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ABSTRACT

Cyber-Physical Systems (CPS) tightly couple information technology with physical

processes, which rises new vulnerabilities such as physical attacks that are beyond

conventional cyber attacks. Attackers may non-invasively compromise sensors and spoof

the controller to perform unsafe actions. This issue is even emphasized with the increasing

autonomy in CPS. While this fact has motivated many defense mechanisms against sensor

attacks, a clear vision of the timing and usability (or the false alarm rate) of attack

detection still remains elusive. Existing works tend to pursue an unachievable goal of

minimizing the detection delay and false alarm rate at the same time, while there is a clear

trade-off between the two metrics. Instead, this dissertation argues that attack detection

should bias different metrics (detection delay and false alarm) when a system sits in

different states. For example, if the system is close to unsafe states, reducing the detection

delay is preferable to lowering the false alarm rate, and vice versa. This dissertation

proposes two real-time adaptive sensor attack detection frameworks. The frameworks can

dynamically adapt the detection delay and false alarm rate so as to meet a detection

deadline and improve usability according to different system statuses. We design and

implement the proposed frameworks and validate them using realistic sensor data of

automotive CPS to demonstrate its efficiency and efficacy.

Further, this dissertation proposes Recovery-by-Learning, a data-driven attack

recovery framework that restores CPS from sensor attacks. The importance of attack

recovery is emphasized by the need to mitigate the attack’s impact on a system and restore

it to continue functioning. We propose a double sliding window-based checkpointing

protocol to remove compromised data and keep trustful data for state estimation.

Together, the proposed solutions enable a holistic attack resilient solution for

automotive cyber-physical systems.
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1. INTRODUCTION

1.1 Overview of Cyber-physical Systems

Cyber-physical systems (CPS) are systems that monitor or control a physical

mechanism using computer-based algorithms. These systems are enabled by a deep

integration of software and hardware components. The software components, usually

referred to as cyber components, consist of the computing and communication aspects of

the system. The hardware component or the physical components refer to sensors and

actuators. Sensors measure the state of system whereas actuators control and move the

mechanism or system such as increasing throttle, opening a valve etc. Note that sensors

and actuators can also be referred to as the interface between the physical and the cyber

world. The basis of CPS includes embedded systems, computers, and software embedded

in devices whose primary focus is not computation including but not limited to medical

devices, cars, and scientific instruments. CPSs are feedback systems with a feedback loop

where the computations affect the physical process and vice versa. Examples of CPS

include smart grid systems, medical monitoring devices, industrial control systems,

building controls, autonomous vehicles etc.

Increasingly, CPSs play important roles in government, critical infrastructure and daily

lives. While the modern society has reaped many benefits from these systems, the full
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economic and societal potential has not been realized. Hence, huge investments are being

made globally to develop the technology.

Autonomous Cyber-Physical Systems (CPS), such as self-driving cars and unmanned

aerial vehicles (UAV), are becoming an integral part of our daily lives. For example,

Amazon’s Prime Air service seeks to use drones to deliver orders up to five pounds in 30

minutes or less and has already demonstrated its feasibility in [7]. UAVs have also been

seen in applications such as aerial photography [20], policing and surveillance [19] [36],

infrastructure inspections [35], construction site management [21] and many others.

Self-driving cars continue to attract huge investments from big companies and they are

expected to be in common use in the near future [39] [77].

1.2 Problem Overview

Due to the safety-critical roles that they play, autonomous CPS security continues to

be an essential requirement for its safe functioning. However, the deep intertwinement of

physical processes, software, and hardware has increased the attack surface of systems

that once had closed architectures. At the cyber level, CPS now suffer attacks similar to

what traditional computer software and network face such as buffer overflow, network

eavesdropping (sniffing), packet spoofing, data modification attacks, etc. At the physical

level, an adversary is able to compromise the physical environment of a system that leads

to the injection of malicious signals which impairs the function and behavior of the

system. This type of attack is referred to as physical attacks and examples include

dazzling cameras with light, injecting false radar signals, injecting false GPS signals, etc.
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Comparatively, defense solutions for cyber attacks are more advanced than physical

attacks because traditional cyber-security solutions are viable defense against cyber

attacks. For instance, firmware hardening [81], control-flow integrity [16], memory

isolation [48], etc, can defend CPS cyber attacks. These solutions are, however, weak

against physical attacks since these attacks do not directly target the software components.

This is especially emphasized by non-invasive sensor attacks. These attacks do not require

physical access to the target component and have been shown to be easy (requiring a

modicum of knowledge) and inexpensive (requiring cheap equipment to execute).

Rutkin [80] showed how non-invasive attacks enabled malicious signals to be injected into

GPS sensors, and in the end misguided a yacht off course. Similarly, Shoukry et al. [86]

demonstrated how non-invasive attacks on wheel speed sensors influenced Anti-lock

Braking Systems (ABS) of a vehicle to malfunction. Petit et al. [76] also showed how an

automotive CPS camera and LiDAR can be attacked remotely. In addition, the

consequences of sensor attacks will be even exaggerated as the autonomy increases.

Therefore, there is the urgent need for physical attack defense solutions.

The urgent need to protect autonomous CPS from physical sensor attacks has

motivated a lot of research efforts which can be can be categorized into (1) attack

detection and (2) attack recovery.

1.2.1 Attack Detection Limitations

Attack detection is one of the important strategies for securing CPS from malicious

attacks. The ability to detect malicious behaviors early sets the stage to provide



4

countermeasures that either prevent further attacks or mitigates the damaging effects of

the attack. Many research efforts have proposed detection solutions such as

attack-resilient sensor fusion [41, 60, 65], model-based attack detection [14, 29, 78], and

data-based detection [2, 32, 37, 43, 75, 84]. However, the timing and usability of attack

detection have not been adequately addressed in existing works. This timing constraint is

the detection deadline, before which attacks must be detected. The usability refers to the

false alarm rate, and a lower (higher) rate means a better (worse) usability. Existing works

tend to minimize the detection delay and false alarm rate at the same time. However, the

goal is deemed to be unachievable because of the clear trade-off between the two metrics,

i.e., lower delay coming with higher false alarm rate, and vice versa [29, 89, 91]. Hence,

we believe that attack detection should have a preference on different metrics when a

system runs in different states.

1.2.2 Attack Recovery Limitations

The new CPS threats have motivated many research efforts to defend against sensor

attacks. However, most of them have focused on attack detection rather than recovery

measures. Raising attack alerts, usually done in attack detection works, do not ensure the

continuous functioning of the CPS. Hence, to respond to attack alerts, recovery measures

are required to mitigate the effect of an attack on a system and continue the system’s

operation with minimum interruption.

Only a few existing works have addressed attack-recovery in any form. As the pioneer

work in this research thread, Kong et al. [51, 102] assumes full observability of the system
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and replaces measurements of compromised sensors by model-predicted values. Fei et

al. [23] follow the idea of [51] and proposes a redundant controller for attack recovery that

is trained also based on the system model. Although these works validate the performance

under their own settings, they require prior knowledge of system dynamics that builds the

system model.

1.3 Proposed Solution

1.3.1 Detection

This dissertation proposes two real-time adaptive sensor attack detection frameworks

that can dynamically adjust detection delay and false alarms. The key rationale behind this

framework is as follows.

(i) Why real-time? Given safety-critical CPS, timing is important, as untimely defense,

that is, detection of an attack after consequences occur, is just as damaging. For example,

consider the cruise control function under a speed sensor spoofing attack that changes the

true measurement to a smaller value. Then the vehicle is misled to accelerate so that the

real speed can be much higher than the desired. This attack needs to be detected before

the vehicle crashes into the front car. This timing constraint is referred to as the detection

deadline, before which attacks must be detected.

(ii) Why adaptive? On the one hand, a shorter detection delay is not always favorable.

In the end, we can have an attack detector that raises an alert at every control period. The

detector will discover an attack once it occurs, and thus the detector has the shortest

detection delay. However, this will give an unmanageable number of false alarms and thus
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unacceptably low usability. On the other hand, an alert can be raised after monitoring

multiple control periods to ascertain the occurrence of an attack. However, this can lead to

increased detection delay. Hence, we argue that there is a need to adapt the attack

detection so that it can make the appropriate trade-off. For example, if the system is

already close to unsafe states and thus the detection deadline is stringent, reducing the

detection delay will be preferable to lowering the false alarm rate, and vice versa. To

enable real-time adaptive detection, this dissertation proposes two frameworks: a

CUSUM-based framework and a variable window-based framework.

The CUSUM-based real-time adaptive attack detection framework consists of three

necessary components: attack detector, behavior predictor, and drift adaptor, as shown in

Fig. 3.1. The technical contribution for each component is as follows.

(i) Attack Detector. As the core of our framework, this component detects anomalies

using a CUSUM algorithm that monitors the cumulative sum of residuals between the

nominal (estimated by the behavior predictor) and observed sensor values. The algorithm

will raise an alarm when the cumulative sum of the residuals is greater than a predefined

threshold. Importantly, we augment this algorithm with a drift parameter that governs both

the detection delay and false alarms. That is, the algorithm can adjust the two metrics by

changing the drift parameter.

