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Abstract

The first measurement of the branching fraction of the Ξ0
c baryon in its decay to π− and

Λ+
c hadrons, B(Ξ0

c → π−Λ+
c ), is presented. This measurement was conducted with the

LHCb detector, located on the Large Hadron Collider, using 13 TeV proton-proton collisions.

There have been a number of theoretical predictions for the size of this branching fraction,

spanning more than an order of magnitude; this large difference is primarily due to differing

assumptions about the internal interactions contributing to the decay. The branching fraction

measured here provides the first experimental evidence for the nature of these interactions; it

is consistent with the larger predictions and inconsistent with the smaller ones, indicating

a constructive interference effect. In addition, the second measurement of the branching

fraction of the Ξ+
c baryon in its decay to p, K−, and π+ hadrons, B(Ξ+

c → pK−π+), is

presented and found to be consistent with the Belle collaboration’s previous measurement

while carrying a lower relative uncertainty.
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1 Introduction

A longstanding goal of the natural sciences has been to explain the fundamental building

blocks that make up the world around us. For example, Thales of Miletus, one of the

pre-Socratic Greek philosophers, postulated that the world was made up of water [18], while

Heraclitus, another pre-Socratic, postulated the converse, that fire was the fundamental

principle [19]. These are among the earliest in a long line of philosophers who attempted to

explain the unobservable elements of the world around them by analogy to observable ones.

Our descriptions and means of observation have become considerably more sophisticated over

the millennia, but arguably the fundamental sciences today share the same goal as the early

natural philosophers: describing the world in terms humans can understand.

These days, we believe the universe to be made up not of fire nor of water but of something

much stranger: particles. These bits of matter appear to be infinitesimally small and to

have indeterminate positions and momenta. This counterintuitive nature notwithstanding,

modeling the universe as the interactions of fundamental particles has been extraordinarily

successful both descriptively and predictively. This model is so successful and so widely

accepted, in fact, that it has become known as the Standard Model of particle physics (SM).

Despite its many successes, the SM also has a number of glaring shortcomings, lacking

explanations for, e.g., gravity, the prevalence of matter over antimatter, and dark matter,

and retaining ambiguities that can only be resolved by experimentation.

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN) is the largest machine dedicated to the study of particle physics built to date. The

LHCb detector, one of four experiments built at the LHC, was designed for the study of b

quarks, but it is also a general-purpose detector capable of studying other particles, including

c quarks. The measurement presented here takes advantage of the abundance of c quarks

produced in the LHCb detector to perform novel measurements of the behavior of SM particles

and provide experimental feedback on the accuracy of theoretical models.

This dissertation is organized into sections: Section 2 introduces the SM and describes its
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relevant aspects; Section 3 introduces the LHC and the LHCb detector; Section 4 describes

measurements of the branching fractions of the Ξ0
c baryon in its decay to π− and Λ+

c hadrons

and of the Ξ+
c baryon in its decay to p, K−, and π+ hadrons; and Section 5 summarizes the

findings of the preceding chapters. Natural units are used throughout, i.e., ~ = c = 1, where

~ is the reduced Planck constant and c is the speed of light, though some figures show factors

of c.

2 The Standard Model of particle physics

What follows is a brief, introductory-level description of relevant concepts in the Stan-

dard Model. The advanced reader is encouraged to consult the referenced works for more

information.

2.1 Overview

The Standard Model of particle physics (SM), first articulated in the second half of the

twentieth century [20–23], is a description of fundamental particles and their interactions.

One of the most successful scientific theories ever put forward, its predictions have been

found to be very robust. As shown in Figure 1, the SM can be pictured as something like the

periodic table, familiar from chemistry, organizing elementary particles into useful categories.

All SM particles are either fermions or bosons. Generally speaking, one can conceive

of the elementary fermions as making up matter and the elementary bosons as mediating

their interactions. The fermions are further divided into quarks (q) and leptons (`); the most

familiar of these are the up and down quarks, found in protons and neutrons, and electrons,

which orbit protons and neutrons in atoms and whose movements constitute electric current.

The bosons mediate the four fundamental forces of nature and, in the case of the Higgs, give

other particles mass. The fundamental forces are the strong force, mediated by the gluon (g);

the electromagnetic force, mediated by the photon (γ); the weak force, mediated by the W

2
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Figure 1: The Standard Model of particle physics [9]. The brown loops indicate couplings between
(red) bosons and (purple and green) fermions. Masses listed are from Reference [10]. Charges are
given as fractions of e, where the electron charge is −e. Antiparticles are not pictured; for each
particle shown, there exists an antiparticle with the same mass but opposite charge; some particles,
such as photons, are their own antiparticles. The t and b quarks are sometimes referred to as the
“truth” and “beauty” quarks.

and Z bosons; and gravity, which is not included in the SM.

An important limit on the behavior of quarks is a phenomenon called “quark confine-

ment” [24]. This phenomenon prevents quarks from existing in isolation; they are always

found near (approximately within the diameter of a proton) another quark (q) or antiquark

(q). These composite configurations of quarks, called “hadrons”, are held together by the
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strong force. Similar to electric charge in electromagnetism, quarks carry a property called

“color charge” that governs how they interact via the strong force. Color charge comes in six

types, red, green, and blue, plus their anti-matter equivalents, and hadrons must be color

neutral, e.g., contain one of each color, contain a color and its opposite, etc.1 This means

that hadrons containing three quarks must have one of each color, one red, one green, and

one blue;2 hadrons containing three quarks are called “baryons”. Antiquarks carry anti-color

charge, anti-red, anti-green, or anti-blue, which means one quark and one antiquark can also

combine to form a color-neutral hadron, e.g., a red d-quark with an anti-red u-antiquark;

hadrons containing one quark and one antiquark are called “mesons”. Quarks can also

combine in more exotic ways; for example, two red quarks, a blue quark, a green quark, and

an anti-red antiquark may combine to form a color-neutral hadron called a “pentaquark”.

The theory describing the behavior of the strong force, gluons, and color charge is called

“Quantum ChromoDynamics” (QCD).

Most hadrons do not last long; in fact, the only hadron believed to be stable is the

proton,3 a baryon comprising two up-quarks and one down-quark (uud). All other hadrons

last for a finite amount of time (called a “lifetime”) before decaying into other particles,4

generally through the effects of one or more of the fundamental forces; usually, the heavier

the particle, the shorter its lifetime. While this is called “decay”, the particles are generally

not breaking apart into their constituents but transforming into other particles with lower

masses. There are a variety of rules governing which decays are allowed, one of which is

that only weak decays (mediated by the weak force) can change the flavor of quarks; “flavor”

is a term of art referring to the six different types of quarks pictured in Figure 1: up (u),

down (d), charm (c), strange (s), top (t), and bottom (b). Thus, when we observe a particle

1This nomenclature is a nod to the color wheel of visible light, where red, green, and blue combine to make
white.

2Quarks are constantly interacting via the strong force by the exchange of gluons, which changes their color
charge, e.g., a blue u-quark may become a green u-quark, but the other quarks in the hadron simultaneously
change colors in a way that ensures the overall hadron remains color neutral during this process.

3The proton and antiproton are both believed to be stable, or rather, neither has been observed to decay.
4The lifetime of a particle is a property that characterizes the probable length of time before decay in isolation.
It does not mean that every neutron, for example, lasts 879.4± 0.6 s [25].
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containing, e.g., a c quark decaying into particles with no c quarks, we know that decay is

mediated by the weak force.

Hadrons generally have a variety of ways they are allowed to decay and a variety of

particles they can decay into. The decaying hadron is referred to as the “mother” particle

and particles produced in the decay are called “daughter” particles. A set of specific daughter

particles is called a “decay mode”, and the probability of a mother particle decaying to

a certain mode is called a “branching fraction” (B). Because they are governed by the

interactions of hadronic components, measuring the sizes of various branching fractions can

be a useful way to test models of hadronic behavior. Each set of interactions leading to

a certain decay mode carries an “amplitude” characterizing its likelihood; the branching

fraction is proportional to the square of the sum of these amplitudes.5 One might think that

having more available internal interactions always increases the branching fraction for a given

mode, but this is not the case: The different possibilities can interfere with each other and

reduce the overall branching fraction. Discerning whether the different amplitudes increase

(constructive interference) or decrease (destructive interference) the branching fraction for a

given mode can be difficult and often requires experimentation.

The total lifetime of a particle is governed by the decay modes available to it. On an

intuitive level, it makes some sense that a particle is more likely to decay if it has more

possibilities for decay available; after all, if no decay modes are available, it won’t ever

decay.6 The available decay modes are thus said to contribute “partial widths” to a particle’s

“total width”. This terminology is explained by the confluence of the Heisenberg Uncertainty

Principle and Einstein’s most famous equation,

E = m

5The idea that the probability of an event is proportional to the square of a sum of amplitudes will be familiar
to anyone who has studied quantum-mechanical wave functions.

6Note that a “decay mode” is distinct from an “amplitude”. A particular decay mode may have many
amplitudes contributing to it, corresponding to the many processes that can lead to the same final state.
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(recall that we are using natural units, where c = ~ = 1). The Heisenberg Uncertainty

Principle was a revolutionary idea when first proposed and now forms one of the pillars of

modern physics. Its fundamental insight is that there are irreducible limits to the precision

with which certain parameters can be known, and it can be written as

∆E∆t ≥ 1

2
,

where ∆E is the uncertainty on the particle’s energy and ∆t that on the time it takes to

decay. Invoking Einstein’s equation and realizing that ∆t is just the particle’s lifetime (τ),

we obtain

∆m ≥ 1

2τ
.

Okay, so where does the idea of a “width” come in? Well, ∆m characterizes a range of masses

a given particle may take, and if the probability that a particle will take a certain mass is

plotted on a graph, it appears as a curve with a characteristic width, 2×∆m, often written

as Γ. Thus,

Γ ∝ 1

τ
,

so the shorter the particle’s lifetime, the larger its (total) width. A given branching fraction,

Bi, can be written as

Bi =
Γi
Γ
,

where
∑

i Γi = Γ. Each Γi is referred to as a “partial width” and Γ the “total width”, and

we see that each additional decay mode increases the particle’s total width and decreases its

lifetime.

The same fundamental forces that mediate particle decay also mediate particle collisions.

When protons collide at high energies (see Section 3.1), their constituent quarks and the gluons

that bind them interact with each other primarily via the strong force.7 These interactions

7Protons can also interact via the electromagnetic or even weak force, which can result in the production of
other types of particles as well, not just quarks and gluons.
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transform the energy of the collision into more quarks and gluons, which recombine to form

new hadrons in a process called “hadronization”. These hadrons fly out from the point of

collision (called a “primary vertex” [PV]) at high speed and the unstable ones then decay.

2.2 Feynman diagrams

Decays and collisions are commonly visualized using Feynman diagrams, which are helpful

tools for understanding the allowed interactions between particles. The rules for making

them are relatively simple, and any introductory particle physics textbook will explain them

fully,8 but here is presented a basic summary of how to read them. The first thing to note is

that time flows from left to right, so that the particles shown on the left are in the initial

state and those on the right are in the final state. Lines are then drawn connecting the initial

state to the final state; these lines summarize the physical processes that lead from one to

the other. In general, only the initial and final states (the line endings) are observable.

Figure 2 shows an example. On the left are the u, d, and c quarks that make up the Λ+
c

baryon. On the right are the proton, K− meson, and π+ meson that the Λ+
c baryon decays

to. The wavy line marked W+ represents the emission of a W+ boson by the c quark (weak

decay); this transforms the c quark to an s quark, and the W+ boson decays to a u quark

and a d antiquark, which hadronize to form a π+ meson. Simultaneously, the d quark emits a

gluon, depicted as a curly line in the left-hand diagram in Figure 2, which decays to a u quark

and a u antiquark. The two u quarks and the d quark hadronize to form a proton, while the

u antiquark and s quark hadronize into a K− meson. The arrows distinguish matter from

antimatter; right-facing arrows indicate quarks, while left-facing arrows indicate antiquarks.

There are frequently many Feynman diagrams available for a given set of initial and final

states, corresponding to the many internal interactions that can lead to a given final state,

but there are so many potential strong-force interactions available in any decay that the

selection of which ones to show becomes arbitrary, and it is common not to draw them at all.

8See, e.g., Chapter 2 and Appendix D of Reference [26] for a description of the rules of Feynman diagrams.

7



u

d

c

u

d

u

u

s

u

d

W+

Λ+
c

p

K−

π+

u

d

c

u

d

u

u

s

u

d

W+

Λ+
c

p

K−

π+

Figure 2: A Feynman diagram depicting Λ+
c → pK−π+ decay (left) with and (right) without an

example gluon interaction shown.

2.3 Isospin and SU(3) symmetry

Symmetries are among the most basic and useful features of physics as we practice it today,

and the SM involves a number of them. One of the most striking has to do with how the strong

force interacts with quarks. In 1932, Heisenberg proposed that, given the similarities in mass

between the well-known proton and neutron (938.27 MeV and 939.57 MeV, respectively [25]),

they be considered two states (called “isospin” states) of the same “particle”, the nucleon [27].

In this way of thinking, the proton (quark content uud) is a nucleon with isospin “up”,

and the neutron (udd) is one with isospin “down”.9 The “symmetry” part of this comes

with the realization that the strong force treats all quark flavors the same (apart from their

masses—see below), leading to similarities between the properties of protons and neutrons,

a phenomenon known as “isospin symmetry”.10 In the language of group theory, this is

an SU(2) symmetry. Group theory has a remarkable ability to clarify aspects of hadronic

behavior, but there is not space for a satisfactory explanation here.11 For now, it is enough

to note that SU(2) symmetry is a symmetry under the exchange of two quarks, the u and d

9The total isospin of the nucleon is I = 1/2. When its third component, I3, is +1/2, it is a proton; when
I3 = −1/2, it is a neutron. I3 = +1/2,−1/2 are sometimes referred to as isospin “up” and “down”. This
notation will be familiar to anyone who has studied quantum-mechanical spin, and it is likely to be confusing
to anyone who hasn’t; the details are not required to understand this section.

10Isospin symmetry applies to all isospin partners, e.g., the Ξ0
c and Ξ+

c baryons, not just protons and
neutrons.

11For a simple introduction to group theory in the context of particle physics, see Chapter 4 of Reference [26].
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quarks.

Having noticed this symmetry, particle physicists are able to calculate certain properties

of particle phenomenology, notably, the relative rates of certain decays, e.g., B(Ξ∗0b →

Ξ0
b π

0)/B(Ξ∗0b → Ξ−b π
+). These relative rates are governed by the Clebsch-Gordan coefficients,

which are useful for determining all kinds of relative phenomena that obey SU(2) symmetry,

and the available phase-space, which corresponds to the energy and momentum available to

the daughter particles.

In the 1950s, particle physics was facing the Eight Baryon Problem. The p (uud), n

(udd), Ξ− (dds), Ξ0 (uds), Σ+ (uus), Σ0 (uds), Σ− (dds), and Λ (uds) baryons had all been

observed, and it seemed that the Ξ, Σ, and Λ baryons should belong to a grouping analogous

to the nucleon (the proton and neutron group), but the symmetry wasn’t clear. Gell-Mann’s

solution to this was the Eightfold Way [28], which elucidated an SU(3) symmetry under the

exchange of three quarks, the u, d, and s quarks, and implied similarities among some of

their properties. This theory posited that these eight baryons belonged to a “baryon octet”,

shown in Figure 3, with the proton and neutron belonging to the nucleon doublet; the Ξ−

and Ξ0 baryons belonging to the Ξ doublet; the Σ+, Σ0, and Σ− baryons belonging to the

Σ triplet; and the Λ baryon belonging to the Λ singlet.
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Of course, these days we know of six quarks, and their collective symmetry is SU(6).

These symmetries, however, are not exact, because the quarks have different masses. Recall

that Heisenberg initially proposed the idea of a nucleon doublet because of the similarity

between the proton and neutron masses; since their masses are only similar, not the same,

SU(2) symmetry doesn’t quite hold. This “symmetry breaking” is worse for SU(3) because

of the larger difference in the mass of the s quark vs. the u and d quarks (see Figure 1),

and it is terrible in SU(6) due to the extremely large mass of the t quark, which doesn’t

form hadrons at all.12 Thus one must be careful when invoking these symmetries, and large

uncertainties must sometimes be assigned.

2.4 Partially conserved axial current

Another SM symmetry that can be exploited to predict hadronic behavior is chiral symmetry.

The idea comes from the observation that each quark can be left-handed (with spin antiparallel

to its momentum) or right-handed (with spin parallel to its momentum).13 This orientation

is called “helicity”, and chirality may be thought of as its frame-independent analogue.14

For massless particles, chirality is a permanent feature, so in the limit of massless quarks

(where we pretend the quark masses are zero), left- and right-handed quarks begin to look like

distinct particles. As discussed in Section 2.3, the u and d quarks (approximately) obey an

12The t quark does not form hadrons because of its extremely short lifetime, ≈ 5 × 10−25 s, which is not
enough time for it to hadronize with other quarks [25].

13Determining the orientation of a spin vector is traditionally done using one’s hands. Curl the fingers of
your right hand in the direction of rotation with your thumb sticking straight out; the direction your thumb
is pointing is the direction of the spin vector. For example, if you look at an analog clock and curl your
right fingers clockwise, your right thumb should point directly into the clock face. Any introductory physics
textbook will describe this convention, as well as vector algebra generally, in detail.

14For massless particles traveling at the speed of light, helicity is identical to chirality. This is a consequence
of Einstein’s Special Theory of Relativity, in which massless particles travel at the speed of light and
nothing may travel faster than that. The simplest visualization is perhaps to imagine driving parallel to
a train; if the train is moving faster than you are, you see it traveling forward, but if you accelerate to
move faster than the train, you see it slow down and then reverse, traveling backward relative to your own
motion. By moving faster than the train, therefore, you have changed the direction of its momentum in
your frame of reference. So it is with particles: for a massive particle, there is always a frame of reference
in which its momentum, and therefore its helicity, is reversed. Massless particles travel at the speed of
light, however, and there is therefore no reference frame which reverses their momenta; thus their helicity is
independent of reference frame and identical to their chirality.
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SU(2) symmetry (“isospin”). If they are treated as massless, they are no longer two quarks

but four, two with each chirality, and obey the chiral symmetry, SUL(2)⊗ SUR(2). Chiral

symmetry within the SM is characterized by an axial15 current, and this current is conserved

in the limit of massless quarks.16 Of course, quarks are not actually massless, and one with

left-handed chirality may change to right-handed chirality and vice-versa, explicitly breaking

chiral symmetry. Since quarks have mass, chiral symmetry is not exact, and its current

is only a Partially Conserved Axial Current (PCAC). PCAC can be used to make various

predictions for the behaviors of hadrons using current algebra, which focuses on mathematical

manipulations of currents in the SM [30–33].

2.5 Heavy-quark effective theory

Calculating predictions for the properties of hadrons using QCD can be challenging if not

impossible. It is therefore useful to employ a variety of tricks to make approximate predictions.

One such trick is the heavy-quark expansion employed in Heavy-Quark Effective Theory

(HQET) [34,35]. The fundamental insight of HQET is that, for hadrons containing one heavy

(c or b) quark, the actual mass of the heavy quark becomes irrelevant to the behavior of the

light (u, d, or s) quarks within the hadron, allowing for calculations of the hadron’s behavior.

The “expansion” part of the heavy-quark expansion in HQET refers to a perturbative

expansion around the infinite-mass limit of the heavy quark. Put simply, the behavior

of a hadron is described by a summation of terms where the largest term is independent

of the mass of the heavy quark. The remaining terms are multiplied by inverse-powers

of the heavy-quark mass and contribute less and less at higher and higher inverse-powers

15“Axial vectors” are invariant under parity transformations (which carry every point in a coordinate system
through the origin to their diametrically opposite positions) and are sometimes called “pseudovectors”;
this is in contrast with “polar vectors”, which change sign under parity. The classic example of an axial
vector is a cross-product: Consider a vector ~c = ~a ×~b, where ~a and ~b are polar vectors. Under a parity
transformation P , therefore, P (~c) = −~a×−~b = ~c.

16According to Noether’s Theorem, physical symmetries imply conservation laws [29], e.g., the invariance of
physical laws over time implies the well-known conservation of energy. Conserved quantities in Noether’s
Theorem can be described using currents; these are mathematically similar to electric currents, which are
also conserved. Indeed, the conservation of electric charge follows from Noether’s Theorem.
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(“higher-order terms”). If the quark mass is taken to be infinite, these higher-order terms

reduce to 0, leaving only the first-order term and simplifying the calculation significantly.

Expressed in over-simplified math,

hadron behavior =
∞∑
i=0

ci ×
(

1

mQ

)i
= c0 + c1 ×

1

mQ

+ c2 ×
(

1

mQ

)2

+ c3 ×
(

1

mQ

)3

+ · · ·

=⇒ lim
mQ→∞

hadron behavior = c0,

where the ci are independent of the mass of the heavy quark, mQ. Of course, heavy quarks

have finite masses, so in practice some terms in the heavy-quark expansion must be calculated,

but it can be easily seen that the heavier the heavy quark, the less the higher-order terms

(“perturbations”) contribute to the hadron’s behavior.

The heaviest quark capable of forming hadrons is the b quark [25], and HQET works well

in predicting various properties of hadrons containing a single b quark. More challenging is the

other heavy quark capable of forming hadrons, the c quark. Since it is so much lighter than the

b quark (see Figure 1), its behavior is more sensitive to contributions from higher-order terms,

which must therefore be calculated with greater precision to ensure accurate predictions

using HQET. That said, the beautiful thing about HQET is that the higher-order terms

usually contribute less than the lower-order ones, so to a decent approximation, one expects

hadrons that differ only by the exchange of a b and a c quark to exhibit similar behaviors.

This symmetry under the exchange of a heavy quark is called “heavy-quark symmetry”.

