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Abstract

Fueled by emerging applications and exponential increase in data traffic, wireless

networks have recently grown significantly and become more complex. In such large-

scale complex wireless networks, it is challenging and, oftentimes, infeasible for con-

ventional optimization methods to quickly solve critical decision-making problems.

With this motivation, in this thesis, machine learning methods are developed and

utilized for obtaining optimal/near-optimal solutions for timely decision making in

wireless networks.

Content caching at the edge nodes is a promising technique to reduce the data

traffic in next-generation wireless networks. In this context, we in the first part of the

thesis study content caching at the wireless network edge using a deep reinforcement

learning framework with Wolpertinger architecture. Initially, we develop a learning-

based caching policy for a single base station aiming at maximizing the long-term

cache hit rate. Then, we extend this study to a wireless communication network

with multiple edge nodes. In particular, we propose deep actor-critic reinforcement

learning based policies for both centralized and decentralized content caching.

Next, with the purpose of making efficient use of limited spectral resources, we

develop a deep actor-critic reinforcement learning based framework for dynamic mul-

tichannel access. We consider both a single-user case and a scenario in which multiple

users attempt to access channels simultaneously. In the single-user model, in order

to evaluate the performance of the proposed channel access policy and the frame-

work’s tolerance against uncertainty, we explore different channel switching patterns

and different switching probabilities. In the case of multiple users, we analyze the



probabilities of each user accessing channels with favorable channel conditions and

the probability of collision.

Following the analysis of the proposed learning-based dynamic multichannel ac-

cess policy, we consider adversarial attacks on it. In particular, we propose two

adversarial policies, one based on feed-forward neural networks and the other based

on deep reinforcement learning policies. Both attack strategies aim at minimizing the

accuracy of a deep reinforcement learning based dynamic channel access agent, and

we demonstrate and compare their performances.

Next, anomaly detection as an active hypothesis test problem is studied. Specifi-

cally, we study deep reinforcement learning based active sequential testing for anomaly

detection. We assume that there is an unknown number of abnormal processes at a

time and the agent can only check with one sensor in each sampling step. To maximize

the confidence level of the decision and minimize the stopping time concurrently, we

propose a deep actor-critic reinforcement learning framework that can dynamically

select the sensor based on the posterior probabilities. Separately, we also regard the

detection of threshold crossing as an anomaly detection problem, and analyze it via

hierarchical generative adversarial networks (GANs).

In the final part of the thesis, to address state estimation and detection problems

in the presence of noisy sensor observations and probing costs, we develop a soft

actor-critic deep reinforcement learning framework. Moreover, considering Byzantine

attacks, we design a GAN-based framework to identify the Byzantine sensors. To

evaluate the proposed framework, we measure the performance in terms of detection

accuracy, stopping time, and the total probing cost needed for detection.
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Chapter 1

Introduction

1.1 Background

Next generation wireless networks hold the promise for the development of smart

systems, intelligent devices, and new-media. However, the emergence of various novel

applications, which increases the demand for reliable, low-latency, and high-data-rate

wireless communications, brings challenges to the design of wireless networks.

Specifically, there has been a significant growth in wireless data, with regards

to both the total traffic volume and the average size per file. This has led to the

necessity to have the scarce computational, storage, and spectral resources be more

effectively allocated and efficiently utilized. As a consequence, several novel support-

ing techniques, such as edge computing, content caching, multichannel access, and

non-orthogonal multiple access (NOMA), have been developed and incorporated into

wireless networks. In such schemes, decision making plays a important role.

Employing conventional optimization methods to solve decision making problems

is challenging and not scalable in large, dynamic, complex wireless networks. Being

competitive in effectively controlling the computational complexity and providing

optimal/near-optimal policies, machine learning methods are considered as promising
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tools to address these problems.

In the literature, how machine learning methods can be applied in wireless com-

munication problems have recently been intensively studied. For instance, in [1]

and [2], the authors summarized the applications of machine learning methods in

wireless communication networks, including channel estimation, end-to-end commu-

nication system design, and resource allocation. In [3], deep learning-based solutions

for physical-layer 5G wireless techniques are analyzed. Moreover, the authors in [4]

discussed the details of selection between model-based techniques and AI-based tech-

niques, and advocated the application of both techniques in combination. Also, they

provided a detailed tutorial on employing artificial neural network-based machine

learning algorithms for solving various wireless networking problems. In addition,

future directions and open research problems in machine learning for wireless com-

munications are summarized in [5] and [6].

While certain machine learning methods demonstrate outstanding performance

in specific problems, there exist challenges and potential risks in applying machine

learning techniques in wireless systems. On the one hand, training machine learning

algorithms is demanding especially in dynamic and large wireless networks. To solve

this problem, new training strategies and new machine learning algorithms are con-

stantly being explored. For example, in [7], federated learning is used for each user to

train a policy with the exploitation of limited local computational resources. In [8],

conditional GANs are employed to model the channel effects. Capability of machine

learning algorithms to handle big data is explored in [9] and [10]. On the other hand,

application of machine learning in wireless communications also raises security consid-

erations due to the potential detrimental impact of adversarial attacks. To investigate

this aspect, the authors in [11] proposed a stochastic gradient descent (SGD) algo-

rithm to learn a predictive model over blockchains and used an l-nearest aggregation

algorithm to protect the system from Byzantine attacks. In [12], a comprehensive
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survey is provided to introduce how deep learning algorithms can be employed for

anomaly detection.

In this thesis, we initially develop machine learning algorithms for solving specific

decision making problems in wireless communications, such as content caching and

multichannel access. Subsequently, we analyze security aspects of learning-based

systems, by studying the impact of adversarial attacks and investigating anomaly

detection.

1.2 Literature Review

1.2.1 Content Caching

The rapid growth in the number of mobile devices and in rich media-enabled applica-

tions has led to a 17-fold increase in mobile data traffic from 2012 to 2017 [13]. Mobile

video accounts for more than half of this data traffic, and is predicted to further grow

by 9-fold, accounting for 79% of the total data traffic, by 2022. However, the increase

in mobile network connection speed, which is predicted to be only about three-fold,

will not be adequate to satisfy the users’ demands on high-quality streaming services.

To better serve the users, content caching strategies have been studied recently. In

particular, content caching is considered as a key approach to reduce the data traffic

as it enables the content server nodes to store a part of the popular contents locally,

so that when the cached contents are requested, the server can deliver the content

directly to the users and reduce the delay and congestion in the network. The authors

in [14] analyzed proactive content caching from the aspect of big data analytics and

demonstrated that with limited cache size, proactive caching can provide 100% user

satisfaction while offloading 98% of the backhaul traffic.

Motivated by this, different caching strategies have been studied in the litera-

ture. For central content servers, such as the baseband unit in a cloud radio access
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network (C-RAN), centralized coded caching and delivery schemes were presented

in [15] and [16]. Regarding decentralized caching, the authors in [17] presented a

decentralized optimization method for the design of caching strategies that aimed at

minimizing the energy consumption of the network. Recently, proactive caching at the

wireless network edge, such as at the base stations and user equipments, is proposed.

This technique makes it possible to have popular contents to be placed closer to the

end users and be directly transmitted, which can effectively reduce the time compared

to routing in content delivery networks (CDNs), and apparently save a considerable

amount of waiting time for users and offload a portion of the data traffic at the CDN.

For instance, authors in [18] and [19] studied edge caching policies aimed at minimiz-

ing the transmission delay in cellular networks. In [20], a decentralized framework for

proactive caching was proposed based on blockchains considering a game-theoretic

point of view. In [21], caching and multicast problems were jointly solved using

dynamic programming. In addition, studies on hierarchical caching have also been

conducted. For instance, in [22–24], hybrid content caching schemes for joint content

caching control at the baseband unit and radio remote heads were presented. And

the authors in [25] proposed an edge hierarchical caching policy for caching at small

base stations and user equipments. In addition, other caching strategies have been

intensively studied recently considering different models and strategies. For instance,

the study in [26] proposed an age-based threshold policy which caches all contents

that have been requested by more than a certain threshold. Furthermore, popularity-

based content caching policies named StreamCache and PopCaching were studied

in [27] and [28], respectively. Recently, femtocell caching [29], coded caching [30] and

D2D caching [31] have also been investigated.

We in Chapter 2 concentrate on edge caching at small base stations, where the

caching policy at the base station is driven by the content popularity. Hence, content

popularity is the key to solve the caching problem. In previous works, content popu-
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larity is assumed to be either known to the content server as presented in [20,32], or

estimated before the caching actions as proposed in [19, 33]. The former assumption

makes the framework less practical when the content popularity is time-varying, and

the estimation of the content popularity or the arrival intensity of the users’ requests

will lead to large overhead. To avoid these drawbacks, machine learning methods

have recently been introduced to determine efficient caching policies. For instance,

the authors in [34] trained the optimization algorithms for caching through a deep

neural network in advance. In other studies, different deep reinforcement learning

(DRL) algorithms were used to find the caching policies that can better adapt to

changing environments. In [35], authors implemented a Q-learning algorithm to find

the optimal caching policy. In [36] and [37], the use of actor-critic deep reinforce-

ment learning frameworks for caching policies were studied. And for the cooperative

caching policy in decentralized caching networks, a multi-agent Q-learning solution

was proposed in [38], and authors in [39] and [40] presented two different multi-armed

bandit based caching schemes. And the authors in [41] proposed an extreme-learning

machine framework for content popularity prediction.

As seen in previous studies, content popularity distribution has a key role in

content caching problems. Though the DRL algorithms do not require the content

popularity information, the agent needs to observe enough features of the environment

to ensure the accuracy of its decisions, so we adopt the Wolpertinger architecture

based actor-critic DRL framework [42] to deal with large discrete action spaces. And

for the decentralized caching system, we propose a multi-agent framework [43–45] for

cooperative caching.

1.2.2 Multichannel Access

The dynamic spectrum access problem has been extensively studied in the literature.

For instance, the authors in [46] provided a comprehensive survey on spectrum shar-

5



ing technologies in cognitive radio networks with an outlook towards 5G. In the fixed

spectrum assignment policy, a large portion of the assigned spectrum may be used

sporadically where another portion of the spectrum can be congested. Allowing users

to dynamically choose the available channels, the dynamic spectrum access technol-

ogy is considered crucial to ensure that the limited spectral resources are allocated

appropriately to satisfy the users’ demand. For the correlated channel scenarios, the

authors in [47] developed an analytical framework for opportunistic spectrum access

based on the theory of partially observable Markov decision processes (POMDPs).

And for independent channels, the problem can be modeled as a restless multi-armed

bandit (RMAB) process [48].

Numerous studies have been conducted to find the spectrum access policies en-

abling users to effectively probe the channels. For instance, myopic policies were

studied in [49] and [50], where the information on channels is collected through suf-

ficient statistics and the user only senses the channel with the highest conditional

probability. A stochastic game theory based policy was presented in [51] and [52],

where multiple users are in the system but each user can adjust its behavior based

only on the individual information. In [53], a joint probing and accessing policy was

proposed to allow the user to probe multiple channels at a time.

Inspired by the achievements of reinforcement learning in dynamic control prob-

lems, such as the game of Atari [54], and AlphaGo [55], there has been increased

interest in seeking reinforcement learning based solutions for problems in wireless

communications. As summarized in [56] and [57], deep reinforcement learning al-

gorithms have been applied in various wireless settings. For example, the authors

in [58] and [59] investigate the use of Q-learning and SARSA (state-action-reward-

state-action) reinforcement learning, respectively, in power control. The base stations’

ON-OFF states are controlled by a deep Q-network (DQN) with the goal to improve

the energy efficiency in [60]. And authors of [61] introduced the allocation of compu-
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tational resources, and proposed a semi-MDP based optimal policy to schedule the

cloud computing resources with the purpose to improve the system utility. Moreover,

reinforcement learning is also used to perform joint optimizations. For example, the

DQN was applied to seek optimal policies to jointly allocate the sub-bands and power

in vehicle-to-vehicle communication [62], and an actor-critic reinforcement learning

framework was proposed to jointly solve the user scheduling, and subchannel and

power allocation problem in order to maximize the energy efficiency [63].

As to the dynamic spectrum access, the control problem is generally modeled

as either an MDP [64] [65] or a POMDP [66] depending on whether the environ-

ment is completely observable to the users or not. And, there are various different

reinforcement learning algorithms being used in solving the spectrum access prob-

lems. Authors in [67] proposed a continuous sampling and exploitation (CSE) online

learning algorithm for an RMAB model. An application of Q-learning in the sens-

ing order selection, in the presence of imperfect sensing, is presented in [68]. Also,

as a typical reinforcement learning framework, DQN has been applied in [66, 69, 70]

for different purposes such as to improve the accuracy of selecting the channels in

good condition, to maximize the network utility, or to minimize the service blocking

probability. Additionally, in order to solve the dynamic spectrum access problem

in decentralized systems, different multi-agent reinforcement learning strategies are

studied in [69, 71, 72]. For instance, in [69], the authors concentrated on a multi-

user scenario in which transmission is successful only if a single user transmits over

an accessed channel. The channels themselves do not inherently have time-varying

states and correlations, and only collisions lead to transmission failures. And in [73],

a comparison between the single-agent reinforcement learning and multi-agent rein-

forcement learning is provided.

Motivated by the recent research described above, we in this thesis investigate the

application of the actor-critic reinforcement learning based framework to multichannel
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access, while in the literature more focus has been on deep Q-network and Q-learning

frameworks. Besides, our work also considers the multichannel access problem from

a different aspect and we address more challenging and general scenarios (e.g., with

more channels and more states, agents operating in a decentralized fashion in multi-

user scenarios), requiring us to design new learning algorithms. For instance, as also

noted above, instead of the value-based deep Q-network algorithm, we use actor-

critic framework that takes advantage of value-based and policy-based algorithmic

strategies.

1.2.3 Adversarial Jamming Attacks

There has recently been growing interest in employing machine learning to address

certain problems in communication systems, such as modulation classification [74],

and dynamic multichannel access [75]. However, this increasing interest brings forth

potential security risks due to adversarial attacks. Since machine learning meth-

ods are highly data-driven algorithms, even a minor modification in the observation

data can lead to dramatic changes in the learning-based decision policies. Therefore,

adversarial machine learning has been intensively studied to better understand the

vulnerabilities of machine learning methods. Motivated by this, we in this thesis in-

vestigate the learning-based wireless jamming attacks on deep reinforcement learning

policies on dynamic multichannel access.

In the literature, adversarial attacks have been considered and widely applied to

deep learning-based classification problems, such as the classification of images [76],

time series [77] and sound events [78]. In these cases, the victim models are trained

and fixed, and the input data is accessible to the attacker, so that the attack can be

realized by crafting adversarial examples to mislead the victim’s decisions. This idea

is also used in the attack on reinforcement learning-based tasks [79] and [80]. However,

in certain control problems, the observations of the reinforcement learning agents are
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not available to the attacker, making it infeasible to craft any adversarial examples.

To tackle this difficulty, in [81], the authors trained a reinforcement learning-based

adversarial policy instead.

A deep learning-based wireless jamming attack has been studied in [82] and [83], in

both of which, the system consists of a single transmitter, a receiver, one background

traffic source and a deep learning-based jammer. Inspired by the framework presented

in the literature, we address a more general channel model introduced in [84], and

we propose two different jamming attackers, namely a feed-forward neural network

(FNN) attacker and a deep reinforcement learning (DRL) attacker, to perform the

jamming attacks on a user performing dynamic multichannel access using a DRL

agent itself [84].

1.2.4 Anomaly Detection

State estimation/detection is critical in different applications, involving, for instance,

remote health monitoring [85], smart grid [86], assembly lines, structural health

monitoring, autonomous systems [87] [88], adaptive radar [89], cognitive radio net-

works [90], and Internet of Things (IoT). And the authors in [91] provided a survey

of anomaly detection techniques for wireless sensor networks. In such applications,

it is important to monitor systems via sensors, and make reliable and time-sensitive

decisions and detect anomalies (e.g., in order to maintain safe operation, identify

faulty or compromised components, detect targets or obstacles, avoid collisions, pro-

tect incumbent users).

In Chapter 5, we specifically consider active hypothesis testing for the anomaly

detection problem in which there are k abnormal processes out of N processes, where

0 ≤ k ≤ N . During the detection process, the decision maker is allowed to observe

only one of the N processes at a time. The distribution of the observations depends

on whether the target is normal or not. In this setting, the objective of the decision
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maker is to minimize the observation delay and dynamically determine all abnormal

processes.

The original active hypothesis testing problem was investigated in [92]. Based on

this work, several recent studies proposed more advanced anomaly detection tech-

niques in more complicated and realistic situations. For example, the authors in [93]

considered the case where the decision maker has only limited information on the

distribution of the observation under each hypothesis. In [94], the performance mea-

sure is the Bayes risk that takes into account not only the sample complexity and

detection errors, but also the costs associated with switching across processes. More-

over, authors in [95] considered the scenario that in some of the experiments, the

distributions of the observations under different hypotheses are not distinguishable,

and extended this work to a case with heterogenous processes [96], where the obser-

vation in each cell is independent and identically distributed (i.i.d.). Also, the study

of stopping rule has drawn much interest. For instance, in [97], improvements were

achieved over prior studies since the proposed decision threshold can be applied in

more general cases. The authors in [98] leveraged the central limit theorem for the

empirical measure in the test statistic of the composite hypothesis Hoeffding test, so

as to establish weak convergence results for the test statistic, and, thereby, derive a

new estimator for the threshold needed by the test.

Recently, machine learning-based methods have also been applied to such hypoth-

esis testing problems. For instance, in [99], the deep Q-network has been employed

for sequential hypothesis testing and change point detection. Considering the cyber-

security threats, authors in [100] proposed deep reinforcement one-shot learning for

change point detection to address scenarios in which only a few training instances are

available, for example, in the zero-day attack. And a random forest machine learn-

ing algorithm is presented in [101] to effectively detect compromised loT devices at

distributed fog nodes. Moreover, in [102] an adversarial statistical learning method
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has been proposed to detect slight changes in the statistical parameters caused by

the attack data. Besides, there are a number of recent works specifically focus on

the anomaly detection conducted among multiple processes. In such cases, active se-

quential hypothesis testing problem is often modeled as a partially observable Markov

decision process, and the reinforcement learning algorithms are applied to dynamically

select the processes to be tested. For instance, in [99] and [103], the application of

deep Q-networks and actor-critic deep reinforcement learning have been investigated,

respectively.

In addition, anomaly detection in multivariate time series has attracted interest

recently. In such problems, deep learning algorithms are trained by both normal and

abnormal training data, and used as classifiers to detect and diagnose the anoma-

lies [104], [105]. Different from the deep learning-based detectors, the GAN-based

framework proposed in [106] and [107] is only trained with the normal dataset, and

estimate the probability of the anomaly.

Furthermore, several recent studies have taken the cost of the detection process

into consideration. For instance, in [94], the performance measure is the Bayes risk

that takes into account not only the sample complexity and detection errors, but also

the costs associated with switching across processes. In [108], the cost is expressed

as a function of the duration of the anomalous state. Considering the cost of both

sampling and errors, authors in [109] proposed a deep reinforcement learning-based

policy for significant sampling with applications to shortest path routing.

Motivated by these studies, we in Chapter 6 propose a novel GAN-based anomaly

detector that has a prediction capability and detects threshold crossing in a stochastic

time series without requiring the knowledge of its statistics. We evaluate the perfor-

mance of this detector, determine the incurred sampling and delay costs, identify the

key tradeoffs, and compare with existing strategies.

Based on the work conducted in Chapter 5 and 6, we consider more practical
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noisy observations from sensors and the sensing cost control in Chapter 7. As men-

tioned before, various machine learning-based methods have been applied to address

detection and hypothesis testing problems. For instance, learning approaches include

the DQN [99] [100], adversarial statistical learning [102], and deep actor-critic rein-

forcement learning [103]. Compared with these methods, the recently proposed soft

actor-critic reinforcement learning algorithm [110] exhibit advantages in exploring

the unknown/uncertain environments due to the fact that the soft actor-critic rein-

forcement learning algorithm (SAC) is based on the maximum entropy reinforcement

learning framework which encourages a more evenly distributed probabilities for all

actions and attempts to find a balance between exploration and exploitation. And the

authors in [111] show the advantages of SAC in handling constrained Markov decision

processes. Motivated by this, we in this thesis propose a SAC-based decision-making

agent for detection.

Moreover, we also consider the Byzantine attacks on the sensors. If the sensors are

compromised, they become Byzantines which always quantize the signals to wrong

states and send the distorted samples to the decision-maker. Conventionally, the

Byzantine can be identified using Monte-Carlo methods [112]. However, in our setting,

both the state of the target process and the state of the sensors may change before

sufficient samples can be collected. Inspired by the application of the generative

adversarial networks (GANs) in detecting the changes in the statistics of time series

data [107] [106], we propose a GAN-based detector to identify the Byzantine sensors.

1.3 Outline and Main Contributions

In Chapter 2, we investigate the application of deep actor-critic reinforcement learning

algorithm in edge caching problems. In terms of cache hit rate and transmission delay,

we analyze the performance of the proposed algorithm. Also, comparisons between
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the proposed framework and other caching policies are provided.

� In Section 2.1, for the first time, we present a deep reinforcement learning

framework (that utilizes Wolpertinger architecture) for content caching. We

define the state and action spaces and the reward function for the DRL agent,

and employ this agent to make proper cache replacement decisions to maximize

the cache hit rate. We analyze the performance of this DRL agent in terms of the

cache hit rate. And we compare the performance with other caching algorithms,

including Least Recently Used (LRU), Least Frequently Used (LFU), and First-

In First-Out (FIFO) caching strategies. The results show that the DRL agent

is able to achieve improved short-term cache hit rate and improved and stable

long-term cache hit rate. We further confirm the effectiveness of the DRL agent

through comparisons with deep Q-network. The results show that the DRL

agent is able to achieve competitive cache hit rates while having significant

advantages in runtime.

� In Section 2.2, we extent the study in Section 2.1 to a more practical situ-

ation. Specifically, we first provide a more detailed analysis of the proposed

actor-critic DRL framework considering a single-cell wireless scenario with one

base station. Subsequently, we extent it to a multi-agent actor-critic frame-

work used for decentralized cooperative caching at multiple base stations. We

analyze the performance of the proposed framework for centralized caching in

terms of the cache hit rate, and provide comparisons with other caching polices

including least recently used (LRU), least frequently used (LFU), and first-in

first-out (FIFO) policies. We demonstrate that the DRL agent is able to achieve

improved short-term cache hit rate and improved and stable long-term cache

hit rate. We analyze the performance of the proposed multi-agent framework

in terms of the cache hit rate and also the transmission delay reduction, and

again provide comparisons with the LRU, LFU, and FIFO caching strategies.
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We show that the proposed multi-agent framework can identify the popular

contents effectively, and outperform the other schemes.

In Chapter 3, we propose an actor-critic deep reinforcement learning framework for

dynamic multichannel access in a single-user scenario and show that this framework

can work with a relatively larger number of channels than other deep reinforcement

learning based approaches. We analyze the performance of the proposed framework

and compare it with the deep Q-network (DQN) framework presented in [66]. Sim-

ulation results demonstrate that our proposed framework can achieve competitive

performance in the case of 16 channels, and better performance in the cases of 32 and

64 channels. We test the proposed approach in time-varying scenarios, and the results

demonstrate the adaptive ability of actor-critic deep reinforcement learning. Also, our

framework leads to significant benefits in terms of time/computational efficiency. We

extent the actor-critic algorithm-based framework to a multi-agent framework to solve

the dynamic multichannel selection problem in the multi-user model. And this purely

distributed multi-agent framework can work without any additional information ex-

change between the users. We provide the channel selection accuracy for the case in

which multiple users make their access decisions simultaneously, and compare with

other algorithms (such as DQN, slotted ALOHA, and the optimal policy when the

channel dynamics/patterns are known).

In Chapter 4, we propose two adversarial policies, one based on feed-forward

neural networks (FNNs) and the other based on deep reinforcement learning (DRL)

policies. Both attack strategies aim at minimizing the accuracy of a DRL-based

dynamic channel access agent. We first present the two frameworks and the dynamic

attack procedures of the two adversarial policies. Then we demonstrate and compare

their performances. Finally, the advantages and disadvantages of the two frameworks

are identified.

In Chapter 5, we study deep reinforcement learning based active sequential testing
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for anomaly detection. We assume that there is an unknown number of abnormal

processes at a time and the agent can only check with one sensor in each sampling

step. To maximize the confidence level of the decision and minimize the stopping time

concurrently, we propose a deep actor-critic reinforcement learning framework that

can dynamically select the sensor based on the posterior probabilities. We provide

simulation results for both the training phase and testing phase, and compare the

proposed framework with the Chernoff test in terms of claim delay and loss.

In Chapter 6, we study anomaly detection by considering the detection of thresh-

old crossings in a stochastic time series without the knowledge of its statistics. To

reduce the sampling cost in this detection process, we propose the use of hierarchical

generative adversarial networks (GANs) to perform nonuniform sampling. In order

to improve the detection accuracy and reduce the delay in detection, we introduce a

buffer zone in the operation of the proposed GAN-based detector. In the experiments,

we analyze the performance of the proposed hierarchical GAN detector considering

the metrics of detection delay, miss rates, average cost of error, and sampling ratio.

We identify the tradeoffs in the performance as the buffer zone sizes and the number

of GAN levels in the hierarchy vary. We also compare the performance with that

of a sampling policy that approximately minimizes the sum of average costs of sam-

pling and error given the parameters of the stochastic process. We demonstrate that

the proposed GAN-based detector can have significant performance improvements in

terms of detection delay and average cost of error with a larger buffer zone but at the

cost of increased sampling rates.

In Chapter 7, we model the sensor probing mechanism in the presence of two

types of noise: the noise introduced by the sensors during sensing, and the noise

in the communication links. With this practical sensing model, we propose a soft

actor-critic reinforcement learning framework to address the detection problem with

a sensing cost control. And, we consider the random Byzantine attacks on the sensing
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model and design a GAN-based agent to identify the Byzantine sensors. To evaluate

the proposed framework, we consider accuracy, stopping time, and total cost as the

performance metrics. In the experiments, the proposed SAC framework is compared

to the conventional actor-critic algorithm. Via simulation results, we demonstrate

that the proposed SAC agent can be more robust in different test cases, and the

proposed GAN detector is able to identify the Byzantines with high accuracy and help

to recover the detection performance achieved in the absence of Byzantine attacks.
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Chapter 2

Deep Reinforcement Learning

Based Content Caching Strategies

In this chapter, we propose the deep actor-critic reinforcement learning frameworks for

edge caching problems. Considering both single-cell and multi-cell wireless scenarios,

we design the DRL-based frameworks and demonstrate their performance respectively.

In Chapter 2.1, we present a DRL-based framework with Wolpertinger architec-

ture for content caching at the base station. The proposed framework is aimed at

maximizing the long-term cache hit rate, and it requires no knowledge of the content

popularity distribution. To evaluate the proposed framework, we compare the perfor-

mance with other caching algorithms, including Least Recently Used (LRU), Least

Frequently Used (LFU), and First-In First-Out (FIFO) caching strategies. Mean-

while, since the Wolpertinger architecture can effectively limit the action space size,

we also compare the performance with Deep Q-Network to identify the impact of

dropping a portion of the actions. Our results show that the proposed framework

can achieve improved short-term cache hit rate and stable long-term cache hit rate

in comparison with LRU, LFU, and FIFO schemes. Additionally, the performance

is shown to be competitive in comparison to Deep Q-learning, while the proposed
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framework can provide significant savings in runtime.

In Chapter 2.2, with the DRL framework proposed in Chapter 2.1, we conduct

more detailed analyses. We initially consider a single-cell wireless scenario with one

base station, and study centralized caching where the single base station is the only

cache-enabled content server. Subsequently, we address a multi-cell wireless network,

and consider a decentralized caching framework, where each base station is equipped

with caching storage space. For centralized edge caching, we aim at maximizing the

cache hit rate. In decentralized edge caching, we consider both the cache hit rate and

transmission delay as performance metrics. The proposed frameworks are assumed

to neither have any prior information on the file popularities nor know the potential

variations in such information. Via simulation results, the superiority of the proposed

frameworks is verified by comparing them with other policies, including LFU, least

recently LRU, and FIFO policies.

2.1 A Deep Reinforcement Learning-Based Frame-

work for Content Caching

2.1.1 System Model

Data traffic is triggered by requests from the rapidly increasing number of end-users,

and the volume of requests varies over time. In this setting, we propose a deep

reinforcement learning framework acting as an agent. Based on the users’ requests,

this DRL agent makes caching decisions to store the frequently requested contents

at local storage. If the requested contents are already cached locally, then the base

station can serve the user directly with reduced delay. Otherwise, the base station

requests these contents from the original server and updates the local cache based on

the caching policy.
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In this section, we consider a single base station with cache size of C. We assume

that in a given time slot, the total number of contents that users can request from

this base station is fixed and denoted as N . We give every content a unique index,

and this index acts as the content ID. We assume that all contents have the same

size. The list of users’ requests is denoted as Req = {R1, R2, R3, ...}. Here, Rt denotes

the ID of the requested content at time t. For each request, the DRL agent makes a

decision on whether or not to store the currently requested content in the cache, and

if yes, the agent determines which local content will be replaced.

We define A as the action space, and let A = {a1, a2, a3, ..., am}, where aυ denotes

a valid action. And in our case, m has a finite but generally a large value, describing

the total number of possible actions. For each content, there are two cache states:

cached, and not cached. The cache state gets updated based on the caching decision.

Here, we define two types of actions: the first one is to find a pair of contents and

exchange the cache states of the two contents; the second one is to keep the cache

states of the contents unchanged. Theoretically, multiple actions can be executed at

one decision epoch. To reduce the computational complexity, we need to limit the

action space size m and the number of actions to be executed in one decision epoch,

which will discussed in detail in Section 2.1.2.

The reward should reflect the objective of the framework, which, in our case, is

to reduce the data traffic. In our setting, all requests are served by the base station,

all contents have the same size, and there are no priorities for users. Therefore, the

reduction in data traffic can be evaluated in terms of the cache hit rate. Here, we

define the cache hit rate CHR in T requests as

CHRT =

∑T
i=1 1 (Ri)

T
(2.1)
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where indicator function 1 (Ri) is defined as

1 (Ri) =


1, Ri ∈ CT ,

0 Ri /∈ CT
(2.2)

where CT stands for the cache state in this period. Therefore the reward in T requests

can be defined as

rT = CHRT . (2.3)

For each decision epoch t, we obtain reward rt, which can be a weighted sum of short-

term and long-term cache hit rates. We more explicitly introduce the definition of rt

for the proposed framework in Section 2.1.2 below.

The objective of the DRL agent is to find a policy, σ∗, that maximizes the long-

term cache hit rate:

maximize
σ∗

E[rt|σ∗]. (2.4)

We are interested in developing a model-free learning algorithm to solve problem

(2.4) that can effectively reduce the data traffic with fixed cache capacity at the base

station.

2.1.2 DRL-based Content Caching Framework

In this section, we present the DRL-based content caching framework, which is aimed

at maximizing the cache hit rate in order to reduce the data traffic. To solve the con-

tent caching problem with high-dimensional state and action spaces (due to the large

number of contents and cache sizes in practical scenarios), we propose a framework

based on the Wolpertinger architecture [42] to narrow the size of the action space and

avoid missing the optimal policy at the same time.
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2.1.2.1 Algorithm Overview

Based on the Wolpertinger Policy [42], our framework consists of three main parts:

actor network, K-nearest neighbors (KNN), and critic network. We train the policy

using the Deep Deterministic Policy Gradient (DDPG) [113]. The Wolpertinger ar-

chitecture is employed for two reasons: 1) as an online algorithm, this framework can

adapt to data, and enables us to develop a long-term policy; 2) actor network can

avoid the listing and consideration of very large action space, while the critic network

can correct the decision made by the actor network, and KNN can help to expand the

actions to avoid poor decisions. This algorithm work in three steps. Firstly, the actor

network takes cache state and the current content request as its input, and provides a

single proto actor â at its output. Then, KNN receives the single actor â as its input,

and calculate the l2 distance between every valid action and the proto actor in order

to expand the proto actor to an action space, denoted by Ak, with K elements and

each element being a possible action aυ ∈ A. And at the last step, the critic network

takes the action space Ak as its input, and refines the actor network on the basis of

the Q value. The DDPG is applied to update both critic and actor networks.

Below we provide a more detailed description of the key components of the algo-

rithm.

