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Abstract

Quantum mechanical models are used to calculate a host of physical phenomena in
molecular solids ranging from mechanical elasticity to the energetic stability ordering of
polymorphs. However, with the many software packages and methodologies available, it can be
difficult to select the most suitable model for the problem at hand without prior knowledge. A
promising approach for evaluating the performance of solid-state models is the comparison of
the simulations to experimentally measured low-frequency (sub-200 cm™) vibrational spectra. As
this region is dominated by weak intermolecular forces and shallow potential energy surfaces,
even slight miscalculations in the solid-state packing arrangements can become readily apparent.
In this work, terahertz time-domain spectroscopy and low-frequency Raman spectroscopy are
used as benchmark experimental targets to develop computational methodologies for simulating
and analyzing the lattice vibrations of molecular crystals such as torsions and translations. The
developed computational approaches utilize solid-state density functional theory to account for
the periodic nature of a molecular crystal and include careful consideration of the effects that
functional choice, basis set composition, and energetic tolerances have on the frequencies and
spectral intensities of the sub-200 cm™ vibrations. These computational methodologies serve as
standards for accurately modeling low-frequency vibrations across a range of molecular solids
from a small molecule that exhibits unusual thermal behavior to the intricacies of an extensively

hydrogen bonded oligopeptide.
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Chapter 1: Introduction

1.1 Motivation

Computational models have been used across a wide range of scientific disciplines,
finding uses from physics to food science.” These models are applicable to all states of matter,
but have often been applied to complex solid-state problems such as to help differentiate between
the many polymorphs of chocolate, and explain why in the late 1990°s the HIV drug Ritonavir
started failing dissolution tests and had to be pulled from the shelves.®'? Quantum mechanical
models are particularly advantageous over classical force fields, as they do not require the use of
empirical parameters, however, they do come with a large computational cost that has proven to
be overwhelming for large systems.®*> This challenge has been addressed through continuous
improvements to computers and software codes, increasing the potential applications of quantum

mechanical models.16-18

Even with improvements to scalability, the difficulty remains in knowing how far a
quantum mechanical model can be trusted.®?* A target accuracy of 1 kcal/mol (4.2 kd/mol) is
often used, but this has proven to be insufficient when describing small energy changes such as
ranking the stability of polymorphs.?>?® To validate these models, replication of experimental
measurements is necessary, with models often focusing first on accurately predicting atomization
energies.?>3! This focus, however, is not an appropriate target for condensed phase systems, as
their errors increase with system size.3?3* A promising benchmark for determining the success of
molecular solid simulations is the replication of low-frequency vibrations. These vibrations

(< 200 cm™) are associated with large-scale, global motions of the molecular species in the solid



and require that the model accounts for not only the covalent forces within a single molecule, but

also the intermolecular forces that hold the solid together. 338

Developing methodologies that focus on the low-frequency region of the electromagnetic
spectrum provides realistic expectations for the simulation of condensed phase systems. In the
past, the combination of quantum models and low-frequency vibrational spectroscopy has
worked very well, but improvements to technology and software codes allow even further
understanding to be gained.**** These insights can come in the form of observing low-frequency
Raman vibrations within 5 cm™ of the Rayleigh line, or through the use of a hybrid density
functional in studying biomolecules.*> 44° As the restraints that previously bound quantum
mechanical models are relaxed, a new set of methodologies can emerge to model physical
phenomena in ways that were once thought to be impractical. These approaches can then be
used to draw new physical insight and serve as guides for the development of methodologies to

be used to evaluate even larger and more complex systems.

1.2 Background

To rationally use quantum models in the investigation of solid-state properties, the
theoretical methods that form the foundations of the simulations must be at least minimally
understood, including an appreciation for the terms used to solve the Schrodinger equation.>°->2
Once solved, the Schrédinger equation can be used to describe all quantum aspects of a system.
While this equation can be easily explained for a single electron case, as the size of the system
increases to include multiple electrons, the interactions between these electrons greatly

complicates solving the many-body Schrédinger equation.>® >4



A commonly applied computational method to describe both the classical electrostatics and
the quantum effects of condensed phase matter is solid-state density functional theory (ss-
DFT).5%%8 In principle, this approach provides an exact solution as the exchange and correlation
energy are included as a function of the electron density; however, without knowing the exact
form of the exchange and correlation terms, approximations must be made.>® % When
performing ss-DFT based calculations, it is important to note which terms can be solved exactly,
versus those that must be approximated. In understanding the formation of the density functional
used to approximate the exchange and correlation energy, as well as the formation of the
molecular orbitals used to describe the electron density, one can begin to understand how one
simulation differs from the next. Since these differences in the construction of the model can lead
to large changes in the predicted physical properties, it is imperative that they are chosen with
care and with respect to the type of system being evaluated.5-% In the case of crystalline
systems, this includes the use of periodic boundary conditions and the inclusion of London