2.6 Dalitz plots

We often cannot observe short-lived mother particles directly and instead examine the

properties of their daughters to glean information. A common technique for extracting

information about particles that decay to three daughters was developed by R. H. Dalitz
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in the 1950s [36]. The basic idea exploits the conservation of energy, the conservation of

momentum, and Einstein’s famous equation,

E2 = m2 + p2,

where E is the particle’s energy, m its mass, and ~p its momentum, and which reduces to its

popular form, E = m, for particles with zero momentum. An accessible derivation of the

technique can be found in Chapter 4.3 of Reference [37], but the takeaway is that, thanks to

these relations, plotting the squared mass of any two pairs of daughter particles against one

another allows us to see certain otherwise-hidden dynamics of the decay.

Consider Figure 4, which shows a Dalitz plot for Λ+
c → pK−π+ decay. The horizontal

axis shows the squared mass of the proton and pion pair,

m2(p, π+) = (Ep + Eπ+)2 − (~pp + ~pπ+)2,

and the vertical axis shows that for the kaon and pion pair, m2(K−, π+). The non-zero region

of the plot takes the shape of a rounded triangle, whose area is determined by the available

phase-space of the decay, and a number of linear enhancements can be seen within it. These

linear enhancements correspond to the presence of intermediate resonances in Λ+
c → pK−π+

decay; for example, the horizontal band at ≈ 0.8 GeV2 is due to the K∗(892)0 resonance,

where the decay is Λ+
c → p(K∗(892)0 → K−π+) and m2(K∗(892)0) ≈ 0.8 GeV2 [25], and

the diagonal bands correspond to pK− resonances. Dalitz plots thus encode information

about the intermediate resonant structure of three-body decays, which in turn influence

daughter-particle dynamics, e.g., the opening angles between the daughters.17

17An “opening angle” is the angle between the momentum vectors of two created particles.
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Figure 4: Dalitz plot for Λ+
c → pK−π+ decay. See Figure 19 in Section 4.3.4.
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3 The LHCb experiment

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest machine dedicated to the study of particle

physics built to date. It is located at the European Organization for Nuclear Research

(CERN) on the border between France and Switzerland and has a circumference of 27 km.

The purpose of the LHC is to accelerate hadrons to high energies and force them to collide.

The LHC is the last stage of a complex of accelerators at CERN, as shown in Figure 5 [38].

The acceleration process begins with Linear Accelerator 4 (LINAC4), which accelerates

negative hydrogen ions to 160 MeV. These ions are then fed into the Proton Synchrotron

Booster (PSB), during which the electrons are stripped from the ions, leaving only protons.

The PSB brings the protons up to 2 GeV before injecting them into the Proton Synchrotron

(PS), which accelerates them to 26 GeV before passing them to the Super Proton Synchrotron

(SPS), which accelerates them to 450 GeV. Now the protons can be injected into the LHC

itself.

The LHC circulates two beams of protons, one clockwise and one anti-clockwise, held in

separate rings where they are each accelerated to 6.5 TeV. They are then forced to collide at

four different interaction points around the ring, the locations of the ALICE, ATLAS, CMS,

and LHCb detectors, with a total center-of-mass collision energy of 13 TeV. The protons are

separated into discrete bunches to help control the collisions; a bunch in one beam is brought

into an interaction point at the same time as a bunch in the other beam, allowing the protons

in the bunches to collide. Bunch crossings occur once every 25 ns. Bunch crossings where

protons collide are referred to as “events”.

The preceding description is for the accelerator complex at the time of publication, not as

it existed during data-taking for the work presented in Section 4, during which, for example,

Linear Accelerator 2 rather than LINAC4 served as the starting point of the acceleration

process. The overall picture is roughly the same, however, including the final collision energy
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Figure 5: The CERN accelerator complex as of 2019 [12].

of the proton beams.

3.2 The LHCb detector

The Large Hadron Collider beauty (LHCb) detector is a single-arm forward spectrometer

covering the pseudorapidity range 2 < η < 5, described in detail in References [13,39] and

shown schematically in Figure 6. What follows is an introductory-level description of some of

its most-relevant features.

Designed to collect the largest sample of bb pairs in the world, the LHCb detector has a
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Figure 6: The LHCb detector, shown schematically in profile [13].

unique design, especially among detectors operating on the LHC. Most obviously, it operates

only in the forward region. Proton-proton (pp) collisions occur on the left-hand side of

Figure 6 and produce particles in all directions, but LHCb only detects those in a conical

region extending to the right (the “forward” region, along the positive z-axis). This is the

pseudorapidity range 2 < η < 5, where pseudorapidity is defined as

η ≡ − ln

[
tan

(
θ

2

)]

and θ is the angle with respect to (w.r.t.) the z-axis. The reason LHCb operates in such

a restricted region has to do with the production properties of bb pairs in pp collisions,

specifically that they are overwhelmingly produced in a forward and backward cone. Rather

than build a double detector in each direction, only one region (the forward cone) is chosen

for simplicity, exploiting the symmetry of the collision.
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LHCb does not use the full capabilities of the LHC in that it uses a process called

“luminosity leveling” to reduce the number of proton collisions. Luminosity (L) is the number

of particles passing along the beam line per unit time per unit area; it is roughly analogous

to the likelihood of collision. The LHC can deliver L ≈ 1034 cm−2 s−1, but the p beams are

adjusted before colliding in the LHCb detector so that it receives L = 2 × 1032 cm−2 s−1,

only ≈ 1% of the LHC’s capacity. This leveling still allows for the production of trillions of

bb pairs annually and provides some advantages, including lower radiation damage to the

detector and easier event analysis, since there is usually a single pp interaction per bunch

crossing. LHCb first collected data from 2010 to 2012, known as “Run I”, during which

roughly 3 fb−1 of data were collected at a pp center-of-mass energy of 7 TeV.18 Run II began

in 2015 and ran through 2018, during which an additional ≈ 5.5 fb−1 of data were collected

with a center-of-mass energy of 13 TeV.

The LHCb detector comprises a number of subdetectors, described below, dedicated to

specific tasks. Unless otherwise stated, the facts and figures in the following sections are

taken from References [13,39].

3.2.1 Magnet

LHCb makes use of a dipole magnet to measure the momenta of charged particles. (Charged

particles moving perpendicular to a magnetic field have their trajectories bent at an angle

proportional to their momenta.) It consists of two saddle-shaped coils in a window-frame

yoke, for a total weight of 1600 tons, and is shown in Figure 7. It was designed to expose

passing particles to an integrated magnetic field of 4 Tm for particles traversing 10 m while

respecting the low-field needs of the RICH and creating a field as large as possible between

the VELO and TT (see Sections 3.2.2, 3.2.3, and 3.2.7). In addition, the magnet polarity

is occasionally switched during LHCb data-taking to help with the cancelation of certain

18The amount of data is given in terms of “integrated luminosity” (
∫
L), the instantaneous luminosity

integrated over the data-taking periods. It is, by convention, given in terms of inverse barns ( b−1), a
whimsically-named unit of area equivalent to 10−28 m−2.

18



Figure 7: Drawing of the LHCb magnet [13].

systematic uncertainties, so the magnet needed to perform identically in both cases (magnet

polarity up and down). The magnet has been found to provide a uniform field (±1%) and

satisfy the field strength requirements to a precision of 4× 10−4.

3.2.2 Vertex Locator

Proton collisions in LHCb occur in the Vertex Locator (VELO), located around the interaction

point. It is a silicon-strip tracking detector that provides precise positional information about

particles that pass through it. Since b and c hadrons are relatively long-lived, one of the
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primary functions of the VELO is to distinguish the PV from the secondary decay vertices of

b and c hadrons; that is, both proton collisions and hadron decays produce particles that

leave tracks in the detector, and the VELO helps to differentiate the precise origins of those

tracks. The VELO is made up of silicon modules, arranged along the beam line, that measure

r and φ coordinates (see Figure 8).19 It sits so close to the beam that it has to be retractable

to accommodate the size of the beam during injection (see Figure 9). (The LHC focuses the

beam over time.) Its sensors are situated in a vacuum separated from the LHC vacuum by a

thin aluminum sheet (see Figure 10).

The VELO was subject to several design constraints, including a signal to noise ratio

(S/N) greater than 14 : 1, high signal efficiency (≥ 99% at S/N > 5), and a resolution around

0.004 mm. The use of rφ coordinates was chosen to enable faster reconstruction of tracks

in the trigger (see Section 3.2.9); the sensors are arranged in pairs, one of which provides r

information with the other providing φ information, and the arrangement of the pairs along

the z-axis provides z information, thus giving three-dimensional spatial information about

the location of hits in the VELO. It also needed to withstand an extreme amount of radiation,

the equivalent of 1 MeV neutrons with a flux of 1.3 × 1014neq/cm2 annually, initially for 3

years. Besides the general radiation-hardness requirements this put on the materials, the high

radiation environment also necessitated a sophisticated cooling system capable of keeping the

sensors between −10 and 0◦C.

3.2.3 Tracker Turicensis

The Tracker Turicensis (TT)20 sits just upstream of the dipole magnet (see Section 3.2.1) and

is a silicon-strip tracking detector. It is 150 cm wide by 130 cm tall, covering the full detector

acceptance, and comprises four layers, with the silicon strips of the outer two layers arranged

vertically and those of the inner two rotated at −5◦ and 5◦, thus providing stereo tracking.

To aid in the track reconstruction process, they are arranged in two pairs separated by

19r is the distance from the beam line, and φ is the angle from the x-axis.
20The Tracker Turicensis is the new name for what was formerly known as the Trigger Tracker.
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Figure 8: Perspective illustration of the VELO sensors [13].

≈ 27 cm along the beam line. It was designed to achieve a single-hit resolution of ≈ 0.050 mm,

S/N > 12 : 1, and to withstand 5× 1014neq/cm2 of 1 MeV neutron equivalent fluences over

ten years.

The layers of the TT are thermally and electrically insulated in a single light-tight detector

volume, which is kept below 5◦C to maintain detector performance and flushed with dry

nitrogen to prevent condensation. The sensors are arranged in half-modules that are half the

height of the detector, each of which holds seven sensors. The sensors in a given layer are

staggered in x and z to avoid gaps. The readout electronics and cooling support structures
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Figure 9: Cross-sectional drawing of the VELO [13].

are located outside the detector acceptance. Figure 11 shows the layout of one TT layer.

3.2.4 Inner Tracker

The Inner Tracker (IT) is a silicon-strip tracking detector comprising a 120 cm wide and

40 cm tall cross-shaped region in the middle of the three tracking stations downstream of

the LHCb magnet (T1, T2, and T3 in Figure 6). It was designed to achieve a single-hit

resolution of ≈ 0.050 mm, S/N > 12 : 1, and to withstand 9× 1012neq/cm2 of 1 MeV neutron

equivalent fluences over ten years. Each of its three layers is arranged into four separate

detector boxes, which are light tight, electrically and thermally insulated, maintained below

5◦C, and flushed with nitrogen, similar to the TT (see Section 3.2.3). Also like the TT, the

modules are staggered in x and z to avoid gaps. Unlike the TT, there are only one or two

sensors per module. Figure 12 shows the layout of one IT layer.
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Figure 10: Illustration of the VELO vacuum system [13].

3.2.5 Outer Tracker

The Outer Tracker (OT) is a drift-time detector occupying the three tracking stations

downstream of the LHCb magnet (T1, T2, and T3 in Figure 6) on the outside of the IT

(see Section 3.2.4). It was designed to achieve a momentum resolution of ∆p/p ≈ 0.4%. It

comprises an array of gas-tight straw-tube modules containing two layers of drift tubes, each

of which has an inner diameter of 4.9 mm. Each tracking station has four OT layers, with

the outer two having their straw tubes arranged vertically and the inner two having theirs

rotated by −5◦ and 5◦, similar to the TT (see Section 3.2.3). Figure 13 shows the layout of

the OT.
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Figure 11: A schematic of the third TT layer [13].

Figure 12: A schematic of one IT layer [13].

24



Figure 13: Layout of the LHCb tracking system with a cross-sectional cut-out in the −x,+y quadrant
of the three downstream tracking stations [13]. The OT is shown in teal while the TT and IT are
shown in purple. See Figure 6.

3.2.6 Calorimeters

The calorimeter system, situated between the first and second muon stations (see Section 3.2.8),

is essential to the functioning of the LHCb trigger system (see Section 3.2.9), providing electron,

photon, and hadron identification and measuring their energies and positions. It comprises an

electromagnetic calorimeter (ECAL) followed by a hadronic calorimeter (HCAL). To improve

the trigger performance of the ECAL, a preshower detector (PS) is placed just upstream
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of the main section of the ECAL to help reject backgrounds from charged pions. To help

reject neutral pions, a scintillator pad detector (SPD) is placed in front of the PS to select

charged particles. All of the calorimeters operate by the transmission of scintillation light to

a photomultiplier by wavelength-shifting fibers; the basic idea is that particle interactions

within the detector bulk release energy in the form of light, which is picked up and transmitted

to the electronics.

3.2.7 Ring Imaging Cherenkov detectors

One of the less common and more essential aspects of the LHCb detector is its particle

identification (PID) capabilities. The two Ring Imaging Cherenkov (RICH) detectors are

largely responsible for these capabilities. RICH1 is located upstream of the magnet, covers

the full detector acceptance, and is suitable for low momentum particles; RICH2 is located

downstream of the magnet, covers only a narrow acceptance range, and is suitable for

high momentum particles, which are preferentially produced closer to the beam pipe. The

RICH detectors are named for Cherenkov radiation, which is a cone of light produced

as a charged particle passes through certain media—the angular opening of the cone is

proportional to the velocity of the particle. Taken together with the momentum measured

by the tracking system, this allows for an estimate of the mass of the particle, as shown in

Figure 14. Complicating its performance is the presence of multiple particles passing through

the detector simultaneously; Figure 15 shows an example. The RICH system achieved an

angle resolution of (1.66± 0.03) mrad in test beam studies, and the system readout allows

for a determination of, e.g., whether a reconstructed particle is more likely to be a kaon than

a pion.

3.2.8 Muon system

The muon systems provide muon triggering (see Section 3.2.9) and identification capabilities.

They comprise five stations, shown in Figures 6 and 16, located downstream of the magnet
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Figure 14: Separation of muons, pions, kaons, and protons as a function of momentum in data
collected by the RICH1 detector [14].

at the end of the detector. The detection capabilities are provided by a combination of

multi-wire proportional chambers and triple gas electron multipliers. Iron absorbers 80 cm

thick are placed after most of the stations; they help block most non-muon particles and

impose high momentum requirements that help with the trigger system. The first three

stations have good spatial resolution and are used to measure the muon momentum transverse

to the beam line (pT); the last two stations are mostly designed to indicate whether a particle

penetrated the iron filters, rejecting non-muons.

3.2.9 Trigger

As discussed above, LHCb is designed to operate at a much lower luminosity than the design

luminosity of the LHC. Bunch crossings occur in the LHC every 25 ns, but the frequency of

events that produce at least two charged particles that can be reconstructed by the VELO
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Figure 15: Display of typical simulated event in RICH1 [13].

and tracking stations (the minimum requirements to be visible to the detector) is about

10 MHz. This must be further reduced by the trigger to a level suitable for writing to storage

for offline analysis.21 The trigger system is thus tasked with rejecting uninteresting events

and saving interesting ones for further study.

21Paritcle physics jargon distinguishes between “online” and “offline” event processing. “Online” refers to
processing that occurs during data taking, roughly in real time. “Offline” refers to processing and analysis
that occurs after an event has been saved and can therefore be done at any point after data-taking is
complete.
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Figure 16: Layout of the muon stations [13].
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The LHCb trigger system is split into two levels: Level-0 (L0), the hardware stage, and the

High Level Trigger (HLT), the software stage. The L0 stage is executed synchronously (with

the 40 MHz LHC bunch crossing) by electronics and brings the 10 MHz visible interaction rate

down to 1 MHz primarily by considering the particles with the highest transverse momentum

(pT) and energy (ET) in an event and estimating the total number of tracks. These pieces of

information help it select events likely to contain b hadrons, whose daughters tend to have

high pT, without being bogged down by combinatoric problems from high track-multiplicity.

The HLT stage runs asynchronously on a processor farm and uses all the available data

in an event to bring down the event rate. It is split into two parts. HLT1 uses partial

event reconstruction, relying on the VELO and tracking stations, to confirm the L0 results

and provide further refinement, reducing the rate to about 30 kHz. HLT2 then performs

a full event reconstruction and makes sophisticated decisions about which events to save.

In Run I, the HLT2 performed a simpler, faster reconstruction than could be done offline

(see Section 3.3); in Run II, a major effort was undertaken to improve the HLT2 so that it

performed identically to the offline reconstruction, eliminating this discrepancy.

3.3 The LHCb data flow

The raw data collected by the detector, not to mention generated in simulation, is processed

by a number of software applications to make it suitable for analysis. These applications are

based on the Gaudi framework [40] and serve a variety of purposes.

Data from the detector is initially selected by the trigger, described in Section 3.2.9, which

is handled by Moore [41]. A more sophisticated offline reconstruction is then performed by

Brunel [42]. Brunel is run in centralized reconstruction campaigns, which occur only rarely

due to their computational intensity. After reconstruction, the various electrical readouts

from the detector have been thoroughly transformed into physics objects in software, allowing

decay chains, e.g., Ξ0
c→ π− (Λ+

c → pK−π+), to be constructed, but the dataset is still quite

large and not suited to access by analysts. LHCb therefore conducts Stripping campaigns
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to further reduce the size of the dataset beyond the simple trigger selections; these are

centrally run data-reduction campaigns, which occur more frequently than the reconstruction

campaigns, that produce output suitable for analysts. The stripping campaigns are handled

by DaVinci [42], which is also typically used to query the stripped datasets to create n-tuples

for use in analyses.22

There is also a parallel data flow used in LHCb called the “Turbo stream”. Since the

reconstruction executed in HLT2 (using Moore) and in Brunel perform identically in

Run II, as mentioned in Section 3.2.9, analysts have the choice of skipping the reconstruction

and stripping steps and accessing data directly from HLT2 in the Turbo stream. Due to

rate considerations, the data available in this stream is generally less comprehensive and

more restricted than in the “full stream”, but it can be convenient if no more information is

required.

Physics simulation in LHCb is handled by Gauss, which coordinates and runs several

different applications to produce effective simulation [43]. It uses Pythia to simulate pp

collisions [44,45], EvtGen to simulate particle decay [46], and Geant4 to model particle

interactions with the detector [47, 48]. The response of the detector itself is simulated by

Boole [42], and from this point on, simulation and detector data follow the same processing

path. The jargon for simulated data is “Monte Carlo” (MC), for the popular gambling

destination, while data collected by the detector is generally referred to simply as “data”.

Figure 17 illustrates the LHCb data flow for data and MC.

22An n-tuple is an ordered list of sets of values. For example, one might record the x-, y-, and z-momenta of
a series of Λ+

c hadrons as an n-tuple.
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Figure 17: The LHCb data flow in Run II [15].
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4 First branching fraction measurement of the sup-

pressed decay Ξ0
c→ π−Λ+

c

This section is an adaptation of an analysis note written with Sheldon Stone, published as

Reference [17], which formed the basis for a paper published with the LHCb collaboration as

Reference [49]. All of the figures used are taken from References [17, 49]. Charge-conjugation

is implied throughout this section.23

4.1 Introduction

Baryons containing both an s quark and a heavy c or b quark, denoted as Q, usually decay

to lighter particles via the decay of the heavy quark. There is, however, the possibility of the

s quark causing the transformation. Theoretical predictions concerning the decay widths of

ΞQ → πΛQ are based on the size of the s-quark decay amplitude s→ u(ud) (SUUD) and the

“weak scattering” (WS) amplitude Qs→ dQ [50]; the Feynman diagrams corresponding to

these amplitudes are shown in Figure 18 for Ξ0
c decay.

The WS amplitude is not present in all such decays, e.g., Ξ−b → π−Λ0
b decay. This allows

interesting comparisons to be made using the measured rates. Studies of these ΞQ baryon

decays connect theories concerning hyperon24 decays to those for the heavy b and c quarks.
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Figure 18: Decay diagrams for Ξ0
c → π−Λ+

c transitions via (a) the SUUD amplitude and (b) the
WS amplitude.

23Whenever a decay is referenced in this section, the same decay with matter exchanged for anti-matter and
vice versa should be understood to be referenced also.

24“Hyperon” is jargon for a baryon containing at least one s quark but no c or b (or t) quarks, e.g., the Λ
baryon (uds).
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The former use partially conserved axial currents (PCAC) and SU(3) symmetry, whereas

the latter apply more modern approaches, including heavy-quark effective theory (HQET).

These transitions can result in decays into a Λ0
b baryon and either a π0 or a π− meson; here

we discuss only decays involving the π− meson. As the Ξ−b baryon consists of b, s, and d

quarks, the WS amplitude is not present in Ξ−b → π−Λ0
b decay [51], so the measurement of

that decay rate can be used to determine the SUUD amplitude. This information can be

used to predict the Ξ0
c→ π−Λ+

c decay rate that, in principle, involves both amplitudes.

The well-known Ξ0
c baryon consists of the c, s, and d quarks. Its lifetime has been measured

to be 154.5 ± 1.7 ± 1.6 ± 1.0 fs [2]. Both the SUUD and WS s-quark decay processes are

allowed [50], but the explicit decay Ξ0
c→ π−Λ+

c has not been previously observed.25 Several

authors have made predictions using the measured Ξ−b SUUD amplitude and the measured

lifetimes of the SU(3) triplet baryons, Ξ0
c , Λ+

c , and Ξ+
c , as input for determining the WS

amplitude. This method was pioneered by Voloshin where he used SU(3) symmetry, PCAC,

and the heavy-quark limit to determine an upper limit on Γ(Ξ−b → π−Λ0
b) [50]. In a subsequent

paper, he uses the input from the LHCb measurement of B(Ξ−b → π−Λ0
b) = (0.60±0.18)% [51]

and updated values for the charmed-baryon lifetimes to find the SUUD rate and then calculates

the WS amplitude, predicting B(Ξ0
c→ π−Λ+

c ) ' (0.25± 0.15)× 10−3 after assuming negative

interference between the two strangeness-changing amplitudes [4].