(ii) Behavior Predictor. This component estimates nominal sensor values that are fed

to the core component. It uses a deep learning (DL) model that is offline extracted through

uncovering and exploiting both the local and complex long-term dependencies in

multivariate sequential sensor measurements. Thus this model depends on little

knowledge of the physical system (e.g., dynamics). Further, this model leverages
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convolutional neural network (CNN) and recurrent neural network (RNN) to capture

non-linear aspects in sensor data and uses autoregressive models to capture linear aspects.

This combination results in high robustness and scalability in handling the sequential

sensor data.

(iii) Drift Adaptor. The third component is a drift adaptor that estimates a detection

deadline and then determines the drift parameter. The detector component uses this

parameter for adjusting the detection delay to ensure timely detection as the detection

deadline varies over time.

The variable window-based real-time adaptive attack detection framework also

consists of three components: attack detector, state predictor, and window adaptor. The

technical contribution for each component is as follows.

(i) Attack Detector. The attack detector uses a stateful detection strategy to monitor the

residual sequence for a period of time called the time window. It raises an alert whenever

the accumulated residual sequence within the time window exceeds a predefined

threshold. An essential parameter to the detection algorithm is the window length, which

controls or adjusts the detection delay and false alarms metrics.

(ii) State Predictor. The second component of the framework, state predictor, uses a

temporal convolutional network (TCN) model to estimate the nominal sensor values

which are used in the attack detection algorithm. The TCN model captures the

relationship among correlated sensors to make predictions.

(iii) Window Adaptor. This two-phased component estimates a detection deadline and

then determines the window length parameter. This is the parameter that is passed to the

attack detector component for adjusting the detection delay to ensure timely detection.
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We implement our frameworks and validate them using realistic sensor data of

automotive CPS from the AEGIS Big Data Project [44]. The results demonstrate that our

frameworks can detect attacks in a real-time manner.

1.3.2 Recovery

To address the limitations of existing attack recovery, this dissertation proposes

Recovery-by-Learning, a data-driven attack recovery framework that restores automotive

cyber-physical systems from sensor attacks. The framework requires little knowledge of

the system’s dynamics, but leverages natural redundancy among heterogeneous sensors

and historical data for attack recovery. Specially, the framework consists of two major

components: state predictor and data checkpointer. At the core of this solution are novel

techniques to realize these components.

First, the state predictor is activated to estimate system states when an attack is

detected. The predicted states are forwarded to the controller to calculate and issue

appropriate control commands to bring the system back to normalcy. The predictor is built

on a deep learning model that captures the nominal system behavior. The model exploits

the natural redundancy as well as the short and long term temporal correlation among

heterogeneous sensors on an autonomous CPS, through combining convolutional neural

network (CNN) and recurrent neural network (RNN).

Second, the data checkpointer executes in the normal mode when no attack is detected.

It employs a checkpointing protocol to remove corrupted data and keep valid historical

data as input to the state predictor to make state estimation. The protocol uses double
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sliding windows: detection window and logging window. The former accommodates the

substantial detection delay (i.e., the time interval between the start of an attack and the

detection of it), during which the correctness of the sensor data is still in question and thus

using them may result in unsuccessful recovery. The logging window governs sufficient

trustful data for the state prediction.

We implement and evaluate the effectiveness of our framework using a real-world data

set, AEGIS Big Data Project [44], and a ground vehicle simulator, Ardupilot SITL

Rover [1]. The results show that the proposed framework is capable of ensuring

continuous functionality in presence of sensor attacks.

1.4 Overview of dissertation

This dissertation asks three questions (1) how can we detect when an attack occurs?,

(2) how can we adapt the behavior of the detector so that it can meet a detection

deadline? and (3) how can an attacked automotive CPS continue to function during an

attack?. All these questions are aimed at securing the autonomous CPS against physical

attacks. Cyber attacks are out of scope since many traditional software security solutions

are able to defend them. The proposed solutions together with cyber attack defense

solutions can enable a holistic attack resilient solution for autonomous CPS.

The dissertation describes the design, implementation and evaluations of the proposed

frameworks mentioned in the previous section. It is presented in the following manner.

Chapter 1 is the introduction of the thesis and an overview of the material presented within

the dissertation. Chapter 2 is a survey of background material that presents a taxonomy of
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the current state of the art of CPS attack detection and attack recovery. Chapter 3 presents

the real-time adaptive sensor attack detection frameworks by explaining the novel

contributions of their design, implementation and evaluation. Chapter 4 presents the

design, implementation and evaluation details of the attack recovery framework.

Chapter 5 provides a summary of all findings, conclusions and future work.

1.5 Previous publications

This dissertation is composed of works that have been published in peer-reviewed

conferences and manuscripts that are currently under submission as a peer-reviewed

conference paper. A portion of the attack detection work is published in the proceedings

of 27th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS

2021) [5]. The window-based attack detection portion of the dissertation is currently

under submission to the 40th edition of International Conference On Computer Aided

Design (ICCAD 2021). The content of chapter 2 has been published in the Fourth

International Conference on Connected and Autonomous Driving (MetroCAD 2021).

Chapter 4 is based a work which has been accepted for publication in the 27th IEEE

International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA 2021).
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2. BACKGROUND

This chapter presents a survey of existing sensor attack detection and attack recovery

proposed solutions. Understanding the techniques, the capabilities and limitations of these

prior works provides an understanding of how the state of the art in attack detection has

advanced and provides an avenue to explore future research effort.

2.1 Physical Invariant Based Attack Detection

This section studies how to detect attacks on autonomous vehicles, and specially focus

on physical invariant-based attack detection. A physical invariant (PI) is defined as a

property that a physical system always holds, i.e., the evolution of system states (usually

measured by sensors) follows immutable physical laws. We first discuss existing research

efforts of PI-based attack detection and classify them according to the knowledge of

physical invariants and sensor redundancy. While the autonomous vehicle faces both

cyber attacks and physical attacks we only focus on the latter. As mentioned in Chapter 1,

defenses against cyber attacks are relatively advanced due to the many traditional

cybersecurity techniques already available. Comparatively, proposed solutions for

defending against physical attacks are few and more challenging. We survey research

efforts that seek to detect physical attacks in autonomous vehicles. Since the physical
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properties are often measured with sensors, we focus on research works that address the

detection of false sensor attacks.

2.1.1 Classification based on physical invariant knowledge

Physical systems have properties that are guarded by immutable physical laws. When

attacks are successfully launched, they violate these laws. In order to determine such a

violation, it is essential to have a model that accurately approximates the nominal system

behavior. The observed behavior can then be compared with the expected behavior (based

on the model) to determine a violation of the physical invariant. This has been the general

idea behind many attack detection publications in recent years.

Building an accurate model to approximate the nominal system behavior requires

knowledge about the system and its dynamics. Modeling the complete system dynamics

requires in-depth knowledge and expertise which may not always be available. Hence,

recent publications have used two approaches to learn system dynamics. We group

publications into two groups namely (1) black box and (2) grey box based on how they

capture the system dynamics or physical invariants in their model. Further, we discuss

how the model is used for attack detection.

Black-box approach

Publications in this category treat the system as a black box and build a model from

the system data, such as sensor readings, control input and output, and system logs. The

insight of this approach is that, when the system operating in a normal state, the data or
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readings captured by the sensor are directly proportional to the system obeying physical

laws. Therefore, the data model that is built from the system data reflects the physical

invariant of the system. The popular tools that have been employed in publications to

learn system behavior from system data are machine and deep learning techniques. The

techniques mine for relevant information and/or relationships among nominal system data.

The black box attack detection approach often has two phases: online and offline

phases. The offline and online phases are summarized in Fig. 2.1 and Fig. 2.3 respectively.

The offline phase or the model training phase starts with collecting data about the system

usually consisting of sensor or actuator data. The data collected is pre-processed in order

to improve the quality of the data as well as transform it into a form that is required by the

chosen machine or deep learning model. The data pre-processing step may include one or

more of the following: handling null values, handling categorical values, standardization,

and one-hot encoding. The pre-processed data is fed into the machine or deep learning

model such as a convolutional neural network (CNN), recurrent neural network (RNN),

autoencoder, regression model, etc. The researchers in the papers we selected make

different contributions at this stage. Some combine two or more DL/ML models so their

trained models can learn certain patterns of interest. Others also reuse existing DL/ML

architectures or make simple changes to existing ones. During model training, the output

data of the DL/ML model is compared with ground truth data and a loss function

calculates a score such as the reconstruction error, prediction error or assigns a label. The

training process continues by optimizing and updating the model using the score obtained

in the previous step. The output of the offline phase is a trained model that is capable of

predicting or classifying observed system behavior.
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Table 2.1: Taxonomy based on physical invariant.

