
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Dissertations - ALL SURFACE at Syracuse University

Summer 8-27-2021

Some New Results in Distributed Tracking and Optimization Some New Results in Distributed Tracking and Optimization

Pranay Sharma
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Sharma, Pranay, "Some New Results in Distributed Tracking and Optimization" (2021). Dissertations - ALL.
1375.
https://surface.syr.edu/etd/1375

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of
SURFACE at Syracuse University. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=surface.syr.edu%2Fetd%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1375?utm_source=surface.syr.edu%2Fetd%2F1375&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

The current age of Big Data is built on the foundation of distributed systems, and efficient dis-

tributed algorithms to run on these systems. With the rapid increase in the volume of the data being

fed into these systems, storing and processing all this data at a central location becomes infeasible.

Such a central server requires a gigantic amount of computational and storage resources. Even

when it is possible to have central servers, it is not always desirable, due to privacy concerns. Also,

sending huge amounts of data to such servers incur often infeasible bandwidth requirements.

In this dissertation, we consider two kinds of distributed architectures: 1) star-shaped topology,

where multiple worker nodes are connected to, and communicate with a server, but the workers

do not communicate with each other; and 2) mesh topology or network of interconnected workers,

where each worker can communicate with a small number of neighboring workers.

In the first half of this dissertation (Chapters 2 and 3), we consider distributed systems with

mesh topology. We study two different problems in this context. First, we study the problem of

simultaneous localization and multi-target tracking. Multiple mobile agents localize themselves

cooperatively, while also tracking multiple, unknown number of mobile targets, in the presence

of measurement-origin uncertainty. In situations with limited GPS signal availability, agents (like

self-driving cars in urban canyons, or autonomous vehicles in hazardous environments) need to

rely on inter-agent measurements for localization. The agents perform the additional task of track-

ing multiple targets (pedestrians and road-signs for self-driving cars). We propose a decentralized

algorithm for this problem. To be effective in real-time applications, we propose efficient Gaussian

and Gaussian-mixture based filters, rather than the computationally expensive particle-based meth-

ods in the existing literature. Our novel factor-graph based approach gives better performance, in

terms of both agent localization errors, and target-location and cardinality errors.

Next, we study an online convex optimization problem, where a network of agents cooperate

to minimize a global time-varying objective function. Only the local functions are revealed to

individual agents. The agents also need to satisfy their individual constraints. We propose a primal-

dual update based decentralized algorithm for this problem. Under standard assumptions, we prove

that the proposed algorithm achieves sublinear regret and constraint violation across the network.

In other words, over a long enough time horizon, the decisions taken by the agents are, on average,

as good as if all the information was revealed ahead of time. In addition, the individual constraint

violations of the agents, averaged over time, are zero.

In the next part of the dissertation (Chapters 4), we study distributed systems with a star-shaped

topology. The problem we study is distributed nonconvex optimization. With the recent success

of deep learning, coupled with the use of distributed systems to solve large-scale problems, this

problem has gained prominence over the past decade. The recently proposed paradigm of Fed-

erated Learning (which has already been deployed by Google/Apple in Android/iOS phones) has

further catalyzed research in this direction. The problem we consider is minimizing the average

of local smooth, nonconvex functions. Each node has access only to its own loss function, but

can communicate with the server, which aggregates updates from all the nodes, before distributing

them to all the nodes. With the advent of more and more complex neural network architectures,

these updates can be high dimensional. To save resources, the problem needs to be solved via

communication-efficient approaches. We propose a novel algorithm, which combines the idea of

variance-reduction, with the paradigm of carrying out multiple local updates at each node before

averaging. We prove the convergence of the approach to a first-order stationary point. Our al-

gorithm is optimal in terms of computation, and state-of-the-art in terms of the communication

requirements.

Lastly in Chapter 5, we consider the situation when the nodes do not have access to function

gradients, and need to minimize the loss function using only function values. This problem lies

in the domain of zeroth-order optimization. For simplicity of analysis, we study this problem

only in the single-node case. This problem finds application in simulation-based optimization, and

adversarial example generation for attacking deep neural networks. We propose a novel function

value based gradient estimator, which has better variance, and better query-efficiency compared to

existing estimators. The proposed estimator covers the most commonly used existing estimators

as special cases. We conduct a comprehensive convergence analysis under different conditions.

We also demonstrate its effectiveness through a real-world application to generating adversarial

examples from a black-box deep neural network.

To my parents

and Shweta

SOME NEW RESULTS IN DISTRIBUTED TRACKING AND

OPTIMIZATION

By

Pranay Sharma
B.Tech-M.Tech, Indian Institute of Technology, Kanpur, 2013

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical and Computer Engineering

Syracuse University
August 2021

Copyright © Pranay Sharma, 2021

All Rights Reserved

ACKNOWLEDGMENTS

“He who would learn to fly one day must first learn to stand and walk and run and climb and

dance; one cannot fly into flying.” Friedrich Nietzsche

“A human being should be able to change a diaper, plan an invasion, butcher a hog, conn a

ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort the

dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new problem, pitch

manure, program a computer, cook a tasty meal, fight efficiently, die gallantly.

Specialization is for insects.” Robert Anson Heinlein

I would like to express my profound gratitude to my advisor Prof. Pramod K. Varsh-

ney for his invaluable guidance along with the continued intellectual and motivational

support throughout my doctoral studies. With his patience, wisdom, and consistent en-

couragement, he has played the role the Jambavanta (this reference comes from Hindu

mythology) for me these past 6 years. I would like to express my gratitude to Prof. Sijia

Liu (Michigan State University), Prof. Lixin Shen, Prof. Ketan Rajawat (Indian Institute of

Technology, Kanpur, India), Dr. Alexandru-Augustin Saucan (Massachussets Institute of

Technology), Dr. Donald J. Bucci Jr. (Lockheed Martin, Advanced Technologies Lab), and

Prof. Swastik Brahma (Tennessee State University) for mentoring me during the course

of my research work. I would also like to thank my defense committee members Prof.

Lixin Shen, Prof. Biao Chen, Prof. Makan Fardad, Prof. Venkata S. S. Gandikota, and

Prof. Ferdinando Fioretto for their valuable suggestions.

I would like to extend sincere thanks to my current and past “Sensor Fusion Lab”

vii

members and friends, including Aditya, Arun, Bao, Bhavya, Chen, Hao, Nandan, Ni-

anxia, Prashant, Qunwei, Raghed, Sai, Sid, Sijia, Shan, Swatantra, and Xianchang for all

the helpful technical and philosophical discussions we had during the course of this dis-

sertation. Times spent with Manish, Prashant, Rajesh, Sai, and Swatantra, will forever be

cherished. I would like to give special thanks to Aunty for her motherly love and making

my stay in Syracuse feel like home.

I am grateful to all the professors who taught me during my undergraduate and mas-

ters days at IIT Kanpur. Special thanks to Santosh Nigam, my high-school Physics teacher,

to whom I owe a greater debt than any other teacher in my life. A heartfelt thanks to all

my friends outside my academic circle including my high-school and college friends for

their unwavering support throughout this journey. Animesh, Sagar, Vishal, Akash, Mo-

hit, Piyush, and the entire Y8 2-top group deserve special mention.

This past year and half since covid-19 hit, has definitely shown how fortunate many of

us are in life. I see the world around me full of people, who are far more deserving of the

gifts life has offered me, but are less fortunate. We are surrounded by people, who make

our lives better, and never get any credit for it. These are the janitors in our offices, the

administrative staff in our buildings, the shuttle/bus drivers, the maintenance crew, the

security officers, and most significantly in the current times, the frontline health workers.

I thank them all.

Lastly and most importantly, I am grateful to my parents for their unconditional love

and selfless care; to my brother and sister-in-law for their consistent support throughout

this journey; and to my nephew Avyaan, who just turned one, well, for being. My mother

is the most hardworking person I know. I guess she passed some of that on to the next

generation. Even post retirement, my parents have an amazing zeal to learn something

new everyday. I hope their enthusiasm continues to inspire me as well. Finally, I would

like to thank my wife, Shweta, whose mere presence makes the world a better place. “You

make me wanna be a better man.”

viii

TABLE OF CONTENTS

Acknowledgments vii

List of Tables xiv

List of Figures xv

1 Introduction 1

1.1 Mesh Networks . 3

1.1.1 Self-localization and Target Tracking using Network of Agents 3

1.1.2 Online Convex Optimization over Network of Agents 5

1.2 Stochastic Nonconvex Optimization over Star-Topology 7

1.3 Zeroth-Order Stochastic Nonconvex Optimization 9

1.4 Organization of the Dissertation . 10

1.5 Bibliographic Note . 10

2 Cooperative Self-localization and Multi-target Tracking 13

2.1 Introduction . 13

2.1.1 Related Work . 14

2.1.2 Our Contributions . 15

2.2 System Model and notation . 16

2.2.1 Notation . 16

2.2.2 Assumptions . 17

2.2.3 System Model . 19

ix

2.3 The SCS-MTT filter . 22

2.3.1 The SCS-MTT filter: the BP message passing scheme 23

2.3.2 Agent and target inference . 29

2.4 Decentralized Gaussian Mixture SCS-MTT filter 30

2.4.1 GM prediction and likelihood messages 33

2.4.2 Agent belief via centralized GM product 36

2.4.3 Target belief via decentralized GM product 40

2.5 Decentralized Gaussian SCS-MTT filter . 46

2.6 Simulation Results . 48

2.6.1 SCS-MTT vs SPAWN . 51

2.6.2 Single Gaussian vs Gaussian mixture SCS-MTT filters 53

2.6.3 Centralized vs decentralized Gaussian mixture 54

2.7 Summary . 55

3 Distributed Online Convex Optimization 56

3.1 Introduction . 56

3.1.1 Related Work . 57

3.1.2 Our Contributions . 59

3.2 Problem Formulation . 60

3.2.1 Performance Metrics - Dynamic Regret and Fit 60

3.3 Background and Assumptions . 61

3.3.1 Network . 61

3.3.2 Local Objective Functions and Constraints 62

3.3.3 Bregman Divergence . 63

3.3.4 Projection . 64

3.4 Distributed Primal-Dual Mirror Descent based Algorithm 65

3.5 Dynamic Regret and Fit Bounds . 66

3.5.1 Some Intermediate Results . 66

x

3.5.2 Dynamic Regret and Fit Bounds . 70

3.6 Conclusion . 73

4 Distributed Stochastic First-order Optimization: PR-SPIDER 74

4.1 Introduction . 74

4.1.1 Problem . 74

4.1.2 Related Work . 76

4.1.3 Our Contributions . 81

4.1.4 Notations and Assumptions . 82

4.2 Parallel Restarted SPIDER - Finite Sum Case . 83

4.2.1 Proposed Algorithm . 83

4.2.2 Convergence Result . 85

4.2.3 Convergence Analysis . 86

4.3 Parallel Restarted SPIDER - Online Case . 94

4.3.1 Proposed Algorithm . 94

4.3.2 Convergence Result . 95

4.3.3 Convergence Analysis . 97

4.4 Simulation Results . 101

4.5 Drawbacks of PR-SPIDER and A Novel Algorithm to Fix Them 104

4.5.1 Drawbacks of PR-SPIDER . 104

4.5.2 STEM Algorithm . 105

4.5.3 Main results: convergence guarantees for STEM 106

4.5.4 Simulation Results for STEM . 108

4.6 Summary . 110

5 Stochastic Zeroth-order Optimization: Hybrid Gradient Descent 111

5.1 Introduction . 111

5.1.1 Motivating Application: Adversarial Example Generation 112

xi

5.1.2 Related Work . 112

5.1.3 Our Contributions . 113

5.2 Preliminaries . 114

5.3 Hybrid Gradient Estimator . 116

5.4 ZO Hybrid Gradient Descent . 123

5.4.1 The Algorithm . 123

5.4.2 Technical challenges of ZO-HGD. 124

5.4.3 Convergence analysis. 124

5.4.4 Comparison with Other Methods . 131

5.4.5 Tradeoff between RGE and CGE in ZO-HGD. 132

5.5 ZO-HGD for Convex Optimization . 135

5.6 Simulation Results . 136

5.7 Summary . 139

6 Conclusion 140

6.1 Summary . 140

6.2 Future Directions . 141

6.2.1 Federated Learning . 141

6.2.2 Online Nonconvex Optimization . 143

6.2.3 Stochastic Compositional Optimization 144

A Appendix 145

A.1 Cooperative Self-localization and Multi-Target Tracking 145

A.2 Distributed Online Convex Optimization . 148

A.2.1 Proof of Lemma 3.5.1 . 148

A.2.2 Proof of Lemma 3.5.2 . 149

A.2.3 Proof of Lemma 3.5.3 . 152

A.3 PR-SPIDER: Convergence of the Finite-sum case 154

xii

A.3.1 Proof of Lemma 4.2.2 . 154

A.3.2 Proof of Lemma 4.2.3 . 156

A.3.3 Intermediate results for Lemma 4.2.4 . 157

A.3.4 Choice of γ . 161

A.4 Zeroth-order Hybrid Gradient Descent . 162

A.4.1 Mathematical Notations . 162

A.4.2 Proof of Proposition 5.3.1 . 162

A.4.3 Proof of Proposition 5.3.2 . 165

A.4.4 Choice of α . 167

A.4.5 Special Cases of Theorem 5.4.3 . 169

A.4.6 Convex Case . 170

A.4.7 Proof of Theorem 5.5.1 (Convex Case) 171

A.4.8 Special Cases of Theorem 5.5.1 (Convex Case) 174

A.4.9 Proof of Theorem 5.5.1 (Strongly Convex Case) 176

References 181

xiii

LIST OF TABLES

2.1 State transition kernels for different values of target existence indicators. The func-

tion fD(·) is a dummy pdf [126]. 19

2.2 Gaussian mixture parameters for the message passing scheme of Algorithm 1. . . . 34

2.3 Conditional sampling of a new label vector i′ given previous labels i in syn-

chronous and Hogwild! Gibbs. 42

4.1 IFO complexity of different algorithms to reach an ε-stationary point, for the stochas-

tic smooth non-convex optimization problem. Õ(·) hides logarithmic factors. . . . 78

4.2 Communication and computation complexities of different algorithms to reach an

ε-FoS point, for the stochastic smooth non-convex optimization problem. 80

5.1 Comparison of different ZO algorithms, for solving smooth, nonconvex optimiza-

tion problems. 133

5.2 Randomly selected 5 over 10 images in one trial from our universal black-box

attack generation using ZO-SGD, ZO-SCD, ZO-signSGD and ZO-HGD. 139

A1 Comparison of smoothing parameters and convergence rates, for difference regimes

of RGE and CGE query budgets . 174

xiv

LIST OF FIGURES

1.1 Two possible topologies for distributed systems 2

2.1 Factor graph representing the factorization of (2.11), for one time step. 24

2.2 GM processing flowchart of the DGM-SCS-MTT filter at time n. 32

2.3 Ground truth trajectories of agents and targets plotted over time (top), along with

the true target cardinality over time (bottom). 48

2.4 Comparison of the average agent RMSE and target OSPA error for SPAWN and

the proposed SCS-MTT filter. 51

2.5 Comparison of the average agent RMSE and target OSPA error, for the single

Gaussian (G) and Gaussian mixture (GM) filters. 52

2.6 Comparison of cardinality estimates for the different GM filters. 53

2.7 Comparison of average agent RMSE and target OSPA error for the DGM-SCS-

MTT and CGM-SCS-MTT filters. 54

4.1 Convergence of PR-SPIDER for over MNIST dataset. 102

4.2 Convergence of PR-SPIDER for ResNet20 over CIFAR-10 dataset. 103

4.3 Training loss and testing accuracy in the moderate heterogeneity setting. b = 8

and I = 61. 109

4.4 Training loss and testing accuracy in the moderate heterogeneity setting. b = 64

and I = 7. 109

4.5 Training loss and testing accuracy in the high heterogeneity setting. b = 8 and

I = 61. 109

xv

5.1 Averaged objective value when solving problem (5.37) over 50 random trials ver-

sus the number of function queries. 137

5.2 Comparison of ZO-HGD with other methods for generating universal adversarial

perturbations. 138

A1 Ground truth trajectories of agents and targets, plotted over time. 145

A2 Average RMSE in agent location estimates over time. 146

A3 Mean OSPA error, position error, and cardinality error for targets plotted over time. 147

xvi

1

CHAPTER 1

INTRODUCTION

The current age of Big Data is built on the foundation of distributed systems, and efficient dis-

tributed algorithms to run on these systems [195]. With the rapid increase in the volume of the

data being fed into these systems, storing and processing all this data at a central location becomes

infeasible. Such a central server requires a gigantic amount of computational and storage resources

[194]. Also, the input data is usually collected from a myriad of sources, which might inherently

be distributed [98]. Transferring all this data to a single location might be expensive. Depending

on the sensitivity of the underlying data, this might also lead to concerns about maintaining the

privacy and anonymity of this data [103]. Therefore, even in situations where it is possible to have

central servers, it is not always desirable.

Distributed systems might have 1) star-shaped topology (Figure 1.1a), where each worker node

(denoted by Wi, i = 1, . . . , 5) is connected to a server (denoted by S), but the workers do not

get to communicate with each other; or 2) mesh topology or a network of interconnected workers

(Figure 1.1b), where each worker can communicate with a small number of workers, often in its

geographical vicinity.

In this dissertation, we consider both these kinds of distributed systems to solve different, but

somewhat related problems.

2

(a) Star Topology (b) Mesh Topology

Fig. 1.1: Two possible topologies for distributed systems

1. For systems with workers1 connected in a mesh-topology, we study the following problems.

• A simultaneous localization and multi-target tracking problem. Multiple mobile agents

localize themselves cooperatively, while also tracking multiple, unknown number of

mobile targets, in the presence of measurement-origin uncertainty.

• An online convex optimization problem, where a network of agents cooperate to min-

imize a global time-varying objective function. However, only the local functions are

revealed to individual agents. The agents also need to satisfy their individual con-

straints.

2. For distributed systems with a star-shaped topology, we study two related distributed stochas-

tic nonconvex optimization problems. The proposed first-order algorithm is optimal in terms

of computation, and state-of-the-art in terms of the communication requirements.

3. Finally, we study a single-node2 zeroth-order stochastic non-convex optimization problem.

This problem finds application in adversarial example generation for attacking deep neural

networks.
1In this dissertation, we use the terms devices, nodes, agents to mean the same thing
2As a logical next step to the previous problem, we study the scenario where the gradient of the cost function is no

longer available. However, to simplify the analysis, we focus only on the single-node case.

3

In the following sections, we describe all these problems in some detail.

1.1 Mesh Networks

Networks consisting of mobile interconnected agents with different sensing capabilities have found

numerous applications in a multitude of applications including surveillance [5], target tracking

[13], intelligent transportation systems [163, 164], and robotics [24]. In Chapters 2, we address

the problem of using such a network of multiple mobile agents to track multiple (unknown, time-

varying number of) mobile targets. In addition to tracking the targets, the agents are supposed

to cooperatively estimate their own locations (states) as well. In Chapter 3, we consider a more

abstract mathematical formulation of online convex optimization. A network of agents cooper-

atively minimize a global time-varying objective function, while also satisfying their individual

time-varying constraints. Next, we discuss both the problems in more detail.

1.1.1 Self-localization and Target Tracking using Network of Agents

In GPS-denied environments and for agents with limited power, cooperative self-localization (CS)

schemes that rely on inter-agent measurements become necessary. The objective of multi-target

tracking (MTT) is the estimation of the states of an unknown and time-varying number of targets.

At any time instant, the sensors of an agent produce two kinds of measurements:

1. Inter-agent measurements - by observing other agents in proximity, and

2. Target measurements - by observing the targets that are within the measurement range of the

agent.

Due to the collaborative nature of CS, the inter-agent measurements are assumed unambiguous,

i.e., the identity of the neighboring agent is known for each inter-agent measurement. On the

other hand, targets are non-cooperative and the measurement-to-target associations are not known.

Clutter and missed detections also affect the target measurement set. We refer to the problem as

4

(S)imultaenous CS-MTT. At each time instant, each agent is supposed to estimate its own state,

as well as the states of all the targets, by communicating only with its neighboring agents. Unlike

some existing work [74], the agents do not exchange their raw measurements, since this incurs

huge bandwidth overhead, especially with large image or video measurements. Instead, agents

maintain state estimates (for themselves, and for the targets) using marginal posterior densities.

Past work has focused on bits and pieces of this problem. In [192], CS is achieved via the

SPAWN (Sum-Product Algorithm over a Wireless Network) method which relies on Belief Prop-

agation (BP) [101]. In [127], simultaneous cooperative self-localization and target tracking is

performed. However, the number of targets is assumed fixed and known. In addition, perfect asso-

ciation between measurements and targets is assumed known at each agent. These two assumptions

are relaxed in [126]. However, the algorithm is centralized and only solves the tracking problem,

without sensor self-localization. The problem of SCS-MTT, in its full generality that we consider

here, has not been tackled so far in the literature.

Also, existing methods rely on particle representations of agent and target probability densities

and the BP messages. Particle filters (PF) [47] are methods for sequential estimation of the state

vector in highly non-linear and/or non-Gaussian state systems. However, the computational and

communication requirements of PF-based methods can be quite high. This creates a bottleneck

from the computational standpoint in real-time applications. Gaussian densities, on the other hand,

are simpler, yet limited in their expressive power. Gaussian mixture densities strike a balance

between the two extremes, and can be tweaked towards either end, by varying the number of

modes.

Our Contributions

• We propose an efficient, decentralized BP message passing based algorithm for simultaneous

cooperative self-localization (of mobile agents) and multi-target tracking (SCS-MTT), under

measurement-to-target association uncertainty. The factor graph of the joint posterior over

agent and target states has cycles and several message orderings are possible. The novelty of

5

our contribution also lies in the ordering of messages that ensures a reduced amount of data

exchange over the network.

• To save on the computational and communication costs of particle filters, we model the

state densities using single Gaussians and Gaussian mixtures (GMs). The Gaussian-based

and GM-based filters achieve network-wide consensus over the target beliefs, i.e., over the

means, covariance matrices and component weights of the Gaussian Mixtures (GM). Our

GM-based approach allows a robust trade-off between computational efficiency (GMs with

fewer modes) and modeling accuracy (higher number of modes).

• In case of GMs, the decentralized computation of target beliefs involves a product of GM

likelihood messages (stored at different agents) and a GM prior. The number of components

in the complete GM product is exponential in the number of agents. To overcome this high

complexity, we propose a novel decentralized Gibbs mechanism, extending the centralized

Gibbs approach proposed in [168], to sample only the components of the GM product with

the highest weights, and thus approximate the entire product. This approach of efficiently

computing product of GMs will be of independent interest to the research community.

• Our numerical results show that the performance of the proposed decentralized algorithm

is close to its centralized counterpart. Numerical experiments also exhibit performance im-

provement compared to a separate SPAWN (for localization) and MTT approach (see [127]).

1.1.2 Online Convex Optimization over Network of Agents

Next, in Chapter 3, we discuss a more abstract, mathematical problem, under the paradigm of on-

line convex optimization (OCO) [76, 157]. In this paradigm, the agent makes decisions iteratively.

After taking the decision/action, the agent incurs a loss/cost. Owing to the dynamic nature of the

problem, the loss function might vary across time. Also, the agent might need to satisfy some

individual constraints, which might be fixed across time, or might themselves be time-varying. We

consider this problem in the context of agents, connected in a network.

6

A set of nodes, jointly aim to minimize a global objective function, which is the sum of local

convex functions. The objective and constraint functions are revealed locally to the nodes, at each

time, after taking an action. To quantify the performance of the proposed algorithm, we utilize the

metrics of dynamic regret [20] and fit [144]. Dynamic regret measures the cumulative (over time)

loss incurred by the algorithm, compared to the best possible dynamic strategy. On the other hand,

fit measures the long term cumulative constraint violations. The aim of OCO algorithms is to prove

that the regret (and fit) are sublinear in the time horizon (usually denoted by T). If the regret is

sublinear, on average (averaged over T), the decisions taken by the agent are as good as those of

an agent with complete knowledge of the loss functions ahead of time. Similarly, a sublinear fit

implies, on average, no constraint violation.

Our Contributions

• We consider the distributed online convex optimization problem, with nodes arranged in a

mesh topology. The cost functions and the time-varying inequality constraints are revealed

locally to the individual nodes. With a dynamic benchmark, this problem has so far not been

considered in the literature even with static non-coupled inequality constraints.

• We propose a distributed primal-dual mirror descent based approach, in which the primal

and dual updates are carried out locally at all the nodes. This is followed by sharing and

mixing of the primal variables by the local nodes via communication with the immediate

neighbors.

• We prove that the proposed algorithm has sublinear dynamic regret. In other words, over

time, the proposed algorithm performs as well as a clairvoyant algorithm, which has all the

information of the network, ahead of time. We also prove the dynamic fit to be sublinear,

i.e., on average, the cumulative constraint violation over time, averaged across all the nodes

in the network is zero.

A special case of the online optimization problem described above is when the cost function is

7

not time-varying. In that case, the problem reduces to that of stochastic optimization. This special

case enables rich mathematical analysis, which has so far not been done for the more general online

case. For example, other than some notable exceptions [197, 4, 59, 169], the online optimization

literature is limited to the convex case. On the other hand, over the past decade, much progress

has been made in the stochastic optimization literature on nonconvex problems. In the next two

sections, we outline our work on stochastic nonconvex optimization.

1.2 Stochastic Nonconvex Optimization over Star-Topology

One of the factors which has made this Big Data explosion possible is the meteoric rise in the

capabilities, and the consequent proliferation, of end-user devices [98]. These worker nodes or

machines have significant storage and computational resources. One simple solution to the poten-

tial central server bottleneck problem faced by distributed systems is for the server to offload some

of its conventional tasks to these workers [194]. More precisely, instead of sharing its entire data

with the server, which is expensive communication-wise, each worker node carries computations

on its data itself. The results of these “local” computations are then shared with the server. The

server aggregates these local updates from multiple workers to arrive at a “global” estimate, which

is then shared with all the workers.

In Chapter 4, we solve a distributed optimization problem on worker-server or star-shaped

architecture. This problem has application in several domains including robust regression [179],

sparse regression [132], image denoising [1], and community detection in social networks [82] to

name a few. The optimization problem we solve is as follows:

min
x∈Rd

f(x) ,
1

N

∑N

i=1
fi(x),

where N is the number of worker nodes. The local function corresponding to node i, fi(x) is

a smooth, potentially non-convex function. This problem has been extensively studied in the lit-

erature [159, 182, 172]. See the survey [116] and the reference therein. The ideal solution for

8

this problem should have two properties: 1) optimal computation cost, i.e., the algorithm should

achieve the solution (Definition 4.1.1) in minimum number of iterations, and 2) optimal commu-

nication cost, i.e, to reach the solution, the nodes should require the minimum amount of commu-

nication with the server. Our work in Chapter 4 satisfies both these requirements.

Our Contributions

• We propose a distributed first-order algorithm for the smooth, non-convex optimization prob-

lem described above. The algorithm is a non-trivial extension of the single-node SPIDER

algorithm [52, 187] to the distributed case. We combine elements of periodic averaging

[203] with SPIDER, while carefully choosing the update frequency. The proposed approach

achieves the optimal computation complexity, while also achieving linear speedup with re-

spect to the number of nodes N .

• The communication complexity achieved is also the best known in the literature. To the best

of our knowledge, the only other work to achieve the same communication complexity is

[200] (but with a higher computation cost).

• Compared to several existing approaches which require the samples across nodes to follow

the same distribution, our approach is more general in the sense that the data distribution

across nodes may be different (hence, our approach is applicable to the more general feder-

ated learning problem [98]).

In Chapter 4, the method proposed is a first-order algorithm. Therefore, we assume access to the

IFO oracle (Definition 4.1.2), which returns the loss function value and the gradient vector at the

specified point. However, in many situations, the analytical expressions of the objective functions

are either expensive or infeasible to obtain. In such cases, we only have access to function values.

This precludes using any first-order methods. As discussed next, in Chapter 5, we describe a

method for stochastic nonconvex optimization, which only uses function values.

9

1.3 Zeroth-Order Stochastic Nonconvex Optimization

Derivative-free optimization (DFO) methods [37, 102] have become increasingly popular in recent

years, owing to the advent of several machine learning applications where the analytical expres-

sions of the objective functions are either expensive or infeasible to obtain. Some examples of

such applications are black-box adversarial example generation in deep neural networks (DNNs),

reinforcement learning, and control and management of time-varying networks with limited com-

putational resources [118].

Zeroth-order (ZO) methods form a special class of DFO methods which can be seen as gradient-

less versions of first-order (gradient-based) optimization methods [152, 136, 61]. ZO optimization

involves approximating the full/stochastic gradient of the function using only the function values,

and using this gradient estimator in the first-order (FO) optimization framework [137]. Advantages

of ZO-methods, over conventional DFO methods like direct-search based methods [22, 18], and

trust-region methods [36], are the ease of implementation and the convergence properties of these

methods.

ZO algorithms often suffer from the high variance of gradient estimates. The existing esti-

mators involve choosing between saving on the function query cost [61], and achieving higher

accuracy of the gradient estimates [113]. A principled approach, which allows a trade-off between

accuracy and function query cost is so far missing in the literature.

Our Contributions

We summarize our contributions below:

• We propose a novel function value based gradient estimator (we call HGE, hybrid gradient

estimator), which takes advantage of both the query-efficient random gradient estimate and

the variance-reduced coordinate-wise gradient estimate. We also develop a coordinate im-

portance sampling method to further improve the variance of HGE under a fixed number of

function queries.

10

• We propose a ZO hybrid gradient descent (ZO-HGD) optimization method with the aid of

HGE, to solve a stochastic optimization problem, in the absence of a gradient oracle. We

show that ZO-HGD is general since it covers ZO stochastic gradient descent (ZO-SGD)

[61] and ZO stochastic coordinate descent (ZO-SCD) [113] as special cases. We provide

a comprehensive theoretical analysis for the convergence of ZO-HGD across different op-

timization domains, showing that ZO-HGD is efficient in both iteration and function query

complexities.

• We demonstrate the effectiveness of ZO-HGD through a real-world application to generating

adversarial examples from a black-box deep neural network [28, 80]. We show that ZO-HGD

outperforms ZO-SGD, ZO-SCD and ZO sign-based SGD methods in striking a graceful

balance between query efficiency and attack success rate.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we discuss the simultaneous

self-localization and multi-target tracking (SCS-MTT) problem with passive sensing. In Chapter

3, we abstract the active sensing problem to a distributed online convex optimization problem,

with time-varying (adversarial) constraints. In Chapter 4, we discuss the distributed stochastic

nonconvex optimization problem, and the proposed first-order method. This is followed by the

zeroth-order method to solve the stochastic nonconvex optimization problem in Chapter 5. Finally,

in Chapter 6, we conclude with a summary of the major contributions and a discussion of some

possible future directions we intend to pursue.

1.5 Bibliographic Note

The research work appearing in this dissertation has either already been published at various venues

or is currently under review. Following is a list of the published/submitted papers, based on the

11

work during the course of my research work at Syracuse University.

Work Included in the Dissertation

Journal Papers:

• P. Sharma, A. A. Saucan, D. J. Bucci Jr., and P. K. Varshney, “Decentralized Gaussian

Filters for Cooperative Self-Localization and Multi-Target Tracking,” IEEE Trans. Signal

Process., vol. 67, no. 22, pp. 5896–5911, 2019.

Conference Papers:

• P. Sharma, P. Khanduri, L. Shen, D. J. Bucci Jr., P. K. Varshney, “On Distributed Online

Convex Optimization with Sublinear Dynamic Regret and Fit,” accepted in 55th Asilomar

Conference on Signals, Systems, and Computers, 2021.

• P. Sharma, A. A. Saucan, D. J. Bucci Jr., and P. K. Varshney, “On Decentralized Self-

localization and Tracking Under Measurement Origin Uncertainty,” 22th International Con-

ference on Information Fusion (FUSION), 2019.

• P. Sharma, A. A. Saucan, D. J. Bucci Jr., and P. K. Varshney, “On Self-Localization and

Tracking with an Unknown Number of Targets,” 52nd Asilomar Conference on Signals,

Systems, and Computers, 2018.

Under Review:

• P. Khanduri, P. Sharma, H. Yang, M. Hong, J. Liu, K. Rajawat, P. K. Varshney, “STEM:

A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal Sample and Com-

munication Complexities for Federated Learning,” (submitted to NeurIPS, 2021).

• P. Sharma, K. Xu, S. Liu, P.Y. Chen, X. Lin, P. K. Varshney, “Zeroth-Order Hybrid Gradient

Descent: Towards A Principled Black-Box Optimization Framework,” arXiv:2012.11518.

(in revision with IEEE Trans. Signal Process.)

12

• P. Sharma, P. Khanduri, S. Bulusu, K. Rajawat, P. K. Varshney, “Parallel Restarted SPIDER:

Communication Efficient Distributed Nonconvex Optimization with Optimal Computation

Complexity,” arXiv:1912.06036. (submitted to IEEE Trans. Signal Process.)

Work not Included in the Dissertation

Journal Papers:

• P. Sharma, D. J. Bucci Jr., S. K. Brahma, and P. K. Varshney, “Communication Network

Topology Inference via Transfer Entropy,” IEEE Transactions on Network Science and En-

gineering, vol. 7, no. 1, pp. 562–575, 2019.

Conference Papers:

• P. Khanduri, S. Bulusu, P. Sharma, and P. K Varshney, “Byzantine SVRG with Distributed

Batch Gradient Computations,” 11th OPT Workshop on Optimization for Machine Learning,

2019.

• K. R. Varshney, P. Khanduri, P. Sharma, S. Zhang, and P. K. Varshney, “Why Interpretability

in Machine Learning? An Answer Using Distributed Detection and Data Fusion Theory",

Third Annual Workshop on Human Interpretability in Machine Learning (WHI) 2018.

Under Preparation:

• P. Khanduri, P. Sharma, S. Kafle, S. Bulusu, K. Rajawat, P. K. Varshney, “Distributed

Stochastic Non-Convex Optimization: Momentum-Based Variance Reduction,” arXiv preprint

arXiv:2005.00224.

13

CHAPTER 2

COOPERATIVE SELF-LOCALIZATION AND

MULTI-TARGET TRACKING

In this chapter, we address the problem of Simultaneous Cooperative Self-localization and Multi-

Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations be-

tween measurements and target tracks are unknown.

2.1 Introduction

In GPS-denied environments and for agents with limited power, cooperative self-localization (CS)

schemes that rely on inter-agent measurements become necessary. The objective of multi-target

tracking (MTT) is the estimation of the trajectories of an unknown and time-varying number of tar-

gets. At any time instant, the sensors of an agent produce two kinds of measurements: inter-agent

measurements - by observing other agents in proximity, and target measurements - by observing

the targets that are within the measurement range of the agent. Due to the collaborative nature of

CS, the inter-agent measurements are unambiguous, i.e., the identity of the neighboring agent is

known for each inter-agent measurement. On the other hand, targets are non-cooperative and the

measurement-to-target associations are not known. Clutter and missed detections also affect the

14

target measurement set.

2.1.1 Related Work

In [192], CS is achieved via the SPAWN (Sum-Product Algorithm over a Wireless Network)

method which relies on Belief Propagation (BP) [101, 198] for an efficient evaluation of marginal

agent posterior densities. The factorization of a joint posterior density is leveraged by BP to ef-

ficiently compute marginals. Techniques that address MTT under association uncertainty can be

classified as hard (finding the most likely association map) [154], [178] and soft or marginal-based

(computing the target state marginal distribution over all measurement-to-target associations) [12].

MTT with multiple static agents is addressed in [135, 45, 134, 126] and [153].

In [127], an iterative BP message-passing method is proposed for simultaneous cooperative

self-localization and target tracking. That is, the target measurements are used for CS in addition

to the inter-agent measurements. State inference for both the agents and targets benefits from the

exchange of probabilistic information between the CS and tracking tasks. However, the number

of targets is assumed fixed and known in [127]. In addition, perfect association between measure-

ments and targets is assumed known at each agent. These two assumptions are relaxed in [126],

which employs the BP message passing approach of [190, 191] to compute marginal measurement-

to-target association probabilities followed by marginal target densities. However, the algorithm

is centralized and without sensor self-localization. For a general overview of BP-based methods

for MTT, we refer the reader to [124]. Methods in both [127] and [126] rely on particle repre-

sentations of agent and target probability densities and the BP messages. Particle filters (PF) [47]

are methods for sequential estimation of the state vector in highly non-linear and/or non-Gaussian

state systems. However, the computational and communication requirements of PF-based methods

can be quite high.

A simultaneous CS-MTT (SCS-MTT) method for intelligent transportation systems was pro-

posed in [23], where a MAP rule is employed to select the measurement-to-target associations with

the highest marginal probabilities. Additionally, a decentralized single Gaussian implementation

15

is given. In [57], a centralized BP method for agent localization is proposed, which only uses

target measurements. The number of targets is assumed known. This is extended in [129], where

the number of targets is unknown. The agents can exchange their location information as well

as the target measurements to assist each other. A BP-based method for CS is proposed in [128]

where association uncertainty is considered for the inter-agent measurements. BP-based methods

for SCS-MTT under measurement and/or dynamic model uncertainties were proposed in [125] and

[165].

2.1.2 Our Contributions

We propose an efficient, decentralized BP message passing based algorithm for simultaneous coop-

erative self-localization (of mobile agents) and multi-target tracking (SCS-MTT), under measurement-

to-target association uncertainty, extending the work in [126] and [127]. As in [126], the data

association problem is solved using an iterative BP-based approach [190]. Unlike [129], target

measurements are not shared across agents.

• We propose a novel factoring of the joint posterior over agent and target states. Since the

resulting factor graph has cycles, several message orderings are possible. The novelty of

our contribution also lies in the ordering of messages that ensures a reduced amount of data

exchange over the network.

• We compare the performance of a centralized, PF-based implementation of this approach,

with a separate SPAWN and MTT method which first localizes the agents using SPAWN and

subsequently performs MTT, similar to the method of [126].

• Next, we propose the more computationally efficient decentralized Gaussian-based (DG)

and decentralized Gaussian-Mixture based (DGM) approaches, which we call DG-SCS-

MTT and DGM-SCS-MTT filters respectively. For most kinematic tracking applications,

the communication loads of DG-SCS-MTT and DGM-SCS-MTT are significantly smaller

than the PF implementations.

16

• Our numerical results show that the performance of the decentralized algorithm that employs

these techniques is similar to its centralized counterpart. Numerical experiments exhibit

improved performance of both DG-SCS-MTT and DGM-SCS-MTT filters when compared

to a separate SPAWN [192] (for localization) and MTT [126] approach.

The chapter is organized as follows. The system model and notation is discussed in Section 2.2,

followed by the proposed SCS-MTT filter in Section 2.3. The decentralized Gaussian-mixture and

single Gaussian filters are discussed in Sections 2.4 and 2.5 respectively. We present the simulation

results in Section 2.6, followed by conclusion in Section 2.7.

2.2 System Model and notation

The notations, assumptions, and the resulting system model are presented in the following sections.

The system model is essentially a combination of the system models in [126, 127]. Therefore, a

lot of notation is also borrowed from [126, 127].

2.2.1 Notation

Agent and target states

For a, b ∈ N, we denote with [a : b] the set of positive integers {a, a + 1, · · · , b}. We denote the

set of agents by A , [1 : S], and the set of Potential Targets (PTs) by T , [1 : K], where K is the

maximum possible number of PTs present. The state of agent s at time n is denoted by yn,s ∈ Rda .

PT k ∈ T is described at time n, by state xn,k ∈ Rdt alongside a binary variable, rn,k, that

indicates its existence at time n (rn,k = 1 for presence, 0 for absence). The time-varying number

of targets is accounted for via the variables {rn,k} while target existence can be inferred from the

probability of existence Pr(rn,k = 1). We further define the joint state vector of all the PTs at

time n, xn ,
[
xTn,1, · · · ,xTn,K

]T , and the across-time vector, x ,
[
xT0 , · · · ,xTn

]T . In an analogous

manner, we introduce the joint vectors at time n, rn and yn, and across-time vectors r and y. Let

17

x̃n,k = [xTn,k, rn,k]
T be the augmented state vector for PT k at time n. We also define x̃n = [xTn , r

T
n]T

and x̃ = [xT , rT]T . In addition, we introduce the notation
∫

(·)dx̃n,k ,
∑

rn,k∈{0,1}
∫

(·)dxn,k. If

f(x̃n,k) ≡ f(xn,k, rn,k) is the augmented state probability density for PT k, then the probability of

existence at time n is P e
n,k , Pr(rn,k = 1) =

∫
f(xn,k, 1)dxn,k.

Inter-agent Measurements

For agent s, let An,s ⊆ A denote the set of its neighboring agents, i.e., agents that are within its

inter-agent measurement range, at time n. Let ws,`;n ∈ Rdw be the measurement that agent smakes

with respect to the neighboring agent ` ∈ An,s, at time n. The inter-agent measurement likelihood

is denoted as f(ws,`;n|ys,n,y`,n). The stacked vector of the inter-agent measurements at agent s at

time n is denoted by ws;n. Let wn ,
[
wT

1;n, · · · ,wT
S;n

]T and w ,
[
wT

1 , · · · ,wT
n

]T .

Target Measurements

Agent s observes a subset Tn,s ⊂ T of PTs that are within its target-measurement range. We also

define the set of agents observing PT k at time n as An,k = {s ∈ A : k ∈ Tn,s}. Since targets

are non-cooperative, the collection of target measurements suffers from missed detections, clutter

and association uncertainty. Let M s
n be the number of target measurements gathered by agent s at

time n. Let zsn , [(zsn,1)T , · · · , (zsn,Ms
n
)T]T be an arbitrarily ordered collection of these measure-

ments, with zsn,m ∈ Rdz ∀ m ∈ Mn,s , [1 : M s
n]. Furthermore, let zn , [(z1

n)T , · · · , (zSn)T]T ,

z , [(z1)T , · · · , (zn)T]T , mn , [M1
n · · ·M s

n]T and m , [mT
1 , · · · ,mT

n]T . The likelihood of

measurement zsn,m made by agent s, if it corresponds to PT k is f(zsn,m|yn,s,xn,k). A PT xn,k

is detected by agent s with probability P s
D(xn,k). Finally, zsn also contains clutter measurements,

independently sampled from a Poisson point process. The rate of clutter points is λsn and their

probability distribution is fFAn,s (z), for measurement z.

2.2.2 Assumptions

Our assumptions in this work stem from [126, 127] and are provided in the following:

18

(A1) Agent and target states are a priori independent and evolve independently in time according

to Markov processes.

(A2) The communication graph Gn that spans the decentralized network of agents is connected at

all times and the communication links between the agents are bidirectional.

(A3) Given the current agent states yn and augmented target states x̃n, the measurements wn

and zn are conditionally independent of past (w1:n−1, z1:n−1) and future (wn+1:∞, zn+1:∞)

measurements, i.e., f(wn, zn|w1:n−1, z1:n−1,wn+1:∞, zn+1:∞,yn, x̃n) = f(wn, zn|yn, x̃n).

(A4) Current agent and target states yn, x̃n, are conditionally independent of all the past measure-

ments w0:n−1, z0:n−1 given the previous states yn−1 and x̃n−1.

(A5) Given yn, the inter-agent measurements ws,`;n and ws′,`′;n are conditionally independent if

(s, `) 6= (s′, `′).

(A6) Given yn and x̃n, the target and agent measurements zn and wn are conditionally indepen-

dent and furthermore f(wn, zn|yn, x̃n) = f(wn|yn)f(zn|yn, x̃n).

(A7) At any time n, an existing target can generate at most one measurement at any agent, and

any target measurement at an agent is generated by at most one existing target [13, 122]. The

detection process is independent for different targets and across different agents.

(A8) Target measurements zn suffer from origin uncertainty, i.e., the associations between the

individual measurements of zn and the PT x̃n are unknown. Some measurements are due to

clutter and some PTs are not detected.

(A9) Inter-agent measurements do not suffer from origin uncertainty. Agent s knows that mea-

surement ws,`;n originates from agent ` ∈ An,s and the inter-agent measurement links are

bidirectional, i.e., ` ∈ An,s ⇔ s ∈ An,` for s, ` ∈ S.

(A10) Each agent knows its own prior and dynamic model and the priors and dynamic models of

all PTs. All agents have synchronized internal clocks.

19

rn−1,k rn,k f (xn,k, rn,k|xn−1,k, rn−1,k)
0 1 PB

n,kfb (xn,k)

0 0
(
1− PB

n,k

)
fD (xn,k)

1 0
(
1− P S

n,k

)
fD (xn,k)

1 1 P S
n,k(xn,k)f (xn,k|xn−1,k)

Table 2.1: State transition kernels for different values of target existence indicators. The function fD(·) is a
dummy pdf [126].

The SPAWN approach [192] addresses the problem of self-localization without MTT. In [127],

a perfect knowledge of the target-to-measurement associations is assumed. Also, the number of

targets is known and time-invariant. In [126], these assumptions are removed, but the agents have

perfect knowledge of their positions, i.e., fixed sensors case. In this work, we extend [127] by

relaxing the assumption of known origins of target measurements, and accommodate an unknown,

time-varying number of targets as in [126].

2.2.3 System Model

Under assumption (A1), we denote the agent transition densities with f (yn,s|yn−1,s) ∀ s. For PT k,

the transition kernel f(x̃n,k|x̃n−1,k) ≡ f(xn,k, rn,k|xn−1,k, rn−1,k) accounts for target birth, death

and evolution (in case of survival) as listed in Table 2.1. The dynamic kernel is a function of the

indicator variable rn,k. Here, PB
n,k is the birth probability, fb (xn,k) is the birth pdf, P S

n,k(·) is the

survival probability, and f (xn,k|xn−1,k) is the state transition pdf. Under assumption (A1), the

joint pdf of [yT ,xT , rT]T given by

f(y, x, r︸︷︷︸
x̃

) =
∏S

s=1
f (y0,s)

∏n

n′=1
f (yn′,s|yn′−1,s)

×
∏K

k=1
f (x̃0,k)

∏n

n′=1
f (x̃n′,k|x̃n′−1,k) . (2.1)

To solve the data association problem of assumption (A8), i.e., finding the associations between

measurements and PTs, we use the redundant formulation of association variables proposed in

[190]. Target oriented association variables define the PT-measurement associations at sensor s at

20

time n:

asn,k ,


m ∈Mn,s PT k generated zsn,m at time n,

0 PT k is not detected at time n.
(2.2)

The measurement-oriented association variables are

bsn,m ,


k ∈ K PT k generated zsn,m at time n,

0 zsn,m is a clutter measurement.
(2.3)

Further, we define stacked vectors of association variables: asn , [asn,1, · · · , asn,K]T , an , [(a1
n)T , · · · , (aSn)T]T ,

a , [aT1 , · · · , aTn]T , and bsn , [bsn,1, · · · , bsn,Ms
n
]T ,bn , [(b1

n)T , · · · , (bSn)T]T ,b , [bT1 , · · · ,bTn]T .

Note that asn and bsn are redundant, meaning one can be derived from the other. We define the

indicator function Ψ(asn,k, b
s
n,m)

Ψ
(
asn,k, b

s
n,m

)
,


0, asn,k = m and bsn,m 6= k OR asn,k 6= m and bsn,m = k

1, otherwise,
(2.4)

where {Ψ(asn,k, b
s
n,m)}k,m collectively enforce the association variables asn and bsn to be consistent

[190]. Under the assumptions (A3-A9), the joint measurement likelihood becomes

f (z,w|y, x̃, a,m) = f (w|y) f (z|y, x̃, a,m) (2.5)

=
∏
n′

∏
s

f
(
zsn′
∣∣yn′,s, x̃n′ , asn′ ,M s

n′

)∏
`∈An′,s

f
(
ws,`;n′

∣∣yn′,s,yn′,`) .
Since under assumption (A7) each measurement is caused by a target or clutter, the target mea-

surement likelihood further factorizes as

f(zsn|yn,s, x̃n, asn,M s
n) =

∏
m:bsn,m=0

fFAn,s
(
zsn,m

)
︸ ︷︷ ︸

clutter measurements

×
∏

m:bsn,m=k
and rn,k=1

f
(
zsn,m

∣∣xn,k,yn,s)︸ ︷︷ ︸
Measurements from existing targets

(2.6)

21

which we can rewrite as follows

f(zsn|yn,s, x̃n, asn,M s
n) ∝

∏
k∈K

gk(x̃n,k,yn,s, a
s
n,k; z

s
n) (2.7)

where the normalization factor depends only on fFAn,s (·), hence only on the measurements zsn. For

m ∈ Ms
n

gk
(
xn,k, rn,k = 1,yn,s, a

s
n,k = m; zsn

)
=

f
(
zsn,m|xn,k,yn,s

)
fFAn,s

(
zsn,m

) (2.8)

while gk(xn,k, rn,k = 1,yn,s, a
s
n,k = 0; zsn) = 1. For absent targets (rn,k = 0), gk(xn,k, rn,k =

0,yn,s, a
s
n,k = m; zsn) = 1, ∀m = 0, . . . ,M s

n.

The association variables a, b and the number of measurements m are assumed conditionally

independent across time and across agents, given the states of agents and targets. Thus, the joint

distribution of association variables and the number of measurements, factorizes as

p(a,b,m|y, x̃) =
n∏

n′=1

S∏
s=1

p(asn′ , b
s
n′ ,M

s
n′ |yn′,s, x̃n′)

∝
n∏

n′=1

S∏
s=1

K∏
k=1

hk(x̃n′,k, a
s
n′,k,yn′,s)

Ms
n′∏

m=1

Ψ
(
asn′,k, b

s
n′,m

)
, (2.9)

where the normalization constant depends only on the clutter rate λsn and the number of measure-

ments m [79]. The term hk(·) is defined as

hk(xn,k, 1, a
s
n,k,yn,s) =


P sD(xn,k)

λsn
, if asn,k ∈Ms

n

1− P s
D (xn,k) , if asn,k = 0,

(2.10)

and hk(xn,k, rn,k = 0, asn,k,yn,s) = 1(asn,k) where 1(a) = 1 if a = 0 and 1(a) = 0 otherwise.