Gronau and Rosner, using the same approach as Voloshin, predict two possible branching

fractions for Ξ0
c→ π−Λ+

c decay, depending on the sign of the interference between the two

decay amplitudes [5]. Based on the measured B(Ξ−b → π−Λ0
b) [51] and using the available

charmed-baryon lifetimes [8], they predict B(Ξ0
c→ π−Λ+

c ) = (0.19± 0.07)% for constructive

interference and B(Ξ0
c→ π−Λ+

c ) / 0.01% for destructive interference between the SUUD and

WS contributions. We have redone their calculation using updated lifetime measurements

from LHCb [2], finding B (Ξ0
c→ π−Λ+

c ) = (0.14± 0.07)% for constructive interference and

B (Ξ0
c→ π−Λ+

c ) / (0.018± 0.015)% for destructive; see Appendix A.12.

25A Belle paper shows a peak near the Ξ0
c mass for this decay [52]. However, they quote neither a signal

significance, nor a branching fraction.
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Faller and Mannel, on the other hand, predict B (Ξ0
c→ π−Λ+

c ) < 0.3%, an upper

limit arrived at by assuming constructive interference [6]. Finally, Cheng et al. predict

B (Ξ0
c→ π−Λ+

c ) ∼ 0.0087%, assuming negative interference [7]. We have not updated these

predictions; the effect would be to lower Faller and Mannel’s positive interference prediction

and raise Cheng et al.’s negative one, giving somewhat better agreement with Gronau and

Rosner’s predictions.

Measurement of B(Ξ0
c → π−Λ+

c ) is hampered by the lack of precisely measured Ξ0
c

branching fractions [10]. The Belle collaboration measured B(Ξ0
c → Ξ−π+) = (1.80 ±

0.50 ± 0.14)%, B(Ξ0
c → ΛK−π+) = (1.17 ± 0.37 ± 0.09)%, and B(Ξ0

c → pK−K−π+) =

(0.58 ± 0.23 ± 0.05)%, but these either involve hyperons, which have low reconstruction

efficiencies in LHCb, or carry > 40% relative uncertainties [53].26 We therefore take a

somewhat unusual approach to measure B(Ξ0
c→ π−Λ+

c ). First, we note that

N(Ξ0
c )

N(Λ+
c )

=
fΞ0

c

fΛ+
c

, (1)

where N indicates the number of (efficiency-corrected) particles in a dataset and fi indicates

the relative production fraction of charm-baryon i. (All baryon yields refer only to those

promptly produced from the initial pp collision; we assign a systematic uncertainty due to

this assumption in Section 4.7.11.) The branching fraction is defined as

B(Ξ0
c→ π−Λ+

c ) = N(Ξ0
c→ π−Λ+

c )/N(Ξ0
c ), (2)

so, from Equation 1,

N(Ξ0
c→ π−Λ+

c )

N(Λ+
c )

=
fΞ0

c

fΛ+
c

× B(Ξ0
c→ π−Λ+

c ). (3)

26The PDG fit value for B(Ξ0
c → pK−K−π+) = (0.48 ± 0.12)%, carrying a 25% relative uncertainty, was

published shortly before the measurement presented here, well after this analysis was complete [25,49].
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To obtain the ratio of production fractions, we use the heavy-quark symmetry relation,

fΞ0
c

fΛ+
c

= C ×
fΞ−b
fΛ0

b

, (4)

where C is a correction factor for differences in excited states between the charm and bottom

sectors, which we calculate in Section 4.6.2.
f
Ξ−
b

f
Λ0
b

has been measured by LHCb in 13 TeV pp

collisions to be (8.2± 0.7± 2.6)% [54]; an additional 5% will be added to this already large

relative uncertainty for the heavy-quark symmetry assumption (see Section 4.7.1). In this

analysis, we use only Λ+
c → pK−π+ decays, so in summary,

B1 ≡ B(Ξ0
c→ π−Λ+

c ) =
N(Ξ0

c→ π− (Λ+
c → pK−π+))

N(Λ+
c → pK−π+)

× 1

C
×
fΛ0

b

fΞ−b
. (5)

The Belle collaboration measured B(Ξ+
c → pK−π+) to be (0.45± 0.21± 0.07)% [55]. Using

an approach similar to that above, we can use this to make an alternative measurement of

B(Ξ0
c→ π−Λ+

c ). We note that

N(Ξ0
c )

N(Ξ+
c )

=
fΞ0

c

fΞ+
c

(6)

N(Ξ0
c→ π−Λ+

c )

N(Ξ+
c )

=
fΞ0

c

fΞ+
c

× B(Ξ0
c→ π−Λ+

c ) (7)

and that

fΞ0
c

fΞ+
c

≈ 1 (8)

due to isospin symmetry.27 In this analysis, we use only Λ+
c → pK−π+ and Ξ+

c → pK−π+

decays, so in summary,

B2 ≡ B(Ξ0
c→ π−Λ+

c ) =
N(Ξ0

c→ π− (Λ+
c → pK−π+))

N(Ξ+
c → pK−π+)

× B(Ξ+
c → pK−π+)

B(Λ+
c → pK−π+)

, (9)

where B(Λ+
c → pK−π+) = (6.23± 0.33)% [1].

27See Section 84.2 of Reference [10].
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In addition, by equating Equations 5 and 9 and solving for B(Ξ+
c → pK−π+), we find

B3 ≡ B(Ξ+
c → pK−π+) =

N(Ξ+
c → pK−π+)

N(Λ+
c → pK−π+)

× 1

C
×
fΛ0

b

fΞ−b
× B(Λ+

c → pK−π+), (10)

allowing a determination of B(Ξ+
c → pK−π+) without measuring any additional parameters.

4.2 Data sample

This analysis is based on the data sample collected by the LHCb detector at a 13 TeV center-

of-mass pp collision energy during the Run II years 2017 and 2018, which correspond to

integrated luminosities of 1.6 fb−1 and 2.2 fb−1, respectively. We use data passing specific L0,

HLT1, and HLT2 (Turbo) trigger lines (see Section 4.3). The decays Ξ0
c→ π− (Λ+

c → pK−π+),

Λ+
c → pK−π+, and Ξ+

c → pK−π+ are reconstructed using Turbo04 in 2017 and Turbo05 in

2018. They are then processed into useable n-tuples using DaVinci v45r2.

The software versions to produce simulation are summarized in Table 1. The simulation

data are produced with the Gauss framework, which employs Pythia 8 for simulating the

fragmentation and hadronisation processes for the signal Ξ0
c , Λ+

c , and Ξ+
c baryons; EvtGen

for simulating the decay of the signal baryons; and Geant4 for simulating the detector

response. Digitization is performed with Boole, and from this point on, simulation undergoes

the same processing as data: The trigger is applied using Moore; Brunel is used for event

reconstruction; and DaVinci is used to apply the Turbo and stripping. (See Section 3.3.)

Track smearing is performed to ensure that the simulated data have similar momentum and

mass resolutions as real data.

The simulation samples used in this analysis are listed in Table 2. The Ξ0
c , Λ+

c , and

Ξ+
c baryons decay to their immediate daughters via a phase-space model. The intermedi-

ate resonances in Λ+
c → pK−π+ proceed via various models, described in Table 3. (The

intermediate spectra of Ξ+
c → pK−π+ has not been measured; see Section 4.7.9.) The

generator-level selection applied to the Ξ+
c → pK−π+ sample must be accounted for, since
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Table 1: Software used to generate simulation for the Ξ0
c and Λ+

c samples. The software for the Ξ+
c

sample sometimes differs; where this is the case, it is given in parentheses.

Package 2016 version 2017 version 2018 version
Gauss v49r13 (v49r12) v49r13 (v49r12) v49r13 (v49r12)
Boole v30r3 v30r4 (v30r3) v30r4
Moore v25r4 v26r6p1 v28r3p1
Brunel v50r5 v52r6p1 v54r2 (v54r1)
DaVinci (Turbo) v41r4p3 v42r8p3 v44r7
DaVinci (Stripping) v41r4p4 v42r7p3 v44r7

it requires final-state daughters to be within the coverage of the LHCb detector, whereas

the generator-level selections applied to the other samples only require the mother charm

baryon to be within coverage (see Section 4.4).28 We use 2016 simulation in addition to 2017

and 2018 in order to maximize the statistics; there is no difference relevant to this analysis

between the simulation samples for these years.

Table 2: Simulation samples (2016, 2017, and 2018 combined) used for BDT training and efficiency
studies before any selections have been applied. See Section 4.4 for explanations of the generator-level
cuts.

Decay Statistics Generator-Level Cuts
Ξ0
c→ π− (Λ+

c → pK−π+) 11.98M LHCbAcceptance

Λ+
c → pK−π+ 12.21M LHCbAcceptance

Ξ+
c → pK−π+ 12.06M DaughtersInLHCb

4.3 Event selections

We use a two-step process to maximize the statistical significance of the datasets. First, we

apply loose selections with large signal efficiencies and good background suppression. Then,

we apply three different boosted decision trees (BDT) [56,57], one for each baryon decay, to

further separate signal from background.

28In LHCb, generator-level cuts are selections applied directly to simulated events, before they are recon-
structed by the detector, whereas most selections are applied to reconstructed candidates. See Section 3.3.
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Table 3: Λ+
c decay models used. The rates listed are from the PDG [1], but they were not adjusted

to account for the branching fractions of the intermediate states, e.g., K∗0 → K−π+. Since we
weight the Dalitz spectra to match data, however, this should have a negligible impact on the results;
see Sections 4.3.4 and 4.7.9.

Decay Rate Intermediate resonance decay model

Λ+
c → p(K∗0 → K−π+) 1.94% VSS

Λ+
c → K−(∆++ → pπ+) 1.07% PHSP

Λ+
c → π+(Λ∗(1520)→ pK−) 2.20% PHSP

Λ+
c → pK−π+ non-resonant 3.40%

4.3.1 Turbo selections

The Λ+
c → pK−π+ and Ξ+

c → pK−π+ data samples comes from the LHCb Turbo stream, and

Table 4 summarizes their selections. We then combine the Λ+
c baryon candidates with π−

meson candidates persisted in the Turbo stream to create Ξ0
c→ π− (Λ+

c → pK−π+) candidates,

as summarized in Table 5. Unless they are used to build a Ξ0
c candidate, we keep only 10%

of the Λ+
c candidates in data in order to improve processing speed and save storage space; we

account for this by multiplying the final yield by 10.

For simulation, we do not use the Turbo stream directly owing to the presence of

particle identification (PID) requirements. Instead, we rebuild the Turbo selections by hand

using general sources of p, K−, and π+ candidates, excluding the PID requirements (e.g.,

DLLpπ > 5), which we reproduce offline using an independent data sample (see Section 4.3.4).

4.3.2 Trigger selections

In the Ξ0
c and Λ+

c samples, we require each signal Λ+
c baryon to satisfy certain trigger

requirements (TOS29), and we apply identical requirements to the signal Ξ+
c baryon in the

Ξ+
c sample, as described in Table 6. This approach minimizes any biasing effects from

differing trigger selections.

29“Trigger On Signal”, or “TOS”, indicates that the candidate in question passed a given set of trigger
selections, opposed to simply being in an event where any particle passed the selections.
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Table 4: Selections made in the Turbo stream. See text. Hc is either the signal Λ+
c or the signal

Ξ+
c baryon, as appropriate. χ2

IP is the difference in the PV vertex fit χ2 with and without the p,
K−, and π+ tracks. GhostProb is the probability the track is a ghost. ndf is the number of degrees
of freedom in the fit. HasRich indicates whether the track has information in the RICH. DLLpπ is
the difference in log likelihood that a particle is a proton rather than a π meson, similarly for other
particles. ~x is the position vector pointing from the PV to the particle’s decay vertex; ~x(Hc)·~p(Hc)

x(Hc)·p(Hc) is
thus equivalent to the cosine of the angle between the particle’s momentum and its decay vertex.
See Section 4.3.2 for an explanation of the trigger requirements.

Property Value
after refitting PVs

m (Λ+
c ) > 2211 MeV, < 2362 MeV

m (Ξ+
c ) > 2392 MeV, < 2543 MeV

before refitting PVs
m (Hc) > 2201 MeV, < 2553 MeV
χ2
IP(p) or χ2

IP(K−) or χ2
IP(π+) > 16

at least two of χ2
IP(p), χ2

IP(K−), χ2
IP(π+) > 9

χ2
IP(p) and χ2

IP(K−) and χ2
IP(π+) > 6

pT(p) or pT(K−) or pT(π+) > 1 GeV
at least two of pT(p), pT(K−), pT(π+) > 400 MeV
pT(p) and pT(K−) and pT(π+) > 200 MeV∑

p,K−,π+ pT > 3 GeV

p(K−) and p(π+) > 1 GeV
p(p) > 10 GeV
χ2
vtx/ndf(Hc) < 10

~x(Hc)·~p(Hc)
x(Hc)·p(Hc) > cos(10 mrad)

τ(Hc) > 150 fs
χ2
track/ndf(p) and χ2

track/ndf(K−) and χ2
track/ndf(π+) < 3

GhostProb(p) and GhostProb(K−) and GhostProb(π+) < 0.4
DLLpπ(p)−DLLKπ(p) > 5
DLLpπ(p) > 5
DLLKπ(K−) > 5
DLLKπ(π+) < 5
HasRich(p) and HasRich(K−) and HasRich(π+) True
any Track HLT1 line TOS Hc True
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Table 5: Selections made to produce Ξ0
c candidates. See text. χ2

vtx is the fit χ2 of the decay vertex.

Λ+
c , π− combination

Property Value
after refitting PVs

χ2
vtx(Ξ

0
c ) < 25

pT(Ξ0
c ) > 1 GeV

c× τ (Ξ0
c ) > 0.05 mm

before refitting PVs
pT(Ξ0

c ) > 950 MeV
m (Ξ0

c )−m (Λ+
c ) < 240 MeV

Table 6: Trigger requirements. The signal charm-baryon must pass at least one of the listed trigger
lines for each stage of the trigger (TOS). The “signal charm-baryon” is defined as the signal Λ+

c

baryon candidate for the Ξ0
c→ π− (Λ+

c → pK−π+) and Λ+
c → pK−π+ samples and as the signal Ξ+

c

baryon for the Ξ+
c → pK−π+ sample. L0HadronDecision is based on the response of the hadronic

calorimeters; the Hlt1TrackMVA lines select events with quality tracks formed in HLT1.

Stage Trigger Lines
L0 L0HadronDecision

HLT1 Hlt1TwoTrackMVADecision

Hlt1TrackMVADecision

4.3.3 Offline selections

Before passing the data and simulation datasets to the BDTs (see Section 4.3.5), we make a

few basic selections, summarized in Table 7. DecayTreeFitter (DTF) recalculates selected

parameters based on certain assumptions [58]; in this case, it assumes the signal Ξ0
c , Λ+

c , or

Ξ+
c baryon came from the primary vertex (PV) and that all daughters form vertices with

their mothers. (We do not apply any mass constraints.) Several of the offline selections, most

notably those requiring a parameter to be > 0, are meant primarily to ensure DTF completed

the fit successfully. (Negative values would indicate a failed fit.)
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Table 7: Offline selections. See text. Selections requiring a parameter to be > 0 ensure DTF
completed the fit successfully, as negative values would indicate a failed fit.

Property Value
Ξ0
c→ π− (Λ+

c → pK−π+)
DTF (m (Ξ0

c )) −DTF (m (Λ+
c )) > 100 MeV, < 300 MeV

m (Λ+
c ) > 2266.46 MeV, < 2306.46 MeV

DTF (m (Ξ0
c )) > 0 MeV

χ2(DTF (τ (Ξ0
c ))) > 0

DTF
(
~x(Ξ0

c )·~p(Ξ0
c )

x(Ξ0
c )·p(Ξ0

c )

)
> 0.999

~x(Ξ0
c )·~p(Ξ0

c )
x(Ξ0

c )·p(Ξ0
c )

> 0.999

GhostProb(π−, p,K−, π+) < 0.3
pT(Ξ0

c ) > 5 GeV
Λ+
c → pK−π+

m (Λ+
c ) > 2220 MeV, < 2350 MeV

χ2(DTF (τ (Λ+
c ))) > 0

DTF
(
~x(Λ+

c )·~p(Λ+
c )

x(Λ+
c )·p(Λ+

c )

)
> 0.999

~x(Λ+
c )·~p(Λ+

c )

x(Λ+
c )·p(Λ+

c )
> 0.999

GhostProb(p,K−, π+) < 0.3
pT(Λ+

c ) > 5 GeV
Ξ+
c → pK−π+

DTF (m (Ξ+
c )) > 2410 MeV, < 2540 MeV

χ2(DTF (τ (Ξ+
c ))) > 0

DTF
(
~x(Ξ+

c )·~p(Ξ+
c )

x(Ξ+
c )·p(Ξ+

c )

)
> 0.999

~x(Ξ+
c )·~p(Ξ+

c )

x(Ξ+
c )·p(Ξ+

c )
> 0.999

GhostProb(p,K−, π+) < 0.3
pT(Ξ+

c ) > 5 GeV

4.3.4 Additional simulation selections

The simulation serves two purposes: to calculate the signal-detection efficiencies and to

provide an independent signal dataset with which to train the BDTs (see Section 4.3.5).

To achieve both these ends, we require all reconstructed signal candidates in simulation to

correspond to their generated signal counterparts. This ensures that we feed the BDTs a

pure signal sample and that we calculate the signal efficiencies explicitly. See Appendix A.1

for details.
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We weight the generated lifetimes of the simulated Ξ0
c , Λ+

c , and Ξ+
c baryons to match the

values from recent LHCb measurements [2] using the expression

exp

[
−
(

t (Hc)

τmeas (Hc)
− t (Hc)

τgen (Hc)

)]
, (11)

where Hc is the charm baryon in question, t (Hc) is the decay time of the simulated particle,

τmeas (Hc) is the measured lifetime of the baryon, and τgen (Hc) is the lifetime used in the

simulation by EvtGen, shown in Table 8 (see Section 4.2).30 We assign a systematic

uncertainty due to the uncertainty of the measurements in Table 8 (see Section 4.7.2).

Table 8: Charm-baryon lifetime values. Measurements are taken from Reference [2], where uncer-
tainties are statistical, systematic, and due to the uncertainty on the lifetime of the D+ meson,
respectively. The simulated values are those used by EvtGen; see text.

Particle Measured [fs] Simulated [fs]
Ξ0
c 154.5± 1.7± 1.6± 1.0 155

Λ+
c 203.5± 1.0± 1.3± 1.4 200

Ξ+
c 456.8± 3.5± 2.9± 3.1 442

To ensure we correctly reproduce the intermediate spectra and opening angles of the

Λ+
c → pK−π+ and Ξ+

c → pK−π+ decays, we weight their Dalitz spectra according to their

distributions in data. After applying all selections (Turbo, offline, BDT, and trigger, described

elsewhere in this section), we use the sPlot method [16] to assign weights to the data sample

from the total fits shown in Figures 25 and 26 in Section 4.5.1. We then generate the

appropriate Dalitz plots using the Λ+
c → pK−π+ and Ξ+

c → pK−π+ data and simulation

datasets and normalize them to one. We take the ratio of the normalized histograms and

use them to weight all simulation accordingly, as shown in Figure 19. Appendix A.10 shows

the results of the weighting. We assign a systematic uncertainty due to this weighting; see

Section 4.7.9.

30The lifetime of a particle, τ , is just the inverse of the decay constant in the common formula for exponential
decay.
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Dalitz plots for signal (left) Λ+
c → pK−π+ and (right) Ξ+

c → pK−π+ for (a & b) data,
(c & d) simulation (without Dalitz weights applied), and (e & f) data divided by simulation (weight
histograms).
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Simulation is known not to produce the correct reconstruction efficiency for tracks in

the detector. We therefore weight the reconstructed simulation using histograms generated

by the TrackCalib package,31 which uses an independent dataset to determine the tracking

efficiency in the detector, according to the momentum and pseudorapidity of each track. We

assign a systematic uncertainty from the use of this tool; see Section 4.7.4.

Simulation does not give a precise enough estimate of particle identification (PID) effi-

ciencies for the final-state daughters; therefore, we use the PIDCalib package,32 which uses

an independent dataset to determine the PID efficiency of the detector, to estimate the PID

response [59]. We do this in two steps: First, we use PIDCalib to reproduce the effects of the

PID selections in Turbo (see Section 4.3.1) and produce per-event weights that represent the

efficiency of the selections. Second, we replace the PID variables used in BDT training (see

Table 9); we do this by sampling the PID response of the PIDCalib dataset as a function of

the pT and η of the simulated tracks and using this instead of the simulated response.33 We

assign systematic uncertainties to the PID efficiencies; see Section 4.7.3.

To avoid pollution of the signal sample with decays proceeding from secondary vertices,

we ignore all simulated decays proceeding from a b quark, including Λ0
b baryons, B− mesons,

etc., by making cuts on the signal Ξ0
c , Λ+

c , or Ξ+
c baryon’s ancestor (mother, grand mother,

great-grand mother) particles’ PID numbers. (We rely on the BDTs to remove decays from

secondary vertices in data; see Sections 4.3.5 and 4.7.11.)

Unless otherwise stated, all simulation statistics referenced and figures shown have these

selections, weights, and substitutions applied.

4.3.5 BDT selections

To better distinguish the signal from background, we train a boosted decision-tree (BDT)

for each of the Ξ0
c→ π− (Λ+

c → pK−π+), Λ+
c → pK−π+, and Ξ+

c → pK−π+ decays using the

31 https://twiki.cern.ch/twiki/bin/view/LHCb/TrackCalib
32 https://twiki.cern.ch/twiki/bin/view/LHCb/PIDCalibPackage
33 https://twiki.cern.ch/twiki/bin/view/LHCb/MeerkatPIDResampling
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Toolkit for Multivariate Data Analysis (TMVA) inside Root [60].34 A BDT is a type of

decision tree that compares the responses of several variables to determine how signal-like or

background-like a given candidate is, allowing for improved discrimination between signal

and background in a dataset, especially when compared to rectangular cuts like those applied

above [56,57]. As inputs, we give the BDT the parameters listed in Table 9 and apply the

Turbo, offline, and trigger selections described above. The input distributions can be found

in Appendix A.4.

Table 9: BDT input parameters. See text. ProbNNPID denotes the output of a probabilistic
neural-network deciding how likely it is that a given track has been assigned the correct mass. The
input distributions can be found in Appendix A.4.