Black Box Grey Box Correlation

He et. al [37]
Li et. al [58]
Van et. al [92]
Javed et. al [42]
Shin et. al [85]

Quinonez et. al [78]
Choi et. al [14]

He et. al [37]
Ganesan et. al [25]
Li et. al [58]
Parker et. al [75]
Guo et. al [31]

The online phase deploys the trained model so that it can make predictions or

classifications when the system is running. The anomaly detection algorithm, in most of

the papers surveyed, compares the output of the trained model with the observed signals

and then calculates an anomaly score using time-window approaches or statistical

methods such as cumulative sum (CUSUM), chi-square, etc. The detector raises an alert

whenever the anomaly score exceeds a certain pre-determined threshold.

Grey-box approach

Attack detection solutions in this category have some knowledge about the system and

even know the physical invariant. Instead of learning the structure of the model, such

papers make their contributions by learning the parameters of the invariants utilizing

techniques such as system identification (SI). Such solution is provided in [78] and [14].

Generally, these solutions also have two phases: offline and online phases as shown in

Fig. 2.2. The offline phase extracts the physical invariants that are used to build a model

that captures the underlying or expected relationships between the sensors and actuators.

In other words, the model captures the expected inputs and outputs of the system. The

techniques used at this phase may also capture the expected relationship among sensors.
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Data pre-processing

Data Collection Deep/Machine
Learning Architecture Output Layer

Ground Truth

Update

Prediction error,
Reconstruction error, Label

Loss Function

Fig. 2.1.: The offline phase

The solutions in this category have explored both linear [14] and non-linear

approaches [78] to describe the physical invariants of AVs. The linear approach assumes a

Linear Dynamical State-space (LDS) system which is widely used in system dynamics

and control. LDS is given as:

xk+1 = Axk +Buk

yk = Cxk

(2.1)

where xk ∈ Rn denotes the autonomous vehicle’s physical-state vectors; uk ∈ Rm is

the control input vectors; yk ∈ Rp denotes the AV’s output vectors from measurements of

sensors. A, B, and C are the system matrices that are unique for each physical process.

Hence, each AV has unique values for A, B and C. The proposed solutions in this

category use various techniques to learn these system matrices’ parameters, popular

among them is system identification.

System identification (SI) is a control system engineering methodology that is used to

learn the parameters for the system matrices. The two inputs to the SI method are (1) a

control invariant template i.e. equation of a certain degree/form with unknown

coefficients/parameters and (2) a vehicle profiling measurement data set including the

system inputs, outputs, and states. The vehicle profiling measurement data set is obtained

by letting the subject autonomous vehicle perform a set of missions or rides. The runtime
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inputs (target states) and system states are measured and recorded during the execution of

the missions. When the needed inputs are provided, the SI method then performs

computations that instantiate the unknown system matrices (A, B, and C). The resultant

equation, therefore, becomes the model for the system which is used in the online phase to

predict the behaviors of the autonomous vehicle based on inputs and states. Essentially,

the resultant equation serves as the control invariants of the vehicle [14].

Although the linear invariant approach works for a wide number of dynamical

systems, autonomous vehicles tend to follow a non-linear invariant as noted

in [15, 28, 61, 78]. This approach requires more complex equations than LDS. Authors

in [78] indicate that the physical invariants of the quad-copter used in their experiment can

be described with 12 non-linear differential equations “that exploit Newton and Euler

equations for the 3D motion of a rigid body”. The equations oversee the position, speed,

angles, and angular speed of the quad-copter. Note here that each type of autonomous

vehicle will have its own set of non-linear differential equations that describe its physical

invariants. The parameters of these equations are learned using the SI method discussed

above for linear systems. Besides the non-linear equations’ input, the parameters are

Control template
(uninstantiated eqn)

AV profile information

System Identification
(SI)

Model / Control
Invariant

Observed signals

Anomaly Detection
Algorithm

Offline phase

Normal 

Anomaly

Online 
phase

Fig. 2.2.: The general workflow for the grey-box approach. It consists of (1) offline phase
where parameters of the control template are learned and (2) online phase where the

anomaly detection algorithm uses model predictions and observed signals to determine
presence or absence of anomaly
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Trained Model

Observed Signals Attack Detector
Normal

Anomaly

Fig. 2.3.: The online phase

learned in the same way. Particularly, the learning of non-linear parameters is formulated

as an optimization problem which is given as [78]:

min
P

T∑
t=1

(Ht(P , Ut)− Yt)2 (2.2)

where U and Y are the input and output data respectively; P refer to the set of unknown

parameters {p1, p2...}. Ht(P , Ut) denote the estimated output at each sampling instant t

for the given parameters P and the input Ut. Note that Ht(P , Ut) is the solution the

differential equations F (·). The goal of Eqn. 2.2 is to find the parameters P that better fit

the data. In other words, Eqn. 2.2 seeks to find the set of parameters P that minimize the

least square error between the estimated output Ht(P , Ut) and the measured output Y .

Once the unknown parameters are computed, the resultant equations, therefore, become

the model for the system which is used in the online phase to predict the behaviors of the

autonomous vehicle based on inputs and states.

The online phase consists of an anomaly detection mechanism or algorithm that

simply compares the predictions of the model that was built during the offline phase with

observed signals or states. The difference between the predictions and the observed states,

also called the residual error, are accumulated in two ways. The first approach

accumulates the residual error as long as no attack has been detected as was done in [78].

The accumulation is reset whenever an attack is detected. The second approach
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accumulates the residual error for a set period of time (window) and then resets whenever

the time window expires [14]. Either way, an alarm is raised whenever the accumulated

residual error exceeds a predetermined threshold.

While the solutions in this category are robust in their attack detection role, they

remain weak against stealthy attacks mainly due to perturbations and uncertainties in the

model. Stealthy attacks create small deviations over time by spoofing or creating

malicious data that allow the system to behave seemingly normally. Stealthy attacks are

hard to defend against and remain an open problem in autonomous vehicle attack

detection. Researchers in [78] are the first to propose a solution to stealthy attacks in

autonomous vehicles.

2.1.2 Classification based on correlation

Immutable physical laws cause multiple sensors to exhibit correlations that can be

exploited for attack detection. The multiple sensors could be measuring the same system

state or not. Multiple sensors measuring the same physical state are called homogeneous

sensors whereas those measuring different physical system states are referred to as

heterogeneous sensors. We classify publications that exploit correlation that naturally

exists among sensors for attack detection purposes into two groups: (1) homogeneous

sensors and (2) heterogeneous sensors attack detection.
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Homogeneous sensors attack detection

Multiple sensors measuring the same physical phenomenon are expected to have their

measurements correlating. When this natural redundancy is not observed, it could be an

indication of a possible attack, and this has been the basis for publications in this category.

For instance, when four wheel speed sensors are used to monitor the speed of a vehicle’s

wheel, they should all report similar readings under normal operation.

Researchers in [49] propose a switching algorithm that searches for a combination of

sensors that have not been compromised and generates estimates that are insensitive to

sparse malicious attacks. The algorithm assumes that some of the redundant sensors have

been compromised.

Although this is a good approach to attack detection, it has some limitations. First, it

increases the cost of production as multiple sensors of the same type have to be deployed.

This leads to increased power consumption. Also, more space will be required to

accommodate the multiple sensors leading to increased weight. In applications where a

lighter weight is desired, this approach may be impractical. On the other hand, fooling the

attack detection may be easier since the same attack strategy and equipment can be used to

attack the multiple sensors simultaneously. For example, the attacker may successfully

cause all speed sensors to report 5mph thereby preserving the correlation.

Heterogeneous sensors attack detection

The attack detection solutions in this category hinge on the observation that some set

of sensors within an autonomous vehicle are correlated in terms of their
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readings [25, 31, 37, 58]. Remember that this observation is guided by physical laws. For

instance, as a car moves faster, naturally, the wheels spin faster, the engine speed

increases, and the pressure applied to the pedals also increases. Therefore, this natural

phenomenon causes effects on sensors that monitor the wheel speed, engine speed, and

pedal. Given that this natural redundancy holds all the time due to physical laws, a

violation of the observation to some degree could be an indication of an attack. Hence, the

proposed solutions in this category capture this physical invariant by using various

methods that exploit the correlation or the natural redundancy that exists among the

different sensors. Generally, the detector raises an alert whenever the natural redundancy

no longer holds due to attacks.

The methods used to exploit the correlation are varied including cluster analysis [25],

Pearson correlation analysis [82], autoencoders [37], regression [58]. In cluster analysis,

researchers first build tools to determine the context and the cluster that the identified

context belongs to. This is done for each time window. Then, a pairwise cross-correlation

is performed and the results are compared with the expected correlation values for that

cluster. The calculated deviation from the cluster’s mean correlation value is reported as

standard deviation from the mean.