Ψ (·, ·) is defined in (2.4).

22

2.3 The SCS-MTT filter

We perform agent and target state inference using the marginal posterior densities. These are

obtained from the joint posterior density using the following factorization, which is derived by

extending analogous results in [126] and [127].

Lemma 2.3.1. The joint posterior density of all the agent and PT states, given inter-agent and

target measurements, up to time n, admits the factorization

f(y, x̃, a,b|z,w) ∝

[
K∏
k=1

f (x̃0,k)
n∏

n′=1

f (x̃n′,k|x̃n′−1,k)

]

×
S∏
s=1

{
f (y0,s)

n∏
n′=1

[
f (yn′,s|yn′−1,s)

(∏
`∈An′,s

f (ws,`;n′ |yn′,s,yn′,`)
)

×
K∏
k=1

(
vsk(x̃n′,k, a

s
n′,k,yn′,s; z

s
n′)

Ms
n′∏

m=1

Ψ
(
asn′,k, b

s
n′,m

))]}
(2.11)

where, vsk(x̃n′,k, a
s
n′,k,yn′,s; z

s
n′)

,



P sD(xn′,k)f
(
zs
n′,m|xn′,k,yn′,s

)
λs
n′f

FA
n′,s

(
zs
n′,m

) , if asn′,k = m 6= 0 AND rn′,k = 1

1− P s
D(xn′,k), if asn′,k = 0, rn′,k = 1

1, if asn′,k = 0, rn′,k = 0

0, otherwise.

PROOF: Note that the number of target measurements M s
n becomes fixed when conditioning on

zsn. Applying Bayes’ rule

f (y,x, r, a,b|z,w) = f (y,x, r, a,b,m|z,w) (2.12)

∝ f (y,x, r)︸ ︷︷ ︸
(i)

· p (a,b,m|y,x, r)︸ ︷︷ ︸
(ii)

· f (z,w|y,x, r, a,b,m)︸ ︷︷ ︸
(iii)

.

where (i) represents the joint distribution (2.1) of the agent and target states up to time n; (ii)

23

represents the data association and detection of the targets given the agent and augmented target

states (2.9)-(2.10); and (iii) represents the joint measurement likelihood, given the states of all

the agents and targets, and their data association relationships (2.5)-(2.8). Substituting the ex-

pressions for (i) − (iii) into (2.12), and defining v(x̃n,k, a
s
n,k,yn,s; z

s
n) , hk(x̃n,k, a

s
n,k,yn,s) ×

gk(x̃n,k, a
s
n,k,yn,s; z

s
n), we obtain (2.11).

The marginals associated with (2.11) can be efficiently computed via BP algorithms that exploit

the structure embedded in its factorization. The factor graph corresponding to (2.11) for a fixed

time step n is shown in Figure 2.11. The factor nodes are shown as rectangles, while the variable

nodes are shown as ovals. Time index n has been omitted from notations and messages passed

between nodes are represented as annotations on each link. Following are the factor nodes: for

PT k, fk , f(x̃n,k|x̃n−1,k); for agent s, gs , f(yn,s|yn−1,s), vk , v(xn,k, rn,k, a
s
n,k,yn,s; z

s
n);

for agent s measuring another agent `, fs,` , f(ws,`;n|yn,s,yn,`), Ψk,m , Ψ(asn,k, b
s
n,m). The

numbered circles 1 − 6 in the block corresponding to sensor s demonstrate the order in which

messages are computed. The beliefs broadcast by the agents at the beginning of each outer loop

are shown by arrows bs and b` coming out of agent state nodes ys and y` respectively.

2.3.1 The SCS-MTT filter: the BP message passing scheme

In this section, we describe our proposed message passing algorithm for inferring the marginal

densities of targets b(x̃n,k) and agents b(yn,s) at time n corresponding to the joint density of (2.11).

For an introduction to BP, the reader is directed to [198]. Since the factor graph of Figure 2.1 has

cycles, multiple message ordering schemes exist. Similar to [126], we assume that: (i) messages

are not sent backward in time, and (ii) marginal association probabilities are evaluated via BP at

each agent.

At each beginning of time step n, using the agent belief b(yn−1,s) from the previous time step,

1This factor graph represents a combination of the factor graph containing the agent and target states from [127,
Figure 2] and the factor graph corresponding to target measurement uncertainty of [126].

24

Fig. 2.1: Factor graph representing the factorization of (2.11), for one time step.

agent s computes the prediction message φ→n(yn,s) given by

φ→n(yn,s) =
∫
f(yn,s|yn−1,s)b(yn−1,s)dyn−1,s. (2.13)

Additionally, each agent also computes locally, the predicted messages α→n(xn,k, rn,k) for all PTs

k ∈ T , using the target state beliefs at the previous time step b̃(x̃n−1,k)

α→n(x̃n,k) =
∫
f(x̃n,k|x̃n−1,k)b(x̃n−1,k) dx̃n−1,k, (2.14)

where the transition density f(x̃n,k|x̃n−1,k) (Table 2.1) incorporates target birth and death in ad-

dition to its kinematic model. Note that (2.13)-(2.14) correspond to the Chapman–Kolmogorov

equations in the prediction step of the recursive Bayesian filters and incorporate the agent and

target dynamic models.

Before the start of the message passing scheme, the agent beliefs at the current time-step b(yn,s)

are initialized with the predicted beliefs φ→n(yn,s), ∀ s ∈ S. Synchronously and in parallel, the

25

agents run the iterative message passing scheme, referred to as the outer BP loop in Algorithm 1.

Each agent s executes the loop P times. Subsequently, we present the BP outer-loop messages in

the order in which they are evaluated in Algorithm 1 while also indicating the corresponding nodes

and messages in the factor graph of Figure 2.1.

At the beginning of an outer loop, each agent broadcasts its belief b(yn,s) to its neighboring

agents ` ∈ An,s (see the arrows coming out of ys,y` in Figure 2.1). The time subscript will be

dropped for the rest of this section since all subsequent messages only involve variables at time n.

We shall use the term “target” generically, and “PT” when referring to a specific potential target k.

We present the expressions of different BP messages involving agent s.

The current beliefs b(y`) of neighboring agents ` ∈ An,s are broadcast, and received at agent

s. Next, agent s computes the likelihood messages Φ`→s (line 6, Algorithm 1) using

Φ`→s(ys) =
∫
f(ws,`|ys,y`)b(y`)dy`. (2.15)

By marginalizing over the state of agent `, the message Φ`→s represents the likelihood of agent

s for the measurement ws,` taken by agent s with respect to agent `. This is followed by locally

computing the single-target association weights βsk(a
s
k = m) between the local measurements zsn

(at agent s) and the target set K. For all the PTs k ∈ K and m ∈ {0, · · · ,M s}, these weights

βsk(a
s
k = m) (line 9 in Algorithm 1 and 1 in Figure 2.1) are given as

βsk(a
s
k = m) =

∫
vsk(x̃k, a

s
k,ys; z

s)δsk(x̃k)θ
s
k(ys)dx̃kdys

=


∫
P sD(xk)f(z

s
m|ys,xk)δsk(xk, 1)θsk(ys)dysdxk

λsfFA
s (zsm)

, if m 6= 0

1−
∫
P s
D(xk)δ

s
k(xk, 1)dxk, if m = 0,

(2.16)

for k ∈ Ts, and βsk(m) = 0 for k /∈ Ts and ∀ m. At the first iteration of the outer BP-loop,

we initialize the messages as δsk(x̃k) = α→n(x̃k) and θsk(ys) = φ→n(ys). In other words, the

association weights in the first outer loop iteration are estimated by marginalizing with respect to

the predicted agent and target densities.

26

Algorithm 1 SCS-MTT outer BP-loop - in parallel ∀ s ∈ S
1: Input: Predicted beliefs φ→n(ys), {α→n(x̃k)}k∈T
2: Initialize: b(ys)← φ→n(ys), θsk(ys)← b(ys) and δsk(x̃k)← α→n(x̃k), ∀ k ∈ Ts
3: for p← 1 to P do (Outer BP iterations)
4: Broadcast b(ys) and receive b(y`) ∀ ` ∈ As
5: for all ` ∈ As do
6: Compute Φ`→s (ys) via (2.15)
7: end for
8: for all k ∈ Ts do
9: Compute βsk (ask) via (2.16)

10: Compute ηsk (ask) as in [190] (Data Association)
11: Compute Λs

k(ys) via (2.17)
12: end for
13: Update agent belief bs(ys) via (2.18)
14: for all k ∈ Ts do
15: Compute θsk(ys) via (2.19)
16: end for
17: for all k ∈ T do
18: Compute γsk(xk, rk) via (2.20) if k ∈ Ts
19: Set γsk(xk, rk) = 1 if k /∈ Ts
20: Network consensus to update b(xk, rk) via (2.21)
21: Compute δsk(x̃k) via (2.22) if k ∈ Ts and p 6= P
22: end for
23: end for
24: Return b(ys) and b(x̃k) ∀ k ∈ T .

Next, these weights {βsk(m)} are used to evaluate the messages {ηsk(m)} (line 10 in Algorithm

1 and 2 in Figure 2.1). This is achieved by a second, inner BP loop which involves message

exchanges between the local association variables asn and bsn of agent s [190]. Similar to other

track-oriented marginal filters such as the JPDAF [12], the SCS-MTT filter evaluates the single–

target association weights βsk followed by an efficient BP evaluation of the marginal association

probabilities. Additionally in SCS-MTT, the uncertainty in the position of agent s is accounted for

in βsk by marginalizing over the message θsk.

The ηsk messages are subsequently used to evaluate the likelihood messages Λs
k(ys) (line 11 in

Algorithm 1 and 3 in Figure 2.1), sent from the factor node vsk of each PT k ∈ Ts, to the agent

27

state node ys.

Λs
k(ys) =

Ms∑
m=0

∫
vsk(x̃k,m,ys; z

s
m)ηsk(m)δsk(x̃k)dx̃k

=
Ms∑
m=1

ηsk(m)

λsfFA
s (zsm)

∫
P s
D(xk)δ

s
k(xk, 1)f(zsm|xk,ys)dxk

+ ηsk(0) ·
[
1−

∫
P s
D(xk)δ

s
k(xk, 1)dxk

]
. (2.17)

The message Λs
k(ys) can be seen as a likelihood function for the target measurements made by

sensor s which also incorporates the target position uncertainty, via δsk(x̃k), and association un-

certainty, via ηsk(a
s
k). The updated belief for agent s can now be evaluated in a Bayesian manner,

that is, by multiplying the predicted message α→n(ys) (i.e., prior) with the inter-agent likelihood

messages Φ`→s ∀ ` ∈ As and agent-to-target likelihood messages Λs
k ∀ k ∈ Ts. More specifically

the updated agent belief (line 13 in Algorithm 1) is given as

b(ys) ∝ φ→n(ys)
∏

`∈As
Φ`→s(ys)

∏
k∈Ts

Λs
k(ys), (2.18)

and normalized as
∫
b(ys)dys = 1 in order to represent an approximation to the agent posterior

probability density. Note that the product of agent-to-target likelihood messages Λs
k ∀ k ∈ Ts

in (2.18) represents the probabilistic transfer of information from target tracking to agent local-

ization. In contrast, for separate localization and MTT algorithms, there are no agent-to-target

likelihood messages Λs
k in the agent belief as probabilistic information is only passed down from

the agents to the targets. Thus, the messages Λs
k ∀ k ∈ Ts lead SCS-MTT methods to improved

agent localization as compared to separate localization and MTT methods.

Next, using the updated agent belief computed in (2.18), the message θsk (ys) (line 15 in Algo-

rithm 1 and 4 in Figure 2.1), sent from ys to factor node vsk, ∀ k ∈ Ts is computed as

θsk(ys) ∝ φ→n(ys)
∏
`∈As

Φ`→s(ys)
∏

k′∈Ts\{k}

Λs
k′(ys) (2.19)

28

and normalized, i.e.,
∫
θsk(ys)dys = 1. The message θsk represents the belief in the localization of

agent s without the benefit of PT k (i.e., θsk(ys) ∝ b(ys)/Λ
s
k(ys)) and is referred to as the extrinsic

information [127] on agent s, seen by PT k.

Next, for each PT k ∈ K, the likelihood message γsk(xk, rk) (line 18 in Algorithm 1 and 5 in

Figure 2.1) from factor node vsk to the variable node x̃k is computed as

γsk(xk, rk) =
∑Ms

m=0

∫
vsk(xk, rk,ys; z

s
m)ηsk(m)θsk(ys)dys

=


∑Ms

m=1

ηsk(m)P sD(xk)

λsfFA
s (zsm)

∫
f(zsm|xk,ys)θsk(ys)dys + ηsk(0) (1− P s

D(xk)) , for rk = 1

ηsk(0), for rk = 0

(2.20)

if k ∈ Ts and γsk(xk, rk) = 1 otherwise. The message γsk represents a likelihood function for PT k

with respect to the measurements made by agent s. It accounts for the uncertainty in the position

of agent s, via θsk, and the uncertainty in the association of the measurements to PT k, via ηsk(a
s
k).

Given the messages γsk from all the agents s ∈ S, we update the target beliefs (line 20 in Algorithm

1) in a decentralized way as

b(xk, rk) ∝ α→n(xk, rk)
∏
s∈S

γsk(xk, rk). (2.21)

Note that (2.21) involves network consensus, i.e., agent s obtains b(x̃k) even if PT k is not observed

by agent s. Network consensus is implementation dependent, i.e., it depends on the representation

of the messages as discrete particle sets or Gaussian mixtures. In Section 2.4.3 and Section 2.5, we

provide algorithms for GM and single Gaussian implementations. Furthermore, the target belief

is normalized as
∑

rk∈{0,1}
∫
b(xk, rk)dxk = 1. Note that (2.21) is reminiscent of the Bayesian

multi-sensor update of a target with prior density α→n(x̃k) and sensor likelihood functions γsk(x̃k).

Finally, for k ∈ Ts, we compute the δsk(xk, rk) messages (6 in Figure 2.1, sent from x̃k to the

factor node vsk) as

δsk(xk, rk) ∝ α→n(xk, rk)
∏

s′∈S\{s}

γs
′

k (xk, rk). (2.22)

29

The message δsk can be seen as the extrinsic information on the state of PT k as seen by agent s

(δsk(xk, rk) ∝ b(xk, rk)/γ
s
k(xk, rk)). Note that (2.22) can be efficiently evaluated (or approximated)

from the belief b(x̃k), hence avoiding additional network-consensus processes, as presented in Sec-

tion 2.4.3 and Section 2.5 for the case of Gaussian mixture and single Gaussian implementations.

Furthermore, the message δsk(xk, rk) is only computed if p 6= P . At the end of the outer iterations,

i.e., when p = P , the agent b(ys) and target b(xk, rk) beliefs represent estimates of their marginal

probability densities for the n-th time step and are used as inputs for the next time step.

Note the similarities between Algorithm 1 and that of [127], with the exception that Algorithm

1 also considers association uncertainty for target measurements which requires the computation of

single-target association weights βsk and the execution of the inner-BP loop, as done in [126]. The

inner-BP loop, as shown in [190], converges to a unique fixed point. In contrast, the convergence

of the overall message passing scheme (outer and inner BP loops) is not guaranteed due to the

presence of loops in the factor graph of Figure 2.1. This can lead to overconfident beliefs, as also

shown in [127], which in practice are countered by performing the outer-BP loop only once per

time-step (i.e., P = 1). The proposed message passing scheme with P = 1 is shown in Section 2.6

and in [127] to accurately localize agents and targets.

2.3.2 Agent and target inference

An MMSE estimate of the state of agent s is obtained via ŷn,s =
∫

ysb(ys)dys, where b(ys) is

the agent marginal density estimated via Algorithm 1. Based on the estimated marginal density

b(xk, rk), PT k is declared a valid target if the estimated probability of existence P e
n,k , Pr(rn,k =

1) =
∫
b(xk, 1)dxk is greater than a specified threshold P e

n,k ≥ τ (in this work τ = 0.5). Subse-

quently an MMSE state estimate is given as x̂n,k = 1
P en,k

∫
xkb(xk, 1)dxk.

We compare the performance of a centralized, PF-based implementation of Algorithm 1, with a

separate SPAWN and MTT method which first localizes the agents using SPAWN and subsequently

performs MTT, similar to the method of [126]. Since the discussion in this chapter is focused

more on the decentralized localization and tracking problem, we have relegated the results of this

30

comparison between two centralized algorithms to Appendix A.1.

In the next two sections, we discuss the Gaussian and Gaussian-mixture based implementation

of the messages derived in this section.

2.4 Decentralized Gaussian Mixture SCS-MTT filter

In this section, we present the Gaussian Mixture (GM) implementation of the messages of Sec-

tion 2.3.1. The filters achieve network-wide consensus over the target beliefs, i.e., over the means,

covariance matrices and component weights of the Gaussian Mixture (GM). For most kinematic

tracking applications, the communication load of the resulting DGM-SCS-MTT filter is signifi-

cantly smaller than the PF implementations. In case of GMs, the decentralized computation of

target beliefs involves a product of GM likelihood messages (stored at different agents) and a GM

prior. The number of components in the complete GM product is exponential in the number of

agents. To reduce this high complexity, we propose a novel decentralized Gibbs mechanism, ex-

tending the centralized Gibbs approach proposed in [168], to sample only the components of the

GM product with the highest weights, and thus approximate the entire product. In parallel, the

agents sample local Gaussian components followed by a synchronization step where a consensus

is reached among the agents regarding the parameters of the resulting product component.

We denote a Gaussian pdf over x ∈ Rd, with mean m and covariance matrix P asN (x; m,P).

A GM density function
∑J

j=1 w
(j)N (x; m(j),P(j)) is compactly denoted as GM

(
x; {(w(j),m(j),P(j))}Jj=1

)
.

Except for likelihood messages, GM messages are normalized
∑J

j=1 w
(j) = 1 for agents while for

targets
∑J

j=1w
(j) ≤ 1. Throughout this section, we employ the following GM assumptions:

(G1) The agent dynamic model is Gaussian with transition kernel f(yn,s|yn−1,s) = N (yn,s; An,syn−1,s,Qn,s).

(G2) The target dynamic model (Table 2.1) involves a constant probability of survival P S
n,k(x) =

P S
n,k, a dynamic model f(xn,k, 1|xn−1,k, 1) = P S

n,kN (xn,k; Bn,kxn−1,k,Σn,k). We also as-

sume a GM birth density fb(xn,k) = GM(xn,k; {(ωB,(j)n,k ,µ
B,(j)
n,k ,Ω

B,(j)
n,k)}J

B
n,k

j=1) with probabil-

ity of birth PB
n,k =

∑JBn,k
j=1 ω

B,(j)
n,k .

31

(G3) The inter-agent measurement model of agent s measuring agent ` is linear with Gaussian

noise: f(ws,`|ys,y`) = N (ws,`; Dsys + F`y`,Ws).

(G4) The target measurement model of agent s is linear with Gaussian noise: f(z|ys,xk) =

N (z; Gsys + Esxk,Rs), and a constant probability of detection pDn,s(x) = PD
n,s.

(G5) The initial marginal densities of agents and PTs are assumed GM.

The constant probability of survival and of detection is a common requirement in GM imple-

mentations of MTT filters (e.g., [181, 180]). Note that the proposed GM-SCS-MTT filter can eas-

ily accommodate GM dynamic kernels for both agents (G1) and targets (G2), and GM likelihood

functions for both inter-agent (G3) and target (G4) measurements. For compactness, we present

the GM expressions for the BP messages of Algorithm 1 under assumptions G1-G5, which, as we

will show further, lead to the following generic GM expressions, for the agent and PT beliefs

b(yn,s) =
∑Jn,s

j=1
w(j)
n,sN (yn,s; m

(j)
n,s,P

(j)
n,s), (2.23)

b(xn,k, 1) =
∑Jn,k

j=1
ω

(j)
n,kN (xn,k;µ

(j)
n,k,Ω

(j)
n,k), (2.24)

and for the extrinsic information messages

θsn,k(yn,s) =
∑Jθn,s→k

j=1
w
θ,(j)
n,s→kN (yn,s; m

θ,(j)
n,s→k,P

θ,(j)
n,s→k), (2.25)

δsn,k(xn,k, 1) =
∑Jδn,k→s

j=1
ω
δ,(j)
n,k→sN (xn,k;µ

δ,(j)
n,k→s,Ω

δ,(j)
n,k→s). (2.26)

Remark. In practice, as well as in Section 2.6, the nonlinear measurement models are often lin-

earized (for example, using the extended Kalman filter [150, Ch. 2.1]).

Such generic forms for all GM messages are shown in the flowchart of Figure 2.2. Decentral-

ized and local computations are colored in red and blue respectively. Detailed expressions for the

GM parameters are presented in the following section. The properties of Gaussian functions [150,

Ch. 3.8] and G1-G4 allow the derivation of closed form GM expressions for the GM-SCS-MTT

32

messages.

Previous time pdfs for all agents and PTs:
b(yn−1,s) = GM(yn−1,s; {w(j)

n−1,s,m
(j)
n−1,s,P

(j)
n−1,s}

Jn−1,s

j=1), ∀ s ∈ A (Pdf’s of all agents from time step n− 1)

b(xn−1,k, 1) = GM(xn−1,k; {ω(j)
n−1,k,µ

(j)
n−1,k,Ω

(j)
n−1,k}

Jn−1,k

i=1) ∀ k ∈ T (Pdf’s of all PTs from time step n− 1)

Prediction step for GM densities (via Chapman-Kolmogorov equations):

• Agents GM φ→n(yn,s) = GM(yn,s; {wφ,(j)→n,s,m
φ,(j)
→n,s,P

φ,(j)
→n,s}

Jφ→n,s
j=1) ∀ s ∈ A (see Section 2.4.1),

• PTs GM α→n(xn,k, 1) = GM(xn,k; {ωα,(j)→n,k,µ
α,(j)
→n,k,Ω

α,(j)
→n,k}

Jα→n,k
i=1) and

α→n(xn,k, 0) = [1− PBn,k + (PBn,k − P
S
n,k)P en−1,k]fD(xn,k) ∀ k ∈ T (see Section 2.4.1).

Outer BP loop: for all agents s in parallel, repeat P times:

• Evaluate Φn,`→s(yn,s) =
∑IΦ

n,`→s
i=1 u

Φ,(i)
n,`→sN (e

Φ,(i)
n,`→s; H

Φ,(i)
n,`→syn,s,C

Φ,(i)
n,`→s) ∀ ` ∈ An,s (see Section 2.4.1).

• Compute single-target measurement association weights βsk(·) for all PTs (see (2.27)).

• Data association (inner BP-loop) for all PTs and obtain ηsk messages as done in [126, Section V.B.2].

• Compute Λsk(yn,s) = u
Λ,(0)
n,k→s +

∑IΛ
n,k→s
i=1 u

Λ,(i)
n,k→sN (e

Λ,(i)
n,k→s; H

Λ,(i)
n,k→syn,s,C

Λ,(i)
n,k→s) (see (2.28)) from PTs k ∈

Tn,s.

• Update agent belief b(yn,s) = GM(yn,s; {w(j)
n,s,m

(j)
n,s,P

(j)
n,s}

Jn,s
j=1) via product of GMs (see Section 2.4.2).

• Compute θsk(yn,s) = GM(yn,s; {wθ,(j)n,s→k,m
θ,(j)
n,s→k,P

θ,(j)
n,s→k}

Jn,s→k
j=1) (see Section 2.4.2).

• Compute γsk(xn,k, 1) = u
γ,(0)
n,s→k +

∑I
γ
n,s→k
i=1 u

γ,(i)
n,s→kN (e

γ,(i)
n,s→k; H

γ,(i)
n,s→kxn,k,C

γ,(i)
n,s→k) and γsk(xn,k, 0) =

ηsk(0) (parameters identifiable from (2.29)) ∀ PT k ∈ Tn,s.

• Evaluate extrinsic information δsk(xn,k, 1) = GM(xn,k; {ωδ,(i)n,k→s,µ
δ,(i)
n,k→s,Ω

δ,(i)
n,k→s}

Iδn,k→s
i=1) and δsk(·, 0) ∀ k

(see Section 2.4.3).

• Broadcast updated agent belief b(yn,s) to neighbouring agents ` ∈ An,s and receive b(yn,`) (Note that

before the outer BP-loop, we initialized b(yn,s) = α→n(yn,s) ∀ s ∈ A).

• Evaluate PT beliefs bn,k(xn,k, 1) = GM(xn,k; {ω(j)
n,k,µ

(j)
n,k,Ω

(j)
n,k}

Jn,k
j=1) and bn,k(·, 0) ∀ k via decentral-

ized GM product (see Section 2.4.3).

Current time agent and PT pdfs
(used as priors for next time):

• Agent b(yn,s) ∀ s ∈ A.

• PT b(xn,k, 1) and b(xn,k, 0) ∀

k ∈ T .

Current MMSE estimates:

• Agents: ŷn,s =
∑Jn,s
j=1 w

(j)
n,sm

(j)
n,s, ∀ s ∈ A.

• PTs: Prob. of existence P en,k , Pr(rn,k = 1) =
∑Jn,k
j=1 ω

(j)
n,k ,

for all k ∈ T , and if P en,k ≥ τ then compute the MMSE state

estimate as x̂n,k = [P en,k]−1
∑Jn,k
j=1 ω

(j)
n,kµ

(j)
n,k .

Fig. 2.2: GM processing flowchart of the DGM-SCS-MTT filter at time n.

33

In Section 2.4.1, the GM parameters of the prediction and likelihood messages are given. The

computation of the GM beliefs (2.23)-(2.24) and the extrinsic information (2.25)-(2.26) requires

the product of several GM terms. Exact computation of these is computationally prohibitive and

incurs a high communication cost. Therefore in Section 2.4.2, we propose a centralized and effi-

cient algorithm to select high-weight Gaussian components from the GM product based on Gibbs

sampling [168]. In Section 2.4.3 a decentralized Gibbs algorithm is proposed for efficiently evalu-

ating the target beliefs. The special case of this algorithm for a single Gaussian implementation is

discussed in Section 2.5.

2.4.1 GM prediction and likelihood messages

Agent Prediction Messages

We start with the belief b(yn−1,s) of agent s computed at the previous time n− 1 and with parame-

ters similar to (2.23). Assuming G1 and substituting the GM representation of b(yn−1,s) in (2.13),

we obtain the agent predicted message φ→n(yn,s) = GM
(
yn,s; {(wφ,(j)→n,s,m

φ,(j)
→n,s,P

φ,(j)
→n,s)}J

φ
→n,s
j=1

)
with Jφ→n,s = Jn−1,s Gaussian components with parameters given in Table 2.2a. As seen in Fig-

ure 2.2 and discussed in Section 2.3.1, before the BP iterations begin, the current agent belief

b(yn,s) is initialized with φ→n(yn,s). Also, we initialize θsn,k(ys) with φ→n(yn,s).

Target Prediction Messages

Similarly, assuming a GM belief such as (2.24) for PT k at n− 1, under assumption G2 and from

(2.14) we obtain the predicted GM message α→n(xn,k, 1) = GM
(
xn,k; {(ωα,(j)→n,k,µ

α,(j)
→n,k,Ω

α,(j)
→n,k)}

Jα→n,k
j=1

)
.

The Jα→n,k = Jn−1,k + JBn,k Gaussian components of α→n(xn,k, 1) are the union of surviving and

birthed tracks,

{(ωS,(j)→n,k,µ
S,(j)
→n,k,Ω

S,(j)
→n,k)}j︸ ︷︷ ︸

Jn−1,k surviving components

⋃
{(ωB,(j)→n,k,µ

B,(j)
→n,k,Ω

B,(j)
→n,k)}j︸ ︷︷ ︸

JBn,k new birthed components

34

GM Message Weights Means Covariance Matrices
φ→n(yn,s) w

φ,(j)
→n,s = w

(j)
n−1,s m

φ,(j)
→n,s = An,sm

(j)
n−1,s P

φ,(j)
→n,s = Qn,s + An,sP

(j)
n−1,sA

T
n,s

α→n(xn,k, 1)
ω
S,(j)
→n,k = PSn,kω

(j)
n−1,k µ

S,(j)
→n,k = Bn,kµ

(j)
n−1,k Ω

S,(j)
→n,s = Σn,k + Bn,kΩ

(j)
n−1,kB

T
n,k

ω
B,(j)
→n,k = ω

B,(j)
n,k (1− P en−1,k) µ

B,(j)
→n,k = µ

B,(j)
n,k Ω

B,(j)
→n,k = Ω

B,(j)
n,k

(a) GM parameters of prediction messages for agents (2.13) and PTs (2.14).

Message Weights Residuals Obs. matrix Covariance Matrices
Φ`→s(ys) u

Φ,(i)
`→s = w

(i)
` e

Φ,(i)
`→s = ws,` − F`m

(i)
` H

Φ,(i)
`→s = Ds C

Φ,(i)
`→s = Ws + F`P

(i)
` FT`

Λsk (ys)
u

Λ,(m,j)
k→s =

ηsk(m)PsDω
δ,(j)
k→s

λsfFA
s (zsm)

u
Λ,(0)
k→s = ηsk(0)[1− P sD

∑
j ω

δ,(j)
k→s]

e
Λ,(m,j)
k→s = zsm −Esµ

δ,(j)
k→s H

Λ,(m,j)
k→s = Gs

C
Λ,(m,j)
k→s = Rs + EsΩ

δ,(j)
k→sE

T
s

(independent of m)

γsk(xk, 1)
u
γ,(m,j)
s→k =

ηsk(m)PsDw
θ,(j)
s→k

λsfFA
s (zsm)

u
γ,(0)
s→k = ηsk(m)[1− P sD]

e
γ,(m,j)
s→k = zsm −Gsm

θ,(j)
s→k H

γ,(m,j)
s→k = Es

C
γ,(m,j)
s→k = Rs + GsP

θ,(j)
s→kGT

s

(independent of m)

(b) GM parameters of likelihood messages for agents (2.15), (2.17) and PTs (2.20).

Table 2.2: Gaussian mixture parameters for the message passing scheme of Algorithm 1.

where the component parameters are given in Table 2.2a. Similarly, α→n(xn,k, 0) = [1 − PB
n,k +

(PB
n,k − P S

n,k)P
e
n−1,k]fD(xn,k). Also, we initialize δsn,k(x̃n,k) = α→n(x̃n,k). Henceforth, we drop

the time index n since all the following messages correspond to the current time instant.

Single-target association weights

Using the generic GM representations for θsk (2.25) and δsk (2.26), the single-target association

weight βsk(m) in (2.16), for m ∈ [1 : M s
n] becomes

βsk(m)=
∑Jθs→k

j=1

∑Jδk→s

i=1

P sDω
δ,(i)
k→sw

θ,(j)
s→k

λsfFA
s (zsm)

N (zsm; m
(i,j)
s,k ,P

(i,j)
s,k),

where

m
(i,j)
s,k = Esµ

δ,(i)
k→s + Gsm

θ,(j)
s→k

P
(i,j)
s,k = Rs + EsΩ

δ,(i)
k→sE

T
s + GsP

θ,(j)
s→kG

T
s .

For m = 0, βsk(0) = 1 − P s
D

∑Jδk→s
i=1 ω

δ,(i)
k→s. These weights are then used to compute the messages

{ηsk(m)} using the inner BP loop [190]. The ηsk messages are subsequently used in the computa-

tions of the following likelihood messages.

35

Agent likelihood messages

During an outer-BP loop, using the generic GM form for the belief of agent ` (2.23) and under G3,

the likelihood message Φ`→s(ys) in (2.15) becomes

Φ`→s(ys) =
∑IΦ

`→s

i=1
u

Φ,(i)
`→sN

(
e

Φ,(i)
`→s ; H

Φ,(i)
`→s ys,C

Φ,(i)
`→s
)
, (2.27)

where IΦ
`→s = J`, the weights uΦ,(i)

`→s , residuals e
Φ,(i)
`→s , observation matrices H

Φ,(i)
`→s and covariance

matrices C
Φ,(i)
`→s are given in Table 2.2b. Similarly, using G4 and the GM expression for δsk of (2.26),

the message Λs
k(ys) in (2.17) becomes

Λs
k(ys) = u

Λ,(0)
k→s +

Ms∑
m=1

Jδk,s∑
j=1

u
Λ,(m,j)
k→s N (e

Λ,(m,j)
k→s ; H

Λ,(m,j)
k→s ys,C

Λ,(m,j)
k→s), (2.28)

with parameters given in Table 2.2b.

Target likelihood messages

From (2.20) and assuming G4 and the GM form (2.25) for θsk, the γsk message becomes

γsk(xk, 1) = u
γ,(0)
s→k +

Ms∑
m=1

Jθs,k∑
j=1

u
γ,(m,j)
s→k N (e

γ,(m,j)
s→k ; H

γ,(m,j)
s→k xk,C

γ,(m,j)
s→k), (2.29)

with parameters given in Table 2.2b.

In the flowchart of Figure 2.2, for the GM likelihood messages Λs
k (2.28) and γsk (2.29), for

compactness, we employ a notation using a single summation. The correspondence between the

double and single summation parameters for Λs
k is given by any one-to-one mapping from [1 :

M s]× [1 : Jδk,s] to [1 : IΛ
k→s], where IΛ

k→s = M s ·Jδk,s An analogous one-to-one mapping yields the

correspondence of parameters for γsk.

36

2.4.2 Agent belief via centralized GM product

The belief (2.18) of agent s, under the assumptions of the previous section, is given by the product

of locally-available GM likelihood messages and has the generic form

b(ys) =
∑J→n,s

j=1
w(j)
→n,sN

(
ys; m

(j)
→n,s,P

(j)
→n,s

)
(2.30)

×
∏

l∈Ns

(
u

(0)
l→s +

∑Il→s

il=1
u

(il)
l→sN

(
e

(il)
l→s; H

(il)
l→sys,C

(il)
l→s
))
,

where Ns = As ∪ Ts is the set of neighboring agents and the targets observed by agent s at time

n. The GM in the first line represents the predicted message φ→n (2.18), where the superscript φ

is dropped for clarity. The L , |Ns| GM likelihood terms in the second line represent the various

inter-agent and target measurement likelihood terms (Φ`→s and Λs
k respectively). Since both Φ and

Λ share the same GM likelihood structure, the superscripts Φ and Λ are dropped for clarity and

solely the index l identifies each likelihood term as a Φl→s (if l ∈ As) or a Λs
l (if l ∈ Ts) message.

The corresponding parameters for each likelihood term u
(il)
l→s, e

(il)
l→s,H

(il)
l→s,C

(il)
l→s are defined in Table

2.2b. As already stated above, we replace the double superscript (m, j) in parameters of Λs
l with

the single superscript (i). Comparing (2.27) with (2.28), each Λs
l message has a constant term

u
(0)
l→s 6= 0, whereas for Φl→s, u

(0)
l→s = 0. For il 6= 0 let

ẽ
(il)
l→s ,

[
H

(il)
l→s
]T [

C
(il)
l→s
]−1

e
(il)
l→s,

C̃
(il)
l→s ,

[
H

(il)
l→s
]T [

C
(il)
l→s
]−1

H
(il)
l→s, (2.31)

c
(il)
l→s , log

(
u
(il)
l→s√

det(2πC
(il)
l→s)

)
− 1

2

[(
e

(il)
l→s
)T (

C
(il)
l→s
)−1

e
(il)
l→s
]
.

For il = 0, let ẽ
(0)
l→s = 0da , C̃

(0)
l→s = 0da×da and c(0)

l→s = log(u
(0)
l→s). We also define the L-length

vector i , [i1, · · · , iL], where il ∈ [0 : Il→s], and the product space IL ,×L

l=1
[0 : Il→s].

Furthermore, let

C̃(i) ,
∑L

l=1
C̃

(il)
l→s, ẽ

(i) ,
∑L

l=1
ẽ

(il)
l→s, c

(i) ,
∑L

l=1
c

(il)
l→s. (2.32)

37

Then by the property of the product of Gaussian functions [150, Ch. 3.8], the result of (2.30) is the

GM(ys; {w(j,i)
s ,m

(j,i)
s ,P

(j,i)
s }j∈[1:J→n,s],i∈IL) where

P(j,i)
s =

[(
P(j)
→n,s

)−1
+ C̃(i)

]−1

(2.33)

m(j,i)
s = P(j,i)

s

[(
P(j)
→n,s

)−1
m(j)
→n,s + ẽ(i)

]
(2.34)

w(j,i)
s = w(j)

→n,s exp
(
c(i) − 1

2

(
m(j)
→n,s

)T(
P(j)
→n,s

)−1
m(j)
→n,s

)
× exp

(
1

2

(
m(j,i)

s

)T (
P(j,i)
s

)−1
m(j,i)

s

)√
det(P

(j,i)
s)

det(P
(j)
→n,s)

. (2.35)

Although the computation of (2.33)-(2.35) involves parameters that are locally available at each

agent (2.18), it has computational complexity O(J→n,s
∏L

l=1 Il→s), i.e., exponential in the number

L of likelihood terms. In the following, we present a Gibbs-sampling based method that efficiently

constructs a truncated GM approximation of (2.30) where only the T highest scoring mixture

components are retained.

GM product via Gibbs sampling

The Gibbs sampling approach borrows from the method in [168] which involves the product of GM

probability densities whereas (2.30) involves the product of a GM density with L GM likelihood

terms. The Gibbs procedure for the GM product of (2.30) is given in Algorithm 2 and referred to

as Centralized Gibbs, since all the required messages are locally available.

To address the challenge of the high number
∏L

l=1 Il→s of components of the likelihood prod-

uct in (2.30), we aim to select component labels i from the product space IL of likelihood compo-

nents that lead to Gaussian components (2.33)-(2.35) with high weights w(j,i)
s . Ideally, this can be

achieved by sampling independently with probability

Pr(i = [i1, . . . , iL]T) =
∑J→n,s

j=1
Pr(j, i = [i1, . . . , iL]T) ∝

∑J→n,s

j=1
w(j,i)
s . (2.36)

According to (2.36), vectors i that lead to higher weights (2.35) are selected with higher probabil-

38

Algorithm 2 Centralized Gibbs GM product for belief b(ys)
1: Input parameters of (2.30).
2: Sample il ∀ l s.t. Pr(il) ∝ %(il) where %(0) = u

(0)
l→s and for il 6= 0, %(il) in (2.37).

3: Compute c(i) =
∑L

l=1 c
il
l→s, C̃(i) =

∑L
l=1 C̃

(il)
l→s and ẽ(i) =

∑L
l=1 ẽ

(il)
l→s.

4: for l← 1 to L do
5: Compute c(i¬l) = c(i) − c(il)

l→s, C̃(i¬l) = C̃(i) − C̃
(il)
l→s and ẽ(i¬l) = ẽ(i) − ẽ

(il)
l→s.

6: for q ← 0 to Il→s do
7: Let i∗q , [i1, . . . , il−1, q, il+1, . . . , iL].
8: Set c(i∗q) = c(i¬l) + c

(q)
l→s, C̃(i∗q) = C̃(i¬l) + C̃

(q)
l→s, and ẽ(i∗q) = ẽ(i¬l) + ẽ

(q)
l→s.

9: for j ← 1 to J→n,s do
10: Compute P

(j,i∗q)
s ,m

(j,i∗q)
s , w

(j,i∗q)
s (2.33)-(2.35).

11: end for
12: Compute πl(q|i¬l) ∝

∑J→n,s
j=1 w

(j,i∗q)
s .

13: end for
14: Sample new label q′ ∼ πl(q|i¬l) and set i← i∗q′ ,
15: C̃(i) ← C̃(i∗q′), ẽ(i) ← ẽ(i∗q′), c(i) ← c(i∗q′).
16: end for
17: Repeat the steps 4-16 for T iterations.
18: Return c(i), C̃(i), and ẽ(i) for the distinct samples i ∈ IL.

ity. However, sampling from (2.36) is difficult as it requires the computation of all {w(j,i)
s } which

is again O(J→n,s
∏L

l=1 Il→s). The Gibbs sampler constructs a finite Markov chain with stationary

distribution (2.36) by iteratively sampling from conditional densities that are easily constructed.

The proposed Gibbs method starts by sampling an initial label vector i (line 2, Algorithm 2), with

probabilities Pr(il) ∝ %(il) where %(0) = u
(0)
l→s and for il 6= 0

%(il) = u
(il)
l→s

∫
φ→n(ys)N (e

(il)
l→s; H

(il)
l→sys,C

(il)
l→s)dys

= u
(il)
l→s

J→n,s∑
j=1

w(j)
→n,s ×N

(
e

(il)
l→s; H

(il)
l→sm

(j)
→n,s,C

(il)
l→s + H

(il)
l→sP

(j)
→n,s

[
H

(il)
l→s
]T)

. (2.37)

These initial weights are based on the intuition that ifNs = {l}, i.e., agent s has only one neighbor,

(2.37) would give the weight contributed to by the il-th component of the likelihood, in the resulting

GM in (2.30). This is followed by sequentially sampling new labels for each of the L likelihood

39

messages (lines 5-15, Algorithm 2), from the conditional distributions of (2.36), i.e.,

πl(il|i¬l) , Pr(il|i¬l) =
Pr(i)

Pr(i¬l)
=

∑J→n,s
j=1 Pr(j, i)∑Il→s

q=1

∑J→n,s
j=1 Pr(j, i∗q)

=

∑J→n,s
j=1 w

(j,i)
s∑Il→s

q=1

∑J→n,s
j=1 w

(j,i∗q)
s

, (2.38)

where i¬l , [i1, . . . , il−1, il+1, . . . , iL]T and i∗q , [i1, . . . , il−1, q, il+1, . . . , iL]T . Each cycle (lines

5-15) of the Gibbs sampler involves sampling a new component q ∈ [0 : Il→s] for each of the

likelihood messages l ∈ [1 : L]. Holding fixed the labels for messages [1 : L] \ {l}, the parameters

(2.32) are computed by first removing the contribution of the old label il (line 5) and adding

the contribution of each q ∈ [0 : Il→s] (line 8). Next, the resulting components are used to

update the predicted agent message (line 10) and the conditional distribution (2.38) is obtained

by marginalizing out the prediction message labels j ∈ [1 : J→n,s] (line 12). A new label il

is sampled (line 14) and the corresponding parameters (2.32) are updated before continuing the

Gibbs cycle for the next likelihood message. The entire sampling procedure is repeated T times

and the parameters (c(i), C̃(i), ẽ(i)) corresponding to all distinct vectors i (i.e., two vectors differ

in at least one entry) are returned. The T highest scoring components according to c(i) are used

to construct the truncated agent belief via (2.33)-(2.35). The convergence of Algorithm 2 and

the uniqueness of the stationary distribution follow from the regularity of the transition matrix

Pi,i′ = π(i|i′) > 0 (as w(j,i)
s > 0 ∀ (j, i) from (2.35)). The convergence rate is geometrically

fast [58, Section 4.3.3], i.e., |[P n]i,i′ − Pr(i)| ≤ (1− 2ϑ)n ∀ i, i′ and where ϑ = mini,i′ Pi,i′ is the

least likely 1-step transition probability. All resulting samples are used since every distinct sample

i contributes to an improved approximation of (2.30). Hence, no burn-in period is required. Due to

the pre-computations at lines 5-8 in Algorithm 2, the evaluation of (2.33)-(2.35) at lines 9-11 for all

l ∈ [1 : L] is O(J→n,sd
3
a), leading to a time complexity for Algorithm 2 of O(TJ→n,sd

3
a

∑L
l Il→s).

Computation of extrinsic information θsk(·)

The θsk message (2.19) represents the extrinsic information sent from agent s to the PT k. If l ∈ Ts

in the generic product of (2.30), then θsl (ys) ∝ b(ys)/Λ
s
l (ys) appears to be a ratio of GMs (which

40

is not a GM in general). An alternate procedure based on (2.19) is described next. First note

from line 5 of Algorithm 2 that the parameters c(i¬l), C̃(i¬l) and ẽ(i¬l) characterize the product∏
6̀=l u

(i`)
l→sN (e

(i`)
l→s; H

(i`)
l→sys,C

(i`)
l→s) of likelihood terms identified by the labels i¬l. The resulting

components, after multiplication with the prior φ→n(ys), lead to an efficient GM approximation of

θsk, without requiring a dedicated separate procedure like Algorithm 2 to compute θsk.

2.4.3 Target belief via decentralized GM product

Decentralized SCS-MTT algorithms require a distributed evaluation of the target beliefs across the

entire network. The computed target belief for a PT k needs to be identical across all the agents,

including the agents that do not observe the PT k at time n. In this section, we propose an efficient

method based on Gibbs sampling and average consensus for GM beliefs. As we shall see, much

of the discussion in this section follows Section 2.4.2 closely, with the difference that not all the

messages are locally available at any single agent. The belief (2.21) for a PT k can be expressed as

b(xk, 1) =
∑J→n,k

j=1
ω

(j)
→n,kN (xk;µ

(j)
→n,k,Ω

(j)
→n,k) (2.39)

×
∏S

s=1

[
u

(0)
s→k +

∑Is→k

is=1
u

(is)
s→kN (e

(is)
s→k; H

(is)
s→kxk,C

(is)
s→k)

]
,

b(xk, 0) = α→n(xk, 0)
∏S

s=1
ηsk(0), (2.40)

where (2.39) is analogous to (2.30) in its generic form. The GM in the first line represents the

predicted message α→n(xk, 1) in (2.14). The likelihood terms in the second line represent the

γsk(·, 1) messages. Note that each agent s only has access to its local message γsk. We use the

generic forms of α→n and γsk(·, 1) from Figure 2.2. For clarity, the respective superscripts α, γ are

dropped from the parameters. Note that if a target is not observed by an agent s, i.e., if k /∈ Tn,s,

then γsk(xk, 1) = γsk(xk, 0) = 1 which, for rk = 1, is represented as u(0)
s→k = 1 with Is→k = 0

and log(ηsk(0)) = 0. As a consequence of assumption (A10) from Section 2.2.2, each agent k has

access to its local parameters and the predicted message α→n(xk) (Section 2.4.1), the latter being

identical across all agents. For compactness, ∀ s ∈ A and is 6= 0 we define the parameters of the

41

local γsk(·, 1) messages as

ẽ
(is)
s→k ,

[
H

(is)
s→k
]T [

C
(is)
s→k
]−1

e
(is)
s→k,

C̃
(is)
s→k ,

[
H

(is)
s→k
]T [

C
(is)
s→k
]−1

H
(is)
s→k, (2.41)

c
(is)
s→k , log

(
u
(is)
s→k√

det(2πC
(is)
s→k)

)
− 1

2

[(
e

(is)
s→k
)T(

C
(is)
s→k
)−1

e
(is)
s→k
]
.

Furthermore, for is = 0, let ẽ
(0)
s→k = 0dt , C̃

(0)
s→k = 0dt×dt and c(0)

s→k = log(u
(0)
s→k). Note that (2.41)

is analogous to (2.31). In (2.39), for each likelihood product term denoted by the S-length vector

i = [i1, . . . , iS] ∈ IS ,×S

s=1
[0 : Is→k], the quantities

Ξ(i) =
S∑
s=1

C̃
(is)
s→k, ξ

(i) =
S∑
s=1

ẽ
(is)
s→k, ξ

(i) =
S∑
s=1

c
(is)
s→k (2.42)

require information from across the network and are referred to as global information (this is in

contrast to Section 2.4.2 where the analogous quantities (2.32) are locally available). As a result,

b(xk, 1) is GM(xk; {ω(j,i)
k ,µ

(j,i)
k ,Ω

(j,i)
k }j∈[1:J→n,k],i∈IS) with parameters

Ω
(j,i)
k =

[(
Ω

(j)
→n,k

)−1
+ Ξ(i)

]−1

(2.43)

µ
(j,i)
k = Ω

(j,i)
k

[(
Ω

(j)
→n,k

)−1
µ

(j)
→n,k + ξ(i)

]
(2.44)

ω
(j,i)
k = ω

(j)
→n,k exp

(
ξ(i) − 1

2

(
µ

(j)
→n,k

)T (
Ω

(j)
→n,k

)−1
µ

(j)
s→k

)
× exp

(
1

2

(
µ

(j,i)
k

)T (
Ω

(j,i)
k

)−1
µ

(j,i)
k

)√
det(Ω

(j,i)
k)

det(Ω
(j)
→n,k)

. (2.45)

Again, (2.43)-(2.45) are analogous to (2.33)-(2.35) in Section 2.4.2. However, directly applying

here the sequential Gibbs approach (Algorithm 2) becomes impractical. This is because the eval-

uation of the parameters of selected Gaussian components (indexed by i) in (2.42) requires the

aggregation of parameters from across the entire network. This process happens sequentially for

each new label (line 15 of Algorithm 2). In a decentralized algorithm, this incurs a high communi-

cation cost and latency. Thus, a parallel sampling mechanism is favored, where agents sample local

42

Sequential Gibbs Hogwild! Gibbs
π1(i′1|i2:S)

In parallel:
π1(i′1|i¬1), · · · πs(i′s|i¬s),
· · · , πS(i′S|i¬S)

...
πs(i

′
s|i′1:s−1, is+1:S)

...
πS(i′S|i′1:S−1)

Table 2.3: Conditional sampling of a new label vector i′ given previous labels i in synchronous and Hog-
wild! Gibbs.

labels is ∈ [0 : Is→k] in parallel to form a new label vector i = [i1 . . . , iS]T . This is followed by

synchronization, that is, the computation of the parameters (2.42) corresponding to i via average

consensus.