dispersion forces.®"3

Since these models are often used to differentiate solids that differ only in their solid-state
packing arrangement, and not molecular identities, the experimental measurements to which they
are being compared should be able to do the same. One experimental technique that can monitor
these often-subtle differences in packing arrangements is low-frequency vibrational
spectroscopy. Low-frequency vibrational spectroscopy is governed by the same foundations of
classical infrared and Raman spectroscopies. However, unlike spectroscopies that probe the
frequency region > 1500 cm™ and can only differentiate between the presence of different
functional groups, low-frequency vibrational spectroscopy interacts with < 200 cm™ frequency

range that can be used to differentiate between slight changes to the intermolecular packing



arrangements of solids.”*"® It can be advantageous to use a combination of low-frequency
vibrational spectroscopies to measure all optically allowed vibrations, regardless of vibrational
selection rules, using both terahertz time-domain spectroscopy and Raman spectroscopy.®%-82 Just
as it is important to understand the energetic transitions and vibrational selection rules that allow
a spectral feature to be observed, it is also important to understand how these spectra can be

collected and applied.

Another technique often used to characterize crystalline solids is X-ray diffraction.88¢
Rooted in the directionality and intensity of the diffracted rays, X-ray diffraction is used to not
only identify the dimensions of a crystallographic unit cell, but the location of the atoms within
it.” Knowledge of the foundations that govern X-ray diffraction leads to more meaningful and

efficient data collections that can be used to help validate computational models.

1.3 Summary of Chapters

The opening sections of this work focus on the foundations that are used to characterize
solids both theoretically (Chapter 2) and experimentally (Chapter 3), paying special attention
to solid-state density functional theory and low-frequency vibrational spectroscopy. These
foundations enable the processes and applications described in Chapter 4 to be used
appropriately to gain the new physical insights that are detailed in Chapters 5-7. The work
closes with a series of reflections on the key products of the work and the potential for future
directions (Chapter 8).

Chapter 2 begins by briefly exploring the core equations and principles that govern

quantum mechanical models with the discussion progressing to the specifics of density



functional theory (DFT). As opposed to wavefunction-based methods, the crux of DFT lies in
solving for the electron density, and while several of the energetic components can be solved
exactly, there still exists a group of interactions that must be approximated. These approximated
terms cover the quantum contributions to kinetic energy as well as electron-electron repulsion.
To model these interactions, a number of density functionals and basis sets have been developed
using varying levels of complexity. Finally, the application of these principles to solid-state
calculations is explored, emphasizing the need for periodic boundary conditions.

Chapter 3 begins by broadly describing a number of experimental approaches that can be
used to characterize solids. The focus is then narrowed down to two regions of the
electromagnetic spectrum that can be used to validate the quality of DFT calculations in the
solid-state, the terahertz frequency range, from 3 — 333 cm, and the X-ray frequency range,
from 10° — 1077 cm. Two different forms of low-frequency vibrational spectroscopy are used to
access vibrations in the terahertz range. Both approaches are governed by the same principles
that apply to all types of vibrational spectroscopy, with the difference being the vibrational
selection rules that are being investigated. Terahertz time-domain spectroscopy (THz-TDS) uses
the generation and detection of terahertz waves to probe the infrared-active vibrations by
measuring the transmission of light through a sample. Conversely, low-frequency Raman
spectroscopy (LFRS) probes the Raman-active vibrations through precise filtering and analysis
of the light scattered off the sample. The same types of large-scale global vibrations are seen
regardless of which low-frequency technique is used, but having access to both provides a
complete spectral picture for the samples being investigated. The X-ray frequency range is
utilized through two different approaches as well, powder X-ray diffraction (PXRD) and single-

crystal X-ray diffraction (SC-XRD), but these techniques are based on diffraction rather than



absorption. The first approach provides a representative pattern of the bulk sample, while the

second approach focuses on the details of an individual crystal.

Chapter 4 aims to provide practical applications for the foundations established in the
previous chapters, and outline processes that can be followed to achieve reliable and sensible
results. Cursory descriptions of a selection of tools available within the solid-state DFT software
code, CRYSTALL17 are provided as well as examples of input files to start single point energy,
geometry optimization, and harmonic frequency calculations for L-cystine, a proposed molecular
standard.® Also included, are detailed procedures for the collection and analysis of both THz-
TDS and LFRS measurements, with examples of spectra for each approach. This chapter
concludes with PXRD and SC-XRD procedures for the use of the instruments in the Department
of Chemistry at Syracuse University, including specific details about previously used data

collection parameters.

Chapter 5 is a presentation of the proposed crystalline molecular standards to be used for
both forms of low-frequency vibrational spectroscopy and ss-DFT calculations. With researchers
currently having the accessibility to such a wide number of commercialized and home-built
instruments as well as ss-DFT software codes, the situation necessitates the establishment of
benchmark molecular targets. Three crystalline solids are proposed to serve as standards: a-
lactose monohydrate, biotin, and L-cystine. Each of these systems forms well-characterized
crystalline solids under ambient conditions that are stable, inexpensive, and non-hazardous. All
three targets also have a number of well-resolved spectral features at room-temperature
obtainable through both THz-TDS and LFRS. The same materials were analyzed

computationally using identical levels of theory, and good agreement with experimental results



were achieved for each solid. The ideal candidate to serve as a molecular standard across THz-

TDS, LFRS, and ss-DFT was determined to be crystalline biotin.

