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ABSTRACT

Superconducting devices in circuit quantum electrodynamics (cQED) systems are

one of the leading approaches for realizing scalable quantum information processors.

The combination of cQED architectures with multimode resonator systems can pro-

vide a �exible platform for performing analog quantum simulations, storing quan-

tum information, and generating complex entangled states. Metamaterial resonant

structures made from arrays of superconducting lumped circuit elements can exhibit

microwave mode spectra with left-handed dispersion, resulting in a high density of

modes in the same frequency range where superconducting qubits are typically op-

erated, as well as a bandgap at lower frequencies that extends down to dc. In this

thesis, we present a brief review of the design, fabrication, and circuit properties of

superconducting metamaterial resonators. Through a series of low-temperature mea-

surements, we study the coupling of a �ux-tunable transmon qubit to a dense spec-

trum of microwave modes generated by a superconducting metamaterial resonator.

We measure the interaction between the transmon and metamaterial by both direct

microwave transmission through the metamaterial resonator and qubit spectroscopy

and manipulation through a separate readout cavity. We study the qubit decay and

decoherence as a function of frequency in the presence of the dense mode spectrum.

We also investigate the ac Stark shift of the qubit as the photon number in the var-

ious metamaterial modes is varied. Additionally, we compare these measurements

with analytical and circuit simulation results.
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Chapter 1

Introduction

Digital electronic computers have made huge advancements since their early develop-

ment in 1940s [1] and have transformed modern life. The advances in computational

power have enabled dramatic developments in machine learning through the training

of deep neural networks [2]. This progress in computing power is a consequence of

doubling of transistor count density every two years, which has held true for more

than �ve decades, as described by Moore's Law [3]. The smallest components of the

latest computers are now only a few nanometers wide [4, 5] and are hitting the physi-

cal limits of fabrication. Undesired quantum e�ects which start to dominate at these

scales also present a challenge to make devices any smaller. However, limitations

to increase transistor density is not the only motivation for �nding alternative com-

putational approaches. For certain classes of problems, many of them with critical

applications, such as hard optimization problems, database searches and modeling

of electronic structure of molecules, the algorithms have exponential complexity on

classical computers, that is, the resources needed to solve the problems grow expo-

nentially with the number of inputs.

Another approach for solving these complex problems is to make a quantum com-

puter, that harnesses the power of quantum mechanics in computation. The phenom-

ena inherent to quantum systems, such as superposition of states and entanglement

of quantum objects, can be exploited to reduce the complexity of of certain computa-

tional problems from exponential to polynomial time [6]. Similar to a classical bit, the

smallest unit of digital computing, a quantum computer uses a quantum bit, or qubit.

A qubit can be physically implemented with various kinds of quantum systems, such
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as superconducting circuits [7, 8, 9], ion traps [10, 11], photons [12, 13, 14], neutral

atoms [15, 16, 17], semiconductors [18, 19] and topological qubits [20, 21]. Each of

these implementations has their advantages and disadvantages, and there has been

signi�cant progress across the �eld over the past two decades. As of now, super-

conducting qubits and trapped ions are clearly the most promising approaches for

implementing a scalable quantum computer. Recently, quantum processors made

from superconducting circuits [22, 23] consisting of more than 50 qubits have demon-

strated quantum supremacy, that is, solving a speci�c problem orders of magnitude

faster than an advanced classical supercomputer. Superconducting qubits are the

focus of research in the largest industrial computing labs due to their fast gate times

and high gate �delities, which are approaching the threshold needed for implementing

quantum error correction [24]. Such systems require similar fabrication technologies

that are used in semiconductor based classical computers computers that have been

developed over several decades. As a result, one can envision a scalable superconduct-

ing quantum computer. However, understanding and eliminating the decoherence in

superconducting qubits still remains the biggest challenge in this system and there

is still a long way to go before there are universal fault-tolerant quantum computers.

Noisy Intermediate-Scale Quantum (NISQ) [25] computers, which are composed of

hundreds of noisy qubits, can still be used in near term to gain quantum advantage for

optimization problems [26, 27], simulation of the quantum systems [17] and chemical

properties of large molecules [28].

The framework for understanding superconducting quantum technology is pro-

vided by circuit quantum electrodynamics (cQED), an analogue of cavity quantum

electrodynamics [29]. Cavity quantum electrodynamics is used to describe the dy-

namics of a coupled atom and photon in an optical cavity. Similarly, superconducting

qubits behave as arti�cial atoms, and the resonant cavities host photonic microwave

modes for coupling to the qubits. One of the advantages of cQED over cavity QED

is that all the parameters of the system can be designed and incorporated into the

device fabrication. This allows for arti�cial atoms with much larger dipole moments

and cavities with reduced mode volume leading to the possibility of much stronger

coupling strengths compared to atom-optical systems. This coupling strength can

even be increased to the regime of ultra-strong coupling where the coupling strength

is comparable to the transition energy scales of the cavity or qubits [30, 31]. In cQED,
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there is also the possibility of implementing cavities with multiple cavity modes. If

these resonances can be made close together, it is possible to reach the superstrong

coupling regime, where a single qubit can couple strongly to multiple modes simultane-

ously [32]. Superstrong coupling can have applications in analog quantum simulations

[33, 34], quantum memory [35] and multi-partite entanglement [36].

Metamaterial transmission lines made from lumped circuit elements can be con�g-

ured to produce left-handed dispersion relations, where the mode frequency is a falling

function of wavenumber and low-frequency bandgaps [37, 38]. By forming resonators

from such left-handed transmission lines, one can generate a high density of modes

and just above an infrared cuto� frequency in the range where superconducting qubits

typically operate [33]. This leads to the prospect of reaching the superstrong coupling

regime of cQED in a compact physical footprint. Fabricating lumped elements, which

make the metamaterial transmission line, using superconductors can thus provide a

low-loss system compatible with circuit QED architectures [39].

In this thesis, I present a series of low-temperature measurements of a �ux-tunable

transmon qubit in the presence of multi-mode spectra generated using superconduct-

ing metamaterial resonators. In Chapter 2, I give a brief overview of superconducting

qubits and circuit QED. In Chapter 3, I introduce the left-handed metamaterials,

left-handed transmission lines and their properties and our scheme to couple the

metamaterial resoanor to a qubit. The details of how the coupling scheme was imple-

mented in our devices is explained in Chapter 4. Chapter 5 and Chapter 6 give details

of the measurement and analysis. In Chapter 7, I describe details of the simulation

tools we used to design our devices and improve the coupling in our future devices.

Chapter 8 contains initial measurements of our improved devices.
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Chapter 2

Background: Superconducting Qubits

and Circuit Quantum

Electrodynamics

In this chapter, I give a brief introduction to qubits, their physical implementation

using superconducting circuits, circuit QED, and superconducting cavities.

2.1 Qubits

The smallest unit of classical information in a digital computer is a bit that can

only be in one of two states � 0 or 1 � at any given instant. The analog of a bit

in a quantum computer is called a quantum bit, or qubit. Physically, a qubit can

be implemented in many ways, but the state of an ideal qubit can be an arbitrary

coherent superposition of the basis states, and can be described mathematically as:

|ψ⟩ = α|0⟩+ β|1⟩, (2.1)

where |0⟩ and |1⟩ are the eigenstates, and α and β are the complex probability am-

plitudes that must satisfy the constraint |α|2 + |β|2 = 1. A qubit state can also be

represented in terms of a polar angle θ and azimuthal angle ϕ on the Bloch sphere:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩. (2.2)
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2.2 Superconducting qubits

Superconducting materials, when cooled below a critical temperature, Tc can conduct

a dc electrical current without any resistance. This happens due to the condensation

of pairs of conducting electrons, known as Cooper pairs, into a ground state with

macroscopic phase coherence [40]. Therefore, superconducting materials are an obvi-

ous choice to make low-loss circuits, such as linear or non oscillators with high quality

factors required for quantum architectures.

2.2.1 Josephson junctions

Linear circuit elements, such as inductors and capacitors, can be used to create har-

monic oscillators [Fig. 1(a)], which have a quadratic potential energy curve. When

quantized, such a harmonic potential results in equally spaced energy levels [Fig. 1(b)].

In order to use an oscillator as a qubit, the transition between two states has be ad-

dressed with a unique transition frequency. If the energy levels are equally spaced,

when driven at the frequency corrosponding to this energy gap, the system can get

excited to higher energy levels. So, it is necessary that the 0− 1 transition frequency

is su�ciently di�erent than from the 1−2 transition frequency and other transitions.

In order to form a nonlinear oscillator with unequal level spacings, one can use a

Josephson junction as a nonlinear inductor [Fig. 1(c)]. For such a circuit, the transi-

tion between the ground energy level and �rst excited state can be uniquely addressed

and thus can be used as the two states for a qubit [Fig. 1(d)]. A Josephson tunnel

junction is formed from two superconducting layers separated by a thin insulating

layer that is a few nm thick. The dynamics of a Josephson junction depend on two

relations [41]:

V (t) =
Φ0

2π

∂ϕ(t)

∂t
, (2.3)

I(t) = I0 sinϕ(t). (2.4)

Here, Φ0 ≡ h/2e is the magnetic �ux quantum, V is the voltage across the junc-

tion, I is the current through the junction, I0 is the critical current of the junction

above which the junction becomes resistive, and ϕ is the phase di�erence of the su-

perconducting wave function across the junction. We can use these two equations to

calculate the inductance for a Josephson junction
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LJ =
V (t)
dI(t)
dt

=
Φ0

2πI0 cosϕ(t)
, (2.5)

and the Josephson energy

EJ =
Φ0I0
2π

. (2.6)

The Josephson energy for a junction depends on the superconducting materials and

tunnel barrier thickness and can be determined using Ambegaokar-Barato� rela-

tion [42] :

EJ =
Φ0I0
2π

=
Φ0∆

4eR
. (2.7)

Here, ∆ refers to the gap energy of the superconductor, and R is the normal-state

junction resistance.
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Figure 1: (a) Circuit diagram of a quantum harmonic oscillator represented as a par-

allel LC oscillator; (b) Energy potential and energy levels for a quantum harmonic

oscillator; (c) circuit representation of a transmon qubit. (d) The Josephson induc-

tance reshapes the quadratic energy potential (dashed blue) into cosine (solid red),

resulting in nonequidistant energy levels. Figure concept adapted from Ref. [43].
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2.2.2 Transmons

The nonlinear oscillator formed by a superconducting island connected to ground by

a Josephson junction and a large shunt capacitance can be described by the following

Hamiltonian [44]:

Ĥ = 4EC(n̂− ng)
2 − EJ cos ϕ̂. (2.8)

Here, EC = e2/2CΣ is the charging energy of the superconducting island, where CΣ is

the total capacitance of the island, n̂ is the charge operator, ϕ̂ is the phase operator

related by [ϕ̂, n̂] = i, ng = Qr/2e+CgVg/2e is the e�ective o�set charge of the device,

which depend on environment induced o�set charge Qr, the gate voltage Vg, and the

gate capacitance Cg of a gate electrode. Such a circuit in the limit EJ >> EC is

known as a transmon [44] qubit and qubit, and has a vanishingly small sensitivity

to charge noise. The transmon design has been adopted by many labs throughout

the community [45, 46, 47]. Two important quantities for any qubit are the qubit

transition energy from the ground to �rst excited state (ℏω01) and the anharmoncity,

which is the di�erence between the 0-1 and 1-2 transition energies. For a transmon

qubit, the 0-1 transition frequency is given by [44]

ωQ/2π ≡ ω01/2π ∼ (
√
8EJEC − EC)/h, (2.9)

and the anharmonicity α ≃ −EC . For a typical transmon, typical parameters are

ωQ/2π ∼ 5 GHz, I0 ∼30 nA, CΣ ∼65 fF and EJ/EC ∼ 40. It is also advantageous

to have the capability to tune the qubit frequency. This can be done by splitting the

junction into two smaller junctions connected in parallel forming a SQUID loop. This

changes the Josephson part of the Hamiltonian to [44]:

ÊJ = −EJΣ cos

(
πΦ

Φ0

)√
1 + d2 tan2

(
πΦ

Φ0

)
cos(ϕ̂− ϕ0), (2.10)

where Φ is the �ux applied through the SQUID loop, ϕ = (ϕ1 + ϕ2)/2 with ϕ1

and ϕ2 the phase di�erences across each junction, EJΣ = EJ1 + EJ2, where EJ1

and EJ2 are the Josephpson energy for two junctions, the phase ϕ0 can be found

using tanϕ0 = d tan(πΦ/Φ0), where d is the junction asymmetry d ≡ EJ2−EJ1

EJ2+EJ1
. For

junctions with equal Josephson energy (d = 0), the Josephson energy tunes to zero
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at odd half-integer multiples of Φ0, leading to a maximum possible tuning range for

ω01. However, this can lead to excessive dephasing due to �ux noise because of the

large slope of the qubit transition energy with respect to �ux. A balance between the

tunabilty of the qubit frequency and �ux noise insensitivity can be achieved through

a careful choice of the asymmetry parameter d [48].

2.3 Circuit Quantum Electrodynamics

One of the most fundamental interactions that occurs in nature, namely that between

light and matter, can be explained using cavity quantum electrodynamics. Practically,

due to the small size of an atom, the interaction strength between an atom and a

photon is rather weak and di�cult to measure. By trapping the atom and photon in

a cavity, the strength of this interaction can be increased.

2.3.1 Jaynes-Cummings Hamiltonian

In order to study the dynamics of a cavity and qubit, we will initially simplify the

system by treating the qubit as an ideal two-level system and the cavity as a quantum

harmonic oscillator. We will revisit the treatment where we include the higher energy

levels of a superconducting qubit and a cavity later in Sec. 7.2. This simpli�ed

system can still provide a good physical intuition for the interaction between a qubit

and cavity, and can be described by the Jaynes-Cummings Hamiltonian [49, 50]:

Ĥ = ℏωcâ
†â+

ℏ
2
ωqσ̂z + ℏg(âσ̂+ + â†σ̂−), (2.11)

where ωc and ωq are cavity and qubit frequencies respectively, g is the coupling

strength between the qubit and cavity, σ̂z is the Pauli pseudospin z operator, â†

and â are the raising and lowering operators for photon number in the cavity mode

and σ̂+ and σ̂− are the raising and lowering operators for the qubit. The Hilbert

space for this Hamiltonian is spanned by states of the form:

|ψ⟩ =
∞∑
n=0

∑
i∈{g,e}

αn,i|n, i⟩, (2.12)

where |n⟩ is the Fock state of the cavity with n photons, and |g⟩ and |e⟩ are the

ground and excited levels of the qubit, respectively.
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Figure 2: A plot of the avoided crossing in the transition frequency from the ground

state in the one-excitation manifold. The dashed lines show the uncoupled resonator

frequency, ωc (black dashed line) and qubit frequency, ωq (green dashed line). Qubit-

cavity hybridized levels shown in red and blue.

It is useful to study the dynamics of this system in two di�erent parameter regimes

to understand the experiments described later in this thesis: the resonant regime,

when ωc ≈ ωq, and the dispersive regime, for which the detuning ∆ ≡ ωq − ωc ≫ g.

On resonance, when ω = ωc = ωq, the qubit and cavity become hybridized, and the

eigenmodes of the Hamiltonian are |ψ±⟩ = 1√
2
(|n+1, g⟩±|n, e⟩), with eigenfrequencies

ω± = ω ± g [50]. If the system has one excitation, for example, with 1 photon in the

cavity, the system undergoes oscillations where the excitation is coherently swapped

back and forth between the qubit and cavity at frequency g (Fig. 2).

For the dispersive regime, the Hamiltonian can be approximated to:

Ĥ = ℏωcâ
†â+

ℏ
2
ωqσ̂z + ℏχâ†âσ̂z, (2.13)

where χ = g2/∆ [50]. The above expression can be written in two useful forms:

Ĥ = ℏ(ωc + χσ̂z)â
†â+

ℏ
2
ωqσ̂z, (2.14)



10

which exhibits a qubit-state dependent shift of the cavity frequency, which can be

used for a measurement of the qubit state. Alternatively, by grouping the χ-shift

term with the qubit portion:

Ĥ = ℏωcâ
†â+ ℏ

(ωq

2
+ χâ†â

)
σz, (2.15)

where one can see a number-state dependent ac Stark shift of the qubit frequency,

which can be used to probe the photon number in the cavity [51, 52].

The above Hamiltonian expressions correspond to unitary evolution of the system,

However, the system is inescapably always coupled to the environment. This leads

to two kind of incoherent processes: the decay of excitations from the qubit or cavity

to the environment, and dephasing, where the phase of the superposition state is

scrambled.