Ξ0
c→ π− (Λ+

c → pK−π+)
ln (χ2/ndf(DTF (Ξ0

c→ π− (Λ+
c → pK−π+))))

ln (‖~x(Λ+
c )− ~x(Ξ0

c )‖)
ln (DTF (τ (Ξ0

c )))

ln
(

arccos
(

DTF
(
~x(Ξ0

c )·~p(Ξ0
c )

x(Ξ0
c )·p(Ξ0

c )

)))
ln
(

arccos
(
~x(Λ+

c )·~p(Λ+
c )

x(Λ+
c )·p(Λ+

c )

))
ln (χ2

IP(Ξ0
c ))

ln (χ2
IP(Λ+

c ))
ln (χ2

IP(π−))
ProbNNπ,p,K,π(π−, p,K−, π+)

Λ+
c → pK−π+

ln (χ2/ndf(DTF (Λ+
c → pK−π+)))

ln (DTF (τ (Λ+
c )))

ln
(

arccos
(

DTF
(
~x(Λ+

c )·~p(Λ+
c )

x(Λ+
c )·p(Λ+

c )

)))
ln (χ2

IP(Λ+
c ))

ProbNNp,K,π(p,K−, π+)
Ξ+
c → pK−π+

ln (χ2/ndf(DTF (Ξ+
c → pK−π+)))

ln (DTF (τ (Ξ+
c )))

ln
(

arccos
(

DTF
(
~x(Ξ+

c )·~p(Ξ+
c )

x(Ξ+
c )·p(Ξ+

c )

)))
ln (χ2

IP(Ξ+
c ))

ProbNNp,K,π(p,K−, π+)

34We use separate BDTs for Ξ0
c → π− (Λ+

c → pK−π+) and Λ+
c → pK−π+ decays since the Λ+

c baryons in
the former come from secondary vertices while those in the latter are promptly produced.
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To train the Ξ0
c BDT, we use wrong-sign (WS) data, wherein the daughter Λ+

c baryon is

paired with a π+ meson instead of a π− meson, as a background sample, whereas for the Λ+
c

and Ξ+
c BDTs we use sideband data as background samples. (We choose to use WS data for

the Ξ0
c BDT since most of the background comes from combinations of real Λ+

c baryons with

random π mesons; see Appendix A.4.) We use truth-matched simulation as signal samples in

all cases. We require

∣∣DTF
(
m
(
Ξ0
c

))
−DTF

(
m
(
Λ+
c

))
+mPDG

(
Λ+
c

)
−mPDG

(
Ξ0
c

)∣∣ < 5 MeV (12)

for the Ξ0
c background sample since there are no resonances in this region,

∣∣DTF
(
m
(
Λ+
c

))
−mPDG

(
Λ+
c

)∣∣ > 40 MeV (13)

for the Λ+
c background sample in order to avoid signal Λ+

c baryons, and

∣∣DTF
(
m
(
Ξ+
c

))
−mPDG

(
Ξ+
c

)∣∣ > 40 MeV (14)

for the Ξ+
c background sample in order to avoid signal Ξ+

c baryons. To decrease training

time, we use only a small fraction of the total data sample for background training. Figure 20

and Table 10 summarize the training inputs.

Due to the small size of the simulation sample surviving L0HadronDecision, we use the

kFolding technique to maximize the amount of simulation available for BDT training and

efficiency calculation.35 We use 10 folds, where the fold assigned to a particular event is

determined by the expression

[(2 ∗ EventNumber + 3 ∗ RunNumber + 5 ∗ nTracks + 7 ∗ nSPDHits)/10] %10, (15)

35See, e.g., Section 3.2 in https://root.cern.ch/root/htmldoc/guides/tmva/TMVAUsersGuide.pdf for a
description of the kFolding technique.
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where EventNumber references the event within a given run wherein the candidate was

generated, RunNumber references the run, nTracks is the total number of tracks in the event,

nSPDHits is the number of hits in the Scintillating Pad Detector, and % is the modulo

operator. Each fold is used as the testing sample for a BDT trained on the events in the

other 9 folds. Thus we actually train 10 BDTs per signal charm-baryon and use the aggregate

response to discriminate signal from background.

Table 10: Number of candidates used for BDT training and testing. The choice to use 99,999
background candidates is arbitrary; we avoid using the whole dataset in order to speed up processing
time. All candidates have passed the Turbo, offline, and trigger selections. None of the weights
described in Section 4.3.4 have been applied; these are raw candidate numbers.

Decay Signal Background
Ξ0
c 4,833 99,999

Λ+
c 5,406 99,999

Ξ+
c 39,644 99,999

4.3.6 BDT performance

We find all BDTs discriminate signal from background with acceptable efficiency and without

overtraining, as shown in Figure 21 and Appendix A.2.36 The Ξ0
c BDT performs rather worse

than its counterparts; this is because there are real Λ+
c baryons in both its signal and its

background samples, which it must distinguish from fake Λ+
c baryons in addition to ensuring

the candidates vertex with π− mesons.

4.3.7 BDT cut selection

To determine the BDT value to select, we construct a figure of merit (FoM)

FoM(x) =
εsignal√
N
, (16)

36We trained additional BDTs with different hyperparameters, selecting a final BDT based on its performance
in the overtraining check.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: Plots of mass distributions of candidates used for BDT training for (a & b) Ξ0
c →

π− (Λ+
c → pK−π+), (c & d) Λ+

c → pK−π+, and (e & f) Ξ+
c → pK−π+ decays for (left) signal

simulation, for which we apply truth-matching and make no mass selections, and (right) background
data, defined by the hatched red regions. The (b) Ξ0

c data sample shown is WS (a Λ+
c baryon paired

with a π+ meson), while all other samples shown use daughters with the correct charges. Note that
the data distributions shown here represent the entire datasets; we use only a small fraction to train
the BDTs (see Table 10).
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(a) (b)

(c) (d)

(e) (f)

Figure 21: BDT performance, as demonstrated by (left) its response and (right) its receiver operating
characteristic (ROC) curve for (a & b) Ξ0

c→ π− (Λ+
c → pK−π+), (c & d) Λ+

c → pK−π+, and (e &
f) Ξ+

c → pK−π+.
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(a) (b) (c)

Figure 22: BDT selection figure of merit for (a) Ξ0
c → π− (Λ+

c → pK−π+), (b) Λ+
c → pK−π+, (c)

and Ξ+
c → pK−π+ samples. See Section 4.3.7. The black histograms represent the fraction of

candidates in data. The green histograms represent the fraction of signal candidates in simulation.
The blue curves represent the normalized values of

εsignal√
N

when the BDT response is > x. We select

the red highlighted regions.

where εsignal is efficiency of the BDT > x selection relative to the Turbo, trigger, and offline

selections; N is the number of data entries surviving BDT > x; and x varies from 0.15 to

0.75 in steps of 0.01. In computing the FoM, we consider only candidates whose mass falls

within a certain range of its PDG value: 4 MeV for the Ξ0
c , 20 MeV for the Λ+

c , or 20 MeV

for the Ξ+
c baryon, ≈ 2.5 times their fitted widths (see Section 4.5). We do not apply any

weighting to the intermediate spectra of the Λ+
c or Ξ+

c baryons. Figure 22 summarizes the

results. We select the values of x that maximize the FoM, leading to minimum allowed values

of 0.55, 0.45, and 0.54 for the Ξ0
c , Λ+

c , and Ξ+
c datasets, respectively.
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4.4 Efficiencies

We determine the efficiencies of the non-trigger selections using simulation. The total efficiency

of all selections, across both 2017 and 2018, is summarized in Table 11.

We use the data-driven TISTOS method [61] to determine the efficiency of the trigger

selections.37 We apply the Turbo, offline, and BDT selections to the data sample, then select

candidates in events that pass the trigger selections independently of the signal (TIS) and fit

the mass distributions of those candidates to determine the signal yields. We then apply the

trigger selections to those same events (TISTOS) and repeat the fits. The ratio of the number

of candidates passing both TIS and TOS trigger selections (TISTOS) to those passing TIS

selections is equivalent to the trigger selection efficiency. Sections 4.5.1 and 4.5.2 describe the

fit models and summarize yields, and Section 4.4.1 describes the treatment of the correlation

between the TIS and TISTOS samples.

Table 2 shows that the Ξ+
c → pK−π+ simulation sample uses DaughtersInLHCb generator-

level cuts, which requires final-state daughters to be within the coverage of the LHCb detector,

while the other samples use LHCbAcceptance, which requires only the charm baryon to be

within coverage. This means that the reconstruction efficiency (incorporated into “Turbo”

in Table 11) given by the Ξ+
c → pK−π+ simulation sample does not account for signal loss

due to final-state daughters falling outside the detector acceptance, while the reconstruction

efficiencies given by the Ξ0
c→ π− (Λ+

c → pK−π+) and Λ+
c → pK−π+ simulation samples do.

We account for this difference by simulating an additional sample of 100,000 Ξ+
c → pK−π+

events at the generator level (Gauss stage only) with LHCbAcceptance cuts, which we apply

again offline to ensure every candidate satisfies them, and then applying DaughtersInLHCb

offline to each candidate. The ratio of the number of candidates surviving DaughtersInLHCb

to the number surviving LHCbAcceptance is given in the “DInLHCb” column of Table 11. We

use Gauss v49r12 to generate the events and DaVinci v44r8 to construct useable n-tuples.

37Our approach follows that described in Reference [61], but in this case, NTrig = NTOS (see Section 4.3.2),
and since we are interested in c-quarks, which are much lighter than b-quarks, we treat “the rest of the
event” as independent of the signal candidates.
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Ghosts, reconstructed tracks that cannot be associated to generated particles, cannot be

truth-matched but may still contain signal candidates. Since the truth-matching criteria

necessarily exclude them (see Section 4.3.4), we correct the signal efficiency by the increase

in signal associated with including ghosts. We do this by comparing the signal yields in fits

to the signal mass spectra in truth-matched simulation samples to the signal yields in the

combined truth-matched-plus-ghosts samples; Section 4.5.1 describes the fit models we use to

extract the yields; both samples have the Turbo, offline, and BDT selections applied; and we

do not apply any of the weights described in Section 4.3.4 to the datasets used in these fits.

The correction factor is equal to the signal yield in the truth-matched-plus-ghosts sample

divided by that in the truth-matched sample. Table 11 summarizes the corrections in the

“Ghost fix” column, and Section 4.4.1 describes the treatment of the correlation between the

truth-matched-plus-ghosts and truth-matched samples.

Table 11: Selection efficiencies, in the range described in Section 4.4.2, only statistical uncertainties
shown. Turbo and DaughtersInLHCb are given relative to generator-level. Offline and BDT are
each given relative to the previous one (left-to-right). “Ghost fix” is the efficiency adjustment for
ghost tracks (see text). Trigger is given relative to BDT and is determined using the data-driven
TISTOS method (see text), while all others are determined using simulation. Total is the product of
all others with correlations taken into account. A factor of 10−1 is shown in the Total Λ+

c efficiency
to account for the retention of only 10% of the candidates in data (see Section 4.3.1).

% DInLHCb Turbo Offline BDT Ghost fix Trigger
Ξ0
c − 0.96± 0.01 93.7± 2.0 32.2± 1.0 105.2± 2.0 35.6± 4.4

Λ+
c − 1.05± 0.01 99.0± 2.0 95.4± 1.9 105.9± 0.3 33.4± 0.1

Ξ+
c 97.9± 2.1 5.08± 0.03 99.2± 0.7 80.6± 0.6 104.2± 0.1 28.4± 0.1

% Total
Ξ0
c 0.11± 0.01

Λ+
c (0.35± 0.01)/10

Ξ+
c 1.18± 0.03
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4.4.1 Correlations between datasets

As described in Reference [61], the TIS and TISTOS samples are not independent, since the

TIS set necessarily includes the events in the TISTOS set. Using the notation in Reference [61],

NTISTOS = d (17)

NTIS = c+ d (18)

εTrig =
NTISTOS

NTIS

=
d

c+ d
. (19)

The covariance between NTISTOS and NTIS, cov(NTISTOS, NTIS), is thus equivalent to cov(d, c+

d) and, from the distributive property of covariance,

cov(d, c+ d) = cov(d, c) + cov(d, d) (20)

= 0 + σ2
d = σ2

d, (21)

since c and d are independent samples. So,

cov(NTISTOS, NTIS) = σ2
NTISTOS

. (22)

A similar consideration applies to the covariance between NTOS and each of NTIS and NTISTOS,

but we treat NTOS as independent since its statistics are so much larger; recalculation of the

results taking this covariance into account confirms that the difference is negligible.

The same consideration applies to the covariance between the truth-matched and truth-

matched-plus-ghosts simulation samples; the calculation is the same as above, but set

d = Ntruth−matched and c+ d = Ntruth−matched−plus−ghosts. Thus,

cov(Ntruth−matched, Ntruth−matched−plus−ghosts) = σ2
Ntruth−matched

. (23)

We take all these covariances into account using the Uncertainties package in python [62].
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(a) (b) (c)

Figure 23: Efficiency as a function of pT and η for (a) Ξ0
c→ π− (Λ+

c → pK−π+), (b) Λ+
c → pK−π+,

and (c) Ξ+
c → pK−π+ decays.

4.4.2 Binning in pT and η

The overall efficiency is not flat in either the transverse momentum (pT) or pseudorapidity

(η) of the signal Ξ0
c , Λ+

c , and Ξ+
c baryons, and we calculate the efficiency in two dimensions:

ε(pT, η). We use simulation to calculate the non-trigger efficiency by taking the ratio in each

bin of the number of signal candidates surviving all non-trigger selections to the number of

signal particles generated. We use data to calculate the trigger efficiency by taking the ratio

in each bin of the signal yield surviving TISTOS trigger selections to that surviving TIS

trigger selections, as described above. The total efficiency is the product of the trigger and

non-trigger efficiencies. Figure 23 shows the total efficiency in each bin.

The binning is determined by ensuring that there are sufficient entries in each bin to

perform satisfactory fits to data (see Section 4.5) and such that enough simulation events in

each bin (≥ 10) survive all the selections to maintain sufficient statistics for the errors on the

efficiencies.
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4.5 Signal yield

We extract signal yields (without efficiency correction) from the data distributions by perform-

ing unbinned, extended maximum log-likelihood fits to relevant invariant mass spectra using

the RooFit package within Root [63]. All fits use MIGRAD to perform the minimization

and use a sum-of-weights-squared (SumW2) strategy to calculate their errors in HESSE.

4.5.1 Fit model

In this section, we present the models used to fit the data distributions. To calculate the

results, we do the fits in regions of pT and η corresponding to the binning used to calculate

the efficiencies described in Section 4.4.2; Appendix A.6 shows these fits, and Section 4.5.2

describes the results. Figures 24, 25, and 26 show the fits to the aggregate (TOS) datasets, in

which parameter values are allowed to float (within certain limits). For the fits in each region

of pT and η, however, we constrain the signal parameters to Gaussian distributions with

means and widths equal to the values and errors, respectively, of the parameters determined

by the fits to the aggregate datasets.

Figure 24 shows DTF (m (Ξ0
c )) −DTF (m (Λ+

c )) +mPDG (Λ+
c ) for the Ξ0

c data dataset

fitted with a Crystal Ball signal shape and a 1st-order Chebychev polynomial background

shape.38 We fix the α and n parameters to -14.9 and 22, respectively, to encourage convergence;

see Section 4.7.6 for the systematic uncertainties we assign to this choice. We find 6316± 229

Ξ0
c→ π− (Λ+

c → pK−π+) signal candidates.

Figure 25 shows DTF (m (pK−π+)) for the Λ+
c data dataset fitted with a double-sided

Crystal Ball added to a Gaussian signal shape and a 2nd-order Chebychev polynomial

background.39 We fix the fraction of the signal yield assigned to the double-sided Crystal Ball

shape to 0.58 and fix the α parameter on both sides to 1.85 to enable the fit to converge; see

Section 4.7.7 for the systematic uncertainties we assign to this choice. We find 2667193±3279

38 Reference [64] describes the Crystal Ball shape.
39A double-sided Crystal Ball is modified to have both low- and high-mass power-law tails; see footnote 38.
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Figure 24: Fit to DTF
(
m
(
Ξ0
c

))
−DTF (m (Λ+

c )) +mPDG (Λ+
c ) in the Ξ0

c data dataset using a
Crystal Ball signal shape and a 1st-order Chebychev polynomial background shape; see text.

Λ+
c → pK−π+ signal candidates; recall that we prescale the Λ+

c → pK−π+ sample by a factor

of 10 (see Section 4.3.1).

Figure 26 shows DTF (m (pK−π+)) for the Ξ+
c data dataset fitted with the same basic

shapes used for the Λ+
c data dataset described above. We find 1613027± 3544 Ξ+

c → pK−π+

signal candidates and assign systematic uncertainties described in Section 4.7.8.

We also perform fits to determine the TIS and TISTOS (see Section 4.4) yields in data,

using the same approach and shapes described above. We find 876± 100 TIS and 312± 55

TISTOS Ξ0
c → π− (Λ+

c → pK−π+) signal candidates, 431239 ± 909 TIS and 144153 ± 568

TISTOS Λ+
c → pK−π+ signal TIS candidates (recall that we prescale the Λ+

c → pK−π+

sample by a factor of 10 [see Section 4.3.1]), and 249895± 1272 TIS and 70983± 817 TISTOS

Ξ+
c → pK−π+ signal candidates. Figures 27, 28, and 29 show the fits.

We also perform fits to determine the ghost correction factors for the efficiencies (see

57



2240 2260 2280 2300 2320 2340

 [MeV])+π
−m(pK

0

10

20

30

40

50

60

70

80

90

310×
C

an
d
id

at
es

 /
 (

0
.5

 M
eV

)

Data

Total fit
+
cΛSignal 

Background

LHCb

(b)

Figure 25: Fit to DTF (m (pK−π+)) in the Λ+
c data dataset using a double-sided Crystal Ball added

to a Gaussian signal shape and a 2nd-order Chebychev polynomial background shape; see text.

Section 4.4). We use the same approach described above: floating parameters for overall fits,

followed by fits in each region of pT and η with constrained parameters, but we use different

fit shapes, described below. These datasets have the Turbo, offline, and BDT selections

applied (no trigger), and we do not apply any of the weights described in Section 4.3.4.

Figure 30 shows DTF (m (Ξ0
c )) −DTF (m (Λ+

c )) +mPDG (Λ+
c ) for the Ξ0

c simulation

dataset with truth-matched or truth-matched-plus-ghosts applied, fitted with a Crystal

Ball signal shape and a flat background shape. We fix the value of n in the Crystal Ball shape

to 50 to enable the fit to converge; this is the only parameter we fix. We find 2, 639± 16 and

2, 775± 52 signal candidates in the truth-matched and truth-matched-plus-ghosts datasets,

respectively.

Figure 31 shows DTF (m (pK−π+)) for the Λ+
c simulation dataset with truth-matched

or truth-matched-plus-ghosts applied, fitted with a double-Gaussian signal shape (both
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Figure 26: Fit to DTF (m (pK−π+)) in the Ξ+
c data dataset using a double-sided Crystal Ball

added to a Gaussian signal shape and a 2nd-order Chebychev polynomial background shape; see
text.

Gaussians are constrained to have the same mean) and a flat background shape. We find

8245±94 and 8736±100 signal candidates in the truth-matched and truth-matched-plus-ghosts

datasets, respectively.

Figure 32 shows DTF (m (pK−π+)) for the Ξ+
c simulation dataset with truth-matched or

truth-matched-plus-ghosts applied, fitted with a double-Gaussian signal shape (both Gaussians

are constrained to have the same mean) and a flat background shape. We find 59342±252 and

61810± 261 signal candidates in the truth-matched and truth-matched-plus-ghosts datasets,

respectively.

4.5.2 Fit results

We perform fits in ranges of pT and η using the models discussed in Section 4.5.1 and extract

signal yields. Figure 33 shows the efficiency-corrected results, and the individual fits can be
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(a)

(b)

Figure 27: DTF
(
m
(
Ξ0
c

))
−DTF (m (Λ+

c )) +mPDG (Λ+
c ) distribution from the Ξ0

c data (a) TIS
and (b) TISTOS datasets fit to a Crystal Ball signal shape and a 1st-order Chebychev polynomial
background shape; see text.
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(a)

(b)

Figure 28: DTF mass distribution of pK−π+ from the Λ+
c → pK−π+ data (a) TIS and (b) TISTOS

datasets fit to a double-sided Crystal Ball added to a Gaussian signal shape and a 2nd-order
Chebychev polynomial background shape; see text.
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(a)

(b)

Figure 29: DTF mass distribution of pK−π+ from the Ξ+
c → pK−π+ data (a) TIS and (b) TISTOS

datasets fit to a double-sided Crystal Ball added to a Gaussian signal shape and a 2nd-order
Chebychev polynomial background shape; see text.

62



(a)

(b)

Figure 30: DTF
(
m
(
Ξ0
c

))
−DTF (m (Λ+

c )) +mPDG (Λ+
c ) distribution from the Ξ0

c simulation (a)
truth-matched and (b) truth-matched-plus-ghosts datasets fit to a Crystal Ball signal shape and a
flat background shape; see text.
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(a)

(b)

Figure 31: DTF mass distribution of pK−π+ from the Λ+
c → pK−π+ simulation (a) truth-matched

and (b) truth-matched-plus-ghosts datasets fit to a double-Gaussian signal shape (both Gaussians
are constrained to have the same mean) and a flat background shape; see text.
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(a)

(b)

Figure 32: DTF mass distribution of pK−π+ from the Ξ+
c → pK−π+ simulation (a) truth-matched

and (b) truth-matched-plus-ghosts datasets fit to a double-Gaussian signal shape (both Gaussians
are constrained to have the same mean) and a flat background shape; see text.
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(a) (b) (c)

Figure 33: Efficiency-corrected yields as functions of pT and η for (a) Ξ0
c → π− (Λ+

c → pK−π+),
(b) Λ+

c → pK−π+, and (c) Ξ+
c → pK−π+ decays. Only the statistical errors (from the fits and

efficiencies) are shown here. The Λ+
c yields have been corrected to account for the 10% prescale.

found in Appendix A.6.