Chapter 6 reveals an unusual temperature dependence in a lattice vibration of a well-
known neurotransmitter, y-aminobutyric acid (GABA). Typically, when a sample is cooled, the
spectral features will shift to a higher frequency, and this is what was seen for the majority of the
low-frequency terahertz and Raman peaks of GABA. However, the lowest frequency lattice
vibration in crystalline GABA shifts to lower frequency when cooled. This anomalous shift in
response to temperature is unusual, but not unheard of. To explain the origin of the unexpected
shift, a series of ss-DFT calculations were run, employing numerous functionals, basis sets, and
additional keywords to increase accuracy. Regardless of the approach, the anomalous shift was
not reproduced using a harmonic approximation for the vibrational frequencies, and it was only
once the quasi-harmonic approximation was utilized that the temperature-dependent shift became
reproducible using ss-DFT. The combination of the quasi-harmonic approximation and the
investigation into the character of the lowest terahertz mode revealed that the shift was most

likely dominated by an unusually anharmonic hydrogen bond.

Chapter 7 increases the size of the system studied to include an oligopeptide in the form
of crystalline B-triglycine. B-triglycine is used as a benchmark system to evaluate the impact that
different functional and basis set combinations have on the geometry optimization and harmonic
vibrational frequencies of an oligopeptide. Successful modeling of an oligopeptide is one of the
first steps necessary to developing a methodology capable of being scaled to include even larger
biomolecular systems. It was found that while all functionals and basis sets examined provided
general agreement with the experiments, the PBE0-D3 functional in combination with the VTZP

basis set proved to be superior. In addition to demonstrating the value of the PBEO hybrid



functional, this work highlights that the VTZP basis set shows great promise for use with large

systems that require a hybrid functional to reach good chemical accuracy.
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Chapter 2: Theoretical Foundations for the Characterization of

Solids

2.1 Introduction

Every development that can be applied to a quantum model provides the opportunity for a
more accurate chemical description.”® What started as a way to model a single hydrogen atom
has grown to predict physical properties and observables for systems as large as biomolecules,
with simulations lending themselves to predicting vibrational spectra, electronic band gaps, and
thermodynamic stability.*” All the information needed to solve these problems lies in solving the
wave function of a chemical system, the mathematical expression that encompasses the
probability of a particle’s quantum state.® In 1926, Erwin Schrédinger devised an equation
capable of solving the wave function (%) of a system that could be modified to include or
exclude time-varying external forces.® The time-independent Schrodinger equation takes the
succinct form seen in equation (2.1), where the energy (E), is an eigenvalue of the Hamiltonian
(H, energy operator).1°

HY = EY 2.1)

The above equation (2.1) has been used to solve the exact wave function of a single
hydrogen atom, however, systems composed of many nuclei and electrons such as solids require
a many-body solution.!! 12 Solving the many-body problem of the time-independent Schrédinger
equation begins with separating the total energy into its kinetic and potential energy components
as seen in equation (2.2). This equation expresses the time-independent Schrodinger equation in

terms of the electron coordinates, r, spanning the indices i,j for the number of electrons (N) and
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the nuclear coordinates, R, spanning the indices 1,J for the number of nuclei (M). Other variables
included in equation (2.2) include: 7, the reduced form of Planck’s constant, m., the mass of an
electron, M, the nuclear mass, e, the charge of an electron, &, the permittivity of a vacuum, Z, the

atomic number, and 72, the Laplacian operator defined in equation (2.3).

ZZme ZZM, 2247‘[80 | — 2247‘[80 |R, — R/|

—I|¥Y = E. ;¥
4mey |1 — Ry | tot
! (2.2)
0% 0% 0%
Vi=—+-—+
0x? 0y? 0z2 (2.3)

While equation (2.2) is quite large it is an ab initio solution as none of the variables are
empirically derived.'® The lengthy expression for the Hamiltonian enclosed in the above brackets
can be reduced to a more approachable form seen in equation (2.4) by expressing the first two
terms as Teand Ty, to represent the kinetic energy of the electrons and nuclei, respectively. The
remaining three terms are expressed as Ve-e, Vn-n, and Ve.n, representing the Coulombic
interactions of electron-electron repulsion, nuclei-nuclei repulsion, and electron-nuclei attraction,

respectively.

[T; + T;l + V;e +Vn + Ve—n]l‘U = Etoi¥ (2.4)
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It is the Born-Oppenheimer approximation that allows for the electronic and nuclear terms to be
separated, as well as the terms T, and Vin.nto be removed from further consideration due to the

overwhelming mass difference between the nuclei and the electrons.*

While the exact wave function for the above equation can be solved for a single hydrogen
atom, no exact solution has yet been obtained for a system containing more than a single
electron, due to the electron-electron interactions causing multiple terms to be dependent upon
one another. The most straightforward approximation to solving the multi-electron problem is to
invoke the independent electron approximation, where electrons are treated as non-interacting
particles, allowing the Hamiltonian to be separable for each electron. With the understanding that
electrons do, in fact, interact with one another, the repulsive Coulombic term can begin to be
reintroduced. To begin including electron-electron repulsion, the Hartree approximation can be
used, applying the average potential felt by each electron to the entire system.®>” This
decomposes what was once a problem with 3N dimensionality into N three-dimensional
equations and replaces the Ve.e term in equation (2.4) with the Hartree potential, VH, and
expresses the electron-electron repulsion in terms of electron density, n(r).*® While the Hartree
approximation is a good starting point, it is only able to account for classical electrostatics and

fails to include any quantum effects.