In the regression method, the authors formulate the problem as a machine learning

regression problem. The regression model uses statistical processes to estimate the

relationships among correlated sensors. The model predicts sensor values which are then

compared with the observed sensor values. A deviation is calculated and if it exceeds a

threshold, an alert is raised.
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EVAD [31] utilizes the frequency domain to detect attacked sensors after Fourier

transform. They also organize the correlations of sensors into a ring architecture in order

to reduce the computation overhead. EVAD exploits both the time domain and the

frequency domain property of sensor data as the criterion to detect anomalies.

Researchers in [75] also considered a system where multiple sensors measure the

same physical variable. The solution assumes that some of the redundant sensors are

attacked. The work develops a resilient sensor fusion algorithm for attack detection.

Unlike the homogeneous approach discussed above, this approach does not increase

the cost of production since no extra sensors are needed. Therefore, the power

consumption, space, and weight remain the same for these solutions. Also, this approach

tends to be more robust to attack since, to fool the detection and maintain the correlation,

the attacker has to launch attacks against multiple types of sensors. Based on the fact that

each type of sensor relies on different physical principles to operate, the attacker needs

multiple strategies, equipment, and varying proximity to the sensor in order to launch a

successful attack simultaneously.

2.1.3 Classification based on techniques employed

Existing works on cyber-physical systems attack detection can be categorized based

on techniques that are used.

Redundancy-based: Works that use this approach [24, 75, 100, 101] detect attacks by

using multiple system components. The duplicated system component may be software

(e.g controller) or hardware (e.g. sensors). The states or outputs of each of the duplicated
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system components are cross-checked at runtime. In spite of its effectiveness, this

approach leads to increased cost, weight, power, space requirement and system

complexity.

Signature-based: The works that use this approach [26, 47] monitor runtime patterns

and compare them with a pre-maintained dictionary that contains known attack types or

attack patterns. For it to be effective, the dictionary needs to have the latest attack patterns.

These methods are known to be fast and have low false positives rates, however, they are

not effective in handling zero-day attacks [14, 43]

Behavioral rule-based: Behavioral rule-based techniques [9, 67, 68] models the

normal system operations by using a specification. The program state transitions or

execution time constraints are usually modeled in this approach.

Physics-based: This approach detects attacks by monitoring the physics of

cyber-physical system. It is an area of research that is attracting a lot of attention. [29]

surveys works that use this approach for cyber-physical systems in general, whereas [4]

surveys works that use this approach specifically for autonomous vehicles. Recently, [14]

and [78] applied this technique to detect physical sensor attacks. During the first of its two

steps, Physics-Based Attack Detection (PBAD) approaches extract the physical invariant

of the system and use it to model the system. Although we do not extract the physical

invariant directly, we indirectly use deep learning to learn about them. Like other

approaches, in the second step, PBAD compares the model predictions with the observed

values and raise alarm when observed states exceed a threshold.

Machine/Deep Learning: Machine Learning (ML) and Deep learning (DL)

techniques have been employed in many CPS attack detection works
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lately [2, 6, 30, 37, 40, 43, 52, 58, 63, 70, 74, 83]. These solutions build a data model by

using the system data to train a machine or deep learning model. The models are often

used to make predictions of CPS measurements such as sensors. ML and DL methods

require a large amount of data to build accurate models. While supervised ML methods

require both labeled normal and attack training data, unsupervised methods often process

only normal training data. Our solution uses an unsupervised deep learning approach. Our

work is distinguished by the incorporation of attack detection deadline estimation and

adaptive attack detection mechanism.

2.2 Attack Recovery Solutions

Attack recovery measures are meant to improve the attack-resilience of the

autonomous CPS. That is, measures that enable the CPS to function continuously in spite

of the attack. Compared with attack detection solutions, we can say that attack recovery

solutions are proactive attack resilience measure.

One of the effective ways of improving attack-resilience is to develop methods that

can estimate system states accurate enough for control regardless of the compromised

components. This way has the merit of allowing the system to use the same controller as

in the case without attacks. [73] and [22] are existing works that follow this approach.

Note that these proposed solutions are confined to sensor redundancy setting, i.e., multiple

sensors are employed to measure the same physical variables. This limitation also follows

that the proposed solutions are only applicable when the number of compromised sensors

is within a certain threshold. Hence, dealing with attack resilience in the cases that violate
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above limitations is a question that still remains. Kong [51] addresses these limitations by

proposing a solution that leverages checkpointing and recovery. That is, instead of using

redundant sensors, they use the historical data to recover the system states.

Various techniques have also been employed for state estimation. A popular technique

is sensor fusion algorithm. As noted in [41], the meaning or interpretation of the term

“sensor fusion” vary across different fields of research. While some consider the term to

mean the collection and combination of data from homogeneous redundant sensors, others

equate the meaning to the ”state estimation” of different sensors that measure different

aspects of the system’s state. The works that use sensor fusion can be categorized based

on the sensor model that is used. The first approach leverages a probabilistic model to

compute the expected results. Kalman filter [45] falls in this category where assumptions

about sensor precisions are combined with the known system dynamics model to achieve

a linear estimation of the true state. Many variations of the Kalman model have span

including [18] and [97]. These approached have the goal of achieving average

performance of a system and therefore [41] assert that they might not be suitable for

low-probability analysis of rare events. The second category of sensor fusion works

leverages an abstract sensor model instead for worst-case analysis. A pioneer work of this

approach is [65] where an assumption is made that sensors provide one-dimensional

intervals. Variations of this model includes [66], [13], [103] and [11]. The third category

of sensor fusion works treat sensor measurements a decision. All the sensor decisions are

combined in some form of a voting scheme [12, 46].
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2.3 Challenges

In this section, we discuss some of the challenges that researchers proposing attack

detection methods face. We do not discuss the challenges in any particular order of

importance.

2.3.1 Training data for data models

From our discussion above, we see that machine and deep learning techniques are

valuable for building attack detection solutions. These tools, however, require enormous

training data. The first challenge is that the publicly-available datasets are sparse and they

contain no or very few attack datapoints. One of the reasons for this is that, especially for

real-life datasets, attacks rarely occurred in the past because vehicles were then closed

system [37]. Even with modern-day vehicles that are becoming open systems, successful

attacks do not happen often. Hence, with such limited attack scenarios in the dataset, the

machine and deep learning models are constrained in learning the attack patterns as

expected to build robust models that are able to recognize attacks. In other words, CPS

attack monitoring models that are trained with insufficient data tend to respond

unfavorably to events or scenarios that they have not been seen before [95]. This data

sparsity problem was one of the causes of the 2016 Tesla crash [3].

It is worth mentioning that some proposed methods [37] have responded to this data

sparsity challenge by leveraging unsupervised machine/deep learning techniques. The

models are trained to learn the nominal behavior of the plant under study from only

normal data. Then using the principle of inclusion-exclusion, an alarm is raised whenever
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the sensor under scrutiny does not produce data that are indications of normal activity.

However, the false positive and false negative rates are not promising for practical

applications.

Further, the normal data available are not sufficient since they usually do not contain

all the normal behavior scenarios. For instance, during the data collection stage, if the

autonomous vehicle does not perform certain activities, maneuvers, or tasks, the data

associated with these normal behaviors will not be captured in the dataset. Hence,

unsupervised learning techniques/models which only learn from normal data are misled to

classify even normal autonomous vehicle activities as abnormal.

Lastly, the sensor data obtained from autonomous vehicles can be corrupted, noisy,

faulty, missing, and may contain redundant data [95, 98]. Sensors tend to be sensitive to

interference in their environment which can lead to data corruption. In most situations or

applications, such interference is inevitable and in others, some measures can be taken to

reduce the noise. Data may also be corrupted due to the interactions occurring among

system components. Lossy communication channels especially those between the sensor

and data collection point contribute to data corruption. Identifying that a dataset is

corrupted may require some system expertise and can be challenging. The consequences

of building an attack monitor on corrupt data are quite obvious.

2.3.2 Testbeds

The availability or access to rich/practical autonomous vehicle testbed is another

challenge that researchers face. In most of the papers reviewed, evaluations are not
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performed on systems that mimic the resources that are available on real autonomous

vehicles thereby reducing the practicality of the proposed solutions. Rather, experiments

are carried out using simulated data that were run on computing resources that differ a lot

from resources available on autonomous vehicles. For instance, the operating systems that

the experiments are simulated are not a real-time OS. Also, the CPU/GPU capabilities and

memory capacity available on experimental systems are higher compared with what is

available on autonomous vehicles.

In part, high-end autonomous vehicle testbeds are expensive to acquire, limiting

research groups, especially those in developing countries, from testing out their novel

ideas and designs. Although cheaper testbeds are available, usually, they do not possess

all the sensors that may be required for the particular research. It is also possible to

custom-build autonomous vehicle testbeds, however, assembling all the components

requires expertise that may not be available in the research group or the university at large.

Even in instances where the expertise is available, the process of building the testbed can

be time-consuming. From our own experience, it has taken more than a year to build an

autonomous vehicle testbed. Further, the sharing of testbeds amongst research groups

especially those whose physical geography is farther apart may be hampered by travel

restrictions by governments, a pandemic, or other factors.

