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Abstract

Let V denote a vector space over an arbitrary field with an inner product. For any collection

S of vectors from V the collection of all vectors orthogonal to each vector in S is a sub-

space, denoted as S⊥v and called the orthogonal complement of S. One of the fundamental

theorems of vector space theory states that, (S⊥v)⊥v is the subspace spanned by S. Thus

the “spanning” operator on the subsets of a vector space is the square of the “orthogonal

complement” operator.

In matroid theory, the orthogonal complement of a matroid M is also well-defined and

similarly results in another matroid. Although this new matroid is more commonly referred

to as the ‘dual matroid’, denoted asM∗, and typically formed using a very different approach.

There is an interesting relation between the circuits of a matroid M and the cocircuits of

M (the circuits of its dual matroid M∗) which aligns much more closely to the orthogonal

complement of a vector space.

We expand on this relation to define a powerset operator: ( )∗. Given S ⊆ P(E), we

denote S∗ to be the minimal sets of {X ⊆ E : X is nonempty, |X ∩A| ≠ 1 for each A ∈ S}.

We call this powerset operator the circuit duality operator. Unlike the vector space

orthogonal complement operator, this circuit duality operator may not behave as nicely

when applied to collections that do not correspond to a matroid.

This thesis is an investigation into the development of tools and additional operators to

help understand the collections of sets that result in a matroid under one or more applications

of the circuit duality operator.
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Chapter 1

Introduction

Matroids are the main objects of study in matroid theory. A matroid M over a finite

ground set E can be represented by several different collections of subsets of E. There are

several mappings that are fundamental in moving between the various collections describing

a matroid. More generally, I’ll refer to mappings between collections of subsets of E as

‘powerset operators’.

One operator of particular interest is the mapping between the ‘circuit’ and ‘cocircuit’

collections of a matroid, which we call the ‘circuit duality’ operator. This thesis is an

investigation into the consequences of applying these matroid operators to more arbitrary

collections of sets, not just collections corresponding to matroids. A more focused goal is

identifying the main features of collections of sets for which the application, or repeated

applications, of the circuit duality operator results in a matroid ‘spanned’ by the collection;

something akin to how two applications of the vector space orthogonal operator to any set

of vectors results in a subspace spanned by the set.

A few of our main results are the following: We show that iterative applications of circuit

duality becomes two periodic after finitely many steps (theorem 1 in section 3.2). We also give

some interactions of our matroid powerset operators (proposition 3.2 in section 3.3.3). We

give conditions for when applications of some of our matroid operators result in a collection
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that represents a matroid (theorems 2, 3 and 4 in sections 4.1.1, 4.1.2 and 4.2 respectively).

We also give a family of collections that are stable under two applications of the circuit

duality operator, but do not correspond to a matroid (theorem 6 in section 5.2).

Chapter 1 provides some background and preliminaries of matroid theory as well as

introduces the many powerset operators used throughout this thesis. We also describe the

matroid “spanning” problem and initial observations of our ‘circuit duality’ operator.

Chapter 2 includes a more in depth look into the inner workings of the circuit duality

operator and list some basic properties of it.

Chapter 3 focuses on extending the other matroid operators into powerset operators and

how they interact with one another. In section 3.2 we show that the sequence of iterative

applications to an arbitrary collection of sets becomes two periodic after a finite number of

applications.

Chapter 4 gives conditions for some of our matroid operators; that is, conditions for when

a collection of subsets represents a matroid after the application of a powerset operator. We

also give an evolving commuting diagram on various classes of collections with matroid

operators between them.

Chapter 5 gives examples of collections that are non-matroidial even after applications

of the circuit duality operator.

Chapter 6 introduces the notion of a ‘spanning subcollection’ and provides a characteriza-

tion for the spanning subcollections of two particular uniform collections. We also investigate

the effects of the circuit duality operator when applied to the collection of lines of a finite

projective plane.

Appendix A lists the proofs of the operator properties from section 1.1.3 as well as some

miscellaneous operator interactions and properties.
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1.1 Preliminaries

1.1.1 The Beginnings of Matroid Theory

Matroids were originally introduced independently in 1935 by Hassler Whitney and Takeo

Nakasawa, though Nakasawa’s work was largely unknown for several decades. Matroid theory

is an abstraction of linear algebra consisting of combinatorial objects, called matroids, whose

structures generalize the notion of linear independence.

When Whitney first defined a matroid, he used the column vectors of a matrix over

some field as his catalyst. Letting E be a finite set, he gave an axiomatic definition for

when a collection of subsets of E were to be considered ‘independent’. Any set not in this

collection was considered ‘dependent’. With the notion of independence defined, he then

defined notions of rank and bases akin to the ones used in linear algebra. Whitney then gave

an equivalent axiomatic system for the collections of bases of a matroid:

Definition 1. A matroid M = (E,B) consists of a finite set E, called the ground set,

and a family B = B(M) of subsets of E such that

(B1) B ̸= ∅

(B2) If B1, B2 ∈ B, then |B1| = |B2|.

(B3) If B1, B2 ∈ B and x ∈ B1 − B2, then there is an element y ∈ B2 − B1 such that

B1 − {x} ∪ {y} ∈ B.

Members of B(M) are called the bases of the matroid M . The family of independent sets

of the matroid M , denoted by I(M), consists of all the subsets of the bases and the bases

are the maximal independent sets under set-inclusion. Whitney noticed that the collection

of complements of the bases of a matroid, B∗ = {E − B : B ∈ B}, also satisfied the basis

axioms. This new matroid was called the dual matroid and was denoted by M∗.

Later on, in 1942, William Tutte independently developed matroid theory from a very

different perspective. Tutte began by working with subspaces of the vector space FE, the
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set of functions from the finite set E into the field F. The support of a function f in this

vector space is supp(f) = {x ∈ E : f(x) ̸= 0}. Given a subspace U ⊆ FE, Tutte considered

the family, S = σ(U), of minimal nonempty sets in the collection of all supports of functions

in U . He called these sets ‘cycles’ and thought of them as the minimally dependent sets of

a vector space.

Tutte then gave a set of axioms for these cycles which generated a vector space-like

structure, which he called a ‘net’. From these axioms, he then worked out the notion

of ‘independence’ - a subset of E was ‘independent’ if it contained no cycle. Tutte then

discovered that the collection of ‘independent’ sets of a net satisfied Whitney’s definition

for the independent sets of a matroid. Hence, Whitney’s ‘matroids’ and Tutte’s ‘nets’ were

really one and the same. A cycle in a graph consists of the vertices and edges; the set of

edges of a cycle is then an elementary circuit in the matroid of that graph. The circuit

axioms of a matroid are as follows:

Definition 2. A matroid M = (E, C) consists of a finite set E, called the ground set,

and a family C = C(M) of subsets of E such that

(C1) ∅ ̸∈ C

(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C with C1 ̸= C2 and x ∈ C1∩C2, then C3 ⊆ C1∪C2−{x} for some C3 ∈ C.

Members of C(M) are called the circuits of the matroid M . The family of dependent sets

of the matroid M are the supersets of the circuits and the circuits are the minimal dependent

sets under set-inclusion.

Tutte’s entry into duality came about in a very different manner than Whitney’s. The

vector space that Tutte had been working in has the usual inner product: for f, g ∈ FE, f ·g =∑
x∈E f(x)g(x). Thus, a subspace U has an orthogonal subspace U⊥v = {g ∈ FE : f · g =

0 for all f ∈ U}. Note that
∑

x∈E f(x)g(x) = 0 if and only if
∑

x∈supp(f)∩supp(g) f(x)g(x) = 0;
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which is not possible when supp(f) ∩ supp(g) is just a single element. Tutte noticed that

the cycles of U⊥v could be constructed from the cycles of U . And so he was able to prove

that σ(U⊥v) were the minimal nonempty sets of {X ⊆ E : |X ∩ A| ≠ 1 for each A ∈ S}.

The surprising fact is that Whitney’s dual matroid and Tutte’s orthogonal matroid are

one and the same!

1.1.2 Definitions and Notation

Let E be a finite set and let P(E), called the powerset of E, denote the collection of all

subsets of E. We’ll refer to the elements of P(E) as sets and subsets of P(E) as collections.

We also consider P(P(E)), the class of all collections of subsets of E which we denote with

P2(E) or simply P2 when E is understood. We’ll refer to the elements of P2 as collections

and subsets of P2 as families or classes.

We’ll use Pk(E) to denote the collection of all subsets of E of size k, P≤k(E) to denote

the collection of all subsets of E of size at most k, and P≥k(E) to denote the collection of

all subsets of E of size at least k.

A clutter (also known as a Sperner family) is a collection of sets in which none of the

sets contain any other. We denote the class of all clutters on E as L2(E) or simply L2. The

class of all circuit collections of a matroid with ground set E will be denoted by C2(E) or

simply C2 and the class of all basis collections of a matroid with ground set E will be denoted

by B2(E) or simply B2. Other particular classes of interest will be noted as they come up.

A function □ : P2 → P2 is called a powerset operator. We denote its application

by exponentiation: □(S) = S□. A collection S is called a stable collection of □ when

S = S□ and is called a dual stable collection of □ when S = (S□)□. The family of stable

collections for □ will be denoted by S(□) and the family of dual stable collections for □ will

be denoted by D(□).

If M is a matroid, then we’ll use I(M) to denote its collection of independent sets, D(M)

to denote its collection of dependent sets, B(M) to denote its collection of bases, and C(M)
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to denote its collection of circuits.

1.1.3 Cast of Characters

We have two tools that have proven to be quite valuable throughout our findings. Although

they are not powerset operators themselves, we present them here nonetheless: Let S and

T be collections of subsets of a finite set E.

Support: supp(S) := {x ∈ E : x ∈ A for some A ∈ S}

Inner Pairwise Union: S
×
∪ T := {A ∪B : A ∈ S and B ∈ T } ∪ S ∪ T

We have several powerset operators that we’ll be studying throughout. We list them all

now so that they may be referenced later. First up are the simple operators: Let S be a

collection of subsets of a finite set E.

Complementary: S− := {E − A : A ∈ S}

Complementation: Sc := {X ⊆ E : X ̸∈ S}

Minimality: ⌊S⌋ := {X ∈ S : X ̸⊃ A for each A ∈ S}

Maximality: ⌈S⌉ := {X ∈ S : X ̸⊂ A for each A ∈ S}

Superset Closure: S⊇ := {X ⊆ E : X ⊇ A for some A ∈ S}

Subset Closure: S⊆ := {X ⊆ E : X ⊆ A for some A ∈ S}

Union Closure: Su := {X ⊆ E : X is a union of one or more sets in S}

Intersection Closure: S i := {X ⊆ E : X is an intersection of one or more sets in S}

Meet: Sm := {X ⊆ E : |X ∩ A| ≠ 0 for each A ∈ S}

Orthogonality: S⊥ := {X ⊆ E : X is nonempty, |X ∩ A| ≠ 1 for each A ∈ S}

cycles-to-independent: SI := {X ⊆ E : X ̸⊇ A for each A ∈ S}

6



bases-to-dependent: SD := {X ⊆ E : X ̸⊆ A for each A ∈ S}

The next set of powerset operators are compositions of simple operators. We refer to

them as complex operators:
Blocking: Sb := ⌊Sm⌋

Circuit Duality: S∗ := ⌊S⊥⌋

cycles-to-bases: SB := ⌈SI⌉

bases-to-cycles: SC := ⌊SD⌋

There are two particular clutters that we call trivial clutters: the empty clutter, denoted

with ∅, and the clutter consisting of only the empty set, denoted with {∅}. These clutters can

be a bit finicky when it comes to our operators. For the most part, any clutter we consider

throughout this paper will be a nontrivial clutter unless noted otherwise. That being said,

we should observe how our operators behave on these trivial clutters for completeness.

First up is the empty collection ∅:

• supp(∅) = ∅− = ⌊∅⌋ = ⌈∅⌉ = ∅⊇ = ∅⊆ = ∅u = ∅i = ∅

• ∅c = ∅m = ∅I = ∅D = P(E)

• ∅⊥ = P(E)− {∅}

• ∅b = ∅C = {∅}

• ∅∗ = P1(E)

• ∅B = {E}

Now we consider {∅}, the clutter consisting of just the empty set:

• supp({∅}) = {∅}m = {∅}b = {∅}I = {∅}B = ∅

• ⌊{∅}⌋ = ⌈{∅}⌉ = {∅}⊆ = {∅}u = {∅}i = {∅}

• {∅}c = {∅}⊥ = {∅}D = P(E)− {∅}
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• {∅}∗ = {∅}C = P1(E)

• {∅}− = {E}

• {∅}⊇ = P(E)

We now proceed with giving various properties of each of our powerset operators here.

As to not smother the core findings of this thesis with elementary proofs of these basic

properties, the proofs for each of the operators’ properties will be listed in the appendix A.1.

Lemma 1.1 (Support Operator Properties). Let S, T ⊆ P(E).

(a) A ⊆ supp(S) for all A ∈ S

(b) supp(S) =
⋃
A∈S

A

(c) S ⊆ T =⇒ supp(S) ⊆ supp(T )

(d) supp(S ∪ T ) = supp(S) ∪ supp(T )

(e) supp(S ∩T ) ⊆ supp(S)∩ supp(T ) **Reverse containment does not necessarily hold.**

Lemma 1.2 (Complementary Operator Properties). Let S, T ⊆ P(E).

(a) S−− = S.

(b) S ⊆ T =⇒ S− ⊆ T −

(c) (S ∪ T )− = S− ∪ T −

(d) (S ∩ T )− = S− ∩ T −

(e) |S| = |S−|

Lemma 1.3 (Complementation Operator Properties). Let S, T ⊆ P(E).

(a) S and Sc partition P(E).
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(b) Scc = S

(c) S ⊆ T =⇒ T c ⊆ Sc

(d) (S ∪ T )c = Sc ∩ T c

(e) (S ∩ T )c = Sc ∪ T c

Lemma 1.4 (Minimality Operator Properties). Let S, T ⊆ P(E).

(a) ⌊S⌋ ⊆ S

(b) ⌊⌊S⌋⌋ = ⌊S⌋

(c) ⌊S ∪ T ⌋ ⊆ ⌊S⌋ ∪ ⌊T ⌋

(d) ∅ ∈ ⌊S⌋ ⇐⇒ ⌊S⌋ = {∅} ⇐⇒ ∅ ∈ S

(e) If ∅ ̸∈ S, then for each A ∈ S, there exists a nonempty A′ ∈ ⌊S⌋ such that A′ ⊆ A.

(f) Minimality is not inclusion preserving nor inclusion reversing in general.

(g) ⌊S⌋ = ∅ ⇐⇒ S = ∅

(h) ⌊P≥k(E)⌋ = Pk(E)

Lemma 1.5 (Maximality Operator Properties). Let S, T ⊆ P(E).

(a) ⌈S⌉ ⊆ S

(b) ⌈⌈S⌉⌉ = ⌈S⌉

(c) ⌈S ∪ T ⌉ ⊆ ⌈S⌉ ∪ ⌈T ⌉

(d) ∅ ∈ ⌈S⌉ ⇐⇒ ⌈S⌉ = {∅} ⇐⇒ S = {∅}

(e) If ∅ ̸∈ S, then for each A ∈ S, there exists a nonempty Â ∈ ⌈S⌉ such that A ⊆ Â.

(f) Maximality is not inclusion preserving nor inclusion reversing in general.
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(g) ⌈S⌉ = ∅ ⇐⇒ S = ∅

(h) ⌈P≤k(E)⌉ = Pk(E)

Lemma 1.6 (Superset Closure Operator Properties). Let S, T ⊆ P(E). Let X, Y,Ak ⊆ E

for 1 ≤ k ≤ n.

(a) S ⊆ S⊇

(b) S ⊆ T =⇒ S⊇ ⊆ T ⊇

(c) ∅ ∈ S⊇ ⇐⇒ ∅ ∈ S ⇐⇒ S⊇ = P(E)

(d) ∅ ≠ S ⇐⇒ E ∈ S⊇

(e) (S⊇)⊇ = S⊇

(f) (S ∪ T )⊇ = S⊇ ∪ T ⊇

(g) (S ∩ T )⊇ ⊆ S⊇ ∩ T ⊇ **Reverse containment does not necessarily hold.**

(h) Y ̸⊆ X =⇒ P(X) ∩ {Y }⊇ = ∅

(i)
n⋂

k=1

{Ak}⊇ =

{
n⋃

k=1

Ak

}⊇

Lemma 1.7 (Subset Closure Operator Properties). Let S, T ⊆ P(E). Let X, Y,Ak ⊆ E for

1 ≤ k ≤ n.

(a) S ⊆ S⊆

(b) S ⊆ T =⇒ S⊆ ⊆ T ⊆

(c) E ∈ S⊆ ⇐⇒ E ∈ S ⇐⇒ S⊆ = P(E)

(d) ∅ ≠ S ⇐⇒ ∅ ∈ S⊆

(e) (S⊆)⊆ = S⊆
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(f) (S ∪ T )⊆ = S⊆ ∪ T ⊆

(g) (S ∩ T )⊆ ⊆ S⊆ ∩ T ⊆ **Reverse containment does not necessarily hold.**

(h) {X}⊆ = P(X)

(i) S⊆ =
⋃n

k=1P(Sk), where Sk ∈ S

(j)
n⋂

k=1

{Ak}⊆ ⊆

{
n⋃

k=1

Ak

}⊆

**Reverse containment does not necessarily hold.**

Lemma 1.8 (Union Closure Operator Properties). Let S, T ⊆ P(E).

(a) S ⊆ Su

(b) S ⊆ T =⇒ Su ⊆ T u

(c) (Su)u = Su

(d) (S ∪ T )u = (Su ∪ T u)u

(e) (S ∩ T )u ⊆ (Su ∩ T u) **Reverse containment does not necessarily hold.**

(f) (S ∪ {∅})u = Su ∪ {∅}

(g) supp(S) ∈ Su

Lemma 1.9 (Intersection Closure Operator Properties). Let S, T ⊆ P(E).

(a) S ⊆ S i

(b) S ⊆ T =⇒ S i ⊆ T i

(c) (S i)i = S i

(d) (S ∪ T )i = (S i ∪ T i)i

(e) (S ∩ T )i ⊆ (S i ∩ T i) **Reverse containment does not necessarily hold.**

Lemma 1.10 (Meet Operator Properties). Let S, T ⊆ P(E).
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(a) ∅ ∈ S ⇐⇒ Sm = ∅

(b) S ⊆ T =⇒ T m ⊆ Sm

(c) (S ∪ T )m = Sm ∩ T m

(d) Sm = T m =⇒ (S ∪ T )m = Sm **Reverse direction does not necessarily hold.**

Lemma 1.11 (Orthogonality Operator Properties). Let S, T ⊆ P(E).

(a) ∅ ̸∈ S⊥

(b) S ⊆ {∅} ⇐⇒ S⊥ = P(E)− {∅}

(c) S ⊆ T =⇒ T ⊥ ⊆ S⊥

(d) (S − {∅})⊥ = S⊥ = (S ∪ {∅})⊥

(e) (S ∪ T )⊥ = S⊥ ∩ T ⊥

Lemma 1.12 (cycles-to-independent Operator Properties). Let S ⊆ P(E).

(a) SI = S⊇c

(b) S and SI are disjoint.

(c) SI = ∅ ⇐⇒ ∅ ∈ S

(d) ∅ ∈ SI ⇐⇒ ∅ ̸∈ S

Lemma 1.13 (bases-to-dependent Operator Properties). Let S ⊆ P(E).

(a) SD = S⊆c

(b) S and SD are disjoint.

(c) SD = ∅ ⇐⇒ E ∈ S

(d) E ∈ SD ⇐⇒ E ̸∈ S
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Lemma 1.14 (Inner Pairwise Union Operator Properties). Let S, T ,X ,Y ⊆ P(E).

(a) S, T ⊆ S
×
∪ T

(b) S ⊆ X and T ⊆ Y =⇒ S
×
∪ T ⊆ X

×
∪ Y

(c) (S
×
∪ T )

×
∪ U = S

×
∪ (T

×
∪ U)

1.2 The “Spanning” Problem for Matroids

Let V denote a vector space over an arbitrary field with an inner product. Two vectors u

and v are said to be orthogonal when u · v = 0. If U is a subspace of V , then U⊥v , the

collection of all vectors orthogonal to each vector in U , is also a subspace of V and is called

the orthogonal complement of U . One of the fundamental theorems of vector space theory

states that, for any subspace U ⊆ V , we have (U⊥v)⊥v = U . In proving this theorem, a

slightly stronger result is proved, namely: for any collection S of vectors from V , (S⊥v)⊥v is

the subspace spanned by S. Thus the “spanning” operator on the subsets of a vector space

is the square of the “orthogonal complement” operator.

In matroid theory, the orthogonal complement of a matroid M is also well-defined and

similarly results in another matroid. Although this new matroid is more commonly referred

to as the ‘dual matroid’, denoted as M∗, and typically formed using a very different ap-

proach. However, there is an interesting relation between the circuits of a matroid M and

the cocircuits of M (the circuits of its dual matroid M∗) which aligns much more closely to

the orthogonal complement of a vector space. In fact, the cocircuits of a matroid can be

obtained from the collection of circuits of the matroid using this exact relation:

Proposition 1.1. [Oxl11, Proposition 2.1.23]. Let M be a matroid having a ground set E.

Then D is a circuit of M if and only if D is a minimal non-empty subset of E such that

|D ∩ C∗| ≠ 1 for every cocircuit C∗ of M .
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We expand the domain of this isomorphism between the circuit and cocircuits of a matroid

to include all collections of subsets of E and define a powerset operator: ( )∗. Given S ⊆

P(E), we denote S∗ to be the minimal sets of S⊥ = {X ⊆ E : X is nonempty, |X ∩ A| ̸=

1 for each A ∈ S}. We call this powerset operator the circuit duality operator. Unlike

the vector space orthogonal complement operator, this circuit duality operator may not

behave as nicely when applied to collections that do not correspond to a matroid.

This thesis is an investigation into the development of tools and additional operators to

help understand the collections of sets that result in a matroid under one or more applications

of the circuit duality operator.

1.2.1 An Overlap between Vector Spaces and Matroids

Let E be a finite set and let P(E) denote the collection of all subsets of E. There is a natural

vector space over Z2 on P(E). Namely (P(E),△), where △ is defined to be the symmetric

difference of two sets: A△B = (A∪B)− (A∩B). Given any subspace V of (P(E),△), the

collection of minimal nonempty sets in V form the circuits of a matroid. Matroids formed

in this manner are called binary matroids.

There is also a natural inner product associated to the vector space (P(E),△) which

is given by A · B = |A ∩ B| (mod 2). Thus, two sets are orthogonal if their intersection

has even cardinality. And so orthogonality in this vector space directly defines a powerset

operator on P(E): Given S ⊆ P(E), we have

S⊥v = {X ⊆ E : |X ∩ A| ≡ 0 (mod 2) for each A ∈ S}

Thus, for any S ⊆ P(E), the orthogonal complement S⊥v is a subspace of (P(E),△). And

so its collection of minimal nonempty sets are the circuits of some binary matroid. We can
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then define a vector space ‘duality’ operator that is parallel to our circuit duality operator.