To account for the missing energy terms attributed to quantum effects, such as exchange
and correlation energy, either wave function or density-based methods can be used with both
approaches constructing a many-body wave function (V') through a series of one-electron wave
functions (y). Wave function-based methods, such as Hartree Fock, use a Slater determinant to
construct the final wave function, while density-based methods, such as density functional

theory, rely on the electron density in place of explicitly solving the wave function.® 2
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2.2 Density Functional Theory

At the heart of all density functional theory (DFT) calculations are the two theorems
developed by Hohenberg and Kohn in 1964. The first states that the ground-state energy is a
unique functional of the electron density, and the second states the variational principle, that the
electron density that corresponds to the solution of the time-independent Schrédinger equation
will be the one in which the total energy is minimized.?* Only a single year after the Hohenberg-
Kohn theorems were released, the Kohn-Sham equations were published, expressing the electron
density using single-electron wave functions. These equations allowed the theorems established

by Hohenberg and Kohn to be applied to chemical systems as seen in equation (2.5), where the
_p2
first term (% V%) is the electronic kinetic energy, V(r) is the electron-nuclei interaction, Vu(r) is

the Hartree potential, and Vxc(r) is the exchange-correlation potential for a position, r. The

Hartree potential can be further defined in terms of electron density as shown in equation (2.6).

2

TP V) 4 V() + V() ) = () (2.5)

V() = 2 %dsr' (2.6)

The exchange-correlation potential included in equation (2.5) accounts for the missing electron-
electron repulsion and kinetic energy terms left out when using only a classical approach.?? 23 It
is this embracement of the quantum terms established by the exchange-correlation potential that
differentiates the Kohn-Sham equations from the Hartree-Fock equations established at the end

of section 2.1.2* While the inclusion of these additional terms makes for a more accurate
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solution, the exact form of Vxc is not known and must be approximated using an exchange-
correlation functional. While the theory behind DFT is exact, without knowing the true form of

Vxc, the equations can only be solved approximately.

2.2.1 Exchange-Correlation Functionals

The exchange-correlation potential (Vxc) is the functional derivative of the exchange-

correlation energy, Exc, with respect to the electron density, n(r) as seen in equation (2.7).

SEX C (T') (2 7)
sn(r) '

Vyc(r) =

The exchange-correlation energy functional in the above equation can be considered as the
summation of both the exchange and correlation energies. A series of functionals have been
developed to approximate this unknown term using varying levels of complexity. Some of these
functionals only include corrections to a single energy component, exchange, or correlation,
while others have been built to include both terms. Commonly, two functionals are combined to
account for both exchange and correlation energies with a well-known example of this
concatenation being the BLYP functional, composed of the B exchange correction, and the LYP
correlation correction. When naming functionals, acronyms corresponding to the last name of the
authors who developed it has become common practice. For example, the PBE functional was
developed by John Perdew, Kieron Burke, and Matthias Ernzerhof while the LYP functional was
developed by Chengteh Lee, Weitao Yang, and Robert G. Parr.?> 2

Often, the classes of functionals are represented in reference to the Biblical story of

Jacob’s ladder, as climbing the rungs leads to heaven, or in the case of DFT, the true form of the
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exchange-correlation term. The original DFT version of Jacob’s ladder has 5 rungs, local spin
density approximation (LSDA), generalized gradient approximation (GGA), meta-GGA, exact
exchange and compatible correlation, and exact exchange and exact partial correlation.?’ Figure
2-1 provides a graphical outline of the exchange-correlation rungs, as well as selected examples

from each category.
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Figure 2-1. “Jacob’s ladder” of exchange-correlation functionals, with complexity increasing
with the height of the ladder.

Starting at the bottom of the ladder is the local density approximation (LDA), where the
exchange-correlation energy is equal to that of a uniform electron gas and the contributions from
spin density are equal.?®3? In the case of open-shell systems, the spin-polarized formalism can be
incorporated in the form of a local spin density approximation (LSDA).3 Using the homogenous
electron gas, the exact exchange energy can be derived, but approximations must still be used for
the correlation energy.3* While success has been found using this class of functional in systems

where the electron density is a slowly varying function, the LDA and LSDA overestimate the
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binding energy, and are also prone to underestimating the magnitude of the exchange energy
while overestimating the magnitude of the correlation energy.®® For solids, this class of
functional also often leads to an underestimation of the lattice constants.>

The next rung of the ladder is the generalized gradient approximation (GGA) method,
adding in the first derivative of the electron density (the gradient, V) to the LDA and LSDA
methods. This approximation leads to improved internal and external structural components, but
has a habit of overcorrecting the overbinding seen in the LDA.3" 3 The two most popular
exchange functionals utilizing a GGA are PBE and B, while PBE and LYP are the two most
popular correlation functionals in this category.3**! The PBE functional has been modified to
better predict the lattice dimensions of solids (PBEsol) however, it fails to replicate experimental
atomization energies and has not worked well for the organic molecular crystals studied in this
work.*? Moving to the third rung of the ladder are the meta-GGA class of functionals. The
etymology of the word meta means beyond, and so a meta-GGA expands upon the foundations
of a GGA by including the kinetic energy density (t) or the Laplacian for electron density (V2).4*-
47