2.3.3 Benchmark for comparing related work

It is difficult to fairly and accurately compare the effectiveness and efficiency of the

various proposed attack detection methods due to the absence of “standardized”
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benchmark data. Given that each research effort evaluates their work on the data that the

researchers generate or simulate, it is difficult to tell if the proposed solutions are

applicable to only their data or work with other new data. A common benchmark can

facilitate result comparison as well inspire research proposals that perform better than

existing solutions.

Also, many researchers who have access to good testbeds or even simulate good

autonomous vehicle data often do not make their data and source code publicly available.

Such availability to the public not only aids the repeatability of the research method but

also allows others to use the data and compare the results.

2.3.4 Standard evaluation metrics

Another challenge regarding research result comparison is the lack of standard

evaluation metrics. Usually, different metrics are used for evaluating the proposed attack

detection method. This makes it difficult to know which proposal is better and even how

an existing solution should be improved based on a metric. A standard evaluation metric

can guide the current as well as the future development of evaluative metrics for attack

detection methods in autonomous vehicles. A common metric can also help the peer

review process so that reviewers can make a better judgment of papers under review

and/or make suggestions that improve research efforts.
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3. REAL-TIME ADAPTIVE SENSOR DETECTION

As noted in Chapter 1, cyber-physical systems face many new threats as a result of the

deep integration of information technology with physical process. While this fact has

motivated many defense mechanisms against sensor attacks, a clear vision on the timing

and usability (or the false alarm rate) of attack detection still remains elusive. Existing

works tend to pursue an unachievable goal of minimizing the detection delay and false

alarm rate at the same time, while there is a clear trade-off between the two metrics.

Instead, we argue that attack detection should bias different metrics when a system sits in

different states. For example, if the system is close to unsafe states, reducing the detection

delay is preferable to lowering the false alarm rate, and vice versa. To achieve this, we

make the following contributions.

3.1 Cumulative Sum (CUSUM) based attack detection

3.1.1 Contributions

This dissertation proposes a real-time adaptive sensor attack detection framework. The

framework can dynamically adapt the detection delay and false alarm rate so as to meet a

detection deadline and improve the usability according to different system status.

The core component of this framework is an attack detector that identifies anomalies

based on a CUSUM algorithm through monitoring the cumulative sum of difference (or
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residuals) between the nominal (predicted) and observed sensor values. We augment this

algorithm with a drift parameter that can govern the detection delay and false alarm. The

second component is a behavior predictor that estimates nominal sensor values fed to the

core component for calculating the residuals. The predictor uses a deep learning model

that is offline extracted from sensor data through leveraging convolutional neural network

(CNN) and recurrent neural network (RNN). The model relies on little knowledge of the

system (e.g., dynamics), but uncovers and exploits both the local and complex long-term

dependencies in multivariate sequential sensor measurements. The third component is a

drift adaptor that estimates a detection deadline and then determines the drift parameter

fed to the detector component for adjusting the detection delay and false alarms. Finally,

we implement the proposed framework and validate it using realistic sensor data of

automotive CPS to demonstrate its efficiency and efficacy.

System and Threat Model

The CPS model we consider in this work is a physical system, also called a plant,

controlled by a controller. The controller operates at every δ unit of time, where δ > 0 is

called a control period. At the beginning of every control period, the controller first reads

the output of the plant or sensor measurements. Then using a control algorithm, the

controller computes the control signals or inputs that are sent to the actuators. The

actuators will apply the control inputs to the plant in the current step.

We consider attack scenarios, where the attacker is able to compromise the integrity

and availability of sensor data of autonomous CPS, as shown in Fig. 3.1.
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(i) Integrity of Sensor Measurements. The adversary is able to modify the sensor

measurements by launching spoofing attacks in the CPS’s physical environment such as

introducing noise or interference in the signals that the sensor is perceiving. The attacker

may also undertake replay attacks to compromise data integrity. A successful replay

attack enables an attacker to send previously captured data to the CPS. While the replayed

data was valid data at a particular point in the past, it does not reflect the current state of

the CPS.

(ii) Availability of Sensor Measurements. The adversary is able to delay the controller

from receiving the sensor values. The received values are out-of-date and reflect a

historical state of the system. Denial of service (DOS) attacks belong to this kind of

attack, where the delay is infinite. Signal jamming is one typical DOS attack that the

attacker can execute in the CPS’s physical environment.

This work is focused only on sensor the attacks mentioned above. We thus assume that

the adversary does not compromise the controller, the actuator, or other cyber components

of the system (cyber attacks). We do not restrict the maximum number of sensors that can

be compromised by an attacker but assume that the attacker has no knowledge of our

attack detector.

Overview of System Design

Fig. 3.1 shows the overview of the proposed adaptive real-time attack detection

framework. It has two phases: an offline training phase and an online detection phase.
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Fig. 3.1.: Design overview of the real-time adaptive sensor attack detection framework.

The offline phase consists of components that function together to learn the nominal

behavior of the system through training a deep learning model. It leverages both the local

and complex long-term dependencies that exist among sensor data. To achieve this, the

pre-processing component first screens out sensors that are correlated with each other by

calculating their pairwise correlations. Then, the Long- and Short-Term Time-Series

Network (LSTNet) component captures a consistent pattern among the correlated sensors,

which is referred to as the nominal behavior.

The online phase handles the real-time attack detection and is made up of three

components. The Behavior Predictor uses the learned model to predict nominal sensor

values. In the presence of attacks, sensor measurements (observed) will be different from

the predicted values. This difference, called the residual, is tracked by the Attack Detector

to identify anomalies. It will raise an alarm when the cumulative sum of residuals

becomes larger than a pre-defined threshold. The Drift Adaptor ensures a usable detection
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result before the detection deadline. The deadline may vary over time as the physical

environment changes. This component can dynamically adjust the detection delay to meet

the deadline via the drift parameter. To be clear, we state the workflow of the online phase

as follows. At each control period, the Behavior Predictor and Drift Adaptor first produce

nominal sensor values and the drift value, respectively. Then the Attack Detector uses

these values to identify anomalies.

3.1.2 Design of Attack Detector

In this section, we present the detailed design of the core component, Attack Detector,

in our framework. This component needs predicted sensor values and the drift parameter

from Behavior Predictor and Drift Adaptor respectively. The latter two components will

be detailed in the subsequent sections.

Problem Formulation

We formulate the attack detection problem as follows. Given the predicted nominal

sensor value ŷt ∈ Rn, observed sensor value yt ∈ Rn and the drift parameter λ, the

problem is to determine the appropriate time to raise an attack alert talarm when the

observed sensor values deviate from the expected values such that it exceeds a threshold τ :

talarm = C(yt, ŷt, λ) > τ, (3.1)

where C is a change detection mechanism.
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Attack Detection

There are two main strategies that can be used to realize Eq. (3.1), that is, to determine

the appropriate time to raise alarm: stateless and stateful. (i) In a stateless strategy, it is

confined to monitor every single period’s residual, and an alarm is raised for every single

deviation, that is, if the residual exceeds a pre-determined threshold τ i.e, rt > τ . This

kind of strategy has been shown to have increased false positives [29]. (ii) A stateful

strategy, on the other hand, calculates the statistic St that keeps track of the historical

changes of rt. It raises alarm when there is a persistent deviation over time, i.e. St > τ .

This kind of strategy has been demonstrated to have decreased false positives [29].

We thus choose to develop a stateful strategy in our framework due to its lower false

positive rates. There are usually two kinds of stateful strategies: time window and

cumulative sum (CUSUM). (i) In a time-window-based method, the detector looks at the

residuals within a time window of multiple control periods. (ii) A CUSUM-based method,

on the other hand, efficiently tracks the cumulative sum of residuals of the whole history.

The authors in [78] demonstrate that a CUSUM-based approach tends to be faster and

more accurate than a time-window-based approach. Further, the former is more robust to

attacks that are hard to be detected by other approaches such as attacks hidden in-between

time windows and other stealthy attacks.

Hence, we present a CUSUM-based attack detection approach. The algorithm is

augmented with a drift parameter, by tuning which the detection delay and false alarms

can be changed. The algorithm outline is shown in Algorithm 1. We briefly explain the

algorithm as follows.
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Algorithm 1: The CUSUM Algorithm.
Input: threshold τ , drift λ, observed sensor value yt, predicted sensor value ŷt
Output: alarm time talarm

1 Initialize: S0 = 0;
2 while t > 0 do
3 rt = yt − ŷt; // the residual of control period t.
4 St = [St−1 + |rt| − λ]+; // the cumulative sum;
5 // [a]+ = max{a, 0}.
6 if St > τ then
7 talarm = t;
8 St = 0;
9 end

10 // the cumulative sum is greater than the threshold;
at period t an alarm is raised; reset the sum.