Such sampling schemes are referred to as partially synchronous Gibbs sampling [174] or Hog-

wild! Gibbs [89]. In general, in Hogwild [89] or asynchronous methods, the agents perform

sampling/updating as fast as they can, while periodic global synchronization is achieved across the

network. The difference between the sequential Gibbs of Algorithm 2 and the Hogwild! Gibbs em-

ployed here is shown in Table 2.3. Starting from a label vector i, the sequential Gibbs effectively

samples new labels i′ sequentially according to the marginal densities (2.38). The Hogwild! Gibbs

method samples, in parallel at each agent s ∈ [1, S], a local label i′s conditioned on the previous

labels i¬s. In contrast to the sequential Gibbs, Hogwild! Gibbs requires the computation of global

parameters only after all the agents have locally sampled a new index i′s ∀ s.

Hogwild! Gibbs for GM product

The proposed Hogwild! Gibbs algorithm produces a set of high-weight Gaussian components.

The resulting GM approximates the target belief (2.39) and is presented in Algorithm 3, which is

executed synchronously and in parallel at all agents for each PT. The main steps of Algorithm 3

are detailed in the following:

a) Initialization (line 2). Each agent s samples an initial label is from the local labels [0 : Is] with

43

probability Pr(is) ∝ %(is), where %(0) = u
(0)
s→k

∑J→n,k
j=1 ω

(j)
→n,k, and for is 6= 0

%(is) = u
(is)
s→k

J→n,k∑
j=1

ω
(j)
→n,kN

(
e

(is)
s→k; H

(is)
s→kµ

(j)
→n,k,C

(is)
s→k + H

(is)
s→kΩ

(j)
→n,k

[
H

(is)
s→k
]T)

. (2.46)

In particular, the weight %(is) of the is-th likelihood component from γsk(·, 1), given in (2.46),

is high if it leads to high-weight Gaussian components after updating the prior α→n(xk). Note

that (2.46) is analogous to (2.37).

b) Global parameter evaluation (line 3). Corresponding to the selected labels i, the global pa-

rameters of (2.42) are evaluated via average and max consensus [142, 46]. The weights we use

are Metropolis weights [193]. Convergence is guaranteed as long as the communication graph

spanning the agents is connected [46]. In practice, we stop after a sufficiently large number Q

of consensus iterations. An additional max-consensus is carried out to ensure identical values

for all agents. The consensus is reached across the entire network, even for agents s that do not

observe the target k, i.e, for which k /∈ Tn,s. Note that this is a decentralized implementation of

the analogous step (line 3) in Algorithm (2).

c) Computing local Gaussian components (lines 4-10). Given the globally computed parameters

of the product indexed by i (2.42), each agent s constructs the Gaussian indexed by (j, i∗q),

with parameters given by (2.43)-(2.45). This is achieved by first replacing the is-th component

of γsk(·, 1) with the q-th component of γsk(·, 1). This is done locally, since the previous label is

and the parameters of all the q ∈ [0 : Is→k] components of γsk(·, 1) are available locally.

d) Computing conditional probabilities and sample (line 11). The weights of the Gaussian compo-

nents indexed by (j, i∗q), ω(j,i∗q)
k , are employed to compute the conditional density πs(q|i¬s) ∝∑J→n,k

j=1 ω
(j,i∗q)
k from which a new local label is sampled is ∼ πs(q|i¬s). This follows from

(2.36) and is analogous to line 12 in Algorithm 2.

e) Repeat for T iterations the steps b)-d) and return the Gaussian components with distinct labels

(j, i) for b(·, 1). An additional network consensus (line 13) is required for the non-existence

44

Algorithm 3 Dcent. Gibbs–PT k at agent s (in parallel ∀ s)
1: Input parameters of (2.39)-(2.40).
2: Sample is ∈ [0 : Is→k] as described at Section 2.4.3-a).
3: Network consensus for Ξ(i), ξ(i) and ξ(i) of (2.42).
4: for q ← 0 to Is→k do
5: Set i∗q ← [i1, · · · , is−1, q, is+1, · · · , iS].
6: Compute Ξ(i∗q) = Ξ(i) −

(
C

(is)
s→k
)−1

+
(
C

(q)
s→k
)−1, ξ(i∗q) = ξ(i) − ẽ

(is)
s→k + ẽ

(q)
s→k,

c(i∗q) = ξ(i) − c(is)
s→k + c

(q)
s→k.

7: for j ← 1 to J→n,k do
8: Compute ω(j,i∗q)

k , µ(j,i∗q)
k , Ω

(j,i∗q)
k as in (2.43)-(2.45).

9: end for
10: end for
11: Set πs(q|i¬s) ∝

∑J→n,k
j=1 ω

(j,i∗q)
k , sample is ∼ πs(q|i¬s).

12: Repeat the steps 3-11 for T iterations.
13: Network consensus for log(b0) ,

∑S
s=1 log(ηsk(0)).

14: Return {
(
w

(j,i)
k ,µ

(j,i)
k ,Ω

(j,i)
k

)
} ∀ distinct (S+ 1)-tuples (j, i) and b0 to provide a GM approx-

imation for b(xk, rk).

case rk = 0 of (2.40), where the scalar value log(b0) ,
∑S

s=1 log(ηsk(0)) is evaluated.

f) Normalization of PT belief (not shown in Algorithm 3) is necessary in order to obtain an approx-

imate pdf for PT k. The pdf of PT k is given as fk(xk, 1) = 1
N

∑
(j,i) ω

(j,i)
k N (xk;µ

(j,i)
k ,Ω

(j,i)
k)

and fk(xk, 0) = b0
N
αk(xk, 0) where N = b0

[
1−

∑J→n,k
j=1 ω

(j)
→n,k

]
+
∑

(j,i) ω
(j,i)
k is the normal-

ization constant.

During the consensus step in line 3 of Algorithm 3, it is assumed that agent s learns the labels

il for all l ∈ A \ {s}. This can be achieved by diffusing the scalars il throughout the network and

which involves only a mild increase in communication load as compared to the average consensus

communication requirements. Note however that only the values taken by the global parameters

Ξ(i), ξ(i), ξ(i) are necessary for the computation of local Gaussian components, the conditional

probabilities and the ensuing sampling. The label values are only necessary for returning the

distinct Gaussian components, i.e., for district (S + 1)-tuples (j, i). An alternative decentralized

algorithm that avoids the diffusion of the label values is is possible by modifying Algorithm 3 to

return only the Gaussian components with distinct weights ω(j,i)
k , as these form a subset of the set

of Gaussian components returned by Algorithm 3.

45

Complexity and Convergence

The time complexity of Algorithm 3 is O(TJ→n,kIs→kd
3
t). Assuming Q average consensus itera-

tions and denoting with DG the diameter of the communication graph, the communication load of

the consensus step of Algorithm 3 is (Q + DG)[T (d2
t + dt + 1) + 1] real values and also incurs

a latency of (Q + DG)(T + 1) communication slots. Note that the Gibbs method of Algorithm

3 does not represent a Markov chain as the agents sample in parallel and not sequentially as in

Algorithm 2. The existence of a stationary distribution as well as the convergence of the samples

drawn with Algorithm 3 to such a stationary distribution is not guaranteed outside of special cases

[89]. Nonetheless, Hogwild! Gibbs methods have been successfully employed in latent Dirichlet

Allocation [162]. In Section 2.6, we numerically show the performance of the SCS-MTT filter

with Algorithm 3 to be close to that of the centralized filter, where a fusion center has access to all

the measurements, and carries out all the computations.

Computation of the GM extrinsic information δsk(·)

The computation of the δsk messages in (2.22) requires again the product of several GM likelihood

terms available at different agents in the network. Note that since both bk(xk, 1) (obtained via

Algorithm 3) and γsk(xk, 1) are available as GMs at agent s, a GM approximation for the extrin-

sic information δsk can be constructed in the following manner. First note from line 6 of Algo-

rithm 3, that the parameters Ξ(i)− (C
(is)
s→k)

−1, ξ(i)− ẽ
(is)
s→k and ξ(i)− c(is)

s→k characterize the product∏
6̀=s u

(i`)
`→kN (e

(i`)
`→k; H

(i`)
`→kxk,C

(i`)
`→k) for a label vector i. Thus, at each iteration of Algorithm 3, we

can construct the following Gaussian components {(ωδ,(j)k→s,µ
δ,(j)
k→s,Ω

δ,(j)
k→s)}

Jk→s
j=1 of δsk(xk, 1) (with

the same notations as in Figure 2.2) as

Ω
δ,(j)
k→s =

[
(Ω

(j)
→n,k)

−1 + Ξ(i) − (C
(is)
s→k)

−1
]−1

,

µ
δ,(j)
k→s = Ω

δ,(j)
k→s
[
(Ω

(j)
→n,k)

−1µ
(j)
→n,k + ξ(i) − ẽ

(is)
s→k
]
,

ω
δ,(j)
k→s = ω

(j)
→n,k exp

(
ξ(i) − 1

2

(
µ

(j)
→n,k

)T (
Ω

(j)
→n,k

)−1
µ

(j)
→n,k

)

46

× exp
(
1

2
(µ

δ,(j)
k→s)

T (Ω
δ,(j)
k→s)

−1µ
δ,(j)
k→s − c

(is)
s→k

)√
det(Ω

δ,(j)
k→s)

det(Ω
(j)
→n,k)

.

Note that the expressions above are analogous to the GM parameters for b(xk, 1) in (2.43)-(2.45).

The only difference being the absence of the terms (2.41) corresponding to γsk(xk, 1) After the

T iterations of Algorithm 3, the Gaussian components with highest distinct weights ωδ,(j)k→s are

retained to form an approximation of δsk(xk, 1) while δsk(xk, 0) is obtained as b(xk, 0)/ηsk(0). This

procedure allows for the local computation of an approximate GM representation for δsk(xk, rk)

without additional network consensus operations.

2.5 Decentralized Gaussian SCS-MTT filter

A special case of the GM SCS-MTT filter of the previous section is obtained when all the agent

and target densities are represented as single Gaussians. For most kinematic tracking applications,

the communication loads of the resulting DG-SCS-MTT filter is significantly smaller than the PF

implementations. Single Gaussian expressions for the messages exchanged by the SCS-MTT filter

can be obtained by specializing the expressions in Section 2.4. However, due to the measurement-

to-target association uncertainty (see assumption (A8) of Section 2.2.2 and the summation over m

in (2.17), (2.20)), the agent and target beliefs become GMs even if their predicted messages are

single Gaussians. The Probabilistic Data Association filter [12], addresses this by performing a

single Gaussian approximation of the resulting GM via first and second order moment matching.

This is applied straightforwardly to the case of the agent beliefs bs(·) and their extrinsic information

θsk(·) as their GM computation is done locally as shown in Section 2.4.2.

The DG-SCS-MTT filter achieves a single Gaussian representation of the target beliefs with

a lower communication load than the Hogwild! Gibbs of Algorithm 3. Suppose bs(xk, 1) ,

S
√
α→n(xk, 1)γsk(xk, 1). Observe that (2.21) becomes b(xk, 1) =

∏
s∈S bs(xk, 1). If α→n(xk, 1) =

ckN (xk; m,P) then S
√
α→n(xk, 1) = c′kN (xk; m, SP) is a scaled Gaussian [15, eq. 36], where

c′k = S
√
ck

(det(2πSP))1/2

2S
√

det(2πP)
. Furthermore, let γsk(xk, 1) be a GM of the form (2.29). Then, a locally

47

computed GM bs(xk, 1) =
∑Is

i=1w
(i)
s N (xk; m

(i)
s ,P

(i)
s) is given as a special case of (2.39) with

J→n,k = S = 1. The scaled single Gaussian b̂s(xk, 1) = ĉsN (xk; m̂s, P̂s) that matches the first

and second order moments of the GM bs(xk, 1) has parameters [143]

ĉs =
∑Is

i=1
w(i)
s , m̂s =

1

ĉs

∑Is

i=1
w(i)
s m(i)

s , (2.47)

P̂s =
1

ĉs

∑Is

i=1
w(i)
s

[
P(i)
s +(m(i)

s −m̂s)(m
(i)
s −m̂s)

T
]
. (2.48)

Note that (2.48) also accounts for the spread of the means of the initial GM. A global b̂(xk, 1) =

ĉN (xk; m̂, P̂), as a single Gaussian approximation of b(xk, 1), is obtained via network (average

and max) consensus over the weights log(ĉ) =
∑S

s=1 log(ĉs), matrices P̂−1 =
∑S

s=1 P̂−1
s and

vectors m̂ = P̂
∑S

s=1 P̂−1
s m̂s. The computation of b(xk, 0) remains unchanged from Section 2.4.3.

In contrast to the Hogwild! Gibbs of Algorithm 3, the DG-SCS-MTT filter only performs network

consensus once for each PT which involves an exchange of (Q + DGk)(d
2
t + dt + 2) real values

at each outer-BP loop. Furthermore, we note that computing the local GM belief bs(·, 1) takes

O(Isd
3
t) operations; single Gaussian compression is O(Is→kd

2
t); and the computations required for

average consensus are O(Qd2
t) (assuming the number of neighbors of an agent is small compared

to Q). Hence, the overall computational complexity of the DG-SCS-MTT filter is O(Is→kd
3
t) for

each PT, at each outer loop iteration.

The DG-SCS-MTT filter also achieves a single Gaussian approximation for the extrinsic in-

formation message δsk(·) without the need of additional network consensus operations. Based on

the parameters of b(xk, 1), we evaluate b¬s(xk, 1) , ĉ¬sN (xk; m̂¬s, P̂¬s) where the parameters

ĉ¬s = ĉ/ĉs, P̂−1
¬s = P̂−1 − P̂−1

s , and m̂¬s = P̂¬s

[
P̂−1m̂− P̂−1

s m̂s

]
are computed locally. Fi-

nally, we evaluate δsk(xk, 1) = b¬s(xk, 1) S
√
α(xk, 1), which has a scaled single Gaussian form, and

δsk(xk, 0) = b(xk, 0)/ηsk(0).

48

0 500 1000 1500x [m]
0

500

1000

1500

y
 [
m

]

1a

2a

3a

10

4a

5a

6a

1

6

7

9

True agent and target tracks

Birth pdf conf. 90% Anchors Agents Targets

10 20 30 40 50
Time [s]

6

8

10

T
ru

e
 C

a
rd

in
a
lit

y

Fig. 2.3: Ground truth trajectories of agents and targets plotted over time (top), along with the true target
cardinality over time (bottom).

2.6 Simulation Results

In this section, we numerically evaluate the performance of our proposed GM-SCS-MTT and G-

SCS-MTT filters for both decentralized and centralized versions2

The centralized GM (CGM-SCS-MTT) version employs the centralized Gibbs Algorithm 2

2We have relegated the simulation results for a PF-based implementation of the centralized algorithm (based on
the discussion in Section 2.3, and assuming all the observations are available at a single location) to Appendix A.1.

49

for both agent and PT beliefs while the decentralized GM (DGM-SCS-MTT) filter employs the

Hogwild! Gibbs method of Algorithm 3 for PT beliefs. We also consider a reference method,

named here SPAWN, which consists of the agent self-localization method of [192] followed by

the MTT method of [126]. Centralized GM (CGM-SPAWN) and single Gaussian (CG-SPAWN)

versions of SPAWN are employed, where the GM product of messages is computed using the

centralized Gibbs Algorithm 2.

Figure 2.3 shows the ground truth tracks of all the agents and targets, over a span of 50 time

steps and the true target cardinality as a function of time. The uncertainty in target births is

shown as red ellipses that delineate the area containing 90% of the mass of fb(xn,k). Our net-

work has two stationary agents (called anchors), 6 mobile agents, and a maximum of 10 targets

over a [0, 1500m] × [0, 1500m] region of interest (ROI). Each mobile agent has a measurement

and communication range of 1000m. The anchors have a communication range of 1000m and a

measurement range of 1500m.

Agent and target state vectors are constructed as x = [px, py, ṗx, ṗy]
T , where px and py repre-

sent the x-y target coordinates and ṗx and ṗy are its velocity components along the two axes. All

targets have the same dynamical model f(xn|xn−1) = N (xn; Bnxn−1,Σn), where the state tran-

sition matrix is Bn =
[

I2 TS I2
02 I2

]
with a sampling period of Ts = 1s and 0n and In are the zero and

identity matrices of size n×n. The covariance matrix is Σn = σ2
q

[0.25T 4
SI2 0.5T 3

S I2

0.5T 3
SI2 T 2

SI2

]
, with σq = 0.5.

Similarly, all agents have the same linear-Gaussian kinematic model with σq = 0.1. Each agent

s, with coordinates (psx, p
s
y), observes with probability P s

D a target with state vector x through a

range-bearing model:

zsn =


√

(px − psx)2 + (py − psy)2

tan−1(
py−psy
px−psx

)

+ nsn, (2.49)

where the measurement noise is nsn ∼ N (0,Rn). The same range-bearing measurement model

(with potentially different parameter values) is employed for inter-agent measurements. Lineariza-

tion of the non-linear range-bearing observation model is performed before applying the GM or

Gaussian SCS-MTT filter. Similar to the extended Kalman filter [150, Ch. 2.1], this is achieved

50

locally at each agent by evaluating the Jacobian of the transformation (2.49) at the weighted mean

of the PT prediction message α→n(·). Analogously, the inter-agent range-bearing measurement

model is linearized with the Jacobian being evaluated at the mean of the agent prediction message

φ→n(·). Birthed PTs are appended to the existing PTs in the prediction step of the filters. The

birth locations are shown in Figure 2.3. Unless stated otherwise, the birth probabilities of exis-

tence are set to 0.25, the probability of target survival Ps = 0.99, the probability of target detection

P s
D = 0.95, and the measurement noise covariance Rn = diag(10, 100). At each frame, the clutter

process for agent s follows a Poisson distribution with rate λs = 25, and the clutter points are

distributed uniformly over the ROI. Target inference is achieved as indicated in Section 2.3.2. The

number of outer BP iterations is fixed to P = 1, to avoid over-confident beliefs [127].

In the GM filters, the initial positions of the agents are modeled using Gaussian mixture densi-

ties. More precisely, each agent track is initialized with 4 equal-weighted GM components, with

means at a distance of Ra = 50m along the x and y directions, from the position shown in Figure

2.3. All the 4 GM components have the same covariance diag(1600, 1600, 40, 40). In the single

Gaussian filters, the mean and covariance of the agent tracks are initialized by the respective values

achieved via moment matching [143]. Target tracks are initialized with single Gaussian densities in

all filters, with means given by the birth locations and covariance matrices diag(1600, 1600, 16, 16).

Keeping the agent and target tracks fixed, 100 independent Monte Carlo (MC) simulation runs

are carried out by regenerating the measurement sets. In Figures 2.4, 2.5, 2.7, we have plotted: (i)

the average root mean squared errors (RMSE) in the agent location estimates (averaged across the

MC runs and across all the mobile agents); and, (ii) the average target tracking performance via

the Optimum Sub-Pattern Assignment (OSPA) error [155]. The OSPA metric is capable of taking

into account errors in estimating both the number of targets (i.e., cardinality) and their tracks. The

OSPA employs two parameters: cut-off, set to 20m and order, set to 1. In Figure 2.6, we have

explicitly plotted the average estimated cardinality over time.

51

0 10 20 30 40 50
Time Sample [s]

0

10

20

30
A

v
g
.

A
g
.

R
M

S
E

 [
m

] CGM-SCS-MTT

CGM-SPAWN

0 10 20 30 40 50
0

5

10

15

20

O
S

P
A

 [
m

]

Time Sample [s]

CGM-SCS-MTT

CGM-SPAWN

(a) CGM-SCS-MTT vs CGM-SPAWN filters

0 10 20 30 40 50
Time Sample [s]

0

10

20

30

A
v
g

.
A

g
.

R
M

S
E

 [
m

] CG-SPAWN

CG-SCS-MTT

0 10 20 30 40 50
Time Sample [s]

0

5

10

15

20

O
S

P
A

 [
m

]

CG-SPAWN

CG-SCS-MTT

(b) CG-SCS-MTT vs CG-SPAWN filters

Fig. 2.4: Comparison of the average agent RMSE and target OSPA error for SPAWN and the proposed
SCS-MTT filter.

2.6.1 SCS-MTT vs SPAWN

In Figure 2.4, we compare the average agent localization error, and the average OSPA error for

targets, of our approach (SCS-MTT) against SPAWN. Figure 2.4a shows the comparison when

the agent and target densities are modeled as Gaussian mixtures. Figure 2.4b showcases the same

comparison for single Gaussian densities. Our approach significantly improves the localization

performance by taking into account the contribution of the Λs
k messages from the within-range

targets to the agents. This would be especially beneficial for agents which are not in range of

the anchor nodes, and have few neighboring agents (e.g., agents 1a, 2a). Due to the presence of

anchors, the agent localization improvements of the SCS-MTT algorithms transpire to a lesser

extent into improvements on target tracking performance. The spikes in OSPA error correspond to

52

0 10 20 30 40 50
Time Sample [s]

0

5

10

15

20
A

v
g

.
A

g
e

n
t

R
M

S
E

 [
m

]

CGM-SCS-MTT

CG-SCS-MTT

0 10 20 30 40 50
Time Sample [s]

0

5

10

15

20

O
S

P
A

 [
m

]

CGM-SCS-MTT

CG-SCS-MTT

(a) CGM-SCS-MTT vs CG-SCS-MTT (centralized filters)

0 10 20 30 40 50

Time Sample [s]

0

5

10

15

20

A
v
g

.
A

g
e

n
t

R
M

S
E

 [
m

]

DGM-SCS-MTT

DG-SCS-MTT

0 10 20 30 40 50
Time Sample [s]

0

5

10

15

20

O
S

P
A

 [
m

]

DGM-SCS-MTT

DG-SCS-MTT

(b) DGM-SCS-MTT vs DG-SCS-MTT (decentralized filters)

Fig. 2.5: Comparison of the average agent RMSE and target OSPA error, for the single Gaussian (G) and
Gaussian mixture (GM) filters.

the time instants of target births (t = 5, 10, 20s) and deaths (t = 40). Note that due to the dynamic

nature of the network (frequent target births and deaths), the localization performance cannot be

expected to converge over time. This is also evident from the slight increase in the localization

error after t = 40s, in Figures 2.4 and 2.5.

Figure 2.6 shows the true cardinality, the mean estimated cardinality, and mean ±3× standard

deviation curves for the CGM-SPAWN (Figure 2.6a), CGM-SCS-MTT (Figure 2.6b) and DGM-

SCS-MTT (Figure 2.6c) filters. In all cases, the mean estimated cardinality is close to the true

cardinality with the CGM-SPAWN filter having higher cardinality variance. Both the centralized

and decentralized GM-SCS-MTT filters have smaller cardinality variance than CGM-SPAWN,

while the DGM-SCS-MTT filter has a slightly higher variance than the CGM-SCS-MTT filter.

This is attributed to the differences between the sequential Gibbs and the parallel Hogwild! Gibbs

53

0 10 20 30 40 50
Time [s]

4

6

8

10

12
C

a
rd

in
a
lit

y

True

Estimated Mean

Mean - 3*std. dev

Mean + 3*std. dev

(a) CGM-SPAWN filter

0 10 20 30 40 50
Time [s]

4

6

8

10

12

C
a
rd

in
a
lit

y

True

Estimated Mean

Mean - 3*std. dev

Mean + 3*std. dev

(b) CGM-SCS-MTT filter

0 10 20 30 40 50
Time [s]

4

6

8

10

12

C
a
rd

in
a
lit

y

True

Estimated Mean

Mean - 3*std. dev

Mean + 3*std. dev

(c) DGM-SCS-MTT filter

Fig. 2.6: Comparison of cardinality estimates for the different GM filters.

samplers and to the network consensus process.

2.6.2 Single Gaussian vs Gaussian mixture SCS-MTT filters

In Figure 2.5, we present the performance of the GM-SCS-MTT, which employs GM represen-

tations for both target and agent beliefs, with respect to the single Gaussian G-SCS-MTT filter.

Figure 2.5a shows this comparison for the centralized SCS-MTT filters. Figure 2.5b showcases the

same comparison for the decentralized SCS-MTT filters. The GM-SCS-MTT filters exhibit only

a slight gain in terms of localization and tracking performance as compared to the G-SCS-MTT

filters. This is because the agent and target dynamic models, as discussed in Section 2.4, are linear

with additive Gaussian noise. Additionally, the considered measurement model is only moderately

54

0 10 20 30 40 50
0

5

10

15

20

A
v
g

.
A

g
.

R
M

S
E

 [
m

]
Q=15 Q=20 Q=25 Q=30 Q=50 CGM

0 10 20 30 40 50
Time [s]

0

5

10

15

20

O
S

P
A

 [
m

]

Fig. 2.7: Comparison of average agent RMSE and target OSPA error for the DGM-SCS-MTT and CGM-
SCS-MTT filters.

nonlinear. Applying our GM-SCS-MTT filter to a highly nonlinear and/or non-Gaussian setting is

one of the directions we wish to pursue in a subsequent study.

2.6.3 Centralized vs decentralized Gaussian mixture

In Figure 2.7, we compare the performance of the centralized (CGM-SCS-MTT) and decentral-

ized (DGM-SCS-MTT) filters. The decentralized method achieves performance similar to the

centralized filter, given a sufficient number of consensus iterations Q. Compared to the centralized

approach, the decentralized approach does not have to rely on a central fusion center and is scalable

with the number of sensors. We have plotted the average localization and tracking error for differ-

ent values of Q, namely Q = 15, 20, 25, 30, 50. For Q = 50, the DGM filter performance is almost

identical to the CGM filter. For smallQ, since the network is sparsely connected (some agents have

55

only one neighboring agent), the target belief product of (2.39)-(2.40) is not accurately evaluated.

This leads to poor tracking of targets which subsequently leads to poor localization of agents, due

to the interdependence of localization and tracking for SCS-MTT algorithms. Similar results and

conclusions hold for the single Gaussian case, which is omitted due to space constraints.

2.7 Summary

In this chapter, we proposed a novel decentralized method for simultaneous agent localization and

multi-target tracking, for an unknown number of targets, under measurement-origin uncertainty.

We proposed decentralized single-Gaussian as well as Gaussian-mixture implementations for our

proposed filter. The two cases capture the trade-off between computational and communication ef-

ficiency (single Gaussian) and modeling accuracy (Gaussian mixtures). For the Gaussian-mixture

case, we proposed a novel decentralized Gibbs method for efficiently computing products of Gaus-

sian mixtures. We have demonstrated the robustness of our approach using a challenging range-

bearing measurement model, which showcases the improved performance of the proposed methods

with respect to the SPAWN method that performs agent localization and target tracking separately.

56

CHAPTER 3

DISTRIBUTED ONLINE CONVEX

OPTIMIZATION

3.1 Introduction

Many problems of practical interest, including network resource allocation [30], target tracking

[156], network routing [209], online regression [157], and spam filtering [76] can be framed in an

Online Convex Optimization (OCO) framework. The OCO framework first introduced in [209]

aims to minimize a time varying convex objective function which is revealed to the observer in a

sequential manner. For a detailed review of OCO, please see [76, 157]. In this chapter, we consider

a distributed constrained OCO problem, with time-varying (potentially adversarial) constraints.

Recently, distributed OCO frameworks have gained popularity as they distribute the compu-

tational and memory resources across multiple nodes rather than having a central node perform

all the operations [99, 156, 144, 111, 199]. Here we consider the constrained OCO problem in a

distributed framework, where the convex objective is assumed to be decomposed and distributed

across a set of multiple communicating agents. Each agent takes its own action with the goal

of minimizing the dynamically varying global function while satisfying its individual constraints.

Next, we discuss the related work along with the performance metrics we use to evaluate the per-

57

formance of the proposed algorithm.

3.1.1 Related Work

Regret: The performance in OCO problems is quantified in terms of how well the agent does as

compared to an offline system, over time. In other words, how much the agent “regrets” not having

the information, which was revealed to it post-hoc, to begin with. Since regret is cumulative over

time, an algorithm that achieves sub-linear increase in regret with time, asymptotically achieves

zero average loss. It is naturally desirable to compare against an offline system, the action(s) of

which are “optimal” in some sense.

Static Regret: The initial work on OCO, starting with [209, 157, 76], almost exclusively fo-

cused on static regret RegsT , which uses an optimal static solution, in hindsight, as the benchmark.

In other words, the fictitious offline adversary w.r.t. which the online system measures its regret,

chooses the best fixed strategy, assuming it has access to the entire information, which is revealed

to the online system over time horizon T .

RegsT ,
T∑
t=1

ft(xt)−min
x

T∑
t=1

ft(x).

Under standard regularity conditions, for general OCO problems, a tight upper bound of O(
√
T)

has been shown for static regret [209, 75]. However, for applications such as online parameter

estimation or tracking moving targets, where the quantity of interest also evolves over time, com-

parison with a static benchmark is not sufficient.

This deficiency led to the development of dynamic regret RegdT [73, 20]. Rather than com-

paring the performance relative to a fixed optimal strategy, a more demanding benchmark is used.

More precisely, at each time instant, our fictitious adversary utilizes one-step look-ahead informa-

tion to adopt the optimal strategy at the current time instant.

RegdT ,
T∑
t=1

ft(xt)−
T∑
t=1

min
x
ft(x).

58

In this work, we adopt the notion of dynamic regret as the performance metric. It must, however, be

noted that, in the worst case, it is impossible to achieve sublinear dynamic regret [209]. For such

problems, the growth of dynamic regret is captured by the regularity measure which measures

variations of the minimizer sequence over time (see C∗T in Theorem 3.5.5).

Constraints: The conventional approaches for OCO are based on projection-based gradient

descent-like algorithms. However, when working with functional inequality constraints gt(x) ≤ 0

(as opposed to simple convex feasible set constraints), the projection step in itself is computation-

ally intensive. This led to the development of primal-dual algorithms for OCO [121, 85, 204].

Instead of attempting to satisfy the constraints at each time instant, the constraints are satisfied in

the long run. In other words, the cumulative accumulation of instantaneous constraint violations

(often simply called fit) ‖[
∑T

t=1 gt(xt)]+‖ is shown to be sublinear in T . This formulation allows

constraint violations at some instants to be “taken-care-of” by strictly feasible actions at other

times.1

Initially the constraints were assumed to be static across time [121, 85]. However, subsequent

literature [171, 30] demonstrated that the analysis for primal-dual methods can be generalized to

even handle time-varying inequality constraints. Minor variations of primal-dual methods, which

replace the dual update step with virtual-queue (modified Lagrange multiplier) updates have also

been proposed to handle time-varying [25] and stochastic constraints [202].

Distributed OCO Problems: So far we have only discussed centralized problems. Suppose

the OCO system has a network of agents, and local cost (and possibly constraint) functions are

revealed to each agent over time. The global objective is to minimize the total cost function, while

also satisfying all the constraints. And each agent can only communicate with those agents that

are in its immediate neighborhood. This distributed OCO problem is more challenging and much

less studied in the literature than the centralized problem.

Distributed OCO problems with static set constraints have been widely studied in recent years

[99, 156, 144, 111, 199]. Again here, the literature on distributed OCO with dynamic regret is

1Some more recent works [204] have considered the more stringent constraint violation metric
∑T
t=1([gt(xt)]+)

2.

59

much sparser than for static regret. The authors in [156] have proposed a dynamic mirror descent

based algorithm, where primal update steps are alternated with local consensus steps. The authors

in [111] have proposed a distributed primal-dual algorithm for the OCO problem with coupled

inequality constraints. The constraint functions are static over time. This has been generalized

for time-varying coupled constraints in [199], where the authors have shown sublinearity of regret

and fit, both w.r.t. dynamic and static benchmarks. However, to the best of our knowledge, the

distributed OCO problem with a dynamic benchmark, even with static non-coupled inequality

constraints has so far not been considered in the literature.

3.1.2 Our Contributions

In this work, we consider a distributed online convex optimization problem, where both the cost

functions and the time-varying inequality constraints are revealed locally to the individual nodes.

We propose a primal-dual mirror-descent based algorithm, which alternates between the local pri-

mal and dual update steps and the consensus steps to mix the local primal variables with the im-

mediate neighbors. Importantly, we show that the proposed algorithm achieves sublinear dynamic

regret and fit.

The chapter is organized as follows: the problem formulation is discussed in Section 3.2, along

with the definitions of the performance metrics. In Section 3.3, we provide some background

results and the assumptions required for providing theoretical guarantees. We propose our primal-

dual mirror descent based algorithm in Section 3.4, followed by the theoretical results in Section

3.5. Finally, we conclude in Section 3.6.

Notations: Vectors are denoted with lowercase bold letters, e.g., x, while matrices are denoted

using uppercase bold letters, e.g., X. The set of positive integers is represented by N+. We use Rn
+

to denote the n-dimensional non-negative orthant. For n ∈ N+, the set {1, . . . , n} is denoted by

[n]. We denote by ‖ · ‖ the Euclidean norm for vectors, and the induced 2-norm for matrices. 0

denotes a zero vector, where the dimension is clear from the context. [x]+ denotes the projection

onto Rn
+.

60

3.2 Problem Formulation

We consider a network of n agents. At each time instant t, each agent i takes an action xi,t ∈ X ⊆

Rd, where the set X is fixed across time, across all the nodes. Then, a set of local loss functions

{fi,t(·)}ni=1 with fi,t : X → R are revealed to the individual nodes, leading to individual loss

fi,t(xi,t) at node i. Additionally, another set of local functions {gi,t(·)}ni=1 with gi,t : X → Rm are

revealed, corresponding to local constraints gi,t(xi,t) ≤ 0. The network objective is to minimize

the global average of the local cost functions ft(x) , 1
n

∑n
i=1 fi,t(x), while also satisfying all the

local constraint functions {gi,t(·)}ni=1.

min
xt∈X

ft(xt) ,
n∑
i=1

fi,t(xt) subject to gi,t(xt) ≤ 0m,∀ i ∈ [n]. (3.1)

Since the objective is to minimize the global function ft(·), the nodes need to communicate among

themselves. We next define the metrics used to measure the performance of the proposed approach.

3.2.1 Performance Metrics - Dynamic Regret and Fit

We use the recently defined notion of dynamic regret [20, 73] to measure the performance relative

to a time-varying benchmark.

RegdT ,
1

n

n∑
i=1

T∑
t=1

ft(xi,t)−
T∑
t=1

ft(x
∗
t), (3.2)

where xi,t is the local action of agent i at time t, while x∗t is the solution of the following problem.

x∗t ∈ argmin
x∈X

{
ft(x)

∣∣gi,t(x) ≤ 0,∀ i ∈ [n]
}
, (3.3)

As pointed out earlier, it is impossible to satisfy the time-varying constraints instantaneously,

since they are revealed post-hoc. As a surrogate, to ensure the local constraints are satisfied in the

long run, we use the distributed extension of fit as the performance metric. Fit has been used in the

61

context of both time-invariant [121], as well as time-varying constraints [30, 145], for single node

problems. Our definition is motivated by the one given in [144] for continuous time problems. It

measures the average accumulation of constraint violations over time.

FitdT ,
1

n

n∑
i=1

1

n

n∑
j=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xj,t)

]
+

∥∥∥∥∥ . (3.4)

Here,
∑T

t=1 gi,t(xj,t) is the constraint violation at agent i, if it adopts the actions of agent j. Note

that
∑T

t=1 gi,t(xj,t) ≤ 0 is different from requiring the constraint to be met at every time instant

gi,t(xj,t) ≤ 0.

Next, we discuss the assumptions and some background required for the analysis of the pro-

posed OCO framework. Note that the following assumptions are standard for decentralized OCO

problems [156, 199].

3.3 Background and Assumptions

3.3.1 Network

We assume the n agents are connected together via an undirected graph G = (V , E). V =

{1, . . . , n} denotes the set of nodes of the graph, each of which represents an agent. E is the

set of edges between the nodes. (i, j) ∈ E implies that nodes i and j are connected in the graph.

The set of edges has an associated weight matrix W, such that

W =


[W]ij > 0 if (i, j) ∈ E

[W]ij = 0 else.
(3.5)

The set of neighbors of node i is, therefore, defined asNi , {j : [W]ij > 0}. Note that j ∈ Ni ⇔

i ∈ Nj .

Assumption 1. The network is connected. The weight matrix W is symmetric, doubly stochastic,

62

such that
n∑
i=1

[W]ij =
n∑
j=1

[W]ij = 1. (3.6)

Next, we discuss the properties of the local cost functions and constraints.

3.3.2 Local Objective Functions and Constraints

Assumption 2. We assume the following conditions on the set X , the objective and constraint

functions.

1. The set X ⊆ Rd is convex and compact. Therefore, there exists a positive constant d(X)

such that

‖x− y‖ ≤ d(X), ∀ x,y ∈ X . (3.7)

2. The local node functions fi,t(·), gi,t(·) are Lipschitz continuous on X , ∀ i ∈ [n],∀ t ∈ N+

i.e.,

‖fi,t(x)− fi,t(y)‖ ≤ L‖x− y‖

‖gi,t(x)− gi,t(y)‖ ≤ L‖x− y‖
(3.8)

for any x,y ∈ X .

3. The functions {fi,t}, {gi,t} are convex and uniformly bounded on the set X , i.e., there exists

a constant F > 0 such that

‖fi,t(x)‖ ≤ F, ‖gi,t(x)‖ ≤ F, (3.9)

∀ t ∈ N+,∀ i ∈ [n], ∀ x ∈ X .

4. {∇fi,t}, {∇gi,t} exist and are uniformly bounded on X , i.e., there exists a constant G > 0

such that

‖∇fi,t(x)‖ ≤ G, ‖∇gi,t(x)‖ ≤ G, (3.10)

63

∀ t ∈ N+, ∀ i ∈ [n],∀ x ∈ X .

Next, we briefly discuss the Bregman Divergence measure, which is crucial to the proposed

mirror descent based approach.

3.3.3 Bregman Divergence

Suppose we are given a µ-strongly convex functionR : X → R, i.e. R(x) ≥ R(y)+〈∇R(y),x− y〉+
µ
2
‖x− y‖2, ∀ x,y ∈ X . The Bregman Divergence w.r.t. R is defined as

DR(x,y) , R(x)−R(y)− 〈x− y,∇R(y)〉 . (3.11)

SinceR(·) is µ-strongly convex, for any x,y ∈ X

DR(x,y) ≥ µ

2
‖y − x‖2. (3.12)

We assume the following conditions on DR(·, ·).

Assumption 3. The Bregman Divergence DR(·, ·) satisfies

1. Separate Convexity property [16]: Given x, {yi}mi=1 ∈ Rd and scalars {αi}mi=1 on the m-

dimensional probability simplex, the Bregman Divergence satisfies

DR

(
x,

m∑
i=1

αiyi

)
≤

m∑
i=1

αiDR (x,yi) . (3.13)

2. The Bregman divergence satisfies the following Lipschitz continuity condition [83]

|DR (x,y)−DR (z,y)| ≤ K ‖x− z‖ (3.14)

for any x,y, z ∈ X . This condition is satisfied ifR(·) is Lipschitz continuous on X . Conse-

quently,

DR (x,y) ≤ Kd((X)), ∀ x,y ∈ X , (3.15)

64

where d((X)) is defined in (3.7).

We next give a result on Bregman divergence from [199] which is crucial to our analysis.

Lemma 3.3.1. Let R : Rd → R be a µ-strongly convex function. Also, assume X is a closed,

convex set in Rp and h : X → X is a convex function. Assume that ∇h(x) exists ∀ x ∈ X . Then,

given z ∈ X , the regularized Bregman projection

y = argmin
x∈X

{h(x) +DR(x, z)} , (3.16)

satisfies the following inequality

〈y − x,∇h(y)〉 ≤ DR(x, z)−DR(x,y)−DR(y, z) (3.17)

∀ x ∈ X .

3.3.4 Projection

For a set A ⊆ Rd, the projection operator is defined as

PA(y) , argmin
x∈A

‖x− y‖2 , (3.18)

∀ y ∈ Rd. For closed and convexA, projection always exists and is unique. IfA = Rd
+, projection

is denoted by [·]+ and it satisfies

∥∥[x]+ − [y]+
∥∥ ≤ ‖x− y‖ ,∀ x,y ∈ Rd. (3.19)

65

Algorithm 4 Distributed Primal-Dual Mirror Descent

1: Input: Non-increasing sequences {αt > 0}, {βt > 0}, {γt > 0}; Differentiable and strongly-
convexR

2: Initialize: xi,0 = 0d ∈ X , fi,0(·) ≡ 0, gi,0(·) ≡ 0m, qi,0 = 0m, ∀ i ∈ [n].
3: for t = 1 to T do
4: for i = 1 to n do
5: Observe∇fi,t−1(xi,t−1),∇gi,t−1(xi,t−1), gi,t−1(xi,t−1)

6: ai,t = ∇fi,t−1(xi,t−1) + [∇gi,t−1(xi,t−1)]T qi,t−1

7: yi,t = argminx∈X {αt 〈x, ai,t〉+DR(x,xi,t−1)}
8: bi,t = [∇gi,t−1(xi,t−1)] (yi,t − xi,t−1) + gi,t−1(xi,t−1)
9: qi,t = [qi,t−1 + γt(bi,t − βtqi,t−1)]+

10: Broadcast yi,t to out-neighbors j ∈ Ni
11: Obtain yj,t from in-neighbors j ∈ Ni
12: xi,t =

∑n
j=1[W]ijyj,t

13: end for
14: end for

3.4 Distributed Primal-Dual Mirror Descent based Algo-

rithm

We next discuss the proposed distributed primal-dual mirror descent based algorithm for online

convex optimization with time-varying constraints. The pseudo-code is outlined in Algorithm 4.

The algorithm runs in parallel at all the nodes. At the end of time t− 1, xi,t−1 is the action (primal

variable) at node i. Following this, the local functions fi,t−1, gi,t−1 are revealed to the agent. The

corresponding function values and gradients are utilized to carry-out the updates in the next time

step t. First, each agent performs the primal update locally (Step 7). This is followed by the dual

update (Step 9). Note that the projection [·]+ ensures that the dual variable lies in the non-negative

orthant Rm
+ . At the end of each time step, an average consensus step is taken across the nodes,

where the local updated primal variables yi,t−1 are received from the neighbors, to compute the

action xi,t.

Remark. Note that the primal and dual update steps employ different step-sizes, αt and γt, respec-

tively. This idea originated in [85] and leads to flexibility in terms of the trade-off between the

bounds on dynamic regret and fit.

66

In the next section, we bound the dynamic regret and fit which result from Algorithm 4, and

show them to be sublinear in the time-horizon T .

3.5 Dynamic Regret and Fit Bounds

First, we discuss some intermediate results required to show the sublinearity of dynamic regret and

fit. We have relegated the proofs to the Appendix. Our analysis follows closely the work in [156]

and [199].

3.5.1 Some Intermediate Results

Lemma 3.5.1. Suppose Assumption 2 holds. ∀ i ∈ [n], ∀ t ∈ N+, qi,t generated by Algorithm 4

satisfy

‖qi,t‖ ≤
F

βt
, (3.20)

∆t+1

2γt+1

≤ nB2
1

2
γt+1 +

n∑
i=1

qTi,t[∇gi,t(xi,t)](yi,t+1 − xi,t) +
µ

4αt+1

n∑
i=1

‖yi,t+1 − xi,t‖2

+

(
G2αt+1

µ
+
βt+1

2

) n∑
i=1

‖qi‖2 +
n∑
i=1

(qi,t − qi)
Tgi,t(xi,t) (3.21)

where B1 = 2F +Gd(X),

∆t+1 ,
n∑
i=1

[
‖qi,t+1 − qi‖2 − (1− γt+1βt+1)‖qi,t − qi‖2

]
,

and {qi}i are arbitrary vectors in Rm
+ .

PROOF: See Appendix A.2.1.

Remark. The penalty term−βtqi,t−1 in the dual update (step 9, Algorithm 4) helps in upper bound-

ing the local dual variables. This idea was initially used in [121] and helps get rid of the require-

ment of Slater’s condition. ∆t+1 measures the regularized drift of the local dual variables. See [73]

67

and [199] for similar results, respectively in centralized and distributed contexts.

Next, we sum the left hand side of (3.21) over t to get

T∑
t=1

∆t+1

2γt+1

=
1

2

T∑
t=1

(
1

γt
− 1

γt+1

+ βt+1

) n∑
i=1

‖qi,t − qi‖2

− 1

2

n∑
i=1

[
1

γ1

‖qi,1 − qi‖2 − 1

γT+1

‖qi,T+1 − qi‖2

]
. (3.22)

Recall that qi,1 = 0, ∀ i ∈ [n]. We combine (3.21) and (3.22), and define gc(·) such that

gc(q1, . . . ,qn) ,
n∑
i=1

qTi

(T∑
t=1

gi,t(xi,t)
)
−

[
1

2γ1

+
T∑
t=1

(
G2αt+1

µ
+
βt+1

2

)] n∑
i=1

‖qi‖2

≤ nB2
1

2

T∑
t=1

γt+1 +
T∑
t=1

n∑
i=1

qTi,t[∇gi,t(xi,t)](yi,t+1 − xi,t) +
T∑
t=1

n∑
i=1

qTi,tgi,t(xi,t)

+
T∑
t=1

µ

4αt+1

n∑
i=1

‖yi,t+1 − xi,t‖2 − 1

2

T∑
t=1

(
1

γt
− 1

γt+1

+ βt+1

) n∑
i=1

‖qi,t − qi‖2. (3.23)

The function gc(q1, . . . ,qn) will be used later in Lemma 3.5.4 to upper bound both the dynamic

regret and fit, by appropriately choosing qi, ∀ i ∈ [n].

Before looking at the primal updates, we first consider one of the constituent terms in (3.2).

ft(xi,t)− ft(x∗t) = ft(xi,t)− ft(x̄t) + ft(x̄t)− ft(x∗t)

≤ L ‖xi,t − x̄t‖+ ft(x̄t)− ft(x∗t) (3.24)

=
1

n

n∑
j=1

{fj,t(x̄t)− fj,t(x∗t) + fj,t(xj,t)− fj,t(xj,t)}+ L ‖xi,t − x̄t‖

≤ 1

n

n∑
j=1

{fj,t(xj,t)− fj,t(x∗t)}+ L ‖xi,t − x̄t‖+
L

n

n∑
j=1

‖xj,t − x̄t‖ . (3.25)

We use Assumption 2 to obtain both (3.24), (3.25). Now, from the definition of dynamic regret

68

(3.2), we get

RegdT ≤
1

n

n∑
i=1

T∑
t=1

1

n

n∑
j=1

{fj,t(xj,t)− fj,t(x∗t)}+
2L

n

n∑
i=1

T∑
t=1

‖xi,t − x̄t‖ . (3.26)

Next, we upper bound both the terms in (3.26). First, we upper bound the first term in the following

lemma.

Lemma 3.5.2. Suppose Assumptions 1-3 hold. ∀ i ∈ [n], ∀ t ∈ N+, if {xi,t} is the sequence

generated by Algorithm 4. Then,

T∑
t=1

n∑
i=1

[fi,t(xi,t)− fi,t(x∗t)]

≤ nG2

µ

T∑
t=1

αt+1 −
T∑
t=1

n∑
i=1

µ

4αt+1

‖yi,t+1 − xi,t‖2 −
T∑
t=1

n∑
i=1

qTi,t

[
gi,t(xi,t) +∇gi,t(xi,t) (yi,t+1 − xi,t)

]
+

n∑
i=1

[
1

α2

DR(x∗1,xi,1)− 1

αT+2

DR(x∗T+1,xi,T+1)

]
+

nK

αT+2

T∑
t=1

‖x∗t+1 − x∗t‖+
nKd((X))

αT+2

.

(3.27)

PROOF: See Appendix A.2.2.

Next, we upper bound the second term in (3.26). This is the consensus error of the primal

variables.

Lemma 3.5.3. (Network Error): Suppose Assumptions 1-3 hold. Then, the local estimates {xi,t}

generated by Algorithm 4 satisfy

‖xi,t − x̄t‖ ≤
t−1∑
τ=0

√
nσt−τ2 (W)

Gατ+1

µ

(
1 +

F

βτ+1

)
(3.28)

∀ i ∈ [n], where x̄t = 1
n

∑n
i=1 xi,t. σ2(W) is the second largest eigenvalue of W in magnitude.

PROOF: See Appendix A.2.3.

Remark. The network error bound is (3.28) is independent of the node index i. The dependence

on σ2(W) captures the speed with which mixing of iterates happens. The smaller the value of

69

σ2(W), the faster the network error diminishes. Moreover, the choice of the primal update step

sizes {αt} and the dual update regularization parameters {βt} has a crucial role to play in bounding

the network error. As we shall see in Theorem 3.5.5, carefully choosing these leads to sublinear

regret and fit.

Next, we combine (3.23) and Lemma 3.5.2 resulting in two intermediate bounds, which shall

be needed to subsequently bound the dynamic regret and fit respectively.

Lemma 3.5.4. Suppose Assumptions 1-3 hold. Then, the sequences {xi,t,qi,t} generated by Algo-

rithm 4 satisfy

T∑
t=1

n∑
i=1

(fi,t(xi,t)− fi,t(x∗t))≤
nB2

1

2

T∑
t=1

γt+1+
nG2

µ

T∑
t=1

αt+1

+
n∑
i=1

[
1

α2

DR(x∗1,xi,1)− 1

αT+2

DR(x∗T+1,xi,T+1)

]
+

nK

αT+2

T∑
t=1

‖x∗t+1 − x∗t‖

+
nKd((X))

αT+2

− 1

2

T∑
t=1

(
1

γt
− 1

γt+1

+ βt+1

) n∑
i=1

‖qi,t‖2, (3.29)

and

n∑
i=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xi,t)

]
+

∥∥∥∥∥
2

≤ 4

[
1

2γ1

+
T∑
t=1

(
G2αt+1

µ
+
βt+1

2

)]{
2nFT +

nB2
1

2

T∑
t=1

γt+1

+
nG2

µ

T∑
t=1

αt+1 +
n∑
i=1

[
1

α2

DR(x∗1,xi,1)− 1

αT+2

DR(x∗T+1,xi,T+1)

]
+
nKd((X))

αT+2

+
nK

αT+2

T∑
t=1

‖x∗t+1 − x∗t‖ −
1

2

T∑
t=1

(
1

γt
− 1

γt+1

+ βt+1

) n∑
i=1

‖qi,t − q̄i‖2

}
. (3.30)

Remark. (3.29) follows by adding (3.23) and (3.27), and substituting qi = 0m, ∀ i ∈ [n]. Similarly,

(3.30) is obtained by adding (3.23) and (3.27), and substituting

q̄i =

[∑T
t=1 gi,t(xi,t)

]
+

2
[

1
2γ1

+
∑T

t=1

(
G2αt+1

µ
+ βt+1

2

)] , ∀ i ∈ [n]. (3.31)

70

Before presenting out final result, we need to use the following upper bound to bound the fit.