S∗v = ⌊S⊥v − {∅}⌋

Just how closely these two operators are related becomes apparent when we define them

directly:

S∗ is the collection of minimal non-empty sets that intersect no set of S in

exactly one element.

S∗v is the collection of minimal non-empty sets that intersect no set of S in

an odd number of elements.

For any collection S ⊆ P(E), it follows that (S∗v)∗v is the smallest binary matroid containing

the sets in S as cycles (or dependent sets if they are not minimal in S). This leads us to ask:

Does our circuit duality operator follow similarly? Is (S∗)∗ a matroid, for any S ⊆ P(E)?

If not, what kind of structure is it? Specifically, given C, the circuits of a matroid, which

subcollections S ⊆ C span C [(S∗)∗ = C]?

1.3 A Rough First Look

Let’s dive head first into the circuit duality operator and see it in action.

Definition 3. Given a collection S, we consider the collection of minimal nonempty sets

(under set containment) that do not intersect any of the sets in the collection S in exactly

one element, denoted as S∗. We call this operator the circuit duality operator.

1.3.1 Matroid Duality is Preserved

As per our discussion earlier in section 1.2, we have that the circuit duality operator pre-

serves matroid duality. This was given more precisely as proposition 1.1. In particular, if

C(M) is the collection of circuits of a matroid M , then applying the circuit duality operator
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yields C∗(M), the collection of cocircuits of M . It is well known in matroid theory [GM12,

Proposition 3.18] that C∗(M) = C(M∗) where M∗ is the dual matroid to M .

Moreover, applying the circuit duality operator twice results in the original collection of

circuits: C∗∗(M) = C(M∗∗) = C(M) since M = M∗∗ for matroids. Hence the name: circuit

duality operator.

Definition 4. If a collection X represents the circuit collection of a matroid, then we’ll say

that X is matroidial.

We’ll talk more about matroidial collections throughout and give some conditions for

when a collection is matroidial in chapter 4. Alternative methods for matroidial completions

of clutters can be found in [Mar14].

1.3.2 Duality is Not Immediate

Example 1. Let S = {{abd}, {ace}, {bce}, {cd}, {de}} be a “random” collection and let’s

repeatedly apply the circuit duality operator to it (see table 1.1). Here we are working over

a five element ground set: E = {a, b, c, d, e}. (For simplicity we write ‘abd’ to represent the

set {a, b, d}.)

Sets

S abd ace bce cd de

S∗ acde bcde

S∗∗ abc abd abe cd ce de

S∗∗∗ ab acde bcde

S∗∗∗∗ abc abd abe cd ce de

Table 1.1: Circuit duality computations for example 1.

In this example, we note that the second and fourth iterations of circuit duality yield the

same collection. If we computed the fifth iteration, we would see that it would be equal to
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the third iteration. Moreover, any further iterations would simply alternate between these

two collections: S∗∗ and S∗∗∗. It appears that the duality of our operator began to ‘stabilize’.

Definition 5. We say a collection is a frame when X = X ∗∗.

So in this example, S∗∗ is a frame since S∗∗ = S∗∗∗∗. Notably, if X is a frame, then

X ∗ is also a frame. We denote the class of all frames as R2. We’ll talk more about frames

throughout this thesis. What we call ‘frames’ are referred to as ‘semimatroids’ in [Vad86].

We also note that matroidial collections are inherently frames by design:

Corollary 1 (Corollary to proposition 1.1). If S is matroidial, then S is a frame.

This corollary gives us a containment of classes - the class of all circuit collections of a

matroid is contained in the class of all frames; that is C2 ⊆ R2. In particular, S∗∗ from the

example above is matroidial since it satisfies the circuit axioms for a matroid (definition 2).

In fact it is the cycle matroid of the graph on three vertices with two single edges a and b

and a triple edge c, d, and e.

Figure 1.1: Graph corresponding to S∗∗ in table 1.1.

Example 2. Once again, let S, given below, be a “random” collection and let’s repeatedly

apply the circuit duality operator to it. We are again working over a five element ground set:

E = {a, b, c, d, e}.
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Sets

S abc abd acd ade bce

S∗ abcd abce abde acde bcde

S∗∗ abc abd abe acd ace ade bcd bce bde cde

S∗∗∗ abcd abce abde acde bcde

Table 1.2: Circuit duality computations for example 2.

In this example, we see that a collection gets repeated after three iterations - thus S∗ is

a frame. This collection is also matroidial - it corresponds to the uniform matroid U3,5

where the collection of circuits are all four element subsets of a five element ground set.

We remark that in the first example, our original collection S is not contained in the

matroidial collection S∗∗. But in the second example, we do have this containment.

Definition 6. A subcollection R ⊆ S is called a spanning subcollection (of S) when

R∗ = S∗.

Depending on the classification of S we can garner more information and ideal conditions

for when circuit duality acts as a true matroid spanning operator: If S is a frame, then

R ⊆ R∗∗ and R∗∗ is a frame. If S is matroidial, then R ⊆ R∗∗ and R∗∗ is matroidial.

Thus, we can see that the circuit duality operator can in fact generate matroidial collec-

tions. It can also maintain the containment of the original collection within the generated

matroidial collection. It would seem that the circuit duality operator has potential to be a

spanning operator for matroids, but extra conditions will certainly be required to do so.

1.3.3 Naturally Arising Questions

Following our observations and discussions of the two examples above, a few very natural

questions come to mind:
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Question 1. If a collection is a frame, does it always correspond to the circuit collection of

some matroid?

If so, then we could potentially generate matroids from arbitrary collections using this

circuit duality operator. However, we saw in the example above that it took a few iterations

before we arrived at a pair of ‘dual’ collections. This begs the next natural question:

Question 2a. Does the repeated application of the circuit duality operator always ’stabilize’

(become 2-periodic)? That is, do we always converge to an alternating sequence of a pair of

frames?

Question 2b. If so, is there an upper bound to the number of iterations needed before

stability/duality (convergence) occurs?

Additionally, we note that in the first example S only shares a few of the same sets as

S∗∗. Ideally we want S to be fully contained in S∗∗ (like in the second example) and for S∗∗

to be matroidial. So we ask:

Question 3a. Under what conditions do we ensure that a collection is contained in its second

dual?

Question 3b. If given any collection, what is the best relation between it and its second

dual?
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Chapter 2

The Circuit Duality Operator

To better understand what the circuit duality operator is doing and discover its properties,

we split it into the composition of the following two operators: the orthogonality operator

and the minimality operator.

Orthogonality: S⊥ := {X ⊆ E : X is nonempty, |X ∩ A| ≠ 1 for each A ∈ S}

Minimality: ⌊S⌋ := {X ∈ S : X ̸⊃ A for each A ∈ S}

Circuit Duality: S∗ = ⌊S⊥⌋

2.1 Core Operators: Orthogonality and Minimality

In section 1.1.3 we gave basic properties of all of our powerset operators. For now we’ll focus

on the minimality operator (lemma 1.4) and the orthogonality operator (lemma 1.11). These

both have interactions with the support operator (lemma 1.1) as well as the inner pairwise

union operator (lemma 1.14). In regards to the support operator, we say a collection is fully

supported or has full support when supp(S) = E.
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2.1.1 Minimality, Support, and Inner Pairwise Unions

We’ll first look at some collaboration that the minimality operator has with the supports

and inner pairwise unions of collections:

Lemma 2.1. Let S ⊆ P(E).

(a) ∅ ̸∈ S ∪ T and supp(⌊S⌋) ∩ supp(⌊T ⌋) = ∅ =⇒ ⌊S ∪ T ⌋ = ⌊S⌋ ∪ ⌊T ⌋

(b) supp(S
×
∪ T ) = supp(S ∪ T )

(c) ⌊S
×
∪ T ⌋ = ⌊S ∪ T ⌋

Proof.

(a) Minimality properties always gives us one containment: ⌊S ∪ T ⌋ ⊆ ⌊S⌋ ∪ ⌊T ⌋.

To show the reverse containment let X ∈ ⌊S⌋ ∪ ⌊T ⌋. Without loss of generality let

X ∈ ⌊S⌋. Then X ∈ S and X ̸⊃ A for all A ∈ S.

Suppose (by contradiction) that there exists B ∈ T such that X ⊃ B. Since ∅ ̸∈ S ∪T

then ∅ ̸∈ T . Thus, there exists a nonempty B′ ∈ ⌊T ⌋ such that X ⊃ B ⊇ B′. Note

that B′ ⊆ supp(⌊T ⌋) and X ⊆ supp(⌊S⌋). However, the two supports are disjoint and

so we have B′ ∩X = ∅. In particular, X ̸⊃ B′; a contradiction! Therefore, X ̸⊃ B for

all nonempty B ∈ T .

Thus, X ∈ S ∪ T and X ̸⊃ C for all C ∈ (S ∪ T ) which implies that X ∈ ⌊S ∪ T ⌋.

Hence, ⌊S⌋ ∪ ⌊T ⌋ ⊆ ⌊S ∪ T ⌋. Therefore, ⌊S ∪ T ⌋ = ⌊S⌋ ∪ ⌊T ⌋ as desired.

(b) (→) Since (S ∪ T ) ⊆ (S
×
∪ T ) and the support operator is inclusion preserving,

then we have supp(S ∪ T ) ⊆ supp(S
×
∪ T ).

(←) Let x ∈ supp(S
×
∪ T ), then x ∈ D for some D ∈ S

×
∪ T . If D ∈ S ∪ T

then x ∈ supp(S ∪ T ) and we are done. If D = A ∪ B, then x ∈ A or x ∈ B.

And so x ∈ supp(S) or x ∈ supp(T ) which are both subsets of supp(S ∪ T ). Hence,

x ∈ supp(S ∪ T ) and so supp(S
×
∪ T ) ⊆ supp(S ∪ T ).

21



(c) (→) Let X ∈ ⌊S
×
∪ T ⌋, then X ∈ S

×
∪ T and X ̸⊃ D for all D ∈ S

×
∪ T . Since

S ∪T ⊆ S
×
∪T , then X ̸⊃ C for all C ∈ S ∪T . In particular, X cannot be the union of

two proper subsets, one from S and one from T . Thus, we must have that X ∈ S ∪ T

and therefore X ∈ ⌊S ∪ T ⌋.

(←) Let X ∈ ⌊S ∪ T ⌋. It follows that X ⊆ S ∪ T ⊆ S
×
∪ T and X ̸⊃ C for all

C ∈ S ∪ T . Take any D ∈ (S
×
∪ T ) − (S ∪ T ), then D = A ∪ B for some A ∈ S and

B ∈ T . Neither A nor B are proper subsets of X and so their union, D, cannot be a

proper subset of X. Hence, X ̸⊃ D for all D ∈ S
×
∪ T . Therefore, X ∈ ⌊S

×
∪ T ⌋.

2.1.2 Orthogonality Breakout View

The orthogonality operator is a bit more involved than minimality and has slightly more

complex properties (lemma 1.11) like inclusion reversing, a De Morgan-like law on unions,

and disregards the empty set as a member of the collection.

If we unwrap the set notation for S⊥ a little bit more, we see that it is really the union

of three disjoint groups: sets that miss every set of S, sets that meet some set(s) of S in

two or more positions and miss the others, and sets that meet every set of S in two or more

positions. More precisely, these groups are:

G1 = {X ∈ S⊥ : |X ∩ A| = 0 for each A ∈ S}

G2 = {X ∈ S⊥ : |X ∩ A| = 0 and |X ∩B| ≥ 2 for some A,B ∈ S}

G3 = {X ∈ S⊥ : |X ∩ A| ≥ 2 for each A ∈ S}

This more separated view allows us to make some observations about when any of these

groups might be empty. Thus, making future calculations slightly easier.

Lemma 2.2. Observe the following scenarios:
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(a) G1 = ∅ ⇐⇒ S is fully supported.

(b) G3 = ∅ ⇐⇒ S contains a singleton or the empty set.

(c) S⊥ contains a singleton ⇐⇒ S is not fully supported.

(d) supp(S) ∈ S⊥ ⇐⇒ S is singleton free.

(e) {x} ∈ S =⇒ x ̸∈ supp(S⊥)

Proof.

(a) (←) Let S be a fully supported collection and suppose (by contradiction) that

G1 ̸= ∅. Then there exists X ∈ P(E) − {∅} such that |X ∩ A| = 0 for all A ∈ S.

However, this implies that X ∩ supp(S) = X ∩ E = ∅. Since X ⊆ E (by definition),

then it follows that X = ∅, a contradiction! Hence, S being fully supported implies

G1 = ∅.

(→) Let G1 = ∅ and suppose (by contradiction) that S is not fully supported. In

particular, E− supp(S) ̸= ∅. Now let X = E− supp(S) and note that X is nonempty.

It follows that |X∩A| = 0 for all A ∈ S and so X ∈ G1. Thus, G1 ̸= ∅, a contradiction!

Hence, G1 = ∅ implies S being fully supported.

(b) (←) Let A ∈ S and suppose that A is a singleton or the empty set. Note that for

all X ∈ P(E)− {∅} we have |X ∩ A| ≤ |A| ≤ 1. Thus, in order for X ∈ S⊥, we must

have |X ∩ A| = 0. And so X ̸∈ G3 which further implies that G3 = ∅.

(→) Let G3 = ∅ and suppose (by contradiction) that S contains no singletons nor

the empty set. In particular, |A| ≥ 2 for all A ∈ S. However, note that |E ∩ A| =

|A| ≥ 2 for all A ∈ S. Thus, E ∈ G3 which implies G3 ̸= ∅, a contradiction! Hence,

G3 = ∅ implies S contains a singleton or the empty set. Thus, the if and only if holds.

(c) (←) If S is not fully supported, then E − supp(S) ̸= ∅. Let x ∈ E − supp(S) and

note that x ̸∈ A for all A ∈ S. Hence, |A∩{x}| = 0 ̸= 1 for all A ∈ S. Thus, {x} ∈ S⊥
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and so S⊥ contains a singleton.

(→) If S⊥ contains a singleton, call it {x}, then for each A ∈ S we have that

|A∩ {x}| ≠ 1. But this implies that |A∩ {x}| = 0 for each A ∈ S and so x ̸∈ A for all

A ∈ S. Therefore, x ̸∈ supp(S). Hence, supp(S) ̸= E and so S is not fully supported.

(d) First observe that supp(S) ∈ S⊥ if and only if | supp(S) ∩ A| ≠ 1 for all A ∈ S.

Furthermore, each set in S is a subset of the support and so | supp(S) ∩ A| = |A|.

Thus, |A| ̸= 1 if and only if A is not a singleton which holds if and only if S is

singleton free.

(e) Suppose that S contains a singleton {x}. For each A ∈ S⊥ we have that |A∩{x}| ≠ 1.

Moreover, |A ∩ {x}| ≥ |{x}| which implies that |A ∩ {x}| = 0. Thus, x ̸∈ A for all

A ∈ S⊥ and therefore x ̸∈ supp(S⊥).

2.1.3 Orthogonality on Uniform Collections

A uniform collection is the collection of all subsets of E of a particular size. We’ll use

Pk(E) to denote a uniform collection consisting of sets of size k. Uniform collections will

appear regularly throughout our investigations. We take some time now to see how the

orthogonality operator deals with them. We first consider the peculiar case of the collections

of all singletons of E.

Lemma 2.3. Let E be a finite set. Then, (P1(E))⊥ = ∅.

Proof. For each x ∈ E, {x} ∈ P1(E). It follows from part (e) of lemma 2.2 that x/ ̸∈

supp((P1(E))⊥). But then the support of (P1(E))⊥ is empty which holds if and only if

(P1(E))⊥ = ∅.

We note that P0(E) = {∅}. We’ve already seen in section 1.1.3 that {∅}⊥ = P≥1(E). We

now consider the uniform collections consisting of sets sized greater than or equal to 2.
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Lemma 2.4. Let E be a finite set. For 2 ≤ k ≤ |E|, we have (Pk(E))⊥ = P≥|E|−k+2(E).

Proof. Suppose (by way of contradiction) that (Pk(E))⊥ ̸⊆ P≥|E|−k+2(E). It follows that

there exists an X ∈ Pk(E)⊥ and such that |X| < |E| − k + 2. Thus, we have |E − X| >

|E|−(|E|−k+2) = k−2. And so |E−X| ≥ k−1. Let A ⊆ E−X such that |A| = k−1 and

let x ∈ X. It follows that A ∈ Pk(E). However, we also have |X ∩ (A∪ {x})| = |{x}| = 1; a

contradiction! Hence, (Pk(E))⊥ ⊆ P≥|E|−k+2(E).

On the other hand, let X ∈ Pk(E) and Y ∈ P|E|−k+2(E) and observe the following:

|E| ≥ |X ∪ Y | = |X| + |Y | − |X ∩ Y | = k + (|E| − k + 2) − |X ∩ Y |. And so |X ∩ Y | ≥ 2,

which now implies that Y ∈ (Pk(E))⊥. Thus, P≥|E|−k+2(E) ⊆ (Pk(E))⊥ and therefore we

have equality.

2.1.4 Orthogonality on Small Supports

In the case where two or more ground sets are considered, we’ll subscript our operators with

the ground set that should be used. For example, S⊥
F denotes the orthogonal collection of S

with respect to subsets of the ground set F , while S⊥
E denotes the orthogonal collection of

S with respect to subsets of the ground set E.

Lemma 2.5 (Orthogonality over smaller supports). Let supp(S) ⊆ F ⊆ E.

(a) S⊥
F = S⊥

E ∩ P≥1(F )

(b) S⊥
E = S⊥

F

×
∪ P≥1(E − F )

Proof.

(a) We note that X ∈ S⊥
F if and only if X is nonempty, X ⊆ F ⊆ E and |X ∩ A| ≠ 1 for

all A ∈ S. This also holds if and only if X ∈ S⊥
E ∩ P≥1(F ).

(b) (→) Let X ∈ S⊥
E . Then X is a nonempty subset of E and |X ∩ A| ≠ 1 for all

A ∈ S. If X ∩ F = ∅, then X ∈ P≥1(E − F ) ⊆ S⊥
F

×
∪ P≥1(E − F ) and we are done.
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On the other hand, if X ∩F ̸= ∅, then consider X ′ = X ∩F . Since A ⊆ supp(S) ⊆ F ,

then it follows that

|X ′ ∩ A| = |X ∩ F ∩ A| = |X ∩ A| ≠ 1

for all A ∈ S. Hence, X ′ ∈ S⊥
F and so

X = (X ∩ F ) ∪ (X ∩ (E − F )) = X ′ ∪ (X ∩ (E − F ))

which implies that X ∈ S⊥
F

×
∪ P≥1(E − F ).

(←) Let X ∈ S⊥
F

×
∪ P≥1(E − F ). If X ∈ S⊥

F , then X ∈ S⊥
E since S⊥

F ⊆ S⊥
E from

the previous part. If X ∈ P≥1(E − F ), then ∅ ⊂ X ⊆ E − F ⊆ E and X ∩ F = ∅.

Moreover, recall that for each A ∈ S we have A ⊆ supp(S) and since supp(S) ⊆ F ,

then it follows that |X ∩ A| = 0 ̸= 1 and so X ∈ S⊥
E .

If X ̸∈ S⊥
F ∪ P≥1(E − F ), then X = Y ∪ Z where Y ∈ S⊥

F and Z ∈ P≥1(E − F ). Note

that ∅ ⊂ Z ⊆ E − F ⊆ E − supp(S) and so Z ∩ A = ∅ for all A ∈ S. Thus, we have

|X ∩ A| = |(Y ∪ Z) ∩ A| = |(Y ∩ A) ∪ (Z ∩ A)| = |Y ∩ A| ≠ 1

for all Y ∈ S. Hence, X ∈ S⊥
E .

2.2 Supplemental Operators: Union Closure and Su-

perset Closure

To explore even more properties of orthogonality and minimality, we must introduce two

more operators due to their strong synergies with the orthogonality and minimality operators
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respectively:

Union Closure: Su := {X ⊆ E : X is a union of one or more sets in S}

Superset Closure: S⊇ := {X ⊆ E : X ⊇ A for some A ∈ S}

Basic properties of union closure (lemma 1.8) and superset closure (lemma 1.6) were

introduced in section 1.1.3.

2.2.1 Interactions of Superset Closure and Minimality

First up are the relations between the superset closure and minimality operators. Part (c)

of the following is given in [Oxl11, Lemma 2.1.22].

Proposition 2.1 (Minimality and Superset Closure Interactions). Let S, T ,Q ⊆ P(E).

(a) ⌊S⊇⌋ = ⌊S⌋

(b) ⌊S⌋⊇ = S⊇

(c) ⌊S⌋ = ⌊T ⌋ ⇐⇒ S ⊆ T ⊇ and T ⊆ S⊇

(d) S ⊆ T ⊆ S⊇ =⇒ ⌊S⌋ = ⌊T ⌋

(e) ⌊S⌋ = ⌊T ⌋ and S ⊆ Q ⊆ T =⇒ ⌊S⌋ = ⌊Q⌋ = ⌊T ⌋

Proof.

(a) (←) Let A′ ∈ ⌊S⌋. By definition A′ ∈ S and A′ ̸⊃ A for all A ∈ S. For all B ⊇ A,

note that A′ ̸⊃ B. Together, with the fact that S ⊆ S⊇, it follows that A′ ∈ ⌊S⊇⌋.

Thus, ⌊S⌋ ⊆ ⌊S⊇⌋.

(→) Let A′ ∈ ⌊S⊇⌋. By definition A′ ∈ S⊇ and A′ ̸⊃ B for all B ∈ S⊇. In

particular, A′ ̸⊃ A for all A ∈ S. Moreover, we see that the only set in S⊇ that is

contained in A′ is A′ itself. Thus, we must have A′ ∈ S. Therefore, A′ ∈ ⌊S⌋ which

now implies that ⌊S⊇⌋ ⊆ ⌊S⌋. And so, we have equality: ⌊S⊇⌋ = ⌊S⌋.
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(b) (→) We first note that ⌊S⌋ ⊆ S and so ⌊S⌋⊇ ⊆ S⊇ since superset closure is

inclusion preserving.

(←) We now let B ∈ S⊇. And so there exists A ∈ S such that A ⊆ B. Moreover,

there exists A′ ∈ ⌊S⌋ such that A′ ⊆ A. Hence, A′ ⊆ B which now implies that

B ∈ ⌊S⌋⊇. Therefore, S⊇ ⊆ ⌊S⌋⊇ and so we have equality: ⌊S⌋⊇ = S⊇.

(c) (→) Let X ∈ S. If X ∈ ⌊S⌋, then X ∈ ⌊T ⌋ ⊆ T ⊆ T ⊇. If X ̸∈ ⌊S⌋, then there

exists A′ ∈ ⌊S⌋ such that A′ ⊂ X. Since ⌊S⌋ = ⌊T ⌋, then A′ ∈ ⌊T ⌋ ⊆ T . Hence,

X ∈ T ⊇. Following the same argument with Y ∈ T one can show that Y ∈ S⊇. Hence,

we have shown that S ⊆ T ⊇ and T ⊆ S⊇.