11 t = t+ 1

12 end

Line 1 initializes the cumulative sum to zero. Line 2 calculates the residual between

the observed sensor value yt and the predicted sensor value ŷt obtained from the Behavior

Predictor. That is, this difference indicates how deviated the observed value is from the

nominal estimate. Line 3 calculates the cumulative sum St at control period t, which is a

non-negative value. Basically, it equals the cumulative sum at period t− 1 plus the

absolute value of the residual at t minus the drift parameter. The drift parameter is decided

by the Drift Adaptor. As mentioned, selecting the appropriate drift parameter is an

important aspect of the algorithm. It can impact both the detection delay and the number

of false positives. Line 4-7 checks if the cumulative sum is larger than the pre-defined

threshold. If yes, an alert talarm is raised, and St is reset to zero.
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3.1.3 Design of Behavior Predictor

In this section, we present the detailed design of behavior predictor. This component

builds a data model of the system that captures physical invariants for the purpose of

predicting sensor measurements.

Physical invariants are properties of the physical system that should always hold. The

invariants are guarded by physical laws. One method to capture physical invariants is to

use a physical system model. One disadvantage of this method is the requirement of

adequate knowledge of accurate system dynamics, which may not be easy to attain.

In this work, we approximate physical invariants using a deep learning technique

instead. The approximated physical invariant will be used as the nominal behavior of the

system. This technique treats the system as a black box and explores the correlation of

multivariate sensor data. Our insight is that if the system operates normally and obeys

physical laws, then the sensor data obtained from the CPS also indirectly obeys physical

laws. Hence, with little knowledge of the system dynamics, our deep learning approach

enables us to learn the behavior of the system in order to make accurate predictions.

Behavior
Predictor

CUSUM Alert

Fig. 3.2.: Dataflow in attack detector.
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Problem Formulation

In order to perform the non-trivial task of predicting nominal system behavior, we

formulate the problem as a multivariate time series forecasting problem.

Given a fully observable system with n correlated sensors Y = {y1, y2, ..., yT} where

yt ∈ Rn, we want to extract the natural redundancy that exists among the correlated

sensors using a deep learning model D, so that we can learn the nominal behavior of the

system such that we can predict future sensor values ŷT+1. It is assumed that

{y1, y2, ..., yT} will always be available whenever we predict ŷT+1. The input to the

behavior predictor at time step T is formulated as XT = {y1, y2, ..., yT} ∈ Rn×T

ŷT+1 = D(XT ) (3.2)

Pre-processing

Sensors on automotive CPS exhibit physical sensor correlation or natural

redundancy [37]. We need to ensure the DL model is trained using only sensor data that

are correlated. This component uses a statistical method to observe the natural redundancy

in the dataset and also finds sensor data that are correlated but may not be obvious from

domain knowledge.

The pre-processing component builds a correlation matrix based on Pearson’s

Correlation Coefficient (PCC) algorithm. Data variables or features are said to have a

positive correlation when both variables move in tandem. That is, if one variable

increases, the other variable also increases. A positive correlation also holds when one
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Fig. 3.3.: Example confirming the wheel speed sensors in the dataset has strong
correlation with the wheel speed, engine speed and boost pressure sensors.Table 3.1 shows

the available sensors in the dataset.

variable decreases and the other variable decreases as well. Conversely, two variables

have a negative correlation when one increases and the other variable decreases, and vice

versa. PCC indicates a strong positive correlation with coefficient values that are close to

+1.0 whereas a strong negative correlation has coefficients that are close to -1.0.

Coefficient values close to 0 signifies that the two variables do not have any correlation.

We select dataset features whose PCC values are either greater than 0.5 or less than -0.5 as

input to model training. For example, to observe the sensors that have natural redundancy

with the wheel speed sensor in the AEGIS CAN dataset (we describe this dataset in

section 3.1.5), we created the heatmap shown in Fig. 3.3 based on the PCC values. In the
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CNN for Short-Term
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RNN for Long-Term
Dependencies FC Layer

Non-Linear Aspect

Autoregressive Model

Linear Aspect

Automotive 
CPS Data

Prediction

Fig. 3.4.: Architecture of LSTNet model that learns both local and complex long-term
dependencies in automotive CPS sensor values for attack detection.

figure, we observe the wheel speed sensors have a strong positive correlation with vehicle

speed, engine speed, boost pressure, engine torque and oil temperature sensors.

Long- and Short-Term Time-Series Network (LSTNet)

Fig. 3.4 is an overview of the deep learning architecture used which is based on [54].

The interested reader is referred to [54] for details, here, we briefly describe each

component. Mainly, the architecture consists of a convolutional neural network (CNN), a

recurrent neural networks (RNN) as well as an autoregressive linear model.

CNN Component. The first layer of the deep learning framework is a CNN without

pooling. It is tasked to extract the temporal patterns and the local relationship between the

correlated sensor variables. This CNN layer is made up of a number of filters of width w

and height n (the number of correlated sensor variables) with each k-th filter passing

through the input matrix X to output a vector hk:

hk = RELU(Wk ∗X + bk) (3.3)
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where ∗ is the convolution operation, Wk and bk denote the weight parameter and bias

respectively. RELU activation function ensures values stay between 0 and 1. Each vector

hk is zero-padded on the left of the input matrix X to have a length of T . In the end, the

convolutional layer outputs a matrix of size dc × T , where dc is the number of filters. This

output matrix is inputted into the recurrent component.

Recurrent Component. The recurrent component has two sub-components namely, gated

recurrent unit (GRU) and recurrent-skip.

GRU is a specialized recurrent neural network (RNN) that is suited for modeling

sequential data such as sensor readings [53]. Unlike artificial neural networks (ANN),

GRU is able to store past information in addition to current inputs in order to determine

current outputs. The ability to store past information in GRU is enabled by the state

variables that it introduces i.e. the update and reset gates. At a time t, given the input

minibatch xt ∈ Rm×l (where m is the number of examples in the minibatch and l is the

number of inputs) and the previous hidden state ht−1 ∈ Rm×s (where s is the number of

hidden states), the reset gate zt ∈ Rm×s and update gate ut ∈ Rm×s, candidate hidden

state ct and final state ht are computed as,

zt = σ(xtWxr + ht−1Whr + br)

ut = σ(xtWxu + ht−1Whu + bu)

ct = RELU(xtWxc + rt � (ht−1Whc) + bc)

ht = (1− ut)� ct + ut � ht−1

(3.4)
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where � is the element-wise (Hadamard) product, σ is the sigmoid function, Wxr, Wxu,

Wxc, Whr, Whu, Whc are the weight parameters, and br, bu, bc are bias parameters.

The output of the GRU layer is the hidden state ht at each time step. Note that the use

of GRU in the recurrent component allows the deep learning model to discard irrelevant

previous sensor information and extract only the important ones that help to learn the

nominal system behavior.

The second sub-component of the recurrent component is the recurrent skip

component. This feature enables the architecture to memorize the repeated historic

periodic pattern (such as daily, weekly patterns) in time series data. However, since the

automotive CPS sensor data do not exhibit this periodic pattern, we do not turn it on in our

experiment.

The output of the recurrent component is passed to a fully connected (FC) layer as

shown in Fig. 3.4. FC combines its input to make a prediction result hDt is at time step t.

Autoregressive Component. This component addresses a deficiency found in the

non-linear neural network components: convolutional and recurrent components. The

scale of output in neural networks is known to be insensitive to the scale of its inputs [54].

Hence, given the non-periodic nature of sensor data, this deficiency diminishes the

forecasting accuracy of the neural networks. This is solved by decomposing the final

prediction into a linear component by using an autoregressive (AR) model which is

formulated as,

hLt =

qar−1∑
k=0

W ar
k vt−k + bar (3.5)
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where hLt ∈ Rn is the forecasting result of the AR component, W ar ∈ Rqar and

bar ∈ R are the coefficients of the AR model such that qar is the size of input window over

the input matrix. vt−k is the past series values (lagged values).

At time step t, the DL model makes a prediction ŷt by integrating the outputs of the

neural network part and the AR component:

ŷt = hDt + hLt (3.6)

Objective function. We use absolute loss (L1-loss) as the objective function which is

formulated as:

min
Θ

∑
t∈ΩTrain

n−1∑
i=0

|yt,i − ŷt,i| (3.7)

where Θ denotes the parameter set of our model, ΩTrain is the set of time stamps used for

training.

Although squared error function is an option often used, experiment results in [54]

indicate the absolute loss function is more robust.

3.1.4 Design of Drift Adaptor

In this section, we present the design of the drift adaptor. This component ensures

attack detection occurs before a detection deadline.

The requisite detection deadline for an autonomous CPS varies with its physical

environment. In other words, the deadline by which the attack has to be detected depends

on the physical environment. The deadline can change as the physical environment varies.



43

For instance, the deadline for detecting a wheel speed attack of a vehicle that is 50m away

from an object it can crash into will be different from the situation where the crashing

object is 200m away. Hence, there is a need for real-time attack detection that adapts its

mechanism based on the physical environment or how the system is close to unsafe states,

such that the detection delay will be less than the required detection deadline.