1

n

n∑
i=1

1

n

n∑
j=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xj,t)

]
+

∥∥∥∥∥
2

≤ 2

[
2L

T∑
t=1

‖xi,t − x̄t‖

]2

+
2

n

n∑
i=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xi,t)

]
+

∥∥∥∥∥
2

.

(3.32)

This follows from Lipschitz continuity of the constraint functions (Assumption 2). Since, we have

bounded both the terms in (3.32) (the first term in Lemma 3.5.3, and the second term in Lemma

3.5.4), we are now ready to present our final result on the sublinearity of both dynamic regret and

fit.

3.5.2 Dynamic Regret and Fit Bounds

Theorem 3.5.5. Suppose Assumptions 1-3 hold, and {xi,t} be the sequence of local estimates

generated by Algorithm 4. We choose the step sizes

αt =
1

ta
, βt =

1

tb
, γt =

1

t1−b
, ∀ t ∈ N+ (3.33)

where, a, b ∈ (0, 1) and a > b. Then for any T ∈ N+.

RegdT ≤ R1T
max{a,1−a+b} + 2KT aC∗T , (3.34)

1

n

n∑
i=1

1

n

n∑
j=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xj,t)

]
+

∥∥∥∥∥
2

≤ D1T
2−b +D2T

1+a−bC∗T +D3T
2+2b−2a. (3.35)

Here, R = 4FLG
√
nσ2(W)

µ(1−a)(1−σ2(W))
, R1 = R +

B2
1

2b
+ G2

µ(1−a)
+ 2Kd((X)), D = 2 + 4G2

µ(1−a)
+ 2

1−b , D1 =

2D(2F + 2Kd((X)) +
B2

1

2b
+ G2

µ(1−a)
+ 2Kd((X))), D2 = 4KD and D3 = 16L2R2 are constants

independent of T , and

C∗T ,
T∑
t=1

‖x∗t+1 − x∗t‖ (3.36)

is the accumulated dynamic variation of the comparator sequence {x∗t}.

71

PROOF: We begin with one of the constituent terms in (3.2).

ft(xi,t)− ft(x∗t) = ft(xi,t)− ft(x̄t) + ft(x̄t)− ft(x∗t)

≤ L ‖xi,t − x̄t‖+ ft(x̄t)− ft(x∗t) (3.37)

=
1

n

n∑
j=1

{fj,t(x̄t)− fj,t(x∗t) + fj,t(xj,t)− fj,t(xj,t)}+ L ‖xi,t − x̄t‖

≤ 1

n

n∑
j=1

{fj,t(xj,t)− fj,t(x∗t)}+ L ‖xi,t − x̄t‖+
L

n

n∑
j=1

‖xj,t − x̄t‖ . (3.38)

We use Assumption 2 to get both (3.24), (3.25). Now, from the definition of dynamic regret (3.2),

we get

RegdT ≤
1

n

n∑
i=1

T∑
t=1

1

n

n∑
j=1

{fj,t(xj,t)− fj,t(x∗t)}+
2L

n

n∑
i=1

T∑
t=1

‖xi,t − x̄t‖ . (3.39)

We use Lemma 3.5.4 to bound the first term, and Lemma 3.5.3 to bound the second term in (3.39).

But first, we bound all the terms in the upper bounds in Lemma 3.5.3 and 3.5.4, using the step-sizes

in (3.33).

For a constant p < 1 and T ∈ N+

T∑
t=1

1

tp
≤ 1 +

∫ T

1

1

tp
dt =

T 1−p − 1

1− p
+ 1 ≤ T 1−p

1− p
. (3.40)

Hence,

T∑
t=1

γt+1 ≤
T b

b
,

T∑
t=1

αt+1 ≤
T 1−a

1− a
,

T∑
t+1

βt+1 ≤
T 1−b

1− b
, (3.41)

1

α2

DR(x∗1,xi,1)− 1

αT+2

DR(x∗T+1,xi,T+1) ≤ 2Kd((X)), (3.42)

1

αT+2

= (T + 2)a ≤ 2T a, ∀ T ≥ 2. (3.43)

(3.42) follows from DR(·, ·) ≥ 0, (3.15) and 1
α2

= 2a < 2. Also,
(

1
γt
− 1

γt+1
+ βt+1

)
> 0 follows

72

from (3.33). Therefore, we ignore the last term in both (3.29) and (3.30). Also, substituting (3.28)

in the second term in (3.39), we get

2L
T∑
t=1

t−1∑
τ=0

√
nσt−τ2 (W)

Gατ+1

µ

(
1 +

F

βτ+1

)

=
2LG
√
n

µ

T∑
t=1

t−1∑
τ=0

(
σt−τ2

(τ + 1)a
+ F

σt−τ2

(τ + 1)a−b

)

=
2LG
√
n

µ

T∑
t=1

t∑
τ=1

(
σt+1−τ

2

τa
+ F

σt+1−τ
2

τa−b

)

≤ 2LG
√
nσ2(W)

µ(1− σ2(W))

T∑
t=1

(
1

τa
+ F

1

τa−b

)
(3.44)

=
2LG
√
nσ2(W)

µ(1− σ2(W))

(
T 1−a

1− a
+
FT 1+b−a

1− a+ b

)
. (3.45)

where in (3.44), we use the following inequality. Given a non-negative sequence {δt}, and 0 <

λ < 1, it holds
T∑
t=1

t∑
τ=1

δτ+1λ
t−τ =

T∑
t=1

δt+1

T−τ∑
τ=0

λτ ≤ 1

1− λ

T∑
t=1

δt+1. (3.46)

Using (3.41)-(3.43), (3.45), and Lemma 3.5.3, 3.5.4 we upper bound the dynamic regret (3.39) as

RegdT ≤
B2

1

2

T b

b
+
G2

µ

T 1−a

1− a
+ 2T aKd((X)) + 2KT aC∗T

+ 2Kd((X)) +
2LG
√
nσ2(W)

µ(1− σ2(W))

(
T 1−a

1− a
+
FT 1+b−a

1− a+ b

)
(3.47)

Since a > b, for large enough T , T a dominates T b, while, T 1−a+b will dominate T 1−a.

To upper bound the fit, we use (3.41)-(3.43), and Lemma 3.5.4.

1

n

n∑
i=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xi,t)

]
+

∥∥∥∥∥
2

≤ 4

[
1

2γ1

+
G2

µ

T 1−a

1− a
+

T 1−b

2(1− b)

]{
2FT + 2Kd((X))

+
B2

1

2

T b

b
+
G2

µ

T 1−a

1− a
+ 2T aKd((X)) + 2KT aC∗T

}
. (3.48)

73

For large enough T , T 2−b dominates T, T 2−a, T 2−a−b and T 1+a−b. Also, T 1+a−b dominates T .

Remark. The dynamic regret RegdT is sublinear as long as the cumulative consecutive variations

of the dynamic comparators C∗T is sublinear. This is the standard requirement for sublinearity of

dynamic regret [73, 156, 199].

Remark. A similar argument as above holds for (3.35). As long as C∗T is sublinear, we have

1

n

n∑
i=1

1

n

n∑
j=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xj,t)

]
+

∥∥∥∥∥
2

= o(T 2). (3.49)

Note that (3.35) has ‖[
∑T

t=1 gi,t(xj,t)]+‖2, while fit (3.4) is defined with ‖[
∑T

t=1 gi,t(xj,t)]+‖. How-

ever, for large enough T , each of the constituent terms in (3.49) are o(T 2). Consequently, ‖[
∑T

t=1 gi,t(xj,t)]+‖2 =

o(T), ∀ i, j ∈ [n]. Therefore, we get a sublinear fit

1

n

n∑
i=1

1

n

n∑
j=1

∥∥∥∥∥
[

T∑
t=1

gi,t(xj,t)

]
+

∥∥∥∥∥ = o(T). (3.50)

3.6 Conclusion

In this work, we considered a distributed OCO problem, with time-varying (potentially adversarial)

constraints. We proposed a distributed primal-dual mirror descent based approach, in which the

primal and dual updates are carried out locally at all the nodes. We utilized the challenging, but

more realistic metric of dynamic regret and fit. Without assuming the more restrictive Slater’s

conditions, we achieved sublinear regret and fit under mild, commonly used assumptions. To the

best of our knowledge, this is the first work to consider distributed OCO problem with non-coupled

local time-varying constraints, and achieve sublinear dynamic regret and fit.

74

CHAPTER 4

DISTRIBUTED STOCHASTIC FIRST-ORDER

OPTIMIZATION: PR-SPIDER

4.1 Introduction

In this chapter, we study a distributed optimization problem in the worker-server architecture.

The worker nodes or machines are assumed have significant storage and computational resources.

Therefore, the server offloads some of its conventional tasks to these workers [194].

4.1.1 Problem

The optimization problem we solve is as follows:

min
x∈Rd

f(x) ,
1

N

∑N

i=1
fi(x), (4.1)

where N is the number of worker nodes. The local function corresponding to node i, fi(x) is a

smooth, potentially non-convex function. We consider two variants of this problem.

• Finite-Sum Case: Each individual node function fi in (4.1) is an empirical mean of function

75

values corresponding to n samples. Therefore, the problem is of the form

min
x∈Rd

f(x) ,
1

N

∑N

i=1

1

n

∑n

j=1
fi(x; ξj), (4.2)

where ξj denotes the j-th sample and fi(x, ξj) is the cost corresponding to the j-th sample.

• Online Case: Each individual node function fi in (4.1) is an expected value. Hence, the

problem has the form

min
x∈Rd

f(x) ,
1

N

∑N

i=1
Eξ∈Difi(x; ξ), (4.3)

where Di denotes the distribution of samples at the i-th node. Note that Di can be different

across different workers. This scenario is the popular federated learning [98] model.

Throughout the chapter, we assume that given a point y, each node can choose samples ξ inde-

pendently, and the stochastic gradients of these sample functions are unbiased estimators of the

actual gradient. Finding the global minimizer of a nonconvex function is NP-hard in general [133].

Therefore, surrogate objectives are used in the literature to approximate the solution of the orig-

inal problem. One such objective is finding the stationary point (x such that ∇f(x) = 0) of the

objective function. An approximate stationary point or ε-stationary point (ε > 0) is defined as a

point x such that ‖∇f(x)‖2 ≤ ε. For stochastic algorithms, this definition is slightly modified

to E ‖∇f(x)‖2 ≤ ε. The expectation accounts for the randomness introduced by the stochastic

nature of the algorithms. The point x is referred to as a first-order stationary (FoS) point of (4.1).

While solving a distributed optimization problem, another objective, in addition to minimizing

f , is to ensure that the individual local iterates at the nodes do not drift too far. Therefore, it

is appropriate to include a consensus error term in the global objective [170]. For this purpose,

we modify the definition of the FoS point and include a consensus error term in the definition as

follows.

Definition 4.1.1. ε-First-order stationary (ε-FoS) point [170] Let {xi}Ni=1 with xi ∈ Rd be the

76

local iterates at N nodes and x̄ = 1
N

∑N
i=1 xi, then we define the ε-FoS point x̄ as

E ‖∇f (x̄)‖2 +
L2

N

∑N

i=1
E ‖xi − x̄‖2 ≤ ε.

Note that the expectation is over the stochasticity of the algorithm. All the results in this chapter

are in terms of convergence to an ε-FoS point.

Note that Definition 4.1.1 is a sufficient condition to ensure that E ‖∇f (x̄)‖2 ≤ ε. The com-

plexity of the algorithm is measured in terms of the amount of computations done at the worker

nodes, and the communication between the worker and the server nodes. These notions are defined

more precisely next.

Definition 4.1.2. Computation Complexity: In the Incremental First-order Oracle (IFO) frame-

work [2], given a sample ξ at node i and a point x, the oracle returns (fi(x; ξ),∇fi(x; ξ)), i.e., the

function value and the gradient of the local stochastic function fi(·; ξ) at x. Each access to the or-

acle is counted as a single IFO operation. The sample or computation complexity of the algorithm

is hence, the total (aggregated across all the workers) number of IFO operations to reach an ε-FoS

solution.

Definition 4.1.3. Communication Complexity: In one round of communication between the

workers and the server, each worker sends its local vector ∈ Rd to the server, and receives an ag-

gregated vector of the same dimension in return. The communication complexity of the algorithm

is the number of such communication rounds required to reach an ε-FoS solution.

4.1.2 Related Work

Past few years have seen a meteoric rise in the amount of research in distributed optimization

methods. Next, we review a sliver of the vast literature on this topic that is most relevant to the

work presented in this chapter. Since stochastic gradient descent (SGD) is the workhorse of the

modern Big-Data machinery, we begin with a quick review of the basic results using SGD.

77

Stochastic Gradient Descent (SGD)

For nonconvex problems, to achieve an ε-stationary solution, O(1/ε2) IFO calls are required [62].

In the absence of additional assumptions, this bound cannot be improved [9]. However, with

additional assumptions1, this bound can be improved using variance reduction methods.

Variance Reduction

For the sake of simplicity of the discussion in this section, we assume that all the samples in

the finite-sum problem (4.2) or the online problem (4.3) are available at a single node. To solve

this problem, gradient descent (GD) and SGD are the two classical approaches. Since GD entails

computing the full gradient (O(N × n) operations) at each iteration, for large values of N × n or

in situations where n is infinite (as in the online setting (4.3)), SGD (with O(1) computations per

iteration) is the only viable option.

Empirically, SGD has been observed to have good performance initially, but its progress slows

down near the solution. One of the reasons behind this is the variance inherent in the stochastic

gradient estimator used. A number of variance reduction estimators, for example, SAGA [42] and

SVRG [90], have been proposed in the literature to ameliorate this problem. See [68] for a survey

of variance-reduction methods.

The IFO complexity required for finite-sum problems was first improved to O((Nn)2/3ε−1) in

[146, 8], and then further improved to O((Nn)1/2ε−1) in [52, SPIDER], [187], [208, SNVRG],

[141, SARAH]. Moreover, it is proved in [52] that O((Nn)1/2ε−1) is the optimal complexity for

problems where N ×n ≤ O(ε−2). Similarly, for online problems, variance reduction methods first

improved upon SGD to achieve the IFO complexity of O(ε−5/3) [106], which was again improved

to O(ε−3/2) [52, SPIDER], [187]. It was shown in [9] that the IFO complexity of O(ε−3/2) is

optimal for online problems.

All these methods achieve variance reduction by periodically computing high-precision gra-

1For example, smoothness of individual stochastic functions {fi(·; ξj}) in (4.2), (4.3), rather than just smoothness
of the overall objective function. We shall use a slightly weaker assumption in our work (Assumption 1).

78

dient estimators using large batches of samples. In contrast, some recent works [38, 138] use

adaptive gradient methods to achieve variance reduction. These methods, which derive motivation

from popular adaptive methods like Adam [97], Adagrad [49], etc. do not require computation of

large-batch gradient estimates. All the complexity results we just discussed, are summarized in

Table 4.1.

Algorithm IFO complexity
GD [136] O (Nn/ε)
SGD [62] O (1/ε2)

SVRG [146] O
(

(Nn)2/3

ε

)
SCSG [106] O

(
min

{
(Nn)2/3

ε
, 1
ε5/3

})
SPIDER/SNVRG [52, 208] O

(
min

{
(Nn)1/2

ε
, 1
ε3/2

})
STORM [38] Õ

(
1
ε3/2

)
Table 4.1: IFO complexity of different algorithms to reach an ε-stationary point, for the stochastic smooth
non-convex optimization problem. Õ(·) hides logarithmic factors.

Distributed Stochastic Gradient Descent (SGD)

There is a vast and ever-growing body of literature on distributed SGD. However, here we limit

our discussion almost exclusively to work in nonconvex optimization. A classical method to solve

(4.1) is Parallel Mini-batch SGD [44], [107]. In each iteration, all the workers, in parallel, carry

a stochastic gradient update, and send their updated iterate to the server. The server aggregates

these, and broadcasts the average back to the workers. The workers and the server repeat the

same process.2 The approach achieves an ε-FoS point, with a linear speedup with the number of

workers. This is because the total IFO complexity O(ε−2) is independent of the number of workers

N . Hence each node only computes O(1
N
ε−2) gradients.

The exchange of gradients and iterates between the workers and the server at each itera-

tion results in a significant communication requirement, leading to communication complexity of

O(1
N
ε−2). To alleviate the communication cost, several approaches have recently been proposed.

2Alternatively, the worker nodes might send their local gradient estimators to the server.

79

These include communicating compressed gradients to the server, as in quantized SGD [189, 7] or

sparsified SGD [48, 6]. The motivation behind these is to reduce the communication cost, while

not significantly affecting the convergence rate. The number of communication rounds, however,

still remains the same.

Model Averaging: To cut back on the communication costs, the nodes might decide to make

the communication and the subsequent averaging infrequent. The resulting class of algorithms is

referred to as Parallel Restarted SGD or local SGD. The IFO complexity is still O(ε−2). How-

ever, savings on communication costs are demonstrated.

The entire algorithm is divided into rounds, each spanning I iterations. Within each round, all

the N nodes run I steps of SGD locally and in parallel. At the end of each round, the worker

send their updated iterates to the server. The server returns the average of these local iterates to

the workers. The workers restart their local iterations in the next round from this common point.

Hence the name Parallel Restarted SGD.

In [203], the proposed approach achieves communication savings using model averaging. Fur-

ther reduction in the communication requirement is achieved in [201], by adding momentum to the

vanilla SGD run locally at the nodes. The communication cost is again improved in [200], where

the authors used dynamic batch sizes. For non-convex functions satisfying the Polyak-Lojasiewicz

(PL) condition, linear speedup is achieved using only O(log(ε−1)) communication rounds. And

for general nonconvex problems, linear speedup is achieved, while using O(ε−1 log(N−1ε−1)) =

Õ(ε−1) communication rounds (Õ(·) subsumes logarithmic factors).

Other approaches based on infrequent averaging include LAG [29], in which at every iteration,

fresh gradients are requested only from a subset of the workers. However, the approach has only

been explored in the deterministic setting. In [14], communication compression (quantization and

sparsification) is incorporated into local SGD to further enhance communication savings. In [70],

redundancy is introduced in the training data to achieve communication savings. The authors of

[114] provide a comprehensive empirical study of distributed SGD, with focus on communication

efficiency and generalization performance.

80

Work
Communication

IFO ComplexityDi ≡ D Di 6= Dj
[44] O

(
1
Nε2

)
NA

O
(

1
ε2

)[203]3 O
(

1
ε3/2

)
O
(

1
ε3/2

)
[87] O

(
N2

ε

)
O
(√

N
ε3/2

)
[201] O

(
N
ε

)
O
(

1
ε3/2

)
[200] Õ

(
1
ε

)
NA

[149] O
(

1
ε3/2

)
NA

[71] O
(

1
ε

)
O
(

1
ε

)
[93] O

(
1
ε3/2

)
O
(

1
ε3/2

)
O
(

1
ε3/2

)
[40] O

(
1
ε3/2

)
O
(

1
ε3/2

)
O
(

1
ε3/2

)
Our work O

(
1
ε

)
O
(

1
ε

)
min

{√
Nn
ε
, 1
ε3/2

}
Table 4.2: Communication and computation complexities of different algorithms to reach an ε-FoS point,
for the stochastic smooth non-convex optimization problem.

Federated Learning

Federated Learning (FL) [98] is a recently proposed edge-computing paradigm, that works under

the same worker-server architecture we consider in this chapter. However, the number of work-

ers/clients is typically very large. Therefore, rather than communicating with every worker node

in each communication round, the server selects a small subset of the workers in each round, and

only communicates with them [109]. This sampling of workers is what distinguishes FL from our

work. We next outline some of the work in this direction which resembles ours.

After the seminal work in [123], a number of works have appeared which prove convergence

of FL under different settings. In FedPAQ [149], the authors incorporated quantization into the

worker-server communication, achieving IFO complexity of O(1/ε2), with communication cost

of O(1/(N
√
ε)). Data heterogeneity is incorporated in [71]. Recently, adaptive gradient methods

have been incorporated into the FL paradigm. In [40], the authors proposed an extension of the

STORM [38] algorithm to FL. The workers compress the messages sent to the server, and the server

samples only a subset of clients in each round. The IFO complexity achieved is optimal O(1/ε1.5),

with O(1/ε1.5) rounds of communication required. In [93], the same guarantees are achieved,

3The approach in [203] requires the additional assumption that the gradients have bounded second moments.

81

but under the requirement of all the workers being sampled in each round. Table 4.2 contains a

comparison of the IFO and comunication complexities of some of the methods in the preceding

discussion, with our proposed approach. Di denotes the distribution of data at node i ((4.3)). Note

that not all approaches are applicable to the more general setting where the distributions at different

nodes are non-identical.

Distributed Stochastic Variance Reduction Methods

The existing literature on distributed variance-reduction methods is almost exclusively focused

on convex and strongly convex problems. Empirically, these methods have been shown to be

promising [148, AIDE]. Single node SVRG requires gradient estimators at each iteration to be

unbiased. This is a major challenge for distributed variants of SVRG. The existing approaches try

to bypass this by simulating sampling extra data [105], [160, DANE], [183]. To the best of our

knowledge, [27] is the only work that avoids this additional sampling.

4.1.3 Our Contributions

In this chapter, we propose a distributed variant of the SPIDER algorithm, Parallel Restarted SPI-

DER (PR-SPIDER), to solve the non-convex optimization problem (4.1). Note that PR-SPIDER

is a non-trivial extension of both SPIDER and parallel-restarted SGD. This is because we need to

optimize both communication and computation complexities. Averaging at every step, or too of-

ten, negatively impacts the communication savings. Too infrequent averaging leads to error terms

building up as we see in the analysis, which has adverse impact on convergence.

• For the online setting (4.3), our proposed approach achieves the optimal overall (aggregated

across nodes) IFO complexity of O
(

σ
ε3/2

+ σ2

ε

)
. This result improves the long-standing

best known result of O(σ2ε−2), while also achieving the linear speedup achieved in the

existing literature. The communication complexity achieved O(ε−1) is also the best known

in the literature. To the best of our knowledge, the only other work to achieve the same

communication complexity is [200].

82

• For the finite-sum problem (4.2), our proposed approach achieves the overall IFO complexity

of O(
√
Nnε−1). For problems where N × n ≤ O(ε−2), this is the optimal result one can

achieve, even if all the N × n functions are available at a single location [52]. At the same

time, we also achieve the best known communication complexity O(ε−1).

• Compared to several existing approaches which require the samples across nodes to follow

the same distribution, our approach is more general in the sense that the data distribution

across nodes may be different (the federated learning problem [98]).

4.1.4 Notations and Assumptions

Given a positive integerN , the set {1, . . . , N} is denoted by the shorthand [1 : N]. ‖·‖ denotes the

vector `2 norm. Boldface letters are used to denote vectors. We use x ∧ y to denote the minimum

of two numbers x, y ∈ R.

Following assumptions hold for the rest of the chapter.

Assumption 1. Lipschitz-ness: All the functions are mean-squared L-smooth.4

Eξ‖∇f(x; ξ)−∇f(y; ξ)‖2 ≤ L2‖x− y‖2,∀ x,y ∈ Rd.

Assumption 2. All the nodes begin the algorithm from the same starting point x0.

Assumption 3. Unbiasedness: All the stochastic gradients are unbiased, i.e., Eξ∇fi(x; ξ) = ∇fi(x),

∀ i ∈ [1 : N],∀ x.

In the next section, we discuss our approach to solve the finite-sum problem (4.2). We propose

PR-SPIDER, a distributed, parallel variant of the SPIDER algorithm [52, 187], followed by its

convergence analysis.

4This assumption might seem stringent. However, we can always choose L as the maximum Lipschitz constant
corresponding to all the functions across all the nodes.

83

4.2 Parallel Restarted SPIDER - Finite Sum Case

We consider a network of N worker nodes connected to a server node. The objective is to solve

(4.2). Note that the number of sample functions at different nodes i 6= j, for i, j ∈ [1 : N], can

be non-uniform, i.e., ni 6= nj . However, to ease the notational burden slightly, we assume nj = n,

∀ j ∈ [1 : N].

4.2.1 Proposed Algorithm

The proposed algorithm is inspired by the recently proposed SPIDER algorithm [52, 187] for

single-node stochastic nonconvex optimization. Like numerous variance-reduced approaches pro-

posed in the literature, our algorithm also proceeds in epochs.

Algorithm 5 PR-SPIDER - Finite Sum Case

1: Input: Initial iterate x0
i,m = x0,v0

i,m = ∇f (x0)∀ i ∈ [1 : N]
2: for s = 0 to S − 1 do
3: xs+1

i,0 = xsi,m, ∀ i ∈ [1 : N]

4: vs+1
i,0 = vsi,m,∀ i ∈ [1 : N]

5: xs+1
i,1 = xs+1

i,0 − γvs+1
i,0

6: for t = 1 to m− 1 do
7: Compute vs+1

i,t , using (4.4) ∀ i ∈ [1 : N]
8: if t mod I = 0 then
9: xs+1

i,t = x̄s+1
t , 1

N

∑N
j=1 xs+1

j,t , ∀ i ∈ [1 : N]

10: vs+1
i,t = v̄s+1

t , 1
N

∑N
j=1 vs+1

j,t ,∀ i ∈ [1 : N]
11: end if
12: xs+1

i,t+1 = xs+1
i,t − γvs+1

i,t , ∀ i ∈ [1 : N]
13: end for
14: if s < S − 1 then
15: x̄s+1

m = 1
N

∑N
j=1 xs+1

j,m

16: xs+1
i,m = x̄s+1

m ,∀ i ∈ [1 : N]

17: v̄s+1
m = 1

N

∑N
j=1∇fj

(
xs+1
j,m

)
= ∇f (x̄s+1

m)

18: vs+1
i,m = v̄s+1

m , ∀ i ∈ [1 : N]
19: end if
20: end for
21: Return

At the beginning of each epoch, each worker node has access to the same iterate, and the full

84

gradient ∇f(·) computed at this value. These are used to compute the first iterate of the epoch

xs+1
i,1 ,∀ i ∈ [1 : N]. This is followed by the inner loop (step 6-13). At iteration t in s-th epoch, the

worker nodes first compute an estimator of the gradient, vs+1
i,t as follows (step 7).

vs+1
i,t = vs+1

i,t−1 +∇fi(xs+1
i,t ;Bs+1

i,t)−∇fi(xs+1
i,t−1;Bs+1

i,t), (4.4)

where ∇fi(xs+1
i,t ;Bs+1

i,t) = 1
B

∑
ξ∈Bs+1

i,t
∇fi(xs+1

i,t ; ξ), and |Bs+1
i,t | = B, ∀ i, t, s. This estimator is

computed iteratively, using the previous estimate vs+1
i,t−1, the current iterate xs+1

i,t , and the previous

iterate xs+1
i,t−1. The sample set Bs+1

i,t of size B is picked uniformly randomly at each node, and inde-

pendent of the other nodes. Such an estimator has been proposed in the literature for single-node

stochastic nonconvex optimization [52, 187, 138, 140], and has even been proved to be optimal in

certain regimes.

Using the gradient estimator, the worker node computes the next iterate xs+1
i,t+1. This process is

repeated m−1 times. Once every I iterations of the inner loop (whenever t mod I = 0), the nodes

send their local iterates and gradient estimators {xs+1
i,t ,v

s+1
i,t }Ni=1 to the server node. The server, in

turn, computes their averages and returns the averages {x̄s+1
t , v̄s+1

t } to all the nodes (steps 8-11).

The next iteration at each node proceeds using this iterate and direction.

At the end of the inner loop (t = m), all the worker nodes send their local iterates {xs+1
i,m }Ni=1

to the server. The server computes the model average x̄s+1
m , and returns it to all the workers (steps

15-16). The workers compute the full gradient of their respective functions {∇fi(x̄s+1
m)}Ni=1 at

this point, and send it to the server. The server averages these, and returns this average (which is

essentially ∇f(x̄s+1
m)) to the worker nodes (steps 17-18). Consequently, all the worker nodes start

the next epoch at the same point, and along the same descent direction. This “restart” of the local

computation is along the lines of Parallel-Restarted SGD [166, 203].

85

4.2.2 Convergence Result

Theorem 4.2.1. For the finite-sum problem under Assumptions 1, 3, for small enough step size

0 < γ < 1
8IL

,

min
s,t

[
E
∥∥∇f (x̄s+1

t

)∥∥2
+

1

N

N∑
i=1

E
∥∥xs+1

i,t − x̄s+1
t

∥∥2

]
≤ 2 (f(x0)− f∗)

Tγ
. (4.5)

The above result now can be directly used to compute the bounds on the sample complexity

(see Definition 4.1.2) and the communication complexity (see Definition 4.1.3) of the proposed

algorithm PR-SPIDER for the finite sum problem (4.2).

Computation and Communication Complexity

Based on Theorem 4.2.1, we can bound the computation (IFO) and communication complexity

(Definition 4.1.2, 4.1.3) of Algorithm 5.

Corollary 1. To reach an ε-FoS point (Definition 4.1.1), the IFO complexity is bounded as

O

(√
Nn

ε

)
for N × n ≤ O(ε−2).

The communication complexity (the number of communication rounds) is bounded as

O

(
1

ε

)
.

PROOF: Given (4.5), at an ε-FoS point, the total number of iterations T must satisfy

2 (f(x0)− f∗)
Tγ

= ε ⇒ T =
2 (f(x0)− f∗)

γε
=
CI

ε
, (4.6)

for constants C, I . Choose the number of iterations per epoch m = I
√
Nn, and the per-iteration

mini-batch size (see (4.4)) B = 1
I

√
n
N

. Recall that once every epoch, all the N nodes compute

their full gradients (line 17, Algorithm 5). Also, in every inner iteration of each epoch, each

86

node computes two stochastic gradients, each with mini-batch B (line 7). Consequently, the IFO

complexity is bounded as

N ×
(⌈

T

m

⌉
· n+ T · 2B

)
≤ N ×

((
CI

mε
+ 1

)
n+

CI

ε
2B

)
≤ N ×

(
CI

ε

(n
m

+ 2B
)

+ n

)
= O

(√
Nn

ε

)
for N × n ≤ O(ε−2).

Since communication happens once every I iterations, the number of communication rounds is

bounded using (4.6) as
⌈
T
I

⌉
≤ 1 + C

ε
= O

(
1
ε

)
.

Remark. (Optimality and Linear Speedup)

• This is the optimal sample (IFO complexity achievable for N × n ≤ O(ε−2) (see [52] for

the single node result).

• Given the total IFO cost in Corollary 1, each of the N nodes needs to compute O
(

1
ε

√
n
N

)
stochastic gradients, 1

N
the total number of stochastic gradients needed. Hence, increasing

the number of nodes speeds up the algorithm linearly in N .

Next, we present the proof of Theorem 4.2.1.

4.2.3 Convergence Analysis

We first give a brief outline of the reasoning behind the proof. If we were to run our algorithm in a

single node setting (N = 1), with the update equation xs+1
t+1 = xs+1

t −γvs+1
t , the only source of error

would be the mismatch between the gradient estimate vs+1
t and the actual gradient∇f(xs+1

t). With

N > 1 nodes, where each node only has access to part of the objective function, two additional

sources of error need to be accounted for.

• Mismatch between local iterates
∑N

i=1 E‖x
s+1
i,t − x̄s+1

t ‖2;

87

• Mismatch between the local gradient estimators
∑N

i=1 E‖v
s+1
i,t − v̄s+1

t ‖2.

As we shall see, effectively bounding the errors arising from these three sources requires periodic

averaging of both the iterates and the local gradient estimators (lines 9, 10), and will form a crucial

part of our analysis.

We begin with the L-smoothness of f (Assumption 1). Averaging the local iterate updates (line

12), we get x̄s+1
t+1 = x̄s+1

t − γv̄s+1
t . Consequently,

Ef
(
x̄s+1
t+1

)
≤ Ef

(
x̄s+1
t

)
− γE

〈
∇f

(
x̄s+1
t

)
, v̄s+1

t

〉
+
γ2L

2
E‖v̄s+1

t ‖2

= Ef
(
x̄s+1
t

)
− γ

2
E‖∇f

(
x̄s+1
t

)
‖2 − γ

2
(1− Lγ)E‖v̄s+1

t ‖2

+
γ

2
E‖∇f

(
x̄s+1
t

)
− v̄s+1

t ‖2, (4.7)

where we use 〈a, b〉 = ||a||2+||b||2−||a−b||2
2

. The last term in (4.7) quantifies the difference between

the gradient of f at the average iterate and the average of local descent directions. Next, we bound

this term. We assume t > 0 (for t = 0,E‖∇f(x̄s+1
0)− v̄s+1

0 ‖2 = 0).

E‖∇f
(
x̄s+1
t

)
− v̄s+1

t ‖2 ≤ 2L2

N

∑N

i=1
E
∥∥xs+1

i,t − x̄s+1
t

∥∥2
+ 2E

∥∥∥v̄s+1
t − 1

N

∑N

i=1
∇fi

(
xs+1
i,t

) ∥∥∥2

(4.8)

where (4.8) follow from E‖
∑n

i=1Xi‖2 ≤ n
∑n

i=1 E‖Xi‖2 and the mean-squared L-smoothness

(Assumption 1). The first term in (4.8) is the consensus error of local iterates, while the second

term is the gradient error. In the following two lemmas, we bound both these errors.

Gradient Estimate Error

First, we bound the error in the average (across nodes) gradient estimator.

Lemma 4.2.2. For 0 < t < m, 0 ≤ s ≤ S − 1, the sequence of iterates {xs+1
i,t }i,t and {vs+1

i,t }i,t

88

generated by Algorithm 5 satisfies

E

∥∥∥∥∥v̄s+1
t − 1

N

N∑
i=1

∇fi
(
xs+1
i,t

)∥∥∥∥∥
2

≤ E

∥∥∥∥∥v̄s+1
0 − 1

N

N∑
i=1

∇fi
(
xs+1
i,0

)∥∥∥∥∥
2

︸ ︷︷ ︸
Es+1

0

+
L2

N2B

N∑
i=1

t−1∑
`=0

E
∥∥∥xs+1

i,`+1 − xs+1
i,`

∥∥∥2

(4.9)

PROOF: We have relegated the proof to Appendix A.3.1. However, a few comments are in order.

Due to the recursive nature of the gradient estimator in (4.4), we can express the average gradient

estimator at time t, v̄s+1
t in terms of the average estimator at time t− 1, v̄s+1

t−1 ,

v̄s+1
t = v̄s+1

t−1 +
1

N

∑N

i=1

[
∇fi(xs+1

i,t ;Bs+1
i,t)−∇fi(xs+1

i,t−1;Bs+1
i,t)

]
. (4.10)

This process is repeated recursively. Owing to the computation of full-gradients and the subsequent

averaging at the start of each epoch (lines 17-18), we can bound the error accumulation in the

average gradient estimator in terms of the corresponding error at the beginning of the epoch, and

the average cumulative difference of the consecutive local iterates (second term in (4.9)).

Remark. In the bound in Lemma 4.2.2, we define the first term as Es+1
0 . Note that by Algorithm 5

(for finite-sum problems),

v̄s+1
0 =

1

N

∑N

i=1
vs+1
i,0 =

1

N

∑N

i=1
vsi,m = v̄sm (steps 4, 18 in Algorithm 5)

=
1

N

∑N

i=1
∇fj (x̄sm) (steps 15-17 in Algorithm 5)

=
1

N

∑N

i=1
∇fj

(
x̄s+1
j,0

)
(step 3 in Algorithm 5)

Therefore, Es+1
0 = 0,∀s. However, we retain it (as in [170]), as it shall be needed in the analysis

of online problems.

89

Network Disagreements Errors

Next, we bound the network disagreements of the local estimates relative to global averages. There

are two such error terms, corresponding to: 1) the local gradient estimators, and 2) the local iterates.

For this purpose, we first define

τ(`) =


arg maxj {j | j < `, j mod I = 0} if ` mod I 6= 0

` otherwise.
(4.11)

Note that, τ(`) is the largest iteration index smaller than (or equal to) `, which is a multiple of

I . Basically, looking back from `, τ(`) is the latest time index when averaging happened in the

current epoch (steps 9-10).

Lemma 4.2.3. Given 0 ≤ ` ≤ m, α > 0, δ > 0, θ > 0 such that θ = δ + 8γ2L2(1 + 1
δ
). For

` mod I 6= 0,

N∑
i=1

E
∥∥vs+1

i,` − v̄s+1
`

∥∥2 ≤ 8γ2NL2
(
1 +

1

δ

) `−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2 (4.12)

N∑
i=1

E
∥∥xs+1

i,` − x̄s+1
`

∥∥2 ≤
(

1 +
1

α

)
γ2

N∑
i=1

`−1∑
j=τ(`)+1

(1 + α)`−1−jE
∥∥vs+1

i,j − v̄s+1
j

∥∥2 (4.13)

If ` mod I = 0,
∑N

i=1 E‖v
s+1
i,` − v̄s+1

` ‖2 =
∑N

i=1 E‖x
s+1
i,` − x̄s+1

` ‖2 = 0.

PROOF: See Appendix A.3.2.

Remark. Following a similar reasoning as in Lemma 4.2.2, we use the recursive nature of the

gradient estimator (4.10) to bound the network error at time t

∑N

i=1
E‖vs+1

i,t − v̄s+1
t ‖2

in terms of the corresponding error at time t− 1. Owing to the periodic averaging of local {vs+1
i,t }i

estimates every I iterations (line 10), this error build-up over time is limited. More precisely, in

90

the absence of within-epoch averaging, the sum over time in (4.12) would start at j = 0, rather

than j = τ(`), leading to a greater error.

Remark. Using an analogous reasoning, we bound the network error corresponding to local iterates

at time t ∑N

i=1
E‖xs+1

i,t − x̄s+1
t ‖2

in terms of the corresponding error at time t − 1. Here, we see the need for periodic averaging of

local iterates {xs+1
i,t }i estimates every I iterations (line 9).

Now, substituting the bound derived in Lemma 4.2.2 in (4.8), we get

E
∥∥∇f (x̄s+1

t

)
− v̄s+1

t

∥∥2

≤ 2L2

N

N∑
i=1

E‖xs+1
i,t − x̄s+1

t ‖2 + 2Es+1
0 +

2L2

N2B

N∑
i=1

t−1∑
`=0

E
∥∥xs+1

i,`+1 − xs+1
i,`

∥∥2

≤ 4γ2L2

N2B

N∑
i=1

t−1∑
`=0

[
E‖vs+1

i,` − v̄s+1
` ‖

2 + E‖v̄s+1
` ‖

2
]

+
2L2

N

N∑
i=1

E
∥∥xs+1

i,t − x̄s+1
t

∥∥2
+ 2Es+1

0 .

(4.14)

Using the upper bounds on the two network error terms from Lemma 4.2.3 in (4.14), we get

E
∥∥∇f (x̄s+1

t

)
− v̄s+1

t

∥∥2 ≤ 4γ2L2

N2B
N

t−1∑
`=0

E
∥∥∥v̄s+1

`

∥∥∥2

+ 2Es+1
0

+
2L2

N

(
1 +

1

α

)
γ2

t−1∑
`=τ(t)+1

(1 + α)t−1−`8γ2NL2
(
1 +

1

δ

) `−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

+
4γ2L2

N2B

t−1∑
`=0

8γ2NL2
(
1 +

1

δ

) `−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

. (4.15)

Remark. Again, note that in the last two terms in (4.15), in the absence of any averaging within

an epoch, the summation
∑`−1

j=τ(`)(1 + θ)`−1−jE‖v̄s+1
j ‖2 would instead start from j = 0, leading

to greater error. To check this rapid error build-up, we introduced within-epoch averaging every I

iterations (steps 9-10) in Algorithm 5.

91

We substitute this upper bound in (4.7) to derive the following descent lemma on function values.

Descent over one epoch

Lemma 4.2.4. In each epoch s ∈ [1, S],

Ef
(
x̄s+1
m

)
≤ Ef

(
x̄s+1

0

)
− γ

2

m−1∑
t=0

E
∥∥∇f (x̄s+1

t

) ∥∥2 − γ

2
(1− Lγ)

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2

+
m−1∑
t=0

E
∥∥∥v̄s+1

t

∥∥∥2
[

64γ5L4m

NBδ2
+

2γ3L2m

NB
+

256γ5L4

δ4

]
. (4.16)

PROOF: Substituting the upper bound (4.15) in (4.7) we get

Ef
(
x̄s+1
t+1

)
≤ Ef

(
x̄s+1
t

)
− γ

2
E
∥∥∇f (x̄s+1

t

) ∥∥2 − γ

2
(1− Lγ)E

∥∥v̄s+1
t

∥∥2
+
γ

2
2Es+1

0

+
γ

2

4γ2L2

N2B

t−1∑
`=0

8γ2NL2
(
1 +

1

δ

) `−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

+
γ

2

4γ2L2

N2B
N

t−1∑
`=0

E
∥∥v̄s+1

`

∥∥2

+
γ

2

2L2

N

(
1 +

1

α

)
γ2

t−1∑
`=τ(t)+1

(1 + α)t−1−`8γ2NL2
(
1 +

1

δ

) `−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

= Ef
(
x̄s+1
t

)
− γ

2
E
∥∥∇f (x̄s+1

t

) ∥∥2 − γ

2
(1− Lγ)E

∥∥v̄s+1
t

∥∥2
+ γEs+1

0

+
16γ5L4

NB

(
1 +

1

δ

) t−1∑
`=0

`−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

+
2γ3L2

NB

t−1∑
`=0

E
∥∥v̄s+1

`

∥∥2

+ 8γ5L4

(
1 +

1

α

)(
1 +

1

δ

) t−1∑
`=τ(t)+1

(1 + α)t−1−`
`−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

(4.17)

Note that, as discussed earlier, for finite sum problems,Es+1
0 , E

∥∥∥v̄s+1
0 − 1

N

∑N
i=1∇fi

(
xs+1
i,0

)∥∥∥2

=

0. Further, summing (4.17) over t = 0, . . . ,m− 1, we get

Ef
(
x̄s+1
m

)
≤ Ef

(
x̄s+1

0

)
− γ

2

m−1∑
t=0

E
∥∥∇f (x̄s+1

t

) ∥∥2 − γ

2
(1− Lγ)

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2

92

+
16γ5L4

NB

(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=0

`−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

+
2γ3L2

NB

m−1∑
t=0

t−1∑
`=0

E
∥∥v̄s+1

`

∥∥2

+ 8γ5L4

(
1 +

1

α

)(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=τ(t)+1

`−1∑
j=τ(`)

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2 (4.18)

Substituting the algebraic upper bounds derived in Lemmas A.3.1, A.3.2 and A.3.3, we get the

result of Lemma 4.2.4.

Lemma 4.2.4 quantifies the decay in function value across one epoch. Clearly, the extent of decay

depends on the precise values of algorithm parameters γ, δ, B,m.

Proof of Theorem 4.2.1

Rearranging the terms in (4.16),

m−1∑
t=0

E
∥∥∇f (x̄s+1

t

) ∥∥2
+

(
1− Lγ −

[
128γ4L4m

NBδ2
+

4γ2L2m

NB
+

512γ4L4

δ4

])m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2

≤ 2

γ

(
Ef
(
x̄s+1

0

)
− Ef

(
x̄s+1
m

))
. (4.19)

Further, summing across all epochs s = 0, . . . , S − 1, and dividing by T , we get

1

T

S−1∑
s=0

m−1∑
t=0

[
E
∥∥∇f (x̄s+1

t

) ∥∥2
+

(
1− Lγ −

[
128γ4L4m

NBδ2
+

4γ2L2m

NB
+

512γ4L4

δ4

])
E
∥∥v̄s+1

t

∥∥2
]

≤ 2

Tγ

S−1∑
s=0

(
Ef
(
x̄s+1

0

)
− Ef

(
x̄s+1
m

))
=

2

Tγ

(
Ef
(
x̄0
)
− Ef

(
x̄S+1
m

))
≤ 2 (f(x0)− f∗)

Tγ
, (4.20)

where f∗ = minx f(x). Note that in (4.20), for small enough, but constant step size γ, we can

ensure that

1− Lγ −
[

128γ4L4m

NBδ2
+

4γ2L2m

NB
+

512γ4L4

δ4

]
≥ 1

2
. (4.21)

93

In Appendix A.3.4, we see that γ = 1
8LI

which satisfies (4.21). Further, note that

min
s,t

[
E
∥∥∇f (x̄s+1

t

)∥∥2
+

1

N

N∑
i=1

E
∥∥xs+1

i,t − x̄s+1
t

∥∥2

]

≤ 1

T

S−1∑
s=0

m−1∑
t=0

[
E
∥∥∇f (x̄s+1

t

)∥∥2
+

1

N

N∑
i=1

E
∥∥xs+1

i,t − x̄s+1
t

∥∥2

] (4.22)

We can upper bound the second term in the right hand side of (4.22) as follows.

1

T

S−1∑
s=0

m−1∑
t=0

1

N

N∑
i=1

E
∥∥xs+1

i,t − x̄s+1
t

∥∥2

≤ 1

T

S−1∑
s=0

m−1∑
t=0

1

N
8γ4NL2

(
1 +

1

δ

)(
1 +

1

α

) t−1∑
`=τ(t)+1

(1 + α)t−1−`
`−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

(4.23)

≤ 256γ4L4

δ4

1

T

S−1∑
s=0

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2 (4.24)

≤ 1

2

1

T

S−1∑
s=0

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2 (4.25)

where, (4.23) follows from the two inequalities in Lemma 4.2.3; (4.24) follows from Lemma A.3.3;

(4.25) follows from (4.21). Replacing (4.25) in (4.22), we get

min
s,t

[
E
∥∥∇f (x̄s+1

t

)∥∥2
+

1

N

N∑
i=1

E
∥∥xs+1

i,t − x̄s+1
t

∥∥2

]

≤ 1

T

S−1∑
s=0

m−1∑
t=0

[
E
∥∥∇f (x̄s+1

t

)∥∥2
+

1

2
E
∥∥v̄s+1

t

∥∥2
]

≤ 1

T

S−1∑
s=0

m−1∑
t=0

[
E
∥∥∇f (x̄s+1

t

)∥∥2

+

(
1− Lγ −

[
128γ4L4m

NBδ2
+

4γ2L2m

NB
+

512γ4L4

δ4

])
E
∥∥v̄s+1

t

∥∥2
]

(4.26)

≤ 2 (f(x0)− f∗)
Tγ

. (4.27)

Here, (4.26) follows from the choice of γ that satisfies (4.21), and (4.27) follows from (4.20).

94

Remark. It follows from (4.6) that for large enough T , Algorithm 5 returns an ε-FoS point x̄s+1
t .

Further, it follows from Theorem 4.2.1 that all the local iterates {xs+1
i,t }i are within O(

√
ε)-radius

neighborhood of this point. So, we also achieve consensus across nodes.

In the next section, we solve the online variant of the problem (4.3). The algorithm proposed,

and the accompanying convergence analysis builds upon the finite-sum approach.

4.3 Parallel Restarted SPIDER - Online Case

We consider a network of N worker nodes connected to a server node. The objective is to solve

(4.3). Note that the distribution of samples at different nodes can potentially be different, i.e.,

Di 6= Dj , for i 6= j.

4.3.1 Proposed Algorithm

The pseudo-code of the approach is given in Algorithm 6. In the following, we only highlight the

steps which are different from Algorithm 5. The proposed algorithm is pretty much the same as

Algorithm 5, except a few changes to account for the fact that for problem (4.3), exact gradients

can never be computed. Hence full gradient computations are replaced by batch stochastic gradient

computation, where the batches are of size nb. Again, batch sizes across nodes can be non-uniform.

However, we avoid doing so for the sake of simpler notations.

At the end of the inner loop (t = m), first the local iterates are averaged and returned to the

workers (steps 15-16). Next, the workers compute batch stochastic gradients of their respective

functions { 1
nb

∑
ξi
∇fi (·; ξi)}Ni=1 at the common point x̄s+1

m , and send these to the server. The

server averages these, and returns this average v̄s+1
m to the worker nodes (steps 17-18). As in

Algorithm 5, all the worker nodes start the next epoch at the same point, and along the same

descent direction. However, unlike Algorithm 5, this direction is not∇f(x̄s+1
m).

95

Algorithm 6 PR-SPIDER - Online Case

1: Input: Initial iterate x0
i,m = x0,v0

i,m = 1
N

∑N
j=1

1
nb

∑
ξj
∇fj (x0; ξj) , ∀ i ∈ [1 : N]

2: for s = 0 to S − 1 do
3: xs+1

i,0 = xsi,m, ∀ i ∈ [1 : N]

4: vs+1
i,0 = vsi,m,∀ i ∈ [1 : N]

5: xs+1
i,1 = xs+1

i,0 − γvs+1
i,0

6: for t = 1 to m− 1 do
7: Compute vs+1

i,t , using (4.4) ∀ i ∈ [1 : N]
8: if t mod I = 0 then
9: xs+1

i,t = x̄s+1
t , 1

N

∑N
j=1 xs+1

j,t , ∀ i ∈ [1 : N]

10: vs+1
i,t = v̄s+1

t , 1
N

∑N
j=1 vs+1

j,t ,∀ i ∈ [1 : N]
11: end if
12: xs+1

i,t+1 = xs+1
i,t − γvs+1

i,t , ∀ i ∈ [1 : N]
13: end for
14: if s < S − 1 then
15: x̄s+1

m = 1
N

∑N
j=1 xs+1

j,m

16: xs+1
i,m = x̄s+1

m ,∀ i ∈ [1 : N]

17: v̄s+1
m = 1

N

∑N
i=1

1
nb

∑
ξi
∇fi

(
xs+1
i,m ; ξi

)
18: vs+1

i,m = v̄s+1
m , ∀ i ∈ [1 : N]

19: end if
20: end for
21: Return

Assumption 4. Bounded Variance: There exists constant σ such that

Eξ ‖∇fi (x; ξ)−∇f (x)‖2 ≤ σ2, ∀ i ∈ [1 : N]. (4.28)

See [41] for a discussion on the necessity of such bounded gradient dissimilarity assumption in

settings where local data at different nodes follows heterogeneous distributions.