2.4 Superconducting cavities

The second part of a circuit QED system is the cavity, which is a linear harmonic oscil-

lator that is often implemented with thin-�lm coplanar waveguide (CPW) resonators

[53], or sometimes 3D waveguide cavities [54] or lumped-element LC oscillators. Su-

perconducting 3D waveguide cavities are capable of reaching somewhat higher internal

quality factors compared to CPW resonators [55]. However, the large physical size

for the 3D cavities makes them incompatible with large qubit arrays. Figure 3 shows

the geometry of a CPW transmission line, where the center conductor and ground

plane are made from a superconducting thin �lm on a low-loss dielectric substrate,

typically high resistivity Si or sapphire. A resonator is formed by choosing a length

of a CPW transmission line and putting either small coupling capacitors to external

circuitry or a short circuit at either end. Depending on the boundary conditions, the

fundamental resonance is either a half wavelength or a quarter wavelength. For the

remainder of this chapter, we focus on half-wave CPW resonators, but the expressions

for quarter-wave resonators are similar.

2.4.1 Transmission line half-wave resonator

A half-wave resonator is made by terminating a CPW transmission line (TL) with

small capacitors on both ends, resulting in open-circuit boundary conditions. The
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Figure 3: CPW geometry: (a) Top view of a CPW with center conductor width w

and slot width s; (b) side view of a CPW with �lm thickness of t on top of a substrate

with thickness of h.

quantities that are important for coupling a resonator to a qubit are the resonant fre-

quency, quality factor, and impedance. The following derivation follows the highlights

from Ref. [56]. The resonator's fundamental frequency is given by [56]

fR = ωR/2π =
c

√
ϵeff

1

2l
. (2.16)

Here, l is the length of the resonator, c/
√
ϵeff = vph is the phase velocity, and ϵeff

is a function of both the CPW geometry and materials properties. The phase ve-

locity vph = 1/
√
LRCR of the EM wave propagating along the TL depends on the

capacitance CR and inductance LR per unit length, which are given by [56]:

LR =
µ0

4

K(k
′
0)

k0
, (2.17)

CR = 4ϵ0ϵeff
k0

K(k
′
0)
. (2.18)

Here, K denotes the complete elliptic integral of the �rst kind with the arguments

k0 =
w

w + 2s
, (2.19)

k
′

0 =
√

1− k20. (2.20)
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The characteristic impedance of a CPW is then given by Z0 ≈
√
LR/CR.

The total quality factor Qtot can be broken into two contributions: an internal

quality factor Qi and an external coupling quality factor Qc, with the following rela-

tion:
1

Qtot

=
1

Qi

+
1

QC

. (2.21)

When Qc is large compared to Qi, the resonator is undercoupled, in the opposite

regime, it is overcoupled. The choice of coupling strength depends on the particular

application [57].

CR

LR

Vg

R0 CC R0

GR

CC

Figure 4: Circuit schematic of a TL half-wave resonator with external power source

and load. Cc is the input/output coupling capacitance, and R0 is the source/load

resistance of the external circuitry.

To calculate Qi and QC , a transmission line can be treated as a discrete line

formed from lumped circuit elements (Fig. 4), where GR, LR and CR denote the

shunt conductance, inductance, and capacitance per unit length, respectively. At

position x and time t, the voltage V (x, t) and current I(x, t) can be related in the

following way [57]:
∂

∂x
V (x, t) = −LR

∂

∂t
I(x, t), (2.22)

∂

∂x
I(x, t) = −CR

∂

∂t
V (x, t)−GRV (x, t). (2.23)

The impedance of a TL resonator of length l can be found as [56]:

ZTL = Z0
1 + i tan kl tanhαl

tanhαl + i tan kl
≈ Z0

αl + i π
ω0
(ω − ωn)

, (2.24)

where α is the attenuation constant, and k = ωn/vph is the phase constant.
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Figure 5: Diagram of a loaded parallel LCR resonator circuit.

Near the nth resonance mode, a TL resonator can be modeled as a parallel circuit

made from a single lumped-element inductor Ln, capacitor C and resistor R (Fig. 5).

For a simple parallel LCR circuit, the impedance of the circuit is given by:

ZLCR =

(
1

iωLn

+ iωC +
1

R

)−1

. (2.25)

From this it is easy to derive (Ref. [57]) the resonance frequency ωn = 1/
√
LnC and

the internal quality factor Q, which is de�ned as the ratio of energy stored in the

LCR circuit to the energy dissipated by the resistor R per cycle:

Q =
Estored

Eloss

= ω0RC =
R

Z0

. (2.26)

Near resonance, ω = ω0 +∆ω, we can rewrite the impedance in Eq. 2.25 as [56]:

ZLCR ≈ R

1 + 2i∆ωRC
=

R

1 + 2iQ∆ω/ω0

. (2.27)

Now substituing values for the nth mode of a CPW resonator to the resonance of a

parallel LCR circuit leads to [56]:

Ln =
2LRl

n2π2
, (2.28)

C =
CRl

2
, (2.29)

R =
Z0

αl
. (2.30)

Then, Qi and Qc can be expressed in terms of the transmission-line parameters as

[56]:

Qi = ωnRC =
nπ

2αl
, (2.31)
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and

QC =
nπ

4

1

ω2
nR0Z0C2

C

. (2.32)

2.5 Qubit decoherence

The above Hamiltonian expressions discussed in Sec. 2.3.1 correspond to unitary

evolution of the system. That is, if we know the starting state of the qubit and its

Hamiltonian, then we can predict the state of the qubit at any time in the future.

When a qubit is prepared in superpostion state ψ(0) = α|0⟩ + β|1⟩, the qubit state
evolves with time as:

ψ(t) = α|0⟩+ βeiωqt|1⟩. (2.33)

However, in practice, the system is inescapably always coupled to the environment.

This leads to two kinds of incoherent processes: relaxation and dephasing. A qubit

in its excited state can decay by emitting energy into the environment and relaxing

to the ground state |0⟩ with rate Γr
1. Similarly, a qubit in state |0⟩ can absorb energy

from the environment and excite to the state |1⟩ with rate Γe
1. The overall decay

rate is given by Γ1 ≡ 1/T1 = Γr
1 + Γe

1, where T1 is the 1/e decay time. In the

typical operating regime kBT ≪ ℏωq, Γ
e
1 is much less than Γr

1, resulting in the rate

Γ1 ≡ 1/T1 ≃ Γr
1 [43].

The second incoherent process is dephasing, where the phase of the superposition

state is scrambled. From Eq. 2.33, it can be inferred that any noise process that can

change the qubit frequency can also change the phase of the superposition state [58].

This decoherence of the qubit state is quantitatively described by the rate Γϕ which

is the pure dephasing rate. The total dephasing rate Γ2 also includes a contribution

from the energy relaxation of the excited-state component of the superposition state

at a rate Γ1, therefore [43]:

Γ2 ≡
1

T2
=

Γ1

2
+ Γϕ. (2.34)

The measurement process of �nding T1 and T2 experimentally is explained in Chap-

ter 6.
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Chapter 3

Metamaterial transmission lines

In this chapter, I give a brief introduction to metamaterials, then describe important

characteristics of metamaterial transmission lines and metamaterial resonators. The

detailed derivations are based on earlier publications from our group and can be found

in Refs. [59, 39].

3.1 Metamaterials

It is possible to engineer material systems that have properties that are not exhibited

by any naturally occurring materials [60, 61] . This can be achieved by arranging

the elements in repeating patterns on a length scales shorter than the wavelengths

of the phenomena of interest. The unique properties of such a metamaterial do not

come so much from material properties, but rather from the shape, size, geometry,

or orientation of the elements. This can include materials with novel optical [62],

mechanical [63], or acoustic properties[64, 65]. In electromagnetism, applications of

metamaterials include systems that exhibit a negative index of refraction [61], extreme

optical anisotropy [66], and engineered optical bandgaps [67].

Here, as an example, we study negative refractive index. For an isotropic linear

materials, electromagentic (EM) waves the electric �eld E⃗, magnetic, B⃗ obeys a right

hand rule with both the wave vector k⃗ and the Poynting vector S⃗ (directional energy

�ux), that is,

k⃗ = E⃗ × B⃗, (3.1)
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and

S⃗ = E⃗ × H⃗, (3.2)

where B⃗ = µH⃗ for the permeablity of the material µ [68]. This material is considered

right handed. The refractive index for the material n which is de�ned as the ratio

of of the speed of light in vacuum c to the phase velocity v, i.e., n = c/v. As

θ0 θ1

θ2

(a) ε1>0 μ1>0

ε2>0 μ2>0

z

x

θ0 θ1

ε1>0 μ1>0

ε2<0 μ2<0

z

x

(b)

θ2

k, S
k', S'

k'', S''

k', S'k, S

S''

k''

Figure 6: A diagram of of how EM waves refracts between two media with the incident

wave (red k⃗ and S⃗), the re�ected wave (blue k⃗′ and S⃗ ′) and the refracted wave (orange

k⃗” and S⃗”). (a) permittivity ϵ2 and permeability µ2 for medium 2 are both positive.

(b) permittivity ϵ2 and permeability µ2 for medium 2 are both negative. Figure

adapted from Ref. [59].

shown in Fig. 6(a), for two right handed materials, when the light travels from one

medium (medium 1) to another (medium 2 shown in orange) with di�erent indices of

refraction, part of the the light wave is re�ected back with the angle (θ1) equal to the

angle of the incident wave with respect to the normal to the surface θ0. Part of the

wave is transmitted to media 2 with a di�erent angle θ2. The relationship between the

angles of the incident and refracted wave , their velocities, thus refraction of indices

are given using Snell's law[68]:

sin θ1
sin θ2

=
v1
v2

=
n2

n1

. (3.3)

If medium 2 has permittivity ϵ2 and permeability µ2 that are both negative, as �rst

shown in Ref. [60], k⃗, E⃗, and B⃗ form a left-handed set and the material is described as

being left-handed. However, even in this case, S⃗, E⃗, and B⃗ still form a right-handed

set. This implies that the phase velocity vp = ω/k, which will point in the same
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direction as k⃗, will be opposite to the direction of the group velocity, vg = ∂ω/∂k,

which will point in the same direction as S⃗. The angle of refraction thus becomes

negative and can be computed using the left-handed version of Snell's Law:

sin θ1
sin θ2

= −n2

n1

. (3.4)

There are no naturally occurring materials that exhibit a negative index of refraction,

but it is possible to achieve this, for certain wavelenghts, with metamaterials. Similar

manipulation of the properties of light when physically realized can have wide varieties

of application such as metalenses [69] that can achieve achromatic focusing of the

primary colors by dispersion engineering [70].

3.2 Left handed transmission lines (LHTL)

In addition to optical systems with a negative index of refraction, it has been shown

that microwave transmission lines can be engineered to have left-handed dispersion

relations, resulting in opposite directions for the phase and group velocities. Such

systems, fabricated from conventional metallic circuit elements, have been shown to

have numerous applications, including zero-wavelength antennas [71] and broadband

directional couplers [72]. In order to study left-handed metamaterials in the quantum

regime, the elements must be fabricated from superconducting traces and designed

in a con�guration that is compatible with cQED architectures.

3.2.1 LHTL: circuit model

As discussed in Sec. 2.4.1, a transmission line with right handed dispersion (RHTL)

can be modeled as an in�nte chain of distributed LC network, where in each cell,

an inductor is connected in series and capacitor connected in parallel to the ground.

If a transmission line is created in which the position of inductors and capacitors is

swapped, the transmission line exhibits left handed dispersion relation (LHTL) where

mode frequency is a falling function of the mode number [73]. It is important to note

that the discrete RHTL can be turned into a continuous RHTL by taking the unit

cell size to zero but this does not work for LHTLs, so these can only be made with

lumped elements.
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To obtain expression for the dispersion relation and the infrared cuto� frequency,

when Kirchho�'s Law is applied to the ciruit at a particular cell m [Fig. 7(b)], as

derived in Ref. [39] we get:

vm − vm+1 =im

(
1

iωCl

)
, (3.5)

im−1 − im =vm

(
1

iωLl

)
, (3.6)

vm−1 − vm =im−1

(
1

iωCl

)
, (3.7)

im − im+1 =vm+1

(
1

iωLl

)
. (3.8)

Cl

Δx

Ll

Cl

Ll

Cl

Ll

Cl

Ll

Cl

Llvm vm+1

im im+1

(a) (b)

m

+ +

- -

Figure 7: LHTL circuit model: (a) array of series capacitors Cl with shunt inductors

Ll to ground; (b) de�nition of current and voltage in the LHTL at cell m.

By de�ning the admittance of the inductor Y = 1/iωLl and impedance of the capac-

itor Z = 1/iωCl, we can reduce these to two expressions

vm(2 + ZY ) =vm−1 + vm+1, (3.9)

im(2 + ZY ) =im−1 + im+1. (3.10)

Assuming a plane wave solution for propagation through the transmission line, the

voltage and current for cell m can be written as:

vm =V +
0 e

−ikm∆x + V −
0 e

ikm∆x, (3.11)

im =I+0 e
−ikm∆x + I−0 e

ikm∆x, (3.12)
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where ∆x is the unit cell length, k = 2π/λ is the magnitude of the wavenumber and

V +
0 (V −

0 ) and I+0 (I
−
0 ) are the amplitudes of the forward (reverse) propagating voltage

and current, respectively. Combining Eqs. (3.11)-(3.12) with Eqs. (3.9)-(3.10), we

obtain

[V +
0 e

−ikm∆x + V −
0 e

ikm∆x][2 cos (k∆x)− (2 + ZY )] = 0. (3.13)

This expression must be satis�ed for all values of km∆x, therefore

2 cos (k∆x) = (2 + ZY ). (3.14)

This relationship between k∆x and ZY leads to the dispersion relation for the trans-

mission line

ωLHTL(k) =
1

2
√
LlCl

1

sin
(
k∆x
2

) . (3.15)

We see that ωL is a decreasing function of k. At k = 0, the sine function will be equal

to zero thus the dispersion is divergent. The sine function will equal unity when its

argument is π/2, corresponding to k∆x = π, when the wavelength is two unit cells.

This shortest wavelength for propagating waves corresponds to the lowest frequency,

ωIR, which is the infrared cuto� frequency:

ωIR =
1

2
√
LlCl

. (3.16)

By substituting Eq. (3.11) into Eq. (3.5) and solving for im, we can compare the

results with Eq. (3.12) to obtain the following expressions:

I+0 =2ie−ik∆x/2 sin

(
k∆x

2

)
V +
0

Z
, (3.17)

I−0 =− 2ieik∆x/2 sin

(
k∆x

2

)
V −
0

Z
. (3.18)

Eq. (3.14) can be rewritten as

2i sin

(
k∆x

2

)
=

√
ZY , (3.19)

which can then be substituted into Eqs. (3.17)- (3.18) to yield:
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I+0 =e−ik∆x/2V
+
0

Z0

, (3.20)

I−0 =− eik∆x/2V
−
0

Z0

. (3.21)

with

Z0 =

√
Ll

Cl

, (3.22)

which can be de�ned as the characterstic impedance of the LHTL.

Cr

Lr

Cr

Lr

Cr

Lr

Cr

Lr

Δx

Figure 8: Circuit diagram of discrete right-handed transmission line.

Although the treatment in Eqs. (3.5)- (3.14) was described in terms of a LHTL,

this can be easily extended to treat a discrete right-handed transmission line RHTL

as well. For example, a RHTL in Fig. 8 with Z = iωL + r and Y = iωCr has the

dispersion of:

ωRHTL =
2√
LrCr

sin

(
k∆x

2

)
. (3.23)

The limit of small k∆x could correspond either to long wavelengths, or to the con-

tinuum limit when ∆x→ 0. Similar to the case for LHTL, there is now a maximum

allowed frequency when k∆x is π, which corresponds again to the shortest wave-

length for propagating waves of 2∆x, that now occurs at the highest frequency of the

transmission line, thus setting an ultraviolet cuto�:

ωUV =
2√
LrCr

. (3.24)
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Figure 9: Dispersion relation of ideal LHTL (blue solid line) with ωIR/2π = 6 GHz.

Due to its left-handed nature, k is negative, but here we plot the absolute value of k.

Dispersion relation of a discrete RHTL (red solid line).
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+

-
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(a) (b)

Figure 10: (a) The circuit diagram of a LHRH transmission line, which is the LHTL

with stray reactances included. (b) Voltage and current in a unit cell.