4.6 Results

4.6.1 Intrinsic results

The intrinsic results are the ratios of efficiency-corrected yields in Ξ0
c→ π− (Λ+

c → pK−π+),

Λ+
c → pK−π+, and Ξ+

c → pK−π+ decays (see Section 4.1). These are equivalent to the
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determination of

R1 ≡
fΞ0

c

fΛ+
c

× B(Ξ0
c→ π−Λ+

c )

=
N(Ξ0

c→ π− (Λ+
c → pK−π+))

N(Λ+
c → pK−π+)

= (0.095± 0.003± 0.012)%, (24)

R2 ≡
fΞ0

c

fΞ+
c

× B(Λ+
c → pK−π+)

B(Ξ+
c → pK−π+)

× B(Ξ0
c→ π−Λ+

c )

=
N(Ξ0

c→ π− (Λ+
c → pK−π+))

N(Ξ+
c → pK−π+)

= (5.70± 0.19± 0.77)%, (25)

and R3 ≡
fΞ+

c

fΛ+
c

× B(Ξ+
c → pK−π+)

B(Λ+
c → pK−π+)

=
N(Ξ+

c → pK−π+)

N(Λ+
c → pK−π+)

= (1.753± 0.003± 0.107)%, (26)

where the first uncertainties are statistical and the second systematic. (All uncertainties, both

statistical and systematic, and their correlations have been calculated using a combination

of the Root Data Analysis Framework and the Uncertainties package in python [62, 65].)

We derive the values by evaluating the rates in each bin of pT and η, taking the inverse-

variance weighted mean,40 multiplying by a relative-luminosity correction factor described

in Section 4.7.12, and multiplying by the secondary-decay correction factors described in

Section 4.7.11. Table 12 summarizes the values used in these calculations. Their correlation

40The inverse-variance weighted mean is an analysis technique to characterize the average of a set of values

while taking their uncertainties into account. Mathematically, it is given by
∑

i yi/σ
2
i∑

i 1/σ
2
i

, where yi ∈ y1, y2, ..., yN ,

yi is a measurement of some parameter, N is the number of measurements, and σi is the error of the
measurement. In this way, more precise values are given more weight than less precise values.
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matrix is 

R1 R2 R3

R1 1 0.71 0.15

R2 ... 1 −0.18

R3 ... ... 1


(27)

The systematic uncertainties will be discussed in Section 4.7. Figure 34 demonstrates that

the intrinsic results are invariant as functions of the pT and η of the signal baryons, as they

should be.

Table 12: Summary of results. See text. R1, R2, and R3 are defined in Equations 24, 25, and 26.
N is the efficiency-corrected yield; Ξ0

c is implied to decay as Ξ0
c → π− (Λ+

c → pK−π+), Λ+
c as

Λ+
c → pK−π+, and Ξ+

c as Ξ+
c → pK−π+. Statistical errors only. No integrated luminosity or

secondary decay corrections have been applied.

η pT [GeV] N(Ξ0
c ) [103] N(Λ+

c ) [106] R1 [%]
[2, 2.75) [5, 12) 3084.2± 827.6 3271.0± 119.6 0.09± 0.03

[12, 55) 73.5± 10.3 83.5± 5.0 0.09± 0.01
[2.75, 5) [5, 12) 5132.4± 1301.5 5748.0± 144.4 0.09± 0.02

[12, 55) 49.8± 8.6 54.0± 3.0 0.09± 0.02

η pT [GeV] N(Ξ0
c ) [103] N(Ξ+

c ) [104] R2 [%]
[2, 2.75) [5, 12) 3084.2± 827.6 5822.6± 235.8 5.30± 1.44

[12, 55) 73.5± 10.3 116.0± 15.1 6.34± 1.21
[2.75, 5) [5, 12) 5132.4± 1301.5 9585.4± 289.5 5.35± 1.37

[12, 55) 49.8± 8.6 91.8± 12.1 5.42± 1.18

η pT [GeV] N(Ξ+
c ) [104] N(Λ+

c ) [106] R3 [%]
[2, 2.75) [5, 12) 5822.6± 235.8 3271.0± 119.6 1.78± 0.10

[12, 55) 116.0± 15.1 83.5± 5.0 1.39± 0.20
[2.75, 5) [5, 12) 9585.4± 289.5 5748.0± 144.4 1.67± 0.07

[12, 55) 91.8± 12.1 54.0± 3.0 1.70± 0.24
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(a) (b) (c)

Figure 34: Intrinsic results as functions of pT and η for (a) R1, (b) R2, and (c) R3, defined in
Equations 24, 25, and 26. Only statistical uncertainties (from both data and simulation) are shown.
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4.6.2 Derived results

Here we discuss additional calculations necessary to derive the final results.

In principle we want to assume that

fΞ0
c

fΛ+
c

=
fΞ−b
fΛ0

b

(28)

in order to calculate B(Ξ0
c→ π−Λ+

c ) and B(Ξ+
c → pK−π+); however, we need to correct this

relation because, in the charm case, fΞ0
c

= fΞ+
c

to within ±1% from isospin symmetry, but

fΞ−b
6= fΞ0

b
primarily because the Ξ ′0b state is not seen to decay into Ξ−b π

+ [3], whereas both

the Ξ ′−b and Ξ∗−b states are seen to decay into Ξbπ [66].41 (The Ξ ′0b state is presumed to be

below threshold for decays to Ξ−b π
+ and thus only allowed transitions to Ξ0

b [66].42) That is,

B(Ξ ′−b → Ξbπ) = B(Ξ∗−b → Ξbπ) = B(Ξ∗0b → Ξbπ) = B(Ξ ′0b → Ξ0
bX) = 1 (29)

and

B(Ξ ′0b → Ξ−b X) = 0. (30)

Thus, the relation we need is

fΞ0
c

fΛ+
c

=
0.5×

(
fΞ−b

+ fΞ0
b

)
fΛ0

b

=
fΞ−b
fΛ0

b

× 0.5×

(
1 +

fΞ0
b

fΞ−b

)
. (31)

Since
f
Ξ0
b

f
Ξ−
b

has not been measured, we must derive an expression using measured values.

41The production fractions, e.g., fΞ−
b

, are measured for particles produced promptly in the pp collision.

“Promptly”, in this case, effectively means that they appear to originate from the PV. This excludes particles
that are produced in b decays, since they are characteristically long-lived and their decay vertices are easily
separated from the PV. The decays of excited states, however, such as Ξ ′−b → Ξ−b π

0, cannot be separated
from the PV, since they are characteristically short-lived. Thus, production fractions include particles
produced directly in the collision (hadronizing without any intermediate states) and daughter particles
resulting from the decays of directly-produced excited states.

42In order to decay to a given final state, a mother particle must have a mass at least as great as the sum of
the masses of the daughters in that final state. This minimum required mass is called “threshold”, and
particles that do not have enough mass to decay to a given final state are said to be “below threshold”.
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In the following, we use these symbols and definitions:

C ≡ 0.5×

(
1 +

fΞ0
b

fΞ−b

)
(32)

= 0.5×
(

1 +
σ(pp→ Ξ0

bX)

σ(pp→ Ξ−b X)

)
(33)

r ≡ σ(pp→ Ξ0
bX)

σ(pp→ Ξ−b X)
(34)

Ξ∗∗b ∈
{
Ξ ′0b , Ξ

′−
b , Ξ

∗0
b , Ξ

∗−
b

}
(35)

i ∈ {0,−} (36)

Σi ≡
∑
Ξ∗∗b

σ(pp→ Ξ∗∗b X)× B(Ξ∗∗b → Ξ i
bX) (37)

f iΞ∗∗b ≡
σ(pp→ Ξ∗∗b X)× B(Ξ∗∗b → Ξ i

bX)

σ(pp→ Ξ i
bX)

(38)

First notice that we can rewrite r as

r = 1 +
σ(pp→ Ξ0

bX)− σ(pp→ Ξ−b X)

σ(pp→ Ξ−b X)
. (39)

Then

σ(pp→ Ξ i
bX) = σ(pp

direct−−−→ Ξ i
bX) + Σi + Σi

other, (40)

where Σi
other is the sum of contributions from other excited states. Since

σ(pp
direct−−−→ Ξ0

bX) = σ(pp
direct−−−→ Ξ−b X) (41)

and

Σ0
other = Σ−other (42)
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due to isospin symmetry and because these states are far from threshold, we find

r = 1 +

[
σ(pp

direct−−−→ Ξ0
bX) + Σ0 + Σ0

other

]
−
[
σ(pp

direct−−−→ Ξ−b X) + Σ− + Σ−other

]
σ(pp→ Ξ−b X)

= 1 +
σ(pp→ Ξ0

bX)

σ(pp→ Ξ−b X)
× Σ0

σ(pp→ Ξ0
bX)

− Σ−

σ(pp→ Ξ−b X)

= 1 + r ×
∑
Ξ∗∗b

f 0
Ξ∗∗b
−
∑
Ξ∗∗b

f−Ξ∗∗b
(43)

using Equation 39.

The following relative production fractions have been measured in References [3, 66]:

f−
Ξ∗0b

=
σ(pp→ Ξ∗0b X)× B(Ξ∗0b → Ξ−b π

+)

σ(pp→ Ξ−b X)
= (28± 3± 1)% (44)

f 0
Ξ′−b

=
σ(pp→ Ξ ′−b X)× B(Ξ ′−b → Ξ0

b π
−)

σ(pp→ Ξ0
bX)

= (11.8± 1.7± 0.7)% (45)

f 0
Ξ∗−b

=
σ(pp→ Ξ∗−b X)× B(Ξ∗−b → Ξ0

b π
−)

σ(pp→ Ξ0
bX)

= (20.7± 3.2± 1.5)%. (46)

We use Clebsch-Gordon coefficients and relative phase-space factors to calculate the f iΞ∗∗b

that have not been measured. The relative phase-space for a decay is given by

RPH(Ξ∗∗b → Ξ i
bπ

j/Ξ∗∗b → Ξk
b π

l) ≡
Φ
(
MΞib

/MΞ∗∗b
,Mπj/MΞ∗∗b

)
Φ
(
MΞkb

/MΞ∗∗b
,Mπl/MΞ∗∗b

) , (47)

where the function Φ is the usual phase-space function,43

Φ(x, y) =
√

[1− (x+ y)2][1− (x− y)2)], (48)

and the Ms are masses. (Table 13 lists the relevant Clebsch-Gordon coefficients and masses.)

43See Section 48.4.2 of Reference [25].
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We then note that

B(Ξ∗∗b → Ξ i
bπ

j) = B(Ξ∗∗b → Ξk
b π

l)×
CGi

Ξ∗∗b

CGk
Ξ∗∗b

× RPH(Ξ∗∗b → Ξ i
bπ

j/Ξ∗∗b → Ξk
b π

l), (49)

where the CGi
Ξ∗∗b

indicate the squared Clebsch-Gordon coefficients given in Table 13. There-

fore:

f 0
Ξ∗0b

=
1

r
× f−

Ξ∗0b
×

CG0
Ξ∗0b

CG−
Ξ∗0b

× RPH(Ξ∗0b → Ξ0
b π

0/Ξ∗0b → Ξ−b π
+) (50)

f 0
Ξ′0b

=
σ(pp→ Ξ ′0b X)× B(Ξ ′0b → Ξ0

bX)

σ(pp→ Ξ0
bX)

=
σ(pp→ Ξ ′0b X)× 1

σ(pp→ Ξ0
bX)

=
σ(pp→ Ξ ′−b X)× 1

σ(pp→ Ξ0
bX)

=
σ(pp→ Ξ ′−b X)×

[
B(Ξ ′−b → Ξ0

b π
−) + B(Ξ ′−b → Ξ−b π

0)
]

σ(pp→ Ξ0
bX)

= f 0
Ξ′−b

+
1

r
× f−

Ξ′−b
(51)

f−
Ξ∗−b

= r × f 0
Ξ∗−b
×

CG−
Ξ∗−b

CG0
Ξ∗−b

× RPH(Ξ∗−b → Ξ−b π
0/Ξ∗−b → Ξ0

b π
−) (52)

f−
Ξ′−b

= r × f 0
Ξ′−b
×

CG−
Ξ′−b

CG0
Ξ′−b

× RPH(Ξ ′−b → Ξ−b π
0/Ξ ′−b → Ξ0

b π
−), (53)

where we have taken σ(pp→ Ξ ′0b X) = σ(pp→ Ξ ′−b X) in Equation 51 due to isospin symmetry.

Substituting the f iΞ∗∗b into Equation 43, we find, after a little algebra,

r =

1 + f−
Ξ∗0b
×

[
CG0

Ξ∗0
b

CG−
Ξ∗0
b

× RPH(Ξ∗0b → Ξ0
b π

0/Ξ∗0b → Ξ−b π
+)− 1

]

1− 2× f−
Ξ′−b
− f 0

Ξ∗−b
×

[
1−

CG−
Ξ∗−
b

CG0

Ξ∗−
b

× RPH(Ξ∗−b → Ξ−b π
0/Ξ∗−b → Ξ0

b π
−)

] (54)

= 1.37± 0.09 (55)

=⇒ C = 1.18± 0.04, (56)

where the uncertainty is due to the uncertainties on the measured values of the M and f iΞ∗∗b

and the relative phase-space factors are shown in Table 14. Table 15 shows the calculated
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Table 13: Relevant properties of Ξb baryon and π meson states. M is the mass. CGi
Ξ∗∗b

indicates

the squared Clebsch-Gordon coefficient for Ξ∗∗b → Ξi
bπ. All values come from the PDG [1]. M(Ξ ′0b )

has not been measured. We list CG0
Ξ′0b

as 1 and CG−
Ξ′0b

as 0 because Ξ ′0b → Ξ−b π
+ is not observed

(see text) [3].

State M (MeV) CG0
Ξ∗∗b

CG−Ξ∗∗b
Ξ−b 5797.00± 0.90 – –
Ξ0
b 5791.90± 0.50 – –

Ξ ′0b – 1 0
Ξ ′−b 5935.02± 0.05 2/3 1/3
Ξ∗0b 5952.30± 0.90 1/3 2/3
Ξ∗−b 5955.33± 0.13 2/3 1/3
π± 139.57061± 0.00024 – –
π0 134.977± 0.0005 – –

values of the unmeasured f iΞ∗∗b .

Table 14: Calculated RPH values used in Equation 54.

Parameter Value
RPH(Ξ∗0b → Ξ0

b π
0/Ξ∗0b → Ξ−b π

+) 1.27± 0.04
RPH(Ξ∗−b → Ξ−b π

0/Ξ∗−b → Ξ0
b π
−) 0.97± 0.02

Table 15: Calculated values for the expressions in Equations 50, 51, 52, and 53.

Parameter Value [%]
f 0
Ξ∗0b

13.0± 1.9

f 0
Ξ′0b

17.1± 2.8

f−
Ξ∗−b

13.8± 2.8

f−
Ξ′−b

7.3± 1.9

We can now calculate B(Ξ0
c → π−Λ+

c ) from Equation 5 using fΞ−b
/fΛ0

b
, which has been

measured by LHCb as (8.2± 0.7± 2.6)% [54], and applying the correction in Equation 56:

B1 = B(Ξ0
c→ π−Λ+

c ) = (0.98± 0.04± 0.35)%. (57)
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We also calculate B(Ξ0
c → π−Λ+

c ) from Equation 9 using Belle’s measurement of B(Ξ+
c →

pK−π+) = (0.45±0.21±0.07)% [55] and the PDG value of B(Λ+
c → pK−π+) = (6.23±0.33)%

[1]:

B2 = B(Ξ0
c→ π−Λ+

c ) = (0.41± 0.01± 0.21)%. (58)

B1 and B2 are correlated through the measurement of N(Ξ0
c → π− (Λ+

c → pK−π+)). We

calculate B(Ξ+
c → pK−π+) from Equation 10 using the same value and correction for

fΞ−b
/fΛ0

b
as we did in Equation 57 and using B(Λ+

c → pK−π+), which is listed in the PDG as

(6.23± 0.33)% [1]:

B3 = B(Ξ+
c → pK−π+) = (1.135± 0.002± 0.387)%. (59)

This is the correlation matrix for the derived results:



B1 B2 B3

B1 1 0.07 0.92

B2 ... 1 −0.02

B3 ... ... 1


(60)

We calculate the mean of B1 and B2 and provide the extended correlation matrix in Equa-

tions 106 and 107 in Section 4.8.
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4.7 Systematic uncertainties

The major sources of uncertainties in this analysis are systematic. All sources are listed in

Table 18.

4.7.1 Heavy-quark symmetry

In addition to the uncertainties on the measurements used in the calculation of C in Equa-

tion 56, we assign an uncertainty due to the assumption of heavy-quark symmetry in

Equation 4. We estimate this uncertainty by examining an analogous ratio of production

fractions between charm and beauty states

fD+
s

fD0 + fD+

=
fB0

s

fB0 + fB+

. (61)

Both have been measured in 13 TeV pp collisions. The beauty ratio over a range 4 GeV < pT <

25 GeV is 0.122± 0.006 [67]. Most of the 4.3% relative systematic uncertainty is due to the

uncertainty on B(D+
s → K+K−π+). The charm ratio is measured for 0 GeV < pT < 15 GeV.

Using the total cross-sections reported in Reference [68], we find

fD+
s

fD0 + fD+

=
σ(pp→ D+

s X)

σ(pp→ D0X) + σ(pp→ D+X)
≈ 0.121, (62)

almost identical to the beauty ratio. The statistical uncertainty on the charm ratio is negligible.

We note that the beauty measurement uses the CLEO measurement of B(D+
s → K+K−π+),

while the charm measurement uses a derived result in the CLEO paper of B(D+
s → φπ+), so

the systematic uncertainties on these measurements mostly cancel in the ratio. The rest of

the systematic uncertainties, tracking, particle identification, luminosity, etc., also mostly

cancel, leaving us with a few percent uncertainty in the comparison of the ratios. The pT

distribution ratios fall linearly with pT in the beauty case and are flatter in the charm case

(see Figure 3 in Reference [67] and Section 4 in Reference [68]). Taking this into account, a
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5% uncertainty due to the heavy-quark symmetry assumption appears reasonable. (This is

in addition to the uncertainty on the correction given in Equation 56.)

4.7.2 Charm-baryon lifetimes

We estimate the dependence on the uncertainty of the charm-baryon lifetimes by varying

τmeas (Hc) in Equation 11 within its uncertainty and recalculating the efficiencies. We take

the variation from the nominal result to be a systematic uncertainty, which results in the

uncertainties shown in Table 16.

Table 16: Uncertainties due to charm baryon lifetimes, given in percent.

[%] R1 R2 R3

τ(Ξ0
c ) 2.3 2.3 -

τ(Λ+
c ) 1.2 0.7 2.1

τ(Ξ+
c ) - 1.1 1.3

4.7.3 Particle identification

We assign an uncertainty due to the use of the PIDCalib package, which uses an independent

dataset to determine the efficiency of the PID selections in the Turbo lines as a function of p

and η (see Sections 4.3.4 and 4.3.1). We account for the limited statistics of the PIDCalib

sample by varying the weight given coherently within its uncertainty and recalculating the

efficiencies, which results in a conservative uncertainty of 4× 10−5 on R1, 1.5× 10−5 on R2,

and 2.7× 10−5 on R3; these uncertainties are quite small due to the large statistics of the

samples used by PIDCalib.

We assign an additional 1% uncertainty due to the use of the offline “HasRich” variable

in simulation; data uses the online version, but a bug in the calibration samples prevents us

from using it for simulation.

To be conservative, we assign an additional 1% uncertainty for particle identification to

the additional π meson in Ξ0
c→ π− (Λ+

c → pK−π+) decay.
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4.7.4 Tracking

The tracking uncertainties largely cancel in the ratios, but we must account for the additional

π meson in Ξ0
c → π− (Λ+

c → pK−π+). The tracking efficiency comes from the TrackCalib

package, which uses an independent dataset to determine the tracking efficiency as a function

of p and η (see Section 4.3.4). We account for the limited statistics of the TrackCalib sample

by varying the weight given to the π meson coherently within its uncertainty and treating the

variation as a source of bin-by-bin uncertainty in the result, which results in a conservative

overall uncertainty of 0.8% on R1 and 0.9% on R2.

Since TrackCalib relies on a sample of µ leptons, whereas we are interested in the tracking

efficiency for π mesons, we must assign an additional uncertainty for hadronic interactions.

Hadronic interactions prevent about 14% of π mesons from being reconstructed, according to

simulation, and there is a 10% material-budget uncertainty; therefore, we assign an additional

1.4% uncertainty to the use of TrackCalib.44

Finally, the TrackCalib method itself caries a 0.8% systematic uncertainty;45 we round

this up to 1% to account for differences between the simulation versions used in the analysis

and those used in the TrackCalib datasets.

4.7.5 Fit model

We must also account for the systematic uncertainty introduced by the choice of fit model.

To this end, we fit a variety of alternative models to the (TOS) data datasets and assign the

largest yield variation from the nominal model as the systematic uncertainty on the yield

due to the fit model. We then fit the model with the largest yield variation in TOS data

to the TIS and TISTOS data datasets and assign the variation in the ratio of TISTOS to

TIS yields as the systematic uncertainty on the trigger efficiency due to the fit model (see

Section 4.4). Sections 4.7.6, 4.7.7, and 4.7.8 describe the alternative shapes that we consider

44See “Tracking systematics for hadrons” at the link in footnote 31 and Section 9 of Reference [69].
45The method used to arrive at the 0.8% value for the systematic uncertainty is described in Section 8 of

Reference [69].
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and the systematic uncertainties that we assign. Note that we treat the uncertainties on

fit models as independent from one another; we only apply the correlations described in

Section 4.4.1 to the nominal yields.