Hyper-GGAs, also known as hybrid functionals, make up the fourth rung of Jacob’s
ladder, and include a portion of the exact exchange of Hartree-Fock in the total exchange
potential. The additional considerations of this category have led to improvements in modeling
solid-state properties and justly have become very popular. Just as with a GGA, hybrid
functionals incorporate both an exchange and correlation piece, producing well-represented
approximations to the exchange-correlation potential. The B3LYP functional is the most
commonly cited, and is a hybrid functional composed of 20% Hartree-Fock exchange, 8% Slater

(LSDA) exchange, 72% B (GGA) exchange, 19% VWNI1RPA (LSDA) correlation, and 81%
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LYP correlation.*® 4% Other common hybrid functionals include PBEO (composed of 25 %
Hartree-Fock exchange, 75% PBE exchange, and 100% PBE correlation) and HSE.>* °! While
B3LYP is very popular it is not an ab initio approach like PBEO due to the inclusion of
empirically derived parameters. The chemical accuracy of hybrid functionals is quite
advantageous, but due to computational expense, functionals in this class and above are often
unreasonable for the use on solids.>2%3

A well-known limitation of the functional classes previously described is the ability to
account for the correlation in the form of long-range van der Waals interactions.54-% These
dispersion interactions have been attempted to be corrected by using a series of methods
including nonlocal vdW-DF, parameterized functionals, and semiclassical corrections (DFT-
D).57-0 The iterations of the dispersion correction developed by Grimme have gained traction
with condensed phase calculations, with recent versions including the option to include the
Becke-Johnson (BJ) damping function and the addition of the Axelrod-Teller-Muto three-body
term (ABC).*7®

As one moves up the ladder, the complexity of the functional increases and it is often
assumed that this leads to more accurate approximations. In fact, the appropriate choice of
functional is dictated by the type of system and the properties being studied.” ° Several reviews

have been published focusing on the effect that functional choice has on computational

calculations for a wide range of systems from gas-phase molecules to crystalline solids.®!83
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2.2.2 Basis Sets

To begin solving the Kohn-Sham equations that include an exchange-correlation
functional, an initial guess must be made for the electron density, n(r). This guess begins a
circular approach of solving for the electron density known as a self-consistent approach. Here,
the initial guess is used to solve for the Hartree potential which is then used to solve the wave
function. That wave function is then used to recalculate the electron density using equation (2.8),

and the difference between the initial and calculated electron density are compared.®

n() =2 ) $i ) (28)

The one-electron wave functions that are used to solve for the electron density are
constructed using a basis set. Basis sets represent the molecular orbitals () using a sum of basis

functions (¢) and molecular orbital expansion coefficients (c) as seen in equation (2.9).

N

Yi(r) = Z CaiPa(T) (2.9)

a=1

While ideally a basis set would utilize an infinite number of functions, finite basis sets have
shown excellent results, with the key to a chemically accurate basis set being the flexibility to
describe any scenario. These finite basis sets are generally broken down into two groups, plane
waves and atomic orbitals, but recently developed real-space methods are showing great promise
as well &

Plane-wave basis sets are independent of atomic position, orthogonal, efficient, and
inherently periodic, making them ideal for condensed phase calculations and resulting in their

implementation in a multitude of DFT software packages.*° The total number of plane waves
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used is set through a cutoff value, with larger cutoff values including a larger number of plane
waves, leading to increased accuracy, at the cost of computational resources.®* Unfortunately,
using plane waves to describe all the electrons is very computationally demanding as the core
electrons require many basis functions for accurate modelling.%2-%*

Atomic orbital basis sets require fewer basis functions than their plane wave counterparts,
with even the smallest localized basis sets yielding good results for a single atom. The atomic
orbitals are most commonly described as Gaussian-type orbitals, with Slater-type orbitals and
numerical atomic orbitals also available.®>°" Slater-type orbitals do a good job of describing the
actual shape of the atomic orbital, but they are computationally difficult. Instead, the Slater-type
shape can be mimicked using a linear combination of Gaussian-type orbitals whose integrals can
be evaluated analytically, leading to a reduction in computational expense.®® % A single
Gaussian function is better known as a primitive Gaussian-type orbital (g) and can be defined by
equation (2.10), where N is a normalization constant, « is the orbital exponent, x, y, and z are the
Cartesian coordinates of the nucleus, and the exponents a, b, and ¢ sum to define the angular

momentum.

g(r) = Ne™ @ xybz¢ (2.10)

To continue reducing computational cost, a linear combination of primitive Gaussian-type
orbitals can be used to describe a single basis function, known as a contraction. The contracted
basis set introduces an additional term in the form of a contraction coefficient (d) expressing a
basis function for an orbital as the summation of the primitive Gaussian-type functions

established in equation (2.9) as seen in equation (2.11).
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¢ = Z dngn(a,1) (2.11)