The actor: The actor network is defined as a function parameterized by θµ, map-

ping the state S from the state space Rs to the action space Ra. The mapping provides

a proto-actor â in Ra for a given state under the current parameter. Here, we scale

the proto-actor to make sure â is a valid action that â ∈ A:

µ(s|θµ) : S → Ra

µ(s|θµ) = â. (2.5)

K-nearest neighbors: The generation of proto-actor can help reduce the computa-
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tional complexity caused by the large size of the action space. However, reducing the

high-dimensional action space to one actor will lead to poor decision making. So, the

K-nearest neighbors mapping, gk, is applied to expand the actor â to a set of valid

actions in action space A. The set of actions returned by gk is denoted as Ak:

Ak = gk(ât)

gk =
k

arg max
a∈A

|a− â|2. (2.6)

The critic: To avoid the actor with low Q-value being occasionally selected, a critic

network is defined to refine the actor. This deterministic target policy is described

below:

Q(st, aj|θQ) = Ert,st+1∼E[r(st, aj) + γQ(st+1, at+1|θQ)] (2.7)

where θQ stands for the parameters of the critic network, and γ ∈ (0, 1] is the discount

factor which weigh the future accumulative reward Q(st+1, at+1|θQ). Here, the critic

takes both the current state st and the next state st+1 as its input to calculate the

Q value for each action in Ak. Then, the action that provides the maximum Q value

will be chosen as at, i.e.,

at = arg max
aj∈Ak

Q(st, aj|θQ) (2.8)

Update: The actor policy is updated using deep deterministic policy gradient,

which is given as

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|µQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si . (2.9)

The update of critic network parameter θQ and actor network parameter θµ are given

as

θQ
′ ←− τθQ + (1− τ)θQ

′
(2.10)
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θµ
′ ←− τθµ + (1− τ)θµ

′
(2.11)

where τ � 1.

2.1.2.2 Workflow

In this part, we introduce the workflow of the proposed framework. The framework

consists of two phases, namely offline and online phases.

Offline phase: In the offline phase, the actor and critic networks are constructed

and pre-trained with historic transition profiles. This process is the same as in the

training of a deep neural network. In the offline phase, when we train the networks

with sufficient number of samples, the critic and actor will be sufficiently accurate,

and the updated parameters θQ and θµ will be stored in order to provide a good initial

point for the online phase.

Online phase: The online phase is initialized with the parameters determined in

the offline phase. The system is dynamically controlled in the online phase. In each

epoch t, if the requested content is not cached, the DRL agent observes the state st

from the environment, and obtains the proto actor and Q value from the actor network

and critic network, respectively. Then, an ε-greedy policy is applied at selecting the

execution action at. This policy can force the agent to explore more possible actions.

After the action at is executed, the DRL agent observes the reward rt and next state

st from the base station cache, and the transition (si, ai, ri, si+1) will be stored to the

memory M at the end of each epoch. The DRL agent updates the parameters θQ

and θµ with NB transition samples from memory M based on the DDPG.

In our implementation, the actor network has two hidden layers of fully-connected

units with 256 and 128 neurons, respectively; and the critic network has two hidden

layers of fully-connected units with 64 and 32 neurons, respectively. The capacity of

memory NM is set as NM = 10000, and the mini batch size is set as NB = 100. The

discount factor γ introduced in (2.7) is set as 0.9.
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Then, we define the state and action spaces, and the reward function of the DRL

agent as follows:

State Space: The DRL agent assumes the feature space of the cached contents

and the currently requested content as the state. The feature space consists of three

components: short-term feature Fs, medium-term feature Fm, and long-term feature

Fl, which represent the total number of requests for each content in a specific short-,

medium-, long-term, respectively. These features vary as the cache state is updated.

For each decision epoch, we assign a temporary index to every content from which we

need to extract features. Since we only extract the features from cached contents and

the currently requested content, let the index range from 0 to the cache capacity C.

The index of the currently requested content is 0, while the index of the cached content

varies from 1 to C. This temporary index is different from the content ID and is only

used for denoting the feature. Then, we let fxj, for x ∈ {s,m, l} and j ∈ [0, C], denote

the feature of a specific content within a specific term. Thus, the observed state is

defined as st = {Fs;Fm;Fl} where Fs = {fs0, fs1, ..., fsC}, Fm = {fm0, fm1, ..., fmC},

and Fl = {fl0, fl1, ..., flC}.

Action Space: In order to limit the action size, we restrict that the DRL agent

can only replace one selected cached content by the currently requested content, or

keep the cache state the same. With this, we define A as the action space, and let

A = {0, 1, 2, ..., C}, where C is again the cache capacity at the base station. And we

assume that only one action can be selected in each decision epoch. Let at be the

selected action at epoch t. Note that, for each caching decision, there are (C + 1)

possible actions. When at = 0, the currently requested content is not stored, and the

current caching space is not updated. And when at = υ with υ ∈ {1, 2, ..., C}, the

action is to store the currently requested content by replacing the υth content in the

cache space.

Reward: As stated in the previous section, we select the cache hit rate as the
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reward to represent the objective of the proposed framework. The reward for each

decision epoch depends on the short and long-term cache hit rate. For example, we

set the short-term reward as the number of requests for local content in the next

epoch, i.e., the short-term reward rst can be either 0 or 1. And let the total number

of requests for local content within the next 100 requests as the long-term reward

rlt ∈ [1, 100]. The total reward for each step is defined as the weighted sum of the

short and long-term rewards

rt = rst + w ∗ rlt

where w is the weight to balance the short and long-term rewards, so that we can

give more priority to the short-term reward to maximize the cache hit rate at every

step given the chosen action.

The major notations are listed in Table 2.1 below.

Table 2.1: Notations

Notation Description
C Cache capacity at base station
i ID, or index of contents
N Total number of contents
Rt Content requested at epoch t
A Action space
at The chosen action in the epoch t
rt The reward obtained in the epoch t
st The observation state in the epoch t
F Feature space
Fs, Fm, Fl Short/ mid/ long term features
fsi, fmi, fli Short/ mid/ long term feature of content i
k The number of nearest neighbors
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Algorithm 1 DRL-based Content Caching Algorithm

Offline:
1: Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ

and θµ.
2: Initialize target network Q′ and µ′ with weights θQ

′ ←− θQ, θµ
′ ←− θµ

3: Initialize replay buffer M with capacity of NM
4: Initialize a random process N for action exploration
5: Initialize features space F
6: Pre-train the actor and critic network with the pairs < s, a > and the correspond-

ing Q(s, a|θQ).
Online:

7: for t = 1, T do
8: The base station receive a request Rt

9: if Requested content is already cached then
10: Update cache hit rate and end epoch;
11: else
12: if Cache storage is not full then
13: Cache the currently requested content
14: Update cache state and cache hit rate
15: End epoch;
16: end if
17: Receive observation state st
18: Actor:
19: Receive proto-ation from actor network ât = µ(st|θµ).
20: KNN:
21: Retrieve k approximately closest actions Ak = gk(ât)
22: Critic:
23: Select action at = arg maxaj∈Ak Q(st, aj|θQ) according to the current pol-

icy.
24: Execute action at, and observe reward rt and observe new state st+1

25: Store transition (st, at, rt, st+1) in M
26: Sample a random mini batch of NB transitions (si, ai, ri, si+1) from M
27: Set target yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′)

28: Update critic by minimizing the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

29: Update the actor policy using the sampled policy gradient:
30: ∇θµJ ≈ 1

N

∑
i∇aQ(s, a|µQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

31: Update the target networks:
32: θQ

′ ←− τθQ + (1− τ)θQ
′

33: θµ
′ ←− τθµ + (1− τ)θµ

′

34: Update the cache state
35: Update features space F
36: Update cache hit rate
37: end if
38: end for
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2.1.3 Simulation Results

2.1.3.1 Simulation Setup

Data Generation: In our simulations, the raw data of users’ requests is generated

according to the Zipf distribution. We set the total number of files as 5000, and we

have collected 10000 requests as the testing data. We generate two types of data

sets. Initially, we analyze the performance with fixed content popularity distribution,

and the data set was generated with unchanged popularity distribution with Zipf

parameter set as 1.3. Subsequently, we study how long-term cache hit rate varies

over time as the content popularity distribution changes. In this case, the data set

was generated with a varying Zipf parameter, and changing content popularity rank.

Note that, although we generate the data using the Zipf distribution, the proposed

framework is applicable to arbitrarily distributed popularities, and indeed requires no

knowledge regarding the popularity distribution.

Feature Extraction: From the raw data of content requests we extract the feature

F and use it as the input state of the network. Here, as features, we consider the

number of requests for a file within the most recent 10, 100, 1000 requests.

2.1.3.2 Performance Comparison

To analyze the performance of our algorithm, we evaluate the cache hit rate and

provide comparisons with other caching strategies.

2.1.3.2.1 Cache Hit Rate In this part, comparisons are made between our pro-

posed framework and the following caching algorithms:

� Least Recently Used (LRU) [114]: In this policy, the system keeps track of

the most recent requests for every cached content. And when the cache storage

is full, the cached content, which is least requested recently, will be replaced by

the new content.
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� Least Frequently Used (LFU) [115]: In this policy, the system keeps track

of the number of requests for every cached content. And when the cache storage

is full, the cached content, which is requested the least many times, will be

replaced by the new content.

� First In First Out (FIFO) [116]: In this policy, the system, for each cached

content, records the time when the content is cached. And when the cache

storage is full, the cached content, which was stored earliest, will be replaced

by the new content.

Here, we consider both short-term and long-term performance. For the short-

term analysis, we study the relationship between the cache capacity and cache hit

rate. Regarding the long-term performance, we are interested in the stability and

robustness of the proposed DRL framework, i.e., we seek to characterize how the cache

hit rate changes over time with the changing popularity distribution of contents.

Figure 2.1 shows the overall cache hit rate achieved by the proposed framework

and the other caching algorithms introduced above. In this study, we set the Zipf

distribution parameter as 1.3. We can see that our proposed framework provides

a higher cache hit rate for all cache capacity values. When the cache capacity is

small, the performance of LFU is very close to our proposed framework. As the cache

capacity increases, the gap between proposed framework and other three caching

algorithms increases at first, and then gradually decreases. At cache capacity C =

500, the cache hit rate of all four algorithms are close to each other at around 0.8.

And at this point, the cache hit rates achieved by different policies tend to converge

because the cache capacity is high enough to store all popular contents. From this

point on, increasing the cache capacity will not improve the cache hit rate effectively

any more, and the cache hit rate is now limited by the distribution of the content

popularity.

In Fig. 2.2, we address the long-term cache hit rate, and based on the long-
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term performance we evaluate the capability that the policy can maintain the good

performance as content popularities vary over time. Specifically, we design a data set

with a changing popularity distribution based on the Zipf distribution. In addition to

the parameter of the Zipf distribution, the rank of the contents also vary over time.

All the Zipf distribution parameter values and the ranks of contents are generated

randomly. From the figure, we can observe that the proposed DRL framework doesn’t

show advantage initially, but soon the cache hit rate increases. This is because the

proposed framework needs to update the deep neural network to adapt to the changing

content popularity distribution. After that, the hit rate curve of proposed framework

reaches the peak and then deceases only slightly, maintaining a relatively stable cache

hit rate. Meanwhile, the LFU curve starts at a relative high cache hit rate and

then drops rapidly. This poor performance is caused by the frequency pollution,

which is an inevitable drawback of the LFU policy. Because the number of requests

are accumulative, when the popularity distribution changes, the previous record will

mislead the system. For LRU and FIFO, the performance are relatively stable but

the performance is not competitive with respect to our DRL agent. Based on the

analysis, our proposed framework will be more suitable for applications that require

robustness and a long-term high performance.

2.1.3.2.2 Efficiency In this part, we compare our proposed framework with the

Deep Q-learning based caching algorithm. The most significant difference between

these two algorithms is that our proposed algorithm only considers a set of valid

actions expanded from the actor, but the Deep Q-learning based algorithm calculates

the value for all valid actions. Intuitively, our proposed framework will reduce the

computational complexity, but since the Deep Q-learning algorithm receives more

possible actions, it may lead to better performance.

To address this key tradeoff, we compare the cache hit rates and the corresponding
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Figure 2.1: Cache hit rate vs. cache capacity. We vary the cache capacity as C =
1, 5, 25, 50, 150, 300, 500.
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Figure 2.2: Cache hit rate as the content popularity distribution changes over time,
with cache capacity fixed at C = 300.
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Figure 2.3: Cache hit rate vs. cache capacity.

runtimes of these two deep learning schemes. In Fig. 2.1, the cache capacity values

vary as {1, 5, 25, 50, 150, 300, 500}, and the cache hit rates are plotted when the con-

tent requests are generated using the Zipf distribution parameter 1.3. The curve

labeled DQN represents the performance of the deep Q-network. K1 and K2 denote

two different settings of proposed framework. In the case of K1, the KNN returns

k1 = d0.15Ce actions to the expanded action space Ak. For K2, the KNN returns

k2 = d0.05Ce actions to the expanded action space Ak. As we can see in the figure,

when cache capacity is C = 1, all three curves intersect at the same point, because all

three policies are trained to find the one most popular content. Then, as cache capac-

ity increases, the gap between this three policies become obvious. Especially when

the cache capacity is C = 5, DQN consider all possible actions, while both K1 and

K2 only take the proto actor. The gap between K1 and K2 reflects the randomness

that might be introduced by the proto action. And then, the gap between K1 and

DQN gradually decreases. These results demonstrate that the proposed framework

can achieve competitive cache hit rates compared to DQN.
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Moreover, the proposed framework can achieve this competitive performance with

significantly lower runtimes. With cache capacity fixed at C = 300, we record the

time needed for 1000 decision epochs, and show the average runtime results in Table

2.2 below. As can be seen, the DQN needs much more time at each epoch. In practice,

this increased computational cost often leads to storage problems, which makes the

deep Q network less competitive in solving large scale problems than the proposed

framework.

Table 2.2: Runtime/decision epoch

DQN K1 K2

Runtime (s) 1.2225 0.3224 0.1163

2.2 Deep Reinforcement Learning Based Edge Caching

in Wireless Networks

This section is organized as follows. First, in Sections 2.2.1 and 2.2.2, we focus on

the study of a centralized caching system. Specifically, in Section 2.2.1, the single-cell

system model and the cache hit rate maximization problem is introduced. In Sec-

tion 2.2.2, the deep actor-critic reinforcement learning based centralized edge caching

framework is proposed. Subsequently, we extent our analysis to the decentralized

edge caching scenario in Sections 2.2.3 and 2.2.4. In Section 2.2.3, we introduce the

multi-cell system and the decentralized edge caching problems based on the overall

cache hit rate and transmission delay. And in Section 2.2.4, we demonstrate the

multi-agent framework for the decentralized edge caching scenario. Numerical results

are presented and discussed in Section 2.2.5.
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Figure 2.4: System model of a centralized caching system.

2.2.1 Centralized Edge Caching in a Single-Cell Network:

System Model and Problem Formulation

2.2.1.1 System Model

In the centralized caching system, shown in Fig. 2.4, we assume that there is only one

cache-enabled base station, which is the content server for all users in its coverage.

It is also assumed that the total number of contents that can be requested by the

user is M and the base station can store C contents at most1. These contents have

different popularities, which can be quantified by the probability that the content will

be requested by the users. In this centralized caching system, we assume that the

requests from users arrive at the base station one by one, and a Zipf distribution is

used to approximatively describe the popularity distribution of the files at all users.

Here, we assign each content a unique index, and use this index as the content ID

when users request the content. So, we can denote the requests from the users as

Req = {R1, R2, R3, ...}, where Rt denotes the ID of the requested content at time t.

Since the base station is equipped with cache storage, it first checks if the contents

1In this chapter, we assume that all contents have the same size. And based on this assumption,
we use the number of contents, C, that can be stored at a base station as the cache capacity.
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requested by the users are cached locally. If the requested contents are available in the

local cache, then the base station can transmit the contents to the corresponding user

without requesting them from the upper level content servers. To avoid requesting

content as much as possible, the base station needs to update its cache according

to users’ preferences. Each time a request arrives, the base station, as noted above,

will first check if the requested content is available locally, so that it can decide how

to serve the user. Then, the base station has to decide whether or not to update

its cache. Therefore, for each content, there are two cache states: cached, and not

cached. The cache state gets updated based on the caching decision. Here, we define

two types of actions: the first one is to find a pair of contents and exchange the

cache states of the two contents and the second one is to keep the cache states of

all the contents unchanged. We describe the action space at the base station as

A = {a1, a2, a3, ..., am}, where aυ, υ = 1, 2, . . . ,m, denotes a valid action and m is the

size of the action space. Note that the replacement in the cache requires two contents

in pair: one is to be added to the cache, and the other one is to be removed from the

cache. Hence, the value of m depends on the cache capacity and the number of content

files, and has a finite but generally a large value. Theoretically, multiple actions can be

executed in one decision epoch. To reduce the computational complexity, we need to

limit the action space size m and the number of actions to be executed in one decision

epoch. For this purpose, we propose to employ the Wolpertinger architecture based

DRL framework as will be discussed in detail in subsection 2.2.2.2.

2.2.1.2 Problem Formulation

In this part, we formulate the caching problem with the objective to maximize the

cache hit rate, which describes how frequently the requested content is found in the

local cache.

For the centralized caching system, the cache hit rate is computed from the per-
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spective of the base station, and the cache hit rate P c
hit in T requests is defined as

P c
hit =

∑T
t=1 1 (Rt)

T
(2.12)

where indicator function 1 (Rt) is defined as

1 (Rt) =


1, if the request Rt hits in the cache,

0, otherwise

(2.13)

with the cache being essentially described as the set of indices of the contents in the

cache at time t (with cardinality equal to the cache capacity C).

And the problem of the maximization of the cache hit rate over the caching states

can be expressed as

P1: Maximize
Φ

P c
hit (2.14)

Subject to
M∑
f=1

φf ≤ C (2.15)

where Φ is the 1×M dimensional content state vector that records the states of all

contents (describing whether they are cached or not), and each element φf in the

content state vector is an indicator to show if the file is cached:

φf =


1 if the file f is cached at the base station

0 if the file f is not cached at the base station

. (2.16)

2.2.2 Deep Actor-Critic Framework for Centralized Edge Caching

To solve the optimization problem P1, we in this section propose a Wolpertinger ar-

chitecture based single-agent actor-critic DRL framework for centralized edge caching.

First, we introduce the related definitions in this architecture. Several of these defini-
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tions will also be used for the decentralized edge caching framework in Sections 2.2.3

and 2.2.4.

2.2.2.1 Related Definitions

2.2.2.1.1 Agent’s Observation and State Space

Observations of the Centralized DRL Agent The centralized DRL caching

agent assumes the feature space of the cached contents and the currently requested

content as the state. In each decision epoch, we assign a temporary index to each

content from which we need to extract features. Since we only extract the features

from cached contents and the currently requested content, we let the indices range

from 0 to cache capacity C. The index of the currently requested content is 0, while

the index of the cached content varies from 1 to C. This temporary index is different

from the content ID and is only used for denoting the feature. Thus, the observed

state at time t is defined as st = {Fs;Fm;Fl}, where Fs, Fm, Fl are the features

collected at different times, as will be discussed next.

Feature Space The feature space consists of three components: short-term

feature Fs, medium-term feature Fm, and long-term feature Fl, which represent the

total number of requests for each content in a specific short-, medium-, long-term,

respectively. These features are updated as new requests arrive at agents. Then, we

let fxj, for x ∈ {s,m, l} and j ∈ {1, . . . ,M}, denote the feature of a specific content

within a specific term, where M is the total number of contents. As mentioned

above, the observation for each agent can be expressed by {Fs;Fm;Fl}, and we have

Fs = {fs0, fs1, ..., fsM}, Fm = {fm0, fm1, ..., fmM}, and Fl = {fl0, fl1, ..., flM}.

2.2.2.1.2 Action Space In order to limit the action size, we restrict that the DRL

agent can either only replace one selected cached content by the currently requested
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content, or keep the cache state the same. Thus, each replacement action of the

caching agents indicates a pair of content IDs: one is the ID of the cached content to

be deleted from the cache, and the other one is the ID of the content which is currently

requested. So, all possible replacement actions can be described by a C × L matrix,

where C is the cache capacity and L is the number of requests arriving simultaneously.

For the centralized caching agent, since we assume that the users’ requests arrive one

by one, we have L = 1, which means that the replacement decision must be made

between only the current requested content and a cached content. Therefore, the

action space of the centralized caching agent can be defined as A = {0, 1, 2, ..., C},

where C is again the cache capacity at the base station.

And we assume that only one action can be selected in each decision epoch. Let

at be the selected action in epoch t. Note that for each caching decision, there are

(C + 1) possible actions. When at = 0, the currently requested content is not stored,

and the current caching space is not updated. And when at = υ for υ ∈ {1, 2, ..., C},

the action is to store the currently requested content by replacing the υth content in

the cache space.

2.2.2.1.3 Reward As stated in the previous section, the centralized caching agent

aims at maximizing the cache hit rate to solve problem P1. The reward rt for each

decision epoch depends on the short and long-term cache hit rate. For example, we

set the short-term reward, considering the number of requests for local content in

the next epoch, i.e., the short-term reward P c
hit,s can be either 0 or 1. And let the

total normalized number of requests for local content within the next 100 requests as

the long-term reward P c
hit,l ∈ [0, 1]. The total reward for each step is defined as the

weighted sum of the short and long-term rewards

rt = P c
hit,s + w ∗ P c

hit,l (2.17)
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where w is the weight to balance the short and long-term rewards. For instance, if

we lower the value of w, we give more priority to the short-term reward to maximize

the cache hit rate at every step given the chosen action.

2.2.2.2 Wolpertinger Architecture

Based on the Wolpertinger Policy [42], our framework consists of three main com-

ponents: actor network, K-nearest neighbors (KNN), and critic network. We train

the centralized caching policy using the Deep Deterministic Policy Gradient (DDPG)

[113]. This Wolpertinger architecture works in three steps. First, the actor network

takes cache state and the current content request as its input, and provides a single

proto actor â at its output. Then, KNN receives the single actor â as its input, and

calculate the L2 distance between every valid action and the proto actor in order to

expand the proto actor to an action space, denoted by AK , with K elements and each

element being a possible action aυ ∈ A. And at the last step, the critic network takes

the action space AK as its input, and refines the actor network on the basis of the Q

value. The DDPG is applied to update both critic and actor networks.

Below we provide a more detailed description of the key components of the algo-

rithm.

The actor: The actor network is designed to choose a proto-actor â ∈ A from the

valid actions. This selection is based on the decision policy of the actor network, and

will be updated after each decision.

K-nearest neighbors (KNN): The generation of the proto-actor can help reduce the

potentially high computational complexity due to the large size of the action space.

However, reducing the high-dimensional action space to one actor will lead to poor

decision making. To remedy this, the K-nearest neighbors mapping, gK , is applied

to expand the actor â to a set of valid actions selected from the action space A. The
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set of actions returned by gK is denoted by AK :

AK = gK(ât) (2.18)

where

gK =
K

arg min
a∈A

|a− â|2. (2.19)

With (2.19), we determine the K nearest neighbors of the proto-actor. Here, a is

a valid action in the action space A, and |a − â|2 is the L2 distance of the features

between the action a and the proto-actor â. When the proto-actor is selected by the

actor network, the agent will traverse the action space to find the K nearest feature

distances, and the action set will be determined accordingly.

The critic: To avoid the actor with low Q-value being occasionally selected, a critic

network is defined to refine the actor. The critic network will evaluate all actions in

the expanded action space, and the action that provides the maximum Q value will

be chosen as at , i.e.,

at = arg max
aj∈AK

Q(st, aj). (2.20)

2.2.2.3 Single-Agent Actor-Critic Framework

In this subsection, we present the details of the single-agent actor-critic framework

for the centralized caching system, and introduce the update of the two networks.

The actor: The actor network is defined as a function parameterized by θµ, map-

ping the state S from the state space to the action space A. The mapping provides a

proto-actor â in A for a given state under the current parameter. Here, we scale the

proto-actor to make sure â is a valid action i.e., â ∈ A:

µ(s|θµ) : S → A (2.21)
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µ(s|θµ) = â. (2.22)

The critic: The critic is employed as a refining network, and the deterministic

target policy is described below:

Q(st, aj|θQ) = Ert,st+1∼E[r(st, aj) + γQ(st+1, at+1|θQ)] (2.23)

where θQ stands for the parameters of the critic network, and γ ∈ (0, 1] is the discount

factor which weighs the future accumulative reward Q(st+1, at+1|θQ). Here, the critic

takes both the current state st and the next state st+1 as its input to calculate the Q

value for each action in AK . Then, the action that provides the maximum Q value

will be chosen as at, i.e.,

at = arg max
aj∈AK

Q(st, aj|θQ). (2.24)

Update: To update the parameters of actor and critic, we replay a minibatch of

samples randomly selected from the previous transition, with a minibatch size NB.

Therefore, the actor policy is updated using deep deterministic policy gradient, which

is given as

∇θµJ ≈
1

NB

∑
i

∇aQ(s, a|µQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si (2.25)

and the critic is updated by minimizing the loss:

L =
1

NB

∑
i

(yi −Q(si, ai|θQ))2 (2.26)

where yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′).

Workflow: In this part, we introduce the workflow of the proposed framework. At

the beginning of each epoch t, the agent observes the state st from the environment.

Then, the proto-actor obtained by the actor network based on the current policy will
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be passed to KNN, and expanded action set will be evaluated by the critic network.

Then, an ε-greedy policy is applied at selecting the action at. This policy can force

the agent to explore more possible actions. After the chosen action is executed in the

environment, the transition (si, ai, ri, si+1) will be stored to the memory M at the

end of this epoch. Next, a minibatch with size NB will be randomly sampled from

the memory M and replayed to update the actor and critic networks. The complete

process is presented in Algorithm 2 below.

2.2.3 Decentralized Edge Caching in Multi-Cell Networks:

System Model and Problem Formulation

2.2.3.1 System Model

The decentralized caching system considered in this section is depicted in Fig. 2.5.

The system consists of a cloud data center and N cache-enabled base stations. Sim-

ilar to the centralized content server, each base station in this decentralized content

caching system also has a fixed cache capacity C and is able to serve the users from

the cache when the requested contents are available locally. For the contents not

cached locally, a request is generated by the base station to retrieve the content from

the cloud data center. Here, we assume that the cloud data center has sufficient

storage space to have all content files, and all base stations can connect with the

cloud data center. As shown in the figure, each base station covers a fixed cellular

region described by a circle with the corresponding base station at the center, and the

radii of the cells are fixed and all users in the cell can access the corresponding base

station. There are U users randomly distributed in the system, and they are located

in at least one cellular region covered by a base station to ensure service. Each base

station receives requests from all users in its cellular region simultaneously, and based

on the requests, the base station will learn users’ preferences for contents and make

42



Algorithm 2 Single-Agent Actor-Critic Algorithm for Content Caching

1: Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ

and θµ.
2: Initialize target network Q′ and µ′ with weights θQ

′ ←− θQ, θµ
′ ←− θµ

3: Initialize replay buffer M with capacity of NM
4: Initialize features space F
5: for t = 1, T do
6: The base station receive a request Rt

7: if Requested content is already cached then
8: Update cache hit rate and end epoch;
9: else

10: if Cache storage is not full then
11: Cache the currently requested content
12: Update cache state and cache hit rate
13: End epoch;
14: end if
15: Receive observation state st
16: Actor: Receive proto-ation from actor network ât = µ(st|θµ).
17: KNN: Retrieve k approximately closest actions AK = gK(ât)
18: Critic: Select action at = arg maxaj∈AK Q(st, aj|θQ) according to the cur-

rent policy.
19: Execute action at, and observe reward rt and observe new state st+1

20: Store transition (st, at, rt, st+1) in M
21: Sample a random mini batch of NB transitions (si, ai, ri, si+1) from M
22: Set target yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′)

23: Update critic by minimizing the loss: L = 1
NB

∑
i(yi −Q(si, ai|θQ))2

24: Update the actor policy using the sampled policy gradient:
25: ∇θµJ ≈ 1

NB

∑
i∇aQ(s, a|µQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

26: Update the target networks with τ � 1:
27: θQ

′ ←− τθQ + (1− τ)θQ
′

28: θµ
′ ←− τθµ + (1− τ)θµ

′

29: Update the cache state
30: Update features space F
31: Update cache hit rate
32: end if
33: end for
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Figure 2.5: System model of a decentralized caching system.

caching decisions.

We assume that in a given time slot, the users’ locations do not change and those

located in the overlapped regions can be served by any one of the corresponding base

stations. Users have their own preferences for contents, and in each time slot, each

user can request only one content. Here, we denote the total number of contents

as M , and use the content ID to denote the requests for the corresponding content.

In each operation cycle, users request contents based on their own preferences. The

requests are sent to all base stations that can connect with the user, and, for instance,

when delay is the performance metric, the base station that provides the minimum

transmission delay will finally transmit the requested content file to the user. In the

meantime, all base stations will update their caches to improve the cache hit rate or

minimize the average transmission delay based on the users’ requests.

The base stations will compete with each other to get the chance to transmit and

also cooperate with each other to reduce the overall transmission delay. To realize this

framework, we propose a Wolpertinger architecture based multi-agent framework. In

44



this framework, there are N actor networks and one centralized critic network. We

consider each base station as an agent that adopts one of the actor networks to seek

its own caching policy. And we assume there are control channels that allow the

base stations to send the caching state and data traffic parameters to the cloud date

center, so that the cloud data center can act as the centralized critic to evaluate the

overall caching state2. Similar to the centralized content server, in each operation

cycle, the decentralized agent can either keep the cache state the same or replace

unpopular contents with the popular ones. Note that there can be more than one

request arriving at a base station at the same time, and for different contents, the

agent needs to jointly decide which cached content will be deleted and which content

requested by which user will be cached. For each agent i, we define the action space

as Ai, and let Ai = {a0, a1, ..., aDi}, where aν denotes a valid action. In our case, a0

indicates that the current cache state is unchanged. For ν = {1, 2, ...,Di}, we define

Di =
(
Ci
1

)(
Li
1

)
, where Ci is the total number of files that can be stored at base station

i, and Li is the number of users that can connect with the base station i. So each

aν stands for a possible combination to replace one of Ci cached contents with one

of Li currently requested contents. In every time slot, each agent must select its own

action from the corresponding action space Ai and execute.

As seen in the descriptions above, decentralized caching in a multi-cell network

is more general and challenging than the centralized caching with a single base sta-

tion analyzed in the previous sections. In the decentralized caching framework, base

stations receive multiple file requests at a given time and differentiate which users

generate the requests, each user generates the file requests according to its unique

preference, user location and channel conditions are taken into account if the objec-

tive is to reduce the transmission delay, and overall multi-agent reinforcement learning

is employed. A challenge in this setting is that the action space and observation space

2We note that the centralized critic can also be placed at a node or controller (other than the
cloud data center) that is connected to the BSs.
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grow as the number of users in the coverage of the base stations increases.

2.2.3.2 Problem Formulation

2.2.3.2.1 Cache Hit Rate For the decentralized caching system, the cache hit

rate is calculated from the perspective of users in each time slot t. In particular, the

cache hit rate is defined as

P d
hit =

U∑
j=1

ξj

U
(2.27)

where U is the total number of users, and ξi is an indicator defined as

ξj =


1 if user j is served by a base station

(i.e., from the base station’s local cache)

0 if user j is served by the upper level server.

And the maximization of the cache hit rate over the caching decisions is expressed

as

P2: Maximize
Φ

Phit (2.28)

Subject to
M∑
f=1

φi,f ≤ Ci ∀i ∈ {1, . . . , N} (2.29)

where Φ is an N ×M matrix which records the caching states of the N base stations,

and each element φi,f in the caching state matrix is an indicator to show if the file is

cached at base station i:

φi,f =


1 if the file f is cached at the base station i

0 if the file f is not cached at the base station i

. (2.30)
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2.2.3.2.2 Transmission Delay For the decentralized caching system, we evalu-

ate the caching policy in terms of transmission delay as well. The transmission delay

is defined as the number of time frames needed to transmit a content file, and can be

expressed as

T = min

t̃ : F ≤
t̃∑

κ=1

T0C[κ]

 (2.31)

where F is the size of the content file to be transmitted. T0 stands for the duration

of each time frame, and C[κ] is the instantaneous channel capacity in the κth time

frame. And the channel capacity C[κ] is expressed as

C[κ] = B log2

(
1 +

Pt
BN0

zκ

)
bits/s (2.32)

where Pt is the transmission power, B is the channel bandwidth, N0 is the (one-sided)

noise power spectral density, and zκ is the channel gain in the κth time frame. In

the system, there are two types of transmitters: the cloud data center and the base

stations. We assume that all transmitters transmit at their maximum power level to

maximize the transmission rate. The transmission power is denoted as

Pt =


Pc if the transmitter is the cloud data center

Pi if the transmitter is the ith base station

. (2.33)

So, if user j requests a content, which is not cached at any base station that can

connect with the user, the content file will be first transmitted from the cloud data

center to the base station î, which is the closest base station to the user j, and then

from the base station î to user j. Thus, the minimum transmission delay D̂j in the
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case of a missing file in the cache can be expressed as

D̂j = Tc,̂i + Tî,j (2.34)

where Tc,̂i stands for the transmission delay form the cloud data center to the base

station î, and Tî,j is the transmission delay from the base station î to the user j.