4.7.6 Ξ0
c fit model

The nominal fit model for the Ξ0
c→ π− (Λ+

c → pK−π+) TOS, TIS, and TISTOS datasets is a

Crystal Ball signal + linear background shape (see Section 4.5.1). We choose to consider the

alternative fit models shown in Figure 35. The double-Gaussian signal shape has the largest

variation, yielding 6662± 360 signal candidates, a variation of 5.5% from the nominal, and

we therefore assign a systematic uncertainty of 5.5%. We fit also the TIS and TISTOS data

datasets using the double-Gaussian signal shape, shown in Figure 36, yielding 889± 110 and

321± 146 signal candidates, respectively, and leading to a trigger efficiency of 36.1%, a 1.5%

deviation from the nominal result of 35.6%. We therefore assign a systematic uncertainty of

1.5%.

4.7.7 Λ+
c fit model

The nominal fit model for the Λ+
c → pK−π+ TOS, TIS, and TISTOS datasets is a double-sided

Crystal Ball signal + 2nd-order Chebychev background shape (see Section 4.5.1). We choose

to consider the alternative fit models shown in Figure 37. The third alternative signal shape

(width, α, and left and right n fixed to 7.34, 2, 5.96, and 155, respectively) has the largest

variation, yielding 2647553±1840 signal candidates, a variation of 0.7% from the nominal, and

we therefore assign a systematic uncertainty of 0.7%. We fit also the TIS and TISTOS data

datasets using this signal shape, shown in Figure 38, yielding 432496± 763 and 141973± 450

signal candidates, respectively, and leading to a trigger efficiency of 32.8%, a 1.8% deviation

from the nominal result of 33.4%. We therefore assign a systematic uncertainty of 1.8%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 35: DTF
(
m
(
Ξ0
c

))
−DTF (m (Λ+

c )) +mPDG (Λ+
c ) distribution from the Ξ0

c TOS data dataset
fit using alternative models: The α and n parameters of the Crystal Ball are fixed to, respectively,
(a) -5 and 100, (b) -25 and 5, (c) -20 and 22, and (d) -10 and 22; (e) an exponential background
shape; (f) a Gaussian signal shape; (g) a double-Gaussian signal shape, where the Gaussians are
constrained to have the same mean; and (h) a Gaussian signal shape with an exponential background
shape.
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(a)

(b)

Figure 36: DTF
(
m
(
Ξ0
c

))
−DTF (m (Λ+

c )) +mPDG (Λ+
c ) distributions from the Ξ0

c (a) TIS and (b)
TISTOS data datasets fit using a model that is the same as the nominal, but with a double-Gaussian
signal shape, where the Gaussians are constrained to have the same mean.
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(a) (b)

(c) (d)

(e) (f)

Figure 37: DTF mass distribution of pK−π+ from the Λ+
c TOS data dataset fit using alternative

models: (a) the left and right n parameters of the double-sided Crystal Ball are fixed to 15 and 120,
respectively; (b) the left and right n parameters of the double-sided Crystal Ball are fixed to 5.96
and 155, respectively, and the fraction of the signal yield assigned to the double-sided Crystal Ball
is allowed to float; (c) the width, α, and left and right n parameters of the double-sided Crystal Ball
are fixed to 7.34, 2, 5.96, and 155, respectively; (d) the width and left and right n parameters of
the double-sided Crystal Ball are fixed to 7.34, 5.96, and 155, respectively, and the α parameter is
allowed to float, though it still constrained to be the same for both left and right; (e) an exponential
background shape; and (f) a linear background shape.
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(a)

(b)

Figure 38: DTF mass distribution of pK−π+ from the Λ+
c (a) TIS and (b) TISTOS data datasets

fit using a model that is the same as the nominal, but the width, α, and left and right n parameters
of the double-sided Crystal Ball are fixed to 7.34, 2, 5.96, and 155, respectively.
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4.7.8 Ξ+
c fit model

The nominal fit model for the Ξ+
c → pK−π+ TOS, TIS, and TISTOS datasets is a double-

sided Crystal Ball signal + 2nd-order Chebychev background shape. We choose to consider

the alternative fit models shown in Figure 39. The double-Gaussian signal shape has the

largest variation, yielding 1570725 ± 2637 signal candidates, a variation of 2.6% from the

nominal, and we therefore assign a systematic uncertainty of 2.6%. We fit also the TIS and

TISTOS data datasets using this signal shape, shown in Figure 40, yielding 244821±2140 and

69181± 1255 signal candidates, respectively, and leading to a trigger efficiency of 28.3%, a

0.5% deviation from the nominal result of 28.4%. We therefore assign a systematic uncertainty

of 0.5%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 39: DTF mass distribution of pK−π+ from the Ξ+
c TOS data dataset fit using alternative

models: The left and right n parameters of the double-sided Crystal Ball are fixed to, respectively,
(a) 15 and 120; (b) 5.5 and 155, and the fraction of the signal yield assigned to the double-sided
Crystal Ball is allowed to float; (c) 5.5 and 155 and the width and α to 8.09 and 5, respectively;
and (d) 5.5 and 155 and the width to 8.09, and the α parameter is allowed to float, though it is still
constrained to be the same for both left and right. (e) An exponential background shape. (f) A
double-Gaussian signal shape, where the Gaussians are constrained to have the same mean. (g) A
double-Gaussian signal shape, where the Gaussians are constrained to have the same mean, with an
exponential background shape. (h) A linear background shape.
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(a)

(b)

Figure 40: DTF mass distribution of pK−π+ from the Ξ+
c (a) TIS and (b) TISTOS data datasets

fit using a model that is the same as the nominal, but with a double-Gaussian signal shape, where
the Gaussians are constrained to have the same mean.
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4.7.9 Dalitz weighting

We estimate the uncertainty on the simulation-derived efficiencies due to the weighting of

the intermediate resonance spectra in Λ+
c → pK−π+ and Ξ+

c → pK−π+ decays by varying

the value of each bin in the scaling histograms (Figure 19 [e & f]) stochastically within its

statistical uncertainty. We do this by sampling from a Gaussian distribution centered on the

bin’s nominal value with a standard deviation equal to its error. We do this 250 times for each

histogram, thus finding 250 alternate weighting histograms for each decay spectrum. We then

recalculate each of the results using weights taken from each combination of the alternate

histograms; so since R1 (Equation 24) depends on N(Ξ0
c→ π− (Λ+

c → pK−π+)) and N(Λ+
c →

pK−π+), we calculate 250 alternate results; since R2 (Equation 25) depends on N(Ξ0
c →

π− (Λ+
c → pK−π+)) and N(Ξ+

c → pK−π+), we calculate 250× 250 = 62500 alternate results;

and sinceR3 (Equation 26) depends on N(Ξ+
c → pK−π+) and N(Λ+

c → pK−π+), we calculate

250× 250 = 62500 alternate results. Finally, in each case, we take the arithmetic mean of all

250 or 62500 alternate results and compare that to the nominal result. We assign systematic

uncertainties equal to the standard deviations of the alternate results.

This method results in systematic uncertainties of 2.0% on R1, 1.8% on R2, and 1.7% on

R3.

4.7.10 BDT input parameter differences in data and simulation

If the distributions of the variables used to train the BDTs vary between the simulation

and data datasets, the efficiencies in simulation could be incorrect. We therefore weight

a representative distribution in truth-matched simulation to match that in background-

subtracted data and consider the subsequent change in results to represent the uncertainty on

BDT efficiency due to differences between data and simulation. After applying all selections

(Turbo, offline, BDT, and trigger), we use the sPlot method [16] to assign weights to the

data sample using the signal fits shown in Figures 24, 25, and 26. We then compare the

distributions of all BDT training variables in truth-matched simulation to those in s-weighted
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data and choose the ln
(

arccos
(

DTF
(
~x(Hc)·~p(Hc)
x(Hc)·p(Hc)

)))
distributions as representative of the

relevant differences.46 (See Appendix A.4 for plots of all the BDT training variables.) The

ratio of the normalized histograms can be used as a weighting distribution to align simulation

with data, as shown in Figure 41. We apply these weights to the post-BDT simulation sample

and recalculate the efficiencies, leading to a change in the nominal results of 2.8% on R1,

3.0% on R2, and 0.6% on R3, which we round up to 1% to be conservative.

46The caption of Table 4 includes an explanation of this variable.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 41: ln
(

arccos
(

DTF
(
~x(Hc)·~p(Hc)
x(Hc)·p(Hc)

)))
distributions for signal (left) Ξ0

c→ π− (Λ+
c → pK−π+),

(center) Λ+
c → pK−π+, and (right) Ξ+

c → pK−π+ in (a, b, & c) data, (d, e, & f) simulation, and (g,
h, & i) data divided by simulation (weight histograms).
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4.7.11 b-baryon decay contamination

The approach detailed in Section 4.1 only applies if the relevant baryons are promptly

produced; it is therefore important that we exclude baryons from secondary vertices from the

signal yields. We rely on the BDTs to discriminate charm baryons produced promptly in the

proton collision from those produced by the decay of b-baryons, called “secondary decays”

here, in the data datasets. (We explicitly exclude secondaries from the simulation datasets;

see Section 4.3.4.) We estimate here the fractional contamination in each of the charmed

baryon (Hc) samples, and then we evaluate the changes in the ratios we are measuring. The

relative secondary contamination in a given data dataset is given by

fs(Hc) =
εtots (Hc→ f)

εtotp (Hc→ f)
× σ(pp→ HbX)

σ(pp→ HcX)
× B(Hb→ HcX), (63)

where εtot is the total efficiency of all selections determined from simulation, the s subscript

indicates the secondaries sample, the p subscript indicates the prompt sample, Hb is the

bottom baryon in question (which decays into a given charm baryon Hc), and f refers to the

particular final state of the decay of the Hc baryon.

We estimate the level of contamination from secondaries by applying the selections to a

sample of simulated Λ0
b→ (Λ+

c → pK−π+)X and Ξ0
b→ (Ξ+

c → pK−π+)X decays; there are no

Hb→ (Ξ0
c→ π−Λ+

c )X simulation samples available. Table 17 details the simulation samples

we use. We reconstruct Λ+
c → pK−π+ and Ξ+

c → pK−π+ decays from these samples and

apply the selections (excluding secondary rejection; see Section 4.3). We can then evaluate

εtot for each dataset. We find

εtotp (Λ+
c → pK−π+) = (0.586± 0.010)% (64)

εtots (Λ+
c → pK−π+) = (0.637± 0.008)% (65)

εtotp (Ξ+
c → pK−π+) = (2.089± 0.016)% (66)

εtots (Ξ+
c → pK−π+) = (0.717± 0.009)%. (67)
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εtotp (Ξ+
c → pK−π+) > εtotp (Λ+

c → pK−π+) due to the longer lifetime of the Ξ+
c baryon (see

Table 8).

Table 17: Simulation samples used for secondary-discrimination studies. Λ+
c → pK−π+ or Ξ+

c →
pK−π+ decays are used in all cases. Ngen is the number of generated signal charm-baryons (either
Λ+
c or Ξ+

c baryons).

Decay Year Ngen

Λ0
b→ π−Λ+

c 2016 1.5M
2017 0.4M
2018 0.5M

Λ0
b→ K−Λ+

c 2017 0.5M
2018 0.5M

Λ0
b→ K−K+π−Λ+

c 2016 2.0M
Λ0
b→ νµµ

−Λ+
c 2016 2.0M

2017 1.0M
2018 4.2M

Ξ0
b→ π−Ξ+

c 2016 4.0M
Ξ∗−b → π−(Ξ0

b→ νµµ
−Ξ+

c ) 2016 1.5M

We must also determine the relative production cross-sections for Hb to Hc baryons. At

7 TeV, LHCb has measured the Λ+
c baryon production cross-section to be (233± 26± 71±

14)µb [70] and that for the B± meson to be (43± 0.2± 2.5± 1.7)µb [71]. We must then

consider the b-baryon production fraction versus that of the b-meson; LHCb has measured

fΛ0
b
/(fu + fd) = 0.259± 0.018 at 13 TeV [67], and we double this value to account for B0 +B0.

Putting this all together, we find

σ(pp→ Λ0
bX)

σ(pp→ Λ+
c X)

=
σ(pp→ B±X)

σ(pp→ Λ+
c X)

×
fΛ0

b

1
2
(fu + fd)

= (9.6± 3.3)%. (68)

We must calculate B(Λ0
b→ Λ+

c X), since it has not been measured. To this end, we assume

B(Λ0
b→ Λ+

c X) + B(Λ0
b→ D0pX) + B(Λ0

b→ D+nX) + B(Λ0
b→ uX) = 1, (69)
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where Λ0
b→ uX indicates decays where the b-quark in the Λ0

b baryon decays to a u-quark

instead of a c-quark. In Reference [67], LHCb measures

Nraw(Λ0
b→ (Λ+

c → pK−π+)µXνµ) = 1753600 (70)

Nraw(Λ0
b→ (Λ+

c (2860)→ (D0→ K−π+)p)µXνµ) = 6120± 460 (71)

Nraw(Λ0
b→ (Λ+

c (2880)→ (D0→ K−π+)p)µXνµ) = 2200± 200 (72)

Nraw(Λ0
b→ (Λ+

c (2940)→ (D0→ K−π+)p)µXνµ) = 1200± 260 (73)

Nraw(Λ0
b

nonresonant−−−−−−→ (D0→ K−π+)pµXνµ) = 29770± 690, (74)

where Nraw is the yield without correcting for the efficiency. Noticing that, since b→ u decays

comprise ≈ 1% of semileptonic b-hadron decays [72],

99%×N(Λ0
b) = N(Λ0

b→ Λ+
c X) +N(Λ0

b→ D0pX) +N(Λ0
b→ D+nX) (75)

and assuming

N(Λ0
b→ Λ+

c X)

N(Λ0
b)

=
N(Λ0

b
SL−→ Λ+

c X)

N(Λ0
b

SL−→ X)
, (76)

where
SL−→ indicates semileptonic decay, we calculate

B
(
Λ0
b→ Λ+

c X
)

=
N (Λ0

b→ Λ+
c X)

N (Λ0
b→ X)

=
N (Λ0

b→ Λ+
c X)× 99%

N (Λ0
b→ Λ+

c X) +N (Λ0
b→ D0pX) +N (Λ0

b→ D+nX)

=
N (Λ0

b→ Λ+
c X)× 99%

N (Λ0
b→ Λ+

c X) + 2×N (Λ0
b→ D0pX)

=

N(Λ0
b→(Λ+

c→pK−π+)X)
B(Λ+

c→pK−π+)
× 99%

N(Λ0
b→(Λ+

c→pK−π+)X)
B(Λ+

c→pK−π+)
+ 2× N(Λ0

b→(D0→K−π+)pX)
B(D0→K−π+)

= (92.4± 2.8)%, (77)
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where we have assumed that N(Λ0
b→ D0pX) = N(Λ0

b→ D+nX) due to isospin symmetry

and that the relevant efficiencies cancel in the ratio. The latter assumption comes from all

the measured decays having the same final-state daughters; we assign a 3% uncertainty to

this assumption, which has been incorporated into Equation 77 above.

Now, we can put this all together to calculate

fs(Λ
+
c ) =

εtots (Λ+
c )

εtotp (Λ+
c )
× σ(pp→ Λ0

bX)

σ(pp→ Λ+
c X)

× B(Λ0
b→ Λ+

c X)

= (108.6± 2.3)%× (9.6± 3.3)%× (92.4± 2.8)%

= (9.6± 3.3)%. (78)

For Ξ+
c , we assume that

σ(pp→ Ξ+
c X)

σ(pp→ Λ+
c X)

= scorr =
fΞ−b
fΛ0

b

× C (79)

where C is given by Equations 32 and 56 and scorr is a factor accounting for the difference in

quark content between the Λ+
c baryon (udc) and the Ξ+

c baryon (usc) or Ξ0
c baryon (dsc).
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Thus, we derive

σ(pp→ Ξ0
bX)

σ(pp→ Ξ+
c X)

=
fΞ0

b

fΞ+
c

(80)

=
fΞ−b
fΞ+

c

×
fΞ0

b

fΞ−b
(81)

=
fΞ−b
fΞ+

c

× (2× C − 1) (82)

= (2× C − 1)× σ(pp→ B±X)

σ(pp→ Ξ+
c X)

×
fΞ−b

1
2
(fu + fd)

(83)

= (2× C − 1)× σ(pp→ B±X)

scorr × σ(pp→ Λ+
c X)

×
fΛ0

b
× scorr

C
1
2
(fu + fd)

(84)

=
2× C − 1

C
× σ(pp→ B±X)

σ(pp→ Λ+
c X)

×
fΛ0

b

1
2
(fu + fd)

(85)

=
2× C − 1

C
× σ(pp→ Λ0

bX)

σ(pp→ Λ+
c X)

(86)

= (1.15± 0.03)× σ(pp→ Λ0
bX)

σ(pp→ Λ+
c X)

(87)

= (11.0± 3.9)%, (88)

where we have incorporated the 5% relative uncertainty on the heavy-quark symmetry

assumption (see Section 4.7.1), and therefore

fs(Ξ
+
c ) =

εtots (Ξ+
c )

εtotp (Ξ+
c )
× σ(pp→ Ξ0

bX)

σ(pp→ Ξ+
c X)

× B(Ξ0
b→ Ξ+

c X)

= (34.4± 0.5)%× (11.0± 3.9)%× (92.4± 2.8)%

= (3.5± 1.2)%, (89)

where we have assumed B(Ξ0
b→ Ξ+

c X) = B(Λ0
b→ Λ+

c X).

As mentioned above, there are no Hb→ (Ξ0
c→ π−Λ+

c )X simulation samples available,47

so we must find a way to approximate εtots (Ξ0
c )

εtotp (Ξ0
c )

. We assume the charm-baryon lifetime is the

47There were no Hb→ (Ξ0
c→ π−Λ+

c )X simulation samples available at the time this analysis was completed.
Some have been produced in the intervening time, but the approximation described in this section still
suffices.
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driving factor differentiating εtots (Λ+
c )

εtotp (Λ+
c )

from εtots (Ξ+
c )

εtotp (Ξ+
c )

(see Table 8), since the b-baryon lifetimes

are nearly the same [1]. We further assume εtots
εtotp

is linear as a function of lifetime (τ). We can

then use Equations 64, 65, 66, and 67 to determine

εtots
εtotp

(τ) = (−2931± 117) ns−1 × τ + (1.68± 0.05), (90)

which allows us to calculate

εtots (Ξ0
c )

εtotp (Ξ0
c )

=
εtots
εtotp

(
τ
(
Ξ0
c

)
+ τ

(
Λ+
c

))
= (63.3± 2.0)%, (91)

where we have assumed εtots
εtotp

is driven by the sum of the Ξ0
c and Λ+

c baryon lifetimes, since we

reconstruct the Ξ0
c baryon by adding a π− meson to an already reconstructed Λ+

c baryon (see

Section 4.3.1); we have rounded the error from 1.6% to 2.0% to account for this assumption.

We then assume that

σ(pp→ Ξ0
cX)

σ(pp→ Λ+
c X)

= scorr =
fΞ−b
fΛ0

b

× C, (92)

similar to the Ξ+
c case above, and derive

σ(pp→ Ξ−b X)

σ(pp→ Ξ0
cX)

=
fΞ−b
fΞ0

c

(93)

=
σ(pp→ B±X)

σ(pp→ Ξ0
cX)

×
fΞ−b

1
2
(fu + fd)

(94)

=
σ(pp→ B±X)

scorr × σ(pp→ Λ+
c X)

×
fΛ0

b
× scorr

C
1
2
(fu + fd)

(95)

=
1

C
× σ(pp→ B±X)

σ(pp→ Λ+
c X)

×
fΛ0

b

1
2
(fu + fd)

(96)

= (0.85± 0.03)× σ(pp→ Λ0
bX)

σ(pp→ Λ+
c X)

(97)

= (8.1± 2.8)%, (98)

where we have again incorporated the 5% relative uncertainty on the heavy-quark symmetry
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assumption. This allows us to calculate

fs(Ξ
0
c ) =

εtots (Ξ0
c )

εtotp (Ξ0
c )
× σ(pp→ Ξ−b X)

σ(pp→ Ξ0
cX)

× B(Ξ−b → Ξ0
cX)

= (63.3± 2.0)%× (8.1± 2.8)%× (92.4± 2.8)%

= (4.7± 1.7)%, (99)

where we have assumed B(Ξ−b → Ξ0
cX) = B(Λ0

b→ Λ+
c X).

We can now calculate the corrections:

CR1 ≡
1− fs(Ξ0

c )

1− fs(Λ+
c )

=
(95.3± 1.7)%

(90.4± 3.3)%
= (105.4± 2.1)% (100)

CR2 ≡
1− fs(Ξ0

c )

1− fs(Ξ+
c )

=
(95.3± 1.7)%

(96.5± 1.2)%
= (98.7± 0.6)% (101)

CR3 ≡
1− fs(Ξ+

c )

1− fs(Λ+
c )

=
(96.5± 1.2)%

(90.4± 3.3)%
= (106.7± 2.6)%, (102)

where all correlations between the fs have been taken into account. These corrections have

been applied to the results given in Section 4.6, and the estimated errors are taken as

systematic uncertainties.

4.7.12 Differences in integrated luminosity

The Turbo stream stores Λ+
c and Ξ+

c candidates in different sets of files, which we must run

over separately when producing n-tuples for analysis. Since the retrieval script inevitably fails

to process 100% of the files, we must account for differences in integrated luminosity,
∫
L,

between the data datasets. (The simulation samples are not stored separately.) Unfortunately,

the integrated luminosity reported by DaVinci is not calibrated, but since > 99.5% of files

are successfully processed in all cases, we can estimate the integrated luminosity handled in

each case based on the mean fraction of uncalibrated integrated luminosity handled by each

instance of the retrieval script. To do so, we recognize that each instance of the retrieval

script handles the same number of files, modulo some remainder; fill a histogram of the
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integrated luminosity reported by each instance; and find the mean and standard deviation

of this histogram. This is the mean (uncalibrated) integrated luminosity,
〈∫
Li
〉
, handled by

each instance of the retrieval script for a given year for either Λ+
c or Ξ+

c . We then calculate

the integrated luminosity:

∫
Ls =

∑
y


∫
Ly ×

1−
(N t

s,y −N c
s,y)×

〈∫
Li
〉

(N t
s,y −N c

s,y)×
〈∫
Li
〉

+
Nc
s,y∑
i

∫
Li


 , (103)

where s is either the Λ+
c or Ξ+

c file set; y is the year (2017 or 2018);
∫
Ly is the value of the

total integrated luminosity for a given year (
∫
L2017 = 1.6 fb−1,

∫
L2018 = 2.2 fb−1); N t

s,y is

the total number of instances of the retrieval script for a given file set for a given year; N c
s,y

is the number of successful instances of the retrieval script for a given file set for a given

year; and
∫
Li is the (uncalibrated) integrated luminosity reported by each instance of the

retrieval script. We find ∫
LΛ+

c∫
LΞ+

c

= 1.024± 0.007, (104)

where the uncertainty comes from the standard deviation of the means and the statistical

error on
Nc
s,y∑
i

∫
Li. We multiply by this factor in the determination of R2 and divide by it in

the determination of R3 (see Section 4.6.1).