(←) Let X ∈ ⌊S⌋ then X ∈ S and X ̸⊃ A for all A ∈ S. Moreover, X ̸⊃ A for all

A ∈ S⊇. So in particular, X ̸⊃ B for all B ∈ T , since T ⊆ S⊇. Additionally, X ∈ T ⊇

since S ⊆ T ⊇. Thus, there exists B ∈ T such that B ⊆ X. However, since X ̸⊃ B

for all B ∈ T , then we must have that X = B. Hence, X ∈ T and so X ∈ ⌊T ⌋ by

definition. Following the same argument with Y ∈ ⌊T ⌋ one can show that Y ∈ ⌊S⌋.

Hence, ⌊S⌋ = ⌊T ⌋.

(d) Since S ⊆ T , then S ⊆ T ⊇. By assumption, T ⊆ S⊇, so by part (c) we have

⌊S⌋ = ⌊T ⌋.

(e) Since ⌊S⌋ = ⌊T ⌋, then we have T ⊆ S⊇. And so Q ⊆ S⊇. Since S ⊆ Q, then S ⊆ Q⊇.

Thus, by part (c) we get ⌊S⌋ = ⌊Q⌋.

Although these operators completely nullify one another, as stated more precisely in

parts (a) and (b) of the proposition, we also have necessary and sufficient conditions for

when two collections have the same minimal collection. Additionally, we have a squeeze

theorem condition for the minimality operator.
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2.2.2 Interactions of Union Closure and Orthogonality

Next we look at some interesting interactions between the orthogonality and union closure

operators:

Proposition 2.2 (Orthogonality and Union Closure Interactions). Let S, T ⊆ P(E).

(a) S⊥ = S⊥u = Su⊥

(b) S ⊆ T ⊆ Su =⇒ S⊥ = T ⊥

(c) Su ⊆ S⊥⊥

(d) S⊥ = S⊥⊥⊥

(e) S ⊆ ⌊S⌋u =⇒ ⌊S⌋⊥ = S⊥

Proof.

(a) Since a collection is always contained in its union closure, then we have S⊥ ⊆ S⊥u.

Applying the orthogonality operator to S ⊆ Su gives us Su⊥ ⊆ S⊥ since orthogonality

is inclusion reversing. So by showing that S⊥u ⊆ Su⊥ we will get equality throughout.

Suppose (by contradiction) that S⊥u ̸⊆ Su⊥. Thus, there exists A ∈ S⊥u and B ∈ Su

such that |A∩B| = 1. Let x be this unique, common element. Note that A =
⋃n

j=1 Aj

for some Aj ∈ S⊥ and B =
⋃m

k=1Bk for some Bk ∈ S. Thus, x ∈ Ap ∩ Bq for some

1 ≤ p ≤ n and 1 ≤ q ≤ m. Moreover, note that |Aj ∩ Bk| ̸= 1 for all j = 1, . . . , n

and k = 1, . . . ,m. It then follows that |Ap ∩ Bq| ≥ 2, so let y ̸= x be some element of

Ap ∩ Bq. This now implies that |A ∩ B| ≥ 2, a contradiction! Therefore, S⊥u ⊆ Su⊥

and so we have equality throughout.

(b) Since S ⊆ T ⊆ Su, then applying orthogonality yields Su⊥ ⊆ T ⊥ ⊆ S⊥. Now by part

(a), we have S⊥ ⊆ T ⊥ ⊆ S⊥. Hence, S⊥ = T ⊥.
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(c) Let A ∈ Su. By part (a) we know that Su⊥ = S⊥. So for each X ∈ S⊥ we have that

|X∩Y | ≠ 1 for all Y ∈ Su. In particular, |X∩A| ≠ 1 for all X ∈ S⊥. Hence, A ∈ S⊥⊥.

Thus, we have Su ⊆ S⊥⊥.

(d) From part (c) we have S ⊆ Su ⊆ S⊥⊥. Then applying the orthogonality operator yields

S⊥⊥⊥ ⊆ Su⊥. On the other hand, apply part (c) to S⊥ which gives us S⊥u ⊆ S⊥⊥⊥.

Now by part (a), we have that S⊥ contains and is contained in S⊥⊥⊥. Hence, we have

equality: S⊥ = S⊥⊥⊥.

(e) Note that we have ⌊S⌋ ⊆ S ⊆ ⌊S⌋u. Applying orthogonality then gives us that

⌊S⌋u⊥ ⊆ S⊥ ⊆ ⌊S⌋⊥. Part (a) then implies the first and last collections and equal and

so we have equality throughout: S⊥ = ⌊S⌋⊥.

These observations give us conditions for when two collections have the same orthogonal

collection. We also see that the orthogonal collection is closed under unions. Part (e) of the

proposition will be of particular interest when further discussing frames.

Interestingly enough, the first orthogonal collection equaling the third orthogonal collec-

tion for any S ⊆ P(E) is rather surprising fact. Possibly even more surprising is that we

saw in example example 1 that this may not be true for the circuit duality operator despite

its proximity to the orthogonality operator. That is; S∗ need not be equal to S∗∗∗ despite

S⊥ always equaling S⊥⊥⊥.

2.3 Circuit Duality Operator Observations

We now have several observations about the circuit duality operator that follow immediately:

Proposition 2.3 (Circuit Duality). Let S ⊆ P(E) and supp(S) ⊆ F ⊆ E.

(a) (S − {∅})∗ = S∗ = (S ∪ {∅})∗
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(b) S⊥ ⊆ T ⊥ ⊆ S⊥⊇ =⇒ S∗ = T ∗

(c) S ⊆ Q ⊆ T and S∗ = T ∗ =⇒ S∗ = Q∗ = T ∗

(d) S∗
E = S∗

F ∪ P1(E − F )

(e) S∗∗
E = S∗∗

F

(f) {x} ∈ S =⇒ S∗
E = (S − {{x}})∗E−{x}

(g) {x} ∈ S =⇒ S∗∗
E = (S − {{x}})∗∗E−{x} ∪ {{x}}

(h) (P1(E))∗ = ∅

(i) For 2 ≤ k ≤ |E|, we have (Pk(E))∗ = P|E|−k+2(E)

(j) Pk(E) is a frame for 1 ≤ k ≤ |E|.

Proof.

(a) This follows from part (d) of lemma 1.11: (S − {∅})⊥ = S⊥ = (S ∪ {∅})⊥. Applying

minimality then yields ⌊(S − {∅})⊥⌋ = ⌊S⊥⌋ = ⌊(S ∪ {∅})⊥⌋ which by definition gives

(S − {∅})∗ = S∗ = (S ∪ {∅})∗.

(b) This follows from part (d) of proposition 2.1: S⊥ ⊆ T ⊥ ⊆ S⊥⊇ =⇒ ⌊S⊥⌋ = ⌊T ⊥⌋

which by definition gives S∗ = T ∗.

(c) Since the orthogonality operator is inclusion reversing then S ⊆ Q ⊆ T =⇒ T ⊥ ⊆

Q⊥ ⊆ S⊥. By hypothesis and the definition of circuit duality, we have that ⌊S⊥⌋ =

⌊T ⊥⌋. Thus, by part (e) of proposition 2.1 we get that ⌊S⊥⌋ = ⌊Q⊥⌋ = ⌊T ⊥⌋ which

by definition gives S∗ = Q∗ = T ∗.

(d) From part (b) of lemma 2.5 we have S⊥
E = S⊥

F

×
∪P≥1(E − F ). Note that by definition,

the empty set is not in any of the collections. Moreover, note that S⊥
F and P≥1(E −

F ) have disjoint supports. We now apply minimality to both sides of the equation:
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⌊S⊥
E ⌋ = ⌊S⊥

F

×
∪ P≥1(E − F )⌋. And so by parts (a) and (c) of lemma 2.1 it follows that

S∗
E = S∗

F ∪ P1(E − F ).

(e) From part (d) we have S∗
E = S∗

F ∪ P1(E − F ) and so applying orthogonality yields

(S∗
E)

⊥
E = (S∗

F )
⊥
E ∩ (P1(E − F ))⊥E. By part (b) of lemma 2.5 we get

(S∗
E)

⊥
E =

(
(S∗

F )
⊥
F

×
∪ P≥1(E − F )

)
∩
(
(P1(E − F ))⊥E−F

×
∪ P≥1(F )

)

by lemma 2.3 we have that (P1(E−F ))⊥E−F = ∅ and so the right term is simply P≥1(F ).

Thus, we have

(S∗
E)

⊥
E =

(
(S∗

F )
⊥
F

×
∪ P≥1(E − F )

)
∩ P≥1(F )

Note that sets in the inner pairwise union term either contain an element of E − F or

do not. In the latter case, the set is an element of (S∗
F )

⊥
F . Since sets in P≥1(F ) contain

no elements of E − F then the intersection reduces to

(S∗
E)

⊥
E = (S∗

F )
⊥
F ∩ P≥1(F )

Moreover, note that (S∗
F )

⊥
F is a subset of P≥1(F ) and so the right hand side is simply

(S∗
F )

⊥
F . Hence, applying minimality yields S∗∗

E = S∗∗
F .

(f) Observe that S = (S − {{x}}) ∪ {{x}} and so applying orthogonality yields S⊥ =

(S − {{x}})⊥ ∩ {{x}}⊥. Note that {{x}}⊥ = P≥1(E − {x}) and so now by part (b)

of lemma 2.5 we have S⊥
E =

(
(S − {{x}})⊥E−{x}

×
∪ P≥1({x})

)
∩ P≥1(E − {x}). Note

that the only sets in the inner pairwise union that do not contain x are the sets in

(S − {{x}})⊥E−{x} and so the right hand side reduces down to (S − {{x}})⊥E−{x} ∩

P≥1(E−{x}). Moreover, (S−{{x}})⊥E−{x} is a subset of P≥1(E−{x}) and so we have

S⊥
E = (S − {{x}})⊥E−{x}. Now taking minimal sets yields S∗

E = (S − {{x}})∗E−{x}.

(g) From part (f) we have S∗
E = (S−{{x}})∗E−{x}, so applying orthogonality yields (S∗

E)
⊥
E =

32



((S − {{x}})∗E−{x})
⊥
E. Since {x}inS, then by part (e) of lemma 2.2 we have that

x ̸∈ supp(S∗
E) and so x ̸∈ supp((S − {{x}})∗E−{x}). Then by part (b) of lemma 2.5 we

have (S∗
E)

⊥
E = ((S − {{x}})∗E−{x})

⊥
E−{x}

×
∪ P1({x}). Note that neither collection of the

inner pairwise union contains the empty set and they have disjoint supports. Thus, by

parts (a) and (c) of lemma 2.1 tell us that applying minimality yields ⌊(S∗
E)

⊥
E⌋ = ⌊((S−

{{x}})∗E−{x})
⊥
E−{x}⌋ ∪ ⌊P1({x})⌋ which simplifies to S∗∗

E = (S − {{x}})∗∗E−{x} ∪ {{x}}.

(h) By lemma 1.11, we have (P1(E))⊥ = ∅ and so applying minimality yields (P1(E))∗ = ∅.

(i) By lemma 1.11, we have (Pk(E))⊥ = P≥|E|−k+2(E) then applying minimality yields

(Pk(E))∗ = P|E|−k+2(E).

(j) First consider the case where k = 1: From part (h), we have (P1(E))∗∗ = (∅)∗ = P1(E).

Hence, P1(E) is a frame.

Now suppose that 2 ≤ k ≤ |E|: From part (i), we have (Pk(E))∗∗ = (P|E|−k+2(E))∗ =

P|E|−(|E|−k+2)+2(E) = Pk(E). Hence, Pk(E) is a frame.

From this proposition, we learned of a few generalities that we can take when it comes to

finding potential frames. Part (g) tells us that singletons do not affect the dual stability of

our circuit duality operator. And so we can restrict our search to singleton free collections.

Part (e) tells us that the second dual of a collection over the full ground set E is the same

as if taken over a smaller ground set. Thus, we’ll simply take the smallest ground set we

can - the support of the collection. And so we can restrict our search to fully supported

collections. Part (a) tells us that circuit duality is indifferent when it comes to the empty

set. Since the empty set is never in the dual collection, then we can restrict our search to

collections that do not contain the empty set as an element.

A few of the more interesting results are given here as a separate proposition. Most

notably, part (a) of the following proposition answers question 3b of section 1.3.3.
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Proposition 2.4.

(a) S ⊆ S∗⊥

(b) ⌊S⌋ = S∗∗ ⇐⇒ S∗⊥ ⊆ S⊇

(c) If S is a clutter, then S is a frame if and only if S∗⊥ ⊆ S⊇.

(d) If S is fully supported and A ∈ S is size two, then A ∈ S∗∗.

Remark: Though the proof for part (c) relies on a result given later (lemma 3.4 in

section 3.2) we leave the result and the proof of part (c) here rather than awkwardly bring

it up later on in a less appropriate setting.

Proof.

(a) Start with S⊥ and note that S∗ = ⌊S⊥⌋ ⊆ S⊥ since minimality is an intensive operator.

Then apply orthogonality: the inclusion reversion yields S⊥⊥ ⊆ S∗⊥. Since union

closure is extensive and part (c) of proposition 2.2 we have S ⊆ Su ⊆ S⊥⊥ ⊆ S∗⊥.

(b) (←) Suppose that S∗⊥ ⊆ S⊇. From part (a) and the extensive property of superset

closure we have S ⊆ S∗⊥ ⊆ S∗⊥⊇. Thus, by part (c) of proposition 2.1 we get that

⌊S⌋ = S∗∗.

(→) Since ⌊S⌋ = S∗∗, then by part (c) of proposition 2.1, we have that S ⊆ S∗⊥⊇

and S∗⊥ ⊆ S⊇.

(c) This is immediate from part (b) since S is a clutter if and only if ⌊S⌋ = S.

(d) Let S be a fully supported collection and let A ∈ S such that |A| = 2. From part (a)

we know that A ∈ S∗⊥. Since S is fully supported, then |A∩B| ≥ 2 for some B ∈ S∗.

Since |A| = 2, then |A ∩ B| = 2 which further implies that A ⊆ B. Now let W be a

proper nonempty subset of A, then |W | = 1 and W ⊆ B. Thus, |W ∩ B| = 1 which

implies that W ̸∈ S∗⊥. Hence, A ∈ ⌊S∗⊥⌋ = S∗∗.
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We further remark that since the orthogonal collection is closed under unions, and union

closure is inclusion preserving, then part (a) from above could be improved to Su ⊆ S∗⊥ for

free.
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Chapter 3

Matroid Operators

Before we can say more about the circuit duality operator we need to look at the prop-

erties of some other powerset operators that play well with circuit duality. Some of the

matroid isomorphisms involving circuits are: circuit duality, blocking, cycles-to-bases, bases-

to-cycles, and the complementary operator. Except for the complementary operator, each

matroid operator is a composition of simple operators. So in order to better understand

each of our matroid operators, we’ll split them into their composite operators and study

their interactions.

Complementary: S− := {E − A : A ∈ S}

Complementation: Sc := {X ⊆ E : X ̸∈ S}

Minimality: ⌊S⌋ := {X ∈ S : X ̸⊃ A for each A ∈ S}

Maximality: ⌈S⌉ := {X ∈ S : X ̸⊂ A for each A ∈ S}

Superset Closure: S⊇ := {X ⊆ E : X ⊇ A for some A ∈ S}

Subset Closure: S⊆ := {X ⊆ E : X ⊆ A for some A ∈ S}

Meet: Sm := {X ⊆ E : |X ∩ A| ≠ 0 for each A ∈ S}
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cycles-to-independent: SI := {X ⊆ E : X ̸⊇ A for each A ∈ S}

bases-to-dependent: SD := {X ⊆ E : X ̸⊆ A for each A ∈ S}

And so our matroid operators have the following compositions.

Blocking: Sb := ⌊Sm⌋

bases-to-cycles: SC := ⌊SD⌋

cycles-to-bases: SB := ⌈SI⌉

3.1 Composite Operators

In this section we will focus on the more interesting interactions between the composite

operators. For readers with a particularly strong curiosity, we list a few additional operator

interactions in appendix A.2. For basic properties of each composite operator we refer to

reader to section 1.1.3. Specifically, the basic properties for each of the following can be found

there: the complementary operator (lemma 1.2), the complementation operator (lemma 1.3),

the minimality operator (lemma 1.4), the maximality operator (lemma 1.5), the superset

closure operator (lemma 1.6), the subset closure operator (lemma 1.7), the meet operator

(lemma 1.10), the cycles-to-independent operator (lemma 1.12), and the bases-to-dependent

operator (lemma 1.13).

3.1.1 Simple Matroid Operator Decompositions

We’ll first look at the cycles-to-independent and bases-to-dependent operators, which have a

rather close relation to superset closure and subset closure respectively. These observations

were initially given as part (a) of lemma 1.12 and lemma 1.13 respectively, but we list them

again now for emphasis. Both proofs are listed in appendix A.1.

SI = S⊇c and SD = S⊆c
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So it turns out that the cycles-to-independent and bases-to-dependent operators are a com-

position of simple operators themselves; consisting of superset closure, subset closure, and

complementation. Although they should be considered ‘complex’ operators per our original

definition, we’ll continue to refer to them as simple operators or sometimes simple matroid

operators for extra emphasis when appropriate.

3.1.2 Interactions of Maximality and Subset Closure

Similar to how superset closure and minimality go hand in hand, subset closure and maxi-

mality also have a close relationship.

Lemma 3.1 (Maximality and Subset Closure Interactions). Let S, T ,Q ⊆ P(E).

(a) ⌈S⊆⌉ = ⌈S⌉

(b) ⌈S⌉⊆ = S⊆

(c) ⌈S⌉ = ⌈T ⌉ ⇐⇒ S ⊆ T ⊆ and T ⊆ S⊆

(d) S ⊆ T ⊆ S⊆ =⇒ ⌈S⌉ = ⌈T ⌉

(e) ⌈S⌉ = ⌈T ⌉ and S ⊆ Q ⊆ T =⇒ ⌈S⌉ = ⌈Q⌉ = ⌈T ⌉

Proof.

(a) (←) Let Â ∈ ⌈S⌉. By definition Â ∈ S and Â ̸⊂ A for all A ∈ S. For all B ⊆ A,

note that Â ̸⊂ B. Together, with the fact that S ⊆ S⊆, it follows that Â ∈ ⌈S⊆⌉.

Thus, ⌈S⌉ ⊆ ⌈S⊆⌉.

(→) Let Â ∈ ⌈S⊆⌉. By definition Â ∈ S⊆ and Â ̸⊂ B for all B ∈ S⊆. In

particular, Â ̸⊂ A for all A ∈ S. Moreover, we see that the only set in S⊆ that is

contained in Â is Â itself. Thus, we must have Â ∈ S. Therefore, Â ∈ ⌈S⌉ which now

implies that ⌈S⊆⌉ ⊆ ⌈S⌉. And so, we have equality: ⌈S⊆⌉ = ⌈S⌉.
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(b) (→) We first note that ⌈S⌉ ⊆ S and so ⌈S⌉⊆ ⊆ S⊆ since subset closure is inclusion

preserving.

(←) We now let B ∈ S⊆. And so there exists A ∈ S such that B ⊆ A. Moreover,

there exists Â ∈ ⌈S⌉ such that A ⊆ Â. Hence, B ⊆ Â which now implies that

B ∈ ⌈S⌉⊆. Therefore, S⊆ ⊆ ⌈S⌉⊆ and so we have equality: ⌈S⌉⊆ = S⊆.

(c) (→) Let X ∈ S. If X ∈ ⌈S⌉, then X ∈ ⌈T ⌉ ⊆ T ⊆ T ⊆. If X ̸∈ ⌈S⌉, then there

exists Â ∈ ⌈S⌉ such that X ⊂ Â. Since ⌈S⌉ = ⌈T ⌉, then Â ∈ ⌈T ⌉ ⊆ T . Hence,

X ∈ T ⊆. Following the same argument with Y ∈ T one can show that Y ∈ S⊆.

Hence, we have shown that S ⊆ T ⊆ and T ⊆ S⊆.

(←) Let X ∈ ⌈S⌉ then X ∈ S and X ̸⊂ A for all A ∈ S. Moreover, X ̸⊂ A for all

A ∈ S⊆. So in particular, X ̸⊂ B for all B ∈ T , since T ⊆ S⊆. Additionally, X ∈ T ⊆

since S ⊆ T ⊆. Thus, there exists B ∈ T such that X ⊆ B. However, since X ̸⊂ B

for all B ∈ T , then we must have that X = B. Hence, X ∈ T and so X ∈ ⌈T ⌉ by

definition. Following the same argument with Y ∈ ⌈T ⌉ one can show that Y ∈ ⌈S⌉.

Hence, ⌈S⌉ = ⌈T ⌉.

(d) Since S ⊆ T , then S ⊆ T ⊆. By assumption, T ⊆ S⊆, so by part (c) we have

⌈S⌉ = ⌈T ⌉.

(e) Since ⌈S⌉ = ⌈T ⌉, then we have T ⊆ S⊆. And so Q ⊆ S⊆. Since S ⊆ Q, then S ⊆ Q⊆.

Thus, by part (c) we get ⌈S⌉ = ⌈Q⌉.

3.1.3 Interactions between Meet, Minimality, and Superset Clo-

sure

The meet operator has some close ties to superset closure and therefore minimality.

Lemma 3.2 (Meet, Minimality, and Superset Closure Interactions). Let S, T ⊆ P(E).
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(a) ⌊S⌋m = Sm

(b) Sm = Sm⊇ = S⊇m

(c) Smm = S⊇

(d) ⌊S⌋ = ⌊T ⌋ ⇐⇒ Sm = T m

Proof.

(a) We first note that when ∅ ∈ S we have ∅ ∈ ⌊S⌋. And so both meet collections are

empty since they both contain the empty set. Hence, equality holds. Additionally, if

S = ∅, then ⌊S⌋ = ∅ = S. Thus, equality holds in this case as well. So without loss

of generality, we may further suppose that S is nonempty and does not contain the

empty set.

Since the meet operator is inclusion reversing and ⌊S⌋ ⊆ S, then we have Sm ⊆ ⌊S⌋m.

We now aim to show the reverse inclusion: let M ∈ ⌊S⌋m. It follows that |M ∩A′| ≠ 0

for all A′ ∈ ⌊S⌋. Note that for all A ∈ S there exists A′ ∈ ⌊S⌋ such that A′ ⊆ A. And

so M ∩ A′ ⊆M ∩ A which implies that 0 ̸= |M ∩ A′| ≤ |M ∩ A|. Hence, M ∈ Sm.

(b) First, note that from proposition 2.1 we have ⌊S⊇⌋ = ⌊S⌋. Thus, applying the meet

operator yields ⌊S⊇⌋m = ⌊S⌋m. And so by part (a) we get that S⊇m = Sm.