The simplest form of a contracted basis set is a minimal basis set, containing only a
single basis function for each atomic orbital. The most-well known minimal basis sets are the
STO-nG family where the n represents the number of primitive gaussians per basis function,
keeping in mind that a single basis function can be composed of multiple primitive Gaussians.®
101 However, this level of theory, does not always allow for the flexibility necessary, and so basis
sets with two or three basis functions (double-{ and triple -{) per atomic orbital have been
constructed.1%21% |n the case that even greater flexibility is necessary, polarization or diffuse
functions can be incorporated to allow electrons to occupy orbitals that are not typically occupied
in the ground-state, 10108

Not only are these larger basis sets typically more computationally accurate, they also
tend to have a lower contribution of basis set superposition error (BSSE)."® 109111 BSSE is
caused by the overlap of basis functions from nearby atoms, artificially increasing the interaction
energy between atoms.*? With the increased size comes computational penalties making large
basis sets very expensive.?® To compromise, the valence electrons (which participate in bonding)
can be treated with a larger number of basis functions than their core counterparts, producing
split-valence basis sets, which have proven to be very successful.!*1% just as with plane wave
basis sets, effective core potentials can also be used in conjunction with atomic orbital basis sets

to reduce the number of basis functions thereby reducing computational cost.1%% 104
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2.3 Solid-state Density Functional Theory

Solid-state density functional theory (ss-DFT) has proven to be particularly useful to
pharmaceutical and industrial applications with calculations being used to determine energetic
favorability, predict crystal packing arrangements, as well as understand the materials response
to external strain.'’-12* While there are a number of computational choices available for
performing ss-DFT calculations, they all share one thing in common: the implementation of
periodic boundary conditions.8:87:125130 Crystalline solids are made up of organized, repeating
units that extend across three dimensions and for the purposes of computational models, can be
viewed as an infinitely repeating arrangement. To model a crystalline solid, the repeating units
must first be reduced to a finite number of parameters. This can be done by exploiting the
periodicity of a solid as the repeating units can be broken down into a series of crystallographic
unit cells, the smallest description necessary to replicate the pattern seen in the bulk. The unit
cell can also be further decomposed into a series of asymmetric units, where the symmetry
elements inherent to the assigned space group are used to replicate the asymmetric unit
throughout each unit cell. A visual representation of a solid from an asymmetric unit to

crystalline solid is found in Figure 2-2.
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Figure 2-2. Visual representation of asymmetric unit (panel A), crystallographic unit cell
(panel B), and three-dimensional packing (panel C).
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To aid in efficiently modeling periodic solids, the conversion can be made from real to
reciprocal space using Bloch’s theorem established in equation (2.12), dictating that solutions to
the Schrddinger equation for equivalent positions in the lattice will differ by a phase factor. Here,
k is the wave vector and r is a position vector given the periodic relationship described in

equation (2.13), where R is a lattice vector of the direct lattice.®3! 13

W +R) = e*Ry(r) (2.12)
U(r+R) = U(r) (2.13)

In reciprocal space (k-space) a single unit cell is defined as a Brillouin zone, with the smallest
space that can be used to represent the bulk solid composing the first Brillouin zone.
Considerations of the k vector can be restricted to the first Brillouin zone due to the combination
of Bloch’s theorem and periodic boundary conditions.'331% As mentioned in section 2.2.2, plane
wave basis sets are inherently periodic, and are often used in reciprocal space calculations as
they naturally fulfil the Bloch condition established in equation (2.12). To use the atom-centered
basis sets described in section 2.2.2, they must first be transformed into a series of Bloch basis
functions to satisfy the Bloch condition. This is done by expanding the Gaussian-type orbitals to
include a phase component.137-140

A key difference between performing density functional theory calculations on a single
molecule versus a crystalline material is in the interaction between neighboring molecules and
unit cells.**4 This becomes obvious in the calculation of low-frequency (< 200 cm™)
vibrational spectra, where this frequency range is governed by lattice vibrations, requiring that
both intra- and intermolecular forces are accounted for in the model. Calculations performed on

only a single molecule, or even a collection of supercells are not able to account for the weak
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intermolecular interactions present throughout the crystalline solid and will fail to properly
reproduce the low-frequency region.

When calculating vibrational frequencies for the low-frequency region of solids, one
should always start from an optimized structure, ensuring that the geometry is at a minimum on
the potential energy surface. These optimizations are performed by varying the lattice
dimensions and atomic positions until a set of convergence criteria are met. It is this structure
that is then used to calculate vibrational frequencies by diagonalizing the mass-weighted Hessian
matrix and obtaining a set of eigenvalues. The elements of this matrix, H, are seen in equation
(2.12), where m and g represent the reduced mass and cartesian coordinates of atoms i and j, with
respect to the energy obtained through a harmonic approximation.