4.7.13 Summary

Table 18 summarizes the sources of systematic uncertainty.
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Table 18: Relative systematic uncertainties

Source Estimate [%]
B(Ξ0

c→ π−Λ+
c ) B(Ξ+

c → pK−π+)
B1 B2 B3

B(Ξ+
c → pK−π+) – 49 –

B(Λ+
c → pK−π+) – 5 5

fΞ0
c
/fΞ+

c
= 1 – 1 1

fΞ−b
/fΛ0

b
32 – 32

fΞ0
c
/fΛ+

c
= C · fΞ−b /fΛ0

b
6 – 6

Lifetimes 3 3 2
TISTOS statistics 7 8 1
Simulation statistics 4 3 2
DInLHCb correction – 6 2
PID 1 1 0
PIDCalib 1 1 1
TrackCalib 2 2 0
Fit model 6 6 3
TISTOS fit model 2 2 2
Ghost correction 2 2 0
Dalitz correction 2 2 2
BDT training variables 3 3 1
Secondaries correction 2 0 2∫
L – 1 1

Sum of external 33 49 33
Sum of intrinsic 12 13 6
Sum of all 35 51 34
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4.8 Comparison with experiment

We measure B1 = B(Ξ0
c → π−Λ+

c )% using Equation 5 in Equation 57 and (B2) using

Equation 9 in Equation 58. Taking all correlations into account, we find

B1 − B2 = (0.57± 0.39)%. (105)

That is, they differ by 1.4 standard deviations. Given that each result depends on different

external inputs, this difference is not surprising. The best linear unbiased estimate (BLUE)

of their mean is

〈B1,2〉 = B(Ξ0
c→ π−Λ+

c ) = (0.55± 0.02± 0.18)%, (106)

and this is their correlation matrix, an extended version of the one given in Equation 60:



〈B1,2〉 B1 B2 B3

〈B1,2〉 1 0.53 0.88 0.41

B1 ... 1 0.07 0.92

B2 ... ... 1 −0.02

B3 ... ... ... 1


(107)

We determine the BLUE of the mean following the method given by Nisius in Reference [73],

〈B1,2〉 = (1− β)× B2 + β × B1, (108)

where

β =
1− ρz

1− 2× ρz + z2
= 25.2% (109)

ρ = 6.86% (the correlation between B1 and B2) (110)

z =
σ(B1)
σ(B2)

= 165%. (111)
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Belle measures B(Ξ+
c → pK−π+) to be (0.45± 0.21± 0.07)% [55], whereas we measure

B3 = B(Ξ+
c → pK−π+) using Equation 10 in Equation 59, finding

B3 − B(Ξ+
c → pK−π+)Belle = (0.69± 0.45)%. (112)

That is, the measurements differ by 1.5 standard deviations, consistent with one another.

The inverse-variance weighted mean of these results is48

(0.62± 0.19)%, (113)

and our result has better relative precision (34% vs. 49%).

4.9 Comparison with theory

As discussed in Section 4.1, there have been several theoretical predictions for B(Ξ0
c→ π−Λ+

c ),

summarized in Table 19. We take 〈B1,2〉, given in Equation 106, as our nominal result. It

is well above Voloshin’s lower limit and consistent with Faller and Mannel’s upper limit.

It favors Gronau and Rosner’s constructive prediction and disfavors Gronau and Rosner’s

and Cheng et al.’s destructive predictions. Figure 42 shows our results compared with the

predictions.

48The PDG average of B3 with B(Ξ+
c → pK−π+)Belle is (0.62±0.30)%, since they have chosen to multiply the

error by a scaling factor of 1.5 [25]; see Section 5.2.2 of Reference [25] for an explanation of this procedure.
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Table 19: Theory predictions for B(Ξ0
c → π−Λ+

c ) from Voloshin [4], Gronau and Rosner [5],
Faller and Mannel [6], and Cheng et al. [7]. + or − indicates an assumption of positive or negative
interference, respectively, between the SUUD and WS amplitudes (see Section 4.1). Appendix A.12
describes our updates to Gronau and Rosner’s predictions.

Theorist Prediction
Voloshin (-) ' (0.025± 0.015)%

Gronau and Rosner (+) (0.19± 0.07)%
Gronau and Rosner (-) / 0.01%

Gronau and Rosner (+), updated (0.14± 0.07)%
Gronau and Rosner (-), updated / 0.018± 0.015%

Faller and Mannel (+) < 0.3%
Cheng et al. (-) ∼ 0.0087%

4−10

3−10

2−10

)
+ c

Λ - π 
→ 0 c

Ξ(
B

LHCb

 
)+

cΛExp. (
)+

cΞExp. (
Exp. (mean)
FM (+)
GR (+)
GR (-)
V (-)
C (-)

Figure 42: Comparison of B1, B2, and 〈B1,2〉 with Faller and Mannel’s upper limit (FM) [6], the
updated predictions of Gronau and Rosner (GR) [5], Voloshin’s lower limit (V) [4], and Cheng
et al.’s prediction (C) [7]. See Table 19. + or − indicates an assumption of positive or negative
interference, respectively, between the SUUD and WS amplitudes (see Section 4.1).
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5 Conclusions

We measure

fΞ0
c

fΛ+
c

× B(Ξ0
c→ π−Λ+

c ) = (0.095± 0.003± 0.012)%

fΞ0
c

fΞ+
c

× B(Λ+
c → pK−π+)

B(Ξ+
c → pK−π+)

× B(Ξ0
c→ π−Λ+

c ) = (5.70± 0.19± 0.77)%

fΞ+
c

fΛ+
c

× B(Ξ+
c → pK−π+)

B(Λ+
c → pK−π+)

= (1.753± 0.003± 0.107)%

(Equations 24, 25, and 26), from which we calculate

B(Ξ0
c→ π−Λ+

c ) = (0.98± 0.04± 0.35)%

B(Ξ0
c→ π−Λ+

c ) = (0.41± 0.01± 0.21)%

B(Ξ+
c → pK−π+) = (1.135± 0.002± 0.387)%

(Equations 57, 58, and 59), respectively; the best linear unbiased estimate (BLUE) of the

mean of our two results for B(Ξ0
c→ π−Λ+

c ) is

B(Ξ0
c→ π−Λ+

c ) = (0.55± 0.02± 0.18)%

(Equation 106). These results for B(Ξ0
c→ π−Λ+

c ) and B(Ξ+
c → pK−π+) have been published

in References [25,49].

This is the first observation of the suppressed decay Ξ0
c→ π−Λ+

c and the first measurement

of its branching fraction, providing a way to distinguish among theoretical predictions. This

result is somewhat larger than any of them, but it is consistent with the constructive-

interference predictions of Gronau and Rosner and of Faller and Mannel [5, 6], and it is

inconsistent with the destructive-interference predictions of Gronau and Rosner and of

Cheng et al. [5, 7], from which we conclude that the SUUD and WS amplitudes interfere

constructively, the first experimental evidence that this is the case. In addition, this is the
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second measurement of the branching fraction of the suppressed decay Ξ+
c → pK−π+, and it

carries the best relative precision to date [25,55].
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Appendices

A B(Ξ0
c→ π−Λ+

c ) Appendices

All of the figures used in these appendices are taken from Reference [17] unless otherwise

noted.

A.1 Background categories in simulation

The simulation serves two purposes: to calculate the signal-detection efficiencies and to

provide an independent signal dataset with which to train the BDTs (see Section 4.3.5). To

achieve both these ends, we require all reconstructed simulated particles to correspond to

their generated counterparts by applying background category selections.49 This ensures that

we feed the BDTs a pure signal sample and that we calculate the signal efficiencies explicitly.

Given the intermediate resonances generated in Λ+
c → pK−π+ MC, the appropriate back-

ground category selections are 0 (signal) and 10 (quasi-signal) for the Ξ0
c→ π− (Λ+

c → pK−π+)

and Λ+
c → pK−π+ samples. We also treat background category 50 (low mass) as signal for

the Ξ0
c→ π− (Λ+

c → pK−π+) sample; see below. For the Ξ+
c → pK−π+ sample, since Ξ+

c is

named a Λ+
c baryon by the Turbo stream, the appropriate background category selection is 20

(fully reconstructed physical background), but since this would still allow non-Ξ+
c decays to p,

K−, and π+ hadrons, we also require the absolute value of the true PID of the Ξ+
c candidate

to be 4232, following the PDG Monte Carlo Particle Numbering Scheme.50 All three samples

have some signal present in background category 60 (ghosts); we apply a correction to the

efficiency due to these contributions, described in Section 4.4.

The inclusion of background category 50 as “truth-matched” stems from a thorough

investigation of the decay chains of the candidates appearing in this category. All of the

candidates in this category are associated with a generated Ξ0
c baryon, and all of the

49https://twiki.cern.ch/twiki/bin/view/LHCb/TupleToolMCBackgroundInfo
50http://pdg.lbl.gov/2002/montecarlorpp.pdf
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intermediate and final-state daughters have been assigned the correct PIDs. (It is likely that

these candidates come from the random hadronization and decay of the other simulated

c-quark in the decay to Ξ0
c→ Λ+

c → pK−π+X.) Therefore, they appear to be signal, and we

count them as such.

It is theoretically possible for signal to appear outside the “truth-matching” selections we

apply to simulation (see Section 4.3.4). Figure 43 compares the distributions of truth-matched

simulation to that failing the truth-matching criteria, excluding ghosts. (We will address

ghosts separately.) Only the Ξ0
c → π− (Λ+

c → pK−π+) sample has any non-ghost peaking

contribution outside truth-matching, and Figure 44 (a) shows that the peaking contribution

comes only from candidates matched to a generated Ξ0
c baryon. Figure 44 (b) shows that this

peaking contribution comes from background category 30 (reflection) (no other non-ghost

background categories contribute).

In category 30, a real Ξ0
c may have been found, as in Figure 44 (a), but the algorithm

thinks one or more of the final-state daughters has been assigned the wrong mass hypothesis,

based on the generated particles in the event. A real Ξ0
c may thus be found but appear as two

candidates: one with the correct mass hypotheses, one without. If this peaking structure is

from multiple candidates, it is important to exclude it from “signal” to avoid double-counting;

additionally, the weight provided by PIDCalib is only valid for particles with correct mass

hypotheses.

Careful investigation reveals that the peak in background category 30 is indeed an artifact

of multiple candidates in an event. Figure 45 (a) shows that almost all the background

30 candidates appear in events with a candidate in a “signal” category. Figure 45 (b)

demonstrates only a small peaking contribution remains once the duplicate candidates are

weeded out; if we included all of these candidates, not just the ones in the peak, it would

result in a 1.2% increase in the number of signal candidates surviving selections. Given the

size of the other systematic uncertainties (see Section 4.7), we exclude them.

As for ghosts, Figure 46 demonstrates that each simulation dataset has a non-negligible

105



(a) (b) (c)

Figure 43: Mass distributions for (a) Ξ0
c→ π− (Λ+

c → pK−π+), (b) Λ+
c → pK−π+, and (c) Ξ+

c →
pK−π+ decays in simulation. The purple distributions have truth-matching applied. The red
distributions fail the truth-matching criteria. None of these plots has any of the weighting described
in Section 4.3.4 applied.

(a) (b)

Figure 44: Mass distributions from Ξ0
c→ π− (Λ+

c → pK−π+) decays in simulation for candidates
(a) failing the truth-matching criteria described in Section 4.3.4 that (purple) are and (red) are not
matched to a generated Ξ0

c and (b) falling into various background categories. None of these plots
has any of the weighting described in Section 4.3.4 applied.

peaking ghost contribution. We therefore estimate the amount of signal in background

category 60 (ghosts) and correct the efficiencies accordingly, as described in Section 4.4.
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(a) (b)

Figure 45: Plots from the Ξ0
c→ π− (Λ+

c → pK−π+) simulation dataset: (a) The background category
of other candidates appearing in an event with a candidate with background category 30 and (b) the
mass distribution of background category 30 candidates which are not identified with a background
category 0 or 10 candidate in the same event. None of these plots has any of the weighting described
in Section 4.3.4 applied.

(a) (b) (c)

Figure 46: Mass distributions for (a) Ξ0
c→ π− (Λ+

c → pK−π+), (b) Λ+
c → pK−π+, and (c) Ξ+

c →
pK−π+ decays in simulation, background category 60 (ghosts) only. None of these plots has any of
the weighting described in Section 4.3.4 applied.

107



A.2 BDT response in each fold

We use a 10-fold BDT-technique to maximize the size of the datasets available for training and

testing (see Section 4.3.5). We present the responses of the BDTs in each fold in Figure 47,

and we present the overtraining checks for each BDT in Figures 48, 49, and 50. The response

in each fold strongly agrees (within errors) with the responses in each other fold, and the

responses in the training and testing samples strongly agree (within errors).
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(a) (b)

(c) (d)

(e) (f)

Figure 47: BDT performance in each fold, as demonstrated by (left) its response and (right)
its receiver operating characteristic (ROC) curve for (a & b) Ξ0

c → π− (Λ+
c → pK−π+), (c & d)

Λ+
c → pK−π+, and (e & f) Ξ+

c → pK−π+.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Figure 48: Overtraining check for the Ξ0
c→ π− (Λ+

c → pK−π+) BDT in each of its 10 folds.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Figure 49: Overtraining check for the Λ+
c → pK−π+ BDT in each of its 10 folds.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Figure 50: Overtraining check for the Ξ+
c → pK−π+ BDT in each of its 10 folds.
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A.3 BDT input variable rankings

Table 20 shows the discrimination power of the input variables for each BDT.

Table 20: BDT input parameters, ranked according to signal, background separation. See Table 9.
The input distributions can be found in Appendix A.4.

Rank Variable Separation
Ξ0
c→ π− (Λ+

c → pK−π+)
1 ProbNNπ(π−) 1.473× 10−1

2 ln (χ2
IP(π−)) 4.188× 10−2

3 ln (χ2
IP(Ξ0

c )) 3.965× 10−2

4 ProbNNK(K−) 3.491× 10−2

5 ProbNNp(p) 3.084× 10−2

6 ln (χ2
IP(Λ+

c )) 2.853× 10−2

7 ln
(

arccos
(
~x(Λ+

c )·~p(Λ+
c )

x(Λ+
c )·p(Λ+

c )

))
2.678× 10−2

8 ln (DTF (τ (Ξ0
c ))) 2.488× 10−2

9 ln (χ2/ndf(DTF (Ξ0
c→ π− (Λ+

c → pK−π+)))) 2.422× 10−2

10 ln
(

arccos
(

DTF
(
~x(Ξ0

c )·~p(Ξ0
c )

x(Ξ0
c )·p(Ξ0

c )

)))
2.175× 10−2

11 ProbNNπ(π+) 9.168× 10−3

12 ln (‖~x(Λ+
c )− ~x(Ξ0

c )‖) 5.198× 10−3

Λ+
c → pK−π+

1 ln (χ2
IP(Λ+

c )) 4.984× 10−1

2 ln (χ2/ndf(DTF (Λ+
c → pK−π+))) 4.534× 10−1

3 ln (DTF (τ (Λ+
c ))) 4.118× 10−1

4 ProbNNp(p) 2.387× 10−1

5 ln
(

arccos
(

DTF
(
~x(Λ+

c )·~p(Λ+
c )

x(Λ+
c )·p(Λ+

c )

)))
9.819× 10−2

6 ProbNNπ(π+) 6.251× 10−2

7 ProbNNK(K−) 5.096× 10−2

Ξ+
c → pK−π+

1 ln (χ2
IP(Ξ+

c )) 4.897× 10−1

2 ln (χ2/ndf(DTF (Ξ+
c → pK−π+))) 4.709× 10−1

3 ProbNNp(p) 2.684× 10−1

4 ln (DTF (τ (Ξ+
c ))) 1.931× 10−1

5 ln
(

arccos
(

DTF
(
~x(Ξ+

c )·~p(Ξ+
c )

x(Ξ+
c )·p(Ξ+

c )

)))
1.484× 10−1

6 ProbNNπ(π+) 7.170× 10−2

7 ProbNNK(K−) 5.117× 10−2
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A.4 BDT input parameters

Figure 51 shows the training distributions for each BDT’s input parameters. (See Sec-

tion 4.3.5.)

Figure 52 shows the signal distributions of each of the BDT input parameters, as listed

in Section 4.3.5, in both simulation and side-band subtracted data, excluding the PID

parameters, which are shown in Figure 53. The signal distributions in data are the result of

a side-band subtraction using the fits shown in Figure 54. The distributions in the Λ+
c and

Ξ+
c data and simulation datasets do not align as well as those for the Ξ0

c datasets; this is

due to the presence of secondaries in the Λ+
c and Ξ+

c data datasets, which are a source of

background not present in the simulation datasets (see Section 4.7.11). The distributions

shown are restricted to the signal pT and η range (see Section 4.4.2).

Figure 55 shows the signal distributions of each of the BDT input parameters, as listed

in Section 4.3.5, excluding the PID parameters, after the BDT has been applied in both

simulation and signal data, as determined by the sPlot method [16]. Notice the improved

alignment between Λ+
c and Ξ+

c data and simulation datasets as secondaries are eliminated.

Figure 56 shows the BDT distributions. Figures 24, 25, and 26 show the fits used for the

sPlot method [16]. The distributions shown are restricted to the signal pT and η range (see

Section 4.4.2).

We use a wrong-sign (WS) Ξ0
c dataset as the background input for the BDT training (see

Section 4.3.5). Figure 57 demonstrates that the WS distributions are sufficiently similar to

those of right-sign background.

We use side-band data as background inputs for the Λ+
c and Ξ+

c BDT training (see

Section 4.3.5). Figure 58 demonstrates that the low-mass and high-mass side-bands have

similar BDT responses.
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(a)

(b)

(c)

Figure 51: BDT input variable distributions (after the application of offline and trigger selections)
for the (a) Ξ0

c , (b) Λ+
c , and (c) Ξ+

c BDTs. Solid blue shows the distributions in the signal sample;
hatched red shows that in the background sample.
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Figure 52: Input distributions (after the application of the offline and trigger selections) for the (left)
Ξ0
c , (center) Λ+

c , and (right) Ξ+
c BDTs. The (black) data distributions are the result of a side-band

subtraction using the fits shown in Figure 54 (c & d). The (green) simulation distributions are truth
matched.
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Figure 53: The output of a probablistic neural-network determining how likely a given final-state
daughter has been assigned the correct mass after Turbo, offline, and trigger selections have been
applied for (left) Ξ0

c , (middle) Λ+
c , and (right) Ξ+

c data and simulation datasets. The (black)
data distribution is the result of a side-band subtraction using the fits shown in Figure 54, where
the signal region corresponds to 99.7300% of the total integral symetric about the mean and the
background region is taken from 99.9937% to 99.9999%. The (green) raw simulation distribution
shows the uncorrected PID distribution, while the (blue) corrected simulation distribution shows
the PID distribution produced by PIDGen. The simulation distributions have been truth matched.
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Figure 54: Binned fits to the relevant invariant masses in the (top) Ξ0
c , (middle) Λ+

c , and (bottom)
Ξ+
c data datsets, using the shapes described in Section 4.5.1, after the BDT input selections have

been applied. The blue (red) regions are considered signal (background) for sideband subtraction; the
Ξ0
c signal region is taken from 2467.5 MeV to 2475.0 MeV, and its background region is taken from

2465.5 MeV to 2466.3 MeV and from 2476.2 MeV to 2499.5 MeV; the Λ+
c signal region is taken from

2271.5 MeV to 2303.0 MeV, and its background region is taken from 2238.1 MeV to 2256.7 MeV and
from 2317.8 MeV to 2336.5 MeV; the Ξ+

c signal region is taken from 2450.9 MeV to 2485.0 MeV, and
its background region is taken from 2418.0 MeV to 2434.3 MeV and from 2501.6 MeV to 2517.9 MeV;
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Figure 55: BDT input parameter distributions after the application of the BDTs for the (left) Ξ0
c ,

(center) Λ+
c , and (right) Ξ+

c BDTs. The (black) data distributions are the result of the application
of the sPlot method [16] using the fits shown in Figures 24, 25, and 26. The (green) simulation
distributions are truth matched.
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Figure 56: BDT response distributions after the application of the BDTs for the (left) Ξ0
c , (center)

Λ+
c , and (right) Ξ+

c BDTs. The (black) data distributions are the result of the application of the
sPlot method [16] using the fits shown in Figures 24, 25, and 26. The (green) simulation distributions
are truth matched. These plots do not appear in Reference [17].
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Figure 57: BDT input distributions (after the application of the Turbo, offline, and trigger selections)
for the (black) side-band and (green) WS Ξ0

c data distributions. The sidebands are taken from
2465.46 MeV to 2466.46 MeV and from 2475.46 to 2482.46 MeV in the DTF

(
m
(
Ξ0
c

))
−DTF (m (Λ+

c ))
+mPDG (Λ+

c ) distribution, and the WS are restricted to 2465.87 MeV to 2475.87 MeV.
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Figure 58: BDT input distributions (after the application of the Turbo, offline, and trigger selec-
tions) for the (purple) low-mass and (orange) high-mass side-band (left) Λ+

c and (right) Ξ+
c data

distributions. The side-bands are described in Section 4.3.5.
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Figure 59: Invariant mass of the Ξ0
c baryon’s daughters in data with the mass hypothesis of its

daughter π− meson changed to a K− meson. (DTF is not applied.)

A.5 Wrong-mass discrimination

There exists the possibility of picking up background decays through particle misidentification.