However, if the requested file is cached at a base station i, which can connect

to user j, the transmission delay Dj in the case of having a hit in the cache can be

expressed as

Dj = Ti,j. (2.35)

Problem Formulation: In the previous section, we have described the transmission

delay for both cases of missing and hitting in the cache. In this section, we formulate

the caching problem. First, we define the transmission delay reduction ∆Dj as

∆Dj = D̂j −Dj. (2.36)

Now, the average transmission delay reduction in an operation cycle is

∆D =
1

U

U∑
j=1

∆Dj (2.37)

=
1

U

U∑
j=1

(D̂j −Dj) (2.38)

=
1

U

U∑
j=1

(Tc,̂i + Tî,j − Ti,j) (2.39)

where U is again the total number of users. In this chapter, our goal is to maximize

the average transmission delay reduction, and the caching problem is formulated as

follows:
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P3: Maximize
Φ

∆D (2.40)

Subject to ξi,j = 1 ∃i ∀j (2.41)

M∑
f=1

φi,f ≤ Ci,∀i ∈ {1, . . . , N} (2.42)

where Φ is again the N ×M matrix which records the caching states of the N base

stations, and each element φi,f in the caching state matrix is an indicator, showing if

the file is cached at base station i:

φi,f =


1 if the file f is cached at the base station i

0 if the file f is not cached at the base station i

. (2.43)

Ci is the maximum number of files that can be stored at base station i. And ξi,j is

an indicator describing if user j is in the area covered by base station i:

ξi,j =


1 if user j can connect to base station i

0 if user j cannot connect to base station i

. (2.44)

2.2.4 Deep Actor-Critic Framework for Decentralized Edge

Caching

In this section, we introduce the multi-agent deep reinforcement learning framework

for the decentralized edge caching problem. In this framework, there will be mul-

tiple DRL agents that can make independent caching decisions based on their own

observations, and each agent will also incorporate the Wolpertinger architecture as

introduced in subsection 2.2.2.2.
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2.2.4.1 Related Definitions

2.2.4.1.1 Agents’ Observation and State Space Allowing the agents to make

their own caching decisions and cooperate with each other, the decentralized caching

framework is proposed as a centralized critic network together with a decentralized

actor network. Therefore, the agent will feed the actor network with their own obser-

vations and feed the critic network with the complete state space. This multi-agent

actor critic framework is based on a partially observable Markov decision process.

Each agent i, i = 1, 2, ..., N , can only observe the requests arriving at itself, and

select its own action only based on the observation oi. In the environment, the agent

i can observe the contents’ features through its local request history. And for the

centralized critic, the state space is defined as x = {o1, o2, ..., oN}. Similar to the cen-

tralized caching agent’s observation, the observation oi of each decentralized caching

agent can be denoted as oi = {Fs;Fm;Fl}, where {Fs;Fm;Fl} is the feature space

as introduced in subsection 2.2.2.1.1.

2.2.4.1.2 Action Space Similar to the action space in the centralized edge caching

framework, introduced in subsection 2.2.2.1.2, each agent in the decentralized caching

framework can either keep the current caching state unchanged or only make one re-

placement. However, in the decentralized caching system, different numbers of file

requests arrive at different base stations, since each base station serves potentially

different number of users. Therefore, the action space size of each decentralized agent

is also different depending on the number of users in the base stations’ service regions.

2.2.4.1.3 Reward The decentralized caching agents are designed to solve the op-

timization problems P2 or P3, depending on whether cache hit rate or delay reduction

is the ultimate goal.

To solve problem P2, in operation cycle t, after the agents update their caches
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according to the selected actions, the cache hit rate for requests in the next operation

cycle t + 1 will be received as the reward within the multi-agent framework. So we

define the reward in the tth operation cycle as

rt = P t+1
hit , (2.45)

and to solve the problem P3, the reward for each iteration is defined as

rt = ∆Dt+1. (2.46)

2.2.4.2 Multi-Agent Actor-Critic Framework

Now, we introduce the decentralized caching framework in detail. Specifically, we

have multi-agent actor-critic framework based on the partially observable Markov

decision processes with N agents, where the critic network V (x) and N actors πθi(oi),

i = i, 2, ..., N , are parameterized by θ = {θc, θ1, θ2, ..., θN}.

Actor: The actor network is defined as a function to seek a caching policy π =

{π1, π2, ..., πN}, which can map the observation of the agent to a valid action chosen

from the action space A. In each time slot, agent i will select an action ai based on

its own observation oi and policy πi:

ai = πi(oi). (2.47)

Critic: The critic is employed to estimate the value function V (x), where x stands

for the observation of all agents, x = {o1, o2, ..., oN}. At time instant t, after the

actions at = {a1,t, ..., aN,t} are chosen by the actor networks, the agents will execute

the actions in the environment and send the current observation xt along with the

feedback from the environment to the critic. The feedback includes the reward rt

and the next time instant observation xt+1. Then, the critic can calculate the TD
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(Temporal Difference) error:

δπθ = rt + γV (xt+1)− V (xt) (2.48)

where γ ∈ (0, 1) is the discount factor.

Update: Instead of using DDPG to train the neural networks as we present in the

centralized caching framework, the decentralized caching agents are updated using TD

error since this approach involves relatively lower computational complexity, helping

the decentralized caching agents more easily meet real-time operation requirements.

Specifically, the critic is updated by minimizing the least squares temporal differ-

ence (LSTD):

V ∗ = arg min
V

(δπθ)2 (2.49)

where V ∗ denotes the optimal value function.

The actor i is updated by policy gradient. Here, we use TD error to compute the

policy gradient:

∇θiJ(θi) = Eπθi [∇θi log πθi(oi, ai)δ
πθ ] (2.50)

where πθi(oi, ai) denotes the score of action ai under the current policy. Then the

weighted difference of parameters in the actor i can be denoted as ∆θi = α∇θi log πθi(oi, ai)δ
πθ ,

where α ∈ (0, 1) is the learning rate. And the actor network i can be updated using

the gradient decent method:

θi ←− θi + α∇θi log πθi(oi, ai)δ
πθ (2.51)

Workflow: To make the multi-agent system meet real-time operation require-

ments, we abandon the memory presented in the centralized agent. Consequently,

only the current transition will be used in updating the networks. In each iteration,

agent i, i = 1, 2, . . . , N , observes the features of users’ requests and updates its own
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cache space. Each actor network will propose a proto-actor âi,t, and each of these

proto-actors will be expanded to a K-action set respectively by the KNN, and the

expanded action set is denoted as AiK . Then, one action will be chosen from the

expanded action set of each agent, and the chosen actions will be combined to form

a new action set to be evaluated by the critic network. Each possible action set

combination can be expressed as Ah = (â1K , â2K , ..., âNK ), where we denote âiK as

an element chosen from the ith agent’s expanded action set. Therefore, there will

overall be KN possible action combinations considering all agents, and we can also

index the possible action combination Ah with h = 1, 2, . . . , KN . The critic network

will evaluate all KN possible combinations of action sets. For example, if there are 2

agents, and each agent’s proto-actor is expanded to an action set with 3 actions, the

critic network will need to evaluate all 32 possible combinations. Following this, the

action combination that provides the maximum state value will be executed in the

environment finally. Then, the critic and actor networks will update their parameters

accordingly.

The complete process is presented in Algorithm 3 below.

2.2.5 Numerical Results

To analyze the performance of our algorithms, comparisons are made between our pro-

posed deep reinforcement learning framework and the following caching algorithms:

� Least Recently Used (LRU) [114]: In this policy, the system keeps track of

the most recent requests for every cached content. And when the cache storage

is full, the cached content, which is requested least recently, will be replaced by

the new content.

� Least Frequently Used (LFU) [115]: In this policy, the system keeps track

of the number of requests for every cached content. And when the cache storage
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Algorithm 3 Multi-Agent Actor-Critic Algorithm for Content Caching

1: Initialize critic network V (x) and actor πθi(oi), parameterized by θ =
{θc, θ1, θ2, ..., θN}.

2: Receive initial state x = {o1, o2, ..., oN}.
3: for t = 1, T do
4: The base station receive users’ requests Reqt = {req1,t, req2,t, ..., reqU,t}.
5: Extract observation at time t for each agent, and xt = {o1,t, o2,t, ..., oN,t}
6: for i = 1, N do
7: The agent i selects proto-actor âi,t = πθi(oi,t) w.r.t. the current policy
8: Expand the proto-actor âi,t to a action set with k actions Ai,K via KNN.
9: end for

10: Extract all possible action set combinations Ah, h = 1, 2, . . . , kN .
11: Critic network calculate the state value V with all possible action set combi-

nations.
12: Find the action set combination that can provide maximum state value, set

at = arg maxâi,k∈Ai,k V (xt+1|A)
13: Execute actions at to update the cache state of each base station
14: Observe reward rt and new state xt+1

15: Critic calculates the TD error based on the current parameter: δπθ = rt +
γV (xt+1)− V (xt)

16: Update the critic parameter θc by minimizing the loss: L(θ) = (δπθ)2

17: for agent i = 1 to N do
18: Update the actor policy by maximizing the action value: ∆θi =

α∇θi log πθi(oi,t, ai)δ
πθ , α ∈ (0, 1).

19: end for
20: Update features space F
21: end for
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is full, the cached content, which is requested the least many times, will be

replaced by the new content.

� First In First Out (FIFO) [116]: In this policy, the system, for each cached

content, records the time when the content is cached. And when the cache

storage is full, the cached content, which was stored earliest, will be replaced

by the new content.

2.2.5.1 Numerical Results for Centralized Edge Caching

2.2.5.1.1 Neural Network In our implementation, the actor network has two

hidden layers of fully-connected units with 256 and 128 neurons, respectively; and the

critic network has two hidden layers of fully-connected units with 64 and 32 neurons,

respectively. The memory capacity NM is set as NM = 10000, and the mini batch

size is set as NB = 100. The discount factor γ introduced in (2.23) is set as 0.9. In

the KNN component of the algorithm, we conduct the experiments with the number

of neighbors as K1 = d0.15Ce and K2 = d0.05Ce, where C is the cache capacity.

2.2.5.1.2 File/Content Request Generation In our simulations, the raw data

of users’ requests is generated according to the Zipf distribution

f(k; β,M) =
1/kβ∑M

m=1(1/mβ)
(2.52)

where k is the rank of the files. For each experiment, we collect 10000 requests as

the testing data. The settings of Zipf exponent β and total number of files M are

specified before each experiment.

2.2.5.1.3 Feature Extraction From the raw data of content requests, we extract

the feature F and use it as the input state of the network. Here, as features, we
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consider the number of requests for a file within the most recent 10, 100, and 1000

requests.

Cache Hit Rate

Fig. 2.6 shows the overall cache hit rate (plotted in percentage) achieved by the

proposed framework and the other caching algorithms introduced above. In this

figure, we set the total number of files as M as 5000 and the Zipf exponent as β

at 1.3 and we vary the cache capacity. However, instead of directly using the cache

capacity C, we consider the cache ratio σ = C
M

(where M is the total number of

content files that can be requested by the users), so that we can analyze the impact

of the cache capacity normalized by the potential data traffic flow into this system.

We observe that the proposed framework with K1 = d0.15Ce outperforms the other

strategies and provides the highest cache rates for all cache capacity values, while the

performance of the proposed framework with K2 = d0.05Ce is relatively close to the

LFU policy. This observation demonstrates that increasing the number of neighbors

selected in the KNN stage can help improve the decision policy because the value of K

dictates how many actions can be learned in one iteration. We also notice that when

the cache capacity is small, the performance of LFU is very close to our proposed

framework. As the cache capacity increases, the gap between proposed framework

with K1 and other three caching algorithms increases at first, and then gradually

decreases. At cache capacity C = 500, the cache hit rate of all four algorithms are

close to each other at around 80% hit rate. At this point, the cache hit rates achieved

by different policies tend to converge because the cache capacity is high enough to

store all popular contents. From this point on, increasing the cache capacity will

not improve the cache hit rate significantly, and the cache hit rate is now essentially

limited by the distribution of the content popularity.

In Fig. 2.7, we study the cache hit rate as a function of the Zipf exponent β. In this
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Figure 2.6: Cache hit rate vs. cache ratio σ = C
M

. We vary the cache capacity as
C = 1, 5, 25, 50, 150, 300, 500.

experiment, we set the total number of files as 1000, fix the cache capacity at 100, and

vary the Zipf exponent β. Again, we test the proposed framework with two different

K values, i.e., K1 = d0.15Ce and K2 = d0.05Ce, and compare the cache hit rate with

that achieved by the non-learning based caching policies. As β increases, cache hit

rates achieved by all caching policies grow. This is due to the fact that with larger β,

there are fewer files with larger request probabilities and therefore the popularity of

the files is skewed. Consequently, caching these more popular files leads to an increase

in the cache hit rates. And with the same cache capacity, chances are higher that

the agent can cache all the highly popular files (the number of which has decreased).

We also notice that the slopes of all the curves first increase and then decrease. This

is because initially when the number of popular files gets small, all caching policies

start storing the most popular files, and the larger the β, the smaller the influence of

less popular files is. However, we eventually experience diminishing returns as β is

further increased. In addition, the gap between the curves corresponding to K1 and

K2 also increases as β gets larger. This verifies that adopting a larger value of K can
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Figure 2.7: Cache hit rate vs. Zipf exponent β. We vary the Zipf exponent as
β = 0.5, 0.7, 0.9, 1.1, 1.3, 1.5.

be helpful for the agent in exploring different action strategies.

In Fig. 2.8, we plot the cache hit rate as a function of the total numbers of files

M . In this experiment, we set the cache capacity as 100, fix the Zipf exponent at

1.4, and vary the value of M . Again the proposed framework is tested with two

different values of K and the performance is compared with the LRU, LFU, FIFO

caching policies. As the number of files increases, the cache hit rate achieved by all

policies tend to decrease. This is because when the cache capacity is fixed, increasing

the number of files leads to smaller cache ratio. And since the Zipf exponent β is

also fixed, the number of popular files is increased. In this figure, we still observe

the proposed framework outperforming for all values of M . Besides, observing the

difference between the cache hit rate achieved at M = 1000 and that achieved at

M = 5000 with the same caching policy, we find that the proposed framework has

better ability in handling cases with larger M (or smaller cache ratio), making it more

competitive in practical settings.

In Fig. 2.9, we plot the long term average cache hit rate P hit(T ) =
∑T

t=0 1 (Rt) over

time. In this experiment, the number of files is fixed at 1000, and the popularities of
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Figure 2.8: Cache hit rate vs. number of files M . We vary the number of files as
M = 1000, 2000, 3000, 4000, 5000.

the files change every 10000 time slots. Each time the popularity changes, the ranks of

the files will vary randomly and the Zipf exponent is randomly generated in the range

[1.0, 1.3]. Note that the change points and the popularity parameters of the files (both

ranks and Zipf exponent) are unknown to the reinforcement learning agent. With the

long-term average cache hit rate, we evaluate the ability of the caching policies to

maintain a stable performance in the changing environment. We can observe that the

proposed framework outperforms all the time and the performance is stable. For the

LRU and FIFO caching policies, though the curves are flat and smooth, the cache hit

rate is not competitive. And for the LFU policy, the cache hit rate drops quickly after

the first change point because of the frequency pollution. With this experiment, we

conclude that the proposed framework is more suitable for applications that require

high long-term performance and stability.

2.2.5.2 Numerical Results for Decentralized Edge Caching

2.2.5.2.1 Environment Settings As shown in Fig. 2.10, in the experiments, we

consider a system with 5 base stations and 30 users randomly distributed in the area,
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Figure 2.9: Long term average cache hit rate as the popularity of files change over
time.

each covered by at least one of the base stations. The cell radius is set as R = 2.2km,

and the transmission power of all base stations is set as Pi = 16.9dB, i = 1, 2, ..., 5.

The transmission power of the cloud data center is set as Pc = 20dB. As assumed,

the content files are split into units of the same size, and the size of each unit is set

as 96 bits. And we assume Rayleigh fading with path loss E{z} = d−4, where d is

the distance between the transmitter and receiver.

2.2.5.2.2 Neural Network In the implementation, each actor network has three

layers, and the first and hidden layers have 200 and 600 neurons, respectively, as shown

in Table 2.3. And for each actor network, the number of neurons in the output layer

depends on the size of the action space Ai. For the critic network, the number of

neurons in each layer is provided in Table 2.3. To ensure that the critic network can

learn faster than the actor networks, we set the learning rate of the critic network

as 0.001, and the learning rate of each actor network as 0.0005. And we test this

framework with the number of neighbors set as K = 1 and K = 2 in the KNN
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Figure 2.10: Coverage map of a system contains 5 base stations and 30 users

Table 2.3: Architecture of Multi-agent Framework

Actor Network Critic Network
Input Layer 200 Neurons 400 Neurons

Hidden Layer 600 Neurons 800 Neurons
Output Layer Di + 1 Neurons 1 Neurons
Learning Rate 0.0005 0.001

component of the algorithm. When K = 2, the proto-actor of each agent will be

expanded to an action set with 2 valid actions, while when K = 1, the proto-actor

will not be expanded and the Wolpertinger architecture will specialize to the regular

actor-critic structure.

2.2.5.2.3 File/Content Request Generation In our simulations, the raw data

of users’ requests is generated according to the Zipf distribution as shown in (2.52),

where the total number of files M is set as 500, and unless state otherwise, the Zipf

exponent β is fixed at 1.3 in the study of the cache size and transmission delay. The
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rank of the file k is randomly generated for each user so that users’ preferences for

files can be differentiated. To encourage the base station to cache the files that are

popular for more users, the users are randomly divided into 5 groups. It is assumed

that the users in the same group will have similar but not exactly the same rank

for all files. And the group information will not influence the users’ location. It is

important to note that we generate the requests with Zipf distribution and also group

the users. However, such information is totally unknown to the agents.

2.2.5.2.4 Feature Extraction From the raw data of content requests, we extract

the feature F and use it as the agents’ observations of the network. Here, as features,

we consider the number of requests for a file within the most recent 10, 100, and 1000

requests.

Cache Hit Rate

In Fig. 2.11, we plot the overall cache hit rate (as a percentage) achieved by the

proposed framework and the other caching policies in a multi-cell network. The

tendency of the cache hit rate as the cache ratio increases is very similar to that

in the case of a single base station as shown in Fig. 2.6. However, in a multi-cell

scenario, even the cache hit rate achieved by the regular actor-critic framework (i.e.,

when K = 1, whose curves are labeled as “DRL” in the figures) is always higher

than those of the LRU, LFU and FIFO policies, while in the single base station case,

when we set the number of neighbors as K2 = d0.05Ce, the cache hit rate achieved

by the proposed framework can become slightly lower than that of the LFU policy.

This observation indicates the benefits of the agents cooperating with each other to

avoid caching the same files so that the limited cache storage can be utilized more

effectively. Also, when we increase the number of neighbor to K = 2 (whose curves

are labeled as “K = 2” in the figures), the gap between the proposed framework
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Figure 2.11: Cache hit rate vs. cache capacity. We vary the cache capacity as
C = 1, 10, 20, 30, 40, 50, 60.

and other policies increases further. This is because when we increase the number of

neighbors from K = 1 to K = 2, the total number of action sets that will be learned

by the critic increases from 1 to 25, which will provide the critic more information for

final action selection. Note that we can continue increasing the value of K, but since

the number of action sets will increase exponentially, we need to trade off between

the performance and increased computational complexity and runtime.

In Fig. 2.12, we study the relationship between cache hit rate and Zipf exponent β.

In this experiment, we fix the cache capacity of all base stations as C = 40, and vary

the Zipf exponent. As β increases, the cache hit rate of all policies increase because

there are now a smaller number of popular files but with higher popularities compared

to before when β was smaller. Eventually, for large values of β, performances of

different policies tend to converge. This is because with the increasing value of β, the

frequencies of popular files being requested is sufficiently high, so that the LFU and

LRU policies can always keep these files, and for the proposed learning agents, the

features of these files become more distinguishable to learn.
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Figure 2.12: Cache hit rate vs. Zipf exponent. We vary the Zipf exponent as β =
0.5, 0.7, 0.9, 1.1, 1.3, 1.5.

Transmission Delay

In this section, we present the the simulation results addressing the transmission

delay. In particular, we evaluate the reduction in transmission delay as a percentage

as follows:

η =
∆D

1
U

U∑
j=1

D̂j

× 100%. (2.53)

Hence, η is the percentage of delay reduction per user in one operation cycle.

To determine the relationship between the transmission delay and cache capacity,

in Fig. 2.13, we fix the Zipf exponent at β = 1.3, and plot the percentage of overall

transmission delay reduction η as a function of the cache ratio. It is shown that as the

cache ratio σ increases, the reduction in transmission delay achieved by all caching

policies first rises quickly because the base stations can cache more files, and then the

trend slows down after a certain value of σ. The upward trend starts to slow down

because all these caching algorithms are encouraged to cache the most popular files
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Figure 2.13: Percentage of transmission delay reduction vs. cache capacity. We vary
the cache capacity as C = 1, 10, 20, 30, 40, 50, 60.

following the statistics they learn. So when the cache ratio grows further and further,

the caching agent will start caching the less popular content files. Though more files

are cached and transmission delay is further reduced, caching the less popular files at

the edge nodes lead to smaller improvements in reducing the transmission delay when

compared with the contribution made by caching the most popular files. In other

words, when the cache ratio is large enough to cache all of the most popular files, the

system does not necessarily have to keep enlarging the cache capacity, considering

the price to pay for the storage and the relatively small reduction in transmission

delay that will be achieved by storing the less popular files. We also observe that for

all values of the cache ratio, the proposed framework achieves better performance for

two reasons: First, the proposed framework considers the reduction in the average

transmission delay as the reward, so that the caching algorithm does not only focus

on finding the most popular files, but also takes into account the users’ locations

and several less popular files with potentially high delay penalties if not cached; and

secondly, the critic network can facilitate the exchange of information among the
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base stations so that they can avoid caching the same file to serve the user located in

overlapped regions, and in this way, utilize the cache space more efficiently.
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Figure 2.14: Percentage of transmission delay reduction vs. Zipf exponent. We vary
the Zipf exponent as β = 0.5, 0.7, 0.9, 1.1, 1.3, 1.5.

Again, we fix the cache ratio at σ = 0.1 and demonstrate how the percentage of

transmission delay reduction varies as the Zipf exponent β increases. In Fig. 2.14,

we observe that when β is small, the gap between the curve with “K = 2” and the

curve labeled “DRL” (i.e., K = 1) is small, implying that when the popularities of

the files are close to each other, the actor-critic agent is not able to take advantage

of the KNN because the features for all files are relatively similar and therefore it

is more difficult to find the most popular files. On the other hand, as β increases,

the increasing gap between these two curves points to the advantage of adopting a

larger number of neighbors in KNN. And when the value of β approaches 1.5, the

actor-critic agents with different K values achieve similar performances again since

the features of popular files can be easily distinguished from the non-popular files,

and therefore even with smaller number of neighbors, the proposed framework can
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learn it well.
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Figure 2.15: Percentage of transmission delay reduction η as the popularity distribu-
tion of contents change over time

In Fig. 2.15, we demonstrate the ability of the caching policies to adapt to vary-

ing content popularity distributions. In this experiment, the users’ preferences for

files change at every 10000 time slots. The users’ requests are generated using Zipf

distributions with their unique ranks of files and Zipf exponents. At each change

point, these parameters vary randomly. The change points and Zipf parameters are

all unknown to the caching agents. We only limit the Zipf exponent β to be in the

range [1.1, 1.5]. Then we plot the average of the percentages of the transmission delay

reduction over time as ηT = 1
T

T∑
t=1

ηt, for t = 1, 2, ..., 30000. As shown in Fig. 2.15,

the proposed framework with both values of number of neighbors achieve relatively

lower performance at the beginning, because unlike the other three caching policies

(i.e., LRU, LFU, and FIFO), the proposed framework does not directly collect the

statistics from the users’ requests, but generally adjust the parameters of the neural

networks and learn the popularity patterns of the files. After the neural networks

are trained well, the two actor-critic agents are able to achieve better long-term per-

formance over the other policies. As before, having larger number of neighbors (i.e.,
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Figure 2.16: Percentage of transmission delay reduction vs. total number of files. We
fix the Zipf exponent at β = 1.3 and the cache ratio σ = 0.1.

K = 2) results in the best performance. And at each time the popularity distribu-

tion changes, even though the average transmission delay reduction slightly drops as

the actor-critic framework updates the parameters to adapt to the new pattern, the

actor-critic agents can keep a stable performance after the re-training process. The

LFU policy performs the best at the beginning, but due to the frequency pollution,

the performance drops quickly at the first change point and continues diminishing.

For the LRU and FIFO policies, the performances are stable, because the cache size

is limited and the files that are used to be popular and less popular after the change

can be replaced in a relatively short amount of time. However, as evidenced in this

figure, their performances are lower and the proposed framework is more suitable be

to applied in scenarios that require long-term high performance and stability.

In Fig. 2.16, we plot the percentage of transmission delay reduction as a function

of the total number of files. Actor-critic agents again outperform the other caching

policies.
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Chapter 3

A Deep Actor-Critic

Reinforcement Learning

Framework for Dynamic

Multichannel Access

The scarcity of spectral resources makes it challenging to satisfy the ever-growing de-

mand for high-quality wireless communication services, and increases the importance

to improve the spectrum utilization. Dynamic spectrum access, which enables users

to proactively choose available channels, is one key approach to address this problem.

However, dynamic spectrum access can be very challenging for instance in scenarios

in which there is lack of prior information on the channel conditions or especially

when the channel conditions in different frequency bands vary over time and multiple

users dynamically access the channels simultaneously. Motivated by these considera-

tions, we in this chapter propose a deep reinforcement learning based framework for

dynamic multichannel access.

In particular, we in this chapter consider an environment with N correlated chan-
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nels, and each channel is assumed to have two possible states: good or bad1. The

good state indicates better channel conditions and higher channel capacity, ensuring

transmission success, while the bad state implies increased chances for transmission

failure due to unfavorable channel conditions. It is assumed that the state of each

channel can switch between good and bad, and this switching pattern can be modeled

as a Markov chain with at most 2N states. In order to successfully transmit their

data, all users aim at selecting the good channels as frequently as possible. Since the

channel switching pattern and other users’ choices are unknown, each user can only

try sensing or accessing different channels at each time and determine the pattern as

much as possible based on its own observation. Here, we assume that users can receive

a feedback in the channels they selected, and this channel feedback will indicate the

channel conditions2. In this way, users learn if their selections lead to channels with

good or bad states, and based on such previous experience, they predict the channel

states in the next time period when they need to choose a channel, and increase the

probability of choosing a channel in good state.

Since each user is only able to learn the states of channels selected by itself, the

environment is partially observable to the users, making the channel selection problem

a partially observable Markov decision process (POMDP). This is to say, to solve the

dynamic spectrum access problem, an access policy that only depends on the user’s

individual information on the state of previously accessed channels after each time of

sensing must be determined. However, in theory, POMDP problems are PSPACE-

hard, and the increase in the number of states will lead to double-exponential growth

in complexity. Hence, it is rather difficult to obtain the optimal solution. Conven-

tionally, heuristic algorithms [117,118] and Monte Carlo methods [119,120] have been

used to find acceptable sub-optimal solutions in a reasonable duration of time. In

1Having more than two states can also be incorporated in the analysis and algorithms as done in
Section 3.4.3.2 with channels having “excellent”, “good”, and “bad” states.

2We describe specific types of feedback that can indicate the channel condition in Section 3.1.2.
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both approaches, decisions are made based on previous exploration results.

In this chapter, inspired by the effectiveness of reinforcement learning methods in

exploring unknown environments [121, 122], we investigate the use of deep reinforce-

ment learning algorithms in solving the dynamic spectrum access problem. More

specifically, we propose a deep actor-critic reinforcement learning framework for dy-

namic spectrum access, aiming at increasing the accuracy of channel selection with

good states.

3.1 System Model

In this chapter, we consider the dynamic multichannel access problem in which users

dynamically select channels and learn the channel states. Below, we describe the

system model in detail.

3.1.1 Channel State Switching Patterns

In the system we consider, there are N correlated channels in total, and each channel

has two possible states: the good channel state, which allows the user to transmit

successfully, and the bad channel state, which will lead to transmission failure. We

assume that the states of these channels are dynamically switching between good and

bad. Since the channels are correlated, we can model the switching pattern of the

states of all channels as a Markov chain, denoted as P . In each time slot t, we denote

the channel state as Xt = {x1,t, x2,t, ..., xN,t}, where N is the total number of channels,

xi,t stands for the state of the ith channel in time slot t. And we assume that the

channel state can only change at the beginning of each time slot and remains the same

within the time slot. State transition probabilities at the beginning of each time slot

can be described as follows: the probability that the channel state will change from

current state to a different state in the Markov chain P is p; and the probability that
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the channel state will remain the same is (1− p).

3.1.2 Users’ Observations

We assume that the channel switching pattern is unknown to the users. In order to

successfully transmit their data, users have to deduce the channel switching pattern

from their observations of the channels. Different mechanisms can be used to obtain

such observations (or channel feedback). One approach is that the users send pilot or

data signals over the selected channels and receive feedback from their corresponding

receivers in the form of signal-to-interference-plus-noise ratios (SINRs). Or the users

can tune to certain channels and determine the SINRs of signals received in those

channels. In order to keep the analysis general in the chapter, we assume that the

users learn the conditions of the channels they have selected and accessed without

explicitly detailing the particular mechanism. We assume that each user can only

select k channels to access, where 1 ≤ k < N , and by accessing the selected channels,

the user can learn the corresponding channel states while the states of all other

channels that are not selected remain unknown to the user. Thus, from the user’s

perspective, choosing the channels in good states out of N channels is a POMDP, in

which the user aims to learn the pattern of variations in the channel states based on

previous decisions. In the following two subsections, we describe the user observations

initially in the case in which there is only one user in the system, and then in the

case where there are multiple users trying to access the channels simultaneously.

3.1.2.1 Single-User Scenario

For the system with only one user, we denote the user’s observation in time slot t

as Ot = {o1,t, o2,t, ..., oN,t}, where N is again the total number of channels, and oi,t

stands for the user’s observation of the ith channel, where i = 1, 2, . . . , N , in time

slot t. We assume that when the user selects a channel to access, the state of the
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chosen channel is revealed to the user. In the single-user case, let us define the state

of channel i, for i = 1, 2, ..., N , in time slot t as

xi,t =


+1 if the ith channel is in good state in time slot t

−1 if the ith channel is in bad state in time slot t

. (3.1)

Now, for the user, the observation of each channel is

oi,t = φi,t xi,t

=


xi,t if the ith channel is selected in time slot t

0 if the ith channel is not selected in time slot t

(3.2)

where φi,t is the indicator defined as

φi,t =


1 if the ith channel is selected in time slot t

0 if the ith channel is not selected in time slot t

. (3.3)

As seen above, if a channel is not selected for access, its state is not known and we

indicate the observation for those channels as zero.

3.1.2.2 Multi-User Scenario

For the system with M > 1 users, users make their own decisions to choose which

channels to access and can only receive the feedback on the channel states correspond-

ing to the selected channels. We assume that the users are not able to exchange infor-

mation on their selections and observed channel states among themselves. Therefore,

it is unavoidable that in some time slots, more than one user can choose/access the

same channel. In these circumstances, even if the selected channels are in good state,

the users may experience “degraded” channels due to potential collisions. Taking this
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into account, we define the state of the ith channel in time slot t as follows:

xi,t =



+1 if the ith channel is in good state and no collision occurs

di,t if the ith channel is in good state and collision occurs

−1 if the ith channel is in bad state

(3.4)

where di,t < 1 is the discount factor for the good channels that are selected by more

than one user. Note that this discount factor is introduced in order to discourage

the users to access the same good channel in the same time slot so that collisions in

channels with good states can be avoided as much as possible. In practice, different

mechanisms can be employed for collision detection and different discount factor

formulations can be used.