Secondly, note that S ⊆ S⊇ for all S and so we have Sm ⊆ Sm⊇. Now let A ∈ Sm⊇. It

follows that there exists M ∈ Sm such that M ⊆ A. Therefore, 0 ̸= |M ∩X| ≤ |A∩X|

for allX ∈ S. And so A ∈ Sm. Thus, we have equality throughout: Sm = Sm⊇ = S⊇m.

(c) (←) Let A ∈ S and note that every set in Sm meets A. Changing perspectives now,

we see this also implies that A meets every set in Sm. Thus, A ∈ Smm by definition

which now implies that S ⊆ Smm. And so by the inclusion preserving property of the

superset closure operator, and by part (b), we have that S⊇ ⊆ Smm⊇ = Smm.
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(→) We’ll show this direction by proving that the complement holds: S⊇c ⊆ Smmc.

Which holds if and only if Smm ⊆ S⊇. Let A ̸∈ S⊇. Then A contains no set of S

which implies that E − A meets every set of S. And so E − A ∈ Sm. Now note that

A ∩ (E − A) = ∅ which implies that A ̸∈ Smm. Therefore, we have that S⊇c ⊆ Smmc

and so by complementation we have Smm ⊆ S⊇. Hence, equality.

(d) (→) Applying the meet operator to ⌊S⌋ = ⌊T ⌋ yields ⌊S⌋m = ⌊T ⌋m. Now by part

(a) we get Sm = T m.

(←) Applying the meet operator to Sm = T m yields Smm = T mm. So by part (c)

we get S⊇ = T ⊇. Now by part (c) of proposition 2.1 we get ⌊S⌋ = ⌊T ⌋.

3.1.4 Complementary Operator Effects

The complementary operator has some interesting interactions as well. Acting as a sort of

switch, it flips an operator back and forth between its ‘complementary’ or ‘dual’ operator.

Lemma 3.3 (Complementary Operator Effects). Let S ⊆ P(E).

(a) ⌊S⌋− = ⌈S−⌉

(b) ⌊S−⌋ = ⌈S⌉−

(c) S⊇− = S−⊆

(d) S−⊇ = S⊆−

Proof.

(a) Observe the following: W ∈ ⌊S⌋− ⇐⇒ E−W ∈ ⌊S⌋ ⇐⇒ E−W ∈ S and E−W ̸⊃ A

for all A ∈ S ⇐⇒ W ∈ S− and W ̸⊂ E − A for all E − A ∈ S− ⇐⇒ W ∈ ⌈S−⌉.
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(b) Applying the previous result to the collection S− and then applying the complementary

operator yields ⌊S−⌋−− = ⌈S−−⌉−. Since the complementary is self-inverse, then we

have ⌊S−⌋ = ⌈S⌉−.

(c) Observe the following: W ∈ S⊇− ⇐⇒ E −W ∈ S⊇ ⇐⇒ E −W ⊇ A for some

A ∈ S ⇐⇒ W ⊆ E − A for some E − A ∈ S− ⇐⇒ W ∈ S−⊆.

(d) Applying the previous result to the collection S− and then applying the complementary

operator yields S−⊇−− = S−−⊆−. Since the complementary operator is self-inverse, we

then have S−⊇ = S⊆−.

3.2 Iterative Applications of Circuit Duality Converges

to a Frame

With the official introduction of both minimality and maximality, we are able to take a short

detour to give a quick characterization of clutters. This clutter criterion is the last tool we

need to prove that iterative applications of the circuit duality operator always converges to

a frame.

Lemma 3.4 (Clutter Conditions). Let S ⊆ P(E).

(a) S is a clutter if and only if ⌊S⌋ = ⌈S⌉ = S

(b) ⌊S⌋ ⊆ ⌈S⌉ ⇐⇒ ⌊S⌋ = ⌈S⌉ ⇐⇒ ⌈S⌉ ⊆ ⌊S⌋

Proof.

(a) Note that ⌊S⌋ ⊆ S and ⌈S⌉ ⊆ S for all S ⊆ P(E).

(→) Since S is a clutter, then no set of S contains any other. Thus, each set of S

is minimal with respect to set containment. On the other hand, if no set contains any
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other then no set can be contained by any other. Thus, each set of S is maximal with

respect to set containment. Therefore, S ⊆ ⌊S⌋ and S ⊆ ⌈S⌉. And so ⌊S⌋ = ⌈S⌉ = S.

(←) We note that the conclusion holds for the trivial clutters: ⌊∅⌋ = ∅ = ⌈∅⌉ and

⌊{∅}⌋ = {∅} = ⌈{∅}⌉.

Suppose that ⌊S⌋ = ⌈S⌉ = S and further suppose (by way of contradiction) that S is

not a clutter. It follows that there exist distinct sets A and B in S such that A ⊂ B.

Moreover, note that ∅ ̸∈ S. If it were, then ⌊S⌋ = {∅} which forces S = {∅} in order

to maintain the equality. However, this is a trivial clutter and we are supposing that

S is not a clutter.

It then follows that there exists nonempty A′ ∈ ⌊S⌋ such that A′ ⊆ A. Additionally,

we also have a nonempty B̂ ∈ ⌈S⌉ such that B ⊆ B̂. Thus, we have A′ ⊂ B̂ which

implies that A′ ∈ ⌊S⌋ − ⌈S⌉ and B̂ ∈ ⌈S⌉ − ⌊S⌋. However, this gives us ⌊S⌋ ̸= ⌈S⌉; a

contradiction! Therefore, S must be a clutter.

(b) Clearly ⌈S⌉ = ⌊S⌋ implies both ⌊S⌋ ⊆ ⌈S⌉ and ⌈S⌉ ⊆ ⌊S⌋. Thus, we only need to

show that ⌊S⌋ ⊆ ⌈S⌉ and ⌈S⌉ ⊆ ⌊S⌋ each individually imply equality.

Suppose that ⌊S⌋ ⊆ ⌈S⌉ and further suppose (by way of contradiction) that this

containment is proper. It then follows that these minimal and maximal collections do

not contain the empty set. Else we get that {∅} = ⌈S⌉ = ⌊S⌋, but we are supposing

that the minimal collection is properly contained in the maximal collection.

Moreover, we get that there exists Â ∈ ⌈S⌉−⌊S⌋. Thus, there exists nonempty A ∈ S

such that A ⊂ Â. Furthermore, there exists nonempty A′ ∈ ⌊S⌋ such that A′ ⊆ A.

But then we have A′ ⊂ Â and so A′ ̸∈ ⌈S⌉; a contradiction to ⌊S⌋ ⊆ ⌈S⌉. Hence, we

must have ⌊S⌋ = ⌈S⌉.

Similarly, suppose that ⌈S⌉ ⊆ ⌊S⌋ and further suppose (by way of contradiction) that

this containment is proper. Again, these minimal and maximal collections do not

contain the empty set.
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Furthermore, we get that there exists A′ ∈ ⌊S⌋ − ⌈S⌉. Thus, there exists nonempty

A ∈ S such that A′ ⊂ A. Thus, there exists nonempty Â ∈ ⌈S⌉ such that A ⊆ Â.

But now we have A′ ⊂ Â which implies that Â ̸∈ ⌊S⌋; a contradiction to ⌈S⌉ ⊆ ⌊S⌋.

Hence, we must have ⌊S⌋ = ⌈S⌉.

We are now ready to tackle one of our initial questions from section 1.3.3. Let us introduce

a relation on collections: For S, T ⊆ P(E), we write S → T when SI ⊇ T I . Note that

when S is a clutter we have that S is uniquely determined by SI :

Lemma 3.5. The powerset operator ( )I is injective when restricted to clutters.

Proof. Let S1 and S2 be clutters of E such that SI
1 = SI

2 . By part (a) of lemma 1.12 that

S⊇c
1 = S⊇c

2 . Since the complementation operator is self-inverse, then we have S⊇
1 = S⊇

2 . We

now apply the minimality operator to yield ⌊S⊇
1 ⌋ = ⌊S

⊇
2 ⌋. It then follows from proposition 2.1

that ⌊S1⌋ = ⌊S2⌋. But since each are clutters, then by lemma 3.4 we have S1 = S2. Hence,

the cycles-to-independent operator is injective on clutters.

Lemma 3.6. The relation → is reflexive, transitive, and anti-symmetric when restricted to

clutters.

Proof. Reflexivity is clear:

S → S ⇐⇒ SI ⊇ SI

Transitivity is also easy enough to see: Suppose that S → T and T → Q, then we have

SI ⊇ T I and T I ⊇ QI . Thus, SI ⊇ QI which implies that S → Q.

Now for anti-symmetry: Suppose that S → T and T → S, then we have SI = T I . Since

S, T ∈ L2, then both S and T are uniquely determined by SI and T I . Hence, S = T .

Lemma 3.7. If S is a clutter, then S → S∗∗.
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Proof. Let X ∈ (S∗∗)I and suppose (by contradiction) that X ̸∈ SI . That is, there exists

D ∈ S such that X ⊇ D. Note that by definition, |D ∩C| ≠ 1 for all C ∈ S∗. In particular,

this means that D ∈ S∗⊥. Thus, there exists D′ ∈ S∗∗ such that D ⊇ D′. However, this now

implies that X ⊇ D ⊇ D′ which contradicts the fact that X ∈ (S∗∗)I . Hence, we must have

X ∈ SI . Therefore, SI ⊇ (S∗∗)I and so S → S∗∗.

Notation: We’ll use the notation of S∗(m)
to denote m applications of the circuit duality

operator ( )∗ on the collection S.

The following result coincides with a more general result of [Vad86, Proposition 2.2].

Theorem 1. Let S ⊆ P(E). There exists n ≥ 0 such that S∗(m)
= S∗(m+2)

for all m ≥ n but

S∗(m) ̸= S∗(m+2)
for all m < n.

Proof. Let S ⊆ P(E). If S is not a clutter, then note that S∗ is a clutter. So without loss

of generality, we may further suppose that S is a clutter.

By lemma 3.7 we have the sequence of relations

S → S∗∗ → S∗(4) → . . .→ S∗(m) → . . .

Thus, we have the sequence of nested subsets:

SI ⊇ (S∗∗)I ⊇ (S∗(4))I ⊇ . . . ⊇ (S∗(m)

)I ⊇ . . .

Note that this sequence is bounded below by the empty set and bounded above by SI .

Hence, for m > |SI | (which is finite) we must have equality between at least two of the

collections. Let n be the smallest of the superscripts where this equality holds. At this

equality we have S∗(n) → S∗(n+2)
and S∗(n+2) → S∗(n)

. Thus, by the anti-symmetry of → we

have that S∗(n)
= S∗(n+2)

.

Thus, we have answered question 2a with a resounding yes. Moreover, the proof gives a

very rough upper bound of |SI | in response to question 2b. A similar question was asked
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in [Vad86, section 5] in which the author gave some partial results. In every example that I

have looked at I have never encountered a m larger than 2. Thus, we propose the following

conjecture:

Conjecture 1. Let S ⊆ P(E). Then S∗(2) = S∗(4).

3.3 Matroid Operator Observations and Properties

3.3.1 Simple Matroid Operator Interactions

We now aim to see how the simple matroid operators interact with the other simple operators.

Lemma 3.8 (Simple Matroid Operator Interactions). Let S, T ⊆ P(E).

(a) ⌊S⌋I = SI = S⊇I = SI⊆

(b) ⌊S⌋ ⊆ T ⊆ S⊇ =⇒ SI = T I

(c) ⌈S⌉D = SD = S⊆D = SD⊇

(d) ⌈S⌉ ⊆ T ⊆ S⊆ =⇒ SD = T D

Proof.

(a) Note that ⌊S⌋⊇ = S⊇ = S⊇⊇ and so taking complements of each yield the same

collection; thus ⌊S⌋I = SI = S⊇I . Note that SI ⊆ SI⊆ since subset closure is

inclusion preserving. Let W ∈ SI⊆. Then W ⊆ I for some I ∈ SI . Note that A ̸⊆ I

for all A ∈ S. It then follows that A ̸⊆ W for all A ∈ S. Hence, W ∈ SI and therefore

SI⊆ = SI which gives us equality throughout.

(b) Since the superset closure operator is inclusion preserving, then ⌊S⌋ ⊆ T ⊆ S⊇ =⇒

⌊S⌋⊇ ⊆ T ⊇ ⊆ S⊇⊇. Note that that first and last collections are equal, hence we

have equality throughout. In particular, S⊇ = T ⊇ and so taking complements yields

SI = T I .
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(c) Note that ⌈S⌉⊆ = S⊆ = S⊆⊆ and so taking complements of each yield the same

collection; thus ⌈S⌉D = SD = S⊆D. Note that SD ⊆ SD⊇ since superset closure is

inclusion preserving. Let W ∈ SD⊇. Then D ⊆ W for some D ∈ SD. Note that

D ̸⊆ A for all A ∈ S. It then follows that W ̸⊆ A for all A ∈ S. Hence, W ∈ SD and

therefore SD⊇ = SD which gives us equality throughout.

(d) Since the subset closure operator is inclusion preserving, then ⌈S⌉ ⊆ T ⊆ S⊆ =⇒

⌈S⌉⊆ ⊆ T ⊆ ⊆ S⊆⊆ Note that that first and last collections are equal, hence we

have equality throughout. In particular, S⊆ = T ⊆ and so taking complements yields

SD = T D.

Of particular interest are the relations between the cycles-to-dependent, bases-to-dependent,

complementary, and meet operators.

Proposition 3.1. Let S, T ⊆ P(E).

(a) SI = Sm−

(b) SD = S−m

(c) SID = S⊇ and SDI = S⊆

Proof.

(a) Observe the following: I ∈ SI ⇐⇒ I ̸⊇ A for all A ∈ S ⇐⇒ (E − I)∩A ̸= ∅ for all

A ∈ S ⇐⇒ I ∈ Sm−.

(b) Observe the following: D ∈ SD ⇐⇒ D ̸⊆ A for all A ∈ S ⇐⇒ D ∩ (E − A) ̸= ∅ for

all A ∈ S ⇐⇒ D ∈ S−m.
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(c) From parts (a) and (b) above, the self-inversion of the complementary operator, and

part (c) of lemma 3.2 it follows that

SID = Sm−−m = Smm = S⊇

Additionally, from part (c) above, the self-inversion of the complementary operator,

the idempotence of the subset closure, and part (d) of lemma 3.3 we have

SDI = S⊆DI = S⊆−mm− = S⊆−⊇− = S⊆⊆−− = S⊆

From this proposition, parts (a) and (c) of lemma 3.8, and part (b) of lemma 3.2, we

see that the meet, cycles-to-independent, bases-to-dependent, and complementary operators

all commute on/between superset closed and subset closed collections. Thus, we can give a

commuting diagram:

(a) All collections. (b) Restricted classes.

Figure 3.1: Commuting diagrams for the meet, cycles-to-independent, bases-to-dependent,
and complementary operators.

In the left diagram, we consider all collections of subsets of a finite set represented by

the class P2. By restricting the classes in the diagram to the class of all superset closed
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collections, denoted Sp2, and the class of all subset closed collections, denoted Sb2, then the

diagram becomes a fully commuting diagram as shown in the right diagram.

3.3.2 Matroid Operator Interactions with Simple Operators

We now have several observations about our matroid operators that follow from our com-

posite operator interactions:

Lemma 3.9 (cycles-to-bases and bases-to-cycles). Let S ⊆ P(E).

(a) SI = SB⊆

(b) SD = SC⊇

(c) ⌊S⌋B = SB = S⊇B

(d) ⌊S⌋ ⊆ T ⊆ S⊇ =⇒ SB = T B

(e) ⌈S⌉C = SC = S⊆C

(f) ⌈S⌉ ⊆ T ⊆ S⊆ =⇒ SC = T C

Proof.

(a) This is immediate from part (b) of lemma 3.2 and part (a) of lemma 3.8: ⌈SI⌉ =

SB =⇒ ⌈SI⌉⊆ = SI⊆ = SI = SB⊆.

(b) This is immediate from part (b) of proposition 2.1 and part (c) of lemma 3.8: ⌊SD⌋ =

SC =⇒ ⌊SD⌋⊇ = SD⊇ = SD = SC⊇.

(c) This follows immediately from part (a) of lemma 3.8: ⌊S⌋B = ⌈⌊S⌋I⌉ = ⌈SI⌉ = SB

and S⊇B = ⌈S⊇I⌉ = ⌈SI⌉ = SB.

(d) This follows immediately from part (b) of lemma 3.8: ⌊S⌋ ⊆ T ⊆ S⊇ =⇒ SI = T I .

Applying the maximality operator then yields SB = T B.

49



(e) This follows immediately from part (c) of lemma 3.8: ⌈S⌉C = ⌊⌈S⌉D⌋ = ⌊SD⌋ = SC

and S⊆C = ⌊S⊆D⌋ = ⌊SD⌋ = SC.

(f) This follows immediately from part (d) of lemma 3.8: ⌈S⌉ ⊆ T ⊆ S⊆ =⇒ SD = T D.

Applying the minimality operator then yields SC = T C.

Part (a) of the next observation was first presented in [EF70].

Lemma 3.10 (Blocking). Let S ⊆ P(E).

(a) Sbb = ⌊S⌋

(b) ⌊S⌋b = Sb

(c) Sb = T b ⇐⇒ Sm = T m

(d) Sb = T b =⇒ (S ∪ T )b = Sb **Reverse direction does not necessarily hold.**

Proof.

(a) This follows from parts (a) and (c) of lemma 3.2 as well as part (a) of proposition 2.1:

Sbb = ⌊⌊Sm⌋m⌋ = ⌊Smm⌋ = ⌊S⊇⌋ = ⌊S⌋.

(b) This follows from part (a) of lemma 3.2: ⌊S⌋b = ⌊⌊S⌋m⌋ = ⌊Sm⌋ = Sb.

(c) From part (c) of proposition 2.1 and part (b) of lemma 3.2 we have the following

observation: Sb = T b ⇐⇒ Sm ⊆ T m⊇ = T m and T m ⊆ Sm⊇ = Sm ⇐⇒ Sm = T m.

(d) Suppose that Sb = T b. By part (c) we get Sm = T m. It then follows from part (d) of

lemma 1.10 that Sm = (S ∪ T )m. Applying minimality then results in (S ∪ T )b = Sb.

Note: The reverse implication does not necessarily hold: Let S = {{a}, {b}} and

T = {{a}} and E = {a, b}. It then follows that (S ∪ T )b = Sb = {{ab}}, however

T b = {{a}} which is incomparable to Sb.
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3.3.3 Matroid Operator Interactions with One Another

With the interesting relations between meet and cycles-to-independent and bases-to-dependent

of proposition 3.1 we garnish some nice relations between blocking and cycles-to-bases and

bases-to-cycles. Part (a) of the next observation coincides with [Vad86, Proposition 1.2].

Remark: There is actually a typo in Vaderlind’s paper, the “b0(M)” should really be

“b̃0(M)”.

Proposition 3.2 (Blocking and Matroid Operators). Let S ⊆ P(E).

(a) Sb− = SB

(b) S−b = SC

(c) SCB = ⌈S⌉ and SBC = ⌊S⌋

Proof.

(a) From parts (a) of lemma 3.3 and (a) of proposition 3.1, it follows that Sb− = ⌊Sm⌋− =

⌈Sm−⌉ = ⌈SI⌉ = SB.

(b) From part (b) of proposition 3.1, it follows that S−b = ⌊S−m⌋ = ⌊SD⌋ = SC.

(c) From part (a) of lemma 3.10, parts (a) and (b) of this result, the self-inversion of the

complementary operator, and part (a) of lemma 3.3 it follows that

SCB = Sb−−b = Sbb = ⌊S⌋ and SBC = S−bb− = ⌊S−⌋− = ⌈S−−⌉ = ⌈S⌉

With how similar this proposition is to proposition 3.1 you might expect a similar looking

diagram and you would be correct. However, we will also be incorporating the circuit duality

operator into our diagram and so we delay exploring commutations until section 4.3.
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3.3.4 Stable and Dual Stable Families of Operators

Now that we have some results about our operators, we can give some of the stable and dual

stable families for them. This first grouping consists of simple operators. The class of all

union closed collections is denoted by U2.

− c ⌊ ⌋ ⌈ ⌉ ⊇ ⊆ u m ⊥

S(□) L2 L2 Sp2 Sb2 U2

D(□) P2 P2 Sp2

Table 3.1: Stable families for simple operators.

This second grouping consists of matroid operators or combinations of matroid operators.

b ∗ ID DI BC CB

S(□) Sp2 Sb2 L2 L2

D(□) L2 R2

Table 3.2: Stable families for matroid operators.
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Chapter 4

Matroidial Conditions and

Interactions with Circuit Duality

4.1 Matroidial Conditions for the Matroid Operators

Although these matroid operators map between the various collections of a matroid, just

like with the circuit duality operator, they can really be applied to any collection - not

just collections associated with matroids. So it is no surprise that they can also be used to

generate matroids, albeit not iteratively, but under some other conditions.

4.1.1 cycles-to-bases Results

The following proposition and theorem generalizes a known result in matroid theory [GM12,

Proposition 4.7, part (1)].

Proposition 4.1. Let S ⊆ P(E)− {∅} be a nonempty collection. For any B ∈ SB and any

x ∈ E −B, there exists Ax ∈ ⌊S⌋ such that x ∈ Ax ⊆ B ∪ {x}.

Proof. Let S ⊆ P(E)−{∅} be a nonempty collection. It follows from part (d) of lemma 1.6,

parts (a) and (c) of lemma 1.12, part (g) of lemma 1.5, and parts (d) and (g) of lemma 1.4
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that SB is nonempty and contains only proper subsets of E, and that ⌊S⌋ is nonempty and

contains only nonempty sets.

Let B ∈ SB and x ∈ E − B be given. Note that by definition B is maximal with

respect to containing no set of S. Thus, for all x ∈ E − B, B ∪ {x} contains some Wx ∈ S.

Moreover, for all Wx ⊆ B ∪ {x} we must have x ∈ Wx. Lastly, there exists Ax ∈ ⌊S⌋ such

that x ∈ Ax ⊆ Wx. If not, then Ax ⊆ B, a contradiction to B ∈ SB. Thus, the result

holds.

Theorem 2. Let S ⊆ P(E)−{∅} be a nonempty collection. Then, SB is collection of bases

of a matroid (or equivalently ⌊S⌋ is the collection of circuits of a matroid) if and only if for

each B ∈ SB and x ∈ E −B, there exists a unique Cx ∈ ⌊S⌋ such that x ∈ Cx ⊆ B ∪ {x}.

Proof. Let S ⊆ P(E)−{∅} be a nonempty collection. It follows from part (d) of lemma 1.6,

parts (a) and (c) of lemma 1.12, part (g) of lemma 1.5, and parts (d) and (g) of lemma 1.4

that SB is nonempty and contains only proper subsets of E, and that ⌊S⌋ is nonempty and

contains only nonempty sets.

(→) Suppose that SB is the collection of bases for some matroid. It then follows that

⌊S⌋ = SBC is the collection of circuits for the same matroid. Let B ∈ SB and x ∈ E−B. By

the previous proposition we have that there exists Cx ∈ ⌊S⌋ such that x ∈ Cx ⊆ B ∪ {x}.