To ensure this is not the case, we apply the sPlot method [16] using the signal fits shown

in Section 4.5.1 and then plot mass distributions with the various mass hypotheses of the

final-state daughters changed. Figures 59, 60, 61, and 62 show the results; we do not find

evidence of significant contribution to the signal selection from background resonances.
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(a) (b) (b)

Figure 60: Invariant mass of the Λ+
c or Ξ+

c baryon’s daughters in the (a) Ξ0
c , (b) Λ+

c , and (c) Ξ+
c

data datasets with the mass hypothesis of the proton and the π+ meson changed to a K+ meson
and DTF re-applied.

(a) (b) (c)

Figure 61: Invariant mass of the Λ+
c or Ξ+

c baryon’s daughters in the (a) Ξ0
c , (b) Λ+

c , and (c) Ξ+
c

data datasets with the mass hypothesis of the proton changed to a K+ meson and DTF re-applied.
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(a) (b) (b)

Figure 62: Invariant mass of the Λ+
c or Ξ+

c baryon’s daughters in the (a) Ξ0
c , (b) Λ+

c , and (c) Ξ+
c

data datasets with the mass hypothesis of the proton changed to a π+ meson and DTF re-applied.
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Figure 63: Nominal mass fits in bins of pT and η in the Ξ0
c→ π− (Λ+

c → pK−π+) TOS dataset. The
range is given in the x-axis title of the pull distribution of each plot.

A.6 Fits in each bin of pT and η

As described in 4.5.2, we calculate the result by performing fits in regions of pT and η.

Figures 63, 66, 69, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, and 77, show the fits in each bin.
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Figure 64: Nominal mass fits in bins of pT and η in the Ξ0
c→ π− (Λ+

c → pK−π+) TIS dataset. The
range is given in the x-axis title of the pull distribution of each plot.
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Figure 65: Nominal mass fits in bins of pT and η in the Ξ0
c→ π− (Λ+

c → pK−π+) TISTOS dataset.
The range is given in the x-axis title of the pull distribution of each plot.
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Figure 66: Nominal mass fits in bins of pT and η in the Λ+
c → pK−π+ TOS data dataset. The range

is given in the x-axis title of the pull distribution of each plot.
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Figure 67: Nominal mass fits in bins of pT and η in the Λ+
c → pK−π+ TIS data dataset. The range

is given in the x-axis title of the pull distribution of each plot.
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Figure 68: Nominal mass fits in bins of pT and η in the Λ+
c → pK−π+ TISTOS data dataset. The

range is given in the x-axis title of the pull distribution of each plot.
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Figure 69: Nominal mass fits in bins of pT and η in the Ξ+
c → pK−π+ TOS data dataset. The

range is given in the x-axis title of the pull distribution of each plot.
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Figure 70: Nominal mass fits in bins of pT and η in the Ξ+
c → pK−π+ TIS data dataset. The range

is given in the x-axis title of the pull distribution of each plot.
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Figure 71: Nominal mass fits in bins of pT and η in the Ξ+
c → pK−π+ TISTOS data dataset. The

range is given in the x-axis title of the pull distribution of each plot.
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Figure 72: Mass fits in bins of pT and η in the Ξ0
c→ π−Λ+

c MC truth-matched dataset. The range
is given in the x-axis title of the pull distribution of each plot.
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Figure 73: Mass fits in bins of pT and η in the Ξ0
c→ π−Λ+

c MC truth-matched-plus-ghosts dataset.
The range is given in the x-axis title of the pull distribution of each plot.

136



Figure 74: Mass fits in bins of pT and η in the Λ+
c → pK−π+ MC truth-matched dataset. The range

is given in the x-axis title of the pull distribution of each plot.
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Figure 75: Mass fits in bins of pT and η in the Λ+
c → pK−π+ MC truth-matched-plus-ghosts dataset.

The range is given in the x-axis title of the pull distribution of each plot.
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Figure 76: Mass fits in bins of pT and η in the Ξ+
c → pK−π+ MC truth-matched dataset. The

range is given in the x-axis title of the pull distribution of each plot.
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Figure 77: Mass fits in bins of pT and η in the Ξ+
c → pK−π+ MC truth-matched-plus-ghosts dataset.

The range is given in the x-axis title of the pull distribution of each plot.
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A.7 Fitted parameter values

Tables 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and 35 show the values of the

fitted shape parameters in each fit.

Table 21: Fit parameters for the Ξ0
c fit in the TOS data dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, n is the n parameter of the
Crystal Ball function, and c1 is the first-order coefficient of the Chebychev polynomial. Parameters
without error have been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α n c1 [10−2]
Total 2472± 0 1.5± 0.1 -14.9 22 -2± 1

[2, 2.75) [5, 12) 2472± 0 1.4± 0.0 -14.9 22 -1± 2
[12, 55) 2472± 0 1.4± 0.0 -14.9 22 -6± 3

[2.75, 5) [5, 12) 2472± 0 1.5± 0.0 -14.9 22 0± 1
[12, 55) 2472± 0 1.5± 0.0 -14.9 22 -12± 2

Table 22: Fit parameters for the Ξ0
c fit in the TIS data dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, n is the n parameter of the
Crystal Ball function, and c1 is the first-order coefficient of the Chebychev polynomial. Parameters
without error have been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α n c1 [10−2]
Total 2472± 0 1.3± 0.2 -14.9 22 3± 1

[2, 2.75) [5, 12) 2471± 0 1.2± 0.1 -14.9 22 7± 3
[12, 55) 2472± 0 1.2± 0.1 -14.9 22 -5± 6

[2.75, 5) [5, 12) 2472± 0 1.3± 0.1 -14.9 22 3± 2
[12, 55) 2472± 0 1.3± 0.1 -14.9 22 -7± 6
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Table 23: Fit parameters for the Ξ0
c fit in the TISTOS dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, n is the n parameter of the
Crystal Ball function, and c1 is the first-order coefficient of the Chebychev polynomial. Parameters
without error have been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α n c1 [10−2]
Total 2472± 0 1.3± 0.2 -14.9 22 -2± 2

[2, 2.75) [5, 12) 2471± 0 1.1± 0.2 -14.9 22 3± 6
[12, 55) 2471± 0 1.2± 0.2 -14.9 22 -6± 7

[2.75, 5) [5, 12) 2472± 0 1.3± 0.2 -14.9 22 -1± 3
[12, 55) 2472± 0 1.4± 0.2 -14.9 22 -6± 6

Table 24: Fit parameters for the Λ+
c fit in the TOS data dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, nL is the Left n parameter
of the double-sided Crystal Ball function, and nR is the Right n parameter of the double-sided
Crystal Ball function. Parameters without error have been fixed, and ±0 indicates a negligible
uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α nL nR
Total 2287± 0 7.3± 0.0 1.85 6± 1 155± 2

[2, 2.75) [5, 12) 2287± 0 6.2± 0.0 1.85 6± 0 155± 0
[12, 55) 2287± 0 7.3± 0.0 1.85 7± 1 145± 6

[2.75, 5) [5, 12) 2287± 0 7.6± 0.0 1.85 6± 1 146± 3
[12, 55) 2287± 0 8.1± 0.1 1.85 7± 0 151± 5

Table 25: Fit parameters for the Λ+
c fit in the TIS data dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, nL is the Left n parameter
of the double-sided Crystal Ball function, and nR is the Right n parameter of the double-sided
Crystal Ball function. Parameters without error have been fixed, and ±0 indicates a negligible
uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α nL nR
Total 2287± 0 7.1± 0.0 1.85 6± 0 155± 1

[2, 2.75) [5, 12) 2287± 0 6.6± 0.0 1.85 6± 0 155± 0
[12, 55) 2287± 0 7.1± 0.0 1.85 6± 0 155± 0

[2.75, 5) [5, 12) 2287± 0 7.2± 0.0 1.85 6± 0 155± 0
[12, 55) 2287± 0 7.2± 0.0 1.85 6± 0 155± 0

142



Table 26: Fit parameters for the Λ+
c fit in the TISTOS dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, nL is the Left n parameter
of the double-sided Crystal Ball function, and nR is the Right n parameter of the double-sided
Crystal Ball function. Parameters without error have been fixed, and ±0 indicates a negligible
uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α nL nR
Total 2287± 0 7.5± 0.1 1.85 6± 0 155± 3

[2, 2.75) [5, 12) 2287± 0 7.0± 0.0 1.85 6± 0 155± 0
[12, 55) 2287± 0 7.5± 0.0 1.85 6± 0 155± 0

[2.75, 5) [5, 12) 2287± 0 7.7± 0.0 1.85 6± 0 155± 0
[12, 55) 2287± 0 7.8± 0.0 1.85 6± 0 155± 0

Table 27: Fit parameters for the Ξ+
c fit in the TOS data dataset. µ is the mean, σ is the width

of the Crystal Ball function, α is the α parameter of the Crystal Ball function, nL is the Left
n parameter of the double-sided Crystal Ball function, and nR is the Right n parameter of the
double-sided Crystal Ball function. Parameters without error have been fixed, and ±0 indicates a
negligible uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α nL nR
Total 2468± 0 8.1± 0.0 1.85 6± 0 155± 1

[2, 2.75) [5, 12) 2468± 0 7.5± 0.0 1.85 6± 0 155± 0
[12, 55) 2468± 0 8.1± 0.0 1.85 6± 0 155± 0

[2.75, 5) [5, 12) 2468± 0 8.3± 0.0 1.85 6± 0 155± 0
[12, 55) 2468± 0 8.3± 0.0 1.85 6± 0 155± 0

Table 28: Fit parameters for the Ξ+
c fit in the TIS data dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, nL is the Left n parameter
of the double-sided Crystal Ball function, and nR is the Right n parameter of the double-sided
Crystal Ball function. Parameters without error have been fixed, and ±0 indicates a negligible
uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α nL nR
Total 2468± 0 7.8± 0.1 1.85 6± 0 151± 5

[2, 2.75) [5, 12) 2468± 0 7.3± 0.1 1.85 6± 0 151± 5
[12, 55) 2468± 0 7.9± 0.1 1.85 6± 0 151± 5

[2.75, 5) [5, 12) 2468± 0 8.0± 0.1 1.85 6± 0 151± 5
[12, 55) 2468± 0 8.0± 0.1 1.85 6± 0 151± 5
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Table 29: Fit parameters for the Ξ+
c fit in the TISTOS dataset. µ is the mean, σ is the width of the

Crystal Ball function, α is the α parameter of the Crystal Ball function, nL is the Left n parameter
of the double-sided Crystal Ball function, and nR is the Right n parameter of the double-sided
Crystal Ball function. Parameters without error have been fixed, and ±0 indicates a negligible
uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α nL nR
Total 2468± 0 8.5± 0.2 1.85 7± 0 151± 5

[2, 2.75) [5, 12) 2468± 0 7.9± 0.1 1.85 7± 0 151± 5
[12, 55) 2468± 0 8.6± 0.2 1.85 7± 0 151± 5

[2.75, 5) [5, 12) 2468± 0 8.7± 0.1 1.85 7± 0 151± 5
[12, 55) 2468± 0 8.7± 0.2 1.85 7± 0 151± 5

Table 30: Fit parameters for the Ξ0
c fit in the truth-matched simulation dataset. µ is the mean, σ is

the width of the Crystal Ball function, α is the α parameter of the Crystal Ball function, and n is
the n parameter of the Crystal Ball function. Parameters without error have been fixed, and ±0
indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α n
Total 2472± 0 1.5± 0.0 -0.97± 0.05 50

[2, 2.75) [5, 12) 2472± 0 1.3± 0.0 -1.07± 0.04 50
[12, 55) 2472± 0 1.5± 0.0 -1.01± 0.04 50

[2.75, 5) [5, 12) 2472± 0 1.5± 0.0 -0.95± 0.03 50
[12, 55) 2472± 0 1.5± 0.0 -0.89± 0.04 50

Table 31: Fit parameters for the Ξ0
c fit in the truth-matched-plus-ghosts simulation dataset. µ is

the mean, σ is the width of the Crystal Ball function, α is the α parameter of the Crystal Ball
function, and n is the n parameter of the Crystal Ball function. Parameters without error have
been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] σ [ MeV ] α n
Total 2472± 0 1.5± 0.0 -0.98± 0.05 50

[2, 2.75) [5, 12) 2472± 0 1.3± 0.0 -1.07± 0.04 50
[12, 55) 2472± 0 1.5± 0.0 -1.01± 0.05 50

[2.75, 5) [5, 12) 2472± 0 1.5± 0.0 -0.97± 0.04 50
[12, 55) 2472± 0 1.6± 0.0 -0.90± 0.04 50
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Table 32: Fit parameters for the Λ+
c fit in the truth-matched simulation dataset. µ is the mean, f1

is the fraction of the signal yield covered by the first Gaussian, σ1 is the width of the first Gaussian,
and σ2

σ1
is the width of the second Gaussian divided by that of the first. Parameters without error

have been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] f1 [%] σ1 [ MeV ] σ2
σ1

[%]

Total 2288± 0 26± 4 10.8± 0.7 50± 2
[2, 2.75) [5, 12) 2288± 0 16± 3 9.4± 0.5 49± 2

[12, 55) 2288± 0 23± 4 10.5± 0.5 48± 2
[2.75, 5) [5, 12) 2288± 0 25± 3 11.1± 0.4 52± 2

[12, 55) 2288± 0 34± 4 12.8± 0.5 53± 2

Table 33: Fit parameters for the Λ+
c fit in the truth-matched-plus-ghosts simulation dataset. µ is

the mean, f1 is the fraction of the signal yield covered by the first Gaussian, σ1 is the width of the
first Gaussian, and σ2

σ1
is the width of the second Gaussian divided by that of the first. Parameters

without error have been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] f1 [%] σ1 [ MeV ] σ2
σ1

[%]

Total 2288± 0 27± 4 11.0± 0.7 49± 2
[2, 2.75) [5, 12) 2288± 0 17± 3 9.5± 0.5 48± 2

[12, 55) 2288± 0 25± 4 10.7± 0.5 48± 2
[2.75, 5) [5, 12) 2288± 0 26± 3 11.4± 0.4 51± 2

[12, 55) 2288± 0 36± 4 12.9± 0.5 52± 2

Table 34: Fit parameters for the Ξ+
c fit in the truth-matched simulation dataset. µ is the mean, f1

is the fraction of the signal yield covered by the first Gaussian, σ1 is the width of the first Gaussian,
and σ2

σ1
is the width of the second Gaussian divided by that of the first. Parameters without error

have been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] f1 [%] σ1 [ MeV ] σ2
σ1

[%]

Total 2469± 0 25± 2 11.8± 0.3 50± 1
[2, 2.75) [5, 12) 2469± 0 15± 1 10.5± 0.2 48± 1

[12, 55) 2469± 0 23± 1 11.5± 0.2 50± 1
[2.75, 5) [5, 12) 2469± 0 25± 1 12.2± 0.2 51± 1

[12, 55) 2469± 0 31± 1 13.4± 0.2 52± 1
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Table 35: Fit parameters for the Ξ+
c fit in the truth-matched-plus-ghosts simulation dataset. µ is

the mean, f1 is the fraction of the signal yield covered by the first Gaussian, σ1 is the width of the
first Gaussian, and σ2

σ1
is the width of the second Gaussian divided by that of the first. Parameters

without error have been fixed, and ±0 indicates a negligible uncertainty.

η pT [ GeV ] µ [ MeV ] f1 [%] σ1 [ MeV ] σ2
σ1

[%]

Total 2469± 0 25± 2 12.1± 0.3 49± 1
[2, 2.75) [5, 12) 2469± 0 16± 1 10.7± 0.2 47± 1

[12, 55) 2469± 0 24± 1 11.8± 0.2 49± 1
[2.75, 5) [5, 12) 2469± 0 25± 1 12.5± 0.2 50± 1

[12, 55) 2469± 0 31± 1 13.7± 0.2 51± 1
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A.8 Λ+
c and Ξ+

c momentum distributions

The decay modes of interest for both Ξ0
c and Λ+

c baryons have similar topologies in that they

both include Λ+
c → pK−π+. Figure 78 shows the momentum distributions of the Λ+

c baryon

and its final-state daughters after applying Turbo, offline, and trigger selections, as for the

input samples to the BDT (see Section 4.3.5). The distributions shown are restricted to the

signal pT and η range (see Section 4.4.2). Since the decay mode of interest of the Ξ+
c baryon

(Ξ+
c → pK−π+) is quite similar to that of the Λ+

c baryon, its momentum distribution and

that of its daughters is also shown.
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Figure 78: Momentum distributions of the Λ+
c or Ξ+

c baryon, as appropriate, and its final-state
daughters for the (purple) Ξ0

c , (green) Λ+
c , and (red) Ξ+

c (left) data and (right) simulation datasets
after the application of Turbo, offline, and trigger selections. The (left) data distributions are
the result of a side-band subtraction using the fits shown in Figure 54. The (right) simulation
distributions are truth matched.

148



Figure 79: DTF
(
m
(
Ξ0
c

))
−DTF (m (Λ+

c )) +mPDG (Λ+
c ) in the Ξ0

c data dataset after the application
of the Turbo, offline, and trigger selections (purple) without any modifications and (red) with the
Λ+
c mass required to be outside ±40 MeV of its value in the PDG [1].

A.9 Ξ0
c in Λ+

c sidebands

The decay Ξ0
c→ pK−π+π− may proceed in the Standard Model via strong gluon interactions

and the weak decay of the charm quark. Since these are the same final-state daughters as in the

decay of interest, Ξ0
c→ π− (Λ+

c → pK−π+), we check whether such decays contribute to the

signal peak in DTF (m (Ξ0
c )) −DTF (m (Λ+

c )) +mPDG (Λ+
c ) (see Figure 24). Figure 79 demon-

strates that there is no peaking contribution from this decay in the signal distribution after the

application of the Turbo, offline, and trigger selections (see Sections 4.3.1, 4.3.3, and 4.3.2).
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(a) (b) (c)

(d) (e) (f)

Figure 80: The squared invariant-mass of (top) the proton and π+ meson and (bottom) the K−

meson and π+ meson for (a & d) Ξ0
c , (b & e) Λ+

c , and (c & f) Ξ+
c (black) data and (green) simulation

datasets after the application of all selections and weights. The (black) data distributions are the
result of the application of the sPlot method [16] using the fits shown in Figures 24, 25, and 26.
The (green) simulation distributions are truth matched.

A.10 Dalitz weighting

We weight the Dalitz spectra of the Λ+
c and Ξ+

c baryons in simulation to match data (see

Section 4.3.4). Figure 80 shows the results of this weighting, compared to data.

A.11 TISTOS trigger efficiencies

We cross-check the efficiency given to us in data by the TISTOS method by applying the

TISTOS method to simulation and comparing the two results for each efficiency ratio. We

calculate the trigger efficiency for each decay in simulation using the TISTOS method

as described in Section 4.4, but, just as with other simulation-determined efficiencies, we

simply count candidates (with appropriate weighting and truth-matching criteria applied

[see Section 4.3.4]) to determine the signal yields rather than using fits. We then calculate

the relevant efficiency ratios in simulation and data and compare them. Figure 81 shows

the comparison. Ratios consistent with 1 indicate agreement between data and simulation.
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(a) (b) (c)

Figure 81: Ratios of trigger-efficiency ratios, derived using the TISTOS method, in simulation to
those in data for (a) Ξ0

c → π− (Λ+
c → pK−π+) to Λ+

c → pK−π+, (b) Ξ0
c → π− (Λ+

c → pK−π+) to
Ξ+
c → pK−π+, and (c) Ξ+

c → pK−π+ to Λ+
c → pK−π+. Only statistical errors shown.

Correlations between TIS and TISTOS datasets are taken into account, as described in

Section 4.4.1.

Most ratios are consistent with 1 within errors, though the trigger efficiency given by

simulation in the Ξ+
c case differs somewhat from data, showing a greater efficiency at low

η and a lesser efficiency at high η. Given the size of the error and that only the statistical

error is shown in the figure, Figure 81 demonstrates that there is good agreement between

the TISTOS method in simulation and that in data.

A.12 Updated Gronau and Rosner predictions

As stated in Section 4.1, we calculate updated predictions for Gronau and Rosner using the

recent LHCb measurement of charm-baryon lifetimes [2]. To do this, we rewrite Equation 14

in Reference [5] as

Acs→cd(Ξ
0
c→ π−Λ+

c ) = C ×
(
0.44[Γ(Ξ0

c )− Γ(Λ+
c )] + 0.05[Γ(Λ+

c )− Γ(Ξ+
c )]
)
. (114)
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We can then solve for C using Gronau and Rosner’s input charm lifetime values from

Reference [8], enumerated in Table 36, and find C = −0.9917. We can then use Equation 114

to re-calculate Acs→cd(Ξ
0
c→ π−Λ+

c ) using the updated lifetimes listed in Table 8. Next, we

rewrite Equation 2 in Reference [5] as

Γ(B1 → B2π) = D × |A|2, (115)

where we have set B to 0, as described elsewhere in Reference [5]. We then notice

B(Ξ0
c→ π−Λ+

c ) =
D × |A|2

Γ(Ξ0
c )

(116)

and calculate D = (0.13 ± 0.07)% using Gronau and Rosner’s constructive prediction for

B(Ξ0
c→ π−Λ+

c ) and for A (Equation 18 in Reference [5]).51 Finally, we can use Equation 116

and the updated Ξ0
c lifetime listed in Table 8 to calculate the updated predictions for

B(Ξ0
c→ π−Λ+

c ) listed in Table 19.

Table 36: Old world-averages of charm-baryon lifetime measurements [8].

Particle Lifetime [ fs]
Ξ0
c 112± 13

Λ+
c 200± 6

Ξ+
c 442± 26

We have not updated the predictions of Faller and Mannel or Cheng et al.; the effect

would be to lower Faller and Mannel’s positive interference prediction and raise the Cheng

et al. negative one, giving somewhat better agreement with Gronau and Rosner’s predictions.

51Gronau and Rosner only provide an upper limit for their destructive prediction of B(Ξ0
c→ π−Λ+

c ), hence
the decision to use only the constructive values for A and B(Ξ0

c→ π−Λ+
c ) to calculate D.
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