3.2.2 Stray reactances in LHTL

Parasitic stray reactances alter the properties of the LHTL circuit. This can be mod-

eled as a parasitic shunt capacitance Cr in parallel with Ll and a parasitic inductance

Lr in series with Cl, as shown in Fig. 10 [71]. Thus, each inductor of the LHTL

will have a self-resonance frequency ωL = 1/
√
LlCr. Similarly, each capacitor will

have a self-resonance frequency ωC = 1/
√
LrCl. We will refer to such a structure as

Left-Handed Right-handed (LHRH) transmission line. Following a similar treatment
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Figure 11: Calculated dispersion relations for ideal LHTL (dashed blue line) [Eq. 3.15]

and composite LHTL (solid black line) [Eq. 3.29] using circuit parameters described

in text. Figure adapted from Ref. [39].

to the previous section for the voltage and current in a unit cell, but now with Lr

and Cr included [Fig. 10(b)] we obtain [71]:

vm − vm+1 =im

(
iωLr +

1

iωCl

)
, (3.25)

im−1 − im =vm

(
iωCr +

1

iωLl

)
, (3.26)

vm−1 − vm =im−1

(
iωLr +

1

iωCl

)
, (3.27)

im − im+1 =vm+1

(
iωCr +

1

iωLl

)
. (3.28)

We can then de�ne the unit-cell series impedance Z = iωLr+1/iωCl and the unit-cell

shunt admittance Y = iωCr + 1/iωLl. If we follow the steps similar to in previous
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section, we can derive the dispersion relation for the LHRH transmission line, which

is given by:

k(ω) =
1

∆x
cos−1

[
1− 1

2

(
ωLr −

1

ωCl

)(
ωCr −

1

ωLl

)]
. (3.29)

When inverted, this has two solutions for ω(k), which are plotted in Fig. 11. We see

there is a left-handed branch at low frequency, which approaches the dispersion for

an ideal LHTL near ωIR. When the magnitude of k is small, rather than diverging

unphysically, the LHRH dispersion intercepts the k = 0 axis at the lower of the two

self-resonance frequencies: min(ωL, ωC). Between the two self resonance frequencies,

there is a gap with no propagating solutions, then a branch with right-handed dis-

persion begins at the larger of the two self-resonance frequencies, max(ωL, ωC). The

characteristic impedance still given by
√
Z/Y modi�es to [71]:

Z0 =

√
Ll

Cl

√
1− ω2LrCl

1− ω2CrLl

=

√
Ll

Cl

√
1− ω2/ω2

L

1− ω2/ω2
C

. (3.30)

Despite this frequency dependence of Z0 for an LHRH line, this does not deviate by

more than 1% relative to
√
Ll/Cl over the frequency range of our measurements for

our typical devices parameters.

3.3 Left-handed transmission line resonator

By imposing boundary conditions and de�ning a length, metamaterial transmission-

line resonators can be formed in the same way as continuous CPW resonators. Here

we focus on con�gurations with coupling capacitors to external circuitry at both

ends of the line [Fig. 12(a)], where the fundamental resonance corresponds to half

of a wavelength along the resonator. Here, we summarize the characteristics such as

dispersion relation, transmission S21 factor, impedance, and coupling losses of a LHTL

resonator. The e�ect of stray reactances on these characteristics is also discussed. The

original detailed derivations that are presented in part here can be found in Refs. [59]

and [39].
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Figure 12: (a) Schematic of an ideal LHTL terminated by coupling capacitors CC .

(b) Dispersion relation of a LHTL resonator with normalized wavenumber. The blue

points here correspond to the resonant modes where k∆x = nπ/N , while the solid

black line is the dispersion relation calculated using (Eq. 3.15) for the parameters N

=42, Cl =250 fF and Ll=0.625 nH. Figure adapted from Ref. [59].

3.3.1 Ideal LHTL resonator

For an an ideal LHTL, which does not have any stray reactances, the dispersion

relation is given by Eq. 3.15. When the number of unit cells N is �nite, the open

boundary conditions lead to resonances whenever kl = nπ, where n ∈ {0, N}. Since
the total length l = N∆x, we obtain:

k∆x =
nπ

N
. (3.31)
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From Fig. 12(b), we see that the mode frequency diverges as k → 0, thus there is

no mode for n = 0. Also, as we will see later in this chapter, the coupling factor

is in�nite for mode n = N , so the resonance there cannot be measured. Thus, for

an LHTL resonator made from N cells, we can see at most N − 1 modes. Due to

the left-handed nature of the dispersion, the small-n mode, which correspond to long

wavelengths, are at high frequency. At the same time, the high-n modes with short

wavelengths correspond to the lowest frequencies. Near the infrared cuto�, the mode

spacing is very small due to the �atness of the band.

3.3.2 E�ects of stray reactance: LHRH resonator

As described in Sec. 3.2.2, an LHTL cavity built from physical circuit elements will

always have parasitic reactances. We see the e�ect of this in the changes of the

dispersion relation. Due to the self-resonance frequencies of the capacitors and(or)

inductors, the dispersion dispersion ω(k) no longer diverges as k → 0. This also

reduces the mode spacing between all the modes since the same N − 1 number of

modes will now be compressed into a smaller frequency span, although this e�ect is

maximum for higher frequency modes and we only see a small decrease in the mode

spacing at lower frequency modes. The structure can now also support an n = 0

mode [71]. At this mode, the resonance will have in�nite wavelength while non-zero

frequency. Voltage in all units cells oscillate up and down in phase so there are

no nodes or antinodes. Because the stray capacitance Cr and inductances Lr are

typically small, this novel n = 0 mode typically lies out of the measurement range

for our typical LHTL resonators. However, in future devices, it might be possible to

reduce the frequency of this mode by intentionally adding a series inductor to the Cl

or a shunt capacitor in parallel to Ll. Figure 13(b) shows the modes and dispersion

relation for the LH branch of an LHRH resonator for the same parameters as in the

dispersion plot from Fig. 11.

3.3.3 LHRH impedance and transmission S21(ω)

As derived in Refs. [59] and [39], the impedance of a general discrete transmission

line with N cell is:

Z−N = Z0
eikN∆x + Γe−ikN∆x

e−ik(−N+ 1
2
)∆x − Γeik(−N+ 1

2
)∆x

, (3.32)
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Figure 13: (a) Schematic of a composite LHRH resonator with stray reactances in-

cluding coupling capacitances Cc at each end. (b) Plot of mode frequencies vs. wave

number computed for for a composite LHRH resonaotr with 42 cells . The solid line is

the dispersion relation obtained from [Eq. (3.29)] using circuit parameters described

in text. Figure adapted from Ref. [39].

Where

Γ =
Zle

−ik∆x
2 − Z0

Zle
ik∆x

2 + Z0

, (3.33)

can be found by requiring that, at cell m = 0, impedance Zm = Zl, where Zl is the

load resistance [Fig. 14] and Z0 is the characteristic impedance of the line de�ned as

Z0 = Z/2i sin (k∆x/2). Equation 3.32 provides impedance of a general result for a

lossless discrete transmission line. The details of a particular transmission line with

a particular ω(k) would be encoded in the k values in this expression to determine
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Z−N(ω).
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Figure 14: The circuit diagram of a lossless LHRH transmission line with load

impedance Zl on the right end. Figure adapted from Ref. [39].

In order to derive a general expression for S21(ω) through a discrete transmission

line resonator, we take the terminating load to be determined by the output coupling

capacitor Cc and a resistive load R0 such that the impedance of the terminating cell

atm = 0 is Zl = R0+1/iωCc. We then add an input drive with source resistor R0 and

input coupling capacitance Cc , such that source impedance, Zs = Zl. For simplicity,

we assume symmetric coupling. However, the analysis could easily be extended to

the case of asymmetric coupling. S21(ω) as derived in Refs. [59] and [39] is given by:

S21 =
2Z−N

Zs + Z−N

R0

Zl

1 + Γ

eikN∆x + Γe−ikN∆x
. (3.34)

S21 for a particular transmission line can then be computed from Eq. (3.34) by sub-

stituting Eq. (3.32) for Z−N and Eq. (3.33) for Γ. Note that the frequency dependence

of S21 is determined by the dispersion relation k(ω) that one chooses. In Fig. 15, we

plot S21(ω) computed from Eq. (3.34) for the n = 23 mode of a LHRH resonator with

the parameters given in the caption. A numerical simulation of a circuit with these

same parameters in AWR Microwave O�ce yields quite good agreement.

3.3.4 Coupling quality factor for discrete transmission line resonators

We can use the expressions derived in the previous sections to investigate the coupling

loss for a discrete transmission line resonator. One approach to extract Qc for each

mode of a discrete transmission line resonator is to use Eq. (3.34) for S21(ω) and

�t Lorentzians to each resonance peak to determine the linewidth. Alternatively, it

would be useful to derive a closed-form expression for Qc for more e�cient evaluation
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Figure 15: S21(f) calculated for the n = 23 mode of a 42-cell LHRH metamaterial

resonator using Eq. (3.34) (solid red line) and simulated using AWR Microwave O�ce

(blue points). Unit cell parameters are: Cl = 266 fF, LL = 0.6 nH, Cr = 21.806 fF

and Lr = 0.595 nH, chosen based on the discussion in Chapter 4. Figure taken from

Ref. [39].

of circuits. This can be done by considering the equivalent LC resonant circuit for each

mode of a discrete transmission line resonator then mapping this onto the expression

for Qc for the simple LC circuit. We apply this approach to compute the coupling

loss for an LHTL resonator, resulting in [39]:

QLHTL
c (n) =

2NZ0C
2
l sin

3
(
nπ
2N

)
R0C2

c cos
2
(
nπ
2N

) , (3.35)

where, the inductance of the equivalent LC oscillator for mode n of an LHTL resonator

can be found to be

L̃LHTL =
2Ll cos

2
(
nπ
2N

)
N

. (3.36)

We compare the coupling loss for an LHTL resonator computed with this analytic

expression with that obtained from an AWR Microwave O�ce circuit simulation and

linewidth �ts extracted from the full expression for S21(ω) from Eq. (3.34). Again,

the agreement between the three approaches is quite good. It is important to note the

di�erence of the dependence of QLHTL
c on mode number n, compared to QRHTL

c for

continuous and discrete cases where QRHTL
c ∝ n and QRHTL

c ∝ 1/(sin
(
nπ
2N

)
cos2

(
nπ
2N

)
,

respectively [39].
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Figure 16: Coupling loss comparison for an LHTL resonator for analytic expression

from Eq. (3.35)(Solid black line), AWR Microwave O�ce circuit simulation (Red

stars), and linewidth extraction for S21(ω) expression from Eq. (3.34) (blue circles).

The parameters for the LHTL are: C = 250 fF, L = 0.625 nH, Cc = 10 fF, N = 40.

Figure taken from Ref. [39].

Results given by Eq. 3.35 for QLHTL
c (n) did not include any stray reactance in

calculation. For a realistic circuit that does include such parasitic e�ects, these stray

reactances can indeed be accounted for, but the expressions become rather unwieldy.

To test the e�ects of neglecting the stray reactances in this analysis, in Fig. 17,

we compare the coupling loss vs. n for an ideal LHTL resonator computed from

Eq. (3.35) with coupling loss values obtained from the complete S21(ω) expression

from Eq. (3.34) using realistic values of stray reactance Lr and Cr included. As the

comparison shows, the analytic expression from Eq. (3.35) for an ideal circuit agrees

reasonably well with the realistic LHRH resonator for mode numbers beyond ∼ 10.

Only the lowest n (highest frequency) modes have any signi�cant deviation. Thus,

the simple analytic expression from Eq. (3.35) can be used for estimating coupling

losses for LHTL resonators for all but the highest frequency modes, where a numerical

extraction of linewidths using Eq. (3.34) should be used instead.
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Figure 17: Coupling loss comparison between calculation for an ideal LHTL res-

onator using Eq. (3.35) with an LHRH resonator with non-zero stray reactances from

linewidth extractions using Eq. (3.34). The parameters for the LHTL are: C = 250 fF,

L = 0.625 nH, Cc = 10 fF, N = 40 Cr = 16.211389 fF, Lr = 0.0334947 nH, corre-

sponding to self resonance frequencies of 50 GHz and 55 GHz. Figure taken from

Ref. [39].

3.4 Coupling a transmon qubit to a metamaterial resonator

A variety of routes for achieving multi-mode cQED have been explored by other re-

search groups, including long continuous transmission-line resonators [74] and meta-

materials made from lumped circuit elements [75] and Josephson junctions [32, 76, 77].

For these systems, either the cavities are physically big, thus di�cult to scale, or the

cavities have resonance modes in the entire qubit frequency range so the qubit will

always be coupled to at least some of the modes.

The metamaterial resonator provides us a possible way of engineering a high-

density spectrum in the GHz frequency range, compatible with superconducting

qubits, and with a relatively compact physical footprint. It also has an IR-cuto�, so

the �ux-tunable transmon qubit can be biased below the metamaterial modes, where

coherence is long, thus allowing for high-�delity preparation of initial qubit states.

For these reasons, the metamaterial the metamaterial resonator is a promising cavity
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candidate for multi-mode cQED coupling to a qubit.

LHTL RHTL

Ll

Cl Lr

Cr

QubitΔx

Figure 18: LHTL coupled to a continous RHL. Qubit can be coupled near the end of

RHTL. Figure adapted from Ref. [33].

Figure 19: The standing wave patterns of the �rst three modes of a hybrid transmis-

sion line cavity counting from low frequency end. Figure taken from Ref. [33].

In cQED architectures, transmon qubits are coupled to resonant circuits, such as

CPW resonators or 3D cavities, for various purposes, including dispersive readout

[50], qubit-qubit coupling [78], and quantum memories [55, 79]. This coupling is

commonly achieved through a weak capacitance to a portion of the resonator near a

voltage antinode of a particular mode. The fundamental mode frequency for these

resonators are typically in the GHz range. Because the mode frequency increases

linearly with wavenumber, higher modes are spaced by multiples of the fundamental

resonance frequency. Thus, modes are spaced by a few GHz. The coupling strength

between a cavity mode and a qubit is typically in the range of 50-100 MHz. Thus, since



32

the typical spacing between modes is signi�cantly larger than the coupling strengths

between the qubit and each mode, the qubit can only couple strongly to one mode at

a time.

To develop a system with the possibility of simultaneous strong coupling between

a qubit and multiple modes, Daniel Egger and Frank Wilhelm [33] proposed a novel

approach: instead of using only a LHTL resonator, one can couple a continuous

RHTL like a CPW to one end of the LHTL to form a hybrid transmission line and

apply open-circuit boundary condition to this TL to form a hybrid cavity. The

two directly coupled transmission lines should have the same impedance to avoid

impedance mismatch. Shown in Fig. 19, the hybrid cavity would still have a high

density of peaks and IR-cuto� at the low-frequency band edge, behaving similarly to

a LHTL, while the voltage spatial distribution of the RH part would remain almost

the same for the modes that are close in frequency. Thus, coupling a qubit to the end

of the RH part would ensure the qubit being coupled to the voltage anti-nodes of the

entire hybrid cavity.

The modes in the frequency range accessible by a typical transmon will have

a short wavelength in the LH section with a much longer wavelength in the RH

portion. The mode spectrum for such a hybrid LHTL-RHTL resonator still exhibits

peaks near the LHTL resonances, with a slow modulation from the standing wave in

the RH portion. Thus, by placing the qubit near the end of the RHTL, close to the

antinodes of the low-frequency modes, the qubit can couple to all of the modes in

its frequency range. The standing-wave pattern will, in general, be di�erent for each

mode. Thus, for a given qubit placement, strong coupling is only possible to the modes

with large amplitudes near the qubit. In the LHTL, low frequencies correspond to

short wavelengths due to the falling dispersion relation. Thus, by only a small change

in frequency, a new orthogonal mode can be found that is di�erent by one node in

the left-handed component. But because of the hybrid nature of this new hybrid TL,

the closely spaced frequencies at this lower band edge have nearly identical spatial

structures in the RHTL. The speci�c details of how it was implemented in our devices

are provided in Sec. 4.4.
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Chapter 4

Device Design

In this chapter, I discuss the design considerations for implementing an LHTL coupled

to a qubit. The chapter is divided into sections based on the di�erent circuit elements

of the device. One of the most important circuit element for our device, a LHTL

resonator was designed, fabricated and characterized in detail as a standalone chip,

referred to Device A in the rest of the thesis. In a subsequent design, the LHTL

resonator was combined with a RHTL made from a CPW to create a hybrid LHTL-

RHTL metamaterial resonator. Furthermore, the hybrid metamaterial was coupled

to a transmon qubit. A separate CPW resonator was included in the design to probe

and manipulate the transmon. This design will be referred to Device B in the rest of

thesis and most of the discussion will be focused on this device. A similar design to

Device B, with the exception of a slight di�erence in the layout of the inductors for

LHTL was also designed. Our research group is currently pursuing new metamaterial

device designs and preliminary measurements will be presented in Chapter 8.

4.1 LHTL Design

As described in Chapter 3, a metamaterial transmission line can be implemented with

a 1D chain of lumped circuit elements with series capacitors and inductors to ground

[37]. The number of modes in the spectrum with left-handed dispersion for a LHTL

resonator with open boundary conditions at both ends is equal to the number of unit

cells, where each unit cell consists of a series capacitor with an inductor connecting

one side of the capacitor to ground.
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To design a LHTL resonator that exhibits the desired characteristics and disper-

sion relation, the target values of the capacitors and inductors have several funda-

mental and practical constraints. Two important fundamental quantities for LHTL

resonator, which are determined by the values of the unit-cell capacitor Cl and in-

ductor Ll, are the infrared cuto�, which is the frequency of the �rst LHTL mode,

ωIR = 1/2
√
LlCl and the characteristic impedance of the LHTL, Zl, given approx-

imately by
√
Ll/Cl. The characteristic impedance of the LHTL resonator for most

of the devices studied during the work was designed to be 50 Ohms to minimize the

re�ection and losses to the external measurement circuity.

Table 1: Metamaterial parameters determined by �nite element simulations of circuit

layout.