Thus, we have existence.

Now suppose (by way of contradiction) that we also have Ax ∈ ⌊S⌋ − {Cx} such that

x ∈ Ax ⊆ B ∪ {x}. Since ⌊S⌋ follows the circuit axioms for matroids, then by (C3) of

the circuit axioms we have that there exists D ∈ ⌊S⌋ such that D ⊆ (Cx ∪ Ax) − {x}.

However, this now implies that B (a basis) contains D (a cycle) since (Cx ∪Ax)−{x} ⊆ B;

a contradiction! Therefore, Cx is the unique set in ⌊S⌋ such that x ∈ Cx ⊆ B ∪ {x}.

(←) Suppose that for each B ∈ SB and x ∈ E − B, there exists a unique Cx ∈ ⌊S⌋

such that x ∈ Cx ⊆ B ∪ {x}. We first noted that since ∅ ̸∈ S, then SB ̸= ∅; thus (B1) of the

basis axioms for matroids is satisfied.

Next we’ll show that all sets in SB have the same cardinality: By way of contradiction,
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let B1, B2 ∈ SB such that |B1| < |B2| and that |B1 ∩ B2| is maximal with respect to these

conditions. Since SB is a clutter by definition, then B1−B2 is nonempty, so let x ∈ B1−B2.

By hypothesis, let Ax ∈ ⌊S⌋ be the unique set such that x ∈ Ax ⊆ B2 ∪ {x}. Since Ax ̸⊆ B1

by definition of SB, then let y ∈ Ax −B1 and consider the set B2 ∪ {x} − {y}.

Since Ax is the only set in ⌊S⌋ that contains x and is contained in B2 ∪ {x}, then there

are no sets in ⌊S⌋ that are contained in B2 ∪ {x} − {y}. It follows that (B2 ∪ {x} − {y}) ∈

⌊S⌋I = SI and so there exists B3 ∈ SB such that B2 ∪ {x} − {y} ⊆ B3.

We now observe the following inequality:

|B1| < |B2| = |B2 ∪ {x} − {y}| ≤ |B3|

Moreover, since x ∈ B1 and y ̸∈ B1, we have

|B1 ∩B2| < |B1 ∩ (B2 ∪ {x} − {y})| = |B1 ∩B2|+ 1 ≤ |B1 ∩B3|

which contradicts the maximality of |B1 ∩ B2|. Hence, all sets in SB must have the same

cardinality. This satisfies (B2) of the basis axioms for matroids.

Furthermore, this now implies (B3) of the basis axioms for matroids: We follow the

same construction to get B2 ∪ {x} − {y} ⊆ B3, but now the cardinality condition forces

|B2| = |B2 ∪ {x} − {y}| = |B3|. This then implies equality: B2 ∪ {x} − {y} = B3. And so

B2 ∪ {x} − {y} ∈ SB which finally satisfies (B3) of the basis axioms for matroids.

In the special case when S is a nontrivial clutter, we now have a matroidial characteri-

zation.

Corollary 2. Let S ⊆ P(E) − {∅} be a clutter. Then S is the collection of circuits of a

matroid if and only if SB satisfies the theorem above.
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4.1.2 bases-to-cycles Results

We now attempt to shift our focus towards the bases-to-circuits operator and find an anal-

ogous result, though our efforts are unfortunately less fruitful. The first result essentially

says that for each ‘circuit’ in SC, if you remove an element from it, then there exists a ‘basis’

B ∈ SCB = ⌈S⌉ that contains the now ‘independent’ set.

Proposition 4.2. Let S ⊆ P(E)−{E} be a nonempty collection. For any C ∈ SC and any

x ∈ C, there exists Bx ∈ ⌈S⌉ such that x ̸∈ Bx and Bx ∩ C = C − {x}.

Proof. Let S ⊆ P(E)−{E} be a nonempty collection. It follows from part (d) of lemma 1.7,

parts (a) and (c) of lemma 1.13, part (g) of lemma 1.4, and parts (d) and (g) of lemma 1.5 that

SC is nonempty and contains only nonempty sets, and that ⌈S⌉ is nonempty and contains

only proper subsets of E.

Let C ∈ SC and x ∈ C be given. Since C is not contained in any of set of S minimally,

then C − {x} is contained in some set Wx ∈ S and so C − {x} is contained in some set

Bx ∈ ⌈S⌉. Moreover, we must have that x ̸∈ Bx, else we have C ⊆ Bx which contradicts

C ∈ SC. It follows that (C − {x}) ∩ Bx = C − {x} ⊆ C ∩ Bx. On the other hand, we have

C ∩Bx ⊆ C and so C ∩Bx − {x} = C ∩Bx ⊆ C − {x}. Therefore, we have equality.

This next results says that if your collection is the circuits of a matroid, then for each

circuit in SC, you can remove any element. This produces independent set which can then

be built up to a basis, no matter which element was removed.

Theorem 3. Let S ⊆ P(E) − {E}. If SC is the collection of circuits of a matroid (or

equivalently ⌈S⌉ is the collection of bases of a matroid), then for each C ∈ SC, there exists

T ⊆ E − C such that for all y ∈ C we have (C ∪ T )− {y} ∈ ⌈S⌉.

Proof. Let S ⊆ P(E)− {E}. It follows that SC is nonempty.

Suppose that SC is the collection of circuits for some matroid. It then follows that

⌈S⌉ = SCB is the collection of bases for the same matroid. Thus, ⌈S⌉ is nonempty which

implies S is nonempty. Therefore, SC does not contain the empty set.
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Let C ∈ SC and x ∈ C. By the previous proposition we have that there exists Bx ∈ ⌈S⌉

such that x ̸∈ Bx and Bx∩C = C−{x}. Note that C−{x} ⊆ Bx. Define T = Bx−C ⊆ E−C

and observe the following:

C ∪ T = ((C − {x}) ∪ {x}) ∪ T = (Bx ∩ C) ∪ {x} ∪ T = Bx ∪ {x}

Now let y ∈ C. If y = x, then

(C ∪ T )− {y} = (C ∪ T )− {x} = (Bx ∪ {x})− {x} = Bx

which is in ⌈S⌉. So suppose y ̸= x and again observe that

(C ∪ T )− {y} = (Bx ∪ {x})− {y}

Again, by the previous proposition, there exists By ∈ ⌈S⌉ such that y ̸∈ By and By ∩ C =

C −{y}. Moreover, since C −{x} ⊆ Bx and C −{y} ⊆ By, then we must have x ∈ By −Bx

and y ∈ Bx−By. by hypothesis, ⌈S⌉ is the collection of bases of a matroid, and so it follows

from the basis exchange axiom that (Bx∪{x})−{y} is contained in ⌈S⌉. Hence, T ⊆ E−C

and (C ∪ T )− {y} is contained in ⌈S⌉ for all y ∈ C, as desired.

Conjecture 2. The converse to theorem 3 holds.

4.2 Interactions with the Circuit Duality Operator

We now proceed to see how our recently introduced matroid operators interact with the

circuit duality operator:

Lemma 4.1. Let S ⊆ P(E). Then Sb ⊆ S∗I.
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Proof. We first note that when S is the empty collection, the result holds:

∅b = {∅} = {{x} : x ∈ E}I = ∅∗I

Secondly, if S contains the empty set, the result also holds since the blocking collection of

S is empty, by part (a) of lemma 1.10 and part (g) of lemma 1.4. Thus, without loss of

generality, we may further assume that S ⊆ P(E)− {∅} is a nonempty collection.

From part (a) of proposition 3.2 and the involution of the complementary operator we

have that Sb = SB−. Let B ∈ SB and suppose (by way of contradiction) that E −B ̸∈ S∗I .

It then follows that there exists T ∈ S∗ such that T ⊆ E − B. Let x ∈ T , then by

proposition 4.1 there exists Ax ∈ ⌊S⌋ ⊆ S such that x ∈ Ax ⊆ B ∪ {x}. However, we then

have that |Ax ∩ T | = |{x}| = 1; a contradiction since T ∈ S∗. Hence, E − B ∈ S∗I and so

Sb ⊆ S∗I .

Theorem 4. Let S ⊆ P(E)−{∅}. If Sb ⊆ S∗B, then ⌊S⌋ is the set of circuits of a matroid.

Proof. We first note that when S is the empty collection, we had from the previous lemma

that Sb = S∗I . Applying maximality then yields Sb = S∗B. Moreover, S = ∅ is the collection

of circuits of the free matroid - every subset of E is an independent collection and so there

are no circuits. Thus, we may further assume that S is a nonempty collection.

Let S ⊆ P(E) − {∅} be a nonempty collection such that Sb ⊆ S∗B and suppose (by

way of contradiction) that ⌊S⌋ is not the set of circuits of a matroid. Since ⌊S⌋B = SB and

⌊S⌋ = SBC, then SB is not the set of bases of a matroid.

Let B ∈ SB and x ∈ E − B. It then follows from the contrapositive of theorem 2

that there exist distinct Ax, A
′
x ∈ S such that x ∈ Ax, A

′
x ⊆ B ∪ {x}. Without loss of

generality, let y ∈ Ax − A′
x ⊆ B. From part (a) of proposition 3.2 and the involution of the

complementary operator we have that Sb = SB−. So by hypothesis, E −B ∈ S∗B and so by

proposition 4.1 there exists Ty ∈ S∗ such that y ∈ Ty ⊆ (E − B) ∪ {y}. However, we now

have that |Ty ∩ Ax| = |{y}| or |{x, y}|. But in the latter case, we have |Ty ∩ A′
x| = |{x}|.
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And so in either case, it follows that Ty ̸∈ S∗; a contradiction. Hence, we must have that

⌊S⌋ is the set of circuits of a matroid.

Remark: The converse to this theorem does not necessarily hold. Take S = {{ab}, {abcd}}

on the ground setE = {a, b, c, d}. It follows that Sb = {{a}, {b}} while S∗B = {{ac}, {ad}, {bc}, {bd}}

which are incomparable.

However, the converse might hold when S ⊆ ⌊S⌋u, since by part (e) of proposition 2.2

we get that S∗ = ⌊S⌋∗ in this case.

Conjecture 3. Let S ⊆ P(E). If ⌊S⌋ is the collection of circuits of a matroid and S ⊆ ⌊S⌋u,

then Sb ⊆ S∗B.

Conjecture 4. Let S ⊆ P(E). If Sb ⊆ S∗B, then Sb = S∗B.

Lemma 4.2. The following are equivalent:

(a) Sb = S∗B

(b) S∗ = SbC

(c) S∗ = SBb

(d) SB = S∗b

Proof. (a ⇐⇒ b) Suppose that Sb = S∗B. Applying ( )C yields SbC = S∗BC. Now by

part (c) of proposition 3.2 it follows

SbC = S∗BC = ⌊S∗⌋ = S∗

Now suppose that S∗ = SbC. Applying ( )B yields S∗B = SbCB. Now by part (c) of proposi-

tion 3.2 it follows

S∗B = SbCB = ⌈Sb⌉ = Sb
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(b ⇐⇒ c) From parts (a) and (b) of proposition 3.2 observe that:

SbC = Sb−b = SBb

Thus, it is clear that (b) ⇐⇒ (c).

(c ⇐⇒ d) Suppose that S∗ = SBb. Applying ( )b yields S∗b = SBbb. Now by part

(a) of lemma 3.10 it follows

S∗b = SBbb = ⌊SB⌋ = SB

Now suppose that SB = S∗b. Applying ( )b yields SBb = S∗bb. Now by part (a) of lemma 3.10

it follows

SBb = S∗bb = ⌊S∗⌋ = S∗

Theorem 5. Let S ⊆ P(E). If Sb = S∗B, then ⌊S⌋ = S∗∗.

Proof. From the previous lemma and parts (b) and (c) of proposition 3.2, we have

S∗∗ = S∗Bb = SbCBb = ⌈Sb⌉b = Sbb = ⌊S⌋

Corollary 3. Let S ⊆ P(E). If Sb = S∗B and S is a clutter, then S is a frame.

Remark: The converse of this corollary fails; that is, S being a frame does not imply

that Sb = S∗B. Consider S = {bcd, abc, abd, acd, acx} and note that Sb ̸= S∗B.

Lemma 4.3. Let S ⊆ P(E). If S is the collection of bases of a matroid, then SC = Sb∗ and

Sb = SC∗.

Proof. Since S is the collection of bases of a matroid, then SC is the collection of circuits of

the matroid and Sd is the collection of cocircuits of the matroid. It then follows that SC∗ is
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the collection of cocircuits of the matroid and Sb∗ is the collection of circuits of the matroid.

Since the circuit and cocircuit collections of a matroid are unique to that matroid, then we

must have SC = Sb∗ and Sb = SC∗.

4.3 A Commuting Diagram Emerges

Based on our findings above, we see that these matroidial operators seem to play fairly

well with one another, but the collections that they play well on get more restrictive when

incorporating more commutations. We introduce a diagram to illustrate these compatibilities

(see fig. 4.1a). Initially, we’ll consider all collections of subsets of a finite ground set. Recall

the denotation of this class as P2.

(a) All collections. (b) All clutters.

Figure 4.1: First two restrictions of the commuting diagram for the matroid operators.

Restricting our collections down to L2, the class of all clutters, we saw from proposi-

tion 3.2 that a few new commutations come into play (see fig. 4.1b).

The next commutation that we can incorporate is for circuit duality, though we’ll need

to restrict clutters to two classes: frames and bracings (see fig. 4.2a). We say a collection X

is a brace or a bracing when X b is a frame. Recall that R2 denotes the class of all frames,

so we’ll efficiently denote the class of all bracings as bR2. Note that a bracing is a clutter

since the blocking operator maps to clutters and that there is a one-to-one relation between
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(a) Frames and bracings. (b) Circuits and bases.

Figure 4.2: Second two restrictions of the commuting diagram for the matroid operators.

the class of frames and the class of bracings since the blocking operator is an involution on

clutters.

Lastly, we want to see when the upper triangle commutes. We know that it commutes

for matroidial collections (since these operators are the isomorphisms between (co)circuits

and (co)bases collections). Do these operators only commute for matroidial collections? Our

results from this section are all pointing towards a yes. Fortunately, we are not being misled

despite our results not quite carrying us across the finish line (yet).

It was shown in [Vad86, Proposition 2.3] that a clutter is a collection of circuits of a

matroid if and only if the clutter was a fixed point of the map ( )bC∗. Then in [CFM91,

Corollary 5.4], it was shown that a clutter is a collection of bases of a matroid if and only

if the clutter was a fixed point of the map ( )b∗B. This leads to the final fully commuting

diagram (fig. 4.2b). Recall that C2 denotes the class of all collections of circuits of a matroid

and B2 denotes the class of all collections of bases of a matroid.

62



Chapter 5

Non-Matroidial Frames

We now shift our focus to frames. We saw in section 3.2 that repeated applications of the

circuit duality operator always resulted in a frame. Additionally, we saw that matroidial

collections are inherently frames. Thus, we had the containment of classes: C2 ⊆ R2. Back

in section 1.3.3 question 1 asked “If a collection is a frame, does it always correspond to the

circuit collection of some matroid?” The answer (unfortunately spoiled by the title of this

chapter) is no! No, it does not!

In this section we give two examples of non-matroidial frames. Furthermore, we give a

breakdown of each of their structures; both of which are built upon the backs of matroidial

collections. Additionally, each non-matroidial frame provides a definitive example for the

proper containment of the class of all matroidial collections within the class of all frames:

C2 ⊂ R2.

5.1 Mutated Binary Frames

Recall the mention of a binary matroid from section 1.2.1. These matroids were formed from

the subspaces of (P(E),△) where△ is the symmetric difference of two sets. However, binary

matroids have many characterizations [Oxl11, Theorem 9.1.2]. We give one of particular use

to us: If for every pair of circuits of a matroid, their symmetric difference is also a circuit,
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then the matroid is a binary matroid.

Example 3. Consider the collection S = {{abc}, {cde}, {abde}, {ace}} and its dual S∗.

The ground set for this particular collection is E = {a, b, c, d, e}.

Sets

S abc cde abde ace

S∗ acd bce abde ace

S∗∗ abc cde abde ace

Table 5.1: Circuit duality computations for example 3.

Clearly, the collection is a frame. However, this frame is non-matroidial - it fails the circuit

axioms of a matroid. Specifically, the pair of sets ({abc}, {ace}) fails condition (C3) of the

circuit axioms (definition 2). Their intersection is {ac} while their union is {abce}. However,

there is no set in S that is a subset of {abe} = {abce}−{c} nor {bce} = {abce}−{a}. Thus, S

is not the collection of circuits of some matroid. We note that the pair of sets ({cde}, {ace})

also fail the third circuit axiom.

A keen observer might note that this particular frame does contain a matroidial sub-

collection. Specifically, the subcollection {{abc}, {cde}, {abde}} has the form {A,B,A△B},

which is a binary matroid of size three - one of the smallest binary matroids.

5.1.1 Construction

Through numerous computer checks, we’ve seen that taking M = {A,B,A△B}, a binary

matroid of size three, and adding a set M to it so that certain conditions are satisfied results

in a non-matroidial frame. We phrase this more precisely as the following conjecture:

Conjecture 5. Let E be a finite set and let A and B be proper subsets of E such that the

following properties hold:

(a) A−B, B − A, and A ∩B are all nonempty.
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(b) At least two of the three above sets contain two or more elements.

Let S = {A,B,A△B,M} such that M has nonempty intersection with A − B, B − A,

and A∩B; at most one of which is fully contained in M . Then S is a non-matroidial frame.

The non-matroidial property is easy enough to see: the circuit axioms fail with the pair

(M,A) as well as the pair (M,B).

We make a few notes about the required conditions:

• If any of A−B, B −A, or A∩B are empty, then we get that S is no longer a clutter.

And so, S cannot be a frame.

• If at least two of the three above sets contain only a single element, then M fully

contains at least two of the sets, which then implies that M contains at least one of

A, B, or A△B. This results in S not being a clutter and therefore not being a frame.

This extra set M seems to infect each of the cells of the Venn diagram for A and B

by sharing at least one element of each cell. But its presence within S does not appear to

disrupt the structure needed to be a frame.

5.2 Tethered Uniform Frames

Recall the brief mention of a uniform matroid from example 2. A uniform matroid Uk,n is a

matroid on a ground set of size n that has Pk(E) as its collections of bases and Pk+1(E) as

its collection of circuits.

Example 4. Consider S = {{abc}, {abd}, {acd}, {bcd}, {abx}} and its dual collection S∗.

The ground set for this particular collection is E = {a, b, c, d, x}.

This collection is also a non-matroidial frame - failing the third condition of the circuit

axioms. Specifically, it fails with the pair of sets ({abx}, {abd}): their intersection is {ab}

while their union is {abdx}. However, there is no set in S that is a subset of either {bdx}
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Sets

S abc abd acd bcd abx

S∗ abc abd acdx bcdx

S∗∗ abc abd acd bcd abx

Table 5.2: Circuit duality computations for example 4.

or {adx}. Thus, S is not the collection of circuits of some matroid. We note that the pair

of sets ({adx}, {abc}) also fails the third circuit axiom.

Again, a sharp eye might notice that this particular frame contains the subcollection

{{abc}, {abd}, {acd}, {bcd}} - which corresponds to the circuit collection of the uniform ma-

troid U2,4.

This peculiar set {a, b, x} ‘tethers’ itself to each circuit in our uniform collection by

sharing at least one element. It also contains a foreign element x which is not in the support

of the uniform collection; it seems to act as a filler element in the first dual. The resulting

‘tethered’ collection is a non-matroidial frame.

5.2.1 Construction

A more general construction for tethered uniform frames is as follows:

Theorem 6. Let F be a finite set of size n ≥ 4. Let Fi be a subset of F of size i such that

2 ≤ i ≤ n− 2. Take

S = Pn−1(F ) ∪ {Fi ∪ {x}}

Then S is a non-matroidial frame; that is, S = S∗∗ and S is not the collection of circuits of

a matroid.

We’ll prove this result through a series of lemmas. But first, some comments about the

sizing requirements:
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• We need F to be at least 4 in order to ensure that sets in Pn−1(F ) are at least size 3

which further ensures that (Pn−1(F ))⊥ = P≥n−(n−1)+2(F ) = P≥3(F ).

• We want i ≥ 2 to ensure that Fi ∪ {x} is at least a triple for similar reasons as above.

• We want i ≤ n− 2 to ensure that S remains a clutter: if i = n− 1, then Fi ∈ Pn−1(F )

and so Fi ⊂ Fi ∪ {x} which means S would not be a clutter. Hence, it could not be a

frame.

Lemma 5.1. S is non-matroidial.

Proof. Let C1 = Fi ∪ {x} and take C2 to be any set in Pn−1(F ) that contains Fi. It follows

that the pair (C1, C2) fails the third circuit axiom: Note that C1∪C2 = Fi∪{x}∪K such that

K ∈ Pn−i−1(F−Fi). Then for any y ∈ C1∩C2 we have (C1∪C2)−{y} = (Fi∪{x}∪K)−{y}

By construction, the only set in S that contains x is Fi ∪ {x}, but this is not contained in

(Fi ∪ {x} ∪K) − {y} since y ∈ Fi. On the other hand, any set in S that does not contain

x has size n − 1. However, subsets of (Fi ∪ {x} ∪ K) − {y} that do not contain x have a

maximum size of n− 2. Thus, there is no set in S that is contained in (C1 ∪ C2)− {y} for

any y ∈ C1 ∩ C2. Therefore, S is not the collection of cycles of a matroid.

Lemma 5.2. The first dual of S is the following:

S∗ =

 A ∪ {x}, |A ∩ Fi| = 1

A, else

where A ∈ P3(F )

Proof. Let N =

 A ∪ {x}, |A ∩ Fi| = 1

A, else

where A ∈ P3(F ). We first note that by con-

struction N is a clutter. We now aim to show that N ⊆ S⊥ ⊆ N⊇. It would then follow

by part (c) of proposition 2.1 that ⌊N⌋ = ⌊S⊥⌋, but since N is a clutter, then we get that

N = S∗.
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We show the first containment now: let W ∈ N . Suppose that x ̸∈ W . Then by

construction, W ∈ P3(F ) which now implies that W ∈ (Pn−1(F ))⊥. Moreover, |W ∩ (Fi ∪

{x})| = |W ∩ Fi| ≠ 1 by construction. So then W ∈ {Fi ∪ {x}}⊥ which implies that

W ∈ (Pn−1(F ))⊥ ∩ {Fi ∪ {x}}⊥ = S⊥.

Now suppose that x ∈ W . It then follows by construction that W = A ∪ {x} for some

A ∈ P3(F ) such that |A∩Fi| = 1. Thus, |W ∩ (Fi ∪ {x})| = 2 ̸= 1 and so W ∈ {Fi ∪ {x}}⊥.