4.3.2 Convergence Result

Theorem 4.3.1. For the online problem (4.3) with N nodes, under Assumptions 1-4, for small

enough step size 0 < γ < 1
8IL

,

min
s,t

[
E‖∇f

(
x̄s+1
t

)
‖2 +

L2

N

N∑
i=1

E‖xs+1
i,t − x̄s+1

t ‖2

]
≤ 2 (f(x0)− f∗)

Tγ
+

2σ2

Nnb
, (4.29)

96

where nb is the large batch-size used for gradient estimators at the start of each epoch (line 17 in

Algorithm 6).

Remark. Note that, in comparison to Theorem 4.2.1, in Theorem 4.3.1 we have an additional term

2σ2

Nnb
, which accounts for the variance of the gradients computed at the start of each epoch (line 17

in Algorithm 6).

Based on Theorem 4.3.1, we can bound the computation (IFO) and communication complexity

of Algorithm 6.

Sample and Communication Complexity

Corollary 2. To reach an ε-FoS point (Definition 4.1.1), the IFO complexity is bounded as

O

(
σ

ε3/2
+
σ2

ε

)
.

The communication complexity (the number of communication rounds) is bounded as

O

(
1

ε

)
.

PROOF: Given (4.29), to reach an ε-FoS point (Definition 4.1.1), a sufficient condition for the

total number of iterations T and batch-size nb (for gradient estimators at the start of each epoch -

line 17 in Algorithm 6) is

2 (f(x0)− f∗)
Tγ

=
ε

2
∧ 2σ2

Nnb
=
ε

2
. (4.30)

Consequently, T, nb satisfy

T =
2 (f(x0)− f∗)

γε
=
CI

ε
and nb =

4σ2

Nε
, (4.31)

for constants C, I . As in Section 4.2.2, choosing m = I
√
Nnb, B = 1

I

√
nb
N

, the IFO complexity is

97

bounded as

N ×
(⌈

T

m

⌉
· nb + T · 2B

)
≤ N ×

((
CI

mε
+ 1

)
nb +

CI

ε
2B

)
≤ N ×

(
CI

ε
·
(nb
m

+B
)

+ nb

)
= O

(
σ

ε3/2
+
σ2

ε

)
.

Since communication happens once every I iterations, the communication complexity is
⌈
T
I

⌉
≤

1 + C
ε

= O
(

1
ε

)
.

Remark. (Optimality and Linear Speedup). As shown in [9], O(ε−3/2) is the optimal sample com-

plexity for online problems. As stated in Section 4.2, we achieve linear speedup in the number of

nodes N .

Remark. It follows from (4.30) that for Algorithm 6 to reach an ε-FoS point, in addition to T being

large (as in the finite sample case), we also need nb = O(1
Nε

). In other words, since computing the

full gradients is infeasible in online problems (4.3), the nodes instead need to compute large-batch

gradients once every epoch.

4.3.3 Convergence Analysis

The convergence analysis for online problems (4.3) follows closely the analysis in Section 4.2.

The difference arises because here, at the start of each epoch, we cannot compute the full gradient

of the local functions. Instead we compute stochastic gradients using large batch-sizes nb (see line

17 in Algorithm 6). Therefore, we need to bound the departure of the gradient estimator from the

actual gradients at the start of an epoch. Incorporating this additional factor, the remaining analysis

follows similarly as in Section 4.2.

98

Gradient Estimate Error at t = 0

Lemma 4.3.2. For 0 ≤ s ≤ S − 1, the sequences of iterates {xs+1
i,t }i,t and {vs+1

i,t }i,t generated by

Algorithm 5 satisfy

Es+1
0 = E

∥∥∥v̄s+1
0 − 1

N

N∑
i=1

∇fi
(
xs+1
i,0

) ∥∥∥2

≤ σ2

Nnb
. (4.32)

PROOF: We have from the definition of Es+1
0

Es+1
0 = E

∥∥∥v̄s+1
0 − 1

N

N∑
i=1

∇fi
(
xs+1
i,0

) ∥∥∥2

= E
∥∥∥ 1

N

N∑
i=1

1

nb

∑
ξi

∇fi
(
xs+1
i,0 ; ξi

)
− 1

N

N∑
i=1

∇fi
(
xs+1
i,0

) ∥∥∥2

(steps 4, 17-18 in Algorithm 6)

=
1

N2

N∑
i=1

E
∥∥∥ 1

nb

∑
ξi

{
∇fi

(
xs+1
i,0 ; ξi

)
−∇fi

(
xs+1
i,0

)} ∥∥∥2

(4.33)

=
1

N2

N∑
i=1

1

n2
b

E
∑
ξi

∥∥∥∇fi (xs+1
i,0 ; ξi

)
−∇fi

(
xs+1
i,0

) ∥∥∥2

(4.34)

≤ σ2

Nnb
. (4.35)

(4.33) follows since for i 6= j

E

〈∑
ξi

{
∇fi

(
xs+1
i,0 ; ξi

)
−∇fi

(
xs+1
i,0

)}
,
∑
ξj

{
∇fj

(
xs+1
j,0 ; ξj

)
−∇fj

(
xs+1
j,0

)}〉

= E

〈
E
∑
ξi

{
∇fi

(
xs+1
i,0 ; ξi

)
−∇fi

(
xs+1
i,0

)}
,E
∑
ξj

{
∇fj

(
xs+1
j,0 ; ξj

)
−∇fj

(
xs+1
j,0

)}〉
= 0.

This is because, given xs+1
i,0 = x̄sm, the samples at each node are picked uniformly randomly, and

independent of other nodes. (4.34) follows since samples at any node are also picked independent

of each other. Therefore, for any two distinct samples ξi 6= ζi,

E
〈
∇fi

(
xs+1
i,0 ; ξi

)
−∇fi

(
xs+1
i,0

)
,∇fi

(
xs+1
i,0 ; ζi

)
−∇fi

(
xs+1
i,0

)〉

99

= E
〈
Eξi∇fi

(
xs+1
i,0 ; ξi

)
−∇fi

(
xs+1
i,0

)
,Eζi∇fi

(
xs+1
i,0 ; ζi

)
−∇fi

(
xs+1
i,0

)〉
= 0.

Finally, (4.35) follows from Assumption 4.

Remark. Recall that we mentioned Es+1
0 in Lemma 4.2.2, even though it was zero for finite-sum

problems. We can utilize the bound in Lemma 4.2.2, incorporating Es+1
0 from Lemma 4.3.2.

Lemma 4.2.3 holds true as it is, since it depends only on periodic averaging of iterates {xs+1
i,t }i,t

and gradient estimators {vs+1
i,t }i,t every I iterations.

Next we state the descent lemma for the online case.

Descent over one epoch

Using Lemma 4.2.2, Lemma 4.2.3 and Lemma 4.3.2 we can bound the expected decay in function

value over one epoch.

Lemma 4.3.3. In each epoch s ∈ [1, S],

Ef
(
x̄s+1
m

)
≤ Ef

(
x̄s+1

0

)
− γ

2

m−1∑
t=0

E
∥∥∇f (x̄s+1

t

) ∥∥2 − γ

2
(1− Lγ)

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2

+
m−1∑
t=0

E
∥∥∥v̄s+1

t

∥∥∥2
[

64γ5L4m

NBδ2
+

2γ3L2m

NB
+

256γ5L4

δ4

]
+
γσ2m

Nnb
. (4.36)

PROOF: Substituting (4.35) in (4.17) and summing (4.17) over t = 0, . . . ,m− 1, we get

Ef
(
x̄s+1
m

)
≤ Ef

(
x̄s+1

0

)
− γ

2

m−1∑
t=0

E
∥∥∇f (x̄s+1

t

) ∥∥2 − γ

2
(1− Lγ)

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2

+
16γ5L4

NB

(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=0

`−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

+
2γ3L2

NB

m−1∑
t=0

t−1∑
`=0

E
∥∥v̄s+1

`

∥∥2

+ 8γ5L4

(
1 +

1

α

)(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=τ(t)+1

`−1∑
j=τ(`)

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

+
γσ2m

Nnb
(4.37)

100

(4.37) is the same as (4.18) except the additional last term in (4.37). Therefore, again using the

upper bounds derived in Lemmas A.3.1, A.3.2 and A.3.3 in (4.37), we get (4.36).

Note that γσ2m
Nnb

is the only extra term compared to Lemma 4.2.4. Therefore, given Lemma

4.3.3, the proof of Theorem 4.3.1 is a straightforward extension of the proof in the finite-sum case.

Proof of Theorem 4.3.1

Rearranging the terms in (4.36), and summing over epoch index s, analogous to (4.20) we get

1

T

S−1∑
s=0

m−1∑
t=0

[
E
∥∥∇f (x̄s+1

t

) ∥∥2
+

(
1− Lγ −

[
128γ4L4m

NBδ2
+

4γ2L2m

NB
+

512γ4L4

δ4

])
E
∥∥v̄s+1

t

∥∥2
]

≤ 2

Tγ

S−1∑
s=0

(
Ef
(
x̄s+1

0

)
− Ef

(
x̄s+1
m

))
+

2

Tγ

S−1∑
s=0

γσ2m

Nnb

=
2

Tγ

(
Ef
(
x̄0
)
− Ef

(
x̄S+1
m

))
+

2σ2

Nnb

≤ 2 (f(x0)− f∗)
Tγ

+
2σ2

Nnb
. (4.38)

As in the finite-sum case, for small enough step size γ, (4.21) holds. Again, in Appendix A.3.4,

we see a possible choice of γ. Consequently, we have

min
s,t

[
E
∥∥∇f (x̄s+1

t

)∥∥2
+
L2

N

∑N

i=1
E
∥∥xs+1

i,t − x̄s+1
t

∥∥2
]

≤ 1

T

S−1∑
s=0

m−1∑
t=0

[
E
∥∥∇f (x̄s+1

t

)∥∥2
+

1

2
E‖v̄s+1

t ‖2

]
(4.39)

≤ 2 (f(x0)− f∗)
Tγ

+
2σ2

Nnb
, (4.40)

where, (4.39) follows from (4.25). (4.40) follows from the choice of γ in (4.21) and from (4.38).

Remark. It follows from (4.30) that for large enough T and nb, Algorithm 6 returns an ε-FoS point

x̄s+1
t . Further, it follows from (4.40) that all the local iterates {xs+1

i,t }i are within O(
√
ε)-radius

neighborhood of this point. So, we also achieve consensus across nodes.

101

4.4 Simulation Results

In this section, we describe the experiments we conducted to supplement our theoretical results.

We conducted image classification tasks on the MNIST [104] and CIFAR10 [100] datasets. For

MNIST, we trained a shallow convolutional neural network (CNN), while for CIFAR10, we trained

the Resnet20 architecture [78]. Our experiments were conducted on a cluster of 8 NVIDIA Quadro

RTX 5000 GPUs. The algorithms are implemented in PyTorch 1.0. We use Open MPI library to

communicate between GPU nodes.

Data partitioning: The complete dataset is partitioned into 8 disjoint sets, locally available to

the 8 GPU nodes. This is in contrast to the standard implementations [203, 201] where each node

is assumed to have access to the entire dataset. In our implementation, the each node never gets to

access the samples present at the other nodes. This makes the training process more challenging,

even more so when the communication is infrequent.

For the MNIST dataset, we trained a CNN using local batch-size of 50, with learning rate of

0.005. To compare the impact of infrequent communication (I > 1) between the workers and

server, we compare the performance for I ∈ {1, 4, 8, 16, 32}. Note that for I = 1, the nodes

communicate with the server at each iteration. This is equivalent to running the SPIDER algo-

rithm [52], with its optimal convergence guarantees. We compare the training loss (Figure 4.1a)

and the test accuracy (Figure 4.1b) for different values of I . To make the benefits of infrequent

communication more explicit, we have plotted wall clock time (in seconds) of the algorithm on the

x-axis. Each epoch of the algorithm entails going through the data twice, once in the inner loop,

and second while computing the full gradient. Higher values of I result in roughly 15% faster run

time, without much loss in performance. The inset plots in both figures show the speedup in the

algorithm, as I increases, for achieving the same test accuracy of loss function value.

For the CIFAR-10 dataset, we used local batch-size of 250, with learning rate of 0.04. Since

each node has 6250 samples, each epoch has m = 25 inner loop steps. To compare the impact of

infrequent communication (I > 1) between the workers and server, we compare the performance

for I ∈ {1, 4, 8, 16, > m}. I > m means communication happens between the workers and server

102

(a) Training loss vs wall clock time

(b) Test accuracy vs wall clock time

Fig. 4.1: Convergence of PR-SPIDER for over MNIST dataset.

only at the end of an epoch, when full gradients are computed and aggregated. We compare the

training loss (Figure 4.2a) and the test accuracy (Figure 4.2b) for different values of I . Again, we

have plotted wall clock time of the algorithm on the x-axis. Higher values of I result in roughly

12− 15% faster run time, without much loss in performance. The inset plots in both figures show

the speedup in the algorithm, as I increases, for achieving similar test accuracy or loss function

values.

Note that in both the figures, the gain (in terms of wall clock time) from I = 1 to I = 4

103

(a) Training loss vs wall clock time

(b) Test accuracy vs wall clock time

Fig. 4.2: Convergence of PR-SPIDER for ResNet20 over CIFAR-10 dataset.

is much more significant than the gain achieved by further increasing I (I = 8, 16, etc.). This

is because of the following reason. Consider Figure 4.2. With 270k parameters, ResNet20 is a

relatively small CNN. This enables carrying out experiments with it on moderate-sized GPUs,

like the one we used. However, for this reason, between communication between nodes and local

computation at nodes, the latter is relatively more time consuming. Hence, even though we save

104

resources by communicating less (I = 8 or higher), the gain is less pronounced. On the other

hand, larger networks, for example, ResNet18 [78] (with over 11 million parameters) require more

communication resources (but are more difficult to tune with moderate GPUs). In our experiments

with ResNet18, using higher values of I , we observed as much as 50% gain in wall clock time

(relative to I = 1).

4.5 Drawbacks of PR-SPIDER and A Novel Algorithm to

Fix Them

As shown in Sections 4.2 and 4.3, the PR-SPIDER algorithm achieves the optimal computation

complexity, along with state-of-the-art communication cost. However, since PR-SPIDER is based

on the variance-reduced SPIDER algorithm [52, 187], along with the optimal convergence rate, it

also inherits the drawbacks of the former. In the following discussion, we discuss these shortcom-

ings of PR-SPIDER. We then propose a novel algorithm to address them.

4.5.1 Drawbacks of PR-SPIDER

As illustrated in Section 4.2.2 for the finite-sum case, all the nodes need to compute the complete

gradient of their local objective functions {∇fi(·)}i at the start of each outer loop. This incurs a

computation cost of O(n). In the online case (Section 4.3.2), the exact gradient computation is

replaced by the computation of stochastic gradient over a large sample of size nb = O(ε−1). These

large-batch gradient computations pose significant challenge for distributed computation, since

in presence of heterogeneous nodes, with unequal sample-sizes and/or disparate computational

capabilities, the faster nodes have to wait for the slower nodes to finish their computations, before

the algorithm can proceed. Also, the double-loop structure of the variance-reduced algorithms like

SVRG [146] and SPIDER poses practical challenges. See [138, 38] for more discussion on the

drawbacks of double-loop variance-reduced methods.

105

4.5.2 STEM Algorithm

To counter the drawbacks of the double-loop variance reduction methods discussed above, variants

of the momentum-based SGD methods have been proposed over the years. This line of work

was pioneered by SARAH [138]. The proposed estimator required the computation of large-batch

gradients at the nodes only at the beginning of the algorithm. For all the subsequent iterations, only

computation of stochastic gradients is required. This requirement for massive gradient computation

at the outset was alleviated by STORM [38]. In our subsequent work, we propose a distributed

variant of the STORM algorithm, which we call Stochastic Two-sided Momentum (STEM).

Notation: Since STEM is a single-loop algorithm contrary to PR-SPIDER, we modify the notation

a bit: the iterate at node i at time t is denoted as xit. Similarly, the descent direction at node i at

time t is denoted as vit.

Let us discuss the key steps of STEM, listed in Algorithm 7. In Step 10, each node locally

updates its model parameters using the local direction vit, computed by using b stochastic gradients

at two consecutive iterates xit and xit+1. After every I local steps, the WNs share their current local

models {xit+1}Ni=1 and directions {vit+1}Ni=1 with the SN. The SN aggregates these quantities, and

performs a server-side momentum step, before returning x̄t+1 and v̄t+1 to all the WNs. Because

both the WNs and the SN perform momentum based updates, we call the algorithm a stochastic

two-sided momentum algorithm. The key parameters are: b the minibatch size, I the local update

steps between two communication rounds, {γt} the stepsizes, and {at} the momentum parameters.

We show that in the FL setting, the local directions together with the local models have to be

aggregated by the SN so to avoid being influenced too much by the local data. More importantly,

besides the WNs, the SN also needs to perform updates using the (aggregated) momentum direc-

tions. Finally, such two-sided momentum updates have to be done carefully with the correct choice

of minibatch size b, and the local update frequency I . Overall, it is the judicious choice of all these

design elements that results in the optimal sample and communication complexities. Next, we

present the convergence guarantees of the STEM algorithm.

106

Algorithm 7 The Stochastic Two-Sided Momemtum (STEM) Algorithm

1: Input: Parameters: c > 0, the number of local updates I , batch size b, stepsizes {γt}.
2: Initialize: Iterate xi1 = x̄1 = 1

K

∑N
i=1 xi1, descent direction vi1 = v̄1 = 1

K

∑N
i=1 vi1 with

vi1 = 1
B

∑
ξi1∈Bi1

∇f i(xi1; ξi1) and |Bi1| = B for k ∈ [N].
3: Perform: xi2 = xi1 + γ1v

i
1, ∀ k ∈ [N]

4: for t = 1 to T do
5: for i = 1 to N do # at the WN
6: vit+1 =

1

b

∑
ξit+1∈Bit+1

∇f i(xit+1; ξit+1) + (1 − at+1)
(
dit −

1

b

∑
ξit+1∈Bit+1

∇f i(xit+1; ξit+1)
)

where we choose |Bit+1| = b, and at+1 = c · γ2
t ;

7: if t mod I = 0 then # at the server
8: vit+1 = v̄t+1 := 1

N

∑N
i=1 vit+1

9: xit+1 = x̄t+1 := 1
N

∑N
i=1 xit+1 − γt+1v̄t+1 # server-side momentum step

10: else xit+2 = xit+1 − γt+1v
i
t+1 # worker-side momentum step

11: end if
12: end for
13: end for
14: Return: x̄a chosen uniformly randomly from {x̄t}Tt=1

4.5.3 Main results: convergence guarantees for STEM

In this section, we analyze the performance of STEM. We first present our main result, and then

provide discussions about a few parameter choices. In the next subsection, we discuss a special

case of STEM related to the classical FedAvg and minibatch SGD algorithms.

Theorem 4.5.1. Under the Assumptions 1-4, suppose the stepsize sequence is chosen as:

γt =
κ̄

(wt + σ2t)1/3
, where κ̄ =

(bKσ)2/3

L
, wt = max

{
2σ2, 4096L3I3κ̄3 − σ2t,

c3κ̄3

4096L3I3

}
.

(4.41)

Further, let us set c = 64L2

bK
+ σ2

24κ̄3LI
= L2

(
64
bK

+ 1
24(bK)2I

)
, and set the initial batch size asB = bI;

set the local updates I and minibatch size b as follows:

I = O
(
(T/K2)ν/3

)
, b = O

(
(T/K2)1/2−ν/2) (4.42)

107

where ν satisfies ν ∈ [0, 1]. Then for x̄a chosen according to Algorithm 7, we have:

E‖∇f(x̄a)‖2 = O
(
f(x̄1)− f ∗

N2ν/3T 1−ν/3

)
+ Õ

(
σ2

N2ν/3T 1−ν/3

)
. (4.43)

Corollary 3. For any ν ∈ [0, 1], we have

Sample Complexity: The sample complexity of STEM is Õ(ε−3/2). This implies that each WN

requires at most Õ(K−1ε−3/2) gradient computations, thereby achieving linear speedup with the

number of WNs present in the network.

Communication Complexity: The communication complexity of STEM is Õ(ε−1).

We refer the reader to [95] for the proof of the theoretical results. However, a few remarks are

in order.

Remark (Near-Optimal sample and communication complexities). Theorem 4.5.1 suggests that

when I and b are selected appropriately, then STEM achieves Õ(ε−3/2) and Õ(ε−1) sample and

communication complexities. Taking them separately, these complexity bounds are the best achiev-

able by the existing FL algorithms (upto logarithmic factors and regardless of the sample or batch

Lipschitz smooth assumption); see Table 4.2. We note that the O(ε−3/2) complexity is the best

possible that can be achieved by centralized SGD with the sample Lipschitz gradient assumption

[52]. On the other hand, the O(ε−1) complexity bound is also likely to be the optimal, since in

[206] the authors showed that even when the local steps use a class of (deterministic) first-order

algorithms, O(ε−1) is the best achievable communication complexity.

Remark (The Optimal Batch Sizes and Local Updates Trade-off). The parameter ν ∈ [0, 1] is used

to balance the local minibatch sizes b, and the number of local updates I . Eqs. in (4.42) suggest

that when ν increases from 0 to 1, b decreases and I increases. Specifically, if ν = 1, then b is a

constant but I = O(T 1/3/K2/3). In this case, each WN chooses a small minibatch while executing

multiple local updates, and STEM resembles a FedAvg [123] (a.k.a. Local SGD) algorithm but

with double-sided momentum update directions. In contrast, if ν = 0, then b = O(T 1/2/K) but

I is a constant. In this case, each WN chooses a large batch size while executing only a few, or

108

even one, local updates, and STEM resembles the Minibatch SGD, but again with different update

directions, and is referred to as Minibatch STEM.

4.5.4 Simulation Results for STEM

In this section, we validate the proposed STEM algorithm and compare its performance with the de

facto standard FL algorithm FedAvg [123], and the recently proposed SCAFFOLD [94]. The goal

of our experiments are three-fold: (1) To show that STEM performs on par, if not better, compared

to other algorithms in both moderate and high heterogeneity settings, (2) there are multiple ways

to reach the desired solution accuracy, one can either choose a large batch size and perform only

a few local updates or select a smaller batch size and perform multiple local updates, and finally,

(3) if the local updates and the batch sizes are not chosen appropriately, the WNs might need to

perform excessive computations to achieve the desired solution accuracy, thereby slowing down

convergence.

Data and Parameter Settings: We compare the algorithms for image classification tasks on

CIFAR-10 dataset with 100 WNs in the network. Each WN implements a two-hidden-layer con-

volutional neural network (CNN) architecture followed by three linear layers. All the experiments

are implemented on a single NVIDIA Quadro RTX 5000 GPU. We consider two settings, one with

moderate heterogeneity and the other with high heterogeneity. For both settings, the data is par-

titioned into disjoint sets among the WNs. In the moderate heterogeneity setting, the WNs have

access to partitioned data from all the classes but for the high heterogeneity setting the data is

partitioned such that each WN can access data from only a subset (5 out of 10 classes) of classes.

Each WN has access to 490 samples for training and 90 samples for testing purposes.

For STEM, we set wt = 1, c = c̄/κ̄2 and tune for κ̄ and c̄ in the range κ̄ ∈ [0.01, 0.5] and

c̄ ∈ [1, 10], respectively. We note that for small batch sizes κ̄ ∈ [0.01, 0.1], whereas for larger batch

sizes κ̄ ∈ [0.3, 0.5] perform well. We diminish γt according to in each epoch5. For SCAFFOLD

and FedAvg, the stepsize choices of 0.1 and 0.01 perform well for large and smaller batch sizes,

5We define epoch as a single pass over the whole data.

109

respectively. We use cross entropy as the loss function and evaluate the algorithm performance

under a few settings discussed next.

Fig. 4.3: Training loss and testing accuracy in the moderate heterogeneity setting. b = 8 and I = 61.

Fig. 4.4: Training loss and testing accuracy in the moderate heterogeneity setting. b = 64 and I = 7.

Fig. 4.5: Training loss and testing accuracy in the high heterogeneity setting. b = 8 and I = 61.

Discussion: In Figures 4.3 and 4.4, we compare the training and testing performance of STEM

with FedAvg and SCAFFOLD for CIFAR-10 dataset under moderate heterogeneity setting. For

Figure 4.3, we choose b = 8 and I = 61, whereas for Figure 4.4, we choose b = 64 and I = 7.

110

We first note that for both cases STEM performs better than FedAvg and SCAFFOLD. Moreover,

observe that for both settings, small batches with multiple local updates (Figure 4.3) and large

batches with few local updates (Figure 4.4), the algorithms converge with approximately similar

performance, corroborating the theoretical analysis. Next, in Figure 4.5 we evaluate the perfor-

mance of the proposed algorithms on CIFAR-10 with high heterogeneity setting for b = 8 and

I = 61. We note that STEM outperforms FedAvg and SCAFFOLD in this setting as well.

4.6 Summary

In this chapter, we proposed a distributed variance-reduced algorithm, PR-SPIDER, for stochastic

non-convex optimization. Our algorithm is a non-trivial extension of SPIDER [52], the single-node

stochastic optimization algorithm, and parallel-restarted SGD [203, 200]. We proved convergence

of our algorithm to a first-order stationary solution. The proposed approach achieves the best

known communication complexity O(ε−1). In terms of IFO complexity, we have achieved the

optimal rate, significantly improving the state-of-the-art, while maintaining the linear speedup

achieved by existing methods. For finite-sum problems, we achieved the optimal O(
√
Nn
ε

) overall

IFO complexity. On the other hand, for online problems, we achieved the optimal O
(

σ
ε3/2

+ σ2

ε

)
,

a massive improvement over the existing O(σ
2

ε2
). In addition, unlike many existing approaches, our

algorithm is general enough to allow non-identical distributions of data across workers. Finally,

we discussed some drawbacks of PR-SPIDER algorithm, and proposed another algorithm, STEM,

which addresses these, while achieving similar convergence guarantees.

111

CHAPTER 5

STOCHASTIC ZEROTH-ORDER

OPTIMIZATION: HYBRID GRADIENT

DESCENT

In the previous chapter, we assumed access to the IFO oracle (Definition 4.1.2), which returns the

loss function value and the gradient vector at the specified point. In this chapter, we solve the

stochastic nonconvex optimization problem, under more general conditions, where the analytical

expressions of the objective functions are either expensive or infeasible to obtain. Hence, we only

have access to function values.

5.1 Introduction

Zeroth-order (ZO) methods can be seen as gradient-less versions of first-order (gradient-based)

optimization methods [152, 136, 61]. ZO optimization involves approximating the full/stochastic

gradient of the function using only the function values, and using this gradient estimator in the

first-order (FO) optimization framework. Owing to their theoretical closeness to FO methods, ZO

methods often have convergence rates comparable to their FO counterparts, with an additional

112

small-degree polynomial in the problem dimension d [50, 137].

5.1.1 Motivating Application: Adversarial Example Generation

ZO optimization has recently been shown to be powerful in evaluating the adversarial robustness of

deep neural networks (DNNs), by generating black-box adversarial examples, e.g., crafted images

with imperceptible perturbations, to deceive a well-trained DNN using only input-output model

queries [28, 80, 81, 34, 120, 177]. The internal configurations of the victim DNN systems are not

revealed to the attackers and the only mode of interaction with the systems is by submitting inputs

and receiving the predicted outputs.

5.1.2 Related Work

The general ZO approach involves computing a gradient estimate ∇̂f(x) of the loss function f at

the point x, and then plugging this estimate into a FO method. One way to estimate the gradient

is by querying the function at a single randomly chosen point in the vicinity of x [55]. More

effectively, multi-point (e.g., two-point) approaches are used [3, 137], leading to better variance

and improved complexity results.

The initial work on multi-point estimators was largely limited to convex problems. For smooth,

deterministic problems, the authors in [137] proposed the ZO gradient descent (ZO-GD) algorithm

and proved O(d/T) convergence rate, where d denotes the problem size and T is the number of

iterations. A ZO-mirror descent algorithm [50] extended this to the stochastic case, achieving

the rate of O(
√
d/
√
T). The authors also proved the result to be order-optimal. For nonsmooth

problems, the authors in [158] proved the same rate to be optimal, while also extending the analysis

to non-Euclidean problems.

In the nonconvex domain, the first stochastic algorithm, ZO-SGD [61] utilized vectors sam-

pled from normal distribution, and achieved O(
√
d/
√
T) convergence rate. The same rate was

achieved by [60], while using random vectors sampled from the surface of the unit sphere. In

[113], an asynchronous ZO-SCD approach was proposed for parallel architecture settings, which

113

achieved O(
√
d/
√
T) rate. Following the recent progress in variance reduction methods for first-

order optimization: SAGA [43], SVRG [91, 147], SARAH [139], SPIDER [53], to name a few,

the ZO extensions of variance reduced methods have also appeared in recent years. ZO-SVRG

[119] improved the iteration complexity to O(d/T), but at the expense of an increased function

query complexity. The iteration complexity is further improved in [53, 86]. ZO-counterparts of

FO methods have also been proposed in other contexts, such as constrained optimization [10],

adaptive momentum methods [33], mitigation of extreme components of gradient noise [117], and

distributed optimization over networks [72, 173].

ZO algorithms often suffer from the high variance of gradient estimates. The existing esti-

mators involve choosing between saving on the function query cost [61], and achieving higher

accuracy of the gradient estimates [113].

5.1.3 Our Contributions

We summarize our contributions below:

• We propose a novel function value based gradient estimator (we call HGE, hybrid gradient

estimator), which takes advantage of both the query-efficient random gradient estimate and

the variance-reduced coordinate-wise gradient estimate. We also develop a coordinate im-

portance sampling method to further improve the variance of HGE under a fixed number of

function queries.

• We propose a ZO hybrid gradient descent (ZO-HGD) optimization method with the aid of

HGE. We show that ZO-HGD is general since it covers ZO stochastic gradient descent (ZO-

SGD) [61] and ZO stochastic coordinate descent (ZO-SCD) [113] as special cases. We

provide a comprehensive theoretical analysis for the convergence of ZO-HGD across differ-

ent optimization domains, showing that ZO-HGD is efficient in both iteration and function

query complexities.

• We demonstrate the effectiveness of ZO-HGD through a real-world application to generating

114

adversarial examples from a black-box deep neural network [28, 80]. We show that ZO-HGD

outperforms ZO-SGD, ZO-SCD and ZO sign-based SGD methods in striking a graceful

balance between query efficiency and attack success rate.

In the following section, we state the problem, and discuss two of the existing zeroth-order

gradient estimators.

5.2 Preliminaries

In this section, we begin by presenting the formulation of the black-box optimization problems of

our interest. We then review two commonly-used ZO gradient estimators, random gradient estima-

tor (RGE) and coordinate-wise gradient estimator (CGE). We shall define the notation wherever we

introduce a new mathematical entity. We refer the reader to Appendix A.4.1 for a tabular summary

of all the notations used.

We consider the following black-box stochastic optimization problem

min
x∈Rd

f(x) , Eξ∼ΞF (x; ξ), (5.1)

where x denotes the d-dimensional optimization variable, ξ ∈ Ξ denotes a stochastic variable with

distribution Ξ (e.g., distribution of training samples), and F (·; ξ) is a smooth, possibly nonconvex

loss function. By black-box, we mean that the objective function in (5.1) is only accessible via

functional evaluations. To enable theoretical analysis, we impose two commonly-used assumptions

on problem (5.1).

Assumption 1. Gradient Lipschitz continuity: The loss function f in (5.1) has Lipschitz continuous

gradient with parameter L, i.e., f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L
2
‖y − x‖2

2, for all x,y, where

∇f denotes the gradient of f .

Assumption 2. Bounded variance of stochastic gradients: Suppose (x)i denotes the ith coordinate

of a vector x, and ζ is a given constant, then E[(∇F (x; ξ)−∇f(x))2
i] ≤ ζ2,∀ i.

115

Assumption 1 is fairly standard in the theoretical analysis of nonconvex optimization [61].

Assumption 2 enables a finer control on the variance of CGE [113, 19]. It also implies that

E ‖∇F (x; ξ)−∇f(x)‖2 ≤ σ2 , dζ2.

RGE. Considering a set of random directional vectors {ui}nr
i=1, RGE of the individual loss func-

tion F (x; ξ) is given by the average of the finite difference approximations of the directional deriva-

tives of F (x; ξ) along these random directions [60, 119]:

∇̂RGEF (x; ξ) =
1

nr

nr∑
i=1

d [F (x + µrui; ξ)− F (x; ξ)]

µr

ui, (5.2)

where µr > 0 is a perturbation radius (also called smoothing parameter), and each ui is drawn

from the uniform distribution on a unit sphere U0 centered at 0 [60]. We define the smooth ap-

proximation of a function g(x) with smoothing parameter µr as gµr(x) = Eu∈U0 [g(x + µru)]. The

rationale behind RGE (5.2) is that ∇̂RGEF (x; ξ) is an unbiased estimate of ∇Fµr(x; ξ), leading to

Eξ,{ui}[∇̂RGEF (x; ξ)] = ∇fµr(x). Note that ∇fµr(x) itself is a biased approximation of the true

gradient∇f(x), with the bias controlled by µr.

CGE. Different from RGE, CGE is constructed by finite difference approximations of directional

derivatives along the canonical basis vectors {ei}di=1 in Rd. The i-th component of CGE is defined

as [96]

∇̂CGEFi(x; ξ) =
[F (x + µc,iei; ξ)− F (x− µc,iei; ξ)]

2µc,i

ei, (5.3)

where µc,i > 0 denotes the coordinate-wise smoothing parameter. ∇̂CGEF (x; ξ) =
∑d

i=1 ∇̂CGEFi(x; ξ)

is the full CGE. If a random subset of the coordinates I ⊆ [d] is used (here [d] denotes the set

{1, 2, . . . , d}), rather than the full coordinate set [d], we get the stochastic coordinate-wise gradient

estimator [113, 69]

∇̂CGEFI(x; ξ) =
d

nc

d∑
i=1

I(i ∈ I)∇̂CGEFi(x; ξ), (5.4)

116

where the cardinality of I is denoted by |I| = nc, and I(i ∈ I) is the indicator function which

takes the value 1 if i ∈ I and 0 otherwise. Note that [113] sampled the elements of I uniformly,

i.e., Pr(i ∈ I) = nc/d, for all i ∈ [d]. Hence, the multiplicative factor d/nc in (5.4) ensures

unbiasedness EI [∇̂CGEFI(x; ξ)] = ∇̂CGEF (x; ξ). In this work, we generalize (5.4) to the case

where the coordinates are instead, sampled non-uniformly.

Using the gradient estimate ∇̂F (x; ξ) based on either RGE or CGE, we can further define the

approximation of the stochastic gradient of the objective in (5.1), over a set of stochastic samples

{ξ ∈ B}. This leads to

∇̂F (x;B) =
1

|B|
∑
ξ∈B

∇̂F (x; ξ). (5.5)

We also remark that compared to RGE, full CGE takes O(d/nr) times more function queries if

d > nr. However, it has O(d/nr) times smaller gradient estimation error [119]. Inspired by this

observation, we ask:

“Can we design a convex combination of RGE and CGE to to strike an optimized balance

between the gradient estimation accuracy and the query efficiency?”

Gradient estimators based on convex combinations of existing estimators have been proposed for

solving stochastic nonconvex problems using first-order methods [175, 176, 115]. However, to the

best of our knowledge, such estimators have not been considered in the zeroth-order context. Next,

we propose our hybrid estimator, and discuss its theoretical properties.

5.3 Hybrid Gradient Estimator

Spurred by the capabilities and limitations of RGE and CGE, in what follows we propose a new

hybrid gradient estimator (HGE) and its variance-controlled version using a coordinate importance

sampling method.

117

Proposed HGE. In order to achieve the desired tradeoff between estimation accuracy and query

efficiency, we combine RGE with CGE to obtain HGE

∇̂HGEF (x;Br,Bc, I) = α∇̂RGEF (x;Br) + (1− α)∇̂CGEFI(x;Bc,p), (5.6)

where α ∈ [0, 1] is the combination coefficient, Br and Bc are mini-batches of stochastic samples

as introduced in (5.5), ∇̂RGEF (x;Br) is given by (5.2) and (5.5), and ∇̂CGEFI(x;Bc,p) denotes

the stochastic CGE (5.4) with the coordinate selection probability Pr(i ∈ I) = pi, namely,

∇̂CGEFI(x; ξ,p) =
d∑
i=1

I(i ∈ I)

pi
∇̂CGEFi(x; ξ). (5.7)

Different from (5.4), the coordinates of I in (5.7) can be sampled with unequal probabilities. It can

be easily shown that E[∇̂CGEFI(x;Bc,p)] = ∇̂CGEf(x). In (5.6), α and p are design parameters.

Their optimal values help us improve the variance of HGE relative to RGE, and the function query

complexity relative to CGE. We next discuss how to optimize these parameters.

Design of coordinate selection probabilities p. Recall that if no prior knowledge on gra-

dient estimation is available, then a simple choice of p is that of equal probability across all

coordinates [113], namely, the uniform distribution used in (5.4). However in HGE, a RGE

g , ∇̂RGEF (x;Br), known prior to computing CGE, can be employed as a probe estimate. Thus,

we ask if p could be designed based on g to reflect the importance of coordinates to be selected.

We next show that this question can be addressed by formulating the coordinate selection problem

as the problem of gradient sparsification [188].

Given p, the i-th coordinate of g is dropped with probability 1 − pi. This can be modeled

using a Bernoulli random variable Zi: Pr(Zi = 1) = pi and Pr(Zi = 0) = 1 − pi. Defining

(Q(g))i = Zi · (gi/pi), note that Q(g) is an unbiased estimator of g. The variance can be bounded

using ‖Q(g)‖2 =
∑d

i=1 g
2
i /pi, while the expected sparsity of Q(g) is

∑d
i=1 pi. To determine p,

we minimize the variance of the sparsified RGE under a constraint on the expected sparsity of the

118

vector. That is, we solve the problem:

min
p

d∑
i=1

g2
i

pi
subject to

d∑
i=1

pi ≤ nc, 0 < pi ≤ 1,∀i. (5.8)

where nc ∈ N+ denotes the coordinate selection budget, and N+ is the set of positive integers. The

solution to (5.8) is given by the following proposition.

Proposition 5.3.1. Suppose we denote by g(1), g(2), . . . , g(d) the components of vector g, arranged

in descending order of magnitudes. First, we find the smallest k such that

|g(k+1)| (nc − k) ≤
d∑

i=k+1

|g(i)|,

is true, and denote by Sk the set of coordinates with the top k largest magnitudes of |gi|. Then the

i-th component of the probability vector p is computed as

pi =


1, if i ∈ Sk

|gi|(nc−k)∑d
j=k+1 |gj |

, if i /∈ Sk.

PROOF: See Appendix A.4.2.

The probability value pi depends on the relative magnitude of gi, with respect to the other

elements of g. If nc is large enough, then the coordinates corresponding to the largest elements

are always sampled (k > 0). In the extreme case of all entries having the same magnitude (for

example, g is the 1-bit compressed version of a real-valued vector), k = 0 and pi = nc/d for all i.

The probabilities {pi} obtained in Proposition 5.3.1 are used to compute (5.7).

Design of combination coefficient α. Once we select p, we intend to select a combination

coefficient α which can minimize the variance of HGE. In fact, the closed form expression of this

variance is not tractable. Hence, we first upper bound the variance in the following proposition.

Then, α is selected to minimize this upper bound.

119

Proposition 5.3.2. The variance of HGE (5.6) is bounded as

E
∥∥∥∇̂HGEF (x;Br,Bc, I)−∇f(x)

∥∥∥2

≤ 2α2E
∥∥∥∇̂RGEF (x;Br)−∇f(x)

∥∥∥2

+ 2(1− α)2E
∥∥∥[∇̂CGEFI(x;Bc,p)]−∇f(x)

∥∥∥2

.

(5.9)

Moreover, suppose Assumption 1 and 2 hold. Given the probability vector p, the individual gradi-

ent estimators ∇̂RGEF (x;Br) and ∇̂CGEFI(x;Bc,p) satisfy

E
∥∥∥∇̂RGEF (x;Br)−∇f(x)

∥∥∥2

≤ 2

|Br|

(
1 +

d

nr

)
‖∇f(x)‖2 +

2σ2

|Br|

(
1 +

d

nr

)
+

(
1 +

2

|Br|
+

2

nr|Br|

)
µ2

rL
2d2

4
,

(5.10)

E
∥∥∥[∇̂CGEFI(x;Bc,p)]−∇f(x)

∥∥∥2

≤
d∑
i=1

1

pi

[
2 (∇f(x))2

i +
3

|Bc|

(
ζ2 +

L2µ2
c,i

2

)
+
L2µ2

c,i

2

]
− 2 ‖∇f(x)‖2 , (5.11)

where recall from (5.6) that Bc and Br denote the sets of stochastic samples, nr denotes the num-

ber of random directions (per stochastic sample) used in computing ∇̂RGE (5.2), µr is the RGE

smoothing parameter, {µc,i}i are the coordinate-wise CGE smoothing parameters, and ζ is the

coordinate-wise variance (Assumption 2), with σ2 = dζ2.

PROOF: First we prove (5.10). The proof of (5.11) is discussed in Appendix A.4.3. The variance

of RGE is given by

E
∥∥∥∇̂RGEF (x;Br)−∇f (x)

∥∥∥2

= E
∥∥∥∇̂RGEF (x;Br)−∇fµr(x) +∇fµr(x)−∇f(x)

∥∥∥2

(a)
= E

∥∥∥∇̂RGEF (x;Br)−∇fµr(x)
∥∥∥2

+ ‖∇fµr(x)−∇f(x)‖2 (5.12)

where (a) follows since E∇̂RGEF (x;Br) = ∇fµr(x) (see the discussion following (5.2)). Next,

120

we upper bound the first term in (5.12).

E
∥∥∥∇̂RGEF (x;Br)−∇fµr(x)

∥∥∥2

= E{u},Br

∥∥∥∇̂RGEF (x;Br)−∇fµr(x)
∥∥∥2

(b)
= E{u},Br

∥∥∥∥∥ 1

|Br|
∑
ξ∈Br

1

nr

nr∑
i=1

d [F (x + µrui,ξ; ξ)− F (x; ξ)]

µr

ui,ξ −∇fµr(x)

∥∥∥∥∥
2

=
1

|Br|2n2
r

∑
ξ∈Br

E{u},ξ

∥∥∥∥∥
nr∑
i=1

(
d [F (x + µrui,ξ; ξ)− F (x; ξ)]

µr

ui,ξ −∇fµr(x)

)∥∥∥∥∥
2

+
1

|Br|2n2
r

∑
ξ 6=χ

〈
Eξ

nr∑
i=1

Eui,ξ

(
d [F (x + µrui,ξ; ξ)− F (x; ξ)]

µr

ui,ξ −∇fµr(x)

)
,

Eχ
nr∑
i=1

Eui,χ

(
d [F (x + µrui,χ;χ)− F (x;χ)]

µr

ui,χ −∇fµr(x)

)〉
(c)
=

1

|Br|2n2
r

∑
ξ∈Br

nr∑
i=1

Eui,ξ,ξ

∥∥∥∥d [F (x + µrui,ξ; ξ)− F (x; ξ)]

µr

ui,ξ −∇fµr(x)

∥∥∥∥2

+
1

|Br|2n2
r

∑
ξ∈Br

∑
i 6=j

Eξ
〈
Eui,ξ

(
d [F (x + µrui,ξ; ξ)− F (x; ξ)]

µr

ui,ξ −∇fµr(x)

)
,

Euj,ξ

(
d [F (x + µruj,ξ; ξ)− F (x; ξ)]

µr

uj,ξ −∇fµr(x)

)〉
(d)
=

1

|Br|nr

Eξ1,u1,ξ1

∥∥∥∥d [F (x + µru1,ξ1 ; ξ1)− F (x; ξ1)]

µr

u1,ξ1 −∇fµr(x)

∥∥∥∥2

+
(nr − 1)

|Br|nr

Eξ1 ‖∇Fµr(x, ξ1)−∇fµr(x)‖2 (for some ξ1 ∈ Br), (5.13)

where (b) follows from the definition of RGE (5.2), (5.5). {ui,ξ} denotes the set of random direc-

tions associated with sample ξ. (c) follows since the samples of Br are picked independently of

each other, and the random directions associated with sample ξ, {ui,ξ} are also independent of the

random directions corresponding to another sample χ. Also,

EξEui,ξ

[
d [F (x + µrui,ξ; ξ)− F (x; ξ)]

µr

ui,ξ

]
= ∇fµr(x).

121

Hence,

〈
Eξ

nr∑
i=1

Eui,ξ

(
d [F (x + µrui,ξ; ξ)− F (x; ξ)]

µr

ui,ξ −∇fµr(x)

)
,

Eχ
nr∑
i=1

Eui,χ

(
d [F (x + µrui,χ;χ)− F (x;χ)]

µr

ui,χ −∇fµr(x)

)〉
= 0.

Further, in (5.13), (d) follows since

Eu
d [F (x + µru; ξ)− F (x; ξ)]

µr

u = ∇fµr(x; ξ).

Also, both the samples ξ ∈ Br and the random directions {ui,ξ} are picked independently and

uniformly. We denote by ξ1 and ui,ξ, a representative sample of both sets respectively. Next, we

upper bound the two terms in (5.13). From Assumption 2 and [60, Lemma 4.2], we obtain

Eξ,u
∥∥∥∥d [F (x + µru; ξ)− F (x; ξ)]

µr

u−∇fµr(x)

∥∥∥∥2

≤ 2d
[
‖∇f(x)‖2 + σ2

]
+
µ2

rL
2d2

2
. (5.14)

Also, the second term in (5.13) can be upper bounded as follows:

Eξ ‖∇Fµr(x, ξ)−∇fµr(x)‖2 ≤ Eξ ‖∇Fµr(x, ξ)‖
2

≤ 2Eξ ‖∇F (x, ξ)‖2 +
µ2

rL
2d2

2
from [119, Lemma 1]

≤ 2
[
Eξ ‖∇F (x, ξ)−∇f(x)‖2 + ‖∇f(x)‖2]+

µ2
rL

2d2

2

≤ 2
[
‖∇f(x)‖2 + σ2

]
+
µ2

rL
2d2

2
. (5.15)

Substituting (5.14), (5.15) in (5.13), we get

E
∥∥∥∇̂RGEF (x;Br)−∇fµr(x)

∥∥∥2

≤ 2

|Br|

(
1 +

d

nr

)[
‖∇f(x)‖2 + σ2

]
+

(
1 +

1

nr

)
µ2

rL
2d2

2|Br|
.

(5.16)

122

Substituting (5.16) in (5.12), and using ‖∇fµr(x)−∇f(x)‖ ≤ µrdL
2

from [119, Lemma 1], we get

E
∥∥∥∇̂RGEF (x;Br)−∇f (x)

∥∥∥2

≤ 2

|Br|

(
1 +

d

nr

)[
‖∇f(x)‖2 + σ2

]
+

(
1 +

2

|Br|
+

2

nr|Br|

)
µ2

rL
2d2

4
. (5.17)

The accuracy of ∇̂RGE depends critically on the number of random directions nr (5.2). Also,

for |Br| → ∞, ∇̂RGE → ∇fµr , and the bound (5.10) reduces to O(µ2
rL

2d2). This is precisely the

bound for the deterministic case [60, Lemma 4.1]. Similarly, the accuracy of ∇̂CGE depends on the

sampling probabilities {pi}. If pi = 1 for all i, and |Bc| → ∞, ∇̂CGEFI(x;Bc,p) → ∇̂CGEf(x).

The bound in (5.11) then reduces to the deterministic case upper bound O(L2
∑d

i=1 µ
2
c,i) [86,

Lemma 3].

Substituting (5.10), (5.11) in (5.9), and minimizing over α, we obtain the optimal value α∗. We

define P̄ = 1
d

∑d
i=1

1
pi

. On simplification (see Appendix A.4.4), α∗ reduces to

α∗ =

[
1 +

(1 + d/nr)

P̄

]−1

, (5.18)

Recall that nr and
∑

i pi(= nc) respectively, are the function query budgets of RGE and CGE.

Considering some extreme cases, if nr → ∞, since P̄ ≥ 1, we get α∗ ≥ 1
2
. If P̄ → ∞, then

α∗ → 1 and RGE dominates the estimator. On the other hand, if nr = 0, then α∗ = 0 since there

is no RGE to assign any weight. The relative values of nr, P̄ determine the exact weights assigned

to RGE, CGE in (5.6).

A relatively simple case is the one with uniform sampling of coordinates, i.e., pi = nc/d, for

all i. In this case, nc is the query budget of CGE, and α∗ = (1 +nc/d+nc/nr)
−1. If nc ≥ nr, then

α∗ < 1
2

and HGE (5.6) reasonably assigns higher weight to CGE.

Next, we use the proposed HGE estimator to propose a zeroth-order hybrid gradient descent

(ZO-HGD) algorithm. We shall also discuss the convergence properties of the algorithm for

123

smoooth, nonconvex functions, and for smooth, convex and strongly convex functions.

5.4 ZO Hybrid Gradient Descent

In this section, we introduce the ZO hybrid gradient descent (ZO-HGD) algorithm to solve problem

(5.1) with the aid of HGE (5.6). We then derive its convergence rate and discuss the performance

of ZO-HGD in several special cases.