Label Description Value

Ll Unit cell inductance 0.7 nH

Cl Unit cell capacitance 250 fF

Lr Unit cell stray inductance 0.03 nH

Cr Unit cell stray capacitance 25 fF

For a LHTL resonator with a �xed characteristic impedance, theoretically any

infrared cuto� frequency can be achieved by adjusting the Cl and Ll values. However,

in practice these parameter values will be limited by the physical extent of the circuit

elements and their self-resonance frequencies (ωC = 1/
√
LrCl and ωL = 1/

√
LlCr).

Also, as a practical consideration, we must ensure that ωIR and at least several modes

fall in the region where they can be measured in the lab with our standard microwave

electronics hardware (∼2-12 GHz). In addition, since we want to couple several modes
from the densest portion of the LHTL spectrum to a superconducting qubit, the range

for ωIR/2π narrows down to ∼4-9 GHz, where superconducting qubits are typically

operated. Furthermore, we would like ωIR/2π to be around 5 GHz so that the qubit

frequency can be tuned to be below ωIR for longer qubit lifetimes, as will be discussed

later. As described in the previous chapter, the presence of stray reactances for the

inductors and capacitances impacts the dispersion relation for a LHTL resonator.

However, this change is primarily at the high-frequency end of the spectrum, which

is typically outside of our measurement range with the parameters of our designed
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Figure 20: Optical micrographs of LHTL resonator device (Device A): (a) zoomed-

out image of entire chip, (b) input coupling capacitor Cc and �rst few unit cells, (c)

meanderline inductor of �rst unit cell, (d) detail of input coupling capacitor and con-

nection between inductor and capacitor of �rst unit cell, (e) interdigitated capacitors

in several unit cells, (f) detail of interdigitated capacitor.

LHTL resonator.

In order to implement the LHTL resonator with high-Q modes that is compatible

with coupling to superconducting qubits, we fabricate the inductors and capacitors

from thin-�lm superconducting Nb thin �lms. For the capacitors, we use an interdig-

itated design with 29 pairs of 4-µm wide/52-µm long �ngers for each capacitor. For

the inductors, we use a meander-line design with 9 turns of 2-µm wide traces. The

dimensions of these elements are based on the simulations and experiments in our
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earlier LHTL work, described in Ref. [80]. The design values for the parameters are

given in Table 1. The inductors are arranged in a staggered pattern with alternating

inductors connected to the ground plane on either side of the LHTL, as in Ref. [39],

to maximize the number of cells that can be physically implemented on a Si chip in

the 4-mm window of our standard sample holder. This leads to a total of 42 unit cells

for our 3.5-mm long LHTL resonator. The ends of the metamaterial resonator are de-

�ned with coupling capacitor gaps at the �rst and last cells to conventional coplanar

waveguide (CPW) traces carrying the output/input signals to/from launcher pads at

the opposite corners of the chip. We estimate the Cc values for these structures to be

30 fF based on HFSS Q3D simulations. Figure 20 shows the optical image of such a

LHTL resonator.

4.2 Qubit design

We follow the design of transmon qubit widely used in the superconducting quantum

computing commmunity, More speci�cally, we adapt the �oating-transmon design

from earlier work done by IBM [45, 46, 47]. Two important quantities for designing

a transmon are qubit frequency and anharmonicity, which depend on EJ and EC .

EJ is determined by the junction thickness and junction area. EC is determined

by the total qubit capacitance CΣ = CQ + 2CJ + CQR + CQM . CΣ for a transmon is

typically dominated by shunt capacitance CQ. We calculate the values of the di�erent

capacitance components (Table 3) by doing a full network analysis, similar to the

treatment in Appendix A of Ref. [44], for the capacitance matrix obtained from Q3D

simulation of the qubit layout as shown in Fig. 21. The transmon used in the device

contains a split junction geometry allowing for the qubit transition frequency to be

tuned with an external magnetic �ux, which is provided by a wire- wound coil above

the chip .The capacitance contributed from each junction CJ is ∼2.5 fF. While the

split junction design allows for �exibility in the tunability of the qubit transition, it

also leads to enhanced qubit dephasing due to magnetic �ux noise. For future devices,

asymmetric transmons[44] made from junctions with di�erent areas can be used to

balance the tunabilty of qubit frequency and qubit dephasing [48].
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Figure 21: Layout of the transmon used in the device showing the shunt capacitor pads

(blue) and coupler to the metamaterial(yellow) and the coupler to readout resonator

(green) and ground plane(red)

4.3 Readout resonator

A separate half-wave CPW resonator is coupled to the qubit by the capacitor, CQR =

4.8 fF, for conventional dispersive readout of the qubit state [50]. A 10-µm wide

center conductor and a 6-µm wide gap to the ground plane allow 50 ohms charcaterstic

impedance for the CPW resonator. The parameters of the CPW and length of readout

resonator(7.7-mm), which are de�ned by input capacitor Cin
cR and output capacitor

Cout
cR capacitors, determines the fundamental mode frequency (fR = ωR/2π) of the

readout resonator. The Cin
cR and Cout

cR also determines the coupling loss(1/Qc) of

readout resonator to the measurement circuitry and its transmission peak level. Qc

and internal quality factor (Qi) contributes to the total quality factor of the resonator

(Q−1
tot = Q−1

c +Q−1
i ). We design the resonator to be in the overcoupled regime (Qc >>

Qi) where Q
−1
c = Q−1

in +Q−1
out and the total quality factor of ∼15k. The linewidth of
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the resonator κ/2π = fR/Qtot should be several times of the dispersive shift readout

reasonator frequency due to the qubit to resolve the the di�erent qubit excitation

levels [81]. Further details of parameters is provided in Table 2.

Table 2: Qubit and readout resonator design parameters.

Label Description Value Method of Determination

CQ Qubit shunt capacitance 48 fF Finite element simulations

CQR Qubit-readout resonator 4.8 fF Finite element simulations

coupling capacitor

CQM Qubit-metametarial 4.3 fF Finite element simulations

coupling capacitor

CJ Junction capacitance 2.5 fF Junction area from SEM image

Cin
cR Readout resonator input 1 fF Finite element simulations

coupling capacitor

Cout
cR Readout resonator output 2 fF Finite element simulations

coupling capacitor

lR Readout resonator length 7.7 mm

4.4 Metamaterial coupled to a transmon

CcM Mout

Min

Rin Rout

in out

CQR

CQM

Cl Lr

Cr Ll

Cl Lr

Cr
Ll

CcM

CcR
out

CcR
in

Figure 22: Circuit schematic of the device.

As described in Sec 3.4, to couple our LHTL resonator to a qubit we follow the

approach given in Ref. [33]. We build a hybrid system with one end of the LHTL
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Figure 23: (a-g) Optical micrographs of metamaterial resonator device B: (a) zoomed-

out image of entire chip, (b) section of metamaterial resonator containing several unit

cells of inductors and capacitors, (c) detail of interdigitated capacitor, (d) detail of

meander-line inductor, (e) transmon qubit with coupling capacitors to metamaterial

resonator and readout resonator,(f) SQUID loop of the transmon, (g) Scanning elec-

tron microscope (SEM) image of one of the transmon junctions.

connected to a right-handed transmission line (RHTL). The transmon qubit is placed

near the other end of the RHTL. Figure 22 show the schematic for our device where

the LHTL resonator is integrated to couple it to a qubit (Device B). Figure 23 show

the optical micrograph for our device (Device B). Table 1 lists the LHTL resonator

parameters, for our integrated chip, which are determined by �nite-element simula-

tions.

The input coupling capacitor Cin
cM (∼ 30 fF) near the end of the LHTL portion

and the output coupling capacitor Cout
cM (∼ 25 fF) near the end of the RHTL portion

de�ne the resonant modes of the hybrid metamaterial resonator. The input coupling
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Figure 24: Transmission spectrum calculated from circuit simulation using AWR for

a hybrid LHTL-RHTL resonator with parameters of the designed device B.

capacitor to the LHTL portion Cin
cM is formed with a 4.9-µm wide gap to the input

feedline. The output end of the RHTL consists of an interdigitated capacitor Cout
cM for

coupling to the output feedline. Near the output portion of the RHTL, the capacitor

CQM couples the transmon to the hybrid metamaterial.

The RHTL portion of the hybrid metamaterial resonator is formed from a 5-mm

long CPW which is based on AWR simulations to maximize the coupling bewteen

the qubit and modes in the 6-8 GHz region. Figure 24 shows the tranmission spectra

of a hybrid LHTL-RHTL resonator calculated using AWR. Even with the presence of

an RHTL component the spectra looks very similar when compared with the spectra

of a pure LHTL resonator. More details of AWR simulations are provided in Section

7.4. A 10-µm wide center conductor and a 6-µm wide gap to the ground plane on

either side of the CPW designed allow us to match the impedance (about 50 Ohms)

between the LHTL and RHTL segments.

As described in the section 7.4, by making changes to the current design it should

be possible to reach the regime where the coupling strength between the qubit and

individual modes of the metamaterial resonator is larger than the mode spacing.

The metamaterial resonators with inductors on the one side of the LHTL were

also designed (Device C). For the same 3.5-mm length, the maximum number of cells

that could be physically implemented is 38 to allow enough spacing between adjacent

meanderline inductors. Figure 25 shows the optical image of the LHTL resonator.
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Figure 25: Optical micrographs of metamaterial resonator device with inductors on

one side of the LHTL (Device C).

4.5 Fabrication Details

The devices were fabricated with two lithographic steps: photolithography and elec-

tron beam lithography. Photolithography was used to pattern most of the circuit

elements of our device except the qubit junctions, which were patterned using e-

beam lithography. The device which contained just the LHTL resonator (Device A)

went only through the photolithography step.

Initially an 80-nm thick Nb �lm was sputter deposited onto a high-resistivity Si

wafer. All of the circuit elements besides the qubit junctions were then patterned

in a single photolithography step with UVN2300 deep-UV negative resist. After

development, the pattern was etched using an inductively coupled plasma etcher with

BCl3, Cl2, and Ar. For the devices where the metamaterial resonator was coupled

to the transmon qubit, the junctions were de�ned with an electron-beam lithography

step with a bilayer of MMA and PMMA to form the junction electrodes and airbridge

for shadow evaporation. Following development in methyl isobutyl ketone and surface

oxide removal using 13 sec Argon ion mill, the junctions were formed by double-angle

depostion of Al thin �lms with 35 nm for the �rst layer and 65 nm for the second

layer. The tunnel barriers were formed by an in situ oxidation step in between the

two �lm depositions; the unwanted Al was lifted o� using dichloromethane following

the vacuum step. More detailed fabrication recipe is given in Appendix A.
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Chapter 5

LHTL resonator measurements

In this chapter I summarize the measurements and main results for Device A, which

is a 42-cell LHTL resonator. More details about the measurements and analysis

can be found in Ref. [39] and Ref. [59]. In this work, the dense mode spectrum

of the LHTL resonator is characterized extensively by both microwave transmission

measurements and laser scanning microscopy (LSM). In particular, the measurements

of mode frequencies, spatial pro�les of current and charge densities, and damping due

to external loading con�rms that we can implement a LHTL resonator with tailored

characteristics predicted by analytical (Chapter 3) and numerical modeling (Sec. 7.1).

5.1 Measurement setup

After we fabricate our devices on a high resistivity Si wafer following the steps men-

tioned in Appendix A.1, they are diced into a 4.25 × 4.25mm2 chips. A single chip

is loaded into a printed circuit board (PCB) sample holder. [Fig. 27 (b)]. The

launching pads on the chip are connected to the center traces of the board using

aluminum wirebonds. To ensure a low-impedance connection at microwave frequen-

cies between the device ground plane and the ground of the sample holder, we use

numerous wirebonds that connect from the PCB ground plane to the perimeter of

the chip and across di�erent discontinuous sections of the ground plane of the chip.

SMA connectors are used to connect the center traces to RF cables to the cabling

on the cryostat. An aluminum lid is used to protect the chip from stray magnetic

�elds and black body radiation. The sample box is mounted on a cold �nger made
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from OFHC copper on an Adiabatic Demagnetization Refrigerator (ADR) with a base

temperature of around 50 mK. The sample box and the cold �nger are shielded by a

single-layer cryogenic µ-metal magnetic shield. The input line to the LHTL resonator

is connected to the top of the ADR thorough semi-rigid cables with 39 dB of cold

attenuation for thermalization. The output from the LHTL is ampli�ed by 32 dB

with a HEMT (CITCRYO01-12A, Bandwidth: 1-12 GHz) mounted on the 3 K plate

of the ADR and again with a room-temperature ampli�er (NARDAWest) with 35 dB

gain.

Transmission measurements across the LHTL resonators are performed using a

vector network analyzer (VNA) (as shown in Fig. 28). We measure transmission

using scattering paramater or S parameters, matrix. For a two port device, the S

parameters are de�ned in terms of incident a1, a2 and re�ected b1, b2 voltage waves

[57]: [
b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
. (5.1)

In the measurement setup that we use, S21 characterizes the transmission through

the resonator. When the load impedance is matched to the source impedance at the

input end, S21 is reduced to [57]:

S21 =
b2
a1

=
2V2
Vg

, (5.2)

where Vg is the source voltage at port 1 and V2 is the voltage measured at port 2. A

detailed derivation for S21 for a LHTL resonator is provided in Ref. [39].

DUT

Figure 26: Schematic of a two port device under test (DUT).

Python scripts are used for programming the VNA to automate the measurements.

A separate transmission measurement of a CPW feedline with the identical setup

is performed to get a transmission baseline. However, small variations in baseline
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measurement can be expected due to slight chip-to-chip variations. Because a single

Narda ampli�er does not have enough bandwidth to cover the complete range of our

measurements, we used two Narda ampli�er with bandwidths 2-8 GHZ and 6-18 GHz

and divided the transmission measurements from 2-8 GHz and 8-16 GHz where the

appropriate Narda was used. Similarly, we divided the measurements for baseline

transmission.

1 cm

input

output

2 mm

(a) (b)

Figure 27: (a) Zoomed-out image of the chip �tting in the sample holder and the

wirebonds; (b) the entire sample holder with chip bonded in place and input/output

connections marked.

5.2 Mode structure of a LHTL resonator

In this section, we present measurements for one of our LHTL resonators at two

di�erent temperatures: 65 mK and 3 K with input power of ∼ -90 dBm applied on

the input end of the sample.

Figure 29 is the calibrated measurement results: black solid line is the base tem-

perature, while the blue dashed line is the high temperature result. At both 65 mK

and 3 K, the spectrum shows a large number of peaks. The transmission below the

�rst peak at 4.245 GHz is quite low. We see that peaks are very closely spaced in the

region between 5-8 GHz. The measured smallest mode spacing is 147 MHz between
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Figure 28: Transmission measurement setup including the wiring inside the ADR.

mode 39 and 38. With the exception of the �rst few modes, we see that the spacing

between the modes increases with frequency, as predicted by theory 13. The highest

Q we measure at base temperature is around 26,000 for mode 40. The bandwidth

of our HEMT, which is roughly 2-16 GHz, limits the highest frequency mode that

we can measure, which is around 15 GHz. Figure 29(b) shows the transmission mea-

surement for mode 39, and a negative shift in the resonance frequency can be seen at
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Figure 29: (a) Measurements of the magnitude of the microwave transmission |S21(f)|
on the ADR at two di�erent temperatures: 65 mK (solid black line); 3 K (blue dashed

line); Sonnet simulation (red dashed line) o�set by 20 dB; (b) an enlarged plot in the

vicinity of n = 38 mode near 5.41 GHz. Figure taken from Ref [39].

higher temperature due to the increase in kinetic inductance [82], which is a conse-

quence of temperature dependence of the number density of cooper pairs relative to

the number density of unpaired conducting electrons [83]. Q for the modes remains

high at low temperatures that are substantially far away from the Tc of Nb around

9 K [84]. A decrease in Q at high temperature is also seen due to an increased popu-

lation of thermal quasiparticles. The chip is characterized at 3 K to help interpreting

the results from LSM images presented in Sec. 5.4. Figure 30(a) shows the plot for

mode frequencies vs normalized wavenumber measured at 65 mK in the ADR. The

plot shows good agreement between the mode frequency found with the ADR and

LSM measurements and the mode frequencies obtained from Eq. (3.29), numerical

circuit simulations using AWR (Sec. 7.1), and �nite-element device simulations using

Sonnet (Sec. 7.1) except at the lowest frequency modes [Fig. 10(b)], where there are

more signi�cant deviations.

5.3 Coupling and Internal Losses

Since we want to couple LHTL resonators to other devices such as a superconducting

qubits, it is crucial to understand how the internal and coupling Q depends on mode

frequency. In this section I discuss how the internal and coupling Q were extracted
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Figure 30: (a) Plot of mode frequency vs. normalized wavenumber for ADR mea-

surements, LSM images, Sonnet simulations; the solid black curve corresponds to

dispersion relation of Eq. (3.29). (b) Closeup of behavior near ωIR/2π. Figure taken

from Ref [39].

from the measured data and how they compare with the theory and simulations.

After measuring S21(f) for a particular mode, to extract Qi and QC simultane-

ously, S21(f) can be �tted in the complex plane to a standard function, as described

in literature [85, 86, 87]:

S21 =
Q

QC

eiϕ

1 + 2iQ(f − f0)/f0
, (5.3)

where Q, QC , f0 and ϕ are the total quality factor, the coupling quality factor, the

mode frequency and the rotation angle of the resonance circle on the complex plane,

respectively. The Internal quality factor can then be calculated as Q−1
i = Q−1−Q−1

C .