One approach is to define the discount factor di,t to be proportional to 1
mi

, where

mi > 1 is the number of users that have selected the ith channel. This choice can

be justified as follows. As noted above, let us assume that the users receive SINR

feedback from their corresponding receivers after accessing the selected channels. We

denote the received power (after having experienced fading) when user j accesses

a good channel as P good
r,j , while the received power when the user j accesses a bad

channel is indicated as P bad
r,j . We further assume that P good

r,j � N0 � P bad
r,j , where N0

is the noise power. Now, we can choose two thresholds Γ1 and Γ2 with which the

following inequalities with the received SINRs are satisfied:

P good
r,j

N0︸ ︷︷ ︸
no interference/

good channel

> Γ1 >
P good
r,j∑

k∈I,k 6=j
P good
r,k +N0︸ ︷︷ ︸

interference/good channel

> Γ2 >
P bad
r,j

N0︸︷︷︸
no interference/

bad channel

>
P bad
r,j∑

k∈I,k 6=j
P bad
r,k +N0︸ ︷︷ ︸

interference/bad channel

(3.5)
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where the leftmost term in (3.5) is the signal-to-noise ratio (SNR) when user j ac-

cesses a good channel and there are no other users in this channel (and hence no

interference). Note that since we assume that the received power in a good channel

satisfies P good
r,j � N0, we have

P goodr,j

N0
� 1. On the other hand, if multiple users access

a good channel and a collision occurs, the SINR of user j becomes
P goodr,j∑

k∈I,k 6=j
P goodr,k +N0

,

where I denotes the index set of interfering users. Assuming that the received powers

of different users at the same receiver are comparable, we have

P good
r,j∑

k∈I,k 6=j
P good
r,k +N0

≈
P good
r,j∑

k∈I,k 6=j
P good
r,k

≈ 1

m− 1
(3.6)

where m is the number of users that select the good channel in the given time slot,

and the first approximation is due to received powers being much larger than noise

power. The second approximation in (3.6) (which is due to received power levels

being comparable) provides a justification for choosing the discount factor di,t to be

proportional to 1
m

. As to the cases in which users select bad channels, since the

received power levels are small (e.g., because of potentially strong attenuation in the

channel) and the noise is dominant, SNR and SINRs levels will be small. Finally,

we note that if there exists thresholds Γ1 and Γ2 satisfying the inequalities in (3.5),

comparisons with these thresholds would serve as one approach to identify channel

states and recognize collisions via SNR/SINR feedback.

Now, we define the observation of user j in time slot t asOj,t = {oj,1,t, ..., oj,i,t, ..., oj,N,t},

where j is the user index and i is the index of the channel. Similar to the single-user
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scenario, the user j’s observation of the ith channel is

oj,i,t = φi,j,t xi,t

=


xi,t if the ith channel is selected in time slot t

0 if the ith channel is not selected in time slot t

(3.7)

where φi,j,t is an indicator defined as

φi,j,t =


1 if the ith channel is selected by user j in time slot t

0 if the ith channel is not selected by user j in time slot t

. (3.8)

Similarly as in the single-user case, the channel states are revealed only for the se-

lected/accessed channels. For the channels that are not selected for access, the ob-

servation is set to zero.

3.1.2.3 Users’ Action Space

As we noted before, the users can only select k channels to access in each time slot,

where 1 ≤ k < N . We consider a discrete action space A = {a1, a2, . . . , aD}, where D

is the total number of valid actions. Each valid action in the action space describes

the k indices of the channels that will be accessed. So, for a specific value of k, we

have the number of actions equal to
(
N
k

)
. For example, if k = 1, each action ai,

i = 1, 2, ...,D = N , corresponds to accessing channel i; while if k = 2, each valid

action ai, i = 1, 2, ...,D, can be described by the indices of the two chosen channels.

Hence, in each time slot, the user will pick one action from the action space A,

access the corresponding k channels, and the condition of the chosen channels will be

revealed.
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3.2 Multichannel Access Problem Formulation

In this section, we formulate the dynamic multichannel access problem based on the

channel access mechanisms and the corresponding rewards. To learn the channel

switching pattern, we propose an actor-critic algorithm based deep reinforcement

learning framework, which works as an agent to make channel selection decisions for

the user. In this framework, the agent obtains the user’s observation of the chan-

nels and makes channel access decisions based on the observation, and subsequently

receives the feedback from the channels, and updates the decision policy.

3.2.1 Single-User Scenario

We first consider the case in which there is only one user in the system. The reward

ri,t obtained when the ith channel is selected/accessed by the user in time slot t is

defined as follows:

ri,t = xi,t

=


+1 if the ith channel is in good state in time slot t

−1 if the ith channel is in bad state in time slot t

(3.9)

Since the user aims to select good channels as much as possible to ensure frequent

successful transmissions, the agent is designed to find a policy π (which is a mapping

from the observation space O to the action space A) that maximizes the long-term

expected reward R of channel access decisions:

π∗ = arg max
π

R (3.10)
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where π∗ denotes the optimal decision policy, and in a finite time duration T , we

express R as

R =
1

T

T∑
t=1

N∑
i=1

φi,t ri,t (3.11)

where φi,t is the indicator function defined in (3.3).

Now, the problem can be formulated as

P1: Maximize
{φi,t}

R (3.12)

Subject to
N∑
i=1

φi,t = k,∀t (3.13)

where k is the number of channels that the user can select in each time slot, and

according to the definition of R, we have R ∈ [−k, k].

3.2.2 Multi-User Scenario

In this case, we assume that there are multiple users, and each user can independently

select a channel to access without knowing other users’ actions. Thus, each user will

employ a separate actor-critic reinforcement learning agent. Since each user has the

goal to choose good channels as frequently as possible, the agent of user j is required

to find a policy πj for j = 1, 2, . . . ,M (mapping the observation space Oj to the

action space A) that maximizes the long-term expected reward Rj of the channel

access decisions for user j:

π∗j = arg max
π

Rj. (3.14)

Similarly as in the single-user case, π∗j denotes the optimal decision policy for user j,

and in a finite time duration T , we express Rj as

Rj =
1

T

T∑
t=1

N∑
i=1

φi,j,t ri,t (3.15)
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where φi,j,t is an indicator defined in (3.8) and the reward ri,t obtained when user j

accesses the ith channel in time slot t is

ri,t = xi,t

=



+1 if the ith channel is in good state and no collision occurs

+1 · di,t if the ith channel is in good state and collision occurs

−1 if the ith channel is in bad state

. (3.16)

Hence, the optimization problem for user j for j = 1, 2, . . . ,M can be formulated

as

P2: Maximize
{φi,j,t}

Rj (3.17)

Subject to
N∑
i=1

φi,j,t = k. (3.18)

The formulation of each user’s optimization problem is similar to that in the

single-user case. However, the optimal solution in the multi-user scenario should find

the channels in good condition and also avoid collisions at the same time. This means

that the agent needs to learn both the channel switching pattern and the other users’

channel selection pattern from the channel feedback. When there are not enough

channels in good state, users compete for such limited number of good channels. On

the other hand, if a sufficient number of good channels exists simultaneously, each

user can potentially access a good channel without experiencing a collision.
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3.3 Actor-Critic Reinforcement Learning Frame-

work

In this section, we describe the proposed actor-critic deep reinforcement learning

framework for dynamic multichannel access and develop algorithms for both single-

and multi-user cases.

3.3.1 Actor-Critic Agent’s Observation Space, Actions, and

Rewards

We first introduce the relevant definitions within the actor-critic framework.

Channel State and Agent’s Observation: The channel state is varying as described

by a Markov chain and it is a part of the environment, which is unknown to the

agent. Therefore, the agent can only take its own observation space O as the input

to the actor-critic framework. The agent can only access the chosen channels in each

iteration, and observe the reward that depends on the state of the chosen channels.

As defined in the previous section, in time slot t the user observation Ot (or Oj,t for

multi-user scenario) is a sparse matrix with only k nonzero elements in each column

(representing the observation vector at any given time), where k is the number of

channels that are selected to be accessed in each time slot. The users will learn on the

basis of their previous experiences. We assume the agent keeps an observation spaceO

that consists of the most recent Ω observations Ot. The observation space is initialized

as an all-zero N×Ω matrix, and at each time t, the latest observation Ot will be added

to the observation space, and oldest observation Ot−Ω will be removed. The updated

observation space O at time t + 1 is denoted as Ot+1 = {Ot;Ot−1; ...;Ot−(Ω−1)}. For

instance, Fig. 3.1 depicts a scenario in which Ω = 16 and k = 1.

Action: The agent scores all possible actions in the action space A based on the

user’s observation, and the action with the highest score will be chosen. In our setting,
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Figure 3.1: In reinforcement learning, the agent constantly observes the environment
and makes a decision. The decision will be executed and the corresponding feedback
will be used to update the policy.

the action indicates which channel or channels to access.

Reward: The reward is received when the action is executed, meaning that the

agent chooses a channel and gets direct feedback from the environment. The re-

ward is defined based on the condition of the chosen channel, as formulated in the

optimization problems P1 and P2.

In addition to the average reward formulations given in (3.11) and (3.15), we also

define here the reward received by the agent in time slot t since this will be used

in the actor-critic reinforcement learning algorithm. In particular, in the single-user

scenario, the reward in time slot t is

Rt =
N∑
i=1

φi,t ri,t (3.19)

where φi,t is given in (3.3) and ri,t is given in (3.9).

In the multi-user case, the reward for agent j in time slot t can be expressed as

Rj,t =
N∑
i=1

φi,j,t ri,t (3.20)

81



Deep actor-critic based Agent

Critic

network
Value 

Function
Policy

Actor

network
E

n
v

ir
o

n
m

en
t

state

action

reward TD-error

Figure 3.2: Structure of the actor-critic deep reinforcement learning agent

where φi,j,t is the channel selection indicator for agent j as defined in (3.8), and ri,t

is provided in (3.16).

3.3.2 Algorithm Overview

In this subsection, we describe the architecture of the actor-critic algorithm. The

actor-critic architecture consists of two neural networks: actor and critic. In our

model, the actor neural network is parameterized by θ, and the critic neural network

is parameterized by µ. The structure of the actor-critic deep reinforcement learning

agent is depicted in Fig. 3.2

Actor: The actor is employed to explore a policy π, that maps the agent’s obser-

vation O to the action space A:

πθ(O) : O → A (3.21)

So the mapping policy πθ(O) is a function of the observation O and is parameterized

by θ. And the chosen action can be denoted as

a = πθ(O) (3.22)
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where we have a ∈ A. Since the action space is discrete, we use softmax function at

the output layer of the actor network so that we can obtain the scores of each actions.

The scores sum up to 1 and can be regarded as the probabilities to obtain a good

reward by choosing the corresponding actions.

Critic: The critic is employed to estimate the value function V (O). At time

instant t, when the action at is chosen by the actor network, the agent will execute it

in the environment and send the current observation Ot along with the feedback from

the environment to the critic. The feedback includes the reward rt and the next time

instant observation Ot+1. Then, the critic calculates the TD (Temporal Difference)

error:

δt = Rt + γVµ(Ot+1)− Vµ(Ot) (3.23)

where γ ∈ (0, 1) is the discount factor 3.

Update: The critic is updated by minimizing the least squares temporal difference

(LSTD):

V ∗ = arg min
Vµ

(δt)
2 (3.24)

where V ∗ denotes the optimal value function.

The actor is updated by policy gradient. Here, we use the TD error to compute

the policy gradient4:

∇θJ(θ) = Eπθ [∇θ log πθ(O, a)δt] (3.25)

where πθ(O, a) denotes the score of action a under the current policy. Then, the

weighted difference of parameters in the actor at time t can be denoted as ∆θt =

α∇θt log πθt(Ot, at)δt, where α ∈ (0, 1) is the learning rate. And the actor network i

3We note that the reward Rt in (3.23) is given by (3.19) in the single-user case, and is equal to
Rj,t in (3.20) when user/agent j is considered in the multi-user scenario.

4In (3.25), policy gradient is denoted by ∇θJ(θ) where J(θ) stands for the policy objective
function, which is generally formulated as the statistical average of the reward.
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can be updated using the gradient decent method:

θt+1 = θt + α∇θt log πθt(Ot, at)δt. (3.26)

3.3.3 Workflow for a Single User

In the case of a single user, there is only one actor-critic network employed as the

agent to dynamically select channels. At the beginning of time slot t, the agent will

collect the latest Ω observations of channels and the observation space is denoted as

Ot. Then the actor network will choose k channels according to the decision policy,

i.e., the action with highest score will be selected. Next, the channel reward will be

sent from every chosen channel. Based on the reward, the current observation space

Ot and the observation space for the next time slot Ot+1, the critic network calculates

the TD-error. And finally the critic and actor networks will be updated based on the

TD-error.

The full framework is provided in Algorithm 4 below.

3.3.4 Workflow for Multiple Users

In the case that multiple users access the channels simultaneously, we assume that

all access decisions and actions are completed at the same time. At the beginning of

the time slot t, agent j for j = 1, 2, . . . ,M collects the corresponding user’s obser-

vation Oj,t of all channels. Then, each user will select the action with highest score

according to its own decision policy. Next, the agents receive the rewards from their

chosen channels simultaneously. Based on their own rewards and observations, critic

networks will calculate the corresponding TD-error to update the critic and actor

networks, respectively.

The full framework is provided in Algorithm 5 below.
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Algorithm 4 Actor-Critic Deep Reinforcement Learning Algorithm for Single-User
Dynamic Multichannel Access

Initialize the critic network Vµ(O) and the actor πθ(O), parameterized by µ and θ
respectively.
The environment initializes the state of each channel X.
The agent initializes its observation as all zero matrix O0

for t = 0, T do
With the observation, the agent selects k channels according to the decision

policy at = π(Ot|θ) w.r.t. the current policy
Agent accesses the chosen channels and receives the reward Rt based on the

channel state.
Based on the reward, the new observation of channels Ot will be added to the

observation space for the next time slot Ot+1

Critic calculates the TD error: δt = Rt + γV (Ot+1)− V (Ot)
Update the critic by minimizing the loss: L(Ot, at) = (δt)

2

Update the actor policy by maximizing the action value: ∆θt =
α∇θt log πθt(Ot, at)δt, α ∈ (0, 1).

Update the observation Ot = Ot+1.
Update the channel state X.

end for

3.4 Experiments and Numerical Results

In this section, we initially describe the simulation setting and then evaluate the

performance of the proposed actor-critic framework via numerical results, and provide

comparisons with random channel access, the DQN based framework proposed in [66]

and also the optimal policy under the assumption that the channel switching patterns

are known.

3.4.1 Simulation Setting

In our implementation, the design of the agent for a single user and that of the agent

for each user in the multi-user case are similar. The agent consists of two neural

networks: actor and critic. Each of the two networks has two layers. For the actor,

which scores all actions in the action space, the first layer has 200 neurons with

ReLU as the activation function, and second layer has D neurons with Softmax as
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Algorithm 5 Actor-Critic Deep Reinforcement Learning Algorithm for Multi-User
Dynamic Multichannel Access

Initialize the critic network Vµj(Oj) and the actor πθj(Oj) for user j, parameterized
by µj and θj respectively, with j = 1, 2, . . . ,M .
The environment initializes the state of each channel X.
The agent j initializes its observation as all zero matrix Oj,0, j = 1, 2, . . . ,M .
for t = 0, T do

for j = 1,M do
With the observation, the agent selects an action aj,t = π(Oj,t|θj) w.r.t. the

current policy
end for
Agents start accessing the chosen channels simultaneously, and every agent

receives the corresponding reward Rj,t based on the channel state and the access
collisions.

for j = 1,M do
Based on the reward, agent j adds the new observation of channels Oj,t to

the observation space for the next time slot Oj,t+1

Every critic calculates the corresponding TD error: δj,t = Rj,t+γV (Oj,t+1)−
V (Oj,t)

Update the critic by minimizing the loss: L(Oj,t, aj,t) = (δj,t)
2

Update the actor policy by maximizing the action value: ∆θj,t =
α∇θj,t log πθj,t(Oj,t, aj,t)δ

πθj,t , α ∈ (0, 1).
Update the observation Oj,t = Oj,t+1 for every user.

end for
Update the channel state X.

end for
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the activation function, where N is the total number of channels. For the critic, which

computes the value of the chosen action, the first layer has 200 neurons with ReLU

as the activation function, and second layer has 1 neuron. Especially, since the critic

will evaluate the decision made by the actor, the learning rate of the actor network

should be smaller than that of the critic network to make the actor network converge

slower than critic network. Here, we set the learning rate of the critic network as

0.0005, and the learning rate of the actor network as 0.0001. To ensure stability,

both learning rates will decay exponentially with the decay rate 0.95 for every 250000

time slots. To encourage the agent to explore the environment, we employ ε-greedy

policies and we set ε = 0.1. Moreover, in our implementation, we set Ω = 16, so that

the agent has access to observations of the most recent 16 time slots.

3.4.2 Average Reward in the Single-User Case

In this section, we present the results for the single-user model, and compare our

framework with the DQN framework, random access, Whittle index heuristic, and

also the optimal decision policy under the assumption that the channel switching

pattern is known to the user.

DQN framework proposed in [66] consists of two hidden layers and maintains a

replay memory with a size of 1, 000, 000. To update the network, the DQN frame-

work will replay a minibatch of 32 samples extracted from the memory. For a fair

comparison with the actor-critic agent, our DQN algorithm has the same structure as

the actor network, i.e., in our implementation, the DQN has only one hidden layer.

Besides, we set the memory size as 1, 000 so that the DQN could be more adaptive.

Unlike the aforementioned actor-critic structure, the DQN consists of only one neural

network that is used to select the channels. Therefore, the neural network in DQN

acts as the counterpart of the actor network in the proposed framework. Without

the critic network, the DQN replays a batch of previous transitions and use the loss
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between the previously estimated Q values and the estimated Q values from replaying

to update the neural network.

In the random access policy, there is no learning and users randomly select channels

at the beginning of each time slot, and all channels will be accessed with the same

probability.

In Whittle index heuristic [123], all the channels are treated as independent and the

transition probability matrix of each channel is assumed to be obtained by observing

the channels separately over a certain period (e.g. 10,000 iterations) in advance.

Then, the transition probability matrices are used to update the belief vector for

final decision making. More details can be found in [123].

We also consider the optimal policy [66, Theorem 1] assuming that the channel

dynamics is known to the user. The user accesses a channel at the beginning. Then,

according to the policy, for instance when the channel state switching probability is

greater that 0.5, if the user selects a good channel at time t, the user will choose a

channel in the next activated subset of channels according to the known pattern in

the next time slot. On the other hand, if the user selects a bad channel at time t,

the user will stay at the chosen channel in the next time slot. The reverse strategy is

employed if the switching probability is less than 0.5.

3.4.2.1 Single Good Channel

In this experiment, we consider different number of channels, i.e., N = {16, 32, 64},

and only one channel is in good state in each time slot. To evaluate the performance,

we calculate the expected reward R with different Markov chains P . To define a

Markov chain for the channel distribution, we need to specify the channel states in

order and the state switching probabilities. We assume that, for each state, the

probability that current state will transfer to another state is p, and the probability

that the current state will be kept is 1− p. Our experiments were conducted in two
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Figure 3.3: Round-robin switching pattern when only one of the 32 channels is in
good condition and the switching probability is p = 0.75. The channel in good state
at a given time is indicated by a white square.

cases:

Round-Robin Switching Scenario: In this experiment, we assume that the

index of the only good channel switches from 1 to N according to a round-robin

scheduling and we assume the user can only access to one channel at a time. Then we

vary the switching probabilities as p = {0.75, 0.80, 0.85, 0.90, 0.95}. This round-robin

pattern with switching probability p = 0.75 is depicted in Fig. 3.3, where the channel

with the good state is indicated with a white square at the corresponding channel

index value at a given time. Since the probability p = 0.75 is relatively high, we have

an increasing staircase pattern (indicating channels with good state changing from

one to the next) more frequently than the flat pattern that occurs when the same

channel stays in good state in multiple time slots.

We compare our actor-critic (AC) policy with DQN, random access, Whittle index

heuristic and optimal policy in terms of the average reward. Figs. 3.4(a), 3.4(b),

and 3.4(c) provide the average rewards of different policies for N = 16, 32 and 64

channels, respectively. In all subfigures, we notice that the average rewards of the

optimal policy are identical because the channel pattern is assumed to be known in

this case, and hence the increase in the number of channels makes no influence on the

policy performance. Optimal policy expectedly leads to the highest average rewards.
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On the other hand, performance curves achieved by Whittle index heuristic and the

random access policy are very low, demonstrating the inadequacy of these strategies.

More interesting and competitive performances are displayed by the proposed

actor-critic policy and DQN policy. We note that in both actor-critic and DQN agents,

we employ the ε-greedy exploration strategy with ε = 0.1 during training. Once the

neural networks are well trained, we can set ε = 0 and choose actions only according

to the learned policies or keep ε = 0.1 in order to preserve the adaptation capabilities

of the reinforcement learning agents to a changing environment. We observe in Fig.

3.4(a) that whenN = 16, actor-critic and DQN policies with ε = 0 achieve the optimal

performance (at the expense of loss of adaptation abilities to varying conditions).

When ε is kept equal to 0.1, due to occasional random action selections, average

reward is lower but actor-critic agent performs better than DQN. Indeed, the actor-

critic policy outperforms DQN with higher margins when the number of channels is

increased to N = 32 and N = 64 in both cases of ε = 0 and ε = 0.1. In particular, the

DQN framework has difficulty handling the case of 64 channels unless the switching

probability is relatively large, and for the case of 32 channels, the DQN framework

achieves negative rewards when p = 0.75. Hence, the proposed actor-critic framework

is more suitable especially when the number of channels is relatively large.

As to the overall tendency in the actor-critic and DQN performances, we can

observe increasing average reward as the switching probability increases and the gap

between different cases diminishes. Note that p denotes the probability of switching

between states, and hence higher switching probability will decrease the uncertainty

and will make it easier for the agent to learn the policy. Comparing the performances

at the relatively low value of p = 0.75, the actor-critic framework demonstrates better

performance levels, and therefore it has higher tolerance against uncertainty.

Arbitrary Switching Scenario:

In the round-robin switching scenario, the channel states switch according to a

90



0.75 0.80 0.85 0.90 0.95
Switching Pr bability p

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Av
er
ag

e 
Re

wa
rd
 R

Optimal
AC, ε=0
DQN, ε=0
AC, ε=0.1
DQN, ε=0.1
Rand m
Whittle index
 heuristic

(a) 16 channels

0.75 0.80 0.85 0.90 0.95
Switching Pr bability p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Av
er
ag

e 
Re

wa
rd
 R

Optimal
AC, ε=0
AC, ε=0.1
DQN, ε=0
DQN, ε=0.1
Rand m
Whittle index
 heuristic

(b) 32 channels

0.75 0.80 0.85 0.90 0.95
Switching Pr bability p

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Av
er
ag

e 
Re

wa
rd
 R

Optimal
AC, ε=0
AC, ε=0.1
DQN, ε=0
DQN, ε=0.1
Rand m
Whittle index
 heuristic

(c) 64 channels

Figure 3.4: Average reward vs. switching probability. We consider 16, 32, 64 channels
cases with the switching probability varies as p = {0.75, 0.80,0.85, 0.90, 0.95}
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Figure 3.5: A switching pattern when only one of the 32 channels is in good condition
at a given time, with a switching probability p = 0.9
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Figure 3.6: The average reward for different arbitrary switching orders
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Figure 3.7: A switching pattern when each four channels of the 32 channels are
grouped, with a switching probability p = 0.9

specific scheduling model. However, this information is unknown to the actor-critic

agent, and of course is not being used in the process to find a channel access pol-

icy. Moreover, the actor-critic algorithm was proposed as a model-free algorithm. To

demonstrate the performance of the proposed framework in a model-free environment,

we in this experiment, fix the switching probability p at 0.9 and test the framework

with 10 different arbitrary switching orders (i.e., 10 different permutations of N chan-

nels). One such switching pattern in the case of N = 32 channels is depicted in Fig.

3.5.

Fig. 3.6 plots the performance in the cases of 16, 32 and 64 channels with 10

randomly generated arbitrary switching orders. Still, the user is allowed to access

one channel at a time. For any given number of channels, the average reward varies

only slightly across different switching cases, showing that our proposed framework

can work in a model-free environment. Since we have shown that the switching order

will not affect the agent’s performance, we assume a round robin switching scheduling

in all the following experiments.

3.4.2.2 Multiple Good Channels

Now, we consider the switching pattern of a group channels, and in each state in

this pattern, there are multiple channels in good state. For instance, a pattern with
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four channels in good state at a given time is shown in Fig. 3.7. In this experiment,

we fix the switching probability at p = 0.9, and study the performance in terms

of the average sum reward. We assume that the user is allowed to access more

than one channel at a time, and for each selected channel, the user will receive a

reward (1 or −1). To show how many good channels are selected on average in one

iteration, we sum the reward received in each iteration and average over time. In the

implementation, we assume there are always 6 good channels when the total number

of channels is 16, and 12 good channels when the total number of channel is 32.

In Figs. 3.8(a) and 3.8(b), we plot the performance when the user can access 2,

3, and 4 different channels at a time among 16 and 32 channels, respectively. The

performances of the optimal policy with known channel dynamics is always around

0.9 times the maximum reward for all scenarios because of the value of the switch-

ing probability. We observe that random access overall performs poorly due to not

learning the switching patterns. Whittle index heuristic achieves higher average sum

rewards. Interestingly, when the number of channels that can be accessed at a time

increases, the performance of Whittle index heuristic exceeds that of DQN in the ex-

periment with 32 channels. Among the learning-based policies, the actor-critic agent

achieves highest rewards. For both actor-critic and DQN policies, when there are

16 channels, the average sum reward increases as the number of channels that can

be accessed increases but with diminishing returns. As introduced in Section 3.1,

when the user is allowed to choose k different channels, each action stands for a set of

channels to be accessed. Therefore, the size of the action space grows from N to
(
N
k

)
.

And the performance of the learning based policies is significantly influenced by the

size of the action space. For instance, in the case with 32 channels, the average sum

reward achieved by the DQN agent diminishes as the number of channels to be ac-

cessed increases, demonstrating that the DQN agent is not able to handle the growing

size of the action space. On the other hand, the average sum reward received by the
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actor-critic agent is still slightly increasing, showing the capability of the actor-critic

reinforcement learning algorithm in working with relatively large action spaces.

3.4.3 Average Reward in the Multi-User Case

In this subsection, we provide simulation results for the multi-user scenario. As

introduced in Algorithm 5, we propose a decentralized multi-agent framework to solve

the problem, which allows each user to make its own decision. In this experiment, each

user can only access one channel and is unaware of other users’ decisions, meaning

that there could be collisions. So, to maximize the reward, each agent is required to

learn not only the channel switching pattern, but also the other users’ channel access

patterns to avoid collisions.

3.4.3.1 Multi-User Scenario without Priorities

First, we consider a scenario in which there are m users, where m = 2, 3, 4, and

no priority is assigned to any user. We run the proposed actor-critic agent and

the DQN agent, assuming that there are 16 channels with 6 good channels in each

state within the switching pattern, and the switching probability is fixed at p = 0.9.

As a reference, we also evaluate the performance of the optimal policy with known

channel switching patterns, and the slotted-ALOHA where each user employs the

random access policy independently. We again consider the average sum reward as

the performance metric. As shown in Fig. 3.9, the optimal policy ensures that users

avoid choosing the same channel in each time slot, and hence the optimal average

sum reward is actually the same as that achieved in the case of a single user accessing

multiple different channels. The averaged reward received by slotted-ALOHA keeps

decreasing as the number of users increases, which means that in the slotted-ALOHA

policy, the collisions cannot be effectively avoided. For the decentralized actor-critic

multi-agent policy, the tendency of the performance is very similar to that of the AC

95



2 3 4
Number of Channels Accessed a  a Time

−1

0

1

2

3

4

Av
er

ag
e 

Su
m

 o
f R

ew
ar

d 
R

Op imal
AC
DQN
Random
Whi  le index
 heuris ic

(a) 16 channels

2 3 4
Number of Channels Accessed a  a Time

−1

0

1

2

3

4

Av
er

ag
e 

Su
m

 o
f R

ew
ar

d 
R

Op imal
AC
DQN
Random
Whi  le index
 heuris ic

(b) 32 channels

Figure 3.8: Average sum of reward vs. number of channels that can be accessed at a
time.
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Figure 3.9: Average reward vs. number of users

curve shown in Fig. 3.8(a), but the values of the average sum reward are smaller,

due to the absence of information on other users. As to the performance of the DQN

agent, the average sum reward is rather low and varies only slightly when the number

of users increases, indicating that the agent is not capable in this decentralized multi-

user channel selection scenario.

3.4.3.2 Multi-User Scenario with Priorities

Now, we address the multi-user case where there are 3 users and 16 channels, and

assume that one of these three users has higher priority than the other two. The

user with the higher priority is referred to as the primary user, and the other two are

secondary users. Again, we assume that there are always enough channels for users

to transmit, however, some of the channels are more favorable compared to the others

in the sense that they have improved channel conditions and have greater channel

capacity. We refer to the channels that can provide better transmission quality as

excellent channels, and the other available channels can again be in good or bad

states. Hence, we now have an extended model in which the channels can be in one

of the three states: excellent, good, and bad. The decentralized agents are expected
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to be able to find the good channels and take advantages of the excellent channels.

To encourage the users to access the excellent channels, we assume that the reward

for the excellent channels are doubled. To give the priority to the primary users, we

assume that the reward received by the primary user will also be doubled regardless of

whether the reward is positive or negative. In our experiments, we assume 2 excellent

channels and 4 good channels in each channel state.

3.4.3.2.1 Primary User Sharing the Channel with Secondary Users In

this part, we consider the scenario that the primary user will share the channels with

the secondary users in the presence of a collision. Here, we assign each user an index,

and the user 1 is chosen as the primary user. Then we record the channel access

result of each user. Here, we mark the results using 5 labels:

� Excellent Channels: The user selects an excellent channel and occupies it alone.

� Collision in Excellent Channels: Two or three users access the same excellent

channel.

� Good Channels: The user selects a good channel and occupies it alone.

� Collision in Good Channels: Two or three users access the same good channel.

� Bad Channels: The user selects a bad channel.

Fig. 3.10 and Fig. 3.11 present the users’ channel access patterns based on the

proposed actor-critic agents and the DQN agents in a period of 500 time slots, re-

spectively. And we summarize the distribution (or equivalently the computed prob-

abilities) of different channel access results in Table 3.1 and Table 3.2 for the two

channel access frameworks, respectively. It is obvious that the proposed actor-critic

is more competitive in selecting excellent channels and good channels. Also the lower

probabilities of collisions at excellent and good channels indicate that the proposed

98



Figure 3.10: The channel selection results based on the
decentralized actor-critic agents of all users over time in the case that the pri-
mary user shares the channel with secondary users in case of a collision.

Table 3.1: The distribution of different channel access results for
decentralized actor-critic agents of all users over time in the case that the pri-
mary user shares the channel with secondary users in case of a collision.

User Index Excellent Channels Collision at Excellent Channels Good Channels Collision at Good Channels Bad Channels
1 0.4240 0.0020 0.4720 0 0.1020
2 0.3140 0 0.4640 0.0040 0.2180
3 0.5040 0.0020 0.2840 0.0040 0.2060

framework is effective in learning other users’ decision patterns to avoid collisions.

As to the users’ priorities, we find that the proposed actor-critic agents do not nec-

essarily guarantee that the primary user occupies the excellent channels most of the

time. One explanation is that even though the reward of the primary user is doubled,

the other users still try to access the excellent channels to achieve their own maxi-

mum reward. Another reason is that the negative reward of the primary user is also

doubled, and hence there is a chance that the primary user will be less aggressive to

avoid such increased penalty. This is evidenced by the observation that the primary

user attains the minimum probability of experiencing a bad channel.
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Figure 3.11: The channel selection results based on the decentralized DQN agents of
all users over time in the case that the primary user shares the channel with secondary
users in case of a collision.

Table 3.2: The distribution of different channel access results for
decentralized DQN agents of all users over time in the case that the primary
user shares the channel with secondary users in case of a collision.

User Index Excellent Channels Collision at Excellent Channels Good Channels Collision at Good Channels Bad Channels
1 0.1900 0.0300 0.2340 0.0360 0.5100
2 0.1900 0.0220 0.3240 0.0300 0.4340
3 0.2360 0.0360 0.3300 0.0380 0.3600
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3.4.3.2.2 Primary User Occupying the Channel Alone in case of a Colli-

sion In this part, we consider the case in which the primary user has the priority

to occupy a channel when the secondary users also select it at the same time. Still,

user 1 is assigned to be the primary user, and users 2 and 3 are the secondary users.