_ 1 0%FE
Y A Mim; aQiaqj

The second order partial derivatives of energy seen in equation (2.12) with respect to atomic

H

(2.12)

motion can either be solved analytically or numerically, with the numerical method proving to be
more common.* Using the numerical finite difference of the gradient, each atom is displaced by
a given distance (A) for each cartesian direction using either a one- or two-point method as seen
in equation (2.13) and (2.14), respectively,146-148

d d
9’E a—qiE(q,- +4) — a—qiE(q,-)

(2.13)

d 0
9’E aq; Ea; +8) —5-E(a; —4)

(2.14)
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Some ss-DFT software codes have even implemented anharmonic corrections, such as, the quasi-
harmonic approximation (QHA), the vibrational self-consistent field theory (VSCF) and the self-
consistent ab initio lattice dynamics (SCAILD) method to produce more accurate models,
however, they come with extensive computational costs.**1% To calculate the associated
intensity with each vibrational frequency a number of approaches have been developed. For
infrared-active vibrations the intensity is related to the derivative of the dipole moment with
respect to the atomic coordinates, while the intensity of Raman-active vibrations is solved
through the derivative of the polarizability tensor with respect to the atomic coordinates. %1%
The combination of predicted frequencies and intensities has been used to assign the calculated
frequencies to those observed experimentally and from here, those assignments have been used

to gain invaluable insight into the intermolecular forces governing crystalline solids.*6% 61
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Chapter 3: Experimental Foundations for the Characterization of

Solids

3.1 Introduction

Matter in the solid state can be characterized using a wide array of analytical methods,
with the most powerful analyses utilizing a collection of techniques.’ 2 One way in which these
methods can be combined is by using complementary regions of the electromagnetic spectrum.*
4 The electromagnetic spectrum spans the entire range of electromagnetic radiation frequencies
and is typically described as bands grouped by common characteristics such as source or the way
in which they interact with matter.> The terahertz (THz) frequency range, 0.1 — 10 THz (1 x 10!
—1x10% Hz, 3-333cm™, L, =3 x 10°- 3 x 10° m) has proven to be particularly useful for
characterizing solids and bridges the gap between the infrared and microwave regions.®
Accessing this region through low-frequency vibrational spectroscopy allows weak, noncovalent
interactions to be explored, and it is due to the unique nature of these vibrations that solids can
be characterized in this region. Another region commonly used to characterize solids is the X-ray
region (A = 0.1 — 10 nm), which is capable of providing details into atomic and molecular

structures through X-ray crystallography.’

Both frequency regions, the THz, and the X-ray, can be used to differentiate between
different molecular identities, as well as different solid-state packing arrangements. These often-
subtle changes can have large consequences on the physical properties, and so the ability to
detect the presence of a salt, hydrate, or different polymorphic form is critical to categorizing and
understanding the chemical species.®° It is by combining low-frequency vibrational

spectroscopy with X-ray crystallography that both a static and dynamic picture can be captured.!!
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3.2 Vibrational Spectroscopy

Before delving into the intricacies of low-frequency vibrational spectroscopyi, it is best to
understand the foundations that govern vibrational spectroscopy as a whole. Vibrational
spectroscopy refers to instances when the interaction of energy with a medium is sufficient to
promote molecules from one discrete vibrational energy level to another, in turn causing the
molecule to vibrate.*? The number of unique ways in which the molecule can vibrate is dictated
by its vibrational degrees of freedom. The vibrational degrees of freedom for a linear system are
given by 3N-5, where N is the number of nuclei present, whereas a non-linear system possess
3N-6 vibrational degrees of freedom. Each vibrational degree of freedom gives rise to a
fundamental motion in the form of a normal mode of vibration, and so for the simple case of a
diatomic molecule (N=2), only a single normal mode of vibration would be expected (3(2)-6).
Moving from a simple diatomic to a solid will increase the number of normal modes of vibration,
as now the contents of the entire unit cell must be accounted for. Focusing on crystalline solids,
these normal modes of vibration can be further decomposed into internal (molecular) and
external (lattice) modes where the number of internal modes can be determined by using the
formula 3N-6M, and external modes by the formula 6M-3, with M being the number of
molecules, each with N atoms within a single unit cell.*> 4 To observe these normal modes of
vibration, they must first meet a set of criteria established by their energetics and interaction with
incident radiation.'®

The first criteria pertains to the transition between energy levels. For a diatomic
molecule, each discrete energy level, E,,, can be expressed by the quantum harmonic oscillator as
seen in equation (3.1), where n is a positive integer value that defines the energy state, 7 is the

reduced form of Planck’s constant, c is the speed of light, and ¥ is the frequency.
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E, = (n + %) hev (3.1)

The frequency, v, can be further defined by equation (3.2) through the force constant, k, and the

reduced mass, [

1 |k
2mc |1

<Y
Il
|

(3.2)

Using the quantum harmonic oscillator, the energy for the lowest energy level (n = 0) would not
be equal to 0, but to %hcﬁ. This is known as the zero-point energy and gives the important

implication that a molecule can never be completely at rest. The inclusion of the zero-point
energy is one facet that differentiates the quantum harmonic oscillator seen above from the
classical harmonic oscillator. If the energy supplied by the incident radiation is exactly equal to
the difference in energy between discrete energy levels, the first criteria for observing a normal
mode of vibration is met.