This method works well for the absorption type resonance for which the transmis-

sion away from the dip is unity, and thus yields a self calibrated baseline [88].

However, for peak-style transmission resonances, also applicable for our LHTL

resonator measurements, a separate baseline calibration is required in order to sep-

arate the values of Qi and Qc from the �t. The accuracy of the �t depends on the

baseline measurements, which inevitably introduce some variation since they must

be performed on a separate cooldown with a di�erent device that may have slight

di�erences in the bonding and packaging.

The modes of our LHTL resonator in overcoupled regime, where QC ≪ Qi, thus

it is di�cult to extract Qi as a small change in baseline will result in big change of
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Figure 31: (a) Comparison of internal loss and coupling loss extracted from measured

S21(f); (b) The external loss plot on a log scale for the measurement at 65 mK com-

pared with AWR simulation, Sonnet simulations of both staggered and non-staggered

inductor con�guration, and theoretical dependence calculated from Eq. (5.4) Figure

taken from Ref [39].

the Qi. We estimate an uncertainty in the baseline level of ±2 dB and use this to

compute uncertainties in the Qi values extracted from the �ts. For the cases, where

a resonance peak goes higher than 0 dB which is physcally immpossible for passive

a device, we adjust baseline to 0 dB. Figure 31(a) shows the extracted values of Q−1
i

and Q−1
C for LHTL resonator. For most of the modes of the LHTL, Q−1

i values are

around 10−5, which is typical for the devices where dielectric loss at the substrate

surface and interfaces dominates [89, 90], as in our devices where the interdigitated

capacitors make up a signi�cant portion of the LHTL resonator. The Q−1
c values

generally decrease for larger n modes, which is quite di�erent from the trend for a

conventional right-handed transmission-line resonator, where the Q−1
c ∝ n [56]. In

Appendix D of Ref. [39], we derive expressions for Qc for resonators formed from

discrete lumped-element transmission lines, with both right-handed and left-handed

dispersion relations. For the simplest case of an ideal LHTL resonator, we obtain

QLHTL
c (n)−1 =

C2
c cos

2
(
nπ
2N

)
2NC2

l sin
3
(
nπ
2N

) , (5.4)

where n is the mode number, N is the total number of cells, Cc is the coupling

capacitor, and Cl is the capacitance of a unit cell.

In Fig. 31(b), we plot Q−1
c (n) from Eq. (5.4), along with values from a numerical
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simulation of an ideal lumped-element LHTL resonator using AWR Microwave O�ce

showing nearly perfect agreement. The Q−1
c values extracted from our measured

resonances agree reasonably well with Eq. (5.4) for lower values of n, but begin

to deviate signi�cantly for higher n modes starting around n ∼ 30. Q−1
c extracted

from �nite element simulations using Sonnet with two con�gurations are also studied.

Q−1
c extracted for the staggered inductor con�guration using Sonnet shows a similar

deviation of Qc at large n compared to our measured values. Q−1
c extracted for

the non-staggered inductor con�guration matches closely with AWR simulations and

Eq. (5.4). This e�ect is likely a consequence of the short wavelengths for these high-

n modes, which are strongly in�uenced by the layout of the inductors,the kinetic

inductance of the capacitors, as well as the integrity of the ground plane across the

chip [39].

5.4 LSM imaging of mode structure

In this section, I describe low-temperature laser-scanning microscope (LSM) images of

our LHTL resonators performed by our collaborators Alexander Zhuravel and Alexey

Ustinov at the Karlsruhe Institute of Technology. LSM imaging provides a direct

measurement of the spatial distribution of microwave �elds in a superconducting

circuits. This technique is quite useful for studying the mode structure of the various

resonances in our LHTL resonators.

LSM has been used previously to image a wide variety of superconducting struc-

tures under rf excitation [91, 92]. The various modes of LSM operation have been

described in detail in Refs. [93] and [94]. The LSM microsopy is based on the fact that

we can observe a change in a global property, like S21 of a superconducting circuit, by

a local perturbation caused by the local deposition of laser energy over a small area

of a superconducting device. The change in the global response depends on the local

microwave �eld distribution in the focused area where the energy is deposited. An

image of the photoresponse R(x, y, f) can be produced by raster scanning the laser

probe over the surface of the sample while modulating the beam intensity. The mod-

ulated signal is measured using a lock-in technique by correlating the output signal

as a function of the location of the laser spot.

The jumper wirebonds are removed across the chip so they do not block the laser
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Figure 32: LSM re�ectivity image with the arrow indicating the direction of 1D

line scans. (b) Microwave transmission (not normalized) |S21(f)| measured on LSM.

(c) Average LSM photoresponse R(y0, f) along 1D line scans. (d) 1D line scans

R(x, y0, f) vs. frequency; dashed horizontal lines indicate location of input and out-

put coupling capacitors. Figure taken from Ref [39].

beam from reaching the surface of the chip. The chip along with the sample holder is

mounted inside a vacuum chamber of a cryostat with optical access. The temperature

of the cryostat was kept about 5 K, which is well below the TC of Nb. The focused

beam is produced by a diode laser with wavelength 640 nm. The beam is focused

to a spot of about 12-µm diameter on the surface of the chip, which results in a

power deposition of approximately 10µW and an increase of the local temperature.



51

0.0        0.2         0.4         0.6         0.8         1.0

V
/V

m
ax

1.0

0.8

0.6

0.4

0.2

0.0

position along sample 

line-cut scan

(a)

(b)

(c)

23

7.79 GHz                                                                
 (

a.
u.

)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 33: (a) LSM photoresponse for mode 23 with the arrow indicating the location

of subsequent line cut. Bright (dark) regions correspond to large (small) PR signal.

(b) Plot of the square root of LSM photoresponse signal along line cut. (c) Standing-

wave pattern of voltage across capacitors computed with Eq. (E3) in Ref. [39] for

mode 23 of a 42-cell LHTL resonator. Figure taken from Ref [39].

The intensity of the laser is modulated at 100 kHz while the change in microwave

transmission |∆S21(f)| is measured. The output signal from the sample is carried out

using semi-rigid coaxial cables to an amplifer(60 dB), a crystal diode recti�er and the

lock-in ampli�er. The Photoresponse signal is produced by lock-in detection at the

modulation frequency.

Figure 32(a) contains a re�ectivity image of the metamaterial in the LSM, with

an arrow indicating the orientation and location of 1D scans along the x axis of the
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photoresponse that are measured in the LSM. The photoresponse signal averaged

over the length of the resonator R(y0, f) [Fig. 32(c)] and microwave transmission

|S21|(Fig. 32(b)) are measured simultaneously as a function of frequency.

The peaks in R(x, y0, f) in Fig. 32(c) coincide with the mode resonances in the

S21(f) measurements from Fig. 32(b), thus indicating that R(x, y0, f) can be used

to investigate the metamaterial resonances and the corresponding standing-wave pat-

terns.

We then perform 2D scans of R(x, y, f) while exciting one of the metamaterial

modes at a time. [Fig. 33(a)]. We see the large photoresponse where we expect

large microwave currents particularly in the inductors near the current antinodes in

the standing wave pattern. We also see a large phtoresponse in the regions where

we expect large microwave voltages around the capacitors near the standing-wave

antinodes for charge density. A linecut along the length of the LHTL resonator

can be used to generate a 1D plot of
√

R(x, y0, f) as function of position along the

resonator [Fig. 33(c)]. We see that this curve is in good agreement with the theoretical

curve 33(c)] generated by the voltage vs. position relation derived in Appendix E of

Ref. [39]

The LSM imaging is repeated for all of the modes in our LHTL below 20 GHz

and Fig. 34 contains an array of LSM images for many of these modes. We observe

that for mode n ≤21 the number of nodes decreases with an increase in frequency i.e.,
the wavenumber is a falling function of frequency. However, we also see an increase

in the number of antinodes from n =41 to 21, which is what one would expect for a

transmission-line resonator with right-handed dispersion. As described in Section V

of Ref. [39], this can be understood as an undersampling e�ect due to the discrete

lumped-element nature of our metamaterial transmission line and the fact that the

LSM image is only sensitive to intensity and not phase.

In conclusion, we have shown that we can fabricate and characterize LHTL res-

onators with tailored dispersion relations whose properties can be well understood

analytically and through numerical simulations.
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2.09 GHz                                                    5.86 GHz                                                   12.77 GHz
40                                                                22                                                              11
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5.45 GHz                                                    9.33 GHz                                                   18.59 GHz 

Figure 34: Array of LSM images of metamaterial for di�erent modes, labeled by mode

number and frequency. Bright (dark) regions correspond to large (small) PR signal.

Amplitudes of photoresponse signal are normalized for best contrast. Figure taken

from Ref [39].
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Chapter 6

Measurements of a qubit coupled to a

metamaterial resonator

In this chapter, I discuss in detail about the various measurements for Device B that

has a transmon is coupled to a metamaterial resonator. The interaction between

the transmon and metamaterial is measured by both the transmission response of

the metamaterial resonator and direct qubit characterization with a separate readout

resonator.

6.1 Measurement setup

The device is diced into a 6.25×6.25mm2 chip. Using a small amount of GE varnish,

the chip is glued into a square pocket of a machined aluminum sample box. GE

vanish assists with the thermalization of the chip at low temperature and prevents

the chip from moving inside the pocket. The on-chip launching pads are connected to

the PCB traces by aluminium wirebonds. A large number of wirebonds are connected

between the perimeter of the chip and the ledge of the pocket in the aluminum box to

ensure good grounding of the chip. The length of wirebonds is kept short (<1 mm)

to minimize their inductance. The sample box is covered by an aluminum lid with

an integrated superconducting wirewound coil (Fig. 35). The sample box is mounted

on the cold �nger of a dilution refrigerator. A single-layer cryogenic magnetic shield

is used to shield the device from external magnetic �ux noise. The output from

the network analyzer (Fig. 37) is connected to the SMA port on the top of DR.
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Figure 35: (a) Aluminum sample box with the device wirebonded in the center. (b)

Top view of the lid of the sample box; SMA port is used to connect the DC bias of

the superconducting coil. (c) Bottom view of the lid. In the center superconducting

coil can be seen which is made from 150 turns of NbTi wire.

Figure 36 shows the wiring inside the dilution refrigerator. Inside the fridge signal is

carried to Min port [Fig. 35(a)] with semi rigid cables and 50 dB of cold attenuation

and low pass �lter. The output from port Mout passed through �lters and isolator

and amplifed by HEMT (Model: CITCRYO01-12A, Gain: +32dB, Bandwidth: 1-

12 GHz) and room temperaure ampli�er (Model: NARDA West, Gain +35 dB, ,

Bandwidth: 2-8 GHz/6-18 GHz) by about 65 dB (As shown in Figs. 36 and 37).

A dilution refrigerator (DR) can maintain base temperature continuously for several

weeks to several months. Modern dilution refrigerators are cryogen-free, that is, they

do not require liquid nitrogen and liquid helium to cool from room temperature to

4 K. However, this chip was measured on an conventional wet dilution refrigerator.

DR runs on a conventional 3He/4He process to reach of base temperature of about

25 mK [95].



56

Min

Room-temperature
μ-metal shield

Rin
Rout

Mout

77 K

Room-temperature
Vacuum shield

4 K

Still

exchange

MC
25mK

20 dB

10 dB

0 dB

20 dB

Device

Superconducting 
      solenoid

Isolator

6-channel Radial
 MW switch

HEMT

DC-12 GHz
      Filter

DC-12 GHz
      Filter

Cryoperm
Magnetic
 shield

Figure 36: Wiring inside the dilution refrigerator. The input for metamaterial res-

onator and input resonator, each go thorough 50 dB of attenuation and a low pass

�lter. The output signal from the device go through a low pass �lter, a microwave

switch, isolators and a HEMT ampli�er mounted at 4 K stage.

Figure 38 shows the schematic for the hardware setup used for measurements in-

volving qubit characterization and qubit interaction with the metamaterial resonator.
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A separate transmission measurement of a CPW feedline with an identical setup is

performed to get a transmission baseline. Qlab software that was developed by BBN

is used for measurement and instrument control. This software uses a combination of

Matlab and Python scripts for the parameter con�guration interface and instrument

control. The Quantum Gate Language (QGL) module, a part of QLab package, is

used for pulse sequence generation [96] for di�erent qubit characterization experiments

(Fig. 45).

Narda  6-18 GHz/2-8 GHz

+35 dB

 Network Analyzer
Agilent N5230A

To DR/ADR
   Input

From DR/ADR
 Output

RFout

RFin

Figure 37: Transmission measurement for initial characterization of device spectra

setup using a network analyzer.

6.2 Mode structure of hybrid LHTL-RHTL metamaterial res-

onators

For the initial characterization of the device spectrum, we measure the microwave

transmission S21(f) with a vector network analyzer. Figure 39 shows the measured

and simulated transmission spectrum for Device B. Even with the presence of a RHTL

segment in the metmaterial resonator, the transmission spectra look similar when

compared with measured and simulated spectra of a pure LHTL resonator (Fig. 30).

For both con�gurations we see transmission is quite low at low frequencies, and there

is a dense region of peaks between ∼ 6−8 GHz. The infrared cuto� ωIR/2π is around

5 GHz. The spacing between the modes increases with frequency except for the �rst

few modes due to the staggered con�guration of inductors as discussed in previous

chapter. From this S21(f) measurement we extract the mode frequencies and plot

them as a function of normalized wave number in Fig. 40. We also plot the dispersion

relation calculated from circuit simulation using AWR with same device parameters.
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Figure 38: Measurement setup for qubit spectroscopy and characterization.

Since the metamaterial resonator is coupled to outside circuitry with relatively

large input Cin
cM and output Cout

cM capacitors, the modes are in the overcoupled regime
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Figure 39: Measured transmission spectrum (black line) for Device B compared with

spectrum from circuit simulation using AWR (blue dashed line, with -50 dB for clar-

ity). Figure adapted from Ref. [97].

Device B
AWR

Figure 40: Dispersion relation obtained from S21 measurement of Device B compared

with dispersion obtained from AWR simualtion with same parameters.

(Qi ≫ Qc) and the total quality factor (Q) of the modes is dominated by the coupling

quality factor (Qtotal ≈ Qc). We extract the total quality factor of the modes by four



60

6 8 10 12
Mode Frequency (GHz)

103

104

105

Q
to

ta
l

Figure 41: Measured total quality factor of metamaterial modes as function of fre-

quency. The presence of the RHTL segment that is used to couple the metamaterial

to the qubit results in the non-monotonic behavior of the mode quality factor vs.

frequency through the variation in the standing-wave pattern in the RHTL portion

with frequency; by contrast, a simple LHTL resonator exhibits a monotonic decrease

in quality factor for increasing frequency (Fig. 31). Figure taken from Ref. [97].

parameter �t of transmission magnitude |S21(f)| to a simple Lorentzian

|S21(f)| =
A

1 +
(
f−f0
κ

)2 + C, (6.1)

where f0 is the resonance frequency, A is the amplitude of the peak and C is the

baseline o�set. From the �t, we extract total quality factor Qtotal = f0/2κ and 2κ is

full width at half maximum (FWHM) or the 3 dB width (when |S21| is plotted on a

log scale) of the resonance peak.

When compared to an ideal LHTL, where Qtotal generally decreases as the mode

frequency increases, we see additonal structure in Qtotal as a function of mode fre-

quency for our hybrid LHTL-RHTL metamaterial resonator. Qtotal �rst decreases,

then from 7 to 8.5 GHz, Qtotal increases by almost an order of magnitude, before go-

ing down again for the modes higher than 8.5 GHz. This additonal structure is caused
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by standing-wave structure in the RHTL section and the location of local maxima in

Qtotal(f) is determined by the resonant mode frequency of the RHTL section, which

is determined by its length and wave speed [56].

6.3 Probing metamaterial modes coupled to a qubit
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Figure 42: Density plot of magnitude of transmission through metamaterial resonator

vs. qubit �ux bias, showing vacuum Rabi splittngs for all of the modes that the qubit

tunes through. Dashed line indicates �ux tuning of bare transmon energy band from

�ts to splitting location. (Insets) closeup of splittings and �ts for 5.81 GHz and

8.52 GHz modes. Figure taken from Ref. [97].

In this section, we see how the presence of a transmon qubit can a�ect the modes

of the metamaterial resonator. Initially we probe the qubit indirectly through trans-

mission measurements of the metamaterial, rather than using the separate readout

resonator. Near one of the modes, we measure transmission S21(f) at low input power

(around -100 dBm at the chip). By varying the �ux bias to tune the qubit transition

frequency, we are able to observe the in�uence of the qubit on each mode through
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Figure 43: Detail of splittings for four adjacent modes between 7.1 and 7.9 GHz.

Figure taken from Ref. [97].

which it passes. Next we tune the qubit frequency by changing the �ux bias of the

superconducting coil (Fig. 36). When the bare qubit frequency approaches each res-

onance peak, we observe a vacuum Rabi splitting [98] in the microwave transmission,

where the qubit hybridizes with the photonic state of the metamaterial resonant mode

[Insets of Fig. 42 and Fig. 43].