In Figs. 3.12 and 3.13, we show the channel access results of all users based on the

proposed actor-critic framework and DQN, respectively. And the Table 3.3 and Table

3.4 summarize the corresponding distribution of results. Since there will not be any

collisions occurring from the perspective of the primary user, we have the following

cases:

� Excellent Channels: The user selects an excellent channel and occupies it a

alone.

� Good Channels: The user selects a good channel and occupies it alone.

� Collision with the Primary User: The secondary user selects the same excel-

lent/good channel with the primary user.

� Collision with Secondary User: The secondary user selects the same excel-

lent/good channel with the other secondary user.

� Bad Channels: The user selects a bad channel.

With the priority to occupy the channel alone in case of a collision, the probability

that the primary user accesses an excellent /good channel is now increased. And from

the distribution of the results, we notice that both the actor-critic and DQN polices

can effectively enable the secondary user to avoid a collision with the primary user,

because in Table 3.3 and Table 3.4, the probability of collision with the primary user

is much lower than the probability of collision with a secondary user.
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Figure 3.12: Channel selection results based on decentralized actor-critic agents of all
users over time in the case that the primary user occupies the channel alone in case
of a collision.

Figure 3.13: Channel selection results based on decentralized DQN agents of all users
over time in the case that the primary user occupies the channel alone in case of a
collision.
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Table 3.3: The distribution of different channel access results for
decentralized actor-critic agents of all users over time in the case that the pri-
mary user occupies the channel alone in case of a collision.

User Index Excellent Channels Good Channels
Collision with
Primary User

Collision with
Secondary User

Bad Channels

1 0.4420 0.4260 0 0 0.1320
2 0.3780 0.3720 0.0020 0.1000 0.1480
3 0.3580 0.3180 0.0200 0.1000 0.2040

Table 3.4: The distribution of different channel access results for
decentralized DQN agents of all users over time in the case that the primary
user occupies the channel alone in case of a collision.

User Index Excellent Channels Good Channels
Collision with
Primary User

Collision with
Secondary User

Bad Channels

1 0.2800 0.3520 0 0 0.3680
2 0.1780 0.2960 0.0220 0.0580 0.4460
3 0.2000 0.2960 0.0200 0.0580 0.4260

3.4.4 Time-Varying Environment

As discussed before, both the proposed actor-critic framework and the DQN frame-

work introduced in [66] are reward-driven algorithms which can continually interact

with the environment and update the policies. To illustrate the adaptive ability of

the proposed framework, we have designed a time-varying environment, where at the

beginning, the agent has been trained for pattern P1, and at time slot t = 500, the

channel distribution changes to the second pattern P2, then at time slot t = 1500, the

channel distribution changes back to pattern P1. In this process, both change points

are unknown to the agent. The experiment was conducted with a fixed switching

probability p = 0.9, and arbitrary switching order where 32 channels are grouped

into 8 subsets randomly and each subset has 4 perfectly correlated channels.

The re-training process is shown in Fig. 3.14 in terms of the reward averaged

over every 500 accessing decisions. Considering the learning rate in the actor-critic

framework decays as the training process goes by, and the learning rate will influence

time needed for the re-training process, we in this experiment test this framework in

two different settings: for AC agent I, we allow the agent to reset the learning rate to
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the initial value when the agent receives negative average reward; and for AC agent II,

as a reference, the learning rate will always decay over time. Before the experiment,

all agents are well trained and extra time slots are taken to make sure that the learning

rates in AC agents are smaller than initial values. Then we set the time when we

start the observation as t = 0. When the channel state switching pattern changes

at t = 500, the average reward achieved by both actor-critic framework and DQN

drops to negative values suddenly. And then, in the following re-training process, the

policies get updated and adapt to the pattern P2, and as a result, the average rewards

gradually increase and reach to the previous levels before the second change point. In

the first re-training process, due to the difference in learning rate, the AC agent I is

quicker to learn the pattern P2 while the AC agent II is slower but experiences slightly

less fluctuations in terms of the average reward. Both AC agents eventually perform

as well as before the first change point. Comparing the time duration it takes for the

agent to get back the previous level and the performance after the first re-training

process, we conclude that our proposed framework is very competitive in terms of

the adaptive ability, though the actor-critic structure which has two separate neural

networks takes slightly more time to converge. We also observe that the DQN agent

attains an average reward level that is less than before the first change point. Then,

when the second change in the channel pattern occurs, we observe that the rewards

of all three agents drop to negative values similarly as after the first change point.

However, at this time, since the channel distribution changes back to pattern P1,

which has been learned by the agents, the AC agents are able to reach the previous

performance level over a shorter duration compared to after the first change point.

On the other hand, for the DQN agent, the duration of the second re-training process

is longer than that of the first one and it can hardly perform as before the first change

point, which indicates that the DQN agent is less competitive in switching between

channel patterns.
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Figure 3.14: The re-training process in a time-varying environment with the change
points at t = 500 and t = 1500.

Table 3.5: The runtime needed for each channel access decision

number of channels AC agent DQN agent % reduced
16 0.002428 0.025381 90.4328
32 0.003998 0.030833 87.0340
64 0.004002 0.059308 93.2527

3.4.5 Study of Runtime

To meet the real-time requirements, the channel access decisions must be made

quickly. To highlight the efficiency of the actor-critic framework, we have computed

the average runtime needed for making one decision and compared it with that needed

in the DQN framework. Table 3.5 shows the runtime for one decision needed by the

actor-critic (AC) agent and the DQN agent for the case of having a single good

channel out of N channels in total, where N = {16, 32, 64}.

The proposed actor-critic framework is actually more complicated in architecture

because it has two neural networks and hence has more parameters to update. But

we only pass one actor to the critic, so that the critic requires less computational

resources. Another important reason why our framework can have significant savings

in the runtime is that we do not need to replay any experience because the LSTD

of the critic network is enough to ensure that the actor policy is updating in the
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correct direction, while the DQN proposed in [66] replayed 32 samples for each time

of updating to make the channel access policy stable. For the current number of

channels and users, the second reason for the substantial improvements in runtime is

that the action space is limited. But once that action space increases, as the number

of channels increases, the first reason will become more significant.

Indeed, to demonstrate the impact of memory replay, we briefly discuss the com-

putational complexities of AC and DQN agents next. For the actor-critic network,

let us assume that the number of neurons in each layer i of actor network is ai,

and the number of neurons in each layer j of critic network is cj, and there are

A layers in actor network and C layers in critic network. We further assume that

the input size is K. In each iteration, the number of calculations at neurons is

(Ka1 +
∑A−1

i=1 aiai+1) + 2 · (Kc1 +
∑C−1

j=1 cjcj+1).

For the DQN, we assume that the number of neurons in each layer g if dg, and

there are D layers in total. Also, we suppose that the minibatch size is M . With the

same input size K, the number of calculations of DQN is M(Kd1 +
∑D−1

g=1 dgdg+1).

If we assume that the actor network has the same size as the DQN, and the critic

network has the same size except for the output layer (the size of critic output layer

is fixed to be 1, and the size of actor network and DQN output layer are fixed to be

the number of actions), then the ratio of computational complexity between actor-

critic network and DQN is approximately 3/M , where the typical values of M are

16, 32, 64, and for some cases it can be even greater. Therefore, we conclude that

not replaying the minibatch is a important reason that can explain the high time

efficiency of actor-critic. Also, when the DQN replays the minibatch sample, the

time consumption for importing the data is also nonnegligible.
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Chapter 4

Adversarial Jamming Attacks on

Deep Reinforcement Learning

Based Dynamic Multichannel

Access

In this chapter, we propose two adversarial policies, one based on feed-forward neural

networks (FNNs) and the other based on deep reinforcement learning (DRL) policies.

Both attack strategies aim at minimizing the accuracy of a DRL-based dynamic

channel access agent that is proposed in [84]. We first present the two frameworks and

the dynamic attack procedures of the two adversarial policies. Then we demonstrate

and compare their performances. Finally, the advantages and disadvantages of the

two frameworks are identified.
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4.1 Dynamic Channel Access Policies of the Vic-

tim User

In this section, we introduce the background on dynamic multichannel access. As

noted above, we consider an actor-critic DRL agent proposed in [84] as the victim

user to be attacked.

4.1.1 Channel Switching Pattern

In the considered dynamic multichannel access problem, the time is slotted and the

user selects one channel to access at the beginning of each time slot. We assume that

the state of each channel switches between good and bad in a certain probabilistic

pattern. When the channel is in good condition, the user can transmit data success-

fully. Otherwise, a transmission failure will occur. We also assume that the channel

switching pattern can be modeled as a Markov chain, and in each state of which,

there are k out of the N channels in good condition. At the beginning of each time

slot, the channel pattern can either switch to the next state with probability of ρ, or

remain to be the same as the state in the last time slot with probability of (1 − ρ).

In Fig. 4.1, we display a round-robin switching pattern with two out of 16 channels

being good in each time slot and each channel has the same probability to be in good

state.

4.1.2 Actor-Critic Agent

It is assumed that the channel switching pattern is unknown to the user, and the user

can only observe the channel selected in the current time slot. Hence, the multichannel

access is a partially observable Markov decision process (POMDP). To help the user to

access the good channels as frequently as possible under such conditions, we proposed

in [84] an actor-critic deep reinforcement learning based agent to make the channel
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Figure 4.1: Round-robin switching pattern when two of the 16 channels is in good
condition and the switching probability is ρ = 0.95. The channel in good state at a
given time is indicated by white squares.

access decisions in each time slot.

The proposed agent is designed to learn the channel switching pattern through

past decisions and the corresponding feedback from the channels. We assume that,

at time t, the channel state can be denoted as Xt = {x1, x2, ..., xN}, where N is the

total number of channels, xi stands for the state of the ith channel. For each channel

i, where i = 1, 2, ..., N , we have xi = 1 if the channel is in good state, or xi = 0 if the

channel is in bad state. And each time the agent senses a channel, the state of the

sensed channel is revealed to be either good or bad. Therefore, we define the reward

(feedback) as follows: if a good channel is chosen, the reward rt will be +1; otherwise,

the reward rt will be −1.

The agent’s observation can be denoted as Ot = {o1, o2, ..., oN}, where N is the

total number of channels. If channel i, i = 1, 2, ..., N , is chosen, the agent senses it

and learns its state, so we define oi = rt; otherwise, the agent will record oi = 0.

The agent will learn on the basis of its previous experience. We assume that the

agent keeps an observation space O that consists of the most recent M observations.

The observation space is initialized as an all-zero N ×M matrix, and at each time

t, the latest observation Ot will be added to the observation space, and the oldest

observation Ot−M will be removed. The updated observation space O at time t + 1

can be denoted as Ot+1 = {Ot;Ot−1; ...;Ot−(M−1)}.
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Next, we consider a discrete action space denoted by A = {1, 2, ..., N}, where N is

the total number of channels. Each valid action in the action space describes the index

of the channel that will be accessed. Hence, when an action is chosen, the agent will

access the corresponding channel and receive the reward which reveals the condition

of the chosen channel. The agent can only choose one channel to sense/learn in each

iteration. The aim of the agent is to find a policy π, which maps the observation

space O to the action space A, that maximizes the long-term expected reward R of

channel access decisions:

π∗ = arg max
π

R

where π∗ denotes the optimal decision policy, and in a finite time duration T , we

express R as

R =
1

T

T∑
t=1

rt.

And according to the definition of R, we have R ∈ [−1, 1].

4.1.3 Performance in the Absence of Jamming Attacks

We consider the channel switching pattern shown in Fig. 4.1, and evaluate the ac-

curacy of the good channel access by the user with N = M = 16. The evaluation

is performed in the absence of any jamming attacks and after the DRL agent is well

trained. In Fig. 4.2, we test the model in two cases. First, we consider the ε-greedy

policy with ε = 0.1, with which the user accesses a random channel with probability

0.1, and chooses the channel selected by the reinforcement learning policy with prob-

ability 0.9. Note that the ε-greedy policy allows the model to access bad channels by

chance during exploration. In addition, we also consider the case in which ε is set to

0 to identify the performance of the pure DRL policy. We note that ε-greedy policies

with ε > 0 are generally employed to enhance the DRL agent’s ability against changes

in the channel patterns, as will be discussed in detail in Section V. We observe in the
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Figure 4.2: Accuracy of the good channel access in the absence of jamming attacks.

figure that high average accuracies (higher than 85% and around 95% with ε = 0.1

and ε = 0, respectively) are attained in the absence of jamming attacks.

4.2 FNN Jamming Attacker

In this section, we analyze the FNN method to perform jamming attacks on the

actor-critic DRL dynamic multichannel access agent described in Section 4.1.2. A

presumptive attacker is able to choose and jam a single channel in each time slot to

significantly reduce the selection accuracy of the actor-critic agent. We assume that

the attacker employs a feed-forward neural network (FNN) to make the decision on

which channel to attack.
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4.2.1 Initial FNN Model

We build the FNN with TensorFlow as the attacker model. To collect initial training

data for this FNN, we assume the attacker has another actor-critic agent which has a

similar performance as the victim model does. These two models do not necessarily

have the same parameters, as we need to retrain the initial FNN before attack. From

this attacker actor-critic agent, we obtain the channel selection during 53 consecutive

time slots as training data for FNN.

The FNN model feeds on 3 previous channels as input, and gives the probability

among each channel in the next time slot as output. It has 2 hidden layers with 16

hidden neurons in each layer, with sigmoid activation function, RMSProp optimizer,

and mean squared error loss function. With 50 sets of 3-previous-1-future data pairs

from attacker’s actor-critic agent, we set random weights in the FNN, and run 4000

iterations to train the FNN model (hereinafter referred to as the initial FNN), which

has 88% accuracy on extra testing data. We intentionally limit the amount of training

data and iterations to avoid overfitting to the initial policy of the victim actor-critic

agent, which will greatly change under attack.

4.2.2 Channel Observation and Record

Before the attacker starts the jamming attack with FNN, it observes one channel and

the reward of the victim user to determine if its attack is successful. The attacker

also records the history of channel selection as input to the FNN to predict the next

attacking choice. However, if the attacker simply records the attacked channel, once

FNN misses to predict the victim user’s channel selection, the attacker will lose track

of the victim, and it will take some time to accurately predict the victim’s chosen

channel again. Thus, we suggest an alternative strategy, utilizing the initial FNN as

a good channel detector. This initial FNN always keeps the initial parameter, and

thus it is different from the adapting FNN which is affected by victim policy during
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Figure 4.3: The diagram of the history records and FNNs

the dynamic attack, as we will describe in Section 4.2.3.

As depicted in Fig. 4.3, we use two sets of history records and FNNs. First, the

initial FNN keeps its record of “ideal channel” and makes its own prediction. Since

the initial FNN imitates the high-performance victim, the ideal channel generated by

initial FNN is close to the good channels. Second, the adapting FNN keeps another

set of “attacked channel” record and decides which channel to attack in the next

time period. The observation of the channel and reward determines the next channel

to observe, and which channel to enter in both channel records. This is explicitly

explained in Algorithm 6 below.

4.2.3 Dynamic Attack

Based on the attacked channel record, we can use FNN to perform real-time jamming

attacks against the victim. Although the initial FNN works well with the original pol-

icy of the victim actor-critic agent, it is not as accurate when the victim adapts to the

attack with a new policy. As a control problem, there are two major considerations.

On the one hand, attacker FNN needs to retrain. When the attacker jams one of

the good channels that the victim tends to choose, the victim will have low accuracy

for the first few thousand time slots. After that, as the victim’s actor-critic agent
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Algorithm 6 The loop of predicting, recording and observing

during each time slot:
predict using adapting FNN, and attack the channel
record “attacked channel” as adapting FNN prediction
predict using initial FNN
record “ideal channel” as initial FNN prediction
if last time “attacker success” then

observe the last different attacked channel
else if last time “observed success” then

observe ideal channel
else if last time “failed” then

observe the last observed channel
end if
if victim is observed and reward is positive then

record observation as ideal channel and attacked channel
mark as “observed success”

else if reward is negative then
record observation as attacked channel
mark as “attacker success”

else
record attacked channel as ideal channel
mark as “failed”

end if
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adapts to the attack, it learns a new policy to find the good channel and at the same

time, mislead the attacker’s FNN attack. Thus, the attacker should retrain the initial

FNN (instead of starting with random weights), and attack with this retrained FNN

to adapt the new victim policy.

On the other hand, attacker FNN needs to stop the attack, and retrieve the initial

FNN parameters before retraining occasionally. If the attacker keeps retraining FNN,

the victim accuracy would still recover gradually. There are two reasons for this. First,

the parameters of FNN deviates from the initial FNN during long-term retraining, and

lose the basic features (for example, taking the difference between channel values).

This means that the attacker sets the FNN parameters to their initial values, and

retrains to fit to the current victim policy. Second, if the attacker keeps on attacking,

the data for retraining would reflect the setting in which the victim is under attack

and is operating with low accuracy of good channel access. This prevents the attacker

FNN from learning the desired victim pattern. One way to solve this problem is to

stop attacking when the victim accuracy begins to recover, so the victim will converge

fast to a stable policy with high accuracy. Then the attacker can retrieve, retrain

using observations from this converged policy and perform better and more accurate

attacks. Another benefit is that the attacker will not stay long in the recovering

stage, where the victim average accuracy is up to 50% (which is much higher than

the desired accuracy), so that the attacker can significantly reduce the overall average

accuracy.

Therefore, we develop a retrieve-retrain-attack-stop (RRAS) procedure as depicted

in Fig. 4.4 to perform dynamic attacks. At time 1O shown in Fig. 4.4, we start the

initial attack with the initial FNN, which is guaranteed to perform well at first. Then,

the attacker will gradually lose control of the victim as it adapts to the initial attack.

At time 2O, the victim accuracy grows up to a lower threshold, so the attacker gives

up attacking, and lets the victim recover fast from the initial attack, to reduce the
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Figure 4.4: Retrieve-retrain-attack-stop procedure of dynamic attack: 1O initial at-
tack 2O stop attack 3O retrieve parameters and start retrain 4O stop retrain and start
attack 5O stop updating the model (only for the DRL attacker)

time span between 2O and 3O and reach a higher accuracy threshold at time 3O. At

time 3O, the attacker retrieves the initial FNN parameters and collects the retraining

data until time 4O. Finally, the attacker initiates another attack at time 4O, and the

entire procedure is repeated as depicted in Fig. 4.4.

4.3 DRL Jamming Attacker

In this section, we introduce an actor-critic deep reinforcement learning (DRL) based

agent to perform the jamming attack on the aforementioned victim user without

having any prior information about the channel switching pattern or the victim’s

action policy. The DRL attacker is also assumed to observe only one channel in

each iteration. Different from the FNN attacker, however, we assume that the DRL

attacker is able to observe the victim’s interaction the environment for a period of

time that is sufficiently long for the DRL attacker to learn the activity pattern.

4.3.1 Actor-Critic Model

In Fig. 4.5, we show the diagram of the actor-critic structure and the DRL attacker-

environment interactions. The actor-critic structure consists of two neural networks,
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Figure 4.5: Diagram of actor-critic structure and DRL attacker-environmental inter-
actions.

namely the actor network and critic network. The channels and victim’s channel

selection model form the environment to be observed by the attacker. Each time,

after the DRL attacker observes the environment, an action will be selected based on

this observation by the actor neural network. Then, the reward and the new state

of the environment after executing the chosen action will be sent to the critic neural

network to calculate the temporal difference (TD) error. This TD error will be used

to update both critic and actor neural networks. When the update of network is

completed, the DRL attacker model is ready to make the next decision.

At the beginning of each time slot t, the DRL attacker can select one channel based

on its own action policy learned by the actor-critic neural networks. The action of the

DRL attacker and the victim at time t are denoted as aAt and aVt respectively. Since

both the DRL attacker and the victim select one out of the N channels, the sizes of

their action spaces are the same. We assume that there are proper mechanisms and

measurements (such as SINR levels, ACK signals) through which the attacker learns

if the victim has selected the same channel as the attacker itself, i.e., aAt = aVt , and
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if the victim has transmitted successfully. The goal of the attacking DRL agent is

to learn the victim’s activity pattern so that it can jam the channels selected by the

victim as much as possible. Based on this objective, we define the reward of the DRL

attacker at time t as

rt =



+1 if aAt = aVt and victim selects a good channel,

+0.5 if aAt = aVt and victim selects a bad channel,

−0.5 if aAt 6= aVt and victim selects a bad channel,

−1 if aAt 6= aVt and victim selects a good channel.

(4.1)

Within this setting, the DRL agent is encouraged to select the same good channels

as the victim as its first priority. We also consider the case in which the attacker and

victim select the same bad channel as partial success in terms of jamming.

As mentioned before, the DRL agent has no knowledge about the channels and the

victim user. Hence, from the perspective of the DRL agent, the channels and victim

form an unknown environment. We assume that in each time slot t, the observation of

the DRL attacker is denoted as St = {st,1, st,2, . . . , st,N}. Then each element st,i, for

i = 1, 2, . . . , N , stands for the observation on the ith channel at time t. As assumed

before, the DRL attacker can only choose one channel at a time, so we have

si,t =


rt if the ith channel is selected in time slot t,

0 if the ith channel is not selected in time slot t.

(4.2)

Above, 0 indicates that the corresponding channels are not selected and therefore

there is no information on these channels.
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4.3.2 Operational Modes

Once the DRL agent is initialized, it switches between two different modes: listening

mode and attacking mode.

� Listening mode: In this mode, the DRL agent only observes the environment

and updates its own policy based on the reward, but does not jam the selected

channels so that the victim is not influenced and updates to a new policy.

� Attacking phase: In this mode, the DRL agent jams the selected channels and

decides whether to update its neural networks based on the victim’s perfor-

mance. When the victim performs well, the DRL agent should evolve its policy

as the victim gradually adapts to the attacker’s influence. However, when the

victim performs poorly, the DRL agent should stop learning from the reward.

Because in this situation the victim frequently chooses the bad channels, and

the reward may misguide the attacker.

We assume that the victim’s model is pre-trained so that the victim’s activity

pattern is stable when the attacker starts to train its own neural networks. In this

training phase, the DRL agent works in the listening mode. And when the DRL

agent is well trained, it can start the dynamic attack which we describe in detail in

the following subsection.

4.3.3 Dynamic Attack

Similar to the FNN attacker, the DRL attacker also uses the RRAS procedure shown

in Fig. 4.4. We note that the DRL agent requires less prior information about the

victim’ activity pattern than the FNN attacker. However, due to the differences in

the learning method, the DRL attacker needs to observe the victim over a longer

period to train a reliable policy. DRL attacker also aims at avoiding the situation in
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which the victim learns a totally new action policy once the model is well trained.

For this purpose, the duration of each cycle of the DRL attacker is fixed at a certain

value that prevents the victim to update to a new policy.

As shown in Fig. 4.4, the DRL attacker also starts its first attack at time 1O

when the victim model has been working in a stable fashion and working well. Before

this point, the DRL attacker works in listening phase to learn the victim’s activity

pattern, and we assume that at time 1O, the DRL attacker can also function well

with high stability. Once the attack is initiated, the performance of the victim drops

rapidly. In this process, the victim keeps updating its model to overcome the influence

of the attacks, and at the same time, the attacker also keeps updating its model to

adapt to the victim’s changing policy. However, we should note that the attacker is

always encouraged to choose the same channel as the victim does. Hence, when the

victim is forced to explore other channels which are not attacked in order to find a

new policy to counteract against the attacks, it cannot avoid but try bad channels in

order to find the good ones. From the perspective of DRL attacker, there is no need to

follow the victim’s selection because the victim’s model updates dramatically and the

policy may perform worse initially. On the one hand, it is difficult for the attacker

to learn an unstable policy. On the other hand, copying the bad policy may give

victim the chance to recover its performance. Based on this idea, the DRL attacker

stops updating when the performance of the victim is lower than a threshold and we

mark this time instant as time 5O. Though the DRL attacker model stops learning, it

still works in attacking mode, so the performance of the victim continues to decrease.

As mentioned before, the DRL attacker should stop jamming the channels before

the victim adapts to its attacks, because the victim is also a reinforcement learning

agent that has the ability to act against attacks naturally. At time 2O, the victim’s

performance starts to recover, meaning that a new policy is being formed in the victim

model. To avoid pushing the victim to the new policy further, the DRL attacker needs
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to switch to the listening mode at time 2O to encourage the victim to return to its old

policy as quickly as possible. And at time 3O, the victim is able to perform as well

as that before the attack, and the DRL attacker will retrieve the initial model and

keep working in listening mode to adjust its policy based on the victim’s activity until

time 4O when the DRL attacker switches to attacking mode and starts a new cycle.

In our implementation, the duration of each cycle is fixed to 2000 time slots, and the

gap between time 3O and 4O is fixed at 200 time slots. Also, in the experiments, the

duration between time 2O and 3O is very small.

4.4 Experiments

In this section, we test the proposed FNN attacker and DRL attacker with a well-

trained victim model and channel pattern introduced in Section 4.1. In the following

experiment, the FNN attacker starts attacking at time slot t = 0, and the DRL

attacker starts attacking at time slot t = 2000.

First, we test both the FNN attacker and DRL attacker under the condition that

the victim model works with ε = 0 to show its full power. In Figs. 4.6 and 4.7, we

plot the victim’s accuracy over time to show the attackers’ performance. For the FNN

attacker, the victim’s model crashes after about 5000 time slots and never recovers

which means the victim’s DRL agent has failed to adapt to the FNN attacker when

it is not trying any random channels (due to the fact that ε = 0). And for the

DRL attacker, the victim’s policy crashes immediately after the DRL attacker starts

jamming the channels at time slot t = 2000. However, the victim’s policy can recover

for a short period of time after a few thousands of time slots. We should note that as a

reinforcement learning-based agent, the DRL attacker always works with an ε-greedy

policy with ε = 0.1. The randomness in the DRL attacker’s policy leads to a small

chance for the victim to recover its performance from time to time. Overall, it is not
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Figure 4.6: Victim’s accuracy under FNN attacker’s RRAS procedure. The victim
works without a ε-greedy policy.

challenging for the proposed to attackers to jam the channels selected by the victim

most of the time, and considering this, we test the victim model with ε = 0.1 in the

following experiments to show the performance of the proposed attackers facing with

a stronger victim user.

In Figs. 4.8 and 4.9, we plot the accuracy of the victim under FNN attacker’s

RRAS procedure and DRL attacker’s RRAS procedure respectively. The FNN at-

tacker retrieves and retrains when the victim’s accuracy reaches 80% , and stops

attacking when the victim’s accuracy goes below 40%. Each retraining takes 100

samples, and runs over 850 iterations. Under the FNN attacker’s RRAS procedure,

the victim’s accuracy drops rapidly after the attack begins. For the FNN attacker’s

initial attack cycle, the victim’s performance recovers slowly. After that, the victim’s

performance can recover quickly when the attack is stopped and drops sharply once

the attack resumes after retraining in each of the following RRAS cycles. This means

that the FNN can make the victim perform poorly as much as possible in each RRAS

cycle. The DRL attacker stops updating the policy when the victim’s accuracy is
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Figure 4.7: Victim’s accuracy under DRL attacker’s RRAS procedure. The victim
works without a ε-greedy policy.

lower than 30% and switches to the listening mode when the victim’s accuracy re-

covers to higher than 30% or if the duration of the current cycle is longer that 2000

time slots. In the listening mode, the DRL attacker reloads its initial policy and re-

trains for 200 time slots before the next attacking mode begins. In Fig. 4.9, the DRL

attacker is able to have the victim’s performance drop substantially and the recov-

ery occurs over a short period of time but the performance drops again significantly,

which means that the victim operates with very low accuracy most of the time. We

note that under the DRL attacker’s RRAS procedure, the victim’s accuracy is more

effectively constrained at a lower level.

To further compare the FNN and DRL attackers, we plot the corresponding prob-

ability density function (PDF) and cumulative distribution function (CDF) of the

moving average of victim’s accuracy in Figs. 4.10-4.13 based on the accuracy curves

shown in Figs. 4.8 and 4.9. Note that, the PDF and CDF under DRL agent’s attacks

starts collecting the accuracy data starting from the initial attacking phase at time

t = 2000.
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Figure 4.8: Victim’s accuracy under FNN attacker’s RRAS procedure. The victim
works with ε = 0.1.
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Figure 4.9: Victim’s accuracy under DRL attacker’s RRAS procedure. The victim
works with ε = 0.1.
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Figure 4.10: PDF of victim’s accuracy under FNN attacker’s RRAS procedure.

In Fig. 4.10, we observe that with the FNN attacker’s jamming attacks, the

victim’s accuracy is more concentrated in the range of (0.3, 0.4). Correspondingly, in

Fig. 4.11, the CDF increases at the fastest rate and approximates to 80% when the

accuracy is 50%. For the DRL attacker, the victim’s accuracy is highly concentrated

at the level of 0.1 as shown in Fig. 4.12, and the corresponding CDF in Fig. 4.13

exceeds 80% when the accuracy is 20%. Since both proposed attackers stop attacking

under specific conditions, the victim is able to recover its accuracy periodically. Hence,

we can observe the increased distribution of the victim’s accuracy at about 80% under

both types of attacks.

As analyzed above, the DRL attacker can perform more effectively in the exper-

imental environment. Additionally, the DRL attacker does not require any other

auxiliary neural network as the FNN attacker does. However, if we consider the dif-

ference in the information regarding the victim-environment interactions required by

these two attacker, we note the advantage of the FNN attackers. The FNN attacker

only needs to obtain the victim’s activity records for a short period of time (50 or

100 time slots) and repeat the learning of the records over thousands of iterations to
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Figure 4.11: CDF of victim’s accuracy under FNN attacker’s RRAS procedure.
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Figure 4.12: PDF of victim’s accuracy under DRL attacker’s RRAS procedure.
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Figure 4.13: CDF of victim’s accuracy under DRL attacker’s RRAS procedure.

train and retrain its policy. However, the DRL attacker has to observe the victim-

environment interactions for about 10000 time slots to train a stable policy after

initialization. Therefore, if the channels patterns vary suddenly, the FNN is more

promising in terms of adapting to a new policy quicker than the DRL attacker.
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Chapter 5

Deep Actor-Critic Reinforcement

Learning for Anomaly Detection

In this chapter, we study deep reinforcement learning based active sequential testing

for anomaly detection. We assume that there is an unknown number of abnormal

processes at a time and the agent can only check with one sensor in each sampling

step. To maximize the confidence level of the decision and minimize the stopping time

concurrently, we propose a deep actor-critic reinforcement learning framework that

can dynamically select the sensor based on the posterior probabilities. We provide

simulation results for both the training phase and testing phase, and compare the

proposed framework with the Chernoff test in terms of claim delay and loss.

5.1 System Model

In this chapter, we consider N independent processes, where each of the processes

could be in either normal or abnormal state. We assume that at any time t, the

probability of the process i, for i = 1, 2, ..., N , being abnormal is Pi. We denote

the number of abnormal processes as k, and since all processes are assumed to be

independent, the value of k could be any integer in the range [0, N ] at any given
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time. It is also assumed that at any time instant, if anomaly occurs in any number of

processes, the states of all processes will remain the same until all abnormal processes

are detected and fixed.

We assume that there is a single observation target Yt for all processes, and the

samples have different density distributions depending on the states of the processes

(e.g., normal or abnormal). For example, we can consider the scenario in which for

each process, there is a sensor that can send a state signal to the observer in each

time slot. When the process is normal, the sensor should send Y = 0, while if the

process is abnormal, the sensor should send Y = 1. We note that in practical settings

the sensors are not always reliable, so in this chapter we assume that the sensor will

erroneously send a flipped signal with probability ρ. Now, when the process is normal,

the samples are distributed according to the Bernoulli distribution Y ∼ f(Y, ρ), and

when the process is abnormal, the distribution of the samples follows the Bernoulli

distribution Y ∼ g(Y, 1 − ρ). Furthermore, we assume that the observer can only

observe the sample from one of the N sensors at any given time. Hence, to minimize

the time slots needed for detecting the anomalies, it is important to find an effective

policy for sensor selection.

Since there are N processes, an unknown number of which can be in abnormal

state, we have M = 1 +
N∑
k=1

(
N
k

)
hypotheses, where k is the number of abnormal

processes at a given time. We say H0 = {∅} is true when none of the N processes is

abnormal. And for each of the M − 1 possible combinations of unknown numbers of

abnormal processes, we define a hypothesis Hm for m = 1, . . . ,M−1. Table 5.1 shows

the observation models along with the corresponding sample distribution at different

sensors when the given hypothesis is true. In the table, we have three processes and

we use g and f to denote the real sample density distributions in abnormal and normal

states, respectively. For instance, hypothesis H4 indicates that processes 1 and 2 are

abnormal and hence the samples at sensors 1 and 2 follow the distribution g. On
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Table 5.1: Observation Model

sensor 1 sensor 2 sensor 3
H0 = {∅} f f f
H1 = {1} g f f
H2 = {2} f g f
H3 = {3} f f g
H4 = {1, 2} g g f
H5 = {1, 3} g f g
H6 = {2, 3} f g g
H7 = {1, 2, 3} g g g

the other hand, samples in sensor 3 are distributed according to f since process 3 is

normal. It is important to note that we assume that the parameters of the sample

density distributions are unknown to the observer. To obtain an approximation of

the density distribution, we employ the maximum likelihood estimation. Here, we

define Ωt as the sample space at time t, which contains all samples {Y1, Y2, . . . , Yt}.