5.4.1 The Algorithm

Algorithm 8 ZO-HGD to solve problem (5.1)

1: Input: Initial point x0, number of iterations T , step sizes {ηt}, smoothing parameter µr and
number of random directions nr for RGE, smoothing parameters {µc,i}di=1 for CGE, random
sample set Ξ, coordinate selection budget {nc,t} for CGE (5.8)

2: for t = 0 to T − 1 do
3: Sample mini-batches Br

t ,Bc
t from Ξ

4: Compute RGE∇r,t = ∇̂RGEF (xt;Br
t) as (5.2) & (5.5)

5: Compute importance sampling probabilities pt with nc = nc,t,g = ∇r,t in Proposition
5.3.1

6: Sample coordinate set It of cardinality nc,t with Pr(i ∈ It) = pt,i
7: Compute CGE∇c,t = ∇̂CGEFIt(xt;Bc

t ,pt) as (5.7)
8: Update: xt+1 = xt − ηt (αt∇r,t + (1− αt)∇c,t)
9: end for

10: Output: A solution x̄T is picked uniformly randomly from {xt}Tt=1.

We present ZO-HGD in Algorithm 8, which consists of three main steps. First, a coarse gradi-

ent estimate ∇r,t is acquired using RGE (line 4), and is employed as a probe signal to determine

the probabilities pt of coordinate-wise importance sampling (line 5). Second, a stochastic CGE

is generated using the subset of coordinates It sampled according to pt (line 6-7). Third, a HGE

based descent step is used to update the optimization variable xt per iteration (line 8).

The expected total number of function evaluations in Algorithm 8, known as the Function

Query Cost (FQC), is given by
∑T−1

t=0 (2nr|Br
t |+ 2nc,t|Bc

t |), where recall that nc,t is the size of the

coordinate set It sampled in line 6. If we assume the coordinate set size to be constant over time,

124

i.e., nc,t = nc at all times t, FQC reduces to O(T (nr + nc)). Note that if nc,t = 0, then HGE

reduces to RGE, with αt = 1. Accordingly, Algorithm 8 becomes mini-batch ZO-SGD [60]. On

the other hand, if nr = 0, HGE reduced to CGE and αt = 0. In this case, no prior knowledge is

available to compute the sampling probability vector pt. If we sample the coordinates uniformly,

i.e., pt,i = nc/d, for all i, t, ZO-HGD reduces to ZO-SCD [113].

5.4.2 Technical challenges of ZO-HGD.

ZO-HGD is a non-trivial extension of both ZO-SGD and ZO-SCD because of the following dif-

ferences. First, the non-uniform sampling of the coordinate sets {It} in CGE complicates the

derivation of the upper bound on the variance of CGE (5.11), compared to the uniform sampling

case [113]. Second, as discussed in Section 5.3, the choice of the combination coefficients {αt}

controls the variance of the proposed HGE relative to both RGE and CGE. However, α has a non-

linear dependence on nr (query budget for RGE), and {pt,i} (sampling probabilities for CGE).

This makes choosing αt nontrivial to achieve the graceful tradeoff between convergence speed and

FQC. Next, we elaborate on the convergence of ZO-HGD.

5.4.3 Convergence analysis.

For ease of notation, as in Algorithm 8, we denote

∇r,t = ∇̂RGEF (xt;Br
t),∇c,t = ∇̂CGEFIt(xt;Bc

t ,pt).

Also, we assume the coordinate-wise smoothing parameters in CGE to be fixed, i.e., µc,i = µc for

all i. Recall that the function query budget of HGE depends only on nr (number of random vectors

in RGE), and the sampling probability values {pt,i} for CGE. The expected number of coordinates

used in CGE at time t is
∑d

i=1 pt,i = nc.

Our analysis begins with using the L-smoothness of f (Assumption 1) in the update step (line

125

8) in Algorithm 8,

f(xt+1) ≤ f(xt)− ηt 〈∇f(xt), αt∇r,t + (1− αt)∇c,t〉+
η2
tL

2
‖αt∇r,t + (1− αt)∇c,t‖2 . (5.19)

We denote by Yt , {It,Bc
t ,Br

t} the randomness at step t. We denote by Yt the σ-algebra generated

by {Y0, Y1, . . . , Yt−1}. Taking conditional expectation in (5.19),

EYt [f(xt+1) | Yt] ≤ f(xt) + ηtαt 〈−∇f(xt),∇fµr(xt)〉
I

+ηt(1− αt)
〈
−∇f(xt), ∇̂CGEf(xt)

〉
II

+ η2
tLα

2
t EYt [‖∇r,t‖2 | Yt]

III

+η2
tL(1− αt)2 EYt [‖∇c,t‖2 | Yt]

IV

, (5.20)

which holds since

(i) EYt [∇r,t | Yt] = ∇fµr(xt), where recall (Section 5.2) that fµr is a smooth approximation of

f

(ii) EYt [∇c,t | Yt] = ∇̂CGEf(xt), which follows from (5.4), where ∇̂CGEf is the full-coordinate

CGE of f

(iii) ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2.

Next, we bound the terms I-IV of (5.20) in the following two results. We begin with I, II.

Proposition 5.4.1. Suppose f satisfies Assumption 1, then the quantities I and II in (5.20) are

upper bounded as

I ≤ −3

4
‖∇f(xt)‖2 +

(
µrdL

2

)2

,

II ≤ −3

4
‖∇f(xt)‖2 + L2dµ2

c.

where recall that µr and µc are the smoothing parameters, respectively for RGE and CGE.

126

PROOF: The inner product term I in (5.20) can be bounded as follows.

I = −〈∇f(xt),∇fµr(xt)〉 = −

[
‖∇f(xt)‖2 + ‖∇fµr(xt)‖

2 − ‖∇f(xt)−∇fµr(xt)‖
2

2

]
(a)

≤ −‖∇f(xt)‖2

2
+

1

2

(
‖∇f(xt)−∇fµr(xt)‖

2 − ‖∇f(xt)‖2

2

)
+

1

2

(
µrdL

2

)2

≤ −3

4
‖∇f(xt)‖2 +

µ2
rd

2L2

4
(5.21)

where (a) follows from the inequalities (i) ‖a‖2 ≥ ‖b‖2
2
−‖a−b‖2, and (ii) ‖∇f(x)−∇fµr(x)‖ ≤

µrdL
2

[60, Lemma 4.1]. Similarly, we can upper bound II in (5.20).

II = −
〈
∇f(xt), ∇̂CGEf(xt)

〉
≤ −3

4
‖∇f(xt)‖2 +

∥∥∥∇f(xt)− ∇̂CGEf(xt)
∥∥∥2

(b)

≤ −3

4
‖∇f(xt)‖2 + L2dµ2

c, (5.22)

where (b) follows from [86, Lemma 3].

In first-order problems [17], given an unbiased estimator (∇̃f) of the gradient ∇f , we simply get

E〈∇f(x), ∇̃f(x)〉 = ‖∇f(x)‖2. However, ∇r,t (RGE) and ∇c,t (CGE) in Algorithm 8 could be

biased estimates of ∇f . Proposition 5.4.1 bounds the deviation of the inner products I, II from

−‖∇f(x)‖2, in terms of the respective smoothness parameters µc, µr. We next bound III, IV in

(5.20).

Proposition 5.4.2. Suppose f satisfies Assumption 1, 2, then the quantities III and IV in (5.20) are

upper bounded as

III = EYt [‖∇r,t‖2 | Yt] ≤
[
2 +

4

|Br|

(
1 +

d

nr

)]
‖∇f(x)‖2 +

4σ2

|Br|

(
1 +

d

nr

)
+

(
1 +

2

|Br|
+

2

nr|Br|

)
µ2

rL
2d2

2
,

IV = EYt [‖∇c,t‖2 | Yt] ≤
d∑
i=1

1

pt,i

[
2 (∇f(xt))

2
i +

3ζ2

|Bc
t |

+
L2µ2

c

2

(
1 +

3

|Bc
t |

)]
.

127

PROOF: First, we prove the bound on III.

III = EYt
[
‖∇r,t‖2 | Yt

]
= E

[
‖∇r,t −∇f(xt) +∇f(xt)‖2

∣∣Yt]
(a)

≤ 2E
[
‖∇r,t −∇f(xt)‖2

∣∣Yt]+ 2 ‖∇f(xt)‖2

(b)

≤ 4

|Br
t |

(
1 +

d

nr

)[
‖∇f(x)‖2 + σ2

]
+

(
1 +

2

|Br
t |

+
2

nr|Br
t |

)
µ2

rL
2d2

2
+ 2 ‖∇f(xt)‖2 ,

where (a) follows from ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2; (b) follows from (5.10) in Proposition 5.3.2.

Next, we bound IV. Here, rather than using the bound in Proposition 5.3.2, we follow a slightly

different route to derive a tighter bound.

IV = E
[
‖∇c,t‖2 | Yt

]
= E

∥∥∥∥∥
d∑
i=1

I(i ∈ It)
pt,i

∇̂CGEFi(xt;Bc
t)

∥∥∥∥∥
2 ∣∣∣Yt

 (see (5.7))

(c)
=

d∑
i=1

E

[∥∥∥∥I(i ∈ It)
pt,i

∇̂CGEFi(xt;Bc
t)

∥∥∥∥2 ∣∣∣Yt]

=
d∑
i=1

1

p2
t,i

EIt (I(i ∈ It))2 EBc
t

∥∥∥∥∥∥ 1

|Bc
t |
∑
ξ∈Bc

t

∇̂CGEFi(xt; ξ)

∥∥∥∥∥∥
2 ∣∣∣Yt


(d)
=

d∑
i=1

pt,i
1

p2
t,i

E
[

1

|Bc
t |

∥∥∥∇̂CGEFi(xt; ξ1)− ∇̂CGEfi(xt)
∥∥∥2

+
∥∥∥∇̂CGEfi(xt)

∥∥∥2 ∣∣∣Yt] . (5.23)

where (c) follows from (5.3) since ∇̂CGEFi(xt;Bc
t) is aligned with the canonical basis vector ei,

for all i. (d) follows since E[(I(i ∈ It))2] = pt,i as seen in Appendix A.4.3. Also, It is inde-

pendent of Bc
t , and the elements of Bc

t are again sampled independent of each other, and since

EBc
t
∇̂CGEFi(xt;Bc

t) = ∇̂CGEfi(xt). Next, we upper bound the two terms in (5.23).

E
∥∥∥∇̂CGEFi(xt; ξ1)− ∇̂CGEfi(xt)

∥∥∥2

≤ 3

[
ζ2 +

L2µ2
c,i

2

]
, (5.24)

follows from (S60). The second term in (5.23) can be bounded using (S61),

∥∥∥∇̂CGEfi(xt)
∥∥∥2

≤
L2µ2

c,i

2
+ 2 (∇f(xt))

2
i , (5.25)

128

where (x)i denotes the i-th coordinate of the vector x. Substituting (5.24), (5.25) in (5.23), we get

E
[
‖∇c,t‖2 | Yt

]
≤

d∑
i=1

1

pt,i

[
3ζ2

|Bc
t |

+
L2µ2

c,i

2

(
1 +

3

|Bc
t |

)
+ 2 (∇f(xt))

2
i

]
.

Taking µc,i = µc, for all i ∈ [d], we get the bound on IV.

The bounds in Proposition 5.4.2 are expressed in terms of the gradient norm, variance σ2, and

the parameters which characterize RGE and CGE: number of random directions nr, importance

sampling probabilities {pt,i}, batch-sizes |Bc| and |Br|, and the smoothness parameters µr and µc.

If |Br| → ∞, then ∇̂RGE → ∇fµr as seen in Sec. 5.3, and the upper bound in Proposition 5.4.2

reduces to 2E ‖∇f(x)‖2 + µ2
rL

2d2/2. This is precisely the bound acquired using the exact ZO

gradient estimator ∇fµr [119, Lemma 1]. Here µ2
rL

2d2/2 quantifies the inevitable bias due to the

use of the ZO gradient estimator∇fµr .

Now that we have bounded all the terms in (5.20), we are ready to present the main result of

this section. We define P̄T = 1
dT

∑T−1
t=0

∑d
i=1

1
pt,i

, and dnr = 1 + d/nr.

Theorem 5.4.3. Suppose Assumption 1 and 2 hold, and the set of coordinate-wise probabilities

{pt,i} satisfy pt,i ≥ ct > 0, for all i, t. We choose the smoothing parameters µc, µr such that

µc = (µr

√
d)/2 and µcL

√
d ≤ σ, where σ is the variance. We take constant step sizes ηt = η ≤

1
24L

min{3ct, 1/dnr} for all t, and combination coefficients αt = α =
[
1 + (dnr/P̄T)

]−1 for all t.

With µc = O
(
(dnr/(d

2T))1/4(1 + dnr/P̄T)−1/4
)
, we obtain

E ‖∇f(x̄T)‖2 ≤ O

(√
dnr

T

1

1 + dnr/P̄T

)
. (5.26)

Before discussing the proof of the theorem, a few comments are in order.

Remark. For the sake of simplifying the theorem statement, the combination coefficients {αt}

are assumed constant over time. Although this choice of αt ≡ α, ∀ t is not informative from an

implementation perspective (we do not know the sampling probabilities {pt,i} ahead of time), the

expression of α still captures the trade-off between RGE and CGE through the ratio dnr

P̄T
. Also, the

129

two smoothing parameters µc, µr are related as µc = (µr

√
d)/2. Therefore, in Theorem 5.4.3 we

have only given explicit expression for µc.

PROOF: Substituting the bounds on I, II from Proposition 5.4.1, and the bounds on III, IV from

Proposition 5.4.2 in (5.20), and taking expectation over the entire randomness till time t, we get

Ef(xt+1) ≤ Ef(xt)−
3ηtαt

4
E ‖∇f(xt)‖2 + ηtαt

µ2
rd

2L2

4
− 3ηt(1− αt)

4
E ‖∇f(xt)‖2

+ ηt(1− αt)L2dµ2
c + η2

tLα
2
t

[
2

(
1 +

2

|Br
t |

+
2d

nr|Br
t |

)
‖∇f(x)‖2

+
4σ2

|Br
t |

(
1 +

d

nr

)
+

(
1 +

2

|Br
t |

+
2

nr|Br
t |

)
µ2

rL
2d2

2

]
+ η2

tL(1− αt)2

d∑
i=1

1

pt,i

[
3

|Bc
t |

(
ζ2 +

L2µ2
c,i

2

)
+
L2µ2

c,i

2
+ 2E (∇f(xt))

2
i

]
.

(5.27)

Note that σ2 = dζ2. Using pt,i ≥ ct for all i ∈ [d], and |Br
t | ≥ 1, |Bc

t | ≥ 1, nr ≥ 1, (5.27) leads to

Ef(xt+1) ≤ Ef(xt)− ηt
{

3

4
− 6ηtLα

2
t

(
1 +

d

nr

)
− 2L

ηt(1− αt)2

ct

}
E ‖∇f(xt)‖2

+ ηtαt
L2µ2

rd
2

4
+ ηt(1− αt)L2dµ2

c + 4η2
tLα

2
t

(
1 +

d

nr

)[
µ2

rd
2L2 + σ2

]
+ 4Lη2

t (1− αt)2

d∑
i=1

1

pt,i

[
ζ2 + L2µ2

c

]
.

(5.28)

Henceforth, we assume constant step-sizes ηt = η for all t, and constant combination coefficients

αt = α, for all t. We denote Pt = 1
d

∑d
i=1

1
pt,i

. Rearranging the terms in (5.28), summing over

t = 0 to T − 1, and dividing by ηT we get

1

T

T−1∑
t=0

{
3

4
− ηL6α2

(
1 +

d

nr

)
− 2L

η(1− α)2

ct

}
E ‖∇f(xt)‖2

≤ f(x0)− Ef(xT)

ηT
+ L2dµ2

c + α

(
L2µ2

rd
2

4
− L2dµ2

c

)
+ 4ηLα2

(
1 +

d

nr

)[
µ2

rd
2L2 + σ2

]
+ 4Lη(1− α)2

[
σ2 + L2µ2

cd
] 1

T

T−1∑
t=0

Pt.

(5.29)

130

To ease the notation, we define the following constants.

A = 4σ2 + 4L2µ2
cd, C = 4

(
1 +

d

nr

)[
µ2

rd
2L2 + σ2

]
, (∆f) = f(x0)− f ∗, P̄T =

1

T

T−1∑
t=0

Pt.

Further, we select the smoothing parameters µc, µr such that L2µ2
rd

2

4
= L2dµ2

c . This simplifies

(5.29) to
1

T

T−1∑
t=0

{
3

4
− ηL4α2

(
1 +

d

nr

)
− 2L

η(1− α)2

ct

}
E ‖∇f(xt)‖2

≤ (∆f)

ηT
+ L2dµ2

c + α2ηLC + Lη(1− α)2AP̄T .

We choose η such that 3
4
− ηL6α2

(
1 + d

nr

)
− 2Lη(1−α)2

ct
≥ 1

2
,∀ t. This leads to

η ≤ 1

8L

[
3α2

(
1 +

d

nr

)
+

(1− α)2

ct

]−1

⇒ η ≤ 1

24L
min

{
3ct,

nr

d+ nr

}
,∀ t, (5.30)

where (5.30) follows since
[
3α2

(
1 + d

nr

)
+ (1−α)2

ct

]−1

must attain its minimum value over [0, 1]

at one of the end points. Optimizing for η in (5.30) while satisfying (5.30), we get

1

2T

T−1∑
t=0

E ‖∇f(xt)‖2 ≤ 2

√
(∆f)L

T

(
α2C + (1− α)2AP̄T

)
+ L2dµ2

c. (5.31)

Note that in (5.31), L2dµ2
c needs to be small to ensure convergence, and the smoothness parameter

µc can be designed for that purpose. However, σ2 being the variance, is not in our control. We

choose the smoothing parameters µc, µr to be small enough such that σ2 ≥ L2µ2
cd = L2d2µ2

r/4.

Consequently, A ≤ 8σ2, C ≤ 8σ2
(

1 + d
nr

)
. Substituting in (5.31), we get

1

2T

T−1∑
t=0

E ‖∇f(xt)‖2 ≤ 2

√
(∆f)L

T
8σ2

(
α2

(
1 +

d

nr

)
+ (1− α)2P̄T

)
+ L2dµ2

c. (5.32)

131

Then, the optimal combination coefficient α∗ is given by

α∗ =

[
1 +

1 + d
nr

P̄T

]−1

. (5.33)

Substituting (5.33) in (5.32), we get

1

2T

T−1∑
t=0

E ‖∇f(xt)‖2 ≤ 2

√√√√√(∆f)L

T
8σ2

 1 + d
nr

1 +
1+ d

nr

P̄T

+ L2dµ2
c. (5.34)

Since σ2 ≥ L2µ2
rd

2, we choose µc such that

L2dµ2
c = O

(√
(1 + d/nr)

T

1

1 + (1+d/nr)

P̄T

)

⇒ µc = O

((1 + d/nr)

d2T

)1/4
1(

1 + (1+d/nr)

P̄T

)1/4

 .

Substituting µc, µr = 2µc√
d

in (5.34) gives us

E ‖∇f(x̄T)‖2 ≤ 1

T

T−1∑
t=0

E ‖∇f(xt)‖2 ≤ O

(√
(1 + d/nr)

T

1

1 + (1+d/nr)

P̄T

)
, (5.35)

where the first inequality follows from Jensen’s inequality. This completes the proof.

5.4.4 Comparison with Other Methods

We compare ZO-HGD with several existing methods in Table 5.1, in terms of the allowed smooth-

ing parameter values, convergence rate and FQC. We compare these quantities in terms of their

dependence on the problem dimension d, and the total number of iterations T . As illustrated, the

smoothing parameters values for ZO-HGD are less restrictive than other ZO algorithms. A few

clarifying remarks about the methods we compare with, are in order.

132

Remark. • ZO-GD [137] is a deterministic algorithm (|D| is the size of the entire dataset),

while all the other algorithms, including ours, are focused on solving stochastic problems.

• We have stated generalized results for ZO-SGD [61] (with b-point gradient estimator (GE))

and ZO-SCD [113] (with b coordinate GE).

• For ZO-SVRG [119] and ZO-signSGD [117], b is the number of random direction vectors

used to compute a multi-point GE. ZO-SVRG gives better convergence rate, but under the

assumption that all the individual stochastic functions F (·, ξ) in (5.1) are smooth. This is

stronger than Assumption 1, which we use.

• For ZO-signSGD [117], b is the number of random direction vectors used to compute a multi-

point GE. ZO-signSGD [117] only converges to a neighborhood of the stationary point. It

ensures convergence only in a neighborhood of the stationary point.
√
d/b give the size of

the neighborhood.

Recall in our work, nr is the number of random direction vectors used to compute RGE, nc is

the number of coordinates used to compute CGE, dnr = 1 + d/nr. We present more insights into

Theorem 5.4.3, and the results in Table 5.1 in the next subsection.

5.4.5 Tradeoff between RGE and CGE in ZO-HGD.

Next, we consider some special cases of Theorem 5.4.3, based on the values of {pt,i} and nr. Large

nr leads to a more accurate RGE (5.10), while large values of {pt,i} ensure a more accurate CGE

(5.11). The tradeoff between RGE and CGE is captured by the ratio dnr/P̄T in (5.26). Table 5.1

highlights the performance of ZO-HGD in three regimes, when dnr/P̄T is� 1,� 1, and ≈ 1. We

discuss one of the cases in detail, the remaining follow similar reasoning.

Regime 1 (dnr = 1 + d
nr
� P̄T).

Since P̄T is the mean of inverse probability values {1/pt,i}, 1
P̄T
� nr

d
implies that on average,

sampling probabilities are much greater than nr/d. In other words, the per-iteration query budget

133

Method Smoothing parameter Convergence rate FQC

ZO-GD O
(

1√
dT

)
O
(
d
T

)
O (|D|T)

ZO-SGD O
(

1
d
√
bT

)
O
(√

d
bT

)
O (Tb)

ZO-SCD O
(

1√
bT

+
(

1
dbT

)1/4
)

O
(√

d
bT

)
O (Tb)

ZO-SVRG O
(

1√
dT

)
O
(
d
T

+ 1
b

) O (|D|s+ bsm)
T = sm

ZO-signSGD O
(

1√
dT

)
O
(√

d
T

+
√

d
b

)
O (bT)

Our work:
(dnr � P̄T)

µc = O

((
P̄T
d2T

)1/4
)

µr = 2µc√
d

O

(√
P̄T
T

)
O(Tnc)

Our work:
(dnr � P̄T)

µr = O
(

1
d

(
dnr

T

)1/4
)

µc = µr

√
d

2

O
(√

dnr

T

)
O(Tnr)

Our work:
dnr ≈ P̄T ,

pt,i = nc

d
,∀ t, i

µr = O

(
1
d

(
1
T

+ d
T (nr+nc)

)1/4
)

µc = µr

√
d

2

O
(√

1
T

+ d
T (nr+nc)

)
O(T (nr + nc))

Table 5.1: Comparison of different ZO algorithms, for solving smooth, nonconvex optimization problems.

of CGE (nc) is much higher compared to that of RGE (nr). From Theorem 5.4.3, we can obtain

the CGE smoothing parameter

µc = O

((
P̄T
d2T

)1/4
)

and the convergence rate

E‖∇f(x̄T)‖2 ≤ O

(√
P̄T
T

)
. (5.36)

Since nc � nr, the FQC is also dominated by CGE

O(T · (nr + nc)) = O(T · nc).

All these results are also stated in Table 5.1.

Uniform sampling: In the special case of uniformly sampling all the coordinates for CGE,

134

i.e., pt,i = nc/d, P̄T = d/nc. Consequently, the convergence rate (5.36) reduces to

E‖∇f(x̄T)‖2 ≤ O

(√
d

ncT

)
,

and the smoothing parameter µc is

µc = O
(

1

(dncT)1/4

)
.

These are precisely the results for ZO-SCD in Table 5.1 (with b replaced by nc). Also, FQC to

achieve E‖∇f(x̄T)‖2 ≤ ε is

O(Tnc) = O
(
d

ε2

)
.

Remark. The reader would note that our method uses two smoothing parameters µc, µr, corre-

sponding respectively to CGE and RGE components of HGE, which are related as µc = (µr

√
d)/2

(see Theorem 5.4.3). In Table 5.1, we have only specified µc explicitly for the regime dnr � P̄T .

This is because this regime is dominated by CGE.

The results for the other two regimes: 2) when 1 + d
nr
� P̄T , and 3) when 1 + d

nr
and P̄T are

comparable, are stated in Table 5.1. For details, please see Appendix A.4.5.

Remark. • As explained in Appendix A.4.5, in regime 2 (dnr = 1 + d
nr
� P̄T), the query

budget, and consequently the convergence rate and FQC are dominated by RGE. Therefore,

we have only specified the corresponding smoothing parameter µr explicitly in Table 5.1 for

this regime. The convergence rate and FQC, both depend only on the quantities related to

RGE, namely dnr, nr. Also, this regime is comparable to ZO-SGD. Note that for comparable

query budgets (b for ZO-SGD and nr for our method) the bound on smoothing parameter µr

values is larger than the corresponding bound in ZO-SGD.

• In Regime 3 (dnr = 1 + d
nr
≈ P̄T), since the query budgets for RGE nr and CGE nc are

comparable, we see dependence on both, in the smoothing paramters, convergence rate and

FQC in Table 5.1. Since µr is the smaller of the two, and it is desirable for smoothing

135

parameters to be large, we have only specified µr explicitly.

5.5 ZO-HGD for Convex Optimization

We now analyze the convergence properties of Algorithm 8 in cases where the objective function

f : Rd → R is convex and strongly convex.

Assumption 3. The function f is defined on a compact set and is convex, such that f(y) ≥ f(x) +

〈∇f(x),y − x〉, ∀ x,y ∈ domf . Further, the diameter of the set domf is bounded by R, i.e.,

‖y − x‖ ≤ R, ∀ x,y ∈ domf .

Assumption 4. ‖∇f(x)‖ ≤ G,∀ x ∈ domf for constant G.

Assumption 5. (σ̄-Strong Convexity). ∀ x,y ∈ domf , f satisfies f(y) ≥ f(x)+〈∇f(x),y − x〉+
σ̄
2
‖y − x‖2.

Assumption 4 is fairly standard in the convex optimization literature [50, 167]. We quantify the

error in terms of the average difference between the expected function values at successive iterates

and the optimal function value, (1/T)
∑T

t=1 (Ef(xt)− f ∗). For brevity, we only state the theorem

for our convergence result.

Theorem 5.5.1. Suppose Assumption 1, 2, 3, 4 hold and the coordinate-wise probabilities {pt,i}

satisfy pt,i ≥ c̄ > 0 for all i, t. We define dnr = 1 + d/nr.

1. If the smoothing parameters µc, µr are chosen such that µc = (µr

√
d)/2, σ ≥ Lµc

√
d. A

suitably chosen α gives

1

T

T∑
t=1

Ef(xt)− f ∗ ≤ O

(√
1

T

dnr

1 + c̄dnr

)
.

2. If Assumption 5 also holds, the smoothing parameters µc, µr are such that µr = µc

√
(dL)/σ̄,

and the step-size ηt = 8
σ̄(a+t)

with a > 1. We define x̂T = 1
ST

∑T−1
t=0 wtxt, where wt =

136

(a+ t)2, and ST =
∑T−1

t=0 wt. Then

Ef(x̂T)− f ∗ ≤ O

(
1

T

dnr

1 + c̄dnr

)
.

PROOF: See Appendix A.4.6 for details.

As in Section 5.4, we consider the special case of uniform sampling, pt,i = nc/d for all i, t. Let

q = nr + nc. For convex functions, the convergence rate reduces to O(
√

(1 + d/q)/T). For O(q)

function evaluations per iteration, this rate is order optimal [50]. For strongly convex functions,

the convergence rate reduces to Ef(x̂T) − f ∗ ≤ O((1 + d/q)/T). Note that this latter guarantee

holds for a weighted average of iterates.

5.6 Simulation Results

In this section, we demonstrate the effectiveness of ZO-HGD via a real-world application of gener-

ating adversarial examples from a black-box deep neural network (DNN) [28]. Here the adversar-

ial examples are defined by inputs with imperceptible perturbations crafted to mislead the DNN’s

prediction, and they provide a means of measuring the robustness of DNNs against adversarial

perturbations [66, 26, 196].

We begin by formally presenting the problem of generating black-box adversarial examples.

Let (x, t) denote a legitimate image x with the true label t. And x′ = x + δ denotes an adversarial

example with the adversarial perturbation δ. Our goal is to design δ for misclassifying M images

{xi}Mi=1 when a DNN is used as a decision maker. This leads to the optimization problem [26]

minimize
δ

λ
M

∑M
i=1 fθ(xi + δ) + ‖δ‖2

2
(5.37)

where fθ(xi + δ) is specified as the C&W untargeted attack loss [26] evaluated on a DNN model

with parameters θ , and λ > 0 is a regularization parameter that strikes a balance between mini-

mizing the attack loss and the `2 distortion. To solve problem (5.37), we consider the more realistic

137

case in which the adversary does not have access to model parameters θ, and thus, it optimizes δ

only through function evaluations. Moreover, if M = 1 in problem (5.37), then the resulting solu-

tion is known as per-image adversarial perturbation [66]. And ifM > 1, then the solution provides

the universal adversarial perturbation applied to multiple benign images simultaneously [131].

In experiments, we consider a DNN model with 5 convolutional layers and 2 fully connected

layers, and train it over the CIFAR-10 dataset for image classification [100]. We focus on the

scenario to generate universal adversarial perturbations. Specifically, we conduct 50 random trials

to solve problem (5.37), each of which randomly selects M = 10 images from CIFAR-10 testing

data and sets λ = 10. We compare our proposed ZO-HGD algorithm with three baselines, ZO-SGD

[61], ZO-SCD [113] and ZO-signSGD [117]. The rationale behind comparing with these baselines

is that ZO-SGD has demonstrated a superior performance in query efficiency over ZO optimization

methods that use extra variance reduction techniques [119], and ZO-SCD and ZO-signSGD are

used as the backbones of many black-box attack generation algorithms via ZO optimization [28,

80]. In ZO-HGD (Algorithm 8), we set nc = 50 as the coordinate selection budget in CGE and

nr = 50 when constructing RGE, and choose the combination coefficient to weight RGE and CGE

in HGE as αt = t/T . In all of the methods, we set the maximum number of iterations T = 1000,

the same query budget (nc + nr) = 100 per iteration, and a constant smoothing parameter 0.001.

We pick the best learning rate for each method by greedily searching over the interval [10−4, 10−1].

0.0 0.2 0.4 0.6 0.8 1.0
Queries 1e5

0
20
40
60
80

100

Ob
je

ct
iv

e
va

lu
e ZO-SGD

ZO-SCD
ZO-signSGD
ZO-HGD

Fig. 5.1: Averaged objective value when solving problem (5.37) over 50 random trials versus the number
of function queries.

138

0 2.5 5 7.5 10
Queries (×104)

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 su

cc
es

s r
at

e

ZO-SGD
ZO-SCD
ZO-signSGD
ZO-HGD

0 2.5 5 7.5 10
Queries (×104)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Di
st

or
tio

n

ZO-SGD
ZO-SCD
ZO-signSGD
ZO-HGD

Fig. 5.2: Comparison of ZO-HGD with other methods for generating universal adversarial perturbations.

In Figure 5.1, we present the averaged objective value of problem (5.37) over 50 random trials

versus the number of function queries. And in Figure 5.2, we show the attack success rate (ASR) of

50×10 perturbed images, and the associated `2-norm distortion for attack generation. We compare

our proposed ZO-HGD with ZO-SGD, ZO-SCD and ZO-signSGD. Here the box plot summarizes

the results of 50 random trials to solve problem (5.37). As we can see, the convergence speed

of ZO-HGD is faster than ZO-SGD and ZO-SCD. This is supported by Figure 5.1: A smaller

objective value is achieved using less number of function queries than the other algorithms. By

dissecting the objective value of (5.37), Figure 5.2-(a) shows that ZO-HGD yields a significant

ASR improvement over other algorithms even at the early iterations (e.g., at the use of 2.5 ∼ 5×104

queries). Moreover, we observe from Figure 5.2-(b) that all the considered ZO algorithms result in

comparable `2 distortion strength in general. This implies that the ASR improvement introduced

by ZO-HGD is not at a significant cost of increasing distortion norm.

To further support this point, Table 5.2 presents the concrete adversarial examples and their

metrics obtained from different ZO optimization methods. The results are summarized in terms

of the number of queries required to achieve the first successful attack, the resulting adversarial

examples, predicted label, and final `2 distortion. As we can see, ZO-HGD requires the least

number of function queries to achieve the first successful attack of each image, and keeps the

strength of converged perturbations comparable across methods.

139

Original label horse car bird flight frog
ZO-SGD
`2: 0.67
Query # 37 255 25 176 635

Predicted label dog ship dog car car
ZO-SCD
`2: 0.71
Query # 35 239 21 166 610

Predicted label dog ship dog car car
ZO-signSGD
`2: 0.69
Query # 39 285 29 188 675

Predicted label dog ship dog car car
ZO-HGD
`2: 0.77
Query # 30 210 19 152 573

Predicted label dog ship dog car car

Table 5.2: Randomly selected 5 over 10 images in one trial from our universal black-box attack generation
using ZO-SGD, ZO-SCD, ZO-signSGD and ZO-HGD.

5.7 Summary

In this chapter, we proposed a novel hybrid gradient estimator (HGE) for black-box stochastic

optimization, combining the advantages of the query-efficient random gradient estimator, and the

more accurate coordinate-wise gradient estimator. Using importance sampling based coordinate

selection, we further improved the variance of HGE. Building on top of this estimator, we proposed

a ZO-hybrid gradient descent (ZO-HGD) algorithm, which generalized ZO-SGD and ZO-SCD.

We conducted theoretical analysis of the method for smooth functions, which are non-convex,

convex and strongly convex, and rigorously demonstrated the efficiency in terms of both iteration

complexity and function query cost. The theoretical findings were corroborated by a real-world

application to generate adversarial examples from a black-box deep neural network.

140

CHAPTER 6

CONCLUSION

6.1 Summary

In this dissertation, we studied two types of distributed system topologies: 1) mesh topology, and

2) star-shaped topology. We studied these systems under different contexts.

In Chapters 2 and 3, we considered systems with mesh topology. In Chapter 2, we proposed

an efficient, decentralized BP message passing based method for simultaneous agent localization

and multi-target tracking, for an unknown number of targets, under measurement-origin uncer-

tainty. To save on the computational and communication costs of particle filters, we modeled

the agent and target state densities using single Gaussians and Gaussian mixtures (GMs). We

also proposed a novel decentralized Gibbs method for efficiently computing products of Gaussian

mixtures. Through extensive simulations, we showed that the performance of the proposed de-

centralized algorithm is close to its centralized counterpart, and much better than the conventional

separate localization and MTT approach. This work was focused on passive sensing, where the

agents do not actively pursue the moving targets.

In Chapter 3, we solved the more abstract distributed online convex optimization (OCO) prob-

lem, with time-varying (potentially adversarial) constraints. We proposed a distributed primal-dual

mirror descent based approach. We utilized the challenging, but more realistic metric of dynamic

141

regret and fit. Regret quantifies the cumulative loss incurred by the system relative to the case

where all the loss functions and constraints are known at a single location, ahead of time. Simi-

larly, fit quantifies the cumulative constraint violation. We proved both the dynamic regret, as well

as fit to be sublinear under mild, commonly used assumptions.

In Chapter 4, we considered distributed systems with star-shaped topology. We proposed a

distributed variance-reduced algorithm, PR-SPIDER, for stochastic non-convex optimization. We

proved convergence of our algorithm to a first-order stationary solution, while achieving the best

known communication complexity. In terms of IFO complexity, we achieved the optimal rate. In

addition, unlike many existing approaches, our algorithm is general enough to allow non-identical

distributions of data across workers.

The work in Chapter 4 assumed access to gradients of the local objective functions. This might

not always be feasible. In Chapter 5, we considered the more general problem, where we only

have access to function values, and not the gradients. To simplify the analysis, we only considered

the single-node case for this problem. We proposed a novel hybrid gradient estimator (HGE) for

black-box stochastic optimization, combining the advantages of the query-efficient random gradi-

ent estimator, and the more accurate coordinate-wise gradient estimator. We conducted theoretical

analysis of the method for smooth functions, which are non-convex, convex and strongly convex,

and rigorously demonstrated the efficiency in terms of both iteration complexity and function query

cost.

Next, we discuss some promising future directions of the work presented in this dissertation.

6.2 Future Directions

6.2.1 Federated Learning

We briefly discussed the recently proposed paradigm of Federated Learning (FL) [98] in Chapter

4. FL is a more general framework than conventional distributed optimization, in the following

respects [92, 109].

142

• The number of workers/clients is typically very large (maybe even millions). Owing to the

large number of nodes, not all are expected to participate in the learning process at any time.

• The participating clients can vary widely, both in terms of their individual capabilities (sys-

tems heterogeneity), as well in terms of the local loss function they posses (statistical het-

erogeneity).

• Privacy concerns about the local data present at the individual nodes need to be addressed.

• Owing to the heterogeneity of clients, questions of fairness and robustness also arise.

Past few years have seen a rapidly growing body of literature addressing these and other related

questions on FL. Some of these directions and the corresponding open questions are quite close to

the work done in Chapters 4 and 5, hence we briefly discuss these.

Communication Efficiency and Heterogeneity

Our work in Chapter 4 focused on achieving the optimal computational cost, while also minimiz-

ing the communication cost. For this purpose, the nodes performed local steps for some iterations,

before communicating with the server. Other works have focused on additionally compressing the

updates shared between the nodes and the server [161, 93, 71, 39, 67]. So far, the existing guar-

antees do not match the lower bounds on communication complexity which exist in the literature,

making this an active area of research. Also, a principled understanding of how to model different

kinds of heterogeneity is missing in the literature. Recently, some papers have illustrated that het-

erogeneity can lead the FedAvg algorithm to converge to the solution of a problem different from

the original one [184, 130]. More fundamental understanding of statistical heterogeneity, beyond

simple bounded gradient dissimilarity assumptions (as Assumption 4 in Chapter 4) is also missing

in the literature.

143

Client Selection

In presence of a large number of clients, each round involves sampling a subset of clients to update

the model. Conventional approaches, like FedAvg [123] involve sampling a subset of clients uni-

formly randomly. However, some recent work has shown the advantages of non-uniform sampling

of clients [35]. Different sampling approaches have been proposed in the recent past [32, 151, 56].

However, a more principled understanding is still lacking.

Privacy and Fairness Guarantees

One of the motivations for FL is the reluctance of individual nodes to share their local data with

a central server due to privacy concerns. Therefore, evaluating the privacy guarantees of different

algorithms is one of the central themes of FL research. More recently, an interesting line of research

has focused on the privacy-accuracy-communication trade-off. For example, the work in [64, 65,

31]. Also, due to the heterogeneity inherent in FL, fair resource allocation is another major concern

[110, 108]. Both privacy and fairness, and their underlying trade-off is an interesting direction

worth pursuing in federated learning research.

6.2.2 Online Nonconvex Optimization

Since the seminal work by Zinkevich [209], the work in online convex optimization has exclusively

focused on convex objective functions. However, in the recent past, following the spectacular

success of Deep Learning, research in nonconvex optimization has really taken off. Refer to [84]

for a slightly outdated, yet comprehensive treatment. This has led to some initial work in the online

domain with nonconvex objective functions. Perhaps the first work in this direction was [77], in

which the authors defined the notion of local regret - the metric analogous to regret in the convex

setting. This has been followed by a host of other papers [197, 4, 59, 169]. This line of work is

especially of interest to us, since the motivating problem behind our work is that of distributed

localization and tracking. The current paradigm of OCO, though captures the time-varying aspect

144

of the problem, is too restrictive in terms of the underlying assumptions on the objective functions.

Extending our work to nonconvex functions will bring us one step closer to modeling the full-

generality of our motivating problem.

6.2.3 Stochastic Compositional Optimization

Compositional optimization is concerned with solving problems of the form

min
x
f(g(x))

where the functions f, g might themselves be expected values. This more general framework

has applications in reinforcement learning, the recent paradigm of model-agnostic meta-learning

(MAML) [54], and GAN-based compressed sensing [21], to name a few applications. Despite

the large body of work in stochastic optimization, compositional optimization is relatively under-

explored. Following the excellent work in [185], more recent work, including [186, 112], proposed

improved algorithms for stochastic compositional optimization. Recently in [63], optimal conver-

gence rates was achieved for two-level problems. This was generalized for the case of multi-level

problems in [205, 11, 207]. However, this framework has so far not been considered in the FL

context. With the recent application of MAML in FL [88, 51], the ground is ripe for more work in

this direction.

145

APPENDIX A

APPENDIX

A.1 Cooperative Self-localization and Multi-Target Track-

ing

We compare the performance of a particle-filter based implementation of our proposed method

(PM) with that of a reference method (RM) that performs agent self-localization SPAWN [192]

followed by [126] for MTT. Figure A1 shows the ground truth trajectory of the mobile agents and

0 10 20 30 40 50 60 70
0

20

40

60

X coordinate [m]

Y
 c

o
o

rd
in

a
te

 [
m

]

True agent and target tracks

Birth pdf conf. 90% Anchor positions Agent tracks Target tracks

5 10 15 20 25 30 35 40 45 50

2

4

Time sample [s]

T
ru

e
 t

a
rg

e
t

c
a

rd
in

a
li

ty

ag1

ag2

ag3

ag4
ag5

ag6

ag7

Fig. A1: Ground truth trajectories of agents and targets, plotted over time.

146

the targets, over a span of 50 time steps and the true number of targets as a function of time. We

have considered a network composed of one fixed agent (i.e., anchor) and S = 7 mobile agents and

a maximum of 5 targets, over a region of interest (ROI) given by [0, 75 m]× [0, 75 m]. Each mobile

agent has a measurement and communication range of 30 m. The anchor has a measurement and

communication range of 100 m.

The kinematic model of the agents and targets is the same as in Section 2.6. The measurement

noise in the agent state vector Rn at Rn = diag(2m2, 1deg2). Birth PTs are appended to the

persistent PTs in the prediction step of the filters. The birth locations are shown in Figure A1.

Birth probabilities are set to 10−3, the probability of target survival is 0.99 and target probability

of detection is P (s)
d = 0.9 ∀ s. At each frame, the clutter process follows a Poisson distribution

with rate 5, and the clutter points are distributed uniformly over the ROI. Particle representations

of agent and target tracks are employed in the two filters with 500 particles per track. The threshold

on the probability of existence for an estimated target is set to 0.5 in both filters.

10 20 30 40 50
0.5

1
1.5

2
Agent RMSE Errors (m)

a
g

1

0 20 40

0.6

0.8

1

a
g

2

0 20 40

0.5

1

1.5

a
g

3

0 20 40

0.4a
g

4

0 20 40

0.4

0.5

0.6

Time (s) −−−>

a
g

5

0 20 40
0.4

0.5

0.6

a
g

6

0 20 40
0.5

1

1.5

a
g

7

PM

RM

Fig. A2: Average RMSE in agent location estimates over time.

Keeping the agent and target tracks fixed, 100 Monte Carlo simulation runs are obtained by

regenerating the measurement sets. In Figure A2, we have plotted the average root mean squared

errors (RMSE) in the agent location estimates over time, for all the agents. For agents close to

the anchor or with multiple neighboring agents (e.g., agents 4, 5, 6), the self-localization perfor-

147

mance of the two methods is similar. However, for agents which do not have many neighbouring

agents to facilitate self-localization (e.g., agents 1, 2, 7), our approach takes advantage of the prob-

abilistic information transfer from target tracking. Therefore, the PM has a consistent performance

improvement over RM.

0

5

10

O
S

P
A

 [
m

]

Target errors

PM

RM

0

0.5

1

P
o

s
it
io

n

e
rr

o
rs

 [
m

]

0 10 20 30 40 50
0

5

10

Time sample [s]

C
a
rd

in
a
lit

y
e

rr
o

r
[m

]

Fig. A3: Mean OSPA error, position error, and cardinality error for targets plotted over time.

In Figure A3, we showcase target tracking performance via the Optimum Sub-Pattern Assign-

ment (OSPA) error averaged over the same 100 Monte Carlo simulation runs. The OSPA employs

two parameters: the cut-off, set to 10m and the order, set to 1. The spikes in the cardinality OSPA

correspond with the times of target births, due to the delay in estimating a new track for the two

filters. Since the proposed method provides better estimates of agent locations, it also results in bet-

ter estimates of target locations specifically in the precision of target tracks. The performance gap

between the two methods is smaller for MTT than for CS, since there are always a few sufficiently

well localized agents providing good target tracks.

148

A.2 Distributed Online Convex Optimization

A.2.1 Proof of Lemma 3.5.1

PROOF: We prove (3.20) by induction. qi,0 = 0 by initialization. Also, since gi,0(·) ≡ 0, bi,1 = 0.

Therefore, qi,1 = 0m ⇒ ‖qi,1‖ ≤ F
β1

. Let us assume (3.20) be true at time t, ∀ i ∈ [n]. For t + 1,

first note that

(1− γt+1βt+1)qi,t + γt+1bi,t+1 ≤ (1− γt+1βt+1)qi,t + γt+1gi,t(yi,t+1), (S1)

where (S1) follows from step 8 in Algorithm 4 using convexity of gi,t(·). Also, for vectors x,y

such that x � y, ‖[x]+‖ ≤ ‖y‖. Therefore,

‖qi,t+1‖ ≤ (1− γt+1βt+1) ‖qi,t‖+ γt+1 ‖gi,t(yi,t+1)‖

≤ (1− γt+1βt+1)
F

βt
+ γt+1F

(a)

≤ F

βt+1

,∀ i ∈ [n], (S2)

where (a) follows since {βt} is a non-increasing sequence.

Next we prove (3.21). First note that

‖qi,t+1 − qi‖2
(b)

≤ ‖(1− γt+1βt+1)qi,t + γt+1bi,t+1 − qi‖2

= ‖qi,t − qi‖2 + γ2
t+1‖bi,t+1 − βt+1qi,t‖2 + 2γt+1q

T
i,t[∇gi,t(xi,t)](yi,t+1 − xi,t)

− 2γt+1q
T
i [∇gi,t(xi,t)](yi,t+1 − xi,t) + 2γt+1(qi,t − qi)

Tgi,t(xi,t)

− 2γt+1βt+1(qi,t − qi)
Tqi,t (S3)

where (b) follows from (3.19). We first bound the second term in (S3).

‖bi,t+1 − βt+1qi,t‖ ≤ ‖bi,t+1‖+ βt+1‖qi,t‖
(c)

≤ ‖∇gi,t(xi,t)‖‖yi,t+1 − xi,t‖+ ‖gi,t(xi,t)‖+ βt+1
F

βt+1

149

(d)

≤ Gd((X)) + 2F = B1, (S4)

where (c) follows from Cauchy-Schwarz inequality and (3.20). (d) follows from assumptions (B3),

(B4) and (3.7). For the fourth term in (S3),

−2γt+1q
T
i [∇gi,t(xi,t)](yi,t+1 − xi,t) ≤ 2γt+1‖qi‖‖∇gi,t(xi,t)‖‖yi,t+1 − xi,t‖

(e)

≤ 2γt+1

(
G2αt+1

µ
‖qi‖2 +

µ

4αt+1

‖yi,t+1 − xi,t‖2

)
, (S5)

where (e) follows from (B4) and using Young’s inequality xy ≤ x2

2a
+ ay2

2
, for a > 0. For the last

term in (S3)

−2γt+1βt+1(qi,t − qi)
Tqi,t

(f)
= −2γt+1βt+1

[
‖qi,t − qi‖2 + ‖qi,t‖2 − ‖qi‖2

2

]
≤ γt+1βt+1

(
‖qi‖2 − ‖qi,t − qi‖2

)
, (S6)

where (f) follows from xTy = ‖x‖2+‖y‖2−‖x−y‖2
2

. Define ∆t+1 ,
∑n

i=1[‖qi,t+1 − qi‖2− (1 −

γt+1βt+1)‖qi,t − qi‖2]. Using the upper bounds (S4)-(S6) in (S3), and summing over all i ∈ [n]

we get (3.21).

A.2.2 Proof of Lemma 3.5.2

PROOF: Using convexity of fi,t

fi,t(xi,t)− fi,t(x∗t) ≤ 〈∇fi,t(xi,t),xi,t − x∗t 〉

= 〈∇fi,t(xi,t),xi,t − yi,t+1〉+ 〈∇fi,t(xi,t),yi,t+1 − x∗t 〉 (S7)

For the first term in (S7)

〈∇fi,t(xi,t),xi,t − yi,t+1〉 ≤ G‖xi,t − yi,t+1‖

150

≤ G2αt+1

µ
+

µ

4αt+1

‖yi,t+1 − xi,t‖2, (S8)

where (S8) follows from assumption (B4). For the second term in (S7)

〈∇fi,t(xi,t),yi,t+1 − x∗t 〉 ≤ 〈ai,t+1,yi,t+1 − x∗t 〉+
〈

[∇gi,t(xi,t)]T qi,t,x
∗
t − yi,t+1

〉
, (S9)

where (S9) follows from step 6 in Algorithm 4. Next, we bound the two inner products in (S9).