As we tune the qubit frequency, it crosses 21 modes up to the mode at 9.16 GHz,

suggesting that the maximum qubit frequency is between 9.16 GHz and 9.56 GHz

(frequency of next mode, which does not have any splitting) at an integer �ux quan-

tum (Φ0 ≡ h/2e, where h is Planck's constant and e is the electron charge). Through

direct qubit spectrosopy spectroscopy with the use of the readout resonator, which

will be discussed later in Sec. 6.4, we con�rm that the maximum qubit frequency is

9.25 GHz (Fig. 47). We combine the plots of all the splitings on a single plot as shown
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Figure 44: (a) Extracted coupling strength between qubit and each metamaterial

mode vs. frequency. (b) Simulated coupling strengths vs. frequency using AWR

Microwave O�ce and circuit model approach described in text. Figure taken from

Ref. [97].

in Fig. 42. We can �t the positions of these various splittings to the conventional trans-

mon �ux-modulation dependence [Eq. (2.10)] while varying the maximum Josephson

energy EJ0 to obtain the black dashed curve drawn on Fig. 42. The extracted value

for EJ0 is consistent with the fabricated junction parameters.

For each of the modes that the qubit crosses, we can easily see that the splitting

is larger than the linewidth of the particular mode, which corresponds to the strong

coupling regime of cQED [99]. Since the splittings are smaller than the intermode

spacings over the range of our measurements, we can make an approximation and

treat each mode individually for extracting the coupling strength gi for the qubit to

each of the metamaterial modes. We �rst extract the peak frequency as a function of

�ux for both branches of the splitting. We then �t the solutions of the Hamiltonian
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for one cavity mode coupled to a transmon with gi as a free parameter. The bare

cavity frequency is �xed to the peak frequency of the mode when measured at high

power. For the transmon, �rst we set EC based on Q3D simulations. Then, we

set the maximum EJ0 so that the calculated maximum frequency of the transmon

matches with the measured frequency (9.25 GHz). In this way, we �t each vacuum

Rabi splitting to the Hamiltonian for one resonator mode coupled to a transmon, and

thus extract gi for each mode.

Further details on this �tting, including a discussion of the validity of treating

each mode separately, are included in Section 7.2. Fig. 44(a) shows a plot of the

extracted gi values to each mode. Initially gi/2π increases with frequency above ωIR

up to a maximum of 22 MHz for the mode near 7.8 GHz; this is followed by a gradual

decrease in gi up to the maximum qubit transition frequency. This non-monotonic

variation of gi with frequency is due to the standing-wave structure in the RHTL

portion of our hybrid metamaterial resonator. This is also similar to the variation

of Qtotal with frequency, suggesting corelation between Qtotal and gi. We study this

non-monotonic behaviour of gi with frequency in more detail for various lengths of

the RHTL section in Section 7.1. In the region around 7.5 GHz, where the modes are

relatively close together and the gi values are near the maximum, the upper branch of

the splitting for one mode comes close to touching the lower branch of the splitting for

the next higher mode (Fig. 43). Nonetheless, even the maximum gi remains smaller

than the minimum mode spacing, thus, the system is not quite in the multimode

strong coupling regime, where the qubit would be able to couple strongly to multiple

modes simultaneously.

For modeling gi and comparing with the measurements, we use AWR Microwave

O�ce [100]. We can simulate the splittings in the spectrum semi-classically by ap-

proximating the qubit as a tunable LC oscillator coupled to a hybrid metamaterial

resonator with the parameters of our device. Details are discussed in Appendix 7.3.

The simulated gi frequency dependence plotted in Fig. 44(b) is in reasonable agree-

ment with our measured coupling strengths, although the decrease in gi for the highest

qubit frequencies is not quite as strong in the simulations.
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Table 3: Qubit and readout resonator parameters.

Label Description Value Method of Determination

fmax
01 Maximum qubit frequency 9.25 GHz Qubit spectroscopy of the

f01 transition at

the �ux-insensitive sweetspot

η Qubit anharmonicity 340 MHz Qubit spectrosopy of

f01 and f02/2

gR/2π Qubit-readout resonator 65 MHz Measurement of resonator

coupling strength transmission S21 vs. �ux

ωR/2π Fundamental frequency of 7.07 GHz Measurement of resonator

readout resonator transmission S21

Q Total quality factor of 15,463 Measurement of resonator

readout resonator transmission S21

t

20 µs 5 µs

Qubit spectroscopy

t
Rabi width spectroscopy

𝜏

t
Rabi amplitude spectroscopy

200 ns
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Figure 45: Pulse sequences used for di�erent qubit characterization experiments.
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Figure 46: Density plot of magnitude of transmission through readout resonator vs.

qubit �ux bias. Red (blue) circle are the extracted resonance frequencies extracted

from Lorentzian �t of 1D vertical slices of the density plot. Red and blue dashed

lines are the eigensolutions of the Hamiltonian of a qubit coupled to one mode of a

resonator. The faint blue feature shows up due to the leakage of lower sideband from

the mixer used for heterodyne detection.

6.4 Dispersive readout of the qubit

In addition to probing the interactions of the qubit and metamaterial modes through

direct measurements of the metamaterial resonator, we are also able to read out the

qubit with the separate readout resonator. First, by monitoring the transmission

between ports Rin and Rout and changing the qubit �ux bias, we see a vacuum rabi

splittng (Fig. 46). As explained in the previous section, by �tting the eigensolutions

of the Hamiltonian of a qubit coupled to one mode of a resonator to the peak fre-

quencies from the measurement, we extract the coupling strength between the qubit

and the readout resonator. Table 3 lists the extracted coupling strength and other

important parameters for the qubit and readout resonator. We perform conventional

dispersive measurement of the qubit state, as described in Chapter 2, by measuring

the change in transmission of the readout resonator peak while applying a second
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Figure 47: (a) Density plot of magnitude of transmission through metamaterial res-

onator vs. qubit �ux bias in vicinity of upper sweetspot. (b) Spectroscopy of qubit

0-1 transition vs. �ux bias near the upper sweetspot measured using readout res-

onator. (c) Rabi spectroscopy of qubit for �ux bias near upper sweet spot, around

9.235 GHz, measured using readout resonator. Figure taken from Ref. [97].

tone simultaneously [Fig. 22(b)] using heterodyne detection.

Figure 47(a) is a plot of the vacuum Rabi splittings for the highest frequency

mode that the qubit passes through, observed in the microwave transmission through

the metamaterial resonator between ports Min and Mout with network analyzer mea-

surements, as in the previous section. In Fig. 47(b), we use ports Rin and Rout to

measure qubit spectroscopy in the same region of �ux bias and frequency by sending a

20-µs-long spectroscopy probe pulse at frequency fspec, followed by a 5-µs-long read-

out resonator pulse to detect the qubit-state-dependent dispersive shift [Fig. 45(a)].

The two curves are quite similar, with comparable splittings when the bare qubit

frequency passes through the 9.15 GHz mode.

We can also use the separate readout resonator for conventional coherent manip-

ulation of the qubit state. Figure 47(c) shows a Rabi spectroscopy measurement of
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the qubit near its maximum transition frequency with a Rabi pulse of variable du-

ration and frequency driven to the readout resonator, again followed by a resonator

readout pulse [Fig. 45(b)]. Thus, the qubit remains coherent in this frequency region,

despite being biased in the middle of the complex resonance spectrum produced by

the metamaterial resonator.

6.5 Purcell losses in a multimode enviroment

0 10 20 30 40
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1

P
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t (μs)

8.66 GHz (T1= 1.08 μs)
3.89 GHz (T1= 15.8 μs)

Figure 48: Plots of two example measurements of qubit relaxation measured for a

bias point below fIR of the metamaterial and a bias point in between two modes at

higher frequencies. Figure taken from Ref. [97].

A π-pulse tuned up from rabi measurement allows us to excite the qubit and

characterize its lifetime as it relaxes back to the ground state [Fig. 45(d)]. Figure 48

show the plot of two qubit relaxation measured for a bias point below fIR of the

metamaterial and a bias point in between two modes at higher frequencies. By

stepping through the qubit �ux bias and tuning up a π-pulse at each point, we are able

to map out the qubit T1(f) in the structured environment of our hybrid metamaterial

resonator [Fig. 49(a)]. With the qubit biased below ωIR/2π, the qubit has a reasonably

long lifetime, with T1 ranging between 10− 19µs, with a gradual decrease for larger
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Figure 49: (a) T1 vs. frequency measured over span of 6.5 GHz. Vertical dashed lines

indicate the loaction of the two T1 decay curves shown in Fig. 48. (b) Transmission

spectrum of metamaterial resonator for comparison with structure in T1(f) plot. (c,

d) zoomed-in T1(f) plots of data from (a) with red vertical dashed lines indicating

location of metamaterial resonator modes. (e) Calculated T1(f) from multi-mode

Purcell loss simulation of qubit coupled to metamaterial resonator. Figure adapted

from Ref. [97].

frequencies. For frequencies near ωIR/2π and slightly below 6 GHz, T1 begins to

drop signi�cantly, although notably the lowest three metamaterial modes, which are

particularly high Q and low transmission, do not strongly in�uence T1 [Fig. 49(b)].
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Beyond the fourth lowest mode, T1(f) is characterized by a series of sharp dips to sub-

µs levels when the bare qubit frequency matches the various metamaterial resonances;

there is a partial recovery of T1 in between the modes [Fig. 49(c, d)]. The gap in

Fig. 49(a) around 7-8 GHz is a result of the strong coupling to the readout resonator,

which makes it di�cult to address the qubit directly.

The complex frequency dependence of the qubit lifetime that we observe is char-

acteristic of Purcell loss for a qubit coupled to a series of lossy resonant modes [101].

We note that the quality factors of the metamaterial modes in our device are entirely

dominated by coupling losses to external circuitry. In this case, we chose C
in/out
cM to

be rather large to make it feasible to observe vacuum Rabi splittings in transmission

measurements through the metamaterial while tuning the qubit frequency. For future

devices, these coupling capacitances could be made signi�cantly smaller if one were

focused instead on probing the metamaterial modes via the qubit, rather than by

direct transmission through the metamaterial. In this case, the mode quality factors

would be signi�cantly higher and the Purcell losses much smaller, particularly when

the qubit is tuned in between the modes.

Following the approach outlined in Ref. [101], we model the multi-mode Purcell ef-

fect as T Purcell
1 (f) = C/Re[Y (f)], where C is the qubit shunt capacitance and Y (f) is

the frequency-dependent complex admittance of the qubit environment. The detailed

calculation are given in the next Chapter. The resulting T1(f) dependence from our

model plotted in Fig. 49(e) qualitatively follows our measurements, although we do

not quantitatively reproduce the locations of the T1 dips due to the di�culty of cap-

turing the experimental metamaterial spectrum in our circuit model, particularly near

ωIR/2π, without accounting for the e�ects of the staggered inductor con�guration and

non-ideal grounding of the metamaterial chip, as described in Ref. [39]. Nonetheless,

the Purcell modeling provides a route for describing the frequency-dependent lifetime

for a qubit coupled to a complex metamaterial, including the relatively long T1 values

that can be attained in the bandgap of the metamaterial spectrum.

6.6 Qubit decoherence

We also study the coherence of the transmon as a function of �ux near the maximum

frequency of the qubit. Figure 50(a) shows T ∗
2 and T2 as function of �ux measured



71

0 5 10 15 20 25
0

10

20

30

40

Γφ
   

DΦ (GHz/Φ0)

Γ
φ 

 (μ
s-1

)

y = 1.47*x - 0.371

-0.4 -0.3 -0.2 -0.1 0 0.1
0

0.5

1

1.5

T2

T2
*

T
2*

T
2
,

 (
 μ

s)

Φ/Φ0

(a) (b)

Figure 50: (a) Qubit T2 and T ∗
2 measured as function of �ux. (b) Qubit dephasing

measured as a function of DΦ.

using Ramsey interferometry [Fig. 45(e)] and Hahn Echo techinique [Fig. 45(f)]. We

observe that T ∗
2 and T2 are higher near Φ/Φ0 = 0, where the qubit's frequency gradient

as a function of �ux, DΦ = |∂f01/∂Φ| = 0. Thus, this is a bias point where the qubit

is �rst-order insensitive to �ux noise.

From the qubit T1 and T
∗
2 we can calculate pure dephasing Γϕ = 1/T ∗

2 − 1/2T1 as

a function of �ux. To assess the e�ect of �ux noise on pure dephasing, we observe

how the pure dephasing relates to qubit's frequency gradient as a function of �ux DΦ.

Figure 50(b) shows the plot of Γϕ vs DΦ. Following the approach in Ref. [48], we

apply a linear �t of form mDΦ + b to the plot of Γϕ as function of DΦ and compare

it to Γϕ = 2π
√
AΦ| ln(2πfIRt)|DΦ. Here, the �ux noise spectrum is SΦ(f) = AΦ/|f |,

fIR is the infrared cuto� frequency, which we take to be 1 Hz and t is on the order

of 1/Γϕ, which we take to be 1 µs in our calculations. We �nd a �ux noise level

A
1/2
Φ ∼ 6.7 µΦ0, which is somewhat high, but within the range of other �ux noise

measurements from transmons [48], �ux qubits [102, 103], phase qubits [104], and dc

SQUIDs [105].

6.7 Stark shift measurements

With the ability to perform dispersive measurements of the qubit with the readout

resonator (using Rin/out) while simultaneously driving a separate microwave signal

to the hybrid metamaterial resonator (using Min/out), we are able to observe the ac

Stark shift of the qubit 0-1 transition [52] for di�erent average numbers of photons
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Figure 51: (a-f) Stark shifts of qubit transition through driving of 6 di�erent meta-

material modes at a range of microwave powers for a �ux bias corresponding to the

unshifted qubit transition at 6.275 GHz; Stark shift theoretical curves shown by blue

dashed lines. For the 6 plots, 0 dB attenuation corresponds to a power at the chip

of (a) -86 dBm, (b) -126 dBm, (c) -128 dBm, (d) -123 dBm, (e) -121 dBm, and

(f) -113 dBm. (g) |S21(f)| measured through metamaterial to indicate the 6 modes

driven in (a-f) (blue dots and dotted lines) and the bias point of the qubit (red dashed

line). Plots of qubit spectroscopy frequency vs. Stark drive frequency for �xed power

for (h) mode near 6.003 GHz at -129 dBm, (i) mode near 6.588 GHz at -122 dBm;

metamaterial mode near 6.22 GHz visible as a faint, sharp line near bottom of plots.

Figure taken from Ref. [97].

in each of the metamaterial modes [Fig. 45(g)]. With the qubit biased at 6.275 GHz,

as indicated in Fig. 51(g), we measure the qubit transition in spectroscopy while

driving one of the six di�erent metamaterial modes and scanning over 18 dB of power
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for the Stark drive to generate the plots in Fig. 51(a-f). Additionally, for two of

these metamaterial modes, we again perform qubit spectroscopy while scanning the

frequency of the Stark drive for �xed power [Fig. 51(h,i)].

The observed shift of the qubit transition increases in magnitude with the power

of the Stark drive when the frequency is resonant with a metamaterial mode, as

with a qubit coupled to a single resonator [52]. Moreover, if the metamaterial mode

being driven falls between the qubit 0-1 and 1-2 transition frequencies, the straddling

regime identi�ed in Ref. [44], we observe a change in the sign of the Stark shift. The

observed Stark shifts of the qubit with microwave driving of various metamaterial

modes can be explained well by a model of a transmon qubit coupled dispersively to

a single mode resonator, corresponding to the particular mode being driven (mode

i), according to

H/ℏ = ωiM̂i +
(ωq

2
+ χM̂i

)
σz, (6.2)

where ωi is the frequency of the relevant (single) metamaterial mode, M̂i =∑
mi
mi|mi⟩⟨mi| is the number operator for mode i, ωq is the qubit 0-1 transition

frequency, χ = g2i η/(δiη − δ2i ) is the qubit frequency shift per photon, δi = ωq − ωi

is the detuning between the qubit and the metamaterial mode, and η is the anhar-

monicity of the transmon, de�ned as the di�erence between the 1-2 and 0-1 transition

frequencies.

The Stark tone at frequency ωd drives the resonator to a coherent steady state

with average photon number

n̄i = ⟨M̂i⟩ =
Ω2

i

(ωi − ωd)2 +
κ2
i

4

. (6.3)

Here, Ωi is the e�ective drive amplitude for mode i and κi is the mode decay rate

from separate measurements of the linewidth of each metamaterial mode (Fig. 41).