And Fi,m is a subset of Ωt, and it contains all samples collected from sensor i when

the hypothesis Hm is true. And the estimated sample density distributions can be

defined as f(Yt|Fi,m) and g(Yt|Fi,m).

We denote the prior probability of each hypothesis being true as π = [π0, . . . , πM−1].

Since the probability of the process i being abnormal is assumed to be Pi, the prior

probabilities are the joint probabilities of the N processes being in the corresponding

states. Then, we denote πtm as the posterior belief of the hypothesis Hm being true

at time t, and the posterior belief is updated as

πtm =

πm
T∏
t=1

pitm(Yt|Fit,m)

M−1∑
l=0

πl
T∏
t=1

pitl (Yt|Fit,l)
(5.1)
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where we denote the sensor selected at time t by it, and

pitm(Yt|Fit,m) =


g(Yt|Fi,m) if it ∈ Hm

f(Yt|Fit,m) if it /∈ Hm

. (5.2)

5.2 Problem Formulation

Similar to [99] and [124], we consider the confidence level as the maximization ob-

jective. The confidence level on hypothesis Hm being true is given by the Bayesian

log-likelihood ratio CHm :

CHm := log
πm

1− πm
. (5.3)

And the average Bayesian log-likelihood ratio is defined as

C =
M−1∑
m=0

πm log
πm

1− πm
=

M−1∑
m=0

πmCHm . (5.4)

While maximizing the long term average confidence level, we also aim at mini-

mizing the stopping time, Tstop. So we assume that there are upper bound and lower

bound on the posterior belief. As shown in Fig.5.1, the hypothesis Hm is claimed to

be accepted when the posterior belief πm is greater than the upper bound πup, or to

be rejected when the posterior belief is less than the lower bound πlow. And once any

of the M hypotheses is accepted, the observer stops receiving samples immediately.

5.3 Deep Actor-Critic Framework

In this section, we describe the proposed deep actor-critic learning framework for the

anomaly detection problem.
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Figure 5.1: An example of stopping time.

5.3.1 Preliminaries

We first introduce the relevant definitions within the framework.

Agent’s Observation and State: Since the agent can only observe one sample Yt

from the selected sensor it at time t, the problem can be modeled as a partially ob-

servable Markov decision process (POMDP). With this sample, the agent can update

the posterior belief πt according to (5.1). And we take the posterior belief vector as

the state (or input) of the agent, and we denote the state at time t as Ot, and define

it as

Ot =


π t = 1

πt−1 otherwise

. (5.5)

Action: We denote the action space as A, in which all valid actions are included.

Here, the size of the action space is N , and a valid action stands for selecting the

corresponding sensor and receiving the sample to update the posterior belief. In each

iteration, the agent will score all valid actions, and choose the one with the highest

score to execute.

Reward: As we introduced in the previous sections, the proposed agent has two

goals: 1) maximize the average confidence level and 2) minimize the stopping time.
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So we define the immediate reward rt as

rt =
Ct − C
t

, (5.6)

where Ct =
M−1∑
m=0

πtm log πtm
1−πtm

.

Here, we define the state OT as the terminal state if any of the M hypothesis is

claimed to be accepted, i.e., max(πT−1) ≥ πup. And when we update the agent, we

consider a weighted reward Rt at time t ≤ T , as a discounted sum of the rewards:

Rt =
T∑
τ=t

λτ−trτ , (5.7)

so that each previous selection that can lead to better future steps will achieve a

greater reward. And in the implementation, the agent will be updated T times

after the terminal state has been reached, using the weighted reward achieved at the

terminal time T , and all the way back to the initial time t = 0.

5.3.2 Algorithm Overview

In this subsection, we describe the architecture of the actor-critic algorithm. The

actor-critic architecture consists of two neural networks: actor and critic. In our

model, these two networks will not share any neurons but are parameterized by θ.

Actor: The actor is employed to explore a policy µ that maps the agent’s obser-

vation O to the action space A:

µθ(O) : O → A. (5.8)

So the mapping policy µθ(O) is a function of the observation O and is parameterized
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by θ. And the chosen action can be denoted as

a = µθ(O) (5.9)

where we have a ∈ A. Since the action space is discrete, we use the softmax function

at the output layer of the actor network so that we can obtain the scores of each

actions. The scores sum up to 1 and can be regarded as the probabilities of obtaining

a good reward when the corresponding actions are chosen.

Critic: The critic is employed to estimate the value function V (O). At time

instant t, when action at is chosen by the actor network, the agent will execute it in

the environment and send the current observation Ot along with the feedback from

the environment to the critic. The feedback includes the reward rt and the next time

instant observation Ot+1. Then, the critic calculates the TD (Temporal Difference)

error:

δµθ = rt + γV (Ot+1)− V (Ot) (5.10)

where γ ∈ (0, 1) is the discount factor.

Update: The critic is updated by minimizing the least squares temporal difference

(LSTD):

V ∗ = arg min
V

(δµθ)2 (5.11)

where V ∗ denotes the optimal value function.

The actor is updated by policy gradient. Here, we use the TD error to compute

the policy gradient:

∇θJ(θ) = Eµθ [∇θ log µθ(O, a)δµθ ] (5.12)

where µθ(O, a) denotes the score of action a under the current policy. Then, the

weighted difference of parameters in the actor at time t can be denoted as ∆θt =

α∇θt log µθt(Ot, at)δµθt , where α ∈ (0, 1) is the learning rate. And the actor network
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i can be updated using the gradient descent method:

θt+1 = θt + α∇θt log µθt(Ot, at)δµθt . (5.13)

5.3.3 Training Phase

In the training phase, the actor and critic neural networks are constructed and trained.

For each episode, there will be a true hypothesis, generated according to the prior

belief π. The agent will observe one sample at a time until it can accept a hypothesis.

In the episode, at the beginning of each time slot t, the agent receives the current state

Ot, and chooses one out of the N sensors to obtain a sample Yt. Based on the sample,

the agent can update the posterior belief πt and receive a reward. Then the critic

network and actor network will be updated. Since the agent does not know which

hypothesis is indeed true, the samples will be added to the corresponding subsets

of overall sample space after the ground-truth is revealed, i.e., the posterior belief is

always updated by the estimated density distribution based on the samples collected

in the previous episodes.

The full framework is provided in Algorithm 7 below on the next page.

5.3.4 Testing Phase

In the testing phase, the agent first reloads the neural network parameters from the

training phase, and makes direct use of the well-trained neural networks without

further updates. To test the ability of detecting a change point, we assume that at

the beginning of every episode, the hypothesis H0 is true. And to activate the state,

H0 will be true for at least T1 time slots so that the agent can learn a high posterior

probability of H0. Then, based on the prior belief, a new true hypothesis will be

generated, and the agent continues to choose sensors. When the posterior belief of

H0 is less than the lower bound πlow, the agent will report a change point and reset
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Algorithm 7 Deep Actor-Critic Reinforcement Learning Algorithm for Anomaly
Detection: Training Phase

t = 0
Initialize the critic network Vθ(O) and the actor µθ(O), parameterized by θ.
The agent initializes the sample space Ω0, and the subsets Fi,m, for i = 1, . . . , N
and m = 0, . . . ,M − 1.
for T = 1 : Maximum episode do

tstart = t
Generate a new hypothesis Hj to be true according to the prior belief π, and

j ∈ {0, 1, . . . ,M − 1}.
The agent fetches the prior belief vector π as the initial state.
while OT is not a terminal state do

t← t+ 1
With the state Ot, the agent selects one out of the N sensors according to

the decision policy at = µ(Ot|θ) w.r.t. the current policy.
Agent receives the sample Yt from the chosen sensor and update the posterior

belief vector πt.
Agent updates the sample Yt to the sample space ΩT .
With the new state Ot+1, the agent obtains a reward rt.
Update the state Ot = Ot+1.

end while
R = 0
for τ = t− 1 : tstart do

R← rτ + λ ∗R
Critic calculates the TD error: δµθ = R + γV (Oτ+1)− V (Oτ )
Update the critic by minimizing the loss: L(θ) = (δµθ)2

Update the actor policy by maximizing the action value: ∆θτ =
α∇θτ log µθτ (Oτ , aτ )δµθτ , α ∈ (0, 1).

end for
Reveal the true hypothesis, and update samples to the corresponding Fi,j, and

update the estimated sample density distributions.
end for
Save the trained neural networks.
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Table 5.2: The settings of actor-critic network

actor critic

first layer 200 neurons + ReLU 200 neurons + ReLU

second layer 200 neurons + ReLU 100 neurons + ReLU

output layer N neurons + Softmax 1 neuron

learning rate 0.0005 0.01

the state to the prior belief. Subsequently, the agent keeps collecting samples until it

can claim any of the hypotheses being true.

The full framework is provided in Algorithm 8 below on the next page.

5.4 Simulation Results

5.4.1 Experiment Settings

5.4.1.1 Environment

In our experiments, we set the number of processes as N = 3, so that the total number

of hypotheses is M = 8. The definition of each hypothesis and the distribution of

the observations from different sensors under the specific hypothesis being true has

been given in Table 5.1 in Section II. Here, we assume that the probabilities of each

process being abnormal is P = [0.2, 0.3, 0.1], respectively.

5.4.1.2 Actor-Critic Neural Network

The design of our proposed actor-critic framework is shown in the Table 5.2. This

framework consists of two neural networks. Each neural network includes 3 layers,

and the layers are connected with ReLU activation function. To ensure that the critic

network is able to guide the update of the actor network, we assign larger learning

rate to the critic network. And in order to maintain a stable and high performance,

the learning rates decay over time so that the network parameters will not change

rapidly when the neurons are well trained.
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Algorithm 8 Deep Actor-Critic Reinforcement Learning Algorithm for Anomaly
Detection: Testing Phase

Initialize the critic network Vθ(O) and the actor µθ(O), and reload the trained
parameters θ.
The agent initializes the sample space Ω0, and the subsets Fi,m, for i = 1, . . . , N
and m = 0, . . . ,M − 1.
for T = 1 : Maximum episode do

Set H0 as the true hypothesis.
The agent fetches the prior belief vector π as the initial state.
for t = 1 : T1 do

With the state Ot, the agent selects one out of the N sensors according to
the decision policy at = µ(Ot|θ) w.r.t. the current policy.

Agent receives the sample Yt from the chosen sensor and update the posterior
belief vector πt.

Agent updates the sample Yt to the sample space ΩT .
end for
Generate a new hypothesis Hj to be true according to the prior belief π, and

j ∈ {0, 1, . . . ,M − 1}.
Set D = 0, set Γ = 0
Set OT1 as the new state.
for t

′
= 1 : Maximum sampling time do

With the state Ot′ , the agent selects one out of the N sensors according to
the decision policy at′ = µ(Ot′ |θ) w.r.t. the current policy.

Agent receives the sample Yt′ from the chosen sensor and update the poste-

rior belief vector πt
′
.

Agent updates the sample Yt′ to the sample space ΩT .

if πt
′

0 ≤ πlow then
Agent rejects the hypothesis H0, and report a change point.
Agent resets the state as Ot′+1 as the prior probability π.

end if
if max(Ot′+1) ≥ πup then

Agent accepts the corresponding hypothesis as the true hypothesis.
Break Loop

end if
end for
Reveal the true hypothesis, and update samples to the corresponding Fi,j, and

update the estimated sample density distributions.
end for
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5.4.2 Training Phase

In the training phase, we set the bound πup as 0.8, and run the procedure shown

in Algorithm 7. To check the performance of the agent at different training steps,

we conduct a validation testing after every 1000 training steps. The validation set

consists of 3 hypotheses randomly selected from the M hypotheses. We denote the

validation set as H = {Hm1 , Hm2 , Hm3}, and in the validation testing, we assign the

three chosen hypotheses to be true in the order Hm1 → Hm2 → Hm3 . In the validation

phase, each of the three hypotheses will remain to be true for 200 sampling steps,

and the agent selects the sensor with its current policy, but the network will not be

updated. Each time the agent is tested with the validation set, we record the posterior

probabilities of the three hypotheses.

In Fig. 5.2, we plot the posterior probabilities over the sampling time. The

posterior probabilities of each hypothesis in the validation set is collected from all

validation phases over 15000 training episodes in total. Since each hypothesis in the

validation phase remains to be true for 200 sampling steps, each validation phase has

a fixed duration of 600 sampling steps. In the figure, the posterior probabilities of

different hypotheses are plotted in different colors, and the darkness of the colors stand

for the density of the probability at the corresponding value, i.e., the darker the color

is, the more frequently that the posterior probability will take the corresponding value

at the corresponding sampling time index. We can observe that at the beginning of

each change point, the posterior probability of the true hypothesis increases quickly,

and remains at a high value that is approximately 1. And when the next hypothesis

starts to be true, the posterior probability of the previous hypothesis diminishes.

Besides the patterns with increased darkness, there are also some samples of the

probabilities in relatively light colors. The difference in the level of darkness indicates

the exploration of the agent while trying to find an efficient selection policy. Since all

dark colors appear at high values of the posterior probabilities, the agent is able to
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Figure 5.2: Posterior probability over the sampling time in the validation phase.

detect the true hypothesis with high reliability.

5.4.3 Testing Phase

In the testing phase, we investigate the performance of the proposed agent in terms of

the detection delay and loss. Here, we define the claim delay as the difference between

the time when the agent claims a hypothesis to be true (i.e., when the posterior prob-

ability of the hypothesis exceeds πup) and the time when the change occurs. Also, to

evaluate the accuracy of the claim, we define the loss as a ratio of the number of wrong

claims to the total number of claims. To find a reasonable pair of upper and lower

bound for the decision making, in the experiments, we vary the upper bound πup as

πup ∈ [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99], and at the same time vary

the lower bound πlow as πlow ∈ [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6].

In Fig. 5.3 and Fig. 5.4, we plot the average claim delay and average loss,

respectively, under each pair of the upper and lower bounds. From the figures we

notice that as the upper bound πup increases, the claim delay increases and the

loss decreases. This is because when the upper bound is high, the agent accepts a

hypothesis more cautiously and hence more observations will be taken, which also
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Figure 5.3: Claim delay under different < πup, πlow > pairs, when
πup ∈ [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99], and πlow ∈
[0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6]

improves the confidence level of the decision. On the other hand, as the lower bound

πlow decreases, the loss also decreases slightly, because the lower bound is the threshold

to reject the previous hypothesis that the agent considers to be true (which should

always be H0 in the testing phase). When the lower bound is reduced, more stringent

conditions are imposed to reject a hypothesis, which results in reduced false alarms.

And comparing with the patterns shown in Fig. 5.2, more sampling time is needed

in the testing phase. That is because in the testing phase, the detection starts with

the posterior probability of H0 being very high, and hence the agent will need more

samples to confirm that the previous hypothesis has turned to be false. This ability

to adapt to different initializations makes the agent more practically appealing in

dealing with the real anomaly detection cases where all processes are normal at the

beginning.

Finally, we compare our proposed framework with the Chernoff test [92]. Cher-

noff test considers the Kullback-Leibler information of the two distributions of the

observations, and decides whether to receive the sample from the sensor with high-

est accumulated log-likelihood ratio or randomly pick one of the sensors. In our

experiments, we assign the lower bound πlow to be 0.6, and vary the upper bound
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Figure 5.4: Loss under different < πup, πlow > pairs, when
πup ∈ [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99], and πlow ∈
[0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6]
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Figure 5.5: Comparison between proposed framework and Cher-
noff test: claim delay and loss with πlow = 0.6, and πup varies as
[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99].
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as πup ∈ [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99]. Shown in Fig. 5.5 are

the claim delay and decision loss curves achieved by our proposed framework and

Chernoff test. For the claim delay, it is obvious that the Chernoff test will need

many more samples to reach the stopping criterion. This is because the Chernoff test

assumes that all hypotheses are distinguishable under different tests, which means

that it requires all hypotheses to have different observation distributions under each

test. However, in our system model, just as shown in Table 5.1, different hypotheses

can have the same observation distribution. For example, under H1 being true, if

the agent tests with the sample from sensor 1, it will not be able to distinguish hy-

potheses H1, H4, H5, and H7, because under all these hypotheses, the process 1 is in

abnormal state. And for the loss, it is obvious that the loss from the proposed agent

decreases when the upper bound increases. However, the loss from the Chernoff test,

though slightly decreases as the upper bound gets larger, is relatively stable. When

πup ≥ 0.75, the performance of the proposed agent is more competitive in terms of

both the claim delay and loss. So the proposed agent is more suitable for systems

with high sampling cost and require high confidence levels.
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Chapter 6

Anomaly Detection and Sampling

Cost Control via Hierarchical

GANs

In this chapter, we study anomaly detection by considering the detection of thresh-

old crossings in a stochastic time series without the knowledge of its statistics. To

reduce the sampling cost in this detection process, we propose the use of hierarchical

generative adversarial networks (GANs) to perform nonuniform sampling. In order

to improve the detection accuracy and reduce the delay in detection, we introduce a

buffer zone in the operation of the proposed GAN-based detector. In the experiments,

we analyze the performance of the proposed hierarchical GAN detector considering

the metrics of detection delay, miss rates, average cost of error, and sampling ratio.

We identify the tradeoffs in the performance as the buffer zone sizes and the number

of GAN levels in the hierarchy vary. We also compare the performance with that

of a sampling policy that approximately minimizes the sum of average costs of sam-

pling and error given the parameters of the stochastic process. We demonstrate that

the proposed GAN-based detector can have significant performance improvements in
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terms of detection delay and average cost of error with a larger buffer zone but at the

cost of increased sampling rates.

6.1 System Model

As noted above, we consider anomaly detection as the detection of crossing a thresh-

old Γ in a stochastic time series. Specifically, we assume that an anomaly occurs when

the monitored stochastic process exceeds or falls below Γ. Such anomaly detection is

required, for instance, in remote monitoring using sensors in smart home, smart city,

e-Health, and industrial control applications. In these cases, the monitored process

can be modeled as a stochastic process and it is very important to accurately and

timely detect if the process (describing e.g., the patient’s health in remote health

monitoring or the operational characteristics of the power grid in a smart grid ap-

plication) crosses a threshold. To react to the changes immediately, the system can

continuously monitor the environment. However, this will lead to very high sampling,

sensing and also communication costs (e.g., if the sensing results need to be sent to a

remote processing center). Alternatively, the system can observe and sample the pro-

cess intermittently. In this case, the sampling can be nonuniform with the sampling

rate depending on how close the values are to the threshold Γ. With this approach,

the sampling/sensing cost will be reduced but there will be a higher risk of delay in

the threshold-crossing detection. Therefore, there exists a tradeoff between sampling

and delay costs and this should be addressed by taking the delay cost into account

when making the sampling decisions.

While our framework is applicable to any process or time series, we consider the

Ornstein-Uhlenbeck (OU) process (which has applications in physical sciences, power

system dynamics, financial mathematics) in this chapter in order to be more concrete

in our discussions. Additionally, a sampling policy for the OU process is previously
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derived in [125] under the assumption of complete statistical knowledge, and we will

compare the performance of the proposed hierarchical GAN framework with that of

this policy. OU process can be expressed as

dx (t) = θ(µ− x (t))dt+ σdW (t) (6.1)

where µ is the mean of the time series, θ is the speed of mean reversion that scales

the distance between x (t) and the mean µ, and σ is the volatility to scale the Wiener

process W (t). Specifically, we set the mean µ as 0.

The cost of error due to delayed detection can be defined as the area enclosed

between the actual crossing point x (Ttrue) and the detected crossing point x (Tdetect),

where Ttrue is the actual time instant at which the threshold is crossed, and Tdetect is

the time instant when threshold-crossing is detected. Therefore, when the threshold

is Γ = 0, the cost of error can be computed as

C =

∫ Tdetect

Ttrue

|x (t)|dt. (6.2)

Note that the cost of error due to delayed detection is proportional to the value of

the process x and the gap between Tdetect and Ttrue.

In [125], based on the assumption that the parameters of the OU process are

known, a policy is derived to control the sampling time. This policy makes use of the

OU process parameters and the current sample to estimate the subsequent sampling

time that minimizes the sum of the average costs of error and sampling. Specifically,

under certain conditions and assuming Γ = 0, an approximate solution for the next

sampling time is given as

T ∗1 (x (t)) = T ∗ +
1− e−θT ∗√
1− e−2θT ∗

√
π

σ
√
θ

x (t) (6.3)

146



0 200 400 600 800 1000 1200

-4

-3

-2

-1

0

1

2

3

t

Figure 6.1: Sampling of an OU process with parameters µ = 0, σ = 0.5, θ = 0.025,
and sampling cost cs = 0.1.

where T ∗ = (18πc2s
σ2 )

1
3 , and cs is a predefined sampling cost.

In Fig. 6.1, we demonstrate such sampling process using (6.3). The blue curve

is the time series x (t), red vertical lines indicate the sampling time instants, and the

red dots are the samples collected by the policy. It is obvious that when the value of

x (t) approaches the threshold Γ = 0, the policy samples more frequently, and when

x (t) moves far away from the threshold, the policy samples less frequently. Such

nonuniform sampling policy provides an effective solution, balancing the detection

accuracy and the sampling cost, However, the parameters of the OU process may not

be known in practice, and this renders the optimal policy inapplicable. In such cases,

data-driven approaches are needed. Considering these scenarios, we in this chapter

propose a GAN-based framework, that does not require any information on the OU

process, to control the sampling time. Indeed, the proposed approach is quite general

and applicable to any process. Basically, in this framework, the current sample x (t)

will be fed to the GAN, and the samples in the following N time instants will be

predicted. And based on the predictions, the next sampling time will be estimated.

We denote the set of predictions obtained at time t as {x̂ (t+1), x̂ (t+2), . . . , x̂ (t+

N)}, where N denotes prediction length, and x̂ (t+ ∆t) is the prediction of x (t+ ∆t)
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for ∆t = 1, 2, . . . , N . Then, each element in the prediction set will be compared

with the threshold Γ to see if it is a threshold-crossing point, and to decide the next

sampling time. We denote the next sampling time as T (x (t)), which can be expressed

as

T (x (t)) =


t+ ∆t, if x̂ (t+ ∆t) is a crossing point

for some ∆t ∈ [1, 2, . . . , N ]

t+N + 1, if no crossing point is predicted

. (6.4)

Note that the accuracy of such prediction is critical in deciding when to take the

new sample. And the mean squared error in the prediction can be expressed as

1

N

N∑
∆t=1

(x̂ (t+ ∆t)− x (t+ ∆t))2. (6.5)

6.2 Hierarchical GAN Framework

6.2.1 Preliminaries

We first describe the general structure of a GAN [126]. In particular, GAN consists

of two neural networks: a generator G, that is used to capture the statistical features

of the data; and a discriminator D that is used to estimate the probability that a

sample comes from the training data rather than the generative model G to evaluate

the generative policy.

We first define a sample space S with a probability distribution p(s|x ), where s

is a set of samples corresponding to the real data x in the training data set. The

generator G maps the sample into the real data space:

G(s ;ψ) : s → x̂ , (6.6)
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where ψ denotes the parameters of the generator neural network, and the x̂ is a

projection (of real data x ) generated by the generator G.

The discriminatorD(x̃ ;ω) estimates the probability of the input x̃ coming from the

real data set, where ω denotes the parameters of the discriminator neural network,

and the input x̃ can be either the real data x or the generated data x̂ . A good

discriminator D is expected to be able to distinguish the generated data from the

real data, i.e., the estimated probability should be very small if the input is the

generated data and should be close to 1 if the input is from the real data. Therefore,

the discriminator is aimed at minimizing the objective function given as

LD = −(log(D(x )) + log(1−D(x̂ ))). (6.7)

On the other hand, for a generator G that has the goal to learn the real data

distribution, the evaluation D(x̂ ) acts as a guidance on the update of the generative

model. Thus, a good generator G should be able to make the generated data indistin-

guishable from the real data to the discriminator D. For this purpose, the generator

G seeks to maximize D(x̂ ), or equivalently minimize the following objective function:

LG = log(1−D(x̂ )). (6.8)

The workflow of GAN is presented in Algorithm 9 below.

6.2.2 Hierarchical Structure and Anomaly Detection

With the GAN introduced above, the sample x (t) collected at time t can be used to

generate the predictions of data in the next N time instants. Therefore, the choice

of the value of N determines the maximum gap between the two successive sampling

time instants. To control the sampling cost in the anomaly detection, we assume that

the system only takes one sample in each sampling time. Note that we can increase
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Algorithm 9 Workflow of GAN

Initialize the generator G(s ;ψ) with the parameters ψ, and the the discriminator
D(x ;ω), parameterized by ω.
for T = 1 : Maximum episode do

Fetch the sample set s(t) and the corresponding real data set x (t).
Use the generator G to generate the projection of the real data: x̂ (t) =

G(s(t);ψ(t))
Feed the projection x̂ (t) and the real data x (t) to the discriminator D, and

obtain the estimated probabilities of both data being real data.
Update the discriminator by descending the stochastic gradient:
−∇ω(log(D(x (t);ω(t)) + log(1−D(x̂ (t);ω(t)))
Update the generator by descending the stochastic gradient:
∇ψ log(1−D(x̂ (t);ω(t))

end for

the prediction length N to enable the detector to potentially sample less frequently.

However, since a single sample contains very limited information for the GAN to make

predictions, a single GAN will not be able to maintain a high prediction accuracy with

increased prediction length. To achieve a better balance in this trade-off, we propose

a hierarchical GAN structure as shown in Fig. 6.2.

The hierarchical GAN consists of N GANs, where GAN i takes the sample col-

lected at time t and the predictions from the lower level GANs 1 through i − 1 as

the input and generates the next prediction x̂ (t + i). In this way, the hierarchical

GAN takes advantage of the accurate predictions generated by the lower level GANs

to reconstruct the pattern of the data and improve the reliability of the predictions.

Meanwhile, to minimize the loss presented in (6.5), we add a squared error term to

the loss function given in (6.8), so the loss of the generator in GAN i is given as

LGi = log(1−D(x̂ (t+ i))) + (x̂ (t+ i)− x (t+ i))2. (6.9)

While accurate predictions of the lower level GANs can help to reduce the predic-

tion losses of the upper level GANs, if the lower level GANs are not well trained, the

errors will propagate to the upper levels which can eventually lead to a large accumu-
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Figure 6.2: Structure of hierarchical GAN.

lated error at the last level. To address this, we train the hierarchical GAN level by

level, and freeze the update of well-trained levels to avoid overfitting. The training

procedure of hierarchical GAN is shown in Algorithm 10. In the training phase, the

OU processes are generated with random parameters σ and θ at the beginning of

every episode and are assumed to be available to the system.

After the GANs are trained, the parameters are saved for the testing phase. In

the testing phase, the OU processes are also generated with random parameters in

every episode, but the parameters as well as the real data are no longer available to

the hierarchical GAN. Unlike in the training phase, only the GANs that can make use

of the available real samples can update the neural networks. For example, with real

data x (t), the system can determine the next sampling time T (x (t)). If we denote

the next sample as x (T ), then the GAN which predicts the corresponding x̂ (T ) can

use this projection and real data pair to update its model.
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Algorithm 10 Training procedure of hierarchical GAN

for i = 1 : N do
Initialize the generator Gi(s ;ψi) with the parameters ψi, and the the discrimi-

nator Di(x ;ωi), parameterized by ωi.
for τ = 1:Maximum episode do

Randomly generate an OU process time series with length as L.
Take x (0) as the first sample and set t = 0.
while t ≤ (L− i− 1) do

for j = 1 : i do
Fetch the input

sj = [x (t), x̂ (t+ 1), . . . , x̂ (t+ j − 1)].
Obtain x̂ (t+ j) = Gj(sj;ψj).
if j == i then

Update GAN j.
end if

end for
Determine the next sampling time T (x (t)) using Eq. (6.4).
Set t = T (x (t)).

end while
end for

end for

6.3 Simulation Results

6.3.1 Experiment Settings

6.3.1.1 Environment

In the experiments, we let the mean value µ be fixed at 0, set the range of θ as

[0.02, 0.03], and the range of σ as [0.4, 0.6]. At the beginning of each episode, the

OU process will be generated with θ and σ randomly selected from their correspond-

ing range according to a uniform distribution. We also set the threshold as Γ = 0

throughout the experiments.

6.3.1.2 Structure of GAN

Each GAN consists of two neural networks: generator network and discriminator

network. The input size of the generator network depends on the index of its level in
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the hierarchical structure. And in the generator network, there is one long short-term

memory (LSTM) layer followed by two fully-connected layers. And the discriminator

network consists of three fully-connected layers, and the ReLU activation function

is employed in between layers and Sigmoid activation function is adopted after the

output layer.

6.3.2 Training Phase

In the experiments, we first train each GAN in the hierarchy for 5000 times, and when

all GANs are converged, we freeze the update of GANs but continue feeding the OU

process data to the detector. Then we record the squared error (x̂ (t+ i)− x (t+ i))2

from each GAN as the loss. In Fig. 6.3, we plot the loss as a function of the GAN

index, and compare the impact of increasing the prediction length N . It is obvious

that as the index of the GAN increases, the loss tends to get accumulated. We also

notice that when the index is between 2 to 6, the losses first increase and then drop

to a lower level, and following this, the losses continue increasing at a fixed rate.

As we mentioned before, a single sample can only provide limited information for

the GANs to predict the future samples, and consequently the loss jumps to relatively

high levels initially. However, as more predictions are used as input to the upper level

GANs, the loss is corrected to some degree by the LSTM layers. This is because of

the fact that even though the previous prediction is not perfect, the presence of such

prediction can act as a projection of the real data set to provide the upper level GANs

with more features of the time series data.

6.3.3 Testing Phase

Considering the losses shown in Fig. 6.3, it is expected that the proposed GAN-

based detector will experience errors in the testing phase. To reduce such errors,

we introduce a small buffer zone of width ρ around the threshold Γ in the following
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Figure 6.3: The prediction loss in each level of the hierarchical GAN.

experiments, and define the threshold-crossing time as the first time instant at which

the predicted sample is within the range [Γ−ρ,Γ+ρ]. With this, the delay in detecting

a threshold crossing is reduced at the cost of increased number of samples.

Random fluctuations of the stochastic process imply that the process can poten-

tially cross over the threshold multiple times within a certain time frame, and duration

from one threshold crossover to another varies randomly as well. Therefore, there are

two potential outcomes of detection: 1) the GAN-based detector successfully detects

the threshold crossing potentially with a delay but before another crossover occurs;

and 2) the detector fails to detect the threshold crossing before another crossing

occurs (and we indicate this outcome as failed/missed detection).

We define the detection delay as the difference between the time instant when

the change is detected and the time instant the change actually occurs. Thus, the

delay varies between 0 (indicating perfect detection) and the time until a new crossing

occurs (indicating that detection was not done before a new crossing). In Fig. 6.4,
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Figure 6.4: The average detection delay vs. buffer zone width ρ.

we plot the average detection delay as a function of the buffer zone width ρ for

different values of N . As we increase ρ, the detection delay achieved by the proposed

hierarchical GAN-based detector decreases in all cases, and a delay smaller than that

achieved by the sampling policy in (6.3) can be attained when the prediction length

(or equivalently the number of GANs in the hierarchy) is N = 1, 5, 10, 15 or 20 for

sufficiently large ρ. Note that the sampling policy in (6.3) assumes complete statistical

knowledge (which is not available to the GAN-based detector) but does not perform

any explicit predictions. In Fig. 6.4, we further observe that for fixed ρ, delays

expectedly grow as we increase the prediction length N and take fewer samples.

Since the detection delay is only considered when the threshold crossings are

successfully detected, in Fig. 6.5 we plot the miss rate to have a better understanding

on the failed/missed detection rates. The miss rate is defined as the ratio of the

number of crossings that are missed by the detector to the total number of crossings.

We observe that the miss rates achieved with different values of prediction length N
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Figure 6.5: The average miss detection ratio vs. buffer zone width ρ.

decrease as the buffer size ρ increases, and the miss rates for N = 1, 5, 10 can be

lower than that achieved by the sampling policy in (6.3). To further reduce the miss

rate, we can continue increasing the buffer size, but this will lead to high sampling

rates. We also notice in Fig. 6.5 that miss rate increases as N is increased. As noted

above, with larger prediction length, the hierarchical GAN can sample less frequently.