First,

〈
[∇gi,t(xi,t)]T qi,t,x

∗
t − xi,t + xi,t − yi,t+1

〉
≤ qTi,t [(gi,t(x

∗
t)− gi,t(xi,t)) +∇gi,t(xi,t) (xi,t − yi,t+1)] , (S10)

where (S10) follows from the convexity of gi,t(·). Secondly,

〈ai,t+1,yi,t+1 − x∗t 〉 ≤
1

αt+1

[
DR(x∗t ,xi,t)−DR(x∗t ,yi,t+1)−DR(yi,t+1,xi,t)

]
(S11)

≤ 1

αt+1

DR(x∗t ,xi,t)−
1

αt+2

DR(x∗t+1,xi,t+1) +
1

αt+2

DR(x∗t+1,xi,t+1)− 1

αt+2

DR(x∗t ,xi,t+1)

+
1

αt+2

DR(x∗t ,xi,t+1)− 1

αt+2

DR(x∗t ,yi,t+1) +
1

αt+2

DR(x∗t ,yi,t+1)− 1

αt+1

DR(x∗t ,yi,t+1)

− µ

2αt+1

‖yi,t+1 − xi,t‖2, (S12)

where, (S11) follows from Lemma 3.3.1. (S12) follows from (3.12). Next, we analyze some of the

component terms in (S12).

1

αt+2

[
DR(x∗t+1,xi,t+1)−DR(x∗t ,xi,t+1)

]
≤ K

αt+2

‖x∗t+1 − x∗t‖. (S13)

which follows from assumption (C2). We use the upper bounds in (S10), (S12)-(S13) to further

upper bound (S9). Next, we use (S8) and this new bound on (S9) to upper bound (S7). Then,

151

summing (S7) over i ∈ [n] and t ∈ [T], we get

T∑
t=1

n∑
i=1

[fi,t(xi,t)− fi,t(x∗t)] ≤
nG2

µ

T∑
t=1

αt+1 +
T∑
t=1

n∑
i=1

µ

4αt+1

‖yi,t+1 − xi,t‖2

+
T∑
t=1

n∑
i=1

qTi,t [gi,t(x
∗
t)− gi,t(xi,t)] +

T∑
t=1

n∑
i=1

qTi,t∇gi,t(xi,t) (xi,t − yi,t+1)

+
T∑
t=1

n∑
i=1

[
1

αt+1

DR(x∗t ,xi,t)−
1

αt+2

DR(x∗t+1,xi,t+1)

]

+
T∑
t=1

1

αt+2

[
n∑
i=1

DR(x∗t ,xi,t+1)−
n∑
i=1

DR(x∗t ,yi,t+1)

]

+
T∑
t=1

n∑
i=1

K

αt+2

‖x∗t+1 − x∗t‖+
T∑
t=1

n∑
i=1

(
1

αt+2

− 1

αt+1

)
DR(x∗t ,yi,t+1)

−
T∑
t=1

n∑
i=1

µ

2αt+1

‖yi,t+1 − xi,t‖2. (S14)

Here, by assumption, at the optima x∗t

qTi,tgi,t(x
∗
t) ≤ 0, ∀ i, t. (S15)

Also,

n∑
i=1

DR(x∗t ,xi,t+1)−
n∑
i=1

DR(x∗t ,yi,t+1) =
n∑
i=1

[
DR
(
x∗t ,

n∑
j=1

[Wt]ijyj,t+1

)
−DR(x∗t ,yi,t+1)

]
≤

n∑
i=1

[n∑
j=1

[Wt]ijDR
(
x∗t ,yj,t+1

)
−DR(x∗t ,yi,t+1)

]
(S16)

=
[n∑
j=1

DR
(
x∗t ,yj,t+1

)
−

n∑
i=1

DR(x∗t ,yi,t+1)
]

= 0. (S17)

(S16) follows from step 12 in Algorithm 4, and assumption (C1). (S17) follows from assumption

(A1) about the network. Finally,

T∑
t=1

n∑
i=1

(
1

αt+2

− 1

αt+1

)
DR(x∗t ,yi,t+1)

152

≤
T∑
t=1

(
1

αt+2

− 1

αt+1

)
nKd((X)) ≤ nKd((X))

αT+2

, (S18)

where (S18) follows from (3.15), and using the fact that {αt} is a non-increasing sequence.

Using (S15), (S17)-(S18) in (S14), we get (3.27).

A.2.3 Proof of Lemma 3.5.3

PROOF: We start with applying Lemma 3.3.1 to step 7 in Algorithm 4.

αt+1 〈ai,t+1,yi,t+1 − xi,t〉 ≤ −DR(xi,t,yi,t+1)−DR(yi,t+1,xi,t)

⇒ µ ‖yi,t+1 − xi,t‖2 ≤ αt+1 ‖ai,t+1‖ ‖yi,t+1 − xi,t‖ (S19)

where (S19) follows from (3.12). Consequently,

‖yi,t+1 − xi,t‖ ≤
αt+1

µ
‖ai,t+1‖ ≤

αt+1

µ
(‖∇fi,t(xi,t)‖+ ‖∇gi,t(xi,t)qi,t‖)

≤ αt+1

µ

(
G+G

F

βt

)
≤ Gαt+1

µ

(
1 +

F

βt+1

)
. (S20)

Note that the bound in (S20) is independent of i. Next, define ei,t = yi,t+1 − xi,t. Note that,

yi,t+1 = xi,t + ei,t =
n∑
j=1

[Wt]ijyj,t + ei,t, (S21)

and

ȳt+1 = x̄t + ēt =
1

n

n∑
i=1

n∑
j=1

[Wt]ijyj,t + ēt = ȳt + ēt =
t∑

τ=0

ēτ . (S22)

153

Since we assume fi,0(·) ≡ 0,∀ i ∈ [n], gi,0(·) = 0,∀ i ∈ [n] and xi,0 = 0, from the algorithm,

yi,1 = 0,∀ i ∈ [n]. Further, defining

yt ,
[
yT1,t, . . . ,y

T
n,t

]T
, et ,

[
eT1,t, . . . , e

T
n,t

]T
(S23)

we see from (S21) that yt+1 = (W ⊗ I)yt + (I ⊗ I)et. Hence

yi,t+1 =
t∑

τ=0

n∑
j=1

[
Wt−τ]

ij
ej,τ . (S24)

Substituting (S24) in (S21), and using it with (S22), we

xi,t − x̄t =
n∑
j=1

[W]ijyj,t − ȳt

=
n∑
j=1

(
[W]ij −

1

n

) t−1∑
τ=0

n∑
k=1

[
Wt−1−τ]

jk
ek,τ =

t−1∑
τ=0

n∑
k=1

([
Wt−τ]

ik
− 1

n

)
ek,τ (S25)

Consequently,

‖xi,t − x̄t‖ ≤
t−1∑
τ=0

n∑
k=1

∣∣∣∣[Wt−τ]
ik
− 1

n

∣∣∣∣ ‖ek,τ‖ , (S26)

A standard property of doubly-stochastic matrices is that

∣∣∣∣[Wt
]
ik
− 1

n

∣∣∣∣ ≤ √nσt2(W). (S27)

Substituting the bound on ‖ek,τ‖ from (S20), and (S27) we get (3.28).

154

A.3 PR-SPIDER: Convergence of the Finite-sum case

A.3.1 Proof of Lemma 4.2.2

PROOF: We have

E

∥∥∥∥∥v̄s+1
t − 1

N

N∑
i=1

∇fi
(
xs+1
i,t

)∥∥∥∥∥
2

= E
∥∥∥v̄s+1

t−1 −
1

N

N∑
i=1

∇fi
(
xs+1
i,t−1

)
+

1

N

N∑
j=1

1

B

∑
ξs+1
j,t

[
∇fj

(
xs+1
j,t ; ξs+1

j,t

)
−∇fj

(
xs+1
j,t−1; ξs+1

j,t

)]

+
1

N

N∑
i=1

[
∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

)] ∥∥∥2

(S28)

= E

∥∥∥∥∥v̄s+1
t−1 −

1

N

N∑
i=1

∇fi
(
xs+1
i,t−1

)∥∥∥∥∥
2

+ E
∥∥∥ 1

N

N∑
i=1

1

B

∑
ξs+1
i,t

[
∇fi

(
xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)
+∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

)] ∥∥∥2

+ E

〈
1

N

N∑
i=1

1

B

∑
ξs+1
i,t

[
∇fi

(
xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)
+∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

)]
︸ ︷︷ ︸

E(·)=0

, v̄s+1
t−1 −

1

N

N∑
i=1

∇fi
(
xs+1
i,t−1

)〉
(S29)

= E

∥∥∥∥∥v̄s+1
t−1 −

1

N

N∑
i=1

∇fi
(
xs+1
i,t−1

)∥∥∥∥∥
2

+
1

N2

N∑
i=1

E
∥∥∥ 1

B

∑
ξs+1
i,t

[
∇fi

(
xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)
+∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

)] ∥∥∥2

+
1

N2

∑
i 6=j

E

〈
1

B

∑
ξs+1
i,t

[
∇fi

(
xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)
+∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

)]
,

1

B

∑
ξs+1
j,t

[
∇fj

(
xs+1
j,t ; ξs+1

j,t

)
−∇fj

(
xs+1
j,t−1; ξs+1

j,t

)
+∇fj

(
xs+1
j,t−1

)
−∇fj

(
xs+1
j,t

)]〉
(S30)

= E

∥∥∥∥∥v̄s+1
t−1 −

1

N

N∑
i=1

∇fi
(
xs+1
i,t−1

)∥∥∥∥∥
2

155

+
1

N2

N∑
i=1

1

B2
E
∑
ξs+1
i,t

∥∥∥∇fi(xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)
+∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

) ∥∥∥2

+
1

N2

N∑
i=1

1

B2
E

∑
ξs+1
i,t 6=ζ

s+1
i,t

〈
E
ξs+1
i,t

[
∇fi

(
xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)]
+∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

)
︸ ︷︷ ︸

=0

,

Eζs+1
i,t

[
∇fi

(
xs+1
i,t ; ζs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ζs+1

i,t

)]
+∇fi

(
xs+1
i,t−1

)
−∇fi

(
xs+1
i,t

)︸ ︷︷ ︸
=0

〉
(S31)

≤ E

∥∥∥∥∥v̄s+1
t−1 −

1

N

N∑
i=1

∇fi
(
xs+1
i,t−1

)∥∥∥∥∥
2

+
1

(NB)2

N∑
i=1

E
∑
ξs+1
i,t

∥∥∥∇fi(xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)∥∥∥2

(S32)

≤ E

∥∥∥∥∥v̄s+1
t−1 −

1

N

N∑
i=1

∇fi
(
xs+1
i,t−1

)∥∥∥∥∥
2

+
1

N2

N∑
i=1

L2

B
E
∥∥∥xs+1

i,t − xs+1
i,t−1

∥∥∥2

(S33)

≤ E

∥∥∥∥∥v̄s+1
0 − 1

N

N∑
i=1

∇fi
(
xs+1
i,0

)∥∥∥∥∥
2

︸ ︷︷ ︸
Es+1

0

+
L2

N2B

N∑
i=1

t−1∑
`=0

E
∥∥∥xs+1

i,`+1 − xs+1
i,`

∥∥∥2

(S34)

(S28) follows from step 7 in Algorithm 5. The cross term in (S29) is zero since

Eξs+1
i,t

[
∇fi

(
xs+1
i,t ; ξs+1

i,t

)
−∇fi

(
xs+1
i,t−1; ξs+1

i,t

)]
= ∇fi

(
xs+1
i,t

)
−∇fi

(
xs+1
i,t−1

)
, (S35)

for all ξs+1
i,t ∈ Bs+1

i,t , ∀ t,∀ s,∀ i ∈ [1 : N]. The cross term in (S31) is zero since at a single

node i, the samples in the mini-batch Bs+1
i,t are sampled independent of each other. (S32) follows

from (S35) and using E ‖x− E(x)‖2 ≤ E ‖x‖2. (S33) follows from mean-squared L-smooth

property of each stochastic function fi(·, ξ). (S34) follows by recursive application of (S33), to the

beginning of the epoch.

156

A.3.2 Proof of Lemma 4.2.3

PROOF: First we prove (4.12). For ` such that ` mod I 6= 0

N∑
i=1

E
∥∥vs+1

i,` − v̄s+1
`

∥∥2

≤
N∑
i=1

[
(1 + δ)E

∥∥vs+1
i,`−1 − v̄s+1

`−1

∥∥2

+

(
1 +

1

δ

)
E
∥∥∥ 1

B

∑
ξs+1
i,`

{
∇fi

(
xs+1
i,` ; ξs+1

i,`

)
−∇fi

(
xs+1
i,`−1; ξs+1

i,`

)}

− 1

N

N∑
j=1

1

B

∑
ξs+1
j,`

{
∇fj

(
xs+1
j,` ; ξs+1

j,`

)
−∇fj

(
xs+1
j,`−1; ξs+1

j,`

)} ∥∥∥2
]

(S36)

≤
N∑
i=1

[
(1 + δ)E

∥∥vs+1
i,`−1 − v̄s+1

`−1

∥∥2

+

(
1 +

1

δ

)
2

B
E
∑
ξs+1
i,`

∥∥∥∇fi(xs+1
i,` ; ξs+1

i,`

)
−∇fi

(
xs+1
i,`−1; ξs+1

i,`

)∥∥∥2

+

(
1 +

1

δ

)
2

N

N∑
j=1

1

B
E
∑
ξs+1
j,`

∥∥∥∇fj(xs+1
j,` ; ξs+1

j,`

)
−∇fj

(
xs+1
j,`−1; ξs+1

j,`

)∥∥∥2
]

(S37)

≤
N∑
i=1

[
(1 + δ)E

∥∥vs+1
i,`−1 − v̄s+1

`−1

∥∥2
+

(
1 +

1

δ

)
2L2E

∥∥xs+1
i,` − xs+1

i,`−1

∥∥2

+

(
1 +

1

δ

)
2L2

N

N∑
j=1

E
∥∥xs+1

j,` − xs+1
j,`−1

∥∥2

]
(S38)

≤
N∑
i=1

[
(1 + δ)E

∥∥vs+1
i,`−1 − v̄s+1

`−1

∥∥2
+ 8γ2L2

(
1 +

1

δ

){
E
∥∥vs+1

i,`−1 − v̄s+1
`−1

∥∥2
+ E

∥∥v̄s+1
`−1

∥∥2
}]

≤
N∑
i=1

(
1 + δ + 8γ2L2

(
1 +

1

δ

)
︸ ︷︷ ︸

θ

)
E
∥∥vs+1

i,`−1 − v̄s+1
`−1

∥∥2
+ 8γ2NL2

(
1 +

1

δ

)
E
∥∥v̄s+1

`−1

∥∥2 (S39)

where, (S36) follows from step 7 in Algorithm 5 and Young’s inequality, for δ > 0; (S37) fol-

lows from Jensen’s inequality; (S38) follows from the mean-squared L-smooth assumption (A1).

Applying (S39) recursively, we obtain

157

N∑
i=1

E
∥∥vs+1

i,` − v̄s+1
`

∥∥2

≤
N∑
i=1

(1 + θ)2E
∥∥vs+1

i,`−2 − v̄s+1
`−2

∥∥2
+ 8γ2NL2

(
1 +

1

δ

)[
E
∥∥v̄s+1

`−1

∥∥2
+ (1 + θ)E

∥∥v̄s+1
`−2

∥∥2
]

≤
N∑
i=1

(1 + θ)`−τ(`)E
∥∥∥vs+1

i,τ(`) − v̄s+1
τ(`)

∥∥∥2

+ 8γ2NL2
(
1 +

1

δ

) `−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

= 8γ2NL2
(
1 +

1

δ

) `−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2 (S40)

where (S40) follows since averaging happens at time index τ(`) (step 10, Algorithm 5), i.e.,

vs+1
i,τ(`) = v̄s+1

τ(`), ∀ i ∈ [1 : N].

Next, we prove (4.13). For ` such that ` mod I 6= 0

N∑
i=1

E
∥∥xs+1

i,` − x̄s+1
`

∥∥2
=

N∑
i=1

E
∥∥[xs+1

i,`−1 − γvs+1
i,`−1

]
−
[
x̄s+1
`−1 − γv̄s+1

t−1

]∥∥2

≤
N∑
i=1

[
(1 + α)E

∥∥xs+1
i,`−1 − x̄s+1

`−1

∥∥2
+

(
1 +

1

α

)
γ2E

∥∥vs+1
i,`−1 − v̄s+1

`−1

∥∥2
]

(S41)

≤
N∑
i=1

(1 + α)`−τ(`)E
∥∥∥xs+1

i,τ(`) − x̄s+1
τ(`)

∥∥∥2

+

(
1 +

1

α

)
γ2

`−1∑
j=τ(`)

(1 + α)`−1−jE
∥∥vs+1

i,j − v̄s+1
j

∥∥2


=

(
1 +

1

α

)
γ2

N∑
i=1

`−1∑
j=τ(`)+1

(1 + α)`−1−jE
∥∥vs+1

i,j − v̄s+1
j

∥∥2 (S42)

where (S41) follows from Young’s inequality, with α > 0; (S42) follows since averaging happens

at time index τ(`) (step 9-10, Algorithm 5). Consequently xs+1
i,τ(`) = x̄s+1

τ(`),v
s+1
i,τ(`) = v̄s+1

τ(`), ∀ i ∈ [1 :

N]. We can further upper bound (S42) using the bound on
∑N

i=1 E‖v
s+1
i,j − v̄s+1

j ‖2 in (S40).

A.3.3 Intermediate results for Lemma 4.2.4

In the following analysis, the following facts shall be utilized repeatedly.

(F1) We choose δ, γ such that δ < θ = δ + 8γ2L2
(
1 + 1

δ

)
< 2δ < 1.

158

(F2) We choose α = δ
2
. Therefore, θ − α > δ

2
.

(F3)
(
1 + 1

δ

)
< 2

δ
and

(
1 + 1

α

)
< 2

α
.

(F4) I =
⌊

1
θ

⌋
≤ 1

θ
. Also, for θ < 1,

⌊
1
θ

⌋
≥ 1

2θ
> 1

4δ
.

Now, we state first of the three lemmas we will require to prove Lemma 4.2.4.

Lemma A.3.1.

16γ5L4

NB

(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=0

`−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

≤ 64γ5L4m

NBδ2

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
.

PROOF: From the left hand side of the inequality, we have

16γ5L4

NB

(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=0

`−1∑
j=τ(`)

(1 + θ)`−1−jE
∥∥∥v̄s+1

j

∥∥∥2

=
16γ5L4

NB

(
1 +

1

δ

)m−1∑
t=0

[
I−1∑
`=0

`−1∑
j=0

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

+
2I−1∑
`=I

`−1∑
j=I

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2
. . .+

t−1∑
`=τ(t)

`−1∑
j=τ(t)

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

 (S43)

=
16γ5L4

NB

(
1 +

1

δ

)m−1∑
t=0

[
I−1∑
`=0

`−1∑
j=0

(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

+
I−1∑
`=0

`−1∑
j=0

(1 + θ)`−1−jE
∥∥v̄s+1

j+I

∥∥2
. . .+

t−1−τ(t)∑
`=0

`−1∑
j=0

(1 + θ)`−1−jE
∥∥∥v̄s+1

j+τ(t)

∥∥∥2

 (S44)

≤ 16γ5L4

NB

(
1 +

1

δ

) [m−1∑
t=0

I−1∑
`=0

(1 + θ)`−1

]
m−1∑
j=0

E
∥∥v̄s+1

j

∥∥2 (S45)

≤ 16γ5L4

NB

(
1 +

1

δ

)m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
m

[
(1 + θ)I − 1

θ

]

≤ 16γ5L4m

NB

2

δ

e− 1

θ

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2

(c)

≤ 64γ5L4m

NBδ2

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2 (S46)

159

where, (S44) follows from (S43) by simple re-indexing. (S45) follows from (S44) by upper bound-

ing the coefficients of all terms with the one corresponding to j = 0. Note that (1+ 1
x
)x in increasing

function for x > 0 and limx→∞(1 + 1
x
)x = e (Euler’s constant). (S46) follows from (F1)-(F3).

Next, we present the second lemma we will use to prove Lemma 4.2.4.

Lemma A.3.2.
2γ3L2

NB

m−1∑
t=0

t−1∑
`=0

E
∥∥v̄s+1

`

∥∥2 ≤ 2γ3L2m

NB

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
.

PROOF: We have from the left hand side of the inequality

2γ3L2

NB

m−1∑
t=0

t−1∑
`=0

E
∥∥v̄s+1

`

∥∥2

=
2γ3L2

NB

[
E
∥∥v̄s+1

0

∥∥2
(m− 1) + E

∥∥v̄s+1
1

∥∥2
(m− 2) + . . .+ E

∥∥v̄s+1
m−2

∥∥2
(1)
]

≤ 2γ3L2m

NB

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
.

Finally, we present the third intermediate lemma before presenting the proof of Lemma 4.2.4.

Lemma A.3.3.

8γ5L4

(
1 +

1

α

)(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=τ(t)+1

`−1∑
j=τ(`)

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

≤ 256γ5L4

δ4

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
.

PROOF: Suppose τ(m− 1) = (p− 1)I (see (4.11)), we have

8γ5L4

(
1 +

1

α

)(
1 +

1

δ

)m−1∑
t=0

t−1∑
`=τ(t)+1

`−1∑
j=τ(`)

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

= 8γ5L4

(
1 +

1

α

)(
1 +

1

δ

)[I−1∑
t=0

t−1∑
`=1

`−1∑
j=0

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

160

+
2I−1∑
t=I

t−1∑
`=I+1

`−1∑
j=I

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2
. . .

+
m−1∑

t=(p−1)I

t−1∑
`=(p−1)I+1

`−1∑
j=(p−1)I

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

 (S47)

= 8γ5L4

(
1 +

1

α

)(
1 +

1

δ

)[I−1∑
t=0

t−1∑
`=1

`−1∑
j=0

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j

∥∥2

+
I−1∑
t=0

t−1∑
`=1

`−1∑
j=0

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥v̄s+1

j+I

∥∥2
. . .

+

m−1−(p−1)I∑
t=0

t−1∑
`=1

`−1∑
j=0

(1 + α)t−1−`(1 + θ)`−1−jE
∥∥∥v̄s+1

j+(p−1)I

∥∥∥2


≤ 8γ5L4 2

α

2

δ

m−1∑
j=0

E
∥∥v̄s+1

j

∥∥2

[
I−1∑
t=0

t−1∑
`=0

(1 + α)t−1−`(1 + θ)`−1

]
(S48)

=
32γ5L4

αδ

m−1∑
j=0

E
∥∥v̄s+1

j

∥∥2

[
I−1∑
t=0

(1 + α)t−1

(1 + θ)

(
1+θ
1+α

)t − 1(
1+θ
1+α

)
− 1

]

≤ 32γ5L4

αδ

m−1∑
j=0

E
∥∥v̄s+1

j

∥∥2

[
I−1∑
t=0

(1 + θ)t − (1 + α)t

θ − α

]

≤ 32γ5L4

αδ

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
[

(1 + θ)I − 1

θ(θ − α)

]

≤ 32γ5L4

(δ/2)δ

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
[
e− 1

δ(δ/2)

]
(S49)

=
256γ5L4

δ4

m−1∑
t=0

E
∥∥v̄s+1

t

∥∥2
. (S50)

In (S47), we split the summation over t into blocks of length I . For any block
∑(c+1)I−1

t=(c)I , τ(t) = cI .

Therefore, ` varies from ` = [cI + 1 : t− 1]. Further, over this range of `, τ(`) = cI . Note that in

this block, the largest coefficient corresponds to the smallest j, i.e., E‖v̄s+1
cI ‖2. We use these upper

bounds on coefficients in (S48). We also use (F3). (S49) follows from (F1), (F2), (F4).

161

A.3.4 Choice of γ

Suppose γ be selected such that

Lγ ≤ 1

8
∧ 128γ4L4m

NBδ2
≤ 1

8
∧ 4γ2L2m

NB
≤ 1

8
∧ 512γ4L4

δ4
≤ 1

8
(S51)

As we shall see in the proof of Corollary 1, the optimal choices m = I
√
Nn,B = 1

I

√
n
N

. Substi-

tuting these values in one of the inequalities above, we get

128γ4L4I
√
Nn

N 1
I

√
n
N

≤ δ2

8
⇒ 128γ4L4I2 ≤ 1

8I2
∵ δ <

1

I
(F4)

⇒ γ ≤ 1

4
√

2LI
. (S52)

Repeating a similar reasoning for all the inequalities in (S51), we get

γ ≤ min

{
1

8L
,

1

4
√

2LI
,

1

8LI

}
⇒ γ ≤ 1

8LI
. (S53)

Therefore, we can choose a constant step size γ, small enough (and independent of N, n), such

that (4.21) holds.

162

A.4 Zeroth-order Hybrid Gradient Descent

A.4.1 Mathematical Notations

RGE ∇̂RGEF (x;Br); see (5.2), (5.5)
{ui} Uniformly random directions on a unit sphere U0

nr Number of random directions, per stochastic sample ξ
µr Smoothing parameter
Br Mini-batch of stochastic samples with cardinality |Br|

CGE ∇̂CGEFI(x;Bc,p); see (5.4), (5.5)
µc,i Smoothing parameter for the i-th component of CGE; see (5.3)
µc Common smoothing parameter, i.e., µc,i = µc for all i ∈ [d]

{ei}di=1 Canonical basis vectors in Rd (ei is a vector of all 0’s, except the i-th entry)
I Coordinate set used in computing CGE (5.4)
Bc Mini-batch of stochastic samples with cardinality |Bc|
p Vector of coordinate selection probabilities (5.7)
pi Pr(i ∈ I); i-th element of p
nc Coordinate selection budget of CGE

Algorithm 8: HGD - xt+1 = xt − ηt (αt∇r,t + (1− αt)∇c,t)
xt Iterate of the algorithm at the t-th time step
T Total number of iterations
ηt Step-size at time t
nc,t Coordinate selection budget of CGE at time t

αt,Br
t , It,Bc

t ,pt The time-dependent versions of the corresponding quantities
pt,i i-th element of pt
∇r,t ∇̂RGEF (xt;Br

t)

∇c,t ∇̂CGEFIt(xt;Bc
t ,pt)

Yt = {{ut,i}i, It,Bc
t ,Br

t}, the randomness at step t
Yt σ-algebra generated by = {Y0, Y1, . . . , Yt−1}

Quantities used in the analysis of Algorithm 8
dnr 1 + d/nr

P̄T
1
T

∑T−1
t=0

1
d

∑d
i=1

1
pt,i

ct Lower bound such that pt,i ≥ ct > 0 for all i ∈ [d], at all times t
1
c̄T

1
T

∑T−1
t=0

1
ct

q = nr + nc, such that the total per-iteration function query cost is O(q)

A.4.2 Proof of Proposition 5.3.1

The proof is motivated by the analysis of gradient sparsification proposed in [188]. We denote by

g = [g1, . . . , gd]
T , ∇̂RGEF (x;Br), the RGE to be employed as a probe estimate. We also use

163

the vector [g(1), . . . , g(d)]
T to denote a vector with the same entries as g, but sorted in the order of

decreasing magnitude. We denote the vector of probabilities p = [p1, . . . , pd]
T .

Given an upper bound on the expected sparsity
∑d

i=1 pi, we compute the set of probabilities

which minimize the variance of the sparse estimator Q(g), by solving the following problem.

min
d∑
i=1

g2
i

pi
s.t.

d∑
i=1

pi ≤ nc, 0 < pi ≤ 1, ∀i. (S54)

PROOF: Introducing Lagrange multipliers λ, {µi}di=1 in (S54), the solution is given by solving the

following problem:

min
p

max
λ≥0

max
µ�0

L(p, λ, µ) =
d∑
i=1

g2
i

pi
+ λ2

(
d∑
i=1

pi − nc

)
+

d∑
i=1

µi(pi − 1). (S55)

The KKT conditions for (S55) are given by,

−g
2
i

p2
i

+ λ2 + µi = 0, ∀ i (Stationarity)

λ2

(
d∑
i=1

pi − nc

)
= 0, (Complementary slackness 1)

µi(pi − 1) = 0,∀ i, (Complementary slackness 2).

Combining the stationarity condition with the fact that for pi < 1, µi = 0, we get

pi =


1, µi 6= 0

|gi|
λ
, µi = 0.

. (S56)

It follows from (S56) that if |gi| ≥ |gj|, then pi ≥ pj . Therefore, there is a dominating set of

coordinates, say S, such that pj = 1,∀j ∈ S, and |gj|, j ∈ S are the largest absolute magnitudes

164

in the vector g. Suppose the set S has size k(0 ≤ k ≤ d). Consequently, we get,

p(i) =


1, i ≤ k

|g(i)|
λ
, i > k.

. (S57)

Clearly, λ > 0, hence
∑d

i=1 pi = nc. Then, from (S57),

k +
1

λ

d∑
i=k+1

|g(i)| = nc ⇔ λ =

∑d
i=k+1 |g(i)|
nc − k

.

Consequently, for i > k,

pi =
|g(i)|(nc − k)∑d

i=k+1 |g(i)|

Hence, the probabilities are calculated using the following steps:

1. Find the smallest k such that

|g(k+1)| (nc − k) ≤
d∑

i=k+1

|g(i)|,

is true. Denote by Sk, the set of coordinates with the top k largest magnitudes of |gi|.

2. Set the probability vector p by

pi =


1, if i ∈ Sk

|gi|(nc−k)∑d
i=k+1 |gi|

, if i /∈ Sk.

165

A.4.3 Proof of Proposition 5.3.2

Proof of (5.11)

PROOF: The variance of CGE is bounded as

E
∥∥∥∇̂CGEFI(x;Bc,p)−∇f(x)

∥∥∥2

= E
∥∥∥∇̂CGEFI(x;Bc,p)− ∇̂CGEf(x) + ∇̂CGEf(x)−∇f(x)

∥∥∥2

(e)
= E

∥∥∥∇̂CGEFI(x;Bc,p)− ∇̂CGEf(x)
∥∥∥2

+
∥∥∥∇̂CGEf(x)−∇f(x)

∥∥∥2

, (S58)

where ∇̂CGEf(x) is the full coordinate CGE, and (e) follows since E[∇̂CGEFI(x;Bc,p)] = ∇̂CGEf(x).

Now, we bound the first term in (S58).

E
∥∥∥∇̂CGEFI(x;Bc,p)− ∇̂CGEf(x)

∥∥∥2 (f)
= E

∥∥∥∥∥
d∑
i=1

I(i ∈ I)

pi
∇̂CGEFi(x;Bc)−

d∑
i=1

∇̂CGEfi(x)

∥∥∥∥∥
2

(g)
=

d∑
i=1

E
∥∥∥∥I(i ∈ I)

pi
∇̂CGEFi(x;Bc)− ∇̂CGEfi(x)

∥∥∥∥2

(j)
=

d∑
i=1

1

p2
i

[
E
∥∥∥I(i ∈ I)∇̂CGEFi(x;Bc)− I(i ∈ I)∇̂CGEfi(x)

∥∥∥2

+E
∥∥∥I(i ∈ I)∇̂CGEfi(x)− pi∇̂CGEfi(x)

∥∥∥2
]

=
d∑
i=1

1

p2
i

[
EII2(i ∈ I)EBc

∥∥∥∇̂CGEFi(x;Bc)− ∇̂CGEfi(x)
∥∥∥2

+EI(I(i ∈ I)− pi)2
∥∥∥∇̂CGEfi(x)

∥∥∥2
]

(k)
=

d∑
i=1

1

pi

[
EBc

∥∥∥∇̂CGEFi(x;Bc)− ∇̂CGEfi(x)
∥∥∥2

+ (1− pi)
∥∥∥∇̂CGEfi(x)

∥∥∥2
]
, (S59)

where the steps in the derivation of (S59) follow by the reasoning given below:

• (f) follows from the definitions of ∇̂CGEFI(x;Bc,p) in (5.7);

• (g) follows since ∇̂CGEFi(xt;Bc
t), ∇̂CGEfi(x) is aligned with the canonical basis vector ei,

for all i;

166

• (j) follows since the stochastic sample set Bc is sampled independent of the coordinate set

I. Therefore,

EI,Bc

〈
I(i ∈ I)∇̂CGEFi(x;Bc)− I(i ∈ I)∇̂CGEfi(x), I(i ∈ I)∇̂CGEfi(x)− pi∇̂CGEfi(x)

〉
= EI

〈
(I(i ∈ I))

(
EBc∇̂CGEFi(x;Bc)− ∇̂CGEfi(x)

)
, (I(i ∈ I)− pi)∇̂CGEfi(x)

〉
= 0,

• (k) follows since the indicator function I(i ∈ I) is a Bernoulli random variable with Pr(i ∈

I) = pi. Therefore, EI [I2(i ∈ I)] = 1 · Pr(i ∈ I) + 0 · Pr(i /∈ I) = pi. Also, variance of

this Bernoulli random variable is given by var(I(i ∈ I)) = EI(I(i ∈ I)−pi)2 = pi(1−pi).

Next, we bound the first term in (S59) as follows.

EBc

∥∥∥∇̂CGEFi(x;Bc)− ∇̂CGEfi(x)
∥∥∥2

=
1

|Bc|2
∑
ξ∈Bc

Eξ
∥∥∥∇̂CGEFi(x; ξ)− ∇̂CGEfi(x)

∥∥∥2

=
1

|Bc|
Eξ1
∥∥∥∇̂CGEFi(x; ξ1)− ∇̂CGEfi(x)

∥∥∥2

for some ξ1 ∈ Bc

(`)

≤ 3

|Bc|
Eξ1
[∥∥∥∇̂CGEFi(x; ξ1)− eie

T
i ∇F (x; ξ1)

∥∥∥2

+
∥∥eieTi (∇F (x; ξ1)−∇f(x))

∥∥2
+
∥∥∥eieTi ∇f(x)− ∇̂CGEfi(x)

∥∥∥2
]

(m)

≤ 3

|Bc|

[
L2µ2

c,i

4
+ ζ2 +

L2µ2
c,i

4

]
=

3

|Bc|

(
ζ2 +

L2µ2
c,i

2

)
, (S60)

where (`) follows from the inequality ‖
∑s

i=1 xi‖2 ≤ s
∑s

i=1 ‖xi‖2. (m) follows from the coordinate-

wise variance bound in Assumption 2 and [119, Lemma 3.2]. The second term in (S59) can be

bounded as

∥∥∥∇̂CGEfi(x)
∥∥∥2

≤ 2
∥∥∥∇̂CGEfi(x)− eie

T
i ∇f(x)

∥∥∥2

+ 2
∥∥eieTi ∇f(x)

∥∥2

≤
L2µ2

c,i

2
+ 2 (∇f(x))2

i , (S61)

167

where (x)i denotes the i-th coordinate of the vector x. Substituting (S60), (S61) in (S59), we get

E
∥∥∥[∇̂CGEFI(x;Bc,p)]− ∇̂CGEf(x)

∥∥∥2

≤
d∑
i=1

1

pi

[
3

|Bc|

(
ζ2 +

L2µ2
c,i

2

)
+ (1− pi)

{
L2µ2

c,i

2
+ 2 (∇f(x))2

i

}]

=
d∑
i=1

1

pi

[
3

|Bc|

(
ζ2 +

L2µ2
c,i

2

)
+
L2µ2

c,i

2
+ 2 (∇f(x))2

i

]
− L2

2

d∑
i=1

µ2
c,i − 2 ‖∇f(x)‖2 . (S62)

Next, we bound the second term
∥∥∥∇f(x)− ∇̂CGEf(x)

∥∥∥2

in (S58). This is done by improving

slightly the corresponding result in [119, Lemma 3].

∥∥∥∇f(x)− ∇̂CGEf(x)
∥∥∥2

=

∥∥∥∥∥
d∑
i=1

(
eie

T
i ∇̂CGEf(x)− (∇f(x))i

)∥∥∥∥∥
2

=
d∑
i=1

∥∥∥(eie
T
i ∇̂CGEf(x)− (∇f(x))i

)∥∥∥2

≤
d∑
i=1

L2µ2
c,i

4
, (S63)

where (x)i denotes the i-th component of the vector x. The last inequality follows from [119,

Lemma 3]. Finally, substituting (S62), (S63) in (S58), and rearranging the terms, we get

E
∥∥∥[∇̂CGEFI(x;Bc,p)]−∇f(x)

∥∥∥2

≤
d∑
i=1

1

pi

[
3

|Bc|

(
ζ2 +

L2µ2
c,i

2

)
+
L2µ2

c,i

2
+ 2 (∇f(x))2

i

]
− 2 ‖∇f(x)‖2 . (S64)

A.4.4 Choice of α

Substituting the upper bounds from (5.10), (5.11) in (5.9), we get

E
∥∥∥∇̂HGEF (x;Br,Bc, I)−∇f(x)

∥∥∥2

≤ 2α2E
∥∥∥∇̂RGEF (x;Br)−∇f(x)

∥∥∥2

+ 2(1− α)2E
∥∥∥[∇̂CGEFI(x;Bc,p)]−∇f(x)

∥∥∥2

168

≤ 2α2

[
2

|Br|

(
1 +

d

nr

)
E ‖∇f(x)‖2 +

2σ2

|Br|

(
1 +

d

nr

)
+

(
1 +

2

|Br|
+

2

nr|Br|

)
µ2

rL
2d2

4

]
+ 2(1− α)2

[
d∑
i=1

1

pi

[
2 (∇f(x))2

i +
3

|Bc|

(
ζ2 +

L2µ2
c,i

2

)
+
L2µ2

c,i

2

]
− 2 ‖∇f(x)‖2

]
. (S65)

The following steps to choose α are quite similar to those involved in the proof of Theorem 5.4.3.

We describe them here as well, for ease of understanding. In (S65), for the time being, we ignore

the terms involving ∇f(x). We assume the CGE smoothing parameters to be constant across

coordinates, i.e., µc,i = µc, for all i ∈ [d]. Using |Br| ≥ 1, |Bc| ≥ 1, from (S65) we can bound the

remaining terms to get

2α2

[
2σ2

(
1 +

d

nr

)
+

(
3 +

2

nr

)
µ2

rL
2d2

4

]
+ 2(1− α)2

[
d∑
i=1

1

pi

[
3ζ2 + 2L2µ2

c

]]
. (S66)

We denote P̄ = 1
d

∑d
i=1

1
pi

. Note that σ2 = dζ2. Also, we choose the smoothing parameters µc, µr

to be small enough such that σ2 ≥ L2µ2
cd, σ

2 ≥ L2d2µ2
r/4. Consequently,

2σ2

(
1 +

d

nr

)
+

(
3 +

2

nr

)
µ2

rL
2d2

4
≤ 5σ2

(
1 +

d

nr

)
,

P̄
[
3σ2 + 2L2µ2

cd
]
≤ 5σ2P̄ .

Substituting in (S66), we get

10σ2

[
α2

(
1 +

d

nr

)
+ (1− α)2P̄

]
. (S67)

Then, the optimal combination coefficient α∗, which minimizes (S67) is given by

α∗ =

[
1 +

1 + d
nr

P̄

]−1

. (S68)

169

A.4.5 Special Cases of Theorem 5.4.3

Regime 2: dnr = 1 + d
nr
� P̄T .

Since P̄T ≥ 1, this implies that d
nr
� P̄T and 1

P̄T
� nr

d
implies that on average, sampling proba-

bilities are much smaller than nr/d. In other words, the per-iteration query budget of CGE is much

smaller than RGE, and α → 1 (see (5.33)). With smoothing parameters µc = O
(
(dnr/d

2T)1/4
)
,

µr = O
(
d−1(dnr/T)1/4

)
, the resulting convergence rate is

E ‖∇f(x̄T)‖2 ≤ O

√1 + d
nr

T

 .

FQC to achieve E‖∇f(x̄T)‖2 ≤ ε is given by O(T · nr +
∑T−1

t=0

∑d
i=1 pt,i) = O(T · (nr + nc)). In

the special case of uniform distribution for CGE, i.e., pt,i = nc/d, P̄T = d/nc. d
nr
� P̄T implies

nc � nr. Hence, FQC to achieve E‖∇f(x̄T)‖2 ≤ ε isO(T ·nr) = O(d/ε2) (assuming nr = O(d)).

Naturally, both the convergence rate and FQC are dominated by RGE. Also, note that compared to

ZO-SGD, we achieve the same convergence rate, while the bound on µr is more relaxed (see Table

5.1).

Regime 3: dnr = 1 + d
nr

and P̄T are comparable in value.

To gain some insight into this case where the function query budgets of RGE and CGE are com-

parable, we again look at the uniform distribution pt,i = nc

d
,∀ t, i. So, P̄T = d

nc
. The total

per-iteration function query cost of HGE is O(nr + nc). First, note that

1 + d
nr

1 +
1+ d

nr

P̄T

=
1 + d

nr

1 +
(

1 + d
nr

)
nc

d

=
dnr + d2

nrnc + d(nr + nc)

≤ nr

nr + nc

+
d

nr + nc

≤ 1 +
d

nr + nc

.

170

With µc = O

((
1
d2T

(
1 + d

nr+nc

))1/4
)

, µr = O

(
1
d

(
1
T

(
1 + d

nr+nc

))1/4
)

, the resulting conver-

gence rate is

E ‖∇f(x̄T)‖2 ≤ O

(√
1

T

(
1 +

d

nr + nc

))
.

FQC to achieve E‖∇f(x̄T)‖2 ≤ ε is given by O(T · nr + T · nc) = O(d/ε2) (assuming nr + nc =

O(d)).

A.4.6 Convex Case

Before, proceeding with the proof of Theorem 5.5.1, we prove some intermediate results, which

shall be used along the way. First, using convexity of f (Assumption 3)

T∑
t=1

(f(xt)− f(x∗)) ≤
T∑
t=1

〈∇f(xt),xt − x∗〉

=
T∑
t=1

〈∇t,xt − x∗〉+
T∑
t=1

〈∇f(xt)−∇t,xt − x∗〉 (S69)

where x∗ = argminx∈domf f(x), and we denote the descent direction used in Algorithm 8 as

∇t , αt∇r,t + (1 − αt)∇c,t. Next, we bound both the terms in (S69) separately in the following

two results.

Proposition A.4.1. Under Assumption 3, and using non-increasing step-sizes {ηt} in Algorithm 8

T∑
t=1

〈∇t,xt − x∗〉 ≤ R2

2ηT
+

T∑
t=1

ηt
2
‖∇t‖2 (S70)

PROOF: The results follows by a straightforward application of the Young’s inequality, and using

Assumption 3 to bound ‖xt − x∗‖ with R.

Proposition A.4.2.
T∑
t=1

E 〈∇f(xt)−∇t,xt − x∗〉 ≤ RL
T∑
t=1

(
αtµrd

2
+ (1− αt)

√
dµc

)
. (S71)

171

PROOF:

T∑
t=1

E 〈∇f(xt)−∇t,xt − x∗〉

=
T∑
t=1

[αtE [〈∇f(xt)−∇r,t,xt − x∗〉 | Yt] + (1− αt)E [〈∇f(xt)−∇c,t,xt − x∗〉 | Yt]]

(a)
=

T∑
t=1

[
αtE 〈∇f(xt)−∇fµr(xt),xt − x∗〉+ (1− αt)E

〈
∇f(xt)− ∇̂CGEf(xt),xt − x∗

〉]
(b)

≤
T∑
t=1

[
αtE ‖xt − x∗‖2

(
µrLd

2

)
+ (1− αt)E ‖xt − x∗‖2 L

√
dµc

]
,

where, (a) follows from E∇r,t = ∇fµr(xt), and E∇c,t = ∇̂CGEf(xt). (b) follows from Cauch-

Schwarz inequality, and by using the bounds ‖∇f(xt)−∇fµr(xt)‖ ≤ µrLd
2

[60, Lemma 4.1], and

‖∇f(xt)−∇̂CGEf(xt)‖ ≤ L
√
dµc [86, Lemma 3]. The result follows since ‖xt − x∗‖2 ≤ R from

Assumption 3.

Next we bound ‖∇t‖2 which appears in Proposition A.4.1. We make use of Assumption 4 for this.

Proposition A.4.3.

E ‖∇t‖2 ≤ 2α2
t

[(
2 +

4

|Br|

(
1 +

d

nr

))
‖∇f(x)‖2 +

4σ2

|Br|

(
1 +

d

nr

)
(S72)

+

(
1 +

2

|Br|
+

2

nr|Br|

)
µ2

rL
2d2

2

]
+ 2(1− αt)2

d∑
i=1

1

pt,i

[
3ζ2

|Bc
t |

+
L2µ2

c

2

(
1 +

3

|Bc
t |

)
+ 2 (∇f(xt))

2
i

]
.

PROOF: The proof follows by substituting the bounds on E ‖∇r,t‖2 and E ‖∇c,t‖2 from Proposi-

tion 5.4.2.

A.4.7 Proof of Theorem 5.5.1 (Convex Case)

The set of coordinate-wise probabilities {pt,i} are chosen such that pt,i ≥ c̄, ∀ i, t.

172

PROOF: Using Proposition A.4.1, A.4.2, A.4.3 in (S69), we get

T∑
t=1

(Ef(xt)− f(x∗)) ≤ R2

2ηT
+RL

T∑
t=1

(
αtµrd

2
+ (1− αt)

√
dµc

)

+
T∑
t=1

ηt(1− αt)2

d∑
i=1

1

pt,i

[
3ζ2

|Bc
t |

+
L2µ2

c

2

(
1 +

3

|Bc
t |

)
+ 2 (∇f(xt))

2
i

]

+
T∑
t=1

ηtα
2
t

[(
2 +

4

|Br|

(
1 +

d

nr

))
‖∇f(x)‖2 +

4σ2

|Br|

(
1 +

d

nr

)
+

(
1 +

2

|Br|
+

2

nr|Br|

)
µ2

rL
2d2

2

]
.

(S73)

Here, note that

d∑
i=1

1

pt,i
(∇f(xt))

2
i ≤

1

c̄
‖∇f(xt)‖2 (S74)

We take constant combination coefficients, i.e., αt = α for all t, and constant step-sizes ηt = η

for all t. We also use Assumption 4 to bound ‖∇f(xt)‖. We denote P̄T = 1
Td

∑T−1
t=0

∑d
i=1

1
pt,i

. To

focus only on the effect of the number of random directions in RGE nr, and the probabilities of

CGE {pt,i} on convergence, we get rid of the sample set sizes using |Br
t | ≥ 1, |Bc

t | ≥ 1 for all t.

Dividing both sides of (S73) by T , we get

1

T

T∑
t=1

(Ef(xt)− f ∗) ≤
R2

2ηT
+RL

(
αµrd

2
+ (1− α)

√
dµc

)
+ α2η

[
6

(
1 +

d

nr

)
G2 +

(
3

2
+

1

nr

)
µ2

rd
2L2 + 4

(
1 +

d

nr

)
σ2

]
+ (1− α)2η

[
2G2 1

c̄
+ P̄T

(
3σ2 + 2L2µ2

cd
)]
. (S75)

As in Theorem 5.4.3, we choose the smoothing parameters such that µc = µr

√
d

2
. Again, using

the same reasoning as in Theorem 5.4.3, σ2 ≥ L2µ2
cd, σ

2 ≥ µ2
rL

2d2. Also, note that P̄T ≤ 1
c̄
.

173

Consequently (S75) simplifies to

1

T

T∑
t=1

(Ef(xt)− f ∗)

≤ R2

2ηT
+RL

√
dµc + 6α2η

[
G2

(
1 +

d

nr

)
+ σ2

(
1 +

d

nr

)]
+ 6(1− α)2η

[
G2 + σ2

c̄

]
(a)

≤ 2

√
3R2

T

[
α2 (G2 + σ2)

(
1 +

d

nr

)
+ (1− α)2

(
G2 + σ2

c̄

)]
+RL

√
dµc, (S76)

where (a) follows by optimizing over η. Choosing the value of α

α∗ =

[
1 + c̄

(
1 +

d

nr

)]−1

(S77)

and substituting in (S76), we get

1

T

T∑
t=1

(Ef(xt)− f ∗) ≤ O

R
√√√√√(G2 + σ2)

T

(
1 + d

nr

)
[
1 + c̄

(
1 + d

nr

)]
+RL

√
dµc. (S78)

The choice of µc = O

(√
1
dT

(1+ d
nr

)
[1+c̄(1+ d

nr
)]

)
in (S78) yields

1

T

T∑
t=1

(Ef(xt)− f ∗) ≤ O

R
√√√√√ 1

T

(
1 + d

nr

)
[
1 + c̄

(
1 + d

nr

)]
 . (S79)

Similar to as we did in the nonconvex case (Appendix A.4.5), we next explore the convergence

conditions of Theorem 5.5.1 under some special cases. The reasoning is quite similar in this case

as well.

174

Regime
Smoothing

parameter µc

Convergence
rate

1 + d
nr
� 1

c̄
O
(√

1
dc̄T

)
O
(√

1
T c̄

)
1 + d

nr
� 1

c̄
O
(√

1
dT

(
1 + d

nr

))
O
(√

1
T

(
1 + d

nr

))
1 + d

nr
≈ 1

c̄

pt,i ≡ nc

d

O
(√

1
dT

(
1 + d

nr+nc

))
O
(√

1
T

(
1 + d

nr+nc

))
Table A1: Comparison of smoothing parameters and convergence rates, for difference regimes of RGE and
CGE query budgets

A.4.8 Special Cases of Theorem 5.5.1 (Convex Case)

Similar to as we did in the nonconvex case (Appendix A.4.5), we next explore the convergence

conditions of Theorem 5.5.1 under some special cases. We summarize the results for three regimes

in Table A1, depending on the relative values of 1 + d
nr

and 1
c̄
. The reasoning is quite similar.

Regime 1: 1 + d
nr
� 1

c̄
.

Since 1
c̄
≥ 1, this implies that d

nr
� 1

c̄
, or c̄ � nr

d
. This implies that the sampling probabilities

are much greater than nr/d. In other words, the per-iteration query budget of CGE is much higher

than RGE, and α → 0 (see (S77)). With smoothing parameter µc = O
(√

1
dc̄T

)
, the resulting

convergence rate is

E ‖∇f(x̄T)‖2 ≤ O

(√
1

T c̄

)
.

To gain further insight, we consider the special case of uniform distribution, such that pt,i =

nc

d
,∀ t, i. Hence, 1

c̄
= d

nc
, where d

nr
� 1

c̄
implies nc � nr. Consequently, the convergence rate

becomes

E ‖∇f(x̄T)‖2 ≤ O

(√
d

ncT

)
.