Thus, n̄i is proportional to the power delivered to the mode. Making a semiclassical

approximation to the Hamiltonian in Eq. (6.2), one �nds the qubit Stark shift to be

given by χn̄i. A single-parameter linear �t between the power measured at the chip

for each mode frequency from a separate baseline cooldown and the observed Stark

shift for each driven mode gives a map from the input drive power for each mode



74

and the actual power delivered to the mode, Ω2
i . This �t parameter then allows us to

compute the theory curves included in Fig. 52.
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Figure 52: Extracted Stark shifts in qubit transtion frequency from Fig. 51(a-f) plot-

ted vs. mean photon number for each of the 6 metamaterial modes, as described in

text. Figure taken from Ref. [97].
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Chapter 7

Numerical Simulations

In this chapter, I present several simulations of metamaterial resonators and qubits

and their comparison with measurements, whenever applicable. We employ two pow-

erful simulations tools, AWR Microwave O�ce [100] and Sonnet [106], to study the

properties of the metamaterial resonator. AWR uses a lumped-element approach for

simulations, so it is a fast way to model the metamaterial resonator. We also use

scripts [107] to automate the tuning of various circuit parameters, run the simula-

tion, and record the results in data �les for analysis. However, AWR has limitations,

as it cannot capture the e�ects related to the electromagnetic (EM) �eld distribution,

such as simulation of geometrical e�ects of staggered inductors, non-ideal grounding,

and the short-wavelength e�ects that deviate from ideal lumped-element behavior.

Sonnet, on the other hand, uses �nite-element method to solve the Maxwell's EM

�eld equations to simulate the actual sample layout with high accuracy but requires

much longer time and massive computing resources. We take advantage of a Sonnet

software cluster at Syracuse University with 10 nodes, each with 64 GB of memory.

Still, it takes from several days to a couple of weeks to simulate the full spectrum of

only the LHTL section of our device. The challenge also comes from the fact that

our devices consist of a large array of capacitors made from interdigited �ngers with

narrow width/gaps and inductors made from narrow width meander lines.
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7.1 Numerical simulations of mode structure of metamaterials

Here, I show the simulated spectra from AWR and Sonnet and how they compare

with measurements for Device A () and Device B. Figure 53 compares the measured

transmission spectrum for the LHRH hybrid metamaterial (Device B) with a circuit

simulation of S21(f) using AWR with the parameters in the table 1 and 2. The spectra

are reasonably close, with the most signi�cant deviation at the low-frequency end,

where the measured device has a softer infrared cuto� due to the staggered inductor

con�guration.
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Figure 53: Measured transmission spectrum (black line) for Device B (LHRH hybrid

metamaterial with non staggered inductors) compared with spectrum from circuit

simulation using AWR (blue dashed line, with -50 dB o�set for clarity). Figure

adapted from Ref. [97].

7.1.1 E�ects of staggered inductor layout

As described in Chapter 4, we chose to use a staggered layout for the inductors in our

metamaterial resonators for Device A and Device B, as shown in the device images

of Fig. 23 and 20, while Device C had a non-staggred layout of inductors (Fig. 25).
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Here, we present summary of Sonnet simulations to examine the e�ects of the inductor

layout con�guration on the resonator spectrum [59, 39]. We compare the simulated

spectrum from Sonnet with the measured spectrum. Sonnet simulations include only

the LHTL section of the hybrid metamaterial resonator (Device B).
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Figure 54: Sonnet simulations of S21(f) for non-staggered (orange, with -40 dB o�set

for clarity) and staggered (blue) inductor layouts. Figure taken from Ref. [39].
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Figure 55: Measurement spectrum of Device C that has all inductors on one side of

the capacitors that form the LHTL.
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In Fig. 54, we compare the S21(f) spectrum simulated using Sonnet for the origi-

nal staggered and non-staggered inductor con�gurations. Although both spectra fol-

low the overall pattern expected for an LHRH resonator, as presented earlier, there

are clear di�erences between the spectra for the two inductor layouts. In the non-

staggered con�guration, the modes just above ωIR/2π have the highest density. This

is in contrast to the staggered inductor spectrum, where the modes reach their high-

est density for a frequency about 2 GHz above ωIR/2π. This discrepancy between

the spectra for the two inductor con�gurations can also be seen in our measure-

ments for Device B (Fig. 39) and Device C (Fig. 55), where the mode frequencies

of the non-staggered inductor con�guration follow the theoretical dispersion relation

closely, while the lowest frequency and highest n modes of the staggered inductor

con�guration fall below the theoretical curve. Based on the Sonnet simulations, we

conclude that the distribution of the currents through the staggered inductors for the

shortest wavelength modes causes deviations from ideal lumped-element behavior,

leading to reduced resonance frequencies.

7.1.2 E�ects of imperfect grounding

In our experimental setups, the ground plane of the chips is connected to the ground

plane of our sample holders through a series of short aluminum wirebonds around the

perimeter of the chip. Multiple jumper wirebonds are also used across the LHTL and

the CPW segments on either end to ensure that the di�erent discontinous sections

of ground plane are as close to a uniform equipotential as possible. However, it is

a common issue with superconducting thin-�lm microwave circuits [108], that the

nonzero self-inductance of the wirebonds can lead to imperfect grounding over the

entire area of the device. Using Sonnet, we have simulated the e�ects of di�erent

grounding conditions to study how this a�ects the spectrum and coupling quality

factor of the metamaterial resonances. The details of simulations setup can be found

in Ref. [39].

Figure 56 shows the results of the Sonnet simulations of a 42-cell LHTL resonator

for the various grounding con�gurations. We compare the frequency of the resulting

modes (56(a)) and coupling loss (56(b)) for each mode from n = 24− 41. We observe

that the mode frequencies and the coupling loss are only in�uenced signi�cantly for

the highest mode numbers.
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Figure 56: Sonnet simulations for di�erent grounding con�gurations for a 42-cell

LHTL resonator for (a) resonance frequency vs n, (b) coupling loss 1/Qc vs n. Figure

taken from Ref. [39].

7.2 Extraction of qubit-metamaterial mode couplings from

spectra

We consider a metamaterial resonator as a system of uncoupled quantum harmonic

oscillators. When coupled to a qubit, the closed system can be described by the

Hamiltonian:

Ĥ/ℏ =
1

2
ωqσ̂z +

∑
m

[
ωmâ

†
mâm + gm(σ̂+ + σ̂−)(â

†
m + âm)

]
, (7.1)

where ωq is the qubit frequency, σ̂z is the Pauli pseudo-spin z operator and m repre-

sents cavity mode number. â†m and âm are raising and lowering operators for mode

m. σ̂+ and σ̂− are raising and lowering operators for the qubit, and gm is the coupling
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strength of the qubit to the modem. Here, we assume the ideal qubit with two energy

levels, but in our calculations for extracting coupling strength between a transmon

and multiple modes of the resonator, we include higher energy levels, as explained

below.

In order to determine the coupling strength gi between the transmon and mode i

of the metamaterial with frequency ωi, we assume each mode can be represented as

an independent harmonic oscillator coupled capacitively to the transmon. We utilize

standard circuit quantization [44, 33] to derive the Hamiltonian for the transmon-

coupled metamaterial, which, when written in the basis of transmon charge |n⟩ and
resonator excitation number |mi⟩ is given by

Ĥ =

[∑
n

(
4EC(n− ng)

2|n⟩⟨n| − EJ

2
(|n+ 1⟩⟨n|+ |n⟩⟨n+ 1|)

)]
⊗ Îm+

∑
i

(∑
mi

În ⊗ ℏωi

(
|mi⟩⟨mi|+

1

2

)
+

∑
n,mi

ℏgin|n⟩⟨n| ⊗
√
mi + 1(|mi + 1⟩⟨mi|+ |mi⟩⟨mi + 1|)⊗ Îmj ̸=i

)
.

(7.2)

Here, Îm is the product of metatmaterial mode identity operators, Îmi
is the identity

operator for metamaterial mode i, În is the charge basis identity operator, EC =

e2/2CΣ where (CΣ = CQ + 2CJ + CQR + CQM) is the transmon charging energy, ng

is the transmon polarization charge, and EJ is the �ux-tunable Josephson energy,

which, for the case of symmetric junctions, is given by

EJ = EJ0

∣∣∣∣cos(π Φ

Φ0

)∣∣∣∣ , (7.3)

where EJ0 is the maximum Josephson energy, Φ is the external �ux applied to the

transmon, and Φ0 ≡ h/2e is the �ux quantum. For our device, EC/h = 0.31 GHz and

EJ0/h = 37 GHz. Note that due to the large ratio of EJ/EC , the dependence on ng

for the qubit 0-1 transition is ∼ 2 kHz, which is negligible compared to the qubit 0-1

transition , between 3-9.25 GHz for the measurements reported. Junction asymmetry

is assumed to be negligible due to the uniformity achieved in the Josephson junction

fabrication. So, we can ignore the e�ect of junction asymmetry and the dependence

on ng in the model for the �tting routine discussed here.
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Next, we implement a numerical minimization routine in Matlab to �t the lowest

two eigenvalues of the model Hamiltonian to the frequency response of metamaterial

transmission measurements versus �ux Φ (Fig. 42) in the vicinity of each vacuum Rabi

splitting. For each �t, we truncate the transmon Hilbert space to 21 charge states

and each resonator mode to 4 number states. In order to reduce the convergence time

of the �t to an acceptable duration, for each vacuum-Rabi splitting i, we include just

a single metamaterial mode in the model (i.e., mode i with frequency ωi). Note that

in each �t, gi is the only free parameter, with all other parameters in the Hamiltonian

determined via independent measurements.

In several trial cases, to estimate the error that results from neglecting the full

spectrum of metamaterial modes, we performed �ts where we solved the Hamiltonian

including two nearest neighbor modes, rather than only one mode. We found the

extracted value of each gi in these cases to be within 5% of the value from the �ts

with only a single metamaterial mode. This is compatible with the coupling regime

for our present device, where gi remains less than the intermode spacing ∆ωi between

modes i and i+ 1 over the range of our measurements.

7.3 Calculation of qubit-metamaterial mode couplings

MoutMin

Cr Ll

LrClCcM
in

Rin Rout

CQMCQR

la lb

lc

outCcM

Qubit

LHTL CPW RHTL

Readout CPW

Figure 57: AWR circuit model of Device B.

For modeling gi, the coupling between metamaterial mode i and the transmon

qubit, we use a semi-classical approach involving AWR simultions. As shown in Fig.

57, the LHTL section of the metamaterial resonator consists of 42 unit cells of series
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Figure 58: Simulated gi from AWR/circuit model extended out to higher frequency

for a hypothetical qubit with higher upper sweetspot. The slight deviation at 7.5

GHz and 15 GHz is due to the mode frequency approaching fundamental and �rst

harmonic modes of readout resonator. Figure adapted from Ref. [97].

capacitors Cl and inductors Ll to ground, as in the measured device. In addition, we

include parasitic e�ects in each cell consisting of a small lumped-element inductor Lr

in series with Cl that accounts for the stray inductance of the interdigitated capac-

itor; a small lumped-element capacitor Cr in parallel with Ll accounts for the stray

capacitance from the meander-line inductors. The values for these circuit parameters

used in the simulations were chosen based on our earlier modeling of LHTL resonators

[39], including simulations with Ansys Q3D [109] and Sonnet [106]. We set the loss

in the capacitors in AWR to correspond to an internal quality factor of 105 [39].

For the AWR modeling, we treat the transmon as a tunable, lumped-element

LC oscillator, with L being �ux-tunable and the L and C values determined by the

measured device. The coupling between the qubit and the RHTL CPW portion of

the metamaterial resonator is set by the coupling capacitor CQM , as listed in Table 3.

The simulation also includes the separate CPW readout resonator (Fig. 57), using
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parameters corresponding to the measured device, with coupling capacitor CQR to

the qubit.

To extract the value of gi, we simulate S21 transmission measurements through

the metamaterial (i.e., between Min and Mout in Fig. 57). We adjust L for the qubit

to simulate �ux tuning and bring the qubit near resonance with mode i. We then

scan the qubit L to sweep it through resonance with mode i, and thus generate a

simulated vacuum Rabi splitting. We thus determine the coupling strength to mode i

from the minimum spacing in the avoided-level crossing with the qubit, corresponding

to twice the simulated coupling strength, 2gi. With this technique, we can simulate

the frequency dependence of gi vs. mode frequency ωi, as in Fig. 44.

Unlike our measured device, where the upper sweet spot of the qubit is 9.25 GHz,

the circuit simulations allow us to explore an arti�cial qubit with a much higher

maximum frequency, so that we can study gi further along the metamaterial resonance

spectrum. The resulting plot of gi vs. frequency (Fig. 58) exhibits multiple dips,

where the reduction that we observe in our experiment around ∼ 8 − 9GHz is the

�rst dip, due to the standing-wave structure in the RHTL portion. As the standing-

wave pattern in the RHTL portion changes, the voltage level coupled to the qubit

through CQM , and hence the coupling strength gi, can change. This e�ect will be

explored in more detail in next section. The slight deviations in gi near 7.5 GHz and

15 GHz are due to metamaterial modes being very close to the readout resonator

frequency or its harmonics.

7.4 Approaches for increasing qubit-metamaterial mode cou-

plings

Although on our present device the coupling strength between the qubit and each

metamaterial mode was always less than the spacing between modes ∆ωi, in this

section we consider the parameters for a hypothetical qubit-metamaterial device that

could reach superstrong coupling [32], where gi/∆ωi > 1. In this regime, the qubit

can be strongly coupled to multiple modes simultaneously. In this section, we consider

various modi�cations to the metamaterial and qubit, some of which enhance gi and

others that decrease ∆ωi.

One approach for increasing gi involves increasing CQM , as gi ∝ CQM/C
1/2
Σ [44].



84

Table 4: Modi�ed metamaterial parameters for hypothetical device with enhanced

coupling strength used in AWR simulation.

Label Description Value for New value

measured chip

Nl Number of LHTL unit cells 42 82

ZM Metamaterial impedance 50 Ω 200 Ω

Nr Number of RHTL unit cells N/A 20

LRH RHTL unit cell inductance N/A 0.35 nH

CRH RHTL unit cell inductance N/A 9.5 fF

CQM Qubit-metametarial 4.3 fF 50 fF

coupling capacitance

CQ Qubit capacitance 48 fF 50 fF

We note that large coupling strengths between a qubit and resonator can also be

achieved through inductive coupling [30], but for now, we will restrict our design

considerations to capacitive coupling. Another route for enhancing gi involves in-

creasing the impedance of the metamaterial resonator. For the LHTL portion, this is

straightforward to achieve by adjusting the values of Ll and Cl. However, making a

signi�cant increase in the impedance for the RHTL portion is di�cult with a CPW

con�guration. For example, a CPW impedance of 120 Ω requires a center conductor

width of 500 nm and a 10-µm gap to the ground plane, which can be challenging to

fabricate. As an alternative, we consider using a lumped-element implementation for

the RHTL portion, which allows for larger impedances by choosing the inductor and

capacitor values appropriately. We note that a lumped-element RHTL is a departure

from our present design, but this should not introduce any complications since our

device layout already includes chains of similar lumped-element inductors and capac-

itors for the LHTL and these would all get fabricated at the same time. In addition

to increasing the coupling capacitance and resonator impedance, the total length of

the RHTL portion and the positon where the qubit is coupled also impacts the cou-

pling strength through the variation of the standing-wave amplitude at the location

of the qubit (as shown in Figs. 59 and 60). The length of the RHTL portion and the



85

g
/2

position (mm)

Figure 59: Coupling strength of four metamaterial modes to the qubit as function

of the position on the RHTL where the qubit is coupled. The total length of RHTL

section is 6 mm. The coupling strength reduces to zero at di�erent locations for

di�erent modes due to variations in the position where the standing-wave amplitude

for the modes corresponds to a node.

positon where the qubit is coupled should be chosen so that the maximum coupling

is near the infra red frequency region where the modes are spaced closely. Besides

increasing gi, we can also decrease ∆ωi by adding more unit cells to the LHTL or

by using a superlattice arrangement for the LHTL [110], both of which increase the

mode density since the number of modes between the IR and UV cuto� frequencies

corresponds to the number of unit cells. Table 4 summarizes the various parameters

for our hypothetical qubit-metamaterial device capable of achieving gi/∆ωi > 1.

With the parameters of our hypothetical device described above, we characterize

the coupling by simulating the microwave transmission through the metamaterial

while tuning the qubit frequency. In order to build intuition about the splittings in the

spectrum for the superstrong coupling regime, we also study the system Hamiltonian

for various values of gi. Because the size of the Hilbert space grows exponentially

with the number of modes, in order to keep the numerical simulation tractable, we
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la (mm)

Figure 60: Coupling strength of six metamaterial modes to the qubit as function of

the length of the RHTL section. The total length of RHTL section is 1 mm longer

than la since it also includes the section from the location where the qubit is coupled

to the output coupling capacitor Cout
cM . The maximum of coupling strength occurs

at di�erent lengths of RHTL for di�erent modes due to variation of standing-wave

amplitude for the modes.

restrict the system to four modes spaced by 100 MHz for the simulations shown in

Fig. 61. For small gi, such as the 16 MHz and 32 MHz plots, the solutions exhibit

conventional vacuum Rabi splittings as the qubit passes through each of the individual

metamaterial modes. For larger gi, the splitting from one mode begins to merge with

the splitting from the next mode, and by the point with 164 MHz couplings, the

splittings become di�cult to distinguish from the strongly shifted modes.