However, this increases the risks of miss detection because the duration until a new

crossing can be far smaller than the prediction length, and when the short duration

is coupled with the low sampling ratio, the changes are missed with an increased

probability.

We can also measure the performance of the proposed GAN-based detector by

considering the cost of error (due to delayed detection) as formulated in (6.2). Note

that even if the miss rates are high with large prediction length, misses might occur

due to short durations between consecutive threshold crossings, whose cost with re-

spect to the metric in (6.2) is small. To address this possibility and understand the
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Figure 6.6: The average cost of error (due to delayed detection) vs. buffer zone width
ρ.

impact of miss rates, we investigate the cost of error due to delayed detection. In Fig.

6.6, average costs are plotted as a function of ρ for different values of N . Here, cost of

error in (6.2) is averaged over 10000 time series. As seen in Fig. 6.6, the GAN-based

detectors’ performance in terms of costs approaches and exceeds the performance of

the policy in (6.3) (i.e., starts achieving lower cost) as the buffer zone width increases.

With buffer width set as ρ = 0.1, three out of the seven tested GAN-based detectors

can perform competitively or better in comparison with the sampling policy in (6.3).

The number increases to five when ρ = 0.15, and all seven GAN-based detector can

work less costly with ρ = 0.2. On the other hand, in Fig. 6.5, less than half of the

tested GAN-based detectors are able to outperform the policy in (6.3). This confirms

that the number of missed detections are primarily due to short durations between

consecutive threshold crossings.

In the numerical analysis above, we have primarily addressed the performances in

terms of detection delays. Note that prediction lengths also affect the sampling rates,
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Figure 6.7: The average sampling ratio vs. buffer zone width ρ.

which we investigate next numerically. In particular, we define the sampling ratio

as the number of samples taken by the detector over the total number of samples in

the time series. In Fig. 6.7, we plot the sampling ratio required by the GAN-based

detectors as a function of ρ. We observe that the sampling ratio grows with increasing

ρ. We also see that except for the GAN-based detector with N = 1, all other GAN-

based detectors sample the data less frequently than policy in (6.3) for all values of ρ.

Even after the sampling ratios grow with ρ increasing to 0.2, most of the GAN-based

detectors still exhibit obvious advantages.

We have seen above that the GAN-based detectors’ performance in terms of con-

sidered metrics are strongly influenced by the selection of ρ, and this makes ρ a critical

parameter enabling us to control the tradeoff between the delay costs and sampling

rates. Specifically, we have observed in Figs. 6.4, 6.5 and 6.6 that the detection

delays, miss rates, and average cost of error can all be reduced by increasing ρ but

at the expense of requiring more samples as seen in Fig. 6.7. We have also noted
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that even though the GAN-based detectors do not have statistical knowledge of the

OU processes, they can outperform the sampling policy in (6.3) in terms of detection

delays and sampling ratio, owing to their well-trained neural networks and prediction

capabilities.

159



Chapter 7

Robust Learning-Based Detection

with Cost Control and Byzantine

Mitigation

In this chapter, we consider two types of noise: the noise introduced by the sensors

during sensing, and the noise in the communication links. The sensing noise affects

the quality of sensing, and lower sensing noise generally indicates a more expensive

sensor with a higher sensing cost. Noise in communication can be due to distortion

in reception, interference and/or adversarial jamming attacks. In this work, we seek

a framework to learn the states and detect anomalies fast and accurately with cost

control potentially in the presence of adversarial attacks.

7.1 System Model

We consider a scenario in which there are N remote sensors monitoring a target pro-

cess. The state of the process can switch between M possible states. Here, we assume

that the state of the process can be denoted as a signal S ∈ {s1, . . . , sm, . . . , sM}, and

each element sm (m = 1, 2, . . . ,M) stands for a possible state. We consider that a
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decision-making agent dynamically selects the sensors to probe the process state and

makes decisions on the process state based on the samples collected by all the selected

sensors. When the selected sensors probe the process state, the corresponding state

signal S = sm will be observed by every probing sensor albeit with noise. The sensors

estimate the process state and report to the decision-maker individually.

Ideally, the process state S can be detected using only one sample. In practice,

however, the sensor observations and/or the communication links are noisy. Hence,

the decision-maker needs to observe multiple samples to ensure a detection accuracy.

A diagram of the sensing and transmission by a single sensor in the presence of noise

is depicted in Fig. 7.1. Due to their types and differences, sensors experience different

levels of noise in their observations. The noise introduced in the observation of sensor

i is distributed according to a Gaussian noise with zero mean and variance σ2
i , i.e.,

ni ∼ N (0, σ2
i ). (7.1)

Therefore, the received sensing/observation signal at sensor i can be expressed

as s + ni. We also assume that, at each time when sensor i requests a state signal,

there is a probing cost ci. And for the sensor whose noise power σ2
i is lower, the

corresponding cost ci is typically higher. After receiving the observation, the sensors

quantize the signal according to a set of predefined thresholds {Γ1,Γ2, . . . ,ΓM+1}.

We assume

−∞ = Γ1 < s1 < Γ2 < · · · < sm < Γm+1 < · · · < sM < ΓM+1 =∞, (7.2)

and the sensor i quantizes the signal as
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Figure 7.1: A diagram that depicts the noisy observations of a single sensor and the
noisy observations of the decision-maker.

qi = sj, if S + ni ∈ (Γj,Γj+1), ∃j ∈ {1, 2, . . . ,M + 1}. (7.3)

Then the sensor i transmits the quantized signal qi to the decision-maker over a

communication channel. Reception over the channel is distorted by another additive

Gaussian noise z with mean zero and variance σ2
z , i.e.,

z ∼ N (0, σ2
z), (7.4)

Therefore the signal received at the decision-maker from sensor i is denoted as

Y = qi + z. (7.5)

In the considered setting with noisy observations, we propose a soft actor-critic

based decision-making agent that aims at dynamically selecting sensors in order to

make a decision quickly with a certain confidence level at a small sensing cost. Here,

while we have assumed without loss of generality that sensed signals directly match

the values of the process states, the analysis is general and applicable to any other

fixed signalling values that represent different states. Also, the system model can also

be extended to cases with multiple processes and multiple states for each process.
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7.2 Problem Formulation

7.2.1 Stopping Rule

Since the process state M possible states, we have M hypotheses. We denote the prior

probabilities of each hypothesis being true by the probability vector π = [π1, π2, . . . , πM ].

With this, we further denote by πtm the posterior belief of the hypothesis Hm, m =

0 or 1, being true at time t, and update the posterior belief as

πtm = Pr{S = sm | Y1, . . . , Yt} =

πm
t∏

τ=1

p(Yτ |S = sm)

M∑
l=1

πl
t∏

τ=1

p(Yτ |S = sl)

(7.6)

where p(Yt|S = sm) is the distribution of Yt observed at the decision-maker at time

t given that the process state is S = sm, and this distribution is derived below. We

note that when the agent selects to observe n processes, n = 0, 1, ..., N , in a time slot,

the posterior probabilities will be updated n times.

The probability distribution p(Y |S = sm) can be expressed as

p(Y |S = sm) =
M∑
l=1

p(Y, q = sl|S = sm) (7.7)

=
M∑
l=1

P (q = sl|S = sm)p(Y |q = sl, S = sm). (7.8)

Since the variables Y and S are conditional independent, (7.8) can be rewritten

as

p(Y |S = sm) =
M∑
l=1

P (q = sl|S = sm)p(Y |q = sm) (7.9)

The sensors apply the detection rule in (7.3), and therefore the conditional prob-
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abilities P (q|S) can be expressed in terms of the Gaussian Q function. For instance,

p(q = sj|S = sm) = p(Γj − sm < ni < Γj+1 − sm) = Q

(
Γj − sm
σi

)
−Q

(
Γj+1 − sm

σi

)
(7.10)

The conditional distribution p(Y |q = sj), is Gaussian with mean sj and variance

σ2
z , i.e., we have

p(Y |q = sj) = N (sj, σ
2
z). (7.11)

Then, substituting (7.10) and (7.11) into (7.8), we can obtain the conditional prob-

ability density function of Y given the source signal S, and utilize it to update the

posterior probability in (7.6).

As shown in Fig. 7.2, the hypothesis Hm is claimed to be accepted when the

posterior belief πm is greater than the upper bound πupper, or to be rejected when the

posterior belief is less than the lower bound πlower. And once any of the M hypotheses

is accepted, the observer stops receiving samples immediately.

7.2.2 Confidence Measures and Rewards

In this chapter, we consider two different confidence measures, and we derive two

rewards based on them to be used in the learning algorithms.

7.2.2.1 Log-likelihood Ratio Based Reward

Similarly as in [99] and [124], we consider the confidence level as the maximization

objective. One confidence level in terms of the posterior probability at time t is given
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by the average Bayesian log-likelihood ratio (LLR)

C(π(t)) =
M−1∑
m=0

πm log
πm

1− πm
. (7.12)

And the LLR-based reward, which measures the improvement in the confidence

level from time t− 1 to time t, is defined as

rC(t) = C(π(t))− C(π(t− 1)). (7.13)

7.2.2.2 Entropy Based Reward

Confidence can also be measured via the entropy. Since the entropy of the posterior

probability distribution is minimized by having one of the posterior probabilities to

be 1 and all the other probabilities to be 0, we can also consider an entropy-based

reward given as

rH(t) = H(π(t− 1))−H(π(t)) (7.14)

where entropy is formulated as

H(π(t)) = −
M−1∑
m=0

πm log πm. (7.15)

7.2.3 Cost

As mentioned in the previous section, we consider a sensing cost and incorporate it

into the reward function (as described in (7.18) below). This instantaneous cost c(t)

depends on the cost of the sensors that are selected in time slot t. We assume a
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Figure 7.2: An example of stopping time.

weight of λ per process, and define the cost at time t as

c(t) =


λ
∑

(1(i) · ci) without a designed target average cost,

λ|c−
∑

(1(i) · ci)| with a designed target average cost c

(7.16)

where 1(i) ∈ 0, 1 indicates whether sensor i is selected at time t, ci is the cost of

using sensor i, λ is a predefined weight factor to control the influence that the cost

can have on the reward function, and c (0 < c <
∑
ci) denotes the predefined average

cost that the agent targets. That is to say, the predefined average cost is considered

as a soft constraint on the cost consumption, and the agent aims at fully utilizing the

budget but not exceeding it.

7.3 Learning-Based Solutions

7.3.1 Workflow

To handle the hypothesis testing problem, and jointly control the potential risks

during the detection, we in this chapter propose the detection scheme shown in Fig.

7.3. The detection scheme consists of three parts: the environment, a decision-maker,
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Figure 7.3: Workflow of the learning-based detection scheme.

and a byzantine detector which includes a trigger and an anchor node.

Environment: The environment consists of the process and all the sensors. In the

environment, the samples and the feedback after executing the actions selected by the

decision-maker can be dynamically generated, and the state of the process updates

at the beginning of each episode.

Decision-maker: Based on the observations, the decision-maker is responsible for

dynamically selecting sensors to sequentially probe the process, and for terminating

the probing when the confidence level exceeds a predefined threshold and detecting the

state of the process. The decision-maker is based on the soft actor-critic reinforcement

learning algorithm, and it aims to detect the process state as accurately as possible

while controlling the probing cost. Also, the algorithm is supposed to be able to work

robustly in the presence of additional uncertainty that can be caused by increased
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noise/interference (e.g., due to jamming attacks).

Trigger and Anchor Nodes: The trigger and anchor nodes are employed as the

Byzantine detectors when there are potential Byzantine sensors in the system. The

two parts are designed to identify the Byzantines and eliminate the samples collected

by those sensors. Specifically, the trigger will first inspect every newly collected

sample, and report the suspected samples to the anchor node. Then, the anchor node

will compare the suspected samples with the samples that are collected by the anchor

node. Here, the anchor node can be either a unit of the SAC-based decision-maker

or an independent remote sensor, and it can collect state signals from the target

process. We assume the anchor node is reliable and due to its high reliability, the

probing cost of anchor node is very high. Therefore, the anchor node is not used for

probing the process, and there is a trigger employed to reduce the usage of anchor

node in identifying the Byzantines. In this work, since the distribution of the process

states and the sensors’ information are unknown to the agents, and the number of

samples is limited, we apply the GAN algorithm to reconstruct the distribution of

samples in each state and take advantage of the reconstructed features to identify the

Byzantines.

7.3.2 Decision-maker: SAC-based Agent

In this section, we describe the proposed soft actor-critic learning framework for the

considered detection problem.

7.3.2.1 Preliminaries

We first introduce the relevant definitions within the framework.

Agent’s Observation and State: Since the agent can only have observations from

the selected sensors/processes, the problem can be modeled as a partially observable

Markov decision process (POMDP). With the given observations, the agent can up-
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date the posterior belief πt according to (7.6). And we take the reward rt obtained

by the selected action ai as the state (or input) of the agent, and we denote the state

at time t as Ot. The state Ot is a 1 ×M vector, and each element Ot,i denotes the

observation obtained by taking the action ai at time t, which is defined as

Ot,i =


rt if action ai is selected at time t

0 otherwise

. (7.17)

The definitions of action ai and reward rt are introduced below. And we assume that

the agent can keep at most M latest observations.

Action: We denote the action space as A, in which all valid actions are included.

Since the agent can select any combination of k sensors at a time (k ∈ {1, 2, ..., N}),

the size of the action space is |A| =
N∑
k=1

(
N
k

)
, and a valid action a stands for selecting

the corresponding sensors and receiving the samples to update the posterior belief.

In each iteration, the agent will estimate the probability distribution of selecting each

valid action, and choose the one according to the estimated distribution to execute.

Reward: Since the decision-making agent aims to reach the confidence level as

soon as possible, it should maximize the accumulated reward from the first time slot

to the stopping time Tstop in an episode. So we define the immediate reward rt as

rt =


rC(t)− c(t) if LLR-based reward is employed

rH(t)− c(t) if entropy-based reward is employed

(7.18)

and the accumulated reward is expressed as

r1:T =


C(π(T ))− C(π(1))−

∑T
t=1 c(t) LLR-based reward

H(π(1))−H(π(T ))−
∑T

t=1 c(t) entropy-based reward

. (7.19)
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Here, we define the state OT as the terminal state if any of the M hypothesis is

claimed to be accepted, i.e., max(πT−1) ≥ πupper. And when we update the agent, we

consider a weighted reward Rt at time t ≤ T , as a discounted sum of the rewards

Rt =
T∑
τ=t

ητ−t(rτ ), (7.20)

so that each previous selection that can lead to better future steps will achieve a

greater reward. In the implementation, the agent will be updated T times after the

terminal state has been reached, using the weighted reward achieved at the terminal

time T , and all the way back to the initial time t = 0.

7.3.2.2 Soft Actor-Critic Algorithm

In this subsection, we describe the architecture of the soft actor-critic algorithm. The

soft actor-critic architecture consists of three neural networks: policy network, Q

network, and value network. These three networks will not share any neurons but

exchange information to update each other.

Policy network: The policy network is employed to explore a policy µ that maps

the agent’s observation O to the action space A:

µφ(O) : O → A. (7.21)

So the mapping policy µφ(O) is a function of the observation O and is parameterized

by φ. The chosen action can be denoted as

a = µφ(O) (7.22)

where we have a ∈ A. Since the action space is discrete, we use the softmax function

at the output layer of the policy network so that we can obtain the scores of each
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action. The scores sum up to 1 and can be regarded as the probabilities of obtaining

a good reward when the corresponding actions are chosen.

Q network: The Q network Qθ, parameterized by θ, is an approximator to the

soft Q function. It is fed the (O, a) pairs, and it estimates the corresponding Q value.

The Q network encourages the policy to converge to the real Q value distribution

instead of converging to a promising action. In this way, the agent tends to explore

the environment more and engage in effective exploration strategies.

Value network: The value network Vψ(O) is parameterized by ψ, and it estimates

the soft values of the given states. Since the estimated state value indicates the poten-

tial future reward, the value network encourages the policy to exploit the promising

actions that are learned from the experience.

Update: To update the neural networks, we adopt a memory D to store the

historical transitions, and sample a minibatch at every iteration. And all three neural

networks are updated using stochastic gradient descent.

The value network is updated by minimizing the squared residual error

JVψ = EOt∼D[
1

2
(Vψ(Ot)− Eat∼µφ [Qθ(Ot, at)− log µφ(at|Ot)])2]. (7.23)

The Q network is updated by minimizing the soft Bellman residual

JQθ = E(Ot,at)∼D[
1

2
(Qθ(Ot, at)− Q̂θ(Ot, at))2] (7.24)

where Q̂θ(Ot, at) = r(Ot, at)− ct + γE[Vψ(Ot+1)].

The policy network is trained by minimizing the expected KL-divergence

Jµφ = EOt∼D[DKL(µφ(·|Ot)||softmax(Qθ(Ot, ·)))]. (7.25)

The full framework is described in Algorithm 11 below.
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Algorithm 11 Soft Actor-Critic Algorithm for Detection

1: t = 0
2: Initialize the value network Vψ(O), Q network Qθ(O, a) and the policy network
µψ(O), parameterized by ψ, θ and φ, respectively.

3: The agent initializes the memory D.
4: for T = 1 : Maximum episode do
5: tstart = t
6: Generate a new hypothesis Hj to be true according to the prior belief π, and
j ∈ {0, 1, . . . ,M − 1}.

7: The agent fetches the prior belief vector π as the initial state.
8: while OT is not a terminal state do
9: t← t+ 1

10: With the state Ot, the agent selects one out of the N sensors according to
the decision policy at = µφ(Ot) w.r.t. the current policy.

11: Agent receives the samples Yt from the chosen sensor and update the pos-
terior belief vector πt.

12: With the new state Ot+1, the agent obtains a reward rt and cost ct.
13: Update the state Ot = Ot+1.
14: end while
15: R = 0
16: for τ = t− 1 : tstart do
17: R← rτ + η ∗R
18: Update the neural networks according to eq. (7.23), (7.24) and (7.25).
19: end for
20: Reveal the true hypothesis, and check the accuracy of detection.
21: end for
22: Save the trained neural networks.

7.3.3 Trigger and Anchor: GAN-based Byzantine Detector

In this section, we consider the scenario that the decision-maker is working in the

presence of Byzantine attacks. It is assumed that when a sensor is under attack,

this honest sensor becomes a Byzantine. And it is also assumed that the number of

Byzantines, k ∈ {0, 1, . . . , N} is unknown to the decision-maker. Same as the honest

sensors, the Byzantine sensors quantize the samples using the thresholds in (7.2).

However, the Byzantine sensors always flip the samples after quantization according

to a pattern. For instance, when the quantized sample is si, the Byzantine sensor will

send sj to the decision-maker, and if the quantized sample is sj, the Byzantine sensor
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will send si to the decision-maker. Here, we have i, j ∈ {1, 2, . . . ,M} and i 6= j.

Ideally, since all the sensors are probing the same process, the samples collected

by the sensors should be the same in the absence of noise. Therefore, compared to

the sample sent by the anchor node, the sensors that send different signals are the

Byzantines. However, we consider both the sensor noise and the noise in transmis-

sion channels in this work. Such noise makes the samples collected by each sensor

be distributed with different variances. The mean values will also be different when

Byzantines send different signals. Hence, we need to estimate the mean value of the

samples before comparing with samples from the anchor node. To obtain reliable

mean values, a large number of samples may be needed. In practice, the posterior

probability may reach the stopping criteria before the decision-maker collects suffi-

cient samples. To solve this problem, we propose a GAN-based detector to estimate

the mean values using a single sample.

7.3.3.1 Trigger and Anchor Node

In Fig. 7.4, the structure of the GAN-based detector is depicted. The detector

consists of two parts: a trigger and an anchor node. Both parts are based on the

GAN: there will be two samples that are collected by different nodes to be compared

using the GAN. Here, the input “sample 1” comes from the suspected sensor, and

the input “sample 2” comes from the reference sensor which is introduced in the

below. At each step, the trigger is employed to screen all the samples and report the

suspected samples. Once a suspected sample is reported, the corresponding sensor

will be a suspected sensor and all the other sensors will be the reference sensors. The

features of “sample 1” and “sample 2” will be reconstructed by the generator. Then,

the two features will be the inputs of the discriminator to calculate a loss between

these two samples. We assume that in each episode, GAN can keep a record of B

latest samples from each sensor. Hence, the latest sample of each suspected sensor
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Figure 7.4: Structure of the GAN-based byzantine detector.

will be compared with at most B(N−1) samples from the reference sensors, and after

each comparison, a corresponding loss will be obtained. Based on all these losses, the

GAN will decide on whether the “sample 1” is a suspected sample.

As shown in Fig. 7.3, only if a sample is labeled as a suspected sample, it will be

sent to the anchor node to be the input “sample 1”. And once the suspected sample

is received, the anchor node will be triggered and take one sample on the process,

and this sample will be the input “sample 2”. It is assumed that the anchor node

is reliable and the GAN has already collected a record of the sample features during

the training process. Therefore, the features of “sample 1” is reconstructed using the
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generator, and the features of “sample 2” will be extracted from the anchor record.

Similar to the trigger, a loss between the two samples will be calculated and the

decision on whether the corresponding sensor is a Byzantine will be made. Once a

sensor is identified as a Byzantine, the samples collected by it will be eliminated.

7.3.3.2 GAN

The general structure of a GAN is introduced in [126]. A GAN consists of two neural

networks: a generator G, that is used to capture the statistical features of the data;

and a discriminator D that is used to estimate the probability that a sample comes

from the training data rather than the generative model G to evaluate the generative

policy.

We first define a sample space S with a probability distribution p(s|x ), where s

is a set of samples corresponding to the real data x in the training data set. The

generator G maps the sample into the real data space:

G(s ;G) : s → x̂ , (7.26)

where G denotes the parameters of the generator neural network, and the x̂ is a

projection (of real data x ) generated by the generator G.

The discriminator D(x̃ ;ω) estimates the probability of the input x̃ coming from

the real data set, where ω denotes the parameters of the discriminator neural network,

and the input x̃ can be either the real data x or the generated data x̂ .

In the training phase, the GAN is trained to take the samples generated according

to both safe sensor data distribution (z ∼ N (qi, σ
2
z)) and the attacked sensor data

distribution (z ∼ N (q̃i, σ
2
z)), where q̃i is the flipped sample when the actual signal is

qi. In particular, the generator aims at reconstructing the samples’ statistics and the

discriminator compares the reconstructed statistics with the designed one to guide
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the generator. Specifically, in the testing phase, the GAN compares the statistics

reconstructed from the samples collected by the sensors and the statistics provided

by the anchor node, and decides whether the samples collected by the sensors have

the same statistics as the anchor node data.

A good discriminator D is expected to be able to distinguish the generated data

from the real data, i.e., the estimated probability should be very small if the input

is the generated data and should be close to 1 if the input is from the real data.

Therefore, the discriminator aims at minimizing the objective function given as

LD = −(log(D(x )) + log(1−D(x̂ ))). (7.27)

On the other hand, for a generator G that has the goal to learn the real data

distribution, the evaluation D(x̂ ) acts as a guidance on the update of the generative

model. Thus, a good generator G should be able to make the generated data indistin-

guishable from the real data to the discriminator D. In addition, since the generator

aims at reconstructing the variance of the samples, the difference in the variance of

generated data and anchor data should be considered in the loss function. For this

purpose, the generator G seeks to minimize the following objective function:

LG = log(1−D(x̂ )) + w · (mean(x̂ )−mean(x ))2. (7.28)

where w is the weight to rescale the difference in mean of the corresponding data.

The workflow of GAN is presented in Algorithm 12 below.
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Algorithm 12 Workflow of GAN

Initialize the generator G(s ;G) with the parameters G, and the the discriminator
D(x ;ω), parameterized by ω.
for T = 1 : Maximum episode do

Fetch the sample set s(t) and the corresponding real data set x (t).
Use the generator G to generate the projection of the real data: x̂ (t) =

G(s(t);G(t))
Feed the projection x̂ (t) and the real data x (t) to the discriminator D, and

obtain the estimated probabilities of both data being real data.
Update the discriminator by descending the stochastic gradient:
−∇ω(log(D(x (t);ω(t)) + log(1−D(x̂ (t);ω(t)))
Update the generator by descending the stochastic gradient:
∇G log(1−D(x̂ (t);ω(t)) + w · (mean(x̂ )−mean(x ))2

end for

7.4 Simulation Results

7.4.1 Experimental Settings

7.4.1.1 Environment

In the experiments, the target process has four possible states (i.e., M = 4) and

signal values for these states are denoted as 0, 0.25, 0.5, 1. We set the number of

sensors to be N = 3, and the sensor noise power vector is [0.2, 0.1, 0.05] and the

corresponding cost vector is [0.1, 0.5, 1]. Hence, sensors with smaller noise power

have higher cost. The noise power in the communication links can be selected from

the set {0.05, 0.2, 0.4, 0.6}. Normally, the channel noise power is assumed to be known

to the decision-maker in the absence of any interference sources. However, when the

channel is has interference from other transmitters or experiences jamming attacks,

the actual channel noise power becomes unknown to the decision-maker. In this

case, the decision-maker underestimates the noise power by assuming it to be equal

to 0.05, and uses this noise power level to update the posterior probabilities π. For

every episode, if a sensor becomes a Byzantine, that sensor will swap the signal among

the two pairs: (0, 0.5) and (0.25, 1).
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Table 7.1: Configuration of Soft Actor-Critic algorithm.

Policy network Q network1 Value network
Input layer 200 neurons + ReLU (200 + 200) neurons + ReLU 200 neurons + ReLU

Hidden layer
200 neurons + ReLU
200 neurons + ReLU
200 neurons + ReLU

200 neurons + ReLU
64 neurons + ReLU

200 neurons + ReLU
100 neurons + ReLU

Output layer (2N − 1) neurons + softmax 1 neuron 1 neuron
Learning rate e−5 e−4 e−4

1 Since both the observation and the action are taken as inputs of the Q network, the two components are
loaded to the neural network through separate entries. Then, the extracted features of the observation
and action will be merged in the second layer, and an estimated soft Q value will be given at the
output layer.

7.4.1.2 Neural Networks

The configuration of the proposed soft actor-critic (SAC) framework is provided in

Table 7.1. For comparison purposes, we also implement the conventional actor-critic

(AC) algorithm. The configuration of the AC framework is provided in Table 7.2. The

implementation of the AC framework is also explored in [127]. In the experiments,

both the LLR-based reward and entropy-based reward will be considered for the

actor-critic framework. The configuration of GAN is provided in Table 7.3.

Table 7.2: Configuration of Conventional Actor-Critic Algorithm

Actor Critic
Input layer 200 neurons + ReLU 200 neurons + ReLU
Hidden layer 100 neurons + ReLU 100 neurons + ReLU
Output layer (2N − 1) neurons + Softmax 1 neuron
Learning rate 5e−5 1e−4

Table 7.3: Configuration of GAN

Generator Discriminator
Input layer 128 neurons + ReLU 128 neurons + tanh

Hidden layer
128 neurons + ReLU
256 neurons + ReLU
256 neurons + ReLU

128 neurons + tanh
64 neurons + tanh

Output layer (feature size) neurons 1 neuron + sigmoid
Learning rate e−5 5e−3
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7.4.2 Numerical Results

7.4.2.1 Preliminary Results
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Figure 7.5: Performance of the Benchmarks when πupper is varied from 0.8 to 0.98,
λ = 0, σ2

z = 0.05.

To illustrate how the selection of sensors influences the performance of the decision-

maker, we first investigate the naive policies as a benchmark. The naive policies select

their preferred sensors all the time. Since N = 3, there are 7 different naive policies,

and each of them selects a different set of sensors: {{1}, {2}, {3}, {1,2}, {1,3}, {2,3},

{1,2,3}}. We consider the detection accuracy, average stopping time and the average

total cost over 10000 episodes as the performance metrics. In Fig. 7.5, we set λ = 0,

and σ2
z = 0.05, and plot the performance metrics as a function of the confidence

threshold πupper. As shown in the figure, all the three performance metrics grow as

the predefined confidence level increases. As noted before, the sensor 1 has the highest

noise power and the lowest cost. So, it can be observed that the policy “Benchmark:1”

achieves the lowest accuracy and the lowest cost, but the highest stopping time. Also,

it can be observed that when the πupper is low, the accuracy achieved by the policies

whose selections include sensor 3 are relatively higher. Correspondingly, the stopping

times are lower and the total costs are higher.

These observations indicate that to reach the stopping criteria, the decision-maker

needs to obtain sufficient information on the sample distribution, and both the num-
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ber of samples and the reliability of the selected sensors can influence the performance.

Therefore, the proposed learning-based decision-maker is expected to be able to dis-

tinguish the most reliable sensor from the feedback and control the probing cost.

In Fig. 7.6, we illustrate the performance of the proposed SAC decision-maker,

and we compare its performance with the AC-based decision-maker. Both DRL-based

algorithms are tested with two types of reward functions: LLR and entropy. Gener-

ally, the performance of the DRL-based algorithms are competitive. When compared

to the benchmarks, the DRL-based algorithms are similar to the “Benchmark:1,2”

and “benchmark: 1,3”. For the SAC-based algorithms, the policy with the LLR re-

ward performs better than the policy with the entropy reward in terms of the stopping

time. For the AC algorithm, the policy with the LLR reward achieves a higher accu-

racy then the policy with the entropy reward. It can also be observed that for each

type of reward, considering the three performance metrics, the SAC-based algorithms

are slightly better than the AC-based algorithms.
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Figure 7.6: Performance of the learning-based decision-makers when πupper is varied
from 0.8 to 0.98, λ = 0, σ2

z = 0.05.

7.4.2.2 Jamming Attacks and Increased Noise Power

We consider the scenario in which the transmission channel is attacked by a jammer

during the experiment and the actual channel noise σ2 is unknown to the decision-

maker. In this experiment, the actual channel noise power varies as σ2 ∈ {0.05, 0.2, 0.4, 0.6},
180



but the decision-maker always uses σ2
z = 0.05 to update the posterior probabilities.

To illustrate the influence of not knowing the actual noise power, we also test the

algorithms with the same channel noise powers but under the assumption that this

information is known to the decision-makers. In Fig. 7.7, we plot the performance

metrics as functions of the actual channel noise power σ2. For all the decision-makers

that we have tested, as σ2 increases, the performances become worse: the accuracy

decreases rapidly and both the stopping time and total cost decrease slightly. The

degraded performance can be attributed to the uncertainty introduced by the channel

noise. Specifically, the incorrect noise power gives inaccurate computation results in

the update of the posterior probabilities. The smaller σ2
z that the decision-maker

employs, the quicker the growth in confidence level will be. As a consequence, when

the channel is attacked, the decision-maker is misled by the unknown noise and it

stops taking samples quickly and claims the wrong process states. Nevertheless, if

we compare the performances of SAC and AC based policies, we observe that per-

formance degradation in the SAC policies is slightly smaller than that in the AC

policies. This observation shows that the SAC algorithms have higher robustness in

a noisy environment, and can be more effective against increased interference levels

and jamming attacks.
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Figure 7.7: Performance of the learning-based decision-makers when the σ2 varies
from 0.05 to 0.6, λ = 0, πupper = 0.94.
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7.4.2.3 Cost Control

We first consider the cost function without a predefined average cost. It should be

noted that, in the experiments, the sensor 1 is the least costly but also the least

reliable sensor, while the sensor 3 is the most reliable sensor with the highest probing

cost. As shown in the previous experiments, there is no obvious difference in the

performance between the LLR reward-based policies, and the entropy reward-based

policies. So, we only demonstrate the performance of the LLR reward-based policies

in experiments in this subsection. The performance metrics are studied as functions

of πupper. And the performance achieved by the same algorithm but with different

values of λ are grouped. In Figs. 7.8 and 7.9, the performance of SAC algorithm and

AC algorithm are plotted respectively.
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Figure 7.8: Performance of the SAC algorithm when the λ varies from 0 to 5, πupper

is varied from 0.8 to 0.98, σ2 = 0.05.

Obviously, the AC-based algorithm is more sensitive to the change in λ: when the

value of λ increases, the average total cost decreases. Intuitively, the reason for this

performance can be that when a higher cost is received, the AC-based algorithm tends

to select the sensors with lower cost more frequently. Consequently, the more reliable

sensors are selected less frequently, and therefore the decision accuracy decreases and

the stopping time increases. As to the SAC-based decision-makers, the performance

varies slightly as λ changes because the SAC-based algorithm prefers the most reliable
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Figure 7.9: Performance of the AC algorithm when the λ varies from 0 to 5, πupper is
varied from 0.8 to 0.98, σ2 = 0.05.

sensor more frequently. To verify this, in Fig. 7.10 we plot the fractions of samples

coming from each sensor. Comparing the two figures, we find that when there is

no cost (λ = 0, in Fig. 7.10a), the two algorithms’ policies are similar and the

probabilities of selecting each sensor are close to each other. However, when there is

a large λ (in Fig. 7.10b), the AC algorithm selects sensor 1 with a probability as high

as 0.84, whereas the SAC algorithm still selects sensor 3 with the highest probability

even though the probability of selecting sensor 1 increases.