Note that x ̸∈ B for any B ∈ Pn−1(F ) and so |W∩B| = |A∩B| ≠ 1 for all B ∈ Pn−1(F ) since

A ∈ P3(F ) ⊆ (Pn−1(F ))⊥. Hence, W ∈ (Pn−1(F ))⊥ and therefore W ∈ S⊥. In conclusion,

N ⊆ S⊥.

We now show the second containment: let T ∈ S⊥. We’ll consider cases: |T ∩ Fi| = 0,

|T ∩ Fi| = 1, and |T ∩ Fi| ≥ 2.

(Case: |T ∩ Fi| = 0) Since T ∈ S⊥, then T ∈ {Fi ∪ {x}}⊥. So by assumption we

have |T ∩ (Fi ∪ {x})| = |T ∩ {x}| ̸= 1, which implies that x ̸∈ T . Moreover, note that

T ∈ (Pn−1(F ))⊥ = P≥3(F ). Thus, there exists W ∈ P3(F ) such that W ⊆ T . Moreover,

|W ∩ Fi| = 0 since |W ∩ Fi| ≤ |T ∩ Fi| = 0 which implies that W ∈ N . Hence, T ∈ N⊇.

(Case: |T ∩ Fi| = 1) Since T ∈ S⊥, then T ∈ {Fi ∪ {x}}⊥. So by assumption we

have 1 ̸= |T ∩ (Fi ∪ {x})| ≥ |T ∩ Fi| = 1, which implies that x ∈ T . Moreover, x ̸∈ A for all

A ∈ Pn−1(F ) which now implies that 1 ̸= |T ∩A| = |T −{x}∩A| for all A ∈ Pn−1(F ). Thus,

T −{x} ∈ (Pn−1(F ))⊥ = P≥3(F ). Thus, there exists V ∈ P3(F ) such that V ⊆ T −{x} and

|V ∩ Fi| = 1 since 2 ≤ n − i = |F − Fi|. Therefore, take W = V ∪ {x}. Then W ⊆ T and

W ∈ N and so T ∈ N⊇.

(Case: |T ∩ Fi| ≥ 2) Let S = {a, b} such that a, b ∈ T ∩ Fi, then S ⊆ T and

|S ∩ Fi| = 2. Suppose (by way of contradiction) that S = T , then F − {a} ∈ Pn−1(F ) and

|T ∩ (F − {a})| = 1 which implies that T ̸∈ (Pn−1(F ))⊥ ⊆ S⊥; a contradiction! Hence,

S is a proper subset of T , which implies that |T | ≥ 3. Suppose (by way of contradiction)

|T ∩ (F − S)| = 0, then T = {a, b, x} since |T | ≥ 3. However, the same contradiction

as above comes up: F − {a} ∈ Pn−1(F ) and |T ∩ (F − {a})| = 1 which implies that
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T ̸∈ (Pn−1(F ))⊥ ⊆ S⊥; a contradiction! Hence, there exists c ∈ T ∩ (F −S) and so it follows

that {a, b, c} ∈ P3(F ) is a subset of T and |{a, b, c}∩Fi| ≠ 1. Therefore, {a, b, c} ∈ N which

now implies that T ∈ N⊇.

Therefore, S⊥ ⊆ N⊇ and so we have N ⊆ S⊥ ⊆ N⊇. Thus, by part (c) of proposition 2.1

we have ⌊N⌋ = ⌊S⊥⌋ and since N is a clutter, then N = S∗, as desired.

Lemma 5.3. S is a frame.

Proof. We first note that by construction S is a clutter. We now aim to show that S ⊆

S∗⊥ ⊆ S⊇. It would then follow by a minimality lemma that ⌊S⌋ = ⌊S∗⊥⌋, but since S is a

clutter, then we get that S = S∗∗. Recall that we always have the first containment by part

(a) of proposition 2.4: S ⊆ S∗⊥.

We now aim to show the second containment: Let K ∈ S∗⊥ and suppose that x ̸∈ K.

For each A ∈ P3(F ) either A ∈ S∗ or (A ∪ {x}) ∈ S∗. It then follows that |K ∩ A| =

|K∩(A∪{x})| ≠ 1. Thus, K ∈ (P3(F ))⊥ = P≥n−1(F ) and so there exists W ∈ Pn−1(F ) ⊆ S

such that W ⊆ K which now implies that K ∈ S⊇.

Now suppose that x ∈ K and that |K| ≥ n. Then |K − {x}| ≥ n− 1 and K − {x} ⊆ F .

Thus, there exists W ∈ Pn−1(F ) ⊆ S such that W ⊆ K. Hence, K ∈ S⊆.

Lastly, suppose that x ∈ K and that |K| ≤ n− 1. Then |K −{x}| ≤ n− 2. Suppose (by

way of contradiction) that Fi ̸⊆ K. Let y ∈ Fi −K. Since i ≤ n− 2, then |F − Fi| ≥ 2 and

so there exists Ay ∈ P3(F ) such that Ay ∩ Fi = {y} and |Ay ∩ (F − Fi)| = 2. It follows that

Ay ∪ {x} ∈ S∗ and so |K ∩ (Ay ∪ {x})| ≠ 1. Since x ∈ K − Ay, then we have |K ∩ Ay| ≠ 0.

Moreover, since y ̸∈ K then we get that K ∩ (F − Fi) ̸= ∅. (We’ll use this later on.)

Since |K| ≤ n − 1, then |K − {x}| ≤ n − 2 which implies that |F − K| ≥ 2. So let

a, b ∈ F − K. Suppose (by way of contradiction) that a, b ̸∈ Fi, then a, b ̸= y. And so

{a, b, y} ∈ P3(F ) and |{a, b, y} ∩ Fi| = 1 which implies that {a, b, x, y} ∈ S∗. However,

|K ∩ {a, b, x, y}| = |{x}| = 1 and so K ̸∈ S∗⊥; a contradiction. Hence, we must have either

a ∈ Fi or b ∈ Fi.

Without loss of generality, let a ∈ Fi. Suppose (by way of contradiction) that a ̸= y.
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Since K ∩ (F − Fi) ̸= ∅ (from earlier) let z ∈ K ∩ (F − Fi). Then {a, y, z} ∈ S∗ since

|{a, y, z} ∩ Fi| ̸= 1. However, |K ∩ {a, y, z}| = |{z}| = 1 and so K ̸∈ S∗⊥; a contradiction.

Hence, we must have a = y.

Now suppose (by way of contradiction) that b ∈ Fi as well, then {b, y, z} ∈ S∗ since

|{b, y, z} ∩ Fi| ≠ 1. Similarly, |K ∩ {b, y, z}| = |{z}| = 1 and so K ̸∈ S∗⊥; a contradiction.

Hence, we must have b ̸∈ Fi.

Suppose (by way of contradiction) that K ∩ Fi = ∅, then since |Fi| ≥ 2 there exists

w ∈ Fi −K such that w ̸= y. It then follows that {w, y, z} ∈ S∗ since |{w, y, z} ∩ Fi| ̸= 1.

However, |K ∩ {w, y, z}| = |{z}| = 1 and so K ̸∈ S∗⊥; a contradiction. Hence, we must

have K ∩ Fi ̸= ∅. So let v ∈ K ∩ Fi, then {b, v, y} ∈ S∗ since |{b, v, y} ∩ Fi| ̸= 1. However,

|K ∩ {b, v, y}| = |{v}| = 1 and so K ̸∈ S∗⊥; a contradiction. Since we’ve exhausted all of

our options, then our original assumption must be false; that is we must have Fi ⊆ K.

It now follows that Fi ∪ {x} ⊆ K, which now implies that K ∈ S⊇. Hence, we now have

S ⊆ S∗⊥ ⊆ S⊇. It then follows by part (c) of proposition 2.1 that ⌊S⌋ = ⌊S∗⊥⌋, but since S

is a clutter, then we get that S = S∗∗, as desired.

5.3 Further Generalizations

Although we haven’t explored generalizing mutated binary frames, we do believe that this

is certainly room for it. Tethered uniform collections, however have received much more of

our attention.

Large Tethering Sets

We note that the construction above yields a whole family of non-matroidial frames. Nu-

merous computer/computation checks have confirmed the next conjecture, but a proof has

not yet been completed. We think much of the previous proof can be adapted to the more

generalized result.
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Conjecture 6. Let F be a finite set of size n ≥ 4. Let Fi be a subset of F of size i such

that 2 ≤ i ≤ n− 2. Let M be a disjoint set from F . Take

S = Pn−1(F ) ∪

(⋃
α∈M

{Fi ∪ {α}}

)
∪ P2(M)

Then the first dual of S is the following:

S∗ =

 A ∪M, |A ∩ Fi| = 1

A, else

where A ∈ P3(F )

Moreover, S is a non-matroidial frame; that is S = S∗∗ and S is not the collection of circuits

of a matroid.

Tethered k-Uniform Frames

Though we do have a proven construction for a non-matroidial frame, it limits your sets to

be of size n− 1, where n = |F |. The hope is to generalize these tethered uniform frames to

be composed of sets of size k where 2 ≤ k ≤ n−1. Exhaustive computation on small ground

sets reinforce this conjecture.

Multi-Tethered Uniform Frames

Additionally, it might be possible to add multiple ‘tethering’ sets to the uniform collection

Pn−1(E) and form a non-matroidial frame. Again, we think much of the previous proof can

be salvaged for both of these generalizations, but it is not as clear that these constructions

will attain our goals.

5.3.1 Additional Questions

Now that we’ve seen a family of non-matroidial frames (tethered uniform frames) and a

potential second family (mutated binary frames), a few more questions come to mind.
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The families of frames that we constructed were built from uniform matroids and binary

matroids respectively; hence the naming of the families. So we ask the following:

Question 4a. Can every matroidial collection be modified to build a non-matroidial frame?

Question 4b. Is every non-matroidial frame a modified matroidial collection?

5.3.2 Family Inheritance

When we first defined what a frame is, we noted that matroidial collections are frames. we

just saw in examples 3 and 4 the existence of non-matroidial frames. By definition, frames

are clutters since they consist of minimal sets of an orthogonal collection but in example 1

we unknowingly showed (at the time) an example of a clutter that was not a frame. Hence,

we have the following relation between a these classes:

Proposition 5.1. We have the following class containments: P2 ⊃ L2 ⊃ R2 ⊃ C2

This sequence of containments gives us some insight into frames: the circuit axioms are

too strong of a condition for a collection to be a frame. Specifically, the third circuit axiom

ensures we have a frame, but it is overkill. And axioms (C1) and (C2) alone are not enough

to ensure you have a frame, though they are necessary conditions to be a frame.
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Chapter 6

Spanning Subcollections

Back in section section 1.3.2 we introduced the definition of a spanning subcollection, which

we list again now.

Definition. A subcollection R ⊆ S is called a spanning subcollection (of S) if R∗ = S∗.

Recall from our original discussion that if S is a frame, then R ⊆ R∗∗. And if S is

a matroidial frame, then R is a subcollection that can be used to build said matroid by

applying the circuit duality operator.

6.0.1 Closure Under Unions

We now present an interesting property of the circuit duality operator which provides some

additional properties of spanning subcollections.

Proposition 6.1. Let S, T ⊆ P(E). If S∗ = T ∗, then (S ∪ T )∗ = S∗.

Proof. First observe that S ⊆ (S∪T ) which then implies (S∪T )⊥ = (S⊥∩T ⊥) ⊆ S⊥ ⊆ S⊥⊇.

Let W0 ∈ S⊥. Since S∗ = T ∗, then by part (c) of proposition 2.1 we have that S⊥ ⊆ T ⊥⊇

and T ⊥ ⊆ S⊥⊇. It then follows that there exists W1 ∈ T ⊥ such that W0 ⊇ W1. Similarly,

there exists W2 ∈ S⊥ such that W0 ⊇ W1 ⊇ W2. Continuing this process builds a nested
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chain of sets

W0 ⊇ W1 ⊇ W2 ⊇ . . .

Since our ground set if finite, then W0 is finite and so we must have equality occur somewhere

in the chain; that is Wk = Wk+1 for some non-negative integer k. It then follows that

Wk ∈ S⊥ and Wk ∈ T ⊥ and so Wk ∈ S⊥ ∩ T ⊥ = (S ∪ T )⊥. Since W0 ⊇ Wk, then we have

that W0 ∈ (S ∪ T )⊥⊇. Hence, S⊥ ⊆ (S ∪ T )⊥⊇.

Therefore, by part (c) of proposition 2.1 we have

S∗ = ⌊S⊥⌋ = ⌊(S ∪ T )⊥⌋ = (S ∪ T )∗

This proposition gives some insight into the spanning subcollections of a particular col-

lection: the family of all spanning subcollections of a fixed collection S is closed under

unions.

6.1 Uniform Collections

We say a collection is separable when the collection can be written as a disjoint union of

nonempty subcollections with disjoint nonempty supports. We say a collection is connected

when it is not separable.

6.1.1 Spanning Criterion for P2(E)

Theorem 7. Let R be any subcollection of P2(E), then

R is connected and fully supported ⇐⇒ R⊥ = P2(E)⊥ = {E}

Proof. (→) LetR be a connected and fully support subcollection of P2(E). LetX ∈ R⊥.
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SinceR is fully supported, then by part (a) of lemma 2.2 |X∩{a, b}| = 2 for some {a, b} ∈ R.

I then claim that |X ∩ {x, y}| = 2 for all {x, y} ∈ R: Suppose (by contradiction) that there

exists a pair of elements {r, s} ∈ R such that |X ∩ {r, s}| = 0.

Note that by the connectedness property of R there must exist a chain of pairs {k0, k1},

{k1, k2}, . . . , {kn−1, kn}, all of which are sets in R, such that (without loss of generality)

r = k0 and a = kn. If no such chain exists, then R can be partitioned in to the subcollection

of all pairs that can chain to {r, s} and the disjoint subcollection of all pairs that cannot be

chained to {r, s} - thus, contradicting the connectedness of R.

Note that {k0, k1, . . . , kn} ∩ X ̸= ∅ since kn = a. Let i be the smallest index such that

ki−1 ̸∈ X but ki ∈ X. It then follows that |X ∩ {ki−1, ki}| = 1, which contradicts X ∈ R⊥.

Hence, we must have |X∩{x, y}| = 2 for all {x, y} ∈ R. Thus, {x, y} ⊆ X for all {x, y} ∈ R.

Therefore, ⋃
{a,b}∈R

{a, b} = supp(R) = E ⊆ X

Hence, X = E and so R⊥ = {E} = P2(E)⊥. Therefore, R being connected and fully

supported implies R⊥ = P2(E)⊥ = {E}.

(←) Now let R⊥ = P2(E)⊥ = {E}. Suppose (by way of contradiction) that R

is not fully supported. Then by part (c) of lemma 2.2 R⊥ contains a singleton. Hence,

R⊥ ̸= P2(E)⊥ = {E}; a contradiction!

Now suppose (by way of contradiction) that R is not connected. Then R is the disjoint

union of some nonempty subcollections S, T ⊆ P2(E) such that S and T have disjoint

supports. Note that both S and T are not fully supported. And so the singletons of

E − supp(S) = supp(T ) are contained in S⊥ and the singletons of E − supp(T ) = supp(S)

are contained in T ⊥. Hence, by part (a) of proposition 2.2 the union closures of the sets of

singletons are contained in the respective orthogonal collections; in particular, supp(T ) ∈ S⊥

and supp(S) ∈ T ⊥.

Furthermore, neither subcollection contains a singleton since both are subcollections of
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P2(E). Thus, by part (d) of lemma 2.2 supp(S) ∈ S⊥ and supp(T ) ∈ T ⊥. Therefore, we

have {supp(S), supp(T )} ⊆ R⊥ since R⊥ = (S ∪ T )⊥ = S⊥ ∩ T ⊥. However, it now follows

that R⊥ ̸= P2(E)⊥ = {E}; a contradiction!

Therefore, R⊥ = P2(E)⊥ = {E} implies R is connected and fully supported.

Corollary 4. Let R be any subcollection of P2(E), then

R is connected and fully supported ⇐⇒ R∗ = P2(E)∗ = {E}

Proof. (→) From the theorem above, we get that R⊥ = P2(E)⊥. So then applying

minimality yields R∗ = P2(E)∗ = {E}.

(←) Let R∗ = P2(E)∗ = {E}. Suppose (by way of contradiction) that R is not

fully supported and connected. From the contrapositive of the theorem above we get that

R⊥ ̸= P2(E)⊥ = {E}. It then follows that R⊥ contains X, some proper nonempty subset

of E. But then by minimality, E ̸∈ R∗ and so R∗ ̸= {E} = P2(E); a contradiction!

6.1.2 Spanning Criterion for Pn−1(E)

Theorem 8. Let R be any subcollection of Pn−1(E), then

|R| ≥ n− 1 ⇐⇒ R⊥ = Pn−1(E)⊥ = P≥3(E)

Proof. (→) Suppose that |R| ≥ n−1 and further suppose (by way of contradiction) that

R⊥ ̸= Pn−1(E)⊥. Since R ⊆ Pn−1(E), it then follows that there exists W ∈ R⊥−Pn−1(E)⊥.

Moreover, since Pn−1(E)⊥ = P≥3(E), then |W | ≤ 2. Additionally, since |R| ≥ n − 1 and

R ⊆ Pn−1(E), thenR is fully supported. Thus, by the contrapositive of part (c) of lemma 2.2

we must have |W | = 2 and so W = {x, y} for some x, y,∈ E.

Note that E−{x} and E−{y} are both sets in Pn−1(E). Moreover, there are
(

n
n−1

)
= n

sets in Pn−1(E). Since |R| ≥ n−1, then R must contain either E−{x} or E−{y}. However,
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it follows that |W ∩ (E−{x})| = |{y}| = 1 and |W ∩ (E−{y})| = |{x}| = 1. In either case,

W ̸∈ R⊥; a contradiction.

(←) Suppose that R⊥ = Pn−1(E)⊥ = P≥3(E) and further suppose (by way of

contradiction) that |R| ≤ n−2. Let E−{x} and E−{y} be two of the sets in Pn−2(E)−R.

Note that E−{x} and E−{y} are the only two sets in Pn−1(E) that do not contain both x

and y. Thus, every set inRmust contain both x and y. Hence, |{x, y}∩A| = |{x, y}| = 2 ̸= 1

for all A ∈ R. Thus, {x, y} ∈ R⊥. However, {x, y} ̸∈ P≥3(E) = Pn−1(E)⊥ which implies

that R⊥ ̸= Pn−1(E)⊥ = P≥3(E); a contradiction!

Corollary 5. Let R be any subcollection of Pn−1(E), then

|R| ≥ n− 1 ⇐⇒ R∗ = Pn−1(E)∗ = P3(E)

Proof. (→) Suppose that |R| ≥ n − 1. From the theorem above, we get that R⊥ =

Pn−1(E)⊥ = P≥3(E). So applying minimality yields R∗ = Pn−1(E)∗ = P3(E). Hence,

|R| ≥ n− 1 =⇒ R∗ = Pn−1(E)∗ = P3(E).

(←) Suppose that R∗ = Pn−1(E)∗ = P3(E) and further suppose (by way of con-

tradiction) that |R| ≤ n − 2. Then by the contrapositive of the above theorem, we get

that R⊥ ̸= Pn−1(E)⊥ = P≥3(E). It then follows that there exists an X ∈ R⊥ − P≥3(E).

Moreover, |X| = 2 since R is fully supported. And so, by minimality, X ∈ R∗. How-

ever, X ̸∈ P3(E) which implies that R∗ ̸= P3(E) = Pn−1(E); a contradiction! Therefore,

R∗ = Pn−1(E)∗ = P3(E) =⇒ |R| ≥ n− 1.

6.2 Projective Planes of Small Order

A finite field of order q = pn, where p is prime, produces a projective plane of order q with

q2 + q + 1 points and lines. Moreover, each line contains q + 1 points and each point is the

intersection of q + 1 lines. The smallest projective plane is of order 2 and is usually referred
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to as the Fano Plane. The next two planes of small order are of order 3 and 4. These three

planes contain 7, 13, and 21 lines and points respectively.

It is well known in matroid theory that a projective plane gives a matroid using the point-

line incidence geometry method. (See [GM12] for a nice introductory explanation and [Oxl11]

for a deeper dive.) In particular, the collection of circuits of the matroid, corresponding to

the projective plane, are precisely the sets of three colinear points and the sets of four points,

no three of which are colinear.

6.2.1 Initial Findings

Let S be the collection of lines of any projective plane of finite order. We have the following

results for projective planes of order 2, 3, and 4: the set of symmetric differences of any two

lines is contained in S∗, S is contained in the second dual S∗∗, and lastly S∗ is matroidial.

Moreover, the matroid corresponding to S∗∗ is different than the one obtained using the

finite geometry method. Only in the case of the projective plane of order 2 (the Fano plane),

does the matroid obtained from the finite geometry coincide with the matroid obtained from

the circuit duality operator.

6.2.2 Generalized Results

Based on our findings with the projective planes of order 2, 3, and 4, we attempted to

extract the observations as generalizations. We were successful with two so far. Remark:

l1△ l2 denotes the symmetric difference of the lines l1 and l2, which is defined to be the union

of the points on the lines minus the intersection point of the lines.

Lemma 6.1. Let S be the lines of a projective plane. Then the collection

A = {l1△ l2 : l1, l2 ∈ S}

is contained in S∗.
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Proof. Let A ∈ A, then A = l1△l2 = (l1 ∪ l2) − (l1 ∩ l2) for some l1, l2 ∈ S. Let l ∈ S.

Suppose that l = l1 or l = l2. Without loss of generality, let l = l1. It follows that

|A ∩ l| = |l1 − l2| = (q + 1) − 1 = q ̸= 1. Now suppose that l is distinct from l1 and l2. If

l ∩ l1 = l ∩ l2, then |A ∩ l| = 0 ̸= 1. If l ∩ l1 ̸= l ∩ l2, then |A ∩ l| = 2 ̸= 1. In any case, we

have that |A ∩ l| ≠ 1 and so A ∈ S⊥.

Now let B be a nonempty subset of A. Then A − B is nonempty. Suppose that B has

empty intersection with either l1 or l2. Without loss of generality, take B ∩ l1 to be empty.

Then B∩l2 must be nonempty, so let y ∈ B∩l2. Let x ∈ A∩l1 and note that there is a unique

line lxy ∈ S that contains both x and y. However, it now follows that |B ∩ lxy| = |{y}| = 1

and so B ̸∈ S⊥.

Now suppose that B has nonempty intersection with both l1 and l2. Let x ∈ A−B and

without loss of generality, let x lie on l1. Then let y ∈ B ∩ l2. Again, there exists a unique

line lxy ∈ S that contains both x and y. And again, it follows that |B ∩ lxy| = |{y}| = 1,

implying that B ̸∈ S⊥.

Hence, no proper subsets of A are in the orthogonal collection for S which implies that

A is minimal within S⊥. Thus, A ∈ ⌊S⊥⌋ = S∗ and therefore A ⊆ S∗ as desired.

Lemma 6.2. Let S be the lines of a projective plane. Then S ⊆ S∗∗.

Proof. Note that we already have S ⊆ S∗⊥ for any collection.