Another motivation is the trade-off between detection delay and false alarms in our

experiment. The attack detector discussed above (in Section 3.1.2) is augmented with a

drift parameter λ that can be adjusted to produce varying detection delays and false

positives. Fig. 3.5 and Fig. 3.6 show how the drift parameter affects the detection delay

and number of false positives. We note that as the drift parameter increases, the time to

detection or detection delay increases while the number of false positives decreases.

Hence, adjusting the drift parameter enables our attack detection mechanism to adapt its

behavior for an appropriate trade-off while meeting the real-time constraint.
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Fig. 3.5.: The relationship between drift parameter and detection delay for various attack
scenarios.
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The Drift Adaptor component is made up of two sub-components: Deadline Estimator

and Drift Analyzer. The deadline estimator determines the detection deadline whereas the

drift analyzer determines the appropriate drift parameter.

Deadline Estimator

The detection deadline considered in this work is the time in the future when the

system may touch the unsafe set. We consider a time that is estimated in a conservative

way, i.e., at a worst case. The authors of [102] propose a reachability-based deadline

estimation method, but it requires knowing the system dynamics. By contrast, we propose

a pure data-driven method towards this end.

The core idea of the proposed method is to first calculate the maximum change rate of

the sensor value and then use it to estimate the shortest time when the system may touch

the unsafe set. The proposed method has two phases: offline and online.
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(i) At the offline phase, we consider the collected time series of each individual sensor

i, denoted as {y1(i), y2(i), ...yT (i)}. The change rate of the sensor value of two adjacent

periods is defined as

∆t(i) =
yt(i)− yt−1(i)

δ
. (3.8)

Then using the collected time series, we use the following equations to calculate the

maximum (∆+) and minimum (∆−) change rate.

∆+(i) = [max{∆t(i), 2 ≤ t ≤ T}]+,

∆−(i) = [min{∆t(i), 2 ≤ t ≤ T}]−,
(3.9)

where [a]+ = max{a, 0} and [a]− = min{a, 0}.

(ii) At the online phase, based on the fastest change rate given in Eq. (3.9), we can

perform the following reachability analysis to estimate the detection deadline. At current

time t, we calculate the reachable value for each sensor by

y+
d (i) = yt(i)× (1 + ∆+(i)× δ × (d− t)), d > t,

y−d (i) = yt(i)× (1 + ∆−(i)× δ × (d− t)), d > t.

(3.10)

The earliest time D(i) when the value of sensor i may touch the unsafe set is

D(i) = min{d|y+
d (i) ∈ U(i) ∨ y−d (i) ∈ U(i)}, (3.11)
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where U(i) is the unsafe set associated with sensor i. Finally, the detection deadline D is

calculated by

D = min{D(i)|1 ≤ i ≤ n}. (3.12)

Note that our framework does not rely on any specific deadline estimation method, and

is always applicable as long as a detection deadline is outputted.

Drift Analyzer

With a detection deadline D as input, the Drift Analyzer determines the best drift

parameter that allows the attack to be detected before the deadline. For this component to

function properly, we need to first establish the relationship between the detection delay

and the drift parameter. This is achieved by performing offline profiling. Fig. 3.5 and Fig.

3.6 depict that there is a relationship among the drift parameter, detection delay and false

positives. Armed with this information and the CUSUM tuning tools provided in [69], we

are able to build a drift-parameter-detection delay pair that ensures we do not exceed the

acceptable false positive rate. In other words, We build a lookup table based on the offline

profiling results. To perform its online adaptation functionality, the Drift Analyzer simply

queries the lookup table to output the drift parameter that adjusts the detection delay to

meet the given detection deadline.
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3.1.5 Evaluation

Implementation and Experimental Setup

We implemented our deep learning model in Python, utilizing PyTorch Deep Learning

framework. We train the model on Ubuntu 18.04 64-bit with sixteen Intel(R) Xeon(R)

CPU E5-2680 v4 @ 2.40GHz CPUs, two Nvidia GeForce GTX 1080 GPUs and 64 GB

RAM. We follow a 60/20/20 proportions for splitting the original dataset into

training/validation/test sets. The experimental model is made up of 100 hidden CNN

layers and 100 hidden RNN layers. The model was trained for 100 epochs. Metrics used

for the test accuracy were Root Relative Square Error (RSE) and Relative Absolute Error

(RAE). The accuracy for our experimental model was 0.0032 (RSE) and 0.0018 (RAE).

Dataset Description

We used the publicly-available real-world automotive CAN bus dataset from the

AEGIS Big Data Project [44] 1 for our experiment. The sensor data, sampled at 20Hz, was

collected during trips in the same passenger vehicle. More than 40 sensor measurements

were collected including but not limited to those listed in Table 3.1. Specifically, the data

contains about 2.5 hours of driving data (about 160,000 data points).

1https://zenodo.org/record/3267184#.X5YtpIhKg2x
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Table 3.1: Some sensors in the dataset used in experiment.

CAN bus Sensors GPS Sensors IMU Sensors

ASR Acceleration Accelerometer X
AccPedal Current sec Accelerometer Y
AirIntakeTemperature Direction Accelerometer Z
AmbientTemperature Distance Body acceleration X
BoostPressure Velocity Body acceleration Y
BrkVoltage Body acceleration Z
EngineSpeed CAN G force
EngineTemperature Magnetometer X
Kickdown Magnetometer Y
MFS Tip Down Magnetometer Z
MFS Tip Up Velocity X
SteerAngle Velocity Y
Trq FrictionLoss Velocity Z
Trq Indicated
VehicleSpeed
WheelSpeed FL
WheelSpeed FR
WheelSpeed RL
WheelSpeed RR
Yawrate

ASR = Acceleration Slip Regulation, ACC = Acceleration,
BRK = Break, MFS = Misfiring System, TRQ = Torque,
FL = Front Left, FR = Front Right, RL = Rear Left,
RR = Rear Right, G = Gravity
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Attacks

The dataset does not include any anomalous events or scenarios, hence we manually

modify portions of the dataset to simulate physical attacks that achieve similar goals of a

real attacker. Based on the attacks discussed in section 3.1.1 and the attacks in [58], we

evaluate our work under (1) modification, (2) delay and (3) replay attacks.

We simulate four attack scenarios under modification attacks and one each for the

delay and replay attacks. Attack 1 adds a fixed value to the sensor readings for a period of

time. This simulates the attacker spoofing the sensor measurement as done in Fake Data

Injection (FDI) attacks. Attack 2 sets the sensor reading to a fixed value indicating a

spoofing attack that spoofs sensor readings to a specific value. Attack 3 incrementally

changes sensor measurement. Here the attacker has a target value to spoof the sensor, yet

he does not set the value right away. Rather, he gradually adds small values (e.g 0.01 kph)

to current sensor readings until the target spoofing value is reached. In real life, an attacker

might use this strategy with the intent of evading detection mechanisms. Attack 4 sends

both normal sensor values and malicious/fake sensor values alternately and repeatedly.

Like Attack 3, a real attack might use this tactic to mislead attack detection mechanisms.

Attack 5 mimics delay attack where the attacker causes a 10s delay in sensor data

transmission. Attack 6 is a replay attack where the sensor data from a previous time are

replayed.
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Fig. 3.7.: Front-Left wheel speed sensor measurement showing the predicted and observed
values.

Experiments and Results

We perform various experiments to evaluate the effectiveness and efficiency of our

proposed framework.

Experiment I: The first experiment tests if the behavior predictor component was able

to capture the behavior of the automotive CPS accurately. Fig. 3.7 shows the normal

behavior of the front-left wheel speed sensor. It can be seen in the figure that the behavior

predictor’s prediction closely matches the observed sensor measurement operating under

normal conditions. A similar plot for the engine speed, oil temperature and boost pressure

sensors shown in Fig. 3.8 further indicate the behavior predictor is able to capture the

system’s nominal behavior. The error shown in Fig.3.7 has a close to zero-average, an

indication that the predictor method is not biased. Further residual analysis shows the
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pressure sensors.

residuals follow a normal Gaussian distribution and do not have any trend, cyclic or

seasonal structure in the error plot.

Experiment II: We evaluate the attack detector component in this experiment. The

component is tasked to detect the attack scenarios described in 3.1.5. We randomly placed

10 simulated attacks in each case. Fig. 3.9 shows the proposed framework is effective in

detecting various attack scenarios. In the figure, the red dots indicate the points where the

CUSUM-based attack detector raises an alert for the attacks. It can also be observed that

the detector raises alarm only when the abrupt change is significant and has persisted for a

while thus reducing flagging transients faults as attacks. For instance, a close-up look at

one of the attack points (see Fig. 3.10), shows the detector observed an abrupt change in

speed at time 39.95s (indicated by the green arrow) but did not raise alarm immediately

until 42.1s.
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Fig. 3.9.: Results of the attack detector’s detection of various attack scenarios discussed in
section 3.1.5
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Fig. 3.10.: A close-up look at one case of attack 1 detection.
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Experiment III: In this experiment, we measure and analyze the false-positive (FP) and

false-negative (FN) rates under various drift and threshold monitoring parameters. FP is

measured by inputting normal data (no attack) into the framework and counting the

number of false alarms rate. We measure FN by inputting data containing simulated

attacks and counting the number of attacks that the framework missed raising an alert for.