The two algorithms have different reactions to the change in λ, because of the

different strategies that are employed by them. The SAC algorithm is an off-policy

maximum entropy DRL algorithm. To better explore the environment, the SAC algo-

rithm favors a stochastic policy and aims at obtaining a more dispersed distribution

in action probabilities. As to the AC algorithm, a more deterministic policy is pur-

sued, which means that in a specific state, the AC algorithm only considers one action

as the optimal solution. The above-mentioned characteristic of the SAC algorithm

makes it more stable in diverse settings and have less risk in overftting to any local

optimums. In this test case, the AC algorithm changes its policy dramatically as the

λ changes. Compared to the AC algorithm, the SAC algorithm is more competitive

in handling a change over a wider range.

To take the advantage of the more stochastic policy, we set a designed average cost
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Figure 7.10: Distribution of sensor selection, πupper = 0.98, σ2
z = 0.6.

c̄ = 1, and feed back the corresponding cost to the decision-maker. In Fig. 7.11, for

the two DRL-based algorithms, we plot the moving average of cost ct = 1
W

∑t+W
τ=t c(τ),

where the window size W is set to be 100. We observe that the moving average

costs of both the proposed SAC algorithm and AC algorithm vary in a small range

around the designed average cost. The difference is that the moving average cost

of the SAC algorithm fluctuates in a wider range but the overall average cost is

below the designed average cost, while the moving average cost achieved by the AC

algorithm fluctuates in a narrower range but the overall average cost exceeds the

designed average cost. In Table 7.4, we provide the corresponding detection accuracy

and stopping time achieved by the two algorithms. In terms of both performance

metrics, the SAC algorithm shows advantages over the AC algorithm. This is because

the SAC algorithm is more flexible in the selection of actions, so that it can take better

advantage of selecting the most reliable sensor intermittently to ensure the accuracy

and reduce the detection delay at the same time.
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Figure 7.11: Performance in terms of cost, when the designed average cost is set as
c = 1.

Table 7.4: Performance of learning-based decision-makers with the designed average
cost is set to be 1.

Accuracy Stopping time
SAC 0.9760 4.6020
AC 0.9630 5.5370

7.4.2.4 Byzantine

In this subsection, we consider the scenario in which the decision-maker operates in

the presence of Byzantine sensors. It is assumed that at the beginning of each episode,

there is an attacker randomly deciding whether to attack an honest sensor to make

it a Byzantine or not. It is equally likely for the attacker to select any one from the

three sensors or decide not to attack. Once the decision is made, the state of sensors

(honest or Byzantine) will remain fixed during the rest of the episode. And as noted

before, we assume there is an anchor node which is always honest and the anchor

node obtains a record of the features from the training process of the GAN detector.

In Fig. 7.12, we show the performance of the proposed GAN-based Byzantine
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Figure 7.12: Accuracy of the GAN-based detector, when σ2
z = 0.1.

detector in terms of the detection accuracy. Since each sensor has its own noise

power, the accuracy of different <suspected sensor, reference sensor> pairs will be

different. Here, we consider all possible combination of <suspected sensor, reference

sensor> pairs. It should be noted that we also provide the accuracy achieved by

the <sensor i, sensori > pairs for i = 1, 2, 3. In our aforementioned assumptions,

the sensors cannot be the reference sensors for themselves. Therefore, in such sensor

pairs, we assume that the suspected sensor and the corresponding reference sensor

are identical and the states of the two sensors are independent. We only consider this

situation in the test of GAN detector’s accuracy, and in the detection of the process

state, the suspected sensor and the reference sensor must be two different sensors.

We notice in the figure that employing the anchor node as the reference sensor always

achieves the highest accuracy. And it can be also observed that noise power at the

suspected sensor and the reference sensor is inversely proportional to the accuracy.

With the pre-trained GAN-based detector, we investigate the performance of the

defense strategy. When the sensors are employed as the reference sensors, the detec-

tion accuracy actually refers to achieved by the trigger. Since the reference sensors
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Figure 7.13: Performance of the decision-makers work in absence of Byzantine attacks,
with the presence of Byzantine attacks, and with the presence of both Byzantine
attack and GAN-based Byzantine detector. when the λ = 0, σ2

z = 0.1.

are also noisy sensors, there is a probability that the samples from the reference sen-

sors being distorted. To improve the accuracy of the trigger in the testing phase,

instead of only comparing the suspected sensor to only one reference sensor, we take

all available reference sensors into consideration. Specifically, the sample from the

current suspected sensor is compared with samples from all available reference sen-

sors, and each comparison result is a decision on whether the suspected sensor is a

Byzantine. Then, the majority decision is the final decision on the identity of the

suspected sensor. With this “trigger-anchor” two-level detection, the Byzantines are

identified and the corresponding samples are eliminated. In Fig. 7.13, we plot the

performance achieved in three cases. Specifically, “SAC/AC” refers to the situation

in which the corresponding decision-maker works in the absence of Byzantine attacks,

“SAC/AC : Byzantine” stands for the case in which the decision-maker operates in

the presence of Byzantine attacks but there is no defense strategy, and “SAC/AC :

Defense” denotes the scenario in which the decision-maker works in the presence of

Byzantine attacks but employs the defense strategy.

Considering the accuracy of detecting the process state, we observe that the pro-

posed defense strategy can successfully recover the performance to the level achieved

when no Byzantine attacks are executed. According to the decisions made by the
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GAN-based detector, the samples from the sensors which are labeled as Byzantine

are removed. Therefore, to obtain sufficient information to reach the stopping criteria,

more probing steps are taken. Consequently, there are obvious increments in both the

stopping time and total cost. It can also be observed that with the GAN-based detec-

tor, the accuracy achieved by “AC:Defense” scheme is higher than the “AC” scheme.

This is because when the samples are too noisy and the sensors quantize them into

incorrect states, the GAN-based detector can also take the sensors as Byzantines and

remove the samples. With the misleading samples eliminated, the improvement in

accuracy is expected.
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we have studied learning-based decision making strategies in wireless

communications, addressing edge caching, dynamic multichannel access, adversarial

jamming attacks, and anomaly detection problems. The contributions of this thesis

are summarized below.

In Chapter 2, we have investigated the application of actor-critic DRL algorithm

in edge caching problems in both single-cell and multi-cell wireless scenarios.

� In Section 2.1, we have proposed and developed a deep reinforcement learning

based content caching policy. We built the framework based on the Wolper-

tinger architecture and trained it using the deep deterministic policy gradient.

We have evaluated the performance of the proposed framework and compared

it with both short-term and long-term cache hit rates achieved with LRU, LFU,

and FIFO policies. The results show that the proposed framework provides im-

provements on both short-term and long-term performance. Additionally, we

have further confirmed the effectiveness of the proposed framework by compar-

ing the cache hit rate and runtime with those achieved with the deep Q-learning
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based policy. This comparison has demonstrated that the proposed framework

can achieve competitive cache hit rates while effectively reducing the runtime.

This makes the proposed framework efficient in handling large-scale data.

� In Section 2.2, we have focused on edge caching in both single-cell and multi-cell

scenarios. In particular, we have designed deep actor-critic reinforcement learn-

ing frameworks for both centralized and decentralized edge caching scenarios.

More specifically, we have employed the Wolpertinger architecture involving an

actor neural network, a KNN component, and a critic neural network. We have

described in detail how the neural networks are updated. We have developed

a single-agent actor-critic algorithm in the single-cell scenario and described

its workflow. In the multi-cell setting, we have proposed a decentralized edge

caching strategy via a multi-agent framework with multiple actor networks and

a single critic network. In this setting, we have designed a multi-agent actor-

critic algorithm. We have provided simulation results to test the performance

of the proposed frameworks. For the centralized edge caching scenario, we have

analyzed the performance in terms of the cache hit rate as a function of the

cache ratio, Zipf exponent, and the number of files. For decentralized edge

caching in a multi-cell environment, we have considered two objectives: cache

hit rate and transmission delay reduction. We have studied the performance

in terms of both objectives again as the cache ratio, Zipf exponent, and the

number of files vary. We have also evaluated the reinforcement learning agents’

adaptation capabilities in the presence of unknown change points where users’

preferences change randomly. In all of the experiments, the proposed actor-

critic frameworks have shown advantage over the non-learning based policies,

leading to benefits and improvements in terms of cache hit rate, transmission

delay reduction, adaptation capability and long-term stability.

In Chapter 3, we have considered the dynamic multichannel access problem mod-
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eled as a POMDP. To effectively find the channel access policy, we have proposed

and implemented model-free actor-critic deep reinforcement learning frameworks in

single-user and multi-user scenarios. We have tested the single agent framework

on round-robin and arbitrary switching scenarios, and compared the average reward

with that of the DQN framework, random access police, Whittle index heuristic and

optimal policy. Also, we have studied the performance of the proposed framework

in cases in which multiple different channels are selected simultaneously. We have

demonstrated the proposed framework’s superior ability in handling a large num-

ber of channels, high tolerance against uncertainty, and large action spaces. In the

multi-user case, we have addressed models with users operating with or without pri-

orities. For users without priority, we have presented results on the average sum

reward to demonstrate the decentralized actor-critic agents’ capability to learn the

channel switching patterns as well as the other users’ action patterns. In the case

of users with priority, we have computed the distribution of different channel ac-

cess results under different channel allocation policies and shown that the proposed

framework is competitive in various scenarios. To highlight the adaptive ability, we

have conducted simulations in a time-varying environment and demonstrated that the

proposed framework learns the new patterns effectively in a relatively short period

of time. Finally, we have demonstrated the efficiency of the actor-critic framework

by computing the percentage of runtime that can be saved compared to the DQN

framework.

In Chapter 4, we have proposed two adversarial wireless jamming attackers aimed

at minimizing the accuracy of the dynamic multichannel access performed by a DRL

agent. We have introduced the frameworks of the proposed FNN and DRL attackers,

and then presented their corresponding RRAS working procedures. Via simulations

and numerical results, we have evaluated the performances of the two adversarial

policies in terms of the victim’s accuracy. In this analysis, we have specifically con-
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ducted experiments with a stronger victim that applies the ε-greedy policy. Finally,

we have identified the advantages and disadvantages of the two frameworks.

In Chapter 5, we have considered active sequential testing for anomaly detection,

in which an unknown number of processes could be in abnormal states simultane-

ously. To solve the dynamic problem of how to select sensors based on a partially

observable Markov decision process, we have proposed a deep actor-critic reinforce-

ment learning framework, which enables the agent to dynamically select the sensors

and minimize the claim delay while maximizing the confidence level based on the

posterior probabilities. We have designed the actor-critic sensor selection algorithm,

refining the updating procedure. We have analyzed the performance of the proposed

framework. In particular, in the training phase, we have conducted validation testing

and demonstrated the convergence of the posterior probabilities. In the testing phase,

we have investigated the selection of upper and lower thresholds and their influence

on the claim delay and loss. Finally, we have provided comparisons between the

proposed framework and Chernoff test, and demonstrate the superior performance

of the proposed actor-critic deep reinforcement learning framework in terms of lower

claim delay. Additionally, while the Chernoff test has lower loss for smaller values of

upper threshold, the proposed framework outperforms when higher confidence levels

are required (i.e., for larger values of the upper threshold).

In Chapter 6, we have proposed a framework for anomaly detection and sam-

pling cost control based on GANs. First, we have modeled the detection of threshold

crossing in a stochastic time series as an anomaly detection problem. Then, we

have proposed a hierarchical GAN structure to address such a detection problem.

Specifically, we have designed a hierarchical structure to take advantage of the esti-

mated projection of real samples and described the training and testing workflows.

The performance of the proposed hierarchical GAN-based detector has been analyzed

considering multiple performance metrics, namely the detection delay, miss rate, cost
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of error (due delayed detection) and sampling ratio. We have also provided com-

parisons between the proposed hierarchical GAN detector and the sampling policy

derived with complete statistical information of OU processes. We have shown that

the proposed GAN-based detector can have improved performance in terms of detec-

tion delays, miss rates, and cost of error as the buffer zone width is increased but at

the cost of higher sampling ratios.

In Chapter 7, we have proposed a soft actor-critic (SAC) based reinforcement

learning framework to address the detection problem with a cost control. First, we

have modeled the sensor probing mechanism in the presence of two-level noise (i.e.,

noise in sensing and noise in the communication link between the sensor and the

decision-making agent) and formulated the problem. We have developed the SAC-

based algorithm with two types of rewards and two types of cost functions to reflect

the objective and costs in the considered setting. Subsequently, we have considered

the random Byzantine attacks on the sensors and designed a GAN-based agent to

identify the Byzantine sensors. To evaluate the performance, we have considered three

performance metrics: accuracy, stopping time, and total cost. In the experiments, we

have compared the proposed SAC framework with the conventional actor-critic (AC)

algorithm. Via simulation results, we have demonstrated that the proposed SAC

agent can be more robust in different test cases, and the proposed GAN detector is

able to identify the Byzantines with high accuracy and help to recover the detection

performance achieved in the absence of Byzantine attacks.
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8.2 Future Research Directions

8.2.1 Learning-based Adversarial Attacks on Remote Sensor

Networks

In Chapter 7, we assume random Byzantine attacks on the considered sensor network.

In Fig. 7.13, we observe that the GAN-based Byzantine detector can help the decision-

maker to eliminate the unreliable samples and maintain a high detection accuracy.

To further verify the proposed detection framework’s ability to defend against attacks

and identify potential risks in the learning-based system, it is of interest to conduct

learning-based adversarial attacks on the decision-maker.

8.2.2 Learning-based Identification for Multivariate Attacks

on Remote Sensor Networks

In this thesis, we considered jamming attacks and Byzantine attacks on remote sensor

networks separately. However, in practice, the two types of attacks can occur simul-

taneously. Moreover, there can also be unknown types of attacks. Therefore, it is of

utmost importance to develop algorithms that can identify different types of attacks

using as small number of samples as possible. Given that meta learning algorithms

demonstrate great ability in learning unknown tasks, a combination of meta learning

algorithms and GAN can be considered to extent our current Byzantine detector to

a more advanced agent for multivariate attack classification.
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[16] Q. Yang, P. Hassanzadeh, D. Gündüz, and E. Erkip, “Centralized caching and

delivery of correlated contents over a Gaussian broadcast channel,” in Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2018

16th International Symposium on. IEEE, 2018, pp. 1–6.

[17] K. Kvaternik, J. Llorca, D. Kilper, and L. Pavel, “A methodology for the de-

sign of self-optimizing, decentralized content-caching strategies,” IEEE/ACM

Transactions on Networking, vol. 24, no. 5, pp. 2634–2647, 2016.

[18] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative edge

caching in user-centric clustered mobile networks,” IEEE Transactions on Mo-

bile Computing, vol. 17, no. 8, pp. 1791–1805, 2018.

[19] Y. Li, C. Zhong, M. C. Gursoy, and S. Velipasalar, “Learning-based delay-aware

caching in wireless D2D caching networks,” IEEE Access, vol. 6, pp. 77 250–

77 264, 2018.

[20] W. Wang, D. Niyato, P. Wang, and A. Leshem, “Decentralized caching for

content delivery based on blockchain: A game theoretic perspective,” in 2018

IEEE International Conference on Communications (ICC). IEEE, 2018, pp.

1–6.

[21] B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast scheduling for cache-

enabled content-centric wireless networks,” IEEE Transactions on Communi-

cations, vol. 65, no. 7, pp. 2956–2970, 2017.

197



[22] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid content caching in 5G

wireless networks: Cloud versus edge caching,” IEEE Transactions on Wireless

Communications, vol. 17, no. 5, pp. 3030–3045, 2018.

[23] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo state networks for proac-

tive caching in cloud-based radio access networks with mobile users,” IEEE

Transactions on Wireless Communications, vol. 16, no. 6, pp. 3520–3535, 2017.

[24] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative hierarchical caching in

5G cloud radio access networks,” IEEE Network, vol. 31, no. 4, pp. 35–41, 2017.

[25] X. Li, X. Wang, P.-J. Wan, Z. Han, and V. C. Leung, “Hierarchical edge caching

in device-to-device aided mobile networks: Modeling, optimization, and de-

sign,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp.

1768–1785, 2018.

[26] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and S. Chouvar-

das, “Placing dynamic content in caches with small population,” in Computer

Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International

Conference on. IEEE, 2016, pp. 1–9.

[27] W. Li, S. M. Oteafy, and H. S. Hassanein, “Streamcache: popularity-based

caching for adaptive streaming over information-centric networks,” in Commu-

nications (ICC), 2016 IEEE International Conference on. IEEE, 2016, pp.

1–6.

[28] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content

caching,” in Computer Communications, IEEE INFOCOM 2016-The 35th An-

nual IEEE International Conference on. IEEE, 2016, pp. 1–9.

198



[29] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire,

“Femtocaching: Wireless content delivery through distributed caching helpers,”

IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8402–8413, 2013.

[30] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”

IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 836–845, 2016.

[31] J. Song and W. Choi, “Mobility-aware content placement for device-to-device

caching systems,” IEEE Transactions on Wireless Communications, vol. 18,

no. 7, pp. 3658–3668, July 2019.

[32] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-Aho, “Content-aware user

clustering and caching in wireless small cell networks,” in 2014 11th Interna-

tional Symposium on Wireless Communications Systems (ISWCS). IEEE,

2014, pp. 945–949.

[33] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforcement learning

for mobile edge caching: Review, new features, and open issues,” IEEE Network,

vol. 32, no. 6, pp. 50–57, 2018.

[34] L. Lei, L. You, G. Dai, T. X. Vu, D. Yuan, and S. Chatzinotas, “A deep

learning approach for optimizing content delivering in cache-enabled hetnet,” in

2017 International Symposium on Wireless Communication Systems (ISWCS).

IEEE, 2017, pp. 449–453.

[35] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and scalable

caching for 5G using reinforcement learning of space-time popularities,” IEEE

Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 180–190,

2018.

199



[36] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement learning-

based framework for content caching,” in 2018 52nd Annual Conference on

Information Sciences and Systems (CISS), 2018, pp. 1–6.

[37] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching, com-

puting, and radio resources for fog-enabled iot using natural actor–critic deep

reinforcement learning,” IEEE Internet of Things Journal, vol. 6, no. 2, pp.

2061–2073, 2018.

[38] J. Sung, K. Kim, J. Kim, and J.-K. K. Rhee, “Efficient content replacement

in wireless content delivery network with cooperative caching,” in 15th IEEE

International Conference on Machine Learning and Applications (ICMLA).

IEEE, 2016, pp. 547–552.

[39] J. Song, M. Sheng, T. Q. Quek, C. Xu, and X. Wang, “Learning-based content

caching and sharing for wireless networks,” IEEE Transactions on Communi-

cations, vol. 65, no. 10, pp. 4309–4324, 2017.

[40] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy, “Learning

distributed caching strategies in small cell networks,” in Wireless Communica-

tions Systems (ISWCS), 2014 11th International Symposium on. IEEE, 2014,

pp. 917–921.

[41] S. S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme for caching

youtube content in a cellular network: Machine learning approach,” IEEE Ac-

cess, vol. 5, pp. 5870–5881, 2017.

[42] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt,

T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep reinforcement learning

in large discrete action spaces,” arXiv preprint arXiv:1512.07679, 2015.

200



[43] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-

agent actor-critic for mixed cooperative-competitive environments,” in Ad-

vances in Neural Information Processing Systems, 2017, pp. 6382–6393.

[44] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning to com-

municate with deep multi-agent reinforcement learning,” in Advances in Neural

Information Processing Systems, 2016, pp. 2137–2145.

[45] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent con-

trol using deep reinforcement learning,” in International Conference on Au-

tonomous Agents and Multiagent Systems. Springer, 2017, pp. 66–83.

[46] F. Hu, B. Chen, and K. Zhu, “Full spectrum sharing in cognitive radio networks

toward 5G: A survey,” IEEE Access, vol. 6, pp. 15 754–15 776, 2018.

[47] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for

opportunistic spectrum access in ad hoc networks: A POMDP framework,”

IEEE Journal on selected areas in communications, vol. 25, no. 3, 2007.

[48] K. Liu and Q. Zhao, “A restless bandit formulation of opportunistic access:

Indexablity and index policy,” in Sensor, Mesh and Ad Hoc Communications

and Networks Workshops, 2008. SECON Workshops’ 08. 5th IEEE Annual

Communications Society Conference on. IEEE, 2008, pp. 1–5.

[49] Q. Zhao, B. Krishnamachari, and K. Liu, “On myopic sensing for multi-channel

opportunistic access: structure, optimality, and performance,” IEEE Transac-

tions on Wireless Communications, vol. 7, no. 12, 2008.

[50] S. H. A. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari, “Optimal-

ity of myopic sensing in multichannel opportunistic access,” IEEE Transactions

on Information Theory, vol. 55, no. 9, pp. 4040–4050, 2009.

201



[51] Y. Xu, J. Wang, Q. Wu, A. Anpalagan, and Y.-D. Yao, “Opportunistic spec-

trum access in unknown dynamic environment: A game-theoretic stochastic

learning solution,” IEEE transactions on wireless communications, vol. 11,

no. 4, pp. 1380–1391, 2012.

[52] J. Zheng, Y. Cai, N. Lu, Y. Xu, and X. Shen, “Stochastic game-theoretic spec-

trum access in distributed and dynamic environment,” IEEE transactions on

vehicular technology, vol. 64, no. 10, pp. 4807–4820, 2015.

[53] K. Wang, Q. Liu, Q. Fan, and Q. Ai, “Optimally probing channel in oppor-

tunistic spectrum access,” IEEE Communications Letters, 2017.

[54] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529,

2015.

[55] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go

without human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[56] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and

D. I. Kim, “Applications of deep reinforcement learning in communications and

networking: A survey,” arXiv preprint arXiv:1810.07862, 2018.

[57] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless

networking: A survey,” arXiv preprint arXiv:1803.04311, 2018.

[58] L. Xiao, Y. Li, C. Dai, H. Dai, and H. V. Poor, “Reinforcement learning-based

NOMA power allocation in the presence of smart jamming,” IEEE Transactions

on Vehicular Technology, vol. 67, no. 4, pp. 3377–3389, 2018.

202



[59] A. Ortiz, H. Al-Shatri, X. Li, T. Weber, and A. Klein, “Reinforcement learn-

ing for energy harvesting decode-and-forward two-hop communications,” IEEE

Transactions on Green Communications and Networking, vol. 1, no. 3, pp. 309–

319, 2017.

[60] H. Li, H. Gao, T. Lv, and Y. Lu, “Deep q-learning based dynamic resource

allocation for self-powered ultra-dense networks,” in 2018 IEEE International

Conference on Communications Workshops (ICC Workshops). IEEE, 2018,

pp. 1–6.

[61] H. Liu, S. Liu, and K. Zheng, “A reinforcement learning-based resource alloca-

tion scheme for cloud robotics,” IEEE Access, vol. 6, pp. 17 215–17 222, 2018.

[62] H. Ye and G. Y. Li, “Deep reinforcement learning for resource allocation in v2v

communications,” in 2018 IEEE International Conference on Communications

(ICC). IEEE, 2018, pp. 1–6.

[63] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and resource allocation

in hetnets with hybrid energy supply: An actor-critic reinforcement learning

approach,” IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp.

680–692, 2018.

[64] A. T. Nassar and Y. Yilmaz, “Reinforcement-learning-based resource alloca-

tion in fog radio access networks for various iot environments,” arXiv preprint

arXiv:1806.04582, 2018.

[65] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple access

for heterogeneous wireless networks,” in 2018 IEEE International Conference

on Communications (ICC). IEEE, 2018, pp. 1–7.

[66] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforcement

learning for dynamic multichannel access in wireless networks,” IEEE Transac-

203



tions on Cognitive Communications and Networking, vol. 4, no. 2, pp. 257–265,

June 2018.

[67] W. Dai, Y. Gai, and B. Krishnamachari, “Online learning for multi-channel

opportunistic access over unknown Markovian channels,” in Sensing, Commu-

nication, and Networking (SECON), 2014 Eleventh Annual IEEE International

Conference on. IEEE, 2014, pp. 64–71.

[68] Y. Zhang, Q. Zhang, B. Cao, and P. Chen, “Model free dynamic sensing or-

der selection for imperfect sensing multichannel cognitive radio networks: A

Q-learning approach,” in Communication Systems (ICCS), 2014 IEEE Inter-

national Conference on. IEEE, 2014, pp. 364–368.

[69] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for dis-

tributed dynamic spectrum access,” IEEE Transactions on Wireless Commu-

nications, vol. 18, no. 1, pp. 310–323, 2019.

[70] S. Liu, X. Hu, and W. Wang, “Deep reinforcement learning based dynamic

channel allocation algorithm in multibeam satellite systems,” IEEE ACCESS,

vol. 6, pp. 15 733–15 742, 2018.

[71] H. Li, “Multiagent Q-learning for aloha-like spectrum access in cognitive radio

systems,” EURASIP Journal on Wireless Communications and Networking,

vol. 2010, p. 56, 2010.

[72] M. Bkassiny, S. K. Jayaweera, and K. A. Avery, “Distributed reinforcement

learning based MAC protocols for autonomous cognitive secondary users,” in

Wireless and Optical Communications Conference (WOCC), 2011 20th Annual.

IEEE, 2011, pp. 1–6.

[73] K.-L. A. Yau, P. Komisarczuk, and D. T. Paul, “Enhancing network perfor-

mance in distributed cognitive radio networks using single-agent and multi-

204



agent reinforcement learning,” in Local Computer Networks (LCN), 2010 IEEE

35th Conference on. IEEE, 2010, pp. 152–159.

[74] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for au-

tomatic modulation recognition in cognitive radios,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, April 2019.

[75] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforcement

learning for dynamic multichannel access in wireless networks,” IEEE Transac-

tions on Cognitive Communications and Networking, vol. 4, no. 2, pp. 257–265,

June 2018.

[76] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-

sarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[77] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller, “Adversarial

attacks on deep neural networks for time series classification,” arXiv preprint

arXiv:1903.07054, 2019.

[78] V. Subramanian, E. Benetos, N. Xu, S. McDonald, and M. Sandler, “Adver-

sarial attacks in sound event classification,” arXiv preprint arXiv:1907.02477,

2019.

[79] Y. Zhao, I. Shumailov, H. Cui, X. Gao, R. Mullins, and R. Anderson, “Blackbox

attacks on reinforcement learning agents using approximated temporal informa-

tion,” arXiv preprint arXiv:1909.02918, 2019.

[80] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial

attacks on neural network policies,” arXiv preprint arXiv:1702.02284, 2017.

205



[81] A. Gleave, M. Dennis, N. Kant, C. Wild, S. Levine, and S. Russell, “Ad-

versarial policies: Attacking deep reinforcement learning,” arXiv preprint

arXiv:1905.10615, 2019.

[82] Y. Shi, T. Erpek, Y. E. Sagduyu, and J. H. Li, “Spectrum data poisoning with

adversarial deep learning,” in MILCOM 2018-2018 IEEE Military Communi-

cations Conference (MILCOM). IEEE, 2018, pp. 407–412.

[83] T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for launching and miti-

gating wireless jamming attacks,” IEEE Transactions on Cognitive Communi-

cations and Networking, vol. 5, no. 1, pp. 2–14, 2018.

[84] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar, “Actor-critic deep reinforce-

ment learning for dynamic multichannel access,” in 2018 IEEE Global Con-

ference on Signal and Information Processing (GlobalSIP). IEEE, 2018, pp.

599–603.

[85] A. Bujnowski, J. Ruminski, A. Palinski, and J. Wtrorek, “Enhanced remote con-

trol providing medical functionalities,” in Proc. Inter. Conf. Pervasive Comput.

Tech Healthc. Workshops, May 2013, pp. 290–293.

[86] F. Passerini and A. M. Tonello, “Smart grid monitoring using power line

modems: Effect of anomalies on signal propagation,” IEEE Access, vol. 7, pp.

27 302–27 312, 2019.

[87] F. Alotibi and M. Abdelhakim, “Anomaly detection for cooperative adaptive

cruise control in autonomous vehicles using statistical learning and kinematic

model,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–11,

2020.

[88] A. Kanev, A. Nasteka, C. Bessonova, D. Nevmerzhitsky, A. Silaev, A. Efre-

mov, and K. Nikiforova, “Anomaly detection in wireless sensor network of the

206



“smart home” system,” in 2017 20th Conference of Open Innovations Associa-

tion (FRUCT). IEEE, 2017, pp. 118–124.

[89] Z. Li, J. Xie, H. Zhang, H. Xiang, and Z. Zhang, “Adaptive sensor scheduling

and resource allocation in netted collocated MIMO radar system for multi-

target tracking,” IEEE Access, vol. 8, pp. 109 976–109 988, 2020.

[90] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC

for opportunistic spectrum access in ad hoc networks: A POMDP framework,”

IEEE Journal on Selected Areas in Communications, vol. 25, no. 3, pp. 589–600,

2007.

[91] S. Rajasegarar, C. Leckie, and M. Palaniswami, “Anomaly detection in wireless

sensor networks,” IEEE Wireless Communications, vol. 15, no. 4, pp. 34–40,

2008.

[92] H. Chernoff, “Sequential design of experiments,” The Annals of Mathematical

Statistics, vol. 30, no. 3, pp. 755–770, 1959.

[93] F. Cecchi and N. Hegde, “Adaptive active hypothesis testing under limited

information,” in Advances in Neural Information Processing Systems, 2017, pp.

4035–4043.

[94] D. Chen, Q. Huang, H. Feng, Q. Zhao, and B. Hu, “Active anomaly detection

with switching cost,” in ICASSP 2019-2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5346–

5350.

[95] K. Cohen and Q. Zhao, “Active hypothesis testing for anomaly detection,”

IEEE Transactions on Information Theory, vol. 61, no. 3, pp. 1432–1450, 2015.

207



[96] B. Huang, K. Cohen, and Q. Zhao, “Active anomaly detection in heterogeneous

processes,” IEEE Transactions on Information Theory, vol. 65, no. 4, pp. 2284–

2301, 2019.

[97] M. R. Leonard and A. M. Zoubir, “Robust sequential detection in distributed

sensor networks,” IEEE Transactions on Signal Processing, vol. 66, no. 21, pp.

5648–5662, 2018.

[98] J. Zhang and I. C. Paschalidis, “Statistical anomaly detection via composite hy-

pothesis testing for markov models,” IEEE Transactions on Signal Processing,

vol. 66, no. 3, pp. 589–602, 2018.

[99] D. Kartik, E. Sabir, U. Mitra, and P. Natarajan, “Policy design for active

sequential hypothesis testing using deep learning,” in 2018 56th Annual Allerton

Conference on Communication, Control, and Computing (Allerton). IEEE,

2018, pp. 741–748.

[100] A. Puzanov and K. Cohen, “Deep reinforcement one-shot learning for change

point detection,” in 2018 56th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2018, pp. 1047–1051.

[101] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and H. Ming, “AD-

IoT: Anomaly detection of IoT cyberattacks in smart city using machine learn-

ing,” in 2019 IEEE 9th Annual Computing and Communication Workshop and

Conference (CCWC), 2019, pp. 0305–0310.

[102] N. Moustafa, K.-K. R. Choo, I. Radwan, and S. Camtepe, “Outlier dirichlet

mixture mechanism: Adversarial statistical learning for anomaly detection in

the fog,” IEEE Transactions on Information Forensics and Security, 2019.

208



[103] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep actor-critic reinforcement

learning for anomaly detection,” in 2019 IEEE Global Communications Con-

ference (GLOBECOM), 2019, pp. 1–6.

[104] T. Wen and R. Keyes, “Time series anomaly detection using convolutional

neural networks and transfer learning,” arXiv preprint arXiv:1905.13628, 2019.

[105] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong,

H. Chen, and N. V. Chawla, “A deep neural network for unsupervised anomaly

detection and diagnosis in multivariate time series data,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 1409–1416.

[106] Y. Sun, W. Yu, Y. Chen, and A. Kadam, “Time series anomaly detection based

on GAN,” in 2019 Sixth International Conference on Social Networks Analysis,

Management and Security (SNAMS), 2019, pp. 375–382.

[107] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “MAD-GAN: Multivariate

anomaly detection for time series data with generative adversarial networks,”

in Artificial Neural Networks and Machine Learning – ICANN 2019: Text and
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