And the FQC to achieve E‖∇f(x̄T)‖2 ≤ ε is O(T · nc + T · nr) = O(T · nc) = O(d/ε2).

175

Regime 2: 1 + d
nr
� 1

c̄
.

Since 1
c̄
≥ 1, this implies that d

nr
� 1

c̄
, or c̄ � nr

d
. This implies that A sufficient condition under

which this holds is if the sampling probabilities are all much smaller than nr/d. In other words,

the per-iteration query budget of CGE is much smaller than RGE, and α → 1 (see (S77)). With

smoothing parameter µc = O

(√
1+ d

nr

dT

)
, the resulting convergence rate is

E ‖∇f(x̄T)‖2 ≤ O

√1 + d
nr

T

 .

To gain further insight, we consider the special case of uniform distribution, such that pt,i =

nc

d
,∀ t, i. Hence, 1

c̄
= d

nc
, where d

nr
� 1

c̄
implies nc � nr. Consequently, the FQC to achieve

E‖∇f(x̄T)‖2 ≤ ε is O(T · nc + T · nr) = O(T · nr) = O(d/ε2) (assuming nr = O(d)).

Regime 3: dnr = 1 + d
nr

and 1
c̄

are comparable in value.

To gain some insight into this case where the function query budgets of RGE and CGE are compa-

rable, we again look at the uniform distribution pt,i = nc

d
,∀ t, i. So, 1

c̄
= d

nc
. The total per-iteration

function query cost of HGE is O(nr + nc). First, note that

1 + d
nr

1 + c̄
(

1 + d
nr

) =
1 + d

nr

1 +
(

1 + d
nr

)
nc

d

=
dnr + d2

nrnc + d(nr + nc)

≤ nr

nr + nc

+
d

nr + nc

≤ 1 +
d

nr + nc

.

With µc = O

(√
1
dT

(
1 + d

nr+nc

))
and µr = O

(
1
d

√
1
T

(
1 + d

nr+nc

))
, the resulting convergence

rate is

E ‖∇f(x̄T)‖2 ≤ O

(√
1

T

(
1 +

d

nr + nc

))
.

176

FQC to achieve E‖∇f(x̄T)‖2 ≤ ε is given by O(T · nr + T · nc) = O(d/ε2) (assuming nr + nc =

O(d)). For O(nr + nc) function evaluations per iteration (O(nr) for RGE, O(nc) for CGE), this

rate is order optimal [50].

A.4.9 Proof of Theorem 5.5.1 (Strongly Convex Case)

For strongly convex functions, the error can be expressed either in terms of the regret
∑T−1

t=0 (Ef(xt)− f ∗)

(as in the convex case), or in terms of distance of the iterate from the optima ‖xt − x∗‖2, because

of the following inequality

σ̄

2
‖x− x∗‖2 ≤ f(x)− f ∗, ∀ x ∈ domf.

We begin with the following general result.

Lemma A.4.4. Suppose f satisfies Assumption 1, 5. Then, the smooth approximation fµ of the

function f , defined as fµ = Eu∈U0 [f(x + µu)] is also σ̄-strongly convex.

PROOF: We use the following property of strongly convex functions.

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)− σ̄α(1− α)

2
‖x− y‖2 , α ∈ [0, 1].

Now,

fµ(αx + (1− α)y) = Eu∈U0 [f (αx + (1− α)y + µu)]

= Eu∈U0 [f (α(x + µu) + (1− α)(y + µu))]

≤ Eu∈U0

[
αf(x + µu) + (1− α)f(y + µu)− σ̄α(1− α)

2
‖x + µu− y − µu‖2

]
= αEu∈U0 [f(x + µu)] + (1− α)Eu∈U0 [f(y + µu)]− σ̄α(1− α)

2
‖x− y‖2

= αfµ(x) + (1− α)fµ(y)− σ̄α(1− α)

2
‖x− y‖2

177

We start with the following intermediate result.

Proposition A.4.5. Given f satisfies Assumption 1, 5, the iterates of Algorithm 8 {xt}t satisfy

E ‖xt+1 − x∗‖2 ≤
(

1− ηtσ̄

2

)
E ‖xt − x∗‖2 − 2ηtet + 2ηtαtLµ

2
r + 2ηt(1− αt)

L2dµ2
c

σ̄

+ 2η2
t

[
α2
tE ‖∇r,t‖2 + (1− αt)2E ‖∇c,t‖2] , (S80)

where, et = Ef(xt)− f ∗. Recall that ηt is the step-size at time t, αt is the combination coefficient

at time t, µr, µc are the smoothing parameters for RGE, CGE respectively.

PROOF: Using the iterate update equation (line 8) in Algorithm 8

‖xt+1 − x∗‖2 = ‖xt − ηt (αt∇r,t + (1− αt)∇c,t)− x∗‖2

= ‖xt − x∗‖2 + η2
t ‖αt∇r,t + (1− αt)∇c,t‖2 − 2ηt 〈xt − x∗, αt∇r,t + (1− αt)∇c,t〉 . (S81)

We take expectation and consider the individual terms in (S81) one at a time.

E ‖αt∇r,t + (1− αt)∇c,t‖2 ≤ 2α2
tE ‖∇r,t‖2 + 2(1− αt)2E ‖∇c,t‖2 , (S82)

where (S82) follows from ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Next,

− ηtE [〈xt − x∗, αt∇r,t + (1− αt)∇c,t〉 | Yt]

= −ηtαtE 〈xt − x∗,∇fµr(xt)〉 − ηt(1− αt)E
〈
xt − x∗, ∇̂CGEf(xt)

〉
. (S83)

Using Lemma A.4.4, we can upper bound

−〈xt − x∗,∇fµr(xt)〉 ≤ − (fµr(xt)− fµr(x
∗))− σ̄

2
‖xt − x∗‖2

≤ − (f(xt)− f ∗) + µ2
rL−

σ̄

2
‖xt − x∗‖2 , (S84)

178

where, (S84) follows from [86, Lemma 5.1]. Also,

−
〈
xt − x∗, ∇̂CGEf(xt)

〉
= −

〈
xt − x∗, ∇̂CGEf(xt)−∇f(xt)

〉
− 〈xt − x∗,∇f(xt)〉

(a)

≤ ‖xt − x∗‖
∥∥∥∇̂CGEf(xt)−∇f(xt)

∥∥∥− (f(xt)− f(x∗))− σ̄

2
‖xt − x∗‖2

(b)

≤ σ̄

4
‖xt − x∗‖2 +

1

σ̄

∥∥∥∇̂CGEf(xt)−∇f(xt)
∥∥∥2

− (f(xt)− f(x∗))− σ̄

2
‖xt − x∗‖2

(c)

≤ 1

σ̄
L2dµ2

c − (f(xt)− f ∗)−
σ̄

4
‖xt − x∗‖2 , (S85)

where (a) follows from Cauchy-Schwarz inequality, and strong convexity of f ; (b) follows from

Young’s inequality xTy ≤ a
2
‖x‖2 + 1

2a
‖y‖2; (c) follows from [86, Lemma 3] Substituting (S82),

(S84), (S85) in (S81), we get the statement of the Lemma.

Next, we can upper bound E ‖∇r,t‖2, E ‖∇c,t‖2 using Proposition 5.4.2, and pt,i ≥ c̄ > 0 for all

t, i.

Proposition A.4.6. Suppose f satisfies Assumption 1, 2, 4. Then

E ‖∇r,t‖2 ≤ 6(G2 + σ2)

(
1 +

d

nr

)
E ‖∇c,t‖2 ≤ 6

(G2 + σ2)

c̄
.

PROOF:

E ‖∇r,t‖2 ≤
[
2 +

4

|Br|

(
1 +

d

nr

)]
E ‖∇f(x)‖2 +

4σ2

|Br|

(
1 +

d

nr

)
+

(
1 +

2

|Br|
+

2

nr|Br|

)
µ2

rL
2d2

2
(a)

≤ 6

(
1 +

d

nr

)
E ‖∇f(x)‖2 + 4σ2

(
1 +

d

nr

)
+

(
3

2
+

1

nr

)
µ2

rL
2d2

(b)

≤ 6

(
1 +

d

nr

)
G2 + 6σ2

(
1 +

d

nr

)
= 6(G2 + σ2)

(
1 +

d

nr

)
, (S86)

where (a) follows since |Br
t | ≥ 1; (b) follows from Assumption 4, and by using the smoothing

179

parameter µr small enough such that σ ≥ µrLd. Next,

E ‖∇c,t‖2 ≤
d∑
i=1

1

pt,i

[
2E (∇f(xt))

2
i +

3ζ2

|Bc
t |

+
L2µ2

c

2

(
1 +

3

|Bc
t |

)]
(c)

≤ 2E ‖∇f(x)‖2

c̄
+

3σ2

c̄
+

2L2µ2
cd

c̄
(d)

≤ 6
(G2 + σ2)

c̄
, (S87)

where (c) follows since pt,i ≥ c̄, |Bc
t | ≥ 1, and σ2 = dζ2; (d) follows from Assumption 4, and by

choosing µc small enough such that σ ≥ Lµc

√
d.

Substituting the bounds from Proposition A.4.6 in Proposition A.4.5, and assuming constant com-

bination coefficient αt = α, for all t, we get

E ‖xt+1 − x∗‖2 ≤
(

1− ηtσ̄

2

)
E ‖xt − x∗‖2 − 2ηtet + 2ηtαLµ

2
r + 2ηt(1− α)

L2dµ2
c

σ̄

+ 12η2
t (G

2 + σ2)

[
α2

(
1 +

d

nr

)
+ (1− α)2 1

c̄

]
,

(e)

≤
(

1− ηtσ̄

2

)
E ‖xt − x∗‖2 − 2ηtet + 2ηt

L2dµ2
c

σ̄
+ 12η2

t (G
2 + σ2)

(
1 + d

nr

)
1 + c̄

(
1 + d

nr

) , (S88)

where (e) follows by choosing µr = µc

√
dL
σ̄

, and by choosing α to minimize the right hand side.

Next, we state the following general result to help us bound (S88).

Lemma A.4.7. Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0 be sequences satisfying

at+1 ≤
(

1− ηtσ̄

2

)
at − ηtet + ηtA+ η2

tB,

for ηt = 8
σ̄(a+t)

, and A,B ≥ 0, σ̄ > 0, a > 1. Then,

1

ST

T−1∑
t=0

wtet ≤ A+
4T (T + 2a)

σ̄ST
B +

a3σ̄

8ST
a0, (S89)

180

for wt = (a+ t)2 and ST =
∑T−1

t=0 wt ≥
1
3
T 3.

PROOF: The proof borrows from the proof in [167, Lemma 3.3] with some minor modifications.

Multiplying by wt
ηt

, and simplifying, we get

T−1∑
t=0

wtet ≤
w0

η0

a0 + A

T−1∑
t=0

wt +
T−1∑
t=0

wtηtB. (S90)

Here, w0

η0
≤ σ̄a3

8
. Using ST =

∑T−1
t=0 wt ≥ T 3/3,

∑T−1
t=0 wtηt ≤

4T (T+2a)
σ̄

, we get the result.

Comparing (S88) and Lemma A.4.7, note that

et =
1

2
E ‖xt − x∗‖2 , A =

L2dµ2
c

σ̄
, B = 6(G2 + σ2)

(
1 + d

nr

)
1 + c̄

(
1 + d

nr

) .
Then, for x̂T = 1

ST

∑T−1
t=0 wtxt,

Ef(x̂T)− f ∗ ≤ 1

ST

T−1∑
t=0

wtet ≤ A+
4T (T + 2a)

σ̄ST
B +

a3σ̄

8ST
a0

≤ O

L2dµ2
c

σ̄
+

(G2 + σ2)

σ̄T

(
1 + d

nr

)
1 + c̄

(
1 + d

nr

)
 . (S91)

The choice of µc = O
(√

1
dT

(1+ d
nr

)
[1+c̄(1+ d

nr
)]

)
in (S91) yields

Ef(x̂T)− f ∗ ≤ O

(G2 + σ2)

σ̄T

(
1 + d

nr

)
1 + c̄

(
1 + d

nr

)
 . (S92)

The special cases of Theorem 5.5.1 (for strongly convex functions) can be derived in a similar way,

as we did for convex functions in Appendix A.4.8.

181

REFERENCES

[1] M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “An augmented lagrangian ap-

proach to the constrained optimization formulation of imaging inverse problems,” IEEE

Transactions on Image Processing, vol. 20, no. 3, pp. 681–695, 2010.

[2] A. Agarwal and L. Bottou, “A lower bound for the optimization of finite sums,” arXiv

preprint arXiv:1410.0723, 2014.

[3] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online convex optimization

with multi-point bandit feedback.” in COLT. Citeseer, 2010, pp. 28–40.

[4] N. Agarwal, A. Gonen, and E. Hazan, “Learning in non-convex games with an optimization

oracle,” arXiv preprint arXiv:1810.07362, 2018.

[5] H. Aghajan and A. Cavallaro, Multi-Camera Networks: Principles and Applications. Aca-

demic press, 2009.

[6] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient descent,” arXiv

preprint arXiv:1704.05021, 2017.

[7] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-

efficient SGD via gradient quantization and encoding,” in Advances in Neural Information

Processing Systems, 2017, pp. 1709–1720.

[8] Z. Allen-Zhu and E. Hazan, “Variance reduction for faster non-convex optimization,” in

International conference on machine learning, 2016, pp. 699–707.

182

[9] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth, “Lower

bounds for non-convex stochastic optimization,” arXiv preprint arXiv:1912.02365, 2019.

[10] K. Balasubramanian and S. Ghadimi, “Zeroth-order (non)-convex stochastic optimization

via conditional gradient and gradient updates,” in Advances in Neural Information Process-

ing Systems, 2018, pp. 3455–3464.

[11] K. Balasubramanian, S. Ghadimi, and A. Nguyen, “Stochastic multi-level composition

optimization algorithms with level-independent convergence rates,” arXiv preprint arXiv:

2008.10526, 2020.

[12] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE

Control Syst. Mag., vol. 29, no. 6, pp. 82–100, 2009.

[13] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and data fusion: A Handbook of Algo-

rithms. YBS publishing, 2011.

[14] D. Basu, D. Data, C. Karakus, and S. N. Diggavi, “Qsparse-local-sgd: Distributed sgd with

quantization, sparsification, and local computations,” IEEE Journal on Selected Areas in

Information Theory, vol. 1, no. 1, pp. 217–226, 2020.

[15] G. Battistelli, L. Chisci, C. Fantacci, A. Farina, and A. Graziano, “Consensus CPHD Filter

for Distributed Multitarget Tracking,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 3, pp.

508–520, 2013.

[16] H. H. Bauschke and J. M. Borwein, “Joint and separate convexity of the bregman distance,”

in Studies in Computational Mathematics. Elsevier, 2001, vol. 8, pp. 23–36.

[17] A. Beck, First-order methods in optimization. SIAM, 2017.

[18] E. H. Bergou, E. Gorbunov, and P. Richtarik, “Stochastic three points method for uncon-

strained smooth minimization,” SIAM Journal on Optimization, vol. 30, no. 4, pp. 2726–

2749, 2020.

183

[19] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signsgd: Compressed

optimisation for non-convex problems,” in International Conference on Machine Learning,

2018, pp. 560–569.

[20] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary stochastic optimization,” Operations re-

search, vol. 63, no. 5, pp. 1227–1244, 2015.

[21] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative mod-

els,” in International Conference on Machine Learning. PMLR, 2017, pp. 537–546.

[22] D. M. Bortz and C. T. Kelley, “The simplex gradient and noisy optimization problems,” in

Computational methods for optimal design and control. Springer, 1998, pp. 77–90.

[23] M. Brambilla, G. Soatti, and M. Nicoli, “Precise Vehicle Positioning by Cooperative Feature

Association and Tracking in Vehicular Networks,” in Proc. IEEE SSP, 2018, pp. 648–652.

[24] F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic Networks: A Mathemat-

ical Approach to Motion Coordination Algorithms. Princeton University Press, 2009.

[25] X. Cao, J. Zhang, and H. V. Poor, “A virtual-queue-based algorithm for constrained online

convex optimization with applications to data center resource allocation,” IEEE Journal of

Selected Topics in Signal Processing, vol. 12, no. 4, pp. 703–716, 2018.

[26] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017

ieee symposium on security and privacy (sp). IEEE, 2017, pp. 39–57.

[27] S. Cen, H. Zhang, Y. Chi, W. Chen, and T.-Y. Liu, “Convergence of distributed stochastic

variance reduced methods without sampling extra data,” arXiv preprint arXiv:1905.12648,

2019.

[28] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization

based black-box attacks to deep neural networks without training substitute models,” in

184

Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. ACM,

2017, pp. 15–26.

[29] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated gradient for

communication-efficient distributed learning,” in Advances in Neural Information Process-

ing Systems, 2018, pp. 5050–5060.

[30] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization approach to proac-

tive network resource allocation,” IEEE Transactions on Signal Processing, vol. 65, no. 24,

pp. 6350–6364, 2017.

[31] W.-N. Chen, P. Kairouz, and A. Özgür, “Breaking the communication-privacy-accuracy

trilemma,” arXiv preprint arXiv:2007.11707, 2020.

[32] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for federated learning,”

arXiv preprint arXiv:2010.13723, 2020.

[33] X. Chen, S. Liu, K. Xu, X. Li, X. Lin, M. Hong, and D. Cox, “Zo-adamm: Zeroth-order

adaptive momentum method for black-box optimization,” in Advances in Neural Informa-

tion Processing Systems, 2019, pp. 7204–7215.

[34] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh, “Query-efficient hard-

label black-box attack: An optimization-based approach,” arXiv preprint arXiv:1807.04457,

2018.

[35] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning: Convergence

analysis and power-of-choice selection strategies,” arXiv preprint arXiv:2010.01243, 2020.

[36] A. R. Conn, N. I. Gould, and P. L. Toint, Trust region methods. SIAM, 2000.

[37] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization.

SIAM, 2009.

185

[38] A. Cutkosky and F. Orabona, “Momentum-based variance reduction in non-convex SGD,”

in Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,

pp. 15 236–15 245.

[39] R. Das, A. Acharya, A. Hashemi, S. Sanghavi, I. S. Dhillon, and U. Topcu,

“Faster non-convex federated learning via global and local momentum,” arXiv preprint

arXiv:2012.04061, 2020.

[40] R. Das, A. Hashemi, S. Sanghavi, and I. S. Dhillon, “Improved convergence rates for non-

convex federated learning with compression,” arXiv preprint arXiv:2012.04061, 2020.

[41] D. Data and S. Diggavi, “Byzantine-resilient high-dimensional sgd with local iterations on

heterogeneous data,” arXiv preprint arXiv:2006.13041, 2020.

[42] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient method

with support for non-strongly convex composite objectives,” in Advances in neural infor-

mation processing systems, 2014, pp. 1646–1654.

[43] ——, “Saga: A fast incremental gradient method with support for non-strongly convex

composite objectives,” in Advances in neural information processing systems, 2014, pp.

1646–1654.

[44] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online pre-

diction using mini-batches,” Journal of Machine Learning Research, vol. 13, no. Jan, pp.

165–202, 2012.

[45] E. Delande, E. Duflos, P. Vanheeghe, and D. Heurguier, “Multi-sensor PHD: Construction

and Implementation by Space Partitioning,” in Proc. IEEE ICASSP, 2011, pp. 3632–3635.

[46] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip algorithms

for distributed signal processing,” Proc. IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

186

[47] A. Doucet, N. de Freitas, and N. Gordon, Sequantial Monte Carlo Methods in Practice.

New York City, NY: Springer-Verlag, 2001.

[48] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen, “Communication quantization for

data-parallel training of deep neural networks,” in 2016 2nd Workshop on Machine Learning

in HPC Environments (MLHPC). IEEE, 2016, pp. 1–8.

[49] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and

stochastic optimization.” Journal of machine learning research, vol. 12, no. 7, 2011.

[50] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal rates for zero-

order convex optimization: The power of two function evaluations,” IEEE Transactions on

Information Theory, vol. 61, no. 5, pp. 2788–2806, 2015.

[51] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning with theoretical

guarantees: A model-agnostic meta-learning approach,” Advances in Neural Information

Processing Systems, vol. 33, 2020.

[52] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “SPIDER: Near-optimal non-convex optimization

via stochastic path-integrated differential estimator,” in Advances in Neural Information

Processing Systems, 2018, pp. 689–699.

[53] ——, “Spider: Near-optimal non-convex optimization via stochastic path-integrated differ-

ential estimator,” in Advances in Neural Information Processing Systems, 2018, pp. 689–

699.

[54] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of

deep networks,” in International Conference on Machine Learning. PMLR, 2017, pp.

1126–1135.

187

[55] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex optimization in the bandit

setting: gradient descent without a gradient,” in Proceedings of the sixteenth annual ACM-

SIAM symposium on Discrete algorithms, 2005, pp. 385–394.

[56] Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi, “Clustered sampling: Low-variance

and improved representativity for clients selection in federated learning,” arXiv preprint

arXiv:2105.05883, 2021.

[57] M. Frohle, C. Lindberg, and H. Wymeersch, “Cooperative Localization of Vehicles without

Inter-Vehicle Measurements,” in Proc. IEEE WCNC, 2018, pp. 1–6.

[58] R. G. Gallager, Stochastic Processes: Theory for Applications. Cambridge, UK: Cam-

bridge University Press, 2013.

[59] X. Gao, X. Li, and S. Zhang, “Online learning with non-convex losses and non-stationary

regret,” in International Conference on Artificial Intelligence and Statistics, 2018, pp. 235–

243.

[60] X. Gao, B. Jiang, and S. Zhang, “On the information-adaptive variants of the admm: an

iteration complexity perspective,” Journal of Scientific Computing, vol. 76, no. 1, pp. 327–

363, 2018.

[61] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex stochastic

programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–2368, 2013.

[62] ——, “Stochastic first-and zeroth-order methods for nonconvex stochastic programming,”

SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–2368, 2013.

[63] S. Ghadimi, A. Ruszczynski, and M. Wang, “A single timescale stochastic approximation

method for nested stochastic optimization,” SIAM Journal on Optimization, vol. 30, no. 1,

pp. 960–979, 2020.

188

[64] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh, “Shuffled model of differential

privacy in federated learning,” in International Conference on Artificial Intelligence and

Statistics. PMLR, 2021, pp. 2521–2529.

[65] A. M. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh, “Shuffled model of feder-

ated learning: Privacy, accuracy and communication trade-offs,” IEEE Journal on Selected

Areas in Information Theory, vol. 2, no. 1, pp. 464–478, 2021.

[66] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”

2015 ICLR, vol. arXiv preprint arXiv:1412.6572, 2015.

[67] E. Gorbunov, K. Burlachenko, Z. Li, and P. Richtárik, “Marina: Faster non-convex dis-

tributed learning with compression,” arXiv preprint arXiv:2102.07845, 2021.

[68] R. M. Gower, M. Schmidt, F. Bach, and P. Richtarik, “Variance-reduced methods for ma-

chine learning,” Proceedings of the IEEE, vol. 108, no. 11, pp. 1968–1983, 2020.

[69] B. Gu, Z. Huo, and H. Huang, “Asynchronous stochastic block coordinate descent with

variance reduction,” arXiv preprint arXiv:1610.09447, 2016.

[70] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Trading redundancy for

communication: Speeding up distributed SGD for non-convex optimization,” in Interna-

tional Conference on Machine Learning, 2019, pp. 2545–2554.

[71] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Federated learning with

compression: Unified analysis and sharp guarantees,” arXiv preprint arXiv:2007.01154,

2020.

[72] D. Hajinezhad, M. Hong, and A. Garcia, “Zone: Zeroth-order nonconvex multiagent op-

timization over networks,” IEEE Transactions on Automatic Control, vol. 64, no. 10, pp.

3995–4010, 2019.

189

[73] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic environments,” IEEE

Journal of Selected Topics in Signal Processing, vol. 9, no. 4, pp. 647–662, 2015.

[74] O. A. Hanna, Y. H. Ezzeldin, C. Fragouli, and S. Diggavi, “Quantizing data for distributed

learning,” arXiv preprint arXiv:2012.07913, 2020.

[75] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for online convex opti-

mization,” Machine Learning, vol. 69, no. 2-3, pp. 169–192, 2007.

[76] E. Hazan et al., “Introduction to online convex optimization,” Foundations and Trends® in

Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[77] E. Hazan, K. Singh, and C. Zhang, “Efficient regret minimization in non-convex games,”

arXiv preprint arXiv:1708.00075, 2017.

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770–778.

[79] P. Horridge and S. Maskell, “Real-Time Tracking Of Hundreds Of Targets With Efficient

Exact JPDAF Implementation,” in Proc. Int. Conf. Inf. Fusion, 2006, pp. 1–8.

[80] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with limited

queries and information,” arXiv preprint arXiv:1804.08598, 2018.

[81] A. Ilyas, L. Engstrom, and A. Madry, “Prior convictions: Black-box adversarial attacks

with bandits and priors,” in International Conference on Learning Representations, 2019.

[Online]. Available: https://openreview.net/forum?id=BkMiWhR5K7

[82] V. N. Ioannidis, A. S. Zamzam, G. B. Giannakis, and N. D. Sidiropoulos, “Coupled graph

and tensor factorization for recommender systems and community detection,” IEEE Trans-

actions on Knowledge and Data Engineering, 2019.

https://openreview.net/forum?id=BkMiWhR5K7

190

[83] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online optimization: Com-

peting with dynamic comparators,” in Artificial Intelligence and Statistics, 2015, pp. 398–

406.

[84] P. Jain, P. Kar et al., “Non-convex optimization for machine learning,” Foundations and

Trends® in Machine Learning, vol. 10, no. 3-4, pp. 142–336, 2017.

[85] R. Jenatton, J. Huang, and C. Archambeau, “Adaptive algorithms for online convex opti-

mization with long-term constraints,” in International Conference on Machine Learning,

2016, pp. 402–411.

[86] K. Ji, Z. Wang, Y. Zhou, and Y. Liang, “Improved zeroth-order variance reduced algorithms

and analysis for nonconvex optimization,” arXiv preprint arXiv:1910.12166, 2019.

[87] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep learning with sparse

and quantized communication,” in Advances in Neural Information Processing Systems,

2018, pp. 2525–2536.

[88] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving federated learning personaliza-

tion via model agnostic meta learning,” arXiv preprint arXiv:1909.12488, 2019.

[89] M. J. Johnson, J. Saunderson, and A. S. Willsky, “Analyzing Hogwild parallel Gaussian

Gibbs sampling,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2013, pp. 2715–2723.

[90] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive vari-

ance reduction,” in Advances in neural information processing systems, 2013, pp. 315–323.

[91] ——, “Accelerating stochastic gradient descent using predictive variance reduction,” in Ad-

vances in Neural Information Processing Systems 26. Curran Associates, Inc., 2013, pp.

315–323.

191

[92] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,

Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated

learning,” arXiv preprint arXiv:1912.04977, 2019.

[93] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh,

“Mime: Mimicking centralized stochastic algorithms in federated learning,” arXiv preprint

arXiv:2008.03606, 2020.

[94] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold:

Stochastic controlled averaging for federated learning,” in International Conference on Ma-

chine Learning. PMLR, 2020, pp. 5132–5143.

[95] P. Khanduri, P. Sharma, H. Yang, M. Hong, J. Liu, K. Rajawat, and P. K. Varshney, “Stem:

A stochastic two-sided momentum algorithm achieving near-optimal sample and communi-

cation complexities for federated learning,” arXiv preprint arXiv:2106.10435, 2021.

[96] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of the maximum of a regression func-

tion,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466, 1952.

[97] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International

Conference on Learning Representations (ICLR), 2015.

[98] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Dis-

tributed machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527,

2016.

[99] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm for networked online

convex optimization,” IEEE Transactions on Signal Processing, vol. 63, no. 19, pp. 5149–

5164, 2015.

[100] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,”

2009.

192

[101] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product

Algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, 2001.

[102] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization methods,” arXiv

preprint arXiv:1904.11585, 2019.

[103] T. Léauté and B. Faltings, “Protecting privacy through distributed computation in multi-

agent decision making,” Journal of Artificial Intelligence Research, vol. 47, pp. 649–695,

2013.

[104] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[105] J. D. Lee, Q. Lin, T. Ma, and T. Yang, “Distributed stochastic variance reduced gradient

methods by sampling extra data with replacement,” The Journal of Machine Learning Re-

search, vol. 18, no. 1, pp. 4404–4446, 2017.

[106] L. Lei and M. I. Jordan, “Less than a single pass: Stochastically controlled stochastic gradi-

ent method,” arXiv preprint arXiv:1609.03261, 2016.

[107] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient distributed ma-

chine learning with the parameter server,” in Advances in Neural Information Processing

Systems, 2014, pp. 19–27.

[108] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust federated learning through

personalization,” arXiv: 2012.04221, 2020.

[109] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods,

and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[110] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in federated learning,”

arXiv preprint arXiv:1905.10497, 2019.

193

[111] X. Li, X. Yi, and L. Xie, “Distributed online optimization for multi-agent networks with

coupled inequality constraints,” arXiv preprint arXiv:1805.05573, 2018.

[112] X. Lian, M. Wang, and J. Liu, “Finite-sum composition optimization via variance reduced

gradient descent,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1159–1167.

[113] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, “A comprehensive linear speedup

analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order,”

in Advances in Neural Information Processing Systems, 2016, pp. 3054–3062.

[114] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-batches, use local SGD,”

arXiv preprint arXiv:1808.07217, 2018.

[115] D. Liu, L. M. Nguyen, and Q. Tran-Dinh, “An optimal hybrid variance-reduced algorithm

for stochastic composite nonconvex optimization,” arXiv preprint arXiv:2008.09055, 2020.

[116] J. Liu and C. Zhang, “Distributed learning systems with first-order methods,” arXiv preprint

arXiv:2104.05245, 2021.

[117] S. Liu, P. Y. Chen, X. Chen, and M. Hong, “Signsgd via zeroth-order oracle,” in 7th Inter-

national Conference on Learning Representations, ICLR 2019, 2019.

[118] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. Hero, and P. K. Varshney, “A primer

on zeroth-order optimization in signal processing and machine learning,” arXiv preprint

arXiv:2006.06224, 2020.

[119] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and L. Amini, “Zeroth-order stochastic

variance reduction for nonconvex optimization,” in Advances in Neural Information Pro-

cessing Systems, 2018, pp. 3727–3737.

[120] S. Liu, S. Lu, X. Chen, Y. Feng, K. Xu, A. Al-Dujaili, M. Hong, and U.-M. O’Reilly, “Min-

max optimization without gradients: Convergence and applications to black-box evasion

and poisoning attacks,” in Proc. Int. Conf. Machine Learning, 2020.

194

[121] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: online convex optimization

with long term constraints,” Journal of Machine Learning Research, vol. 13, no. Sep, pp.

2503–2528, 2012.

[122] R. P. Mahler, Statistical multisource-multitarget information fusion. Norwood, MA, USA:

Artech House, Inc., 2007.

[123] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient learning of deep networks from decentralized data,” in Artificial Intelligence and

Statistics. PMLR, 2017, pp. 1273–1282.

[124] F. Meyer, T. Kropfreiter, J. L. Williams, R. Lau, F. Hlawatsch, P. Braca, and M. Z. Win,

“Message Passing Algorithms for Scalable Multitarget Tracking,” Proc. IEEE, vol. 106,

no. 2, pp. 221–259, 2018.

[125] F. Meyer, P. Braca, F. Hlawatsch, M. Micheli, and K. D. LePage, “Scalable Adaptive Mul-

titarget Tracking using Multiple Sensors,” in Proc. IEEE Globecom Workshops, 2016, pp.

1–6.

[126] F. Meyer, P. Braca, P. Willett, and F. Hlawatsch, “A scalable algorithm for tracking an un-

known number of targets using multiple sensors,” IEEE Trans. Signal Process., vol. 65,

no. 13, pp. 3478–3493, 2017.

[127] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and F. Hlawatsch, “Distributed localization

and tracking of mobile networks including noncooperative objects,” IEEE Trans. Signal Inf.

Process. Netw., vol. 2, no. 1, pp. 57–71, 2016.

[128] F. Meyer, Z. Liu, and M. Z. Win, “Network Localization and Navigation Using Measure-

ments with Uncertain Origin,” in Proc. Int. Conf. Inf. Fusion, 2018, pp. 1–7.

[129] F. Meyer and M. Z. Win, “Joint Navigation and Multitarget Tracking in Networks,” in Proc.

IEEE ICC Workshops, 2018, pp. 1–6.

195

[130] A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani, “Achieving linear convergence in feder-

ated learning under objective and systems heterogeneity,” arXiv preprint arXiv:2102.07053,

2021.

[131] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial pertur-

bations,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 1765–1773.

[132] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, “D-admm: A communication-

efficient distributed algorithm for separable optimization,” IEEE Transactions on Signal

Processing, vol. 61, no. 10, pp. 2718–2723, 2013.

[133] K. G. Murty and S. N. Kabadi, “Some np-complete problems in quadratic and nonlinear

programming,” Mathematical Programming, vol. 39, no. 1-2, pp. 117–129, 1987.

[134] S. Nannuru, S. Blouin, M. Coates, and M. Rabbat, “Multisensor CPHD Filter,” IEEE Trans.

Aerosp. Electron. Syst., vol. 52, no. 4, pp. 1834–1854, 2016.

[135] S. Nannuru, M. Coates, M. Rabbat, and S. Blouin, “General Solution and Approximate

Implementation of the Multisensor Multitarget CPHD Filter,” in Proc. IEEE ICASSP, 2015,

pp. 4055–4059.

[136] Y. Nesterov, “Introductory lectures on convex programming volume i: Basic course,” Lec-

ture notes, vol. 3, no. 4, p. 5, 1998.

[137] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex functions,”

Foundations of Computational Mathematics, vol. 17, no. 2, pp. 527–566, 2017.

[138] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, “SARAH: A novel method for machine

learning problems using stochastic recursive gradient,” in Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 2613–2621.

196

[139] ——, “Sarah: A novel method for machine learning problems using stochastic recursive gra-

dient,” in Proceedings of the 34th International Conference on Machine Learning-Volume

70. JMLR. org, 2017, pp. 2613–2621.

[140] ——, “Stochastic recursive gradient algorithm for nonconvex optimization,” arXiv preprint

arXiv:1705.07261, 2017.

[141] L. M. Nguyen, M. van Dijk, D. T. Phan, P. H. Nguyen, T.-W. Weng, and J. R.

Kalagnanam, “Optimal finite-sum smooth non-convex optimization with SARAH,” arXiv

preprint arXiv:1901.07648, 2019.

[142] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in Networked

Multi-agent Systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[143] U. Orguner and M. Demırekler, “Analysis of single Gaussian approximation of Gaussian

mixtures in Bayesian filtering applied to mixed multiple-model estimation,” Int. J. Control,

vol. 80, no. 6, pp. 952–967, 2007.

[144] S. Paternain, S. Lee, M. M. Zavlanos, and A. Ribeiro, “Distributed constrained online learn-

ing,” arXiv preprint arXiv:1903.06310, 2019.

[145] S. Paternain and A. Ribeiro, “Online learning of feasible strategies in unknown environ-

ments,” IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2807–2822, 2016.

[146] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic Variance Reduction for

Nonconvex Optimization,” in Int. Conf. Machine Learn., 2016, pp. 314–323.

[147] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. Smola, “Stochastic variance reduction

for nonconvex optimization,” in International conference on machine learning, 2016, pp.

314–323.

[148] S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola, “AIDE: Fast and communi-

cation efficient distributed optimization,” arXiv preprint arXiv:1608.06879, 2016.

197

[149] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fedpaq: A

communication-efficient federated learning method with periodic averaging and quantiza-

tion,” in International Conference on Artificial Intelligence and Statistics. PMLR, 2020,

pp. 2021–2031.

[150] B. Ristić, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for

Tracking Applications. Artech House, 2004.

[151] E. Rizk, S. Vlaski, and A. H. Sayed, “Federated learning under importance sampling,” arXiv

preprint arXiv:2012.07383, 2020.

[152] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathemati-

cal statistics, pp. 400–407, 1951.

[153] A. A. Saucan, M. J. Coates, and M. Rabbat, “A multisensor multi-Bernoulli filter,” IEEE

Trans. Signal Process., vol. 65, no. 20, pp. 5495–5509, 2017.

[154] A. A. Saucan and P. K. Varshney, “Distributed cross-entropy δ-GLMB filter for multi-sensor

multi-target tracking,” in Int. Conf. Inform. Fusion (FUSION), 2018.

[155] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A Consistent Metric for Performance Evaluation

of Multi-Object Filters,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3447–3457, 2008.

[156] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in dynamic environ-

ments using mirror descent,” IEEE Transactions on Automatic Control, vol. 63, no. 3, pp.

714–725, 2017.

[157] S. Shalev-Shwartz et al., “Online learning and online convex optimization,” Foundations

and Trends® in Machine Learning, vol. 4, no. 2, pp. 107–194, 2012.

[158] O. Shamir, “An optimal algorithm for bandit and zero-order convex optimization with two-

point feedback,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 1703–1713,

2017.

198

[159] O. Shamir and N. Srebro, “Distributed stochastic optimization and learning,” in 2014 52nd

Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE,

2014, pp. 850–857.

[160] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed optimization us-

ing an approximate newton-type method,” in International conference on machine learning,

2014, pp. 1000–1008.

[161] N. Singh, D. Data, J. George, and S. Diggavi, “Sparq-sgd: Event-triggered and compressed

communication in decentralized stochastic optimization,” arXiv preprint arXiv:1910.14280,

2019.

[162] A. Smola and S. Narayanamurthy, “An architecture for parallel topic models,” Proc. VLDB

Endow., vol. 3, no. 1-2, pp. 703–710, 2010.

[163] G. Soatti, M. Nicoli, N. Garcia, B. Denis, R. Raulefs, and H. Wymeersch, “Enhanced Ve-

hicle Positioning in Cooperative ITS by Joint Sensing of Passive Features,” in Proc. IEEE

ITSC, 2017, pp. 1–6.

[164] ——, “Implicit Cooperative Positioning in Vehicular Networks,” IEEE Trans. Intell. Transp.

Syst., no. 99, pp. 1–17, 2018.

[165] G. Soldi and P. Braca, “Online Estimation of Unknown Parameters in Multisensor-

Multitarget Tracking: a Belief Propagation Approach,” in Proc. Int. Conf. Inf. Fusion, 2018,

pp. 2151–2157.

[166] S. U. Stich, “Local SGD converges fast and communicates little,” arXiv preprint

arXiv:1805.09767, 2018.

[167] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,” in Advances in

Neural Information Processing Systems, 2018, pp. 4447–4458.

199

[168] E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman, and A. S. Willsky, “Nonparametric

belief propagation,” Commun. ACM, vol. 53, no. 10, pp. 95–103, 2010.

[169] A. S. Suggala and P. Netrapalli, “Online non-convex learning: Following the perturbed

leader is optimal,” arXiv preprint arXiv:1903.08110, 2019.

[170] H. Sun, S. Lu, and M. Hong, “Improving the sample and communication complexity for

decentralized non-convex optimization: A joint gradient estimation and tracking approach,”

arXiv preprint arXiv:1910.05857, 2019.

[171] W. Sun, D. Dey, and A. Kapoor, “Safety-aware algorithms for adversarial contextual ban-

dit,” in Proceedings of the 34th International Conference on Machine Learning-Volume 70.

JMLR. org, 2017, pp. 3280–3288.

[172] B. Swenson, R. Murray, H. V. Poor, and S. Kar, “Distributed stochastic gradient de-

scent: Nonconvexity, nonsmoothness, and convergence to local minima,” arXiv preprint

arXiv:2003.02818, 2020.

[173] Y. Tang and N. Li, “Distributed zero-order algorithms for nonconvex multi-agent optimiza-

tion,” in 2019 57th Annual Allerton Conference on Communication, Control, and Comput-

ing (Allerton). IEEE, 2019, pp. 781–786.

[174] A. Terenin, D. Simpson, and D. Draper, “Asynchronous Gibbs sampling,”

arXiv:1509.08999v5, 2018.

[175] Q. Tran-Dinh, N. H. Pham, D. T. Phan, and L. M. Nguyen, “Hybrid stochastic gradient de-

scent algorithms for stochastic nonconvex optimization,” arXiv preprint arXiv:1905.05920,

2019.

[176] ——, “A hybrid stochastic optimization framework for composite nonconvex optimization,”

arXiv preprint arXiv:1907.03793, 2019.

200

[177] C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and S.-M. Cheng, “Auto-

zoom: Autoencoder-based zeroth order optimization method for attacking black-box neural

networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,

pp. 742–749.

[178] J. Vermaak, S. J. Godsill, and P. Perez, “Monte Carlo filtering for multi target tracking and

data association,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 1, pp. 309–332, 2005.

[179] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments—part i:

Agreement at a linear rate,” IEEE Transactions on Signal Processing, vol. 69, pp. 1242–

1256, 2021.

[180] B.-N. Vo, B.-T. Vo, and D. Phung, “Labeled random finite sets and the Bayes multi-target

tracking filter,” IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6554–6567, 2014.

[181] B.-N. Vo and W.-K. Ma, “The Gaussian Mixture Probability Hypothesis Density Filter,”

IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4091–4104, 2006.

[182] J. Wang, W. Wang, and N. Srebro, “Memory and communication efficient distributed

stochastic optimization with minibatch prox,” in Conference on Learning Theory. PMLR,

2017, pp. 1882–1919.

[183] ——, “Memory and communication efficient distributed stochastic optimization with

minibatch-prox,” arXiv preprint arXiv:1702.06269, 2017.

[184] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objective inconsistency

problem in heterogeneous federated optimization,” arXiv preprint arXiv:2007.07481, 2020.

[185] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: algorithms

for minimizing compositions of expected-value functions,” Mathematical Programming,

vol. 161, no. 1-2, pp. 419–449, 2017.

201

[186] M. Wang, J. Liu, and E. X. Fang, “Accelerating stochastic composition optimization,” Jour-

nal of Machine Learning Research, 2017.

[187] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh, “SpiderBoost: A class of faster variance-

reduced algorithms for nonconvex optimization,” arXiv preprint arXiv:1810.10690, 2018.

[188] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-

efficient distributed optimization,” in Advances in Neural Information Processing Systems,

2018, pp. 1299–1309.

[189] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “TernGrad: Ternary gradients

to reduce communication in distributed deep learning,” in Advances in neural information

processing systems, 2017, pp. 1509–1519.

[190] J. Williams and R. Lau, “Approximate Evaluation of Marginal Association Probabilities

with Belief Propagation,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 4, pp. 2942–

2959, 2014.

[191] J. L. Williams and R. A. Lau, “Convergence of Loopy Belief Propagation for Data Associ-

ation,” in Proc. IEEE ISSNIP, 2010, pp. 175–180.

[192] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless networks,”

Proc. IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[193] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on

average consensus,” in Proc. Int. Symp. Inf. Process. Sensor Netw., 2005, pp. 63–70.

[194] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu,

“Petuum: A new platform for distributed machine learning on big data,” IEEE Transactions

on Big Data, vol. 1, no. 2, pp. 49–67, June 2015.

[195] E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and principles of distributed machine

learning on big data,” Engineering, vol. 2, no. 2, pp. 179–195, 2016.

202

[196] K. Xu, S. Liu, P. Zhao, P.-Y. Chen, H. Zhang, Q. Fan, D. Erdogmus, Y. Wang, and X. Lin,

“Structured adversarial attack: Towards general implementation and better interpretability,”

in International Conference on Learning Representations, 2019.

[197] L. Yang, L. Deng, M. H. Hajiesmaili, C. Tan, and W. S. Wong, “An optimal algorithm

for online non-convex learning,” Proceedings of the ACM on Measurement and Analysis of

Computing Systems, vol. 2, no. 2, pp. 1–25, 2018.

[198] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free energy approximations and gener-

alized belief propagation algorithms,” IEEE Tran. Inf. Theory, vol. 51, no. 7, pp. 2282–2312,

2005.

[199] X. Yi, X. Li, L. Xie, and K. H. Johansson, “Distributed online convex optimization with

time-varying coupled inequality constraints,” arXiv preprint arXiv:1903.04277, 2019.

[200] H. Yu and R. Jin, “On the computation and communication complexity of parallel SGD with

dynamic batch sizes for stochastic non-convex optimization,” in International Conference

on Machine Learning, 2019, pp. 7174–7183.

[201] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication efficient

momentum SGD for distributed non-convex optimization,” in International Conference on

Machine Learning, 2019, pp. 7184–7193.

[202] H. Yu, M. Neely, and X. Wei, “Online convex optimization with stochastic constraints,” in

Advances in Neural Information Processing Systems, 2017, pp. 1428–1438.

[203] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster convergence and less com-

munication: Demystifying why model averaging works for deep learning,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 5693–5700.

[204] J. Yuan and A. Lamperski, “Online convex optimization for cumulative constraints,” in Ad-

vances in Neural Information Processing Systems, 2018, pp. 6137–6146.

203

[205] J. Zhang and L. Xiao, “Multilevel composite stochastic optimization via nested variance

reduction,” SIAM Journal on Optimization, vol. 31, no. 2, pp. 1131–1157, 2021.

[206] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “Fedpd: A federated learning framework

with optimal rates and adaptivity to non-iid data,” arXiv preprint arXiv:2005.11418, 2020.

[207] Z. Zhang and G. Lan, “Optimal algorithms for convex nested stochastic composite opti-

mization,” arXiv preprint arXiv:2011.10076, 2020.

[208] D. Zhou, P. Xu, and Q. Gu, “Stochastic nested variance reduced gradient descent for non-

convex optimization,” in Adv. Neural Inf. Process. Systems, 2018, pp. 3921–3932.

[209] M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent,”

in Proceedings of the 20th International Conference on Machine Learning (ICML-03),

2003, pp. 928–936.

VITA

NAME OF AUTHOR: Pranay Sharma

PLACE OF BIRTH: Kanpur, Uttar Pradesh, India

DATE OF BIRTH: December 20, 1990

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

Indian Institute of Technology, Kanpur, India

DEGREES AWARDED:

B.Tech-M.Tech (Dual degree), 2013,

Indian Institute of Technology, Kanpur, India

	Some New Results in Distributed Tracking and Optimization
	Recommended Citation

	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Mesh Networks
	Self-localization and Target Tracking using Network of Agents
	Online Convex Optimization over Network of Agents

	Stochastic Nonconvex Optimization over Star-Topology
	Zeroth-Order Stochastic Nonconvex Optimization
	Organization of the Dissertation
	Bibliographic Note

	Cooperative Self-localization and Multi-target Tracking
	Introduction
	Related Work
	Our Contributions

	System Model and notation
	Notation
	Assumptions
	System Model

	The SCS-MTT filter
	The SCS-MTT filter: the BP message passing scheme
	Agent and target inference

	Decentralized Gaussian Mixture SCS-MTT filter
	GM prediction and likelihood messages
	Agent belief via centralized GM product
	Target belief via decentralized GM product

	Decentralized Gaussian SCS-MTT filter
	Simulation Results
	SCS-MTT vs SPAWN
	Single Gaussian vs Gaussian mixture SCS-MTT filters
	Centralized vs decentralized Gaussian mixture

	Summary

	Distributed Online Convex Optimization
	Introduction
	Related Work
	Our Contributions

	Problem Formulation
	Performance Metrics - Dynamic Regret and Fit

	Background and Assumptions
	Network
	Local Objective Functions and Constraints
	Bregman Divergence
	Projection

	Distributed Primal-Dual Mirror Descent based Algorithm
	Dynamic Regret and Fit Bounds
	Some Intermediate Results
	Dynamic Regret and Fit Bounds

	Conclusion

	Distributed Stochastic First-order Optimization: PR-SPIDER
	Introduction
	Problem
	Related Work
	Our Contributions
	Notations and Assumptions

	Parallel Restarted SPIDER - Finite Sum Case
	Proposed Algorithm
	Convergence Result
	Convergence Analysis

	Parallel Restarted SPIDER - Online Case
	Proposed Algorithm
	Convergence Result
	Convergence Analysis

	Simulation Results
	Drawbacks of PR-SPIDER and A Novel Algorithm to Fix Them
	Drawbacks of PR-SPIDER
	STEM Algorithm
	Main results: convergence guarantees for STEM
	Simulation Results for STEM

	Summary

	Stochastic Zeroth-order Optimization: Hybrid Gradient Descent
	Introduction
	Motivating Application: Adversarial Example Generation
	Related Work
	Our Contributions

	Preliminaries
	Hybrid Gradient Estimator
	ZO Hybrid Gradient Descent
	The Algorithm
	Technical challenges of ZO-HGD.
	Convergence analysis.
	Comparison with Other Methods
	Tradeoff between RGE and CGE in ZO-HGD.

	ZO-HGD for Convex Optimization
	Simulation Results
	Summary

	Conclusion
	Summary
	Future Directions
	Federated Learning
	Online Nonconvex Optimization
	Stochastic Compositional Optimization

	Appendix
	Cooperative Self-localization and Multi-Target Tracking
	Distributed Online Convex Optimization
	Proof of Lemma 3.5.1
	Proof of Lemma 3.5.2
	Proof of Lemma 3.5.3

	PR-SPIDER: Convergence of the Finite-sum case
	Proof of Lemma 4.2.2
	Proof of Lemma 4.2.3
	Intermediate results for Lemma 4.2.4
	Choice of gamma

	Zeroth-order Hybrid Gradient Descent
	Mathematical Notations
	Proof of Proposition 5.3.1
	Proof of Proposition 5.3.2
	Choice of a
	Special Cases of Theorem 5.4.3
	Convex Case
	Proof of Theorem 5.5.1 (Convex Case)
	Special Cases of Theorem 5.5.1 (Convex Case)
	Proof of Theorem 5.5.1 (Strongly Convex Case)

	References