Let l ∈ S and let m be a proper nonempty subset of l. Let x ∈ l−m and y ∈ l∩m. Note

that l is the only line that contains both x and y. Let lx be a line different from l that contains

x and ly be a line different from l that contains y. Now observe that |m∩(lx△ly)| = |{y}| = 1.

By the previous proposition, we know that lx△ly ∈ S∗ and so m ̸∈ S∗⊥.

Hence, no proper subsets of l are in the orthogonal collection for S∗ which implies that

l is minimal within S∗⊥. Thus, l ∈ ⌊S∗⊥⌋ = S∗∗ and therefore S ⊆ S∗∗ as desired.

The next result is one from Vaderlind [Vad86, Lemma 5.2], but helps us give a nice result

concerning the lines of a projective plane. We present it in the language we’ve grown fond
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of in this thesis.

Lemma 6.3. [Vad86, Lemma 5.2] Let S be a clutter. If S ⊆ S∗∗, then S∗ is a frame.

Proposition 6.2. Let S be the lines of a projective plane. Then S∗ is a frame.

Proof. This follows immediately from lemmas 6.2 and 6.3 since the collection of lines of a

projective plane is a clutter.

Other generalizations are currently being worked on and the hope is to show that S∗ is

matroidial. For now, we leave it as a conjecture:

Conjecture 7. Let S be the lines of a projective plane. Then S∗ is matroidial.
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Appendix A

Appendix

A.1 Proofs of Operator Properties from Preliminaries

The Support Operator

Proof of lemma 1.1.

(a) Let A ∈ S. For any x ∈ A, we have x ∈ supp(S) by definition. Hence, A ⊆ supp(S)

for all A ∈ S.

(b) (←) By part (a) we have that each set in S is contained in the support. And so

their union is also contained in the support.

(→) Let x ∈ supp(S), then x ∈ A for some A ∈ S. It then follows that x ∈
⋃

A∈S A

which then implies that supp(S) ⊆
⋃

a∈S A. Therefore, we now have equality.

(c) Let x ∈ supp(S), then x ∈ A for some A ∈ S. Since S ⊆ T , then x ∈ A for some

A ∈ T . Thus, x ∈ supp(T ) which now implies that supp(S) ⊆ supp(T ).

(d) (→) Let x ∈ supp(S ∪ T ), then x ∈ A for some A ∈ S or x ∈ B for some B ∈ T . If

x ∈ A, then x ∈ supp(S). On the other hand, if x ∈ B, then x ∈ supp(T ). In either

case, x ∈ supp(S) ∪ supp(T ).
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(←) The reverse containment holds since S, T ⊆ S ∪ T and part (c) tells us that

the support operator is inclusion preserving. Thus, supp(S), supp(T ) ⊆ supp(S ∪ T )

which implies that supp(S) ∪ supp(T ) ⊆ supp(S ∪ T ). Hence, we have equality.

(e) (→) Let x ∈ supp(S ∩ T ), then x ∈ C for some C ∈ S ∩ T ⊆ S, T . It follows that

x ∈ supp(S) ∩ supp(T ).

Note: The reverse direction does not necessarily hold: Take S = {{ab}} and T =

{{bc}}, then supp(S) ∩ supp(T ) = {b} while supp(S ∩ T ) = ∅.

The Complementary Operator

Proof of lemma 1.2.

(a) A ∈ S−− if and only if E − A ∈ S− if and only if E − (E − A) = A ∈ S.

(b) Let A ∈ S−, then E − A ∈ S ⊆ T . Thus, A ∈ T − and therefore S− ⊆ T −.

(c) A ∈ (S ∪ T )− if and only if E − A ∈ (S ∪ T ). We note that E − A ∈ S if and only if

A ∈ S−. Similarly, E − A ∈ T if and only if A ∈ T −. In either case, A ∈ S− ∪ T −.

(d) A ∈ (S ∩T )− if and only if E−A ∈ (S ∩T ) if and only if E−A ∈ S and E−A ∈ T .

This holds if and only if A ∈ S− and A ∈ T − if and only if A ∈ S− ∩ T −.

(e) For each A ∈ S, we have E−A ∈ S−. Since the complement of any set is unique, then

we have a one-to-one correspondence between S and S−. Hence, they have the same

cardinality.

The Complementation Operator

Proof of lemma 1.3. These all follow from basic set theory: here P(E) is our universal set

and S is an arbitrary subset of P(E).
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The Minimality Operator

Proof of lemma 1.4.

(a) Sets in ⌊S⌋ must be members of S by definition.

(b) (→) This is immediate from part (a) and applying minimality to ⌊S⌋.

(←) Let A′ ∈ ⌊S⌋, then A′ ∈ S and A′ ̸⊃ A for all A ∈ S. In particular, A′ ̸⊃ A for

all A ∈ ⌊S⌋. Hence, A′ ∈ ⌊⌊S⌋⌋.

(c) Let C ′ ∈ ⌊S ∪ T ⌋. It then follows that C ′ ∈ S ∪ T and C ′ ̸⊃ C for all C ∈ (S ∪ T ). If

C ′ ∈ S, then we have C ′ ̸⊃ A for all A ∈ S. Thus, C ′ ∈ ⌊S⌋.

On the other hand, if C ′ ∈ T , then we have C ′ ̸⊃ B for all B ∈ T . Thus, C ′ ∈ ⌊T ⌋.

In either case, we have C ′ ∈ ⌊S⌋ ∪ ⌊T ⌋. Therefore, ⌊S ∪ T ⌋ ⊆ ⌊S⌋ ∪ ⌊T ⌋ as desired.

(d) (First ⇐⇒ ) Clearly {∅} = ⌊S⌋ implies ∅ ∈ ⌊S⌋. On the other hand, ∅ ∈ ⌊S⌋ ⊆ S

implies that every nonempty set in S properly contains the empty set. Thus, ⌊S⌋

cannot contain any nonempty sets and therefore ⌊S⌋ = {∅}. We now prove the second

⇐⇒ .

(→) Suppose ⌊S⌋ = {∅}. Since ⌊S⌋ ⊆ S by part (a) then it follows that ∅ ∈ S.

(←) Suppose that ∅ ∈ S. The empty set is a proper subset of every nonempty set,

hence no nonempty sets of S are contained in ⌊S⌋. Moreover, no set properly contains

the empty set, and so ∅ ∈ ⌊S⌋ which now implies that ⌊S⌋ = {∅}.

(e) Suppose that ∅ ̸∈ S, then S contains only nonempty sets. Let A ∈ S and then let

A = {X ∈ S : X ⊂ A}. If A is empty, then A ∈ ⌊S⌋ by definition and our conclusion

holds since A ⊆ A.

If A is nonempty, then let A′ ∈ A be of minimum size. Suppose (by way of contradic-

tion) that there exists B ∈ S such that B ⊂ A′. It follows that |B| < |A′| and B ∈ A;
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a contradiction to the minimum size requirement of A′. Hence, no set in S is properly

contained in A′. And so A′ ∈ ⌊S⌋ and our conclusion holds.

(f) Consider the collections S = {ab, bc} ⊆ {ab, bc, b, abc} = T . Note that ⌊S⌋ = S but

⌊T ⌋ = {b} which is incomparable to ⌊S⌋.

(g) (←) This is clear since ⌊∅⌋ = ∅.

(→) Suppose (by way of contradiction) that ⌊S⌋ = ∅ but S is not empty. Then there

exists A ∈ S. Let A = {B ∈ S : A ⊃ B}. If A is empty then A ̸⊃ B of any B ∈ S and

therefore A ∈ ⌊S⌋ by definition; a contradiction.

If A is nonempty, then let B′ ∈ A such that B′ ̸⊃ B for any B ∈ A. Moreover, note

that B′ ̸⊃ C for all C ∈ S. Else, B′ ⊃ B′′ some B′′ ∈ S which implies that A ⊃ B′′

and so B′′ ∈ A. But this contradicts how we chose B′. It then follows that B′ ∈ ⌊S⌋

by definition; a contradiction. Thus, we must have ⌊S⌋ is empty.

(h) (←) Let A ∈ Pk(E), then |A| = k and so |A| ≥ k which implies A ∈ P≥k(E).

Moreover, any proper subsets of A must have size strictly less than k. Thus, A ̸⊃ B

for all B ∈ P≥k(E) since they all have size greater than or equal to k. Hence, A ∈

⌊P≥k(E)⌋.

(→) Let A′ ∈ ⌊P≥k(E)⌋, then |A′| ≥ k and A′ ̸⊃ B for all B ∈ P≥k(E). In

particular, note that for any set C of size k, any proper superset of C must have size

strictly greater than k. Thus, |A′| ≤ k which implies that |A′| = k. Hence, A′ ∈ Pk(E).

The Maximality Operator

Proof of lemma 1.5.

(a) Sets in ⌈S⌉ must be members of S by definition.
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(b) (→) This is immediate from part (a) and applying maximality to ⌈S⌉.

(←) Let Â ∈ ⌈S⌉, then Â ∈ S and Â ̸⊂ A for all A ∈ S. In particular, Â ̸⊂ A for all

A ∈ ⌈S⌉. Hence, Â ∈ ⌈⌈S⌉⌉.

(c) Let Ĉ ∈ ⌈S ∪ T ⌉. It then follows that Ĉ ∈ S ∪ T and Ĉ ̸⊂ C for all C ∈ (S ∪ T ). If

Ĉ ∈ S, then we have Ĉ ̸⊂ A for all A ∈ S. Thus, Ĉ ∈ ⌈S⌉.

On the other hand, if Ĉ ∈ T , then we have Ĉ ̸⊂ B for all B ∈ T . Thus, Ĉ ∈ ⌈T ⌉. In

either case, we have Ĉ ∈ ⌈S⌉ ∪ ⌈T ⌉. Therefore, ⌈S ∪ T ⌉ ⊆ ⌈S⌉ ∪ ⌈T ⌉ as desired.

(d) (First ⇐⇒ ) Clearly {∅} = ⌈S⌉ implies ∅ ∈ ⌈S⌉. On the other hand, ∅ ∈ ⌈S⌉ ⊆ S

implies that every nonempty set in S properly contains the empty set. Thus, ⌈S⌉

cannot contain any nonempty sets and therefore ⌈S⌉ = {∅}. We now prove the second

⇐⇒ .

(→) Suppose ⌈S⌉ = {∅}. Since ⌈S⌉ ⊆ S then it follows that ∅ ∈ S. Note that the

empty set is a proper subset of every nonempty set. However, ⌈S⌉ = {∅} tells us that

S cannot contain any nonempty sets since ∅ is not a proper subset of any sets in S.

And so S = {∅}.

(←) This is immediate from our observations about the clutter {∅}.

(e) Suppose that ∅ ̸∈ S, then S contains only nonempty sets. Let A ∈ S and then let

A = {X ∈ S : X ⊃ A}. If A is empty, then A ∈ ⌈S⌉ by definition and our conclusion

holds since A ⊇ A.

If A is nonempty, then let Â ∈ A be of maximum size. Suppose (by way of contradic-

tion) that there exists B ∈ S such that B ⊃ Â. It follows that |B| > |Â| and B ∈ A;

a contradiction to the maximum size requirement of Â. Hence, no set in S properly

contains Â. And so Â ∈ ⌈S⌉ and our conclusion holds.

(f) Consider the collections S = {ab, bc} ⊆ {ab, bc, b, abc} = T . Note that ⌈S⌉ = S but

⌈T ⌉ = {abc} which is incomparable to ⌈S⌉.
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(g) (←) This is clear since ⌈∅⌉ = ∅.

(→) Suppose (by way of contradiction) that ⌈S⌉ = ∅ but S is not empty. Then there

exists A ∈ S. Let A = {B ∈ S : A ⊂ B}. If A is empty then A ̸⊂ B of any B ∈ S and

therefore A ∈ ⌈S⌉ by definition; a contradiction.

If A is nonempty, then let B′ ∈ A such that B′ ̸⊂ B for any B ∈ A. Moreover, note

that B′ ̸⊂ C for all C ∈ S. Else, B′ ⊂ B′′ some B′′ ∈ S which implies that A ⊂ B′′

and so B′′ ∈ A. But this contradicts how we chose B′. It then follows that B′ ∈ ⌈S⌉

by definition; a contradiction. Thus, we must have ⌈S⌉ is empty.

(h) (←) Let A ∈ Pk(E), then |A| = k and so |A| ≤ k which implies A ∈ P≤k(E).

Moreover, any proper supersets of A must have size strictly greater than k. Thus,

A ̸⊂ B for all B ∈ P≤k(E) since they all have size less than or equal to k. Hence,

A ∈ ⌈P≤k(E)⌉.

(→) Let Â ∈ ⌈P≤k(E)⌉, then |Â| ≤ k and Â ̸⊂ B for all B ∈ P≤k(E). In

particular, note that for any set C of size k, any proper subset of C must have size

strictly less than k. Thus, |Â| ≥ k which implies that |Â| = k. Hence, Â ∈ Pk(E).

The Superset Closure Operator

Proof of lemma 1.6.

(a) Note that every set is a subset of itself. Hence, S ⊆ S⊇.

(b) Let X ∈ S⊇, then X ⊇ A for some A ∈ S. But S ⊆ T and so X ⊇ A for some A ∈ T .

Thus, X ∈ T ⊇ and therefore S⊇ ⊆ T ⊇.

(c) Suppose that ∅ ∈ S⊇, then ∅ ⊇ A some A ∈ S. But the only set that contains the

empty set is the empty set itself. Thus, A must be the empty set and so we have ∅ ∈ S.

Hence, ∅ ∈ S⊇ =⇒ ∅ ∈ S.
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Suppose that ∅ ∈ S. Since every set contains the empty set, then every subset of E

contains a set in S. Thus, S⊇ = P(E). Hence, ∅ ∈ S =⇒ S⊇ = P(E).

Clearly, S⊇ = P(E) =⇒ ∅ ∈ S⊇. Therefore, each scenario implies one another.

(d) (→) Since E is a superset of every subset of E and S contains at least one subset of

E, then E ∈ S⊇.

(←) Suppose that E ∈ S⊇, then E ⊇ A for some A ∈ S. Hence, S is nonempty.

(e) (←) Since the superset closure operator is inclusion preserving, then S ⊆ S⊇ implies

S⊇ ⊆ (S⊇)⊇.

(→) Let X ∈ (S⊇)⊇, then X ⊇ A for some A ∈ S⊇. but A ⊇ B for some B ∈ S.

Hence, X ⊇ B for some B ∈ S. Thus, X ∈ S⊇ and therefore (S⊇)⊇ ⊆ S⊇.

(f) (→) Let X ∈ (S ∪ T )⊇, then X ⊇ A for some A ∈ (S ∪ T ). Without loss of

generality let A ∈ S. This implies that X ∈ S⊇ and therefore, X ∈ S⊇ ∪ T ⊇. Hence,

(S ∪ T )⊇ ⊆ S⊇ ∪ T ⊇.

(←) Let X ∈ S⊇ ∪ T ⊇. Without loss of generality take X ∈ S⊇. Then X ⊇ A for

some A ∈ S. Thus, X ⊇ A for some A ∈ S ∪ T . Hence, X ∈ (S ∪ T )⊇ and therefore

S⊇ ∪ T ⊇ ⊆ (S ∪ T )⊇ which now implies equality.

(g) Note that (S ∩ T ) is a subset of both S and T . Since the superset closure operator

is inclusion preserving, then we have that (S ∩ T )⊇ is a subset of both S⊇ and T ⊇.

Hence, (S ∩ T )⊇ ⊆ S⊇ ∩ T ⊇.

Note: the reverse containment may not hold. E.g. Let S = {A} and T = {B}, then

the left hand side is empty while the right hand side contains E.

(h) Note that every set in P(X) is a subset of X. On the other hand, every set in {Y }⊇

contains Y . Since Y ̸⊆ X, then no superset of Y is contained in P(X). Moreover,

no subset of X contains Y and so no subset of X is an element of {Y }⊇. Therefore,

P(X) ∩ {Y }⊇ = ∅.
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(i) (→) Let X ∈
⋂n

k=1{Ak}⊇, then X ∈ {Ak}⊇ for all k = 1, . . . , n. Thus, X ⊇ Ak for

all k and so X ⊇ (
⋃n

k=1Ak). Therefore, X ∈ {
⋃n

k=1Ak}⊇ which implies
⋂n

k=1{Ak}⊇ ⊆

{
⋃n

k=1Ak}⊇.

(←) Let X ∈ {
⋃n

k=1Ak}⊇. It follows that X ⊇ (
⋃n

k=1Ak). In particular, X ⊇

(
⋃n

k=1Ak) ⊇ Ak for each k = 1, . . . , n. Hence, X ∈ {Ak}⊇ for each k and therefore

X ∈
⋂n

k=1{Ak}⊇. Hence, {
⋃n

k=1Ak}⊇ ⊆
⋂n

k=1{Ak}⊇ which now implies equality.

The Subset Closure Operator

Proof of lemma 1.7.

(a) Note that every set is a subset of itself. Hence, S ⊆ S⊆.

(b) Let X ∈ S⊆, then X ⊆ A for some A ∈ S. Since S ⊆ T , then X ⊆ A for some A ∈ T .

Thus, X ∈ T ⊆ and therefore S⊆ ⊆ T ⊆.

(c) Suppose that E ∈ S⊆, then E ⊆ A some A ∈ S. But the only set that contains the

empty set is the empty set itself. Thus, A must be the empty set and so we have

E ∈ S. Hence, E ∈ S⊆ =⇒ E ∈ S.

Suppose that E ∈ S. Since every set contains the empty set, then every subset of E

contains a set in S. Thus, S⊆ = P(E). Hence, E ∈ S =⇒ S⊆ = P(E).

Clearly, S⊆ = P(E) =⇒ E ∈ S⊆. Therefore, each scenario implies one another.

(d) (→) Since S is nonempty, then let A ∈ S. The empty set is a subset of A and so

∅ ∈ S⊆.

(←) Suppose that ∅ ∈ S⊆, then ∅ ⊆ A for some A ∈ S. Hence, S is nonempty.

(e) (←) Since the subset closure operator is inclusion preserving, then S ⊆ S⊆ implies

S⊆ ⊆ (S⊆)⊆.
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(→) Let X ∈ (S⊆)⊆, then X ⊆ A for some A ∈ S⊆. but A ⊆ B for some B ∈ S.

Hence, X ⊆ B for some B ∈ S. Thus, X ∈ S⊆ and therefore (S⊆)⊆ ⊆ S⊆.

(f) (→) Let X ∈ (S ∪ T )⊆, then there exists A ∈ (S ∪ T ) such that X ⊆ A. Without

loss of generality let A ∈ S. Then X ⊆ A for some A ∈ S and so X ∈ S⊆. Therefore,

X ∈ S⊆ ∪ T ⊆. Hence, (S ∪ T )⊆ ⊆ S⊆ ∪ T ⊆.

(←) Let X ∈ S⊆ ∪ T ⊆. Without loss of generality, take X ∈ S⊆. Then X ⊆ A for

some A ∈ S. And so X ⊆ A for some A ∈ S ∪ T . Hence, X ∈ (S ∪ T )⊆ and therefore

S⊆ ∪ T ⊆ ⊆ (S ∪ T )⊆.

(g) Note that (S ∩ T ) is a subset of both S and T . Since the superset closure operator

is inclusion preserving, then we have that (S ∩ T )⊆ is a subset of both S⊆ and T ⊆.

Hence, (S ∩ T )⊆ ⊆ S⊆ ∩ T ⊆.

Note: the reverse containment may not hold. E.g. Let S = {A} and T = {B}, then

the left hand side is empty while the right hand side contains ∅.

(h) This is immediate from the definition.

(i) This follows from the subset closure operator being additive over unions, how the

operator behaves on collections containing a single set, and the finiteness of our col-

lections: Note that S =
⋃

Sk∈S{Sk}. And so S⊆ =
(⋃

Sk∈S{Sk}
)⊆

=
⋃

Sk∈S
(
{Sk}⊆

)
=⋃

Sk∈S P(Sk).

(j) Let X ∈
⋂n

k=1{Ak}⊆, then X ∈ {Ak}⊆ for all k = 1, . . . , n. Thus, X ⊆ Ak for all

k and so X ⊆ (
⋃n

k=1Ak). Therefore, X ∈ {
⋃n

k=1Ak}⊆ which implies
⋂n

k=1{Ak}⊆ ⊆

{
⋃n

k=1Ak}⊆.

Note: the reverse containment may not hold. E.g. Let A1 = {a} and A2 = {b}, then

the left hand side is {∅} while the right hand side is P({a, b}).
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The Union Closure Operator

Proof of lemma 1.8.

(a) Let A ∈ S. Note that A = A ∪ A, hence A ∈ Su.

(b) Let X ∈ Su, then X =
⋃n

k=1 Sk where Sk ∈ S ⊆ T . Hence, X ∈ T u and therefore

Su ⊆ T u.

(c) (←) Since S ⊆ Su and that the union closure operator is inclusion preserving, then

we get that Su ⊆ Suu.

(→) Let X ∈ Suu, then X =
⋃n

k=1Bk where Bk ∈ Su. But each Bk =
⋃m

l=1 Akl

where Akl ∈ S. Thus, X =
⋃n

k=1 (
⋃m

l=1Akl) where Akl ∈ S which implies that X ∈ Su.

Therefore, Suu ⊆ Su.

(d) (←) Note that S and T are both subsets of (S∪T ), then by the inclusion preserving

property of the union closure operator, we get that Su and T u are both subsets of

(S∪T )u. Hence, Su∪T u ⊆ (S∪T )u. Now by the inclusion preserving and idempotent

properties of the union closure operator, we have (Su ∪ T u)u ⊆ (S ∪ T )u.

(→) Let X ∈ (S ∪ T )u, then X =
⋃n

h=1 Ch where Ch ∈ S ∪ T . For each Ch, it is

an element of either S or T , so then we’ll split our big union into two sub-unions: one

union over the sets in S and the other over the union of sets in T .

X =
n⋃

h=1

Ch =

(
m⋃
j=1

Aj

)
∪

(
l⋃

k=1

Bk

)
, where Aj ∈ S and Bk ∈ T

We now let A =
⋃m

j=1Aj and B =
⋃l

k=1Bk. Thus, A ∈ Su and B ∈ T u. Therefore,

X ∈ (Su ∪ T u)u.

(e) Note that (S∩T ) is a subset of both S and T , then by the inclusion preserving property

of the union closure operator, we get that (S ∩ T )u is a subset of both Su and T u.

Hence, (S ∩ T )u ⊆ Su ∩ T u.
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Note: The reverse containment does not necessarily hold. Take S = {{a}, {bc}} and

T = {{ab}, {c}}, then Su = {{a}, {bc}, {abc}} and T u = {{ab}, {c}, {abc}}. Moreover,

(S ∩ T ) = ∅ and so (S ∩ T )u = ∅u = ∅ which is a proper subset of {{abc}} = Su ∩ T u.

(f) (→) Let A ∈ (S ∪ {∅})u. If A is empty, then A ∈ {∅} ⊆ Su ∪ {∅}.

