Z(—l)’”rl Ne ex _—m)s’yULro (2 + 1k, +1IN )
= ERg n p PtUL Goks user user

PYLGoho(kfrg?) ™! > 7UL)

n=0
N, N
s\ _,ULg2
—Ep, [Z(—n"“( Jertietey,, wm%wzf%] (A45)
n=0 n
where pVl = % and (a) follows by computing the MGF of the gamma random variable

ho. Ly (uYL) is the Laplace transform expression and can be further analyzed as follows:

1., (1" Hﬁzm, (A.46)
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where

Lrg, (") = E lexp (=" 1%,

ab —
=E |exp | —pl" Y PUFGihi(sgrt) ™!

1€db

user

e[ 118 [o oo (ctrticncan s )|

=& | [] & !

ob Ny
x€®y (1 + pULPILG; (kY (|1x + |2 + H2)2L’Nb)—1)

w\qv

—
S
=

W, H// ! Py (v)dy

=2 (L%wa%; b+ vl + )% i)
L .
c ULPULG
(:) €xp _pGAuser // I // fY(y)dy dx
" " i+ 2+ H)F N,
—N,
ULPULG
@ exp —QWPG)\user fw|w)dv | wdw

4yl + H)F N,
(A47)

where y is the coordinate of the interfering UE with respect to the projection of its cluster center, x
is the coordinate of the ground projection of that cluster center with respect to the ground projection
of the typical UAV, and w = ||x|| and v = ||x + y||. (a) is due to the MGF of h;. (b) follows from
the definition of expectation. (c) is due to the computation of the PGFL of PPP. (d) is obtained by

converting the coordinates from Cartesian to polar.
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