Using the quantum harmonic oscillator described, the potential energy, V, can be
determined by the force constant, k, as a function of internuclear separation using equation (3.3)
with the change in interatomic distance (r) from the equilibrium position (re) represented as,

r—"1,.

=3 (r—r) (3.3)

Using equation (3.3), the energy levels will be evenly spaced due to the quadratic nature of the
harmonic oscillator. However, in reality, the energy levels are not all evenly spaced, and there

comes an energy limit where the bond will dissociate. These deviations from harmonic behavior
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are known as mechanical anharmonicity, and result in the true potential energy curve being
asymmetric, with unevenly spaced energy levels. To account for the real-life deviations from the
quantum harmonic oscillator model described in equation (3.3), higher ordered terms can be
included, and while these additional terms would improve the approximation, the quantum
harmonic oscillator is still a fair assumption when the displacement from the equilibrium
position is small.1® 7

An alternative route to accounting for anharmonicity is to approximate the potential
energy using a Morse potential as seen in equation (3.4) accounting for the dissociation energy,
De, and the ‘width’ of the potential, £.

V = De(l — e_ﬁ(r_re))z (34)

This approach leads to the potential energy curve becoming flatter as the dissociation energy is

approached and the force constant is reduced as seen in Figure 3-1.18
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Figure 3-1. Deviation of an anharmonic Morse potential (red) from a quantum harmonic
oscillator (black) as adapted from Herzberg, Spectra of Diatomic Molecules.*®
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The second criteria that must be met for a transition to be observed is based on
vibrational selection rules. Transitions that meet the energy criteria and experience a change in
the dipole-moment (i) with respect to the vibrational coordinates (q) will be infrared-active
(equation (3.5)) while changes to polarizability (a) with respect to the vibrational coordinates (q)
will be Raman-active (equation (3.6)).2% 2! The symmetry associated with each normal mode can
also be used to determine if it will be infrared-active, Raman-active, both, or, potentially,
neither.?? It is possible for a normal mode to be both infrared- and Raman-active but their

intensities will be inversely related.

9

o

9q (3.5)
Ja

— %0

dq (3.6)

Each of the normal modes that satisfy the above two criteria have the potential to yield an
observable band in the vibrational spectrum.?® To observe these allowed vibrational transitions,
infrared and Raman spectroscopy can be used. The core difference between the two
spectroscopic methods beyond their differing selection rules described above is that in infrared
spectroscopy, the light that is absorbed is measured, while in Raman spectroscopy the light that
is scattered is measured.?

To generalize basic infrared spectroscopy, a sample sits between a light source and a
detector, and while the light source contains many different infrared wavelengths, only those that
match the intrinsic vibrational frequencies of the system being studied are absorbed.?® The

transmitted light is then sent to the detector where it is separated by wavelength, and the resultant
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intensity of each wavelength is detected. One of the most common applications of infrared
spectroscopy is the identification of functional groups in the 1500 — 3700 cm™ range for
characterizing organic compounds, however, it has also led to a better understanding of proteins,
biological imaging, and the monitoring of produce quality to name only a few of the countless
applications.?34

Conversely, Raman spectroscopy uses a monochromatic light source to raise photons to a
virtual energy state and detects the resultant scattering of emitted photons. These scattered
photons fall into two categories, elastic scattering, where the final frequency matches that of the
incident beam (Rayleigh scattering), and inelastic scattering, where it does not (Raman
scattering). Only 1 in 108 of the scattered photons falls into the latter category, with the
remainder of the scattered light manifesting as an intense Rayleigh peak, making filtering out the
inelastically scattered light more difficult as proximity to the Rayleigh line increases. % Of the
inelastically scattered photons, the majority will shift to higher wavelengths as a result of losing
energy, and are known as Stokes peaks. Alternatively, photons who gain energy will shift to
lower wavelengths (anti-Stokes peaks). These shifts from the Rayleigh line are referred to as
Raman shifts, A7 (cm™), and can be calculated using equation (3.6), where 4, is the laser
excitation wavelength in nm, and A, is the scattered wavelength in nm.

1 1
A5 =107 (— - —
Ao M (3.6)

The Raman shift between Stokes and anti-Stokes peaks will be symmetrical on either side of the
Rayleigh line, differing only in intensity, as the anti-Stokes peaks are generated from molecules
that are already in an excited state prior to the incident radiation (usually from thermal

excitation), and are considerably weaker than their Stokes counterpart. This is due to the
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population of molecules that start in an excited vibrational state being much lower than those

which start at the ground state.3" 38

3.3 Low-frequency Vibrational Spectroscopy

Typically, when discussing vibrational spectroscopy, it refers to either infrared or Raman
spectroscopy probing the frequency range between 200 and 4000 cm™.2° At the higher end of
this region, > 1500 cm™, the position of the frequency correlates with specific functional groups,
while the lower end has been deemed the fingerprint region.*® %' The collection of spectra
obtained below 200 cm is considered low-frequency vibrational spectroscopy, and even though
it is governed by the same foundational principles as higher frequencies, the types of vibrations
seen in this region are quite different than those typically considered as infrared or Raman

vibrations.*% 43

This becomes apparent when attempting to differentiate between solid polymorphs of the
same chemical species.** *° The differ