If A is nonempty, then A =
⋃

Ak∈S∪{∅} Ak. Since Ak = Ak ∪ ∅ for all Ak, then A =⋃
Ak∈S Ak which implies that A ∈ Su ⊆ Su ∪ {∅}.

In either case, A ∈ Su ∪ {∅} and so (S ∪ {∅})u ⊆ Su ∪ {∅}.

(←) Let A ∈ Su ∪ {∅}. If A is empty, then A ∈ {∅} ⊆ (S ∪ {∅}) ⊆ (S ∪ {∅})u.

If A is nonempty, then A ∈ Su and so A =
⋃

Ak∈S Ak =
(⋃

Ak∈S Ak

)
∪∅ =

⋃
Ak∈S∪{∅} Ak.

Thus, A ∈ (S ∪ {∅})u. And so Su ∪ {∅} ⊆ (S ∪ {∅})u which now implies equality.

(g) For each x ∈ supp(S) we have that x ∈ Ax some Ax ∈ S. Note that supp(S) =⋃
x∈supp(S){x} ⊆

⋃
x∈supp(S) Ax ⊆ supp(S). Hence we have equality throughout. In

particular, supp(S) =
⋃

x∈supp(S) Ax and so supp(S) ∈ Su.

The Intersection Closure Operator

Proof of lemma 1.9.

(a) Let A ∈ S. Note that A = A ∩ A, hence A ∈ S i.

(b) Let X ∈ S i, then X =
⋂n

k=1 Sk where Sk ∈ S ⊆ T . Hence, X ∈ T i and therefore

S i ⊆ T i.

(c) (←) Since S ⊆ S i and that the intersection closure operator is inclusion preserving,

then we get that S i ⊆ S ii.

(→) Let X ∈ S ii, then X =
⋂n

j=1Bj where Bj ∈ S i. But each Bj =
⋂m

k=1Ajk where

Ajk ∈ S. Thus, X =
⋂n

j=1 (
⋂m

k=1Ajk) where Ajk ∈ S which implies that X ∈ S i.

Therefore, S ii ⊆ S i.
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(d) (←) Note that S and T are both subsets of (S∪T ), then by the inclusion preserving

property of the intersection closure operator, we get that S i and T i are both subsets of

(S ∪T )i. Hence, S i ∪T i ⊆ (S ∪T )i. Now by the inclusion preserving and idempotent

properties of the intersection closure operator, we have (S i ∪ T i)i ⊆ (S ∪ T )i.

(→) Let X ∈ (S ∪ T )i, then X =
⋂n

h=1Ch where Ch ∈ S ∪ T . For each Ch, it

is an element of either S or T , so then we’ll split our big intersection into two sub-

intersections: one intersection over the sets in S and the other over the intersection of

sets in T .

X =
n⋂

h=1

Ch =

(
m⋂
j=1

Aj

)
∩

(
l⋂

k=1

Bk

)
, where Aj ∈ S and Bk ∈ T

We now let A =
⋂m

j=1 Aj and B =
⋂l

k=1 Bk. Thus, A ∈ S i and B ∈ T i. Therefore,

X ∈ (S i ∪ T i)i.

(e) Note that (S∩T ) is a subset of both S and T , then by the inclusion preserving property

of the intersection closure operator, we get that (S ∩ T )i is a subset of both S i and

T i. Hence, (S ∩ T )i ⊆ S i ∩ T i.

Note: The reverse containment does not necessarily hold. Take S = {{ac}, {bc}} and

T = {{ac}, {cd}}, then S i = {{ac}, {bc}, {c}} and T i = {{ac}, {cd}, {c}}. Moreover,

(S ∩ T ) = {{ac}} and so (S ∩ T )i = {{ac}}i = {{ac}} which is a proper subset of

{{ac}, {c}} = S i ∩ T i.

The Meet Operator

Proof of lemma 1.10.

(a) (→) Suppose that S contains the empty set. Note that the intersection of any set

with the empty set is empty and therefore has intersection size zero. Hence, every
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subset of E has an intersection size of zero with a set in S. Therefore, no subset of E

is contained in Sm and so Sm = ∅.

(←) Suppose that Sm is empty. This implies that every subset of E has an empty

intersection with some set in S. In particular, E has an empty intersection with some

set in S. But E ∩ A = A for any subset of E. Thus, |E ∩ A| = |A| = 0 implies that

A = ∅. Therefore, S contains the empty set.

(b) Let X ∈ T m, then |X ∩ A| ̸= 0 for all A ∈ T . In particular, |X ∩ A| ≠ 0 for all

A ∈ S ⊆ T . Thus, X ∈ Sm. Therefore, T m ⊆ Sm.

(c) (→) Note that both S and T are subsets of S ∪ T . Then by the inclusion reversing

property of the meet operator, we get that (S ∪ T )m is a subset of both Sm and T m.

Hence, (S ∪ T )m ⊆ Sm ∩ T m.

(←) Let X ∈ Sm∩T m and let C ∈ S∪T . If C ∈ S, then |X∩C| ≠ 0 since X ∈ Sm.

On the other hand, if C ∈ T , then |X ∩C| ≠ 0 since X ∈ T m. Hence, X ∈ (S ∪ T )m.

(d) Suppose that Sm = T m. From our hypothesis and the meet operator’s inclusion

reversing property we have (S ∪ T )m = Sm ∩ T m = Sm.

Note: The reverse implication does not necessarily hold. The best we can get is

Sm ⊆ T m which can be a proper containment: Let S = {{a}, {b}} and T = {{a}} and

E = {a, b}. It then follows that (S ∪ T )m = Sm = {{ab}}, however T m = {{a}, {ab}}

which properly contains Sm.

The Orthogonality Operator

Proof of lemma 1.11.

(a) This is immediate from the definition.
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(b) (→) We saw above how the orthogonality operator handles the trivial clutters: ∅⊥ =

{∅}⊥ = P(E)− {∅}.

(←) Suppose that S⊥ = P(E) − {∅}. Then in particular every singleton of P(E)

is orthogonal to every set in S. This implies that each set in S has size zero, but the

only set of size zero is the empty set. So if S contains any sets, it can only contain the

empty set. Hence, S ⊆ {∅}.

(c) Let X ∈ T ⊥, then |X ∩ B| ̸= 1 for all B ∈ T . Since S ⊆ T , then in particular

|X ∩ A| ≠ 1 for all A ∈ S. Thus, X ∈ S⊥.

(d) Note the following inclusion: (S − {∅}) ⊆ S ⊆ (S ∪ {∅}). Thus, by the inclusion

reversing property of the orthogonality operator we have (S−{∅})⊥ ⊇ S⊥ ⊇ (S∪{∅})⊥.

Thus, showing that (S − {∅})⊥ ⊆ (S ∪ {∅})⊥ gives us equality throughout.

Let X ∈ (S −{∅})⊥, then |X ∩A| ≠ 1 for all A ∈ S −{∅}. Note that |X ∩ ∅| = 0 ̸= 1.

Thus, X ∈ (S ∪{∅})⊥ and therefore (S−{∅})⊥ ⊆ (S ∪{∅})⊥. Hence, we have equality

throughout.

(e) (→) Note that both S and T are subsets of S ∪ T . Then by the inclusion reversing

property of the orthogonality operator, we get that (S ∪ T )⊥ is a subset of both S⊥

and T ⊥. Hence, (S ∪ T )⊥ ⊆ S⊥ ∩ T ⊥.

(←) Let X ∈ S⊥ ∩ T ⊥. Then |X ∩ A| ̸= 1 for all A ∈ S and |X ∩ B| ̸= 1 for all

B ∈ T . Let C ∈ S ∪T . If C ∈ S, then |X ∩C| ≠ 1 since X ∈ S⊥. On the other hand,

if C ∈ T , then |X ∩ C| ̸= 1 since X ∈ T ⊥. Thus, |X ∩ C| ̸= 1 for all C ∈ S ∪ T and

so X ∈ (S ∪ T )⊥. Therefore, we have equality.

The cycles-to-bases Operator

Proof of lemma 1.12.
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(a) SI is the collection of sets that contain no sets of S. The collection of sets that contain

a set of S is the superset closure of S. Any set not in the superset closure of S must

then be in SI . Thus, these collections are complementary; that is SI = S⊇c.

(b) Since S ⊆ S⊇ then (S ∩ SI) ⊆ (S⊇ ∩ S⊇c) = ∅. Hence, S and SI are disjoint.

(c) We first note that SI = ∅ ⇐⇒ S⊇ = P(E). In particular, ∅ ∈ S⊇. Moreover, we also

have ∅ ∈ S⊇ ⇐⇒ ∅ ∈ S.

(d) This follows directly from S and SI being disjoint.

The bases-to-dependent Operator

Proof of lemma 1.13.

(a) SD is the collection of sets that are not contained in any set of S. The collection of sets

that are contained in a set of S is the subset closure of S. Any set not in the subset

closure of S must then be in SD. Thus, these collections are complementary; that is

SD = S⊆c.

(b) Since S ⊆ S⊆ then (S ∩ SD) ⊆ (S⊆ ∩ S⊆c) = ∅. Hence, S and SD are disjoint.

(c) We first note that SD = ∅ ⇐⇒ S⊆ = P(E). In particular, E ∈ S⊆. Moreover, we

also have E ∈ S⊆ ⇐⇒ E ∈ S.

(d) This follows directly from S and SD being disjoint.

The Inner Pairwise Union Operator

Proof of lemma 1.14.
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(a) This is immediate from the definition.

(b) Let X ∈ (S
×
∪T ). If X ∈ S, then X ∈ X ⊆ (X

×
∪Y). If X ∈ T , then X ∈ Y ⊆ (X

×
∪Y).

If X ∈ (S
×
∪T ) \ (S ∪T ), then X = A∪B for some A ∈ S ⊆ X and some B ∈ T ⊆ Y .

Hence, X ∈ (X
×
∪ Y). In any case, the containment holds.

(c) Let X ∈ (S
×
∪ T )

×
∪ U , then we have

X = (A ∪B) ∪ C = A ∪ (B ∪ C)

for some A ∈ S, B ∈ T , and C ∈ U . Hence, X ∈ S
×
∪ (T

×
∪ U).

The reverse containment is the same argument as above but in reverse.

A.2 Additional Operator Interactions

A.2.1 Simple Operators

Some operators have rather straightforward interactions, regardless of the collection that is

being evaluated.

Miscellaneous Results

Lemma A.1. Let S ⊆ P(E).

(a) {∅, E} ⊆ S ⇐⇒ S⊇ = S⊆ = P(E)

(b) ∅ ≠ S =⇒ S⊆⊇ = S⊇⊆ = P(E)

(c) ∅ ≠ S =⇒ S⊆u = P(supp(S)) = Su⊆

(d) ∅ ≠ S =⇒ ⌊S⊆⌋ = {∅}
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(e) ∅ ≠ S =⇒ ⌈S⊇⌉ = {E}

(f) ∅ ≠ S =⇒ ⌈Su⌉ = {supp(S)}

(g) Su ⊆ S⊇ **Reverse containment does not necessarily hold.**

(h) S i ⊆ S⊆ **Reverse containment does not necessarily hold.**

Proof.

(a) (→) Since ∅ ∈ S then S⊇ = P(E) and since E ∈ S then S⊆ = P(E). Hence,

S⊇ = S⊆ = P(E).

(←) Since S⊇ = P(E), then it contains the empty set and therefore S contains the

empty set. On the other hand, since S⊆ = P(E) it contains E and therefore S contains

E. Hence, {∅, E} ⊆ S.

(b) Since S is nonempty, then ∅ ∈ S⊆ and E ∈ S⊇. It then follows that (S⊆)⊇ = (S⊇)⊆ =

P(E).

(c) (→) Let X ∈ (S⊆)u, then X =
⋃n

k=1 Ak for some Ak ∈ S⊆. Observe the following:

X =
n⋃

k=1

Ak ⊆
⋃

A∈S⊆

A = supp(S⊆) = supp(S)

Thus, X ∈ P(supp(S)) and therefore (S⊆)u ⊆ P(supp(S)).

(←) Note that {∅}∪{{x} : x ∈ supp(S)} ⊆ S⊆. Thus, we have the following relation:

({∅} ∪ {{x} : x ∈ supp(S)})u = ({∅}u ∪ {{x} : x ∈ supp(S)}u)u

= ({∅} ∪ P≥1(supp(S)))u

= (P(supp(S)))u

= P(supp(S))
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Thus, by the inclusion preservation of union closure, we have P(supp(S)) ⊆ (S⊆)u and

therefore equality.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that supp(S) ∈ Su since supp(S) =
⋃

A∈S A. Moreover, every set in Su is a

subset of supp(S). Thus, (Su)⊆ = P(supp(S)).

(d) Since S is nonempty, then ∅ ∈ S⊆. It then follows that ⌊S⊆⌋ = {∅}.

(e) Since S is nonempty, then E ∈ S⊆. It then follows that ⌈S⊇⌉ = {E} since every set

in S is a subset of E and E is the only set that contains itself.

(f) Note that supp(S) ∈ Su since supp(S) =
⋃

A∈S A. Moreover, supp(S) is not a proper

subset for any A ∈ S⊇. Thus, ⌈Su⌉ = {supp(S)}.

(g) Let X ∈ Su, then X =
⋃n

k=1Ak where Ak ∈ S. Thus, X ⊇ Ak for each Ak ∈ S. Hence,

X ∈ S⊇.

Note: The reverse containment does not necessarily hold. Take S = {{ab}, {cd}},

then Su = {{ab}, {cd}, {abcd}} which is a proper subset of

S⊇ = {{ab}, {cd}, {abc}, {abd}, {acd}, {bcd}, {abcd}}.

(h) Let X ∈ S i, then X =
⋂n

k=1 Ak where Ak ∈ S. Thus, X ⊆ Ak for each Ak ∈ S. Hence,

X ∈ S⊆.

Note: The reverse containment does not necessarily hold. Take S = {{ab}, {bc}}, then

S = {{ab}, {bc}, {b}} which is a proper subset of S⊆ = {{ab}, {bc}, {a}, {b}, {c}, ∅}.

Support Interactions

Lemma A.2. Let S ⊆ P(E).

(a) supp(S) = supp(S⊆) = supp(Su) = supp(S i)
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(b) ∅ ≠ S =⇒ supp(S⊇) = E

(c) ∅ ̸∈ S ∪ T and supp(⌈S⌉) ∩ supp(⌈T ⌉) = ∅ =⇒ ⌈S ∪ T ⌉ = ⌈S⌉ ∪ ⌈T ⌉

Proof.

(a) By the inclusion preservation of the support operator, we have that supp(S) is a

subset of supp(S⊆), supp(Su), and supp(S i). Thus, we only need to show each reverse

inclusion to attain equality.

(supp(S⊆) ⊆ supp(S)) Note that for all C ∈ S⊆ we have C ⊆ A for some A ∈ S.

Thus,

supp(S⊆) =
⋃

C∈S⊆

C ⊆
⋃
A∈S

A = supp(S)

(supp(Su) ⊆ supp(S)) Note that for all C ∈ Su we have C =
⋃n

k=1Ak for some

Ak ∈ S. Thus,

supp(Su) =
m⋃
j=1

Cj =
m⋃
j=1

(
n⋃

k=1

Ajk

)
⊆
⋃
A∈S

A = supp(S)

(supp(S i) ⊆ supp(S)) Note that for all C ∈ S i we have C =
⋂n

k=1 Ak for some

Ak ∈ S. In particular, C ⊆ Ak for each k = 1, . . . , n. Thus,

supp(S i) =
m⋃
j=1

Cj ⊆
m⋃
j=1

(
n⋃

k=1

Ajk

)
⊆
⋃
A∈S

A = supp(S)

(b) Since S is nonempty, then {E} is in S⊇. And so we have E ⊆ supp(S) ⊆ E. Hence,

equality.

(c) Maximality properties always gives us one containment: ⌈S ∪ T ⌉ ⊆ ⌈S⌉ ∪ ⌈T ⌉.

To show the reverse containment let X ∈ ⌈S⌉ ∪ ⌈T ⌉. Without loss of generality let

X ∈ ⌈S⌉. So then X ∈ S and X ̸⊂ A for all A ∈ S. Moreover, X is nonempty since

∅ ̸∈ S ∪ T .

99



Suppose (by contradiction) that there exists B ∈ T such that X ⊂ B. Thus, there

exists a nonempty B̂ ∈ ⌈T ⌉ such that X ⊂ B ⊆ B̂. Note that B̂ ⊆ supp(⌈T ⌉) and

X ⊆ supp(⌈S⌉). However, the two supports are disjoint and so we have X ∩ B̂ = ∅.

In particular, X ̸⊂ B̂; a contradiction! Therefore, X ̸⊂ B for all B ∈ T .

Thus, X ∈ S ∪ T and X ̸⊂ C for all C ∈ (S ∪ T ) which implies that X ∈ ⌈S ∪ T ⌉.

Hence, ⌈S⌉ ∪ ⌈T ⌉ ⊆ ⌈S ∪ T ⌉. Therefore, ⌈S ∪ T ⌉ = ⌈S⌉ ∪ ⌈T ⌉ as desired.

Additional Complementary Interactions

Lemma A.3. Let S ⊆ P(E).

(a) Su− = S−i

(b) S−u = S i−

Proof.

(a) Observe the following: W ∈ Su− ⇐⇒ E−W ∈ Su ⇐⇒ E−W =
⋃n

k=1Ak for some

Ak ∈ S ⇐⇒ W =
⋂n

k=1(E − Ak) for some (E − Ak) ∈ S− ⇐⇒ W ∈ S−i.

(b) Applying the previous result to the collection S− and then applying the complementary

operator yields S−u−− = S−−i−. Since the complementary is self-inverse, then we have

S−u = S i−.

A.2.2 Simple Operator Synergies

Minimality and Union Closure Interactions

With union closure being a weaker version of the superset closure operator, it has some nice

interactions with the minimality operator that follow from proposition 2.1.
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Lemma A.4. Let S, T ⊆ P(E).

(a) S ⊆ T u and T ⊆ Su =⇒ ⌊S⌋ = ⌊T ⌋

(b) S ⊆ ⌊S⌋u and T ⊆ ⌊T ⌋u and ⌊S⌋ = ⌊T ⌋ =⇒ S ⊆ T u and T ⊆ Su

(c) S ⊆ T ⊆ Su =⇒ ⌊S⌋ = ⌊T ⌋

Proof.

(a) By assumption we have S ⊆ T u ⊆ T ⊆ and T ⊆ Su ⊆ S⊆. Therefore, we have

⌊S⌋ = ⌊T ⌋.

(b) Let X ∈ S. If X ∈ ⌊S⌋, then X ∈ ⌊T ⌋ ⊆ T ⊆ T u. If X ̸∈ ⌊S⌋, observe the following:

Since S ⊆ ⌊S⌋u, then X =
⋃n

k=1W
′
k where W ′

k ∈ ⌊S⌋. Note that for each k, W ′
k ∈ ⌊S⌋

and W ′
k ⊂ X. Since ⌊S⌋ = ⌊T ⌋, then W ′

k ∈ ⌊T ⌋ ⊆ T . Hence, X ∈ T u and therefore

S ⊆ T u.

Following the same argument as above with Y ∈ T one can show that Y ∈ Su. Hence,

we have shown that S ⊆ T u and T ⊆ Su.

(c) Since S ⊆ T , then S ⊆ T u. By assumption, T ⊆ Su, and so we have ⌊S⌋ = ⌊T ⌋.

Maximality and Intersection Closure Interactions

Similarly, intersection closure is a weaker version of the subset closure operator, and so it

also plays nicely with the maximality operator following from lemma 3.1.

Lemma A.5. Let S, T ⊆ P(E).

(a) S ⊆ T i and T ⊆ S i =⇒ ⌈S⌉ = ⌈T ⌉

(b) S ⊆ ⌈S⌉i and T ⊆ ⌈T ⌉i and ⌈S⌉ = ⌈T ⌉ =⇒ S ⊆ T i and T ⊆ S i
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(c) S ⊆ T ⊆ S i =⇒ ⌈S⌉ = ⌈T ⌉

Proof.

(a) By assumption we have S ⊆ T i ⊆ T ⊆ and T ⊆ S i ⊆ S⊆. Therefore, we have

⌈S⌉ = ⌈T ⌉.

(b) Let X ∈ S. If X ∈ ⌈S⌉, then X ∈ ⌈T ⌉ ⊆ T ⊆ T i. If X ̸∈ ⌈S⌉, observe the following:

Since S ⊆ ⌈S⌉i, then X =
⋂n

k=1 Ŵk where Ŵk ∈ ⌈S⌉. Note that for each k we have

Ŵk ∈ ⌈S⌉ and X ⊂ Ŵk. Since ⌈S⌉ = ⌈T ⌉, then Wk ∈ ⌈T ⌉ ⊆ T for each k. Hence,

X ∈ T i and therefore S ⊆ T i.

Following the same argument as above with Y ∈ T one can show that Y ∈ S i. Hence,

we have shown that S ⊆ T i and T ⊆ S i.

(c) Since S ⊆ T , then S ⊆ T i. By assumption, T ⊆ S i, so then we have ⌈S⌉ = ⌈T ⌉.

A.2.3 Matroid Operators

Lemma A.6. Let S ⊆ P(E).

(a) SB = ∅ ⇐⇒ ∅ ∈ S or {x} ∈ S for each x ∈ E.

(b) SD ̸= {∅}

(c) SC = ∅ ⇐⇒ E ∈ S

(d) SB = ∅ ⇐⇒ ∅ ∈ S

Proof.

(a) (→) By part (d) of the minimality observations we have that SB = ∅ ⇐⇒ SI ⊆ {∅}.

Suppose that SI = ∅. Then S⊇ = P(E) which implies that ∅ ∈ S by part (e) of the

superset closure observations.
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Now suppose that SI = {∅}. Then S⊇ = P(E)−{∅} which then implies that {x} ∈ S

for each x ∈ E. Since they are each the only nonempty sets that contain themselves;

thus in order to be in S⊇, they must have already be contained in S.

Therefore, either ∅ ∈ S or {x} ∈ S for each x ∈ E.

(b) Part (f) of the subset closure observations says that ∅ ∈ S⊆ for all nonempty collections

S. Thus, ∅ ̸∈ SD for all nonempty S by part (a) of the bases-to-dependent observations.

In the case where S = ∅, we then have ∅⊆ = ∅ which implies that SD = P(E). So for

any collection S, we have SD ̸= {∅}.

(c) This follows from part (g) of the maximality observations and part (c) of the bases-to-

dependent observations: SC = ∅ ⇐⇒ SD = ∅ ⇐⇒ E ∈ S.

(d) This follows from part (g) of the minimality observations and part (c) of the cycles-to-

independent observations: SB = ∅ ⇐⇒ SI = ∅ ⇐⇒ ∅ ∈ S.

(e) This is immediate from part (b) of the maximality and subset closure interactions and

part (a) of the matroid interactions: ⌈SI⌉ = SB =⇒ ⌈SI⌉⊆ = SI⊆ = SI = SB⊆.
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