Figure 62 contains a 500-MHz segment of the simulated transmission spectrum for

our hypothetical device with the parameters from Table 4 as a function of the qubit

�ux. We then run a numerical solution to the system Hamiltonian with four modes,

corresponding to the bare mode frequencies in the frequency window of Fig. 62, and

adjust the coupling strengths gi in the Hamiltonian for these four modes to match the
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32 MHz 82 MHz 164 MHz 245 MHz 327 MHz16 MHz

Figure 61: Numerical solutions for a transmon coupled to four modes with 100 MHz

intermode spacing; bare mode frequencies are indicated by horizontal dashed lines.

Nearly vertical red dashed line corresponds to bare transmon frequency. Label at the

top of each plot indicates the coupling strength gi/2π between each of the four modes

and the transmon. Figure adapted from from Ref. [97].

features in the AWR simulation. The blue dashed lines follow the Hamiltonian solu-

tions and correspond to coupling strengths of between 178-220 MHz. Thus, gi/∆ωi

ranges between 1.28 and 1.84, so that the hypothetical device with experimentally

feasible parameters is capable of reaching the superstrong multimode coupling regime.

In the next chapter, I will discuss our initial experimental plans for taking these next

steps towards the superstrong coupling regime.

7.5 Calculation of Purcell loss

The complex frequency dependence of the qubit lifetime that we observe in Fig. 49

can be described by a combination of Purcell loss for a qubit coupled to a series

of lossy resonant modes [101] and dielectric loss with a frequency-independent loss

tangent that is typically observed in frequency-tunable transmons [111, 48]:

1

T1
=

1

T Purcell
1

+
1

T non−Purcell
1

, (7.4)

where T non−Purcell
1 (ω) = A/ω for some constant A. This, of course, is a simpli�cation,

as even simple real devices with a single qubit coupled to a single resonator mode can



88

Figure 62: Simulation of hypothetical qubit-metamaterial device to achieve super-

strong coupling through AWR circuit simulation of device described in text using

parameters in Table 4 and numerical solution to Hamiltonian (blue dashed lines)

with adjusted coupling strength values to match features in AWR simulation. Black

dotted line corresponds to bare qubit transition frequency. The brown horizontal

dashed-dotted lines show the bare frequencies for each of the four modes, 7.91 GHz,

8.04 GHz, 8.17 GHz, and 8.31 GHz, with extracted gi/2π values 220 MHz, 193 MHz,

180 MHz, and 178 MHz, respectively. Figure adapted from from Ref. [97].

exhibit structure in a measurement of T1(ω) as the qubit passes through strongly cou-

pled two-level system (TLS) or other spurious resonances at various frequencies [111].

Nonetheless, this gives us a starting point for modeling the frequency dependence of

T1 on our device.

Following the approach outlined in Ref. [101], we model the multi-mode Purcell

e�ect as
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T Purcell
1 (ω) = (CQ + 2CJ)/Re[Y (ω)], (7.5)

where CQ is the qubit shunt capacitance, CJ is the single junction capacitance, and

Y (ω) is the frequency-dependent complex admittance of the qubit environment. By

modeling Y (ω) for our qubit environment and computing T1 from Eqs. (7.4, 7.5), we

are able to compute the multi-mode Purcell loss curve in Fig. 49(e). The environment

for our qubit consists of the impedance of the readout resonator coupled to the qubit

ZR(ω) and the hybrid metamaterial resonator coupled to the qubit ZM(ω): Y (ω) =

1/ZR(ω) + 1/ZM(ω). From the coupling to the readout resonator, we have:

ZR(ω) =
1

iωCQR

+
1

1
ZRA

+ 1
ZRB

, (7.6)

where ZRA and ZRB are the impedances of the two segments of the readout resonator

on either side of the coupling element with length lA = 6.88 mm and lB = 0.792 mm,

respectively, and given by the standard expression from Ref. [57]:

ZRA(ω) = Z0
ZLA + iZ0 tanh(γlA)

Z0 + iZLA tanh(γlA)
, (7.7)

where Z0 = 50Ω is the characterstic impedance of the readout resonator transmission

line, ZLA = 1/iωCin
cR + R0 and R0 is the source impedance on the input line, which

is also 50 Ω; γ = α + iβ is the propagation constant, where α = 10−5π/2lA accounts

for internal transmission line losses; β = ω
√
ϵ/c, where ϵ is the e�ective relative

permittivity for the transmission line and c is the speed of light. We get a similar

expression for ZRB(ω), except ZLB = 1/iωCout
cR +R0.

The impedance coupled to the qubit by the metamaterial resonator is given by

ZM(ω) =
1

iωCQM

+
1

1
ZMA

+ 1
ZMB

, (7.8)

where ZMA is the impedance of the RHTL segment of length 0.9 mm between the

coupling point of the qubit along the RHTL and the output coupling capacitor of

the metamaterial, which is described by a similar expression to Eq. (7.7) with ZL =

1/iωCout
cM +R0; ZMB is the series impedance of the LHTL line and RHTL segment of

length 4 mm.

ZMB(ω) = Z0r
ZLHTL + iZ0r tanh(γl)

Z0r + iZLHTL tanh(γl)
, (7.9)
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where Z0r is again 50 Ω and γ is the same as discussed previously following Eq. (7.7);

ZLHTL represents the impedance of a LHTL with N unit cells and unit cell length

∆x, which we derived previously in Ref. [39]:

ZLHTL = Z0l
eikN∆x + Γe−ikN∆x

e−ik(−N+ 1
2
)∆x − Γeik(−N+ 1

2
)∆x

, (7.10)

with re�ection coe�cient

Γ =
Zse

−ik∆x
2 − Z0l

Zse
ik∆x

2 + Z0l

, (7.11)

and input impedance

Zs = 1/iωCin
cM +R0, (7.12)

where R0 is the source impedance connected to the LHTL input; the characteristic

impedance is given by

Z0l =

(
iωLr +

1

iωCl

)/
2i sin(k∆x/2) , (7.13)

and the wavenumber k can be obtained from the LHTL dispersion relation

k(ω)∆x = cos−1

[
1− 1

2

(
ωLr −

1

ωCl

)(
ωCr −

1

ωLl

)]
. (7.14)

This analysis provides a good qualitative comparison with the measurement

(Fig. 49). We see longer T1 below ωIR/2π and a gradual decrease in T1 with fre-

quency. We see sharp dips to sub-µs levels when the bare qubit frequency matches

the various metamaterial resonances. The analysis also suggests that there the Purcell

loss will increase if we go to a qubit-metamaterial system with much larger gi to be

in the superstrong regime. Therefore, it is important to change the other parameters

of the device to minimize the Purcell loss as much as possible. For example, if we

reduce the metamaterial external coupling capacitors, the impact from Purcell loss

on qubit can be reduced.
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Chapter 8

Ongoing and Future Work

Here, I brie�y discuss the ongoing and future work for metamaterial resonators.

8.1 Next-generation devices and preliminary results

Figure 63: The layout of next-generation qubit-metamaterial device and a few optical

images for some of the sections of chip. The zoomed-in image on the right shows the

qubit pockets and shunt capacitor pads for the two qubits. The top qubit is more

strongly coupled to the metamaterial, while the bottom qubit is weakly coupled to

the modes and can be used as a probe. Figure taken from Ref. [112].
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(a)

(b)

(c)

Figure 64: Vacuum Rabi splittings for metmaterial modes (a) 8.26 GHz, (b) 8.1 GHz,

and (c) 7.9 GHz. The black dashed line of each plot correspond to the solutions of

the Hamiltonian for one mode coupled to one qubit, as described in Sec.7.2. The

extracted coupling strength values for the modes are 74 MHz, 54 MHz and 86 MHz

respectively. Figure adapted from Ref. [112]

As described in Sec. 7.4, with several improvements to the design of the devices

discussed in earlier chapters, it might be possible to achieve superstrong coupling,

where gi/∆ωi > 1, and thus the qubit is strongly coupled to multiple modes simul-

taenously. Figure 63 shows the layout and optical images for our next generation

devices. These devices contain 75 cell LHTL with options to patch either staggered

and non-staggered con�guration of inductors from the mask. The impedance of meta-

material resonator has been increased to 90 Ohms. The metamaterial is now coupled
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to two qubits, where one of the qubit is designed to have stronger coupling to pos-

sibly acheive multimode coupling; the second qubit is more weakly coupled to the

metamaterial for probing the modes individually. Each qubit has a separate readout

resonator that is coupled to a feedline for multiplexed readout. Both qubits have

on-chip �ux bias lines for fast qubit tuning, which could enable us to perform new

experiments with the qubit pulsed quickly between operating points below the met-

material bandgap and resonance with di�erent metamaterial modes [113]. To achieve

larger CQM , we are exploring devices with both Xmon and �oating design transmons

coupled to the metamaterial resonator.

We are currently performing measurements on an ADR for preliminary character-

ization of these devices and in the future, we will be moving some of these devices to

a DR for coherent qubit measurements. Figure 64 shows the vacuum Rabi splitngs

for three modes in one of our new devices. We observe that the largest measured gi

value in these devices is ∼80 MHz compared to 22 MHz in Device B, a factor of four

improvement in the coupling between the qubit and the metamaterial resonator, a

step closer to achieve superstrong coupling.

8.2 Ring resonators and preliminary results

Another direction we are exploring is the development of metamaterial ring resonators

that are formed from a LHTL wrapped into a ring geometry. Such a structure will

have a fundamental resonance corresponding to a full wavelength, but with the same

dispersion relation as an LHTL in a linear geometry. Compared to a ring resonator

formed from a conventional CPW [114], such a metamaterial ring resonator will have

a much more compact physical footprint with more resonant modes in the same

frequency range. This ring resonator could then be used to selectively excite the

qubits which are coupled around the resonator. A microwave tone at the frequency

of one of the ring resonator modes can excite the qubits that are coupled at locations

corresponding to voltage antinodes of the particular mode.

Figure 66 show the dispersion relation for a metamaterial ring resonator found

using simulation by AWR. We see that the mode frequency decreases with increase

in mode number. We see �ve modes in span of of 2 GHz near the bandedge. The

circuit used in the simulations had a 24-cell ring resonator coupled to a feedline
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(a) (b)

Figure 65: (a) Figure shows a layout for 24 cell metamaterial ring resonator. The

diameter of the ring is 1.3 mm. Based on Q3D simulations, each cell is made from a

series capacitor Cl=200 fF and Ll=0.5 nH (b) A circuit representation of a metama-

terial resonator with three qubits coupled around the ring.
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Figure 66: Dispersion relation for a metamterial ring resonator simulated using AWR.

Between 8 and 10 GHz, where the band �attens, we can see 5 metamaterial modes.

with coupling capacitor Cc=25 fF. To account for stray reactances, in each cell, we

included an inductor Lr=0.03 nH connected in series with capacitor Cl and capacitor
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Cr=25 fF conncted in parallel to the inductor Ll. The values are based on the Sonnet

simulations done in previous work. Our research group is beginning to fabricate and

measure these ring resonators now.

8.3 Outlook

In this thesis, we have studied how to design and characterize a device with qubit

coupled to a metamaterial resonator. We have also provided details for increasing

the coupling between the qubit and metamaterial resonator. Additonally, we have

shown several con�gurations of the metamaterial resonators that can be used. Us-

ing on-chip �ux-bias line on the future devices, we could explore new experiments

in which, the qubit frequency can be pulsed quickly between operating points below

the metamaterial bandgap and resonance with di�erent metamaterial modes [113];

alternatively, for such a device the qubit could be parametrically modulated at the

sideband frequency between the qubit transition and a particular metamaterial mode

[115]. Both approaches could be used for swapping excitations between the qubit and

the metamaterial. Such capabilities would allow for the preparation of complex mul-

timode photonic states in the metamaterial that could be used for analog quantum

simulations with microwave photons [33, 110, 116], which could be made to interact

through the nonlinearity coupled from the qubit when biased near the mode frequen-

cies. Additionally, this system could be used for a quantum storage with microwave

excitations in di�erent metamaterial modes serving as memory elements [35].

It might be possible to make more compact superconducting metamaterial res-

onators using kinetic inductors made from granular aluminum [117] or NbTiN [118]

or Jospephson junctions [116]. Vacuum gap based capacitors can also be used instead

of interdigitated capacitors [119].
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Appendix A

Fabrication

A.1 Fabrication of Device A

This device has only one metal layer.

1. Design the mask:

□ Design the mask in a layout editor. Klayout editor and several python

scripts were used for designing the mask in our case.

□ Flatten all the layers into a single layer and ensure that all the image

objects have atleast 750 µm separation.

2. Make the Mask:

□ Convert the pattern, so it is compatible with Heidelberg Mask Writer -

DWL2000. This include merging the frame �le and the pattern �le. Frame

generator is used to create a barcode and reticle alignment marks.

□ Write the pattern on a 0.250" thick, 9×9 inch2 reticle with a photosensitive
Cr thin �lm. Written pattern is scaled 4× of the original dimensions to

be compatible with the stepper.

□ Write the pattern on Heidelberg ask Writer - DWL2000.

□ Develop and etch Cr using the Hamatech, then strip resist.

3. Photolithography:

□ Spin 120 nm thick layer of DSK-101-312 photo resist, which is a anti-

re�ective coating.



98

□ 60 second bake at 175 Celsius.

□ Spin 600 nm thick layer of UV210-0.6 photo resist, which is a positive

resist.

□ 60 second bake at 135 Celsius.

□ Transfer it to ASML 300C DUV Stepper.

□ Expose the wafer.

□ Post exposure bake at 135 Celsius for 90 seconds.

□ Develop it using AZ 726 MIF.

□ Descum the wafer Glen 1000 Resist Strip at 100 watts for 120 seconds .

4. Sputtering:

□ Deposit 80 nm thick �lm of Nb using a sputter system

5. Lift o�:

□ Wash it with acetone to remove Nb and UV210-0.6 underlayer.

□ Use AZ726 or heated microposit remover 1165 to remove the bottom DSK-

101-312 resist layer.

A.2 Fabrication of Device B

1. Design the mask :

□ Design the mask in layout editor. Klayout used for designing the mask in

our case.

□ Flatten all the layers into a single layer and ensure that all the image

objects have atleast 750 µm separation.

2. Make the Mask:

□ Convert the pattern, so it is compatible with Heidelberg Mask Writer -

DWL2000. This include merging the frame �le and the pattern �le. Frame

generator is used to create a barcode and reticle alignment marks.

□ Write the pattern on a 0.250" thick, 9×9 inch2 reticle with a photosensitive
Cr thin �lm. Written pattern is scaled 4× of the original dimensions to

be compatible with the stepper.

□ Write the pattern on Heidelberg ask Writer - DWL2000.
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□ Develop and etch Cr using the Hamatech, then strip resist.

3. Sputtering:

□ Deposit 80 nm thick �lm of Nb using a sputter system

4. Photolithography:

□ Spin DUV42 antire�ection (ω=1000, α=500) for 10 seconds.

□ Bake at 205 C for 60 seconds.

□ Spin 600 nm thick layer of UVN2300 deep-UV negative resist.

□ 110 second bake at 60 Celsius.

□ Transfer it to ASML 300C DUV Stepper.

□ Expose the wafer.

□ Post exposure bake at 110 Celsius for 60 seconds.

□ develop it using AZ 726 MIF.

□ descum the wafer Glen 1000 Resist Strip at 100 watts for 120 seconds .

5. Etching:

□ Season the chamber of an inductively coupled plasma etcher (Oxford

80)for 10 minutes with a mixer of BCl3,Cl2 and Ar.

□ Etch the Nb on actual wafer with same recipe.

6. E-beam lithography:

□ Deposit 600 nm thick layer of methyl metharcylate (MMA) polymer.

□ Bake at 170 C for 10 minutes.

□ Deposit 100 nm thick layer of polymethyl metharcylate (PMMA) polymer.

□ Bake at 170 C for 10 minutes.

□ Write the pattern using JEOL JBX9500FS Electron Beam Lithography

System.

7. Dicing:

□ Deposit 20 nm thick layer of Al layer using an evaporator (Done with

resistive heating CHA evaporator).

□ Spin UVN2300 for 1 min at 3000 rpm. Bake at 90 C for 2 minutes.

□ Apply Dicing tape.
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□ Dice the wafer into 6.25× 6.25mm2 chips using DISCO dicing saw.

8. Evaporation:

□ Develop a single chip for 60 seconds using methyl isobutyl ketone (MIBK).

□ Load the sample into an Al evaporator.

□ Ion mill for 13 sec to clean the surface.

□ Deposit 30 nm thick layer of Al at -12◦.

□ Expose the wafer to a mix Ar/Oxygen for time speci�c to get desired Al

oxide thickness.

□ Deposit 60 nm thick layer of Al at +11◦.

9. Lift o�:

□ Lift o� the unwanted Al by soaking chip into dichloromethane (DCM)

kept at 40 C for 20 minutes

□ Clean the chip using isopropyl alcohol.

For future devices, that include on-chip �ux bias lines for the qubits, ground straps

across all feedlines and bias lines are fabricated to prevent interference from unde�ned

return paths of the current from �ux bias lines and to maintain the equipotential

across the ground plane of the chip.
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