Note here that miss means that an alert was not raised within the duration of the attack.

Therefore, alarms that occurred shortly after the attack ended were not counted. The

results in Fig. 3.11 and Fig. 3.12 show the FP and FN rates respectively for this

experiment. In the legend of the figures, A1, A2...A6 represent the various attack

scenarios discussed above, the numbers (3, 4, 5) represent the threshold monitoring

parameter. For example, A1-3 represents Attack 1 being monitored with a threshold of 3.

In FP analysis, we observe that the CUSUM drift parameter with value 0 produces very

high FP rates. However, the FP rate plummets with drift values greater than 0. The FN

rate results, on the other hand, show the drift parameter ranging from 0.2 to 0.8 produce

zero rates for all attack case scenarios. This implies that for most attacks, the behavior of

the detector framework can be adapted to meet attack deadlines whilst still maintaining

very low FN rates. However, beyond that range (0.2 - 0.8), we observe the FN increases.

Experiment IV: This experiment measures the detection delay ϕ i.e. the time it takes

to detect the attack after its launch. This metric allows us to evaluate the time needed for

our attack detection framework to disclose or alert an attack. If an attack starts at time ks,

and the attack detection mechanism detects it at time kd, ϕ is defined as: ϕ = kd − ks. The

lower the value of ϕ, the better the attack detection mechanism and as such, reduces the

impact of the attack.
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Fig. 3.11.: False positive rate for the various attack scenarios under different monitoring
parameters (drift and threshold).
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Fig. 3.12.: False negative rate for the various attack scenarios under different monitoring
parameters (drift and threshold).
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Table 3.2: Detection delay in seconds for the attack scenarios. A1 refers to Attack 1, A2
refers to Attack 2 and so on.

Drift A1 A2 A3 A4 A5 A6

0.2 0.3 1.31 1.57 0.30 2.21 0.42
0.3 0.35 1.58 1.75 0.35 2.31 0.60
0.4 0.4 1.78 1.94 0.42 2.37 1.64
0.5 0.53 1.98 2.09 0.52 2.48 2.24
0.6 0.7 2.58 2.26 0.67 2.55 2.72
0.7 0.98 2.82 2.41 0.94 2.66 3.55
0.8 1.40 3.13 2.56 1.54 2.76 4.63

Table 3.2 shows the results of the detection delay ϕ for the various simulated attacks

(see section 3.1.5). Note that the simulated attacks lasted for 10s. The result in the table

suggests the attacks were detected while the system was being attacked rather than after

the attack ended. While this is desirable, we show in a subsequent experiment that it is

more desirable and important for real-time systems to detect an attack before a detection

deadline. Further, the result shows the relationship between the CUSUM drift parameter

and the detection delay. The detection delay increases as the drift parameter increases.

Experiment V: This experiment analyses the effect of adaptive detection. For real-time

systems, it is not only desirable but required that the attack detection mechanisms are able

to detect attacks before the detection deadline D, 0 ≤ ϕ ≤ D. Fig. 3.13 shows how the

real-time adaptive detection enables Attack 3 to be detected under different deadlines. In

the figure, we observe that, in order to meet Deadline 1 (1sec), the drift parameter has to

be adjusted to a value not greater than 0.25. Though Attack 3 can be detected with a drift

parameter of say 0.8, it cannot satisfy Deadline 1 because its corresponding detection

delay is 1.8 seconds.
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Fig. 3.13.: Adaptive detection for Attack 3.

Experiment VI: This experiment compares a fixed time-window approach with our

real-time adaptive attack detection approach. The goal is to show how our framework

adapts it behavior based on the drift parameter in order to meet an attack deadline.

The time-window implementation used in this experiment is similar to [14]’s attack

detector monitoring algorithm. It sums up the square errors between the observed and the

prediction. When the time window expires, it determines if the accumulated mean square

exceeds a threshold. The accumulated sum is reset when the time window expires. Note

that the time-window approach can only raise an alarm after its time-window expiration.

We compare the two approaches based on the attacks described in Section 3.1.5 and

the case scenario depicted in Fig. 3.14. In this case scenario, an attack occurs at 40s with a

detection deadline estimated at 45s. The red dots in the figure represent the alarm raised

by our framework whereas the blue dot refers to the alarm raised by the time-window

attack detector approach. We observe that the time-window approach rightly determines

that an attack occurred in all cases, however, the alert is raised after the detection deadline.
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(a) Attack 1.
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(b) Attack 2
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(c) Attack 3
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(d) Attack 4
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(e) Attack 5

20 25 30 35 40 45 50
Time (s)

128.0

128.5

129.0

129.5
W

he
el

 S
pe

ed
 (k

m
/h

)
Observed
Predicted
Attack deadline
Attack occurs
Alarm
Time-window Alarm

(f) Attack 6

Fig. 3.14.: Comparing our framework with a fixed time-window approach. In all attack
scenarios (see 3.1.5), the attack occurs at 10s and has a deadline set at 45s.

In a real-world situation, this would mean the attack detection alert is raised after the

damage has occurred. Our framework, on the other, raises an alarm before the deadline.

Experiment VII: We compare our work with a recent anomaly detector that closely relates

to our work [37]. Like our work, the researchers exploit the natural redundancy that exists

among heterogeneous sensors and they also employ deep learning techniques (deep

autoencoder) to detect attacks. Whereas they focus only on the rightness of attack

detection, we focus on detecting attacks before a detection deadline by adapting the attack
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Fig. 3.15.: Attack detection in deep automated [37] attack detector.

detection mechanism. More importantly, in order to decide to raise an attack alert, their

approach monitors only one control period. Due to the adaptive nature of our approach to

meet a deadline, the number of control periods that it monitors varies. Their detection

mechanism raises an alert when the reconstruction error of the decoder is above a certain

threshold. We trained a model based on [37] and tuned the hyper-parameters with our

dataset for a fair comparison. The deep autoencoder attack detector is tasked to detect the

same attack scenarios we subjected our approach to in Experiment II. Fig. 3.15 shows the

results. The green marks are the data points that represent the attack. Comparing this

results with our results shown in Fig. 3.9, the detector in [37] produces high false alarms.

3.1.6 Discussion

Stealthy Attacks

While our proposed system effectively detects physical attacks against automotive

CPS we do not rule out completely the possibility of it being vulnerable to stealthy
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attacks. In this attack, the attacker spoofs sensor values that do not exceed the determined

threshold, hence the attack detection system raises no alarm. Gradually, the attacker is

able to deviate the CPS to his desired target. References [78] and [91] note that this

weakness is also found in physics-based attack detection (PBAD) systems. In the real

world, a stealthy attack is hard to launch as it requires very detailed knowledge about the

system dynamics and ensuring that all the laws of physics are obeyed [14]. On one hand,

our proposed detection framework provides some defense as the Behavior Predictor

component learns the system dynamics from multiple heterogeneous sensors. To evade

our framework, the attacker may have to launch spoofing attacks against all the

heterogeneous sensors simultaneously such that it maintains the natural correlation among

the sensors that the proposed framework also learned. Achieving such a sophisticated

attack in the real world is hard since each sensor attack requires specific tools and

equipment to successfully launch. On the other hand, we agree with [91] that a

combination of detection schemes can also be implemented to mitigate stealthy attacks.

We suggest combining a deep learning approach like our work with PBAD approaches

can be a viable solution against stealthy attacks.

State Estimation and Attack Response

This work has focused on physical sensor attack detection without attack response.

Once our framework detects an attack, the behavior predictor can also be used to predict

values that can be used for state estimation. The state estimation can be forwarded to the

controller for recovery control. In the next chapter, we discuss our proposed framework
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for attack response that recovers the CPS from an attack so that continual functioning is

attained.

3.2 Variable Window-based attack detection

We have shown in preceding chapters that the deep intertwinement of software and

hardware has increased the attack surface of systems that once had closed architectures.

The research community has responded with solutions that allow physical attacks to be

detected. The main idea behind these detectors is the use of various techniques such as

Kalman-filter, machine or deep learning techniques, vector autoregression (VAR) models,

Auto-Regressive Moving Average with eXogenous inputs (ARMAX), AutoRegressive

(AR) models, Linear Dynamical Statespace (LDS) models, etc, to predict the evolution of

the system state ŷk [91]. The forecast is compared with the observed sensor reading yk. If

the residual rk, i.e. the difference between the forecast and sensor measurement, exceed

what is expected, that may be an indication of an attack or fault. Many well-known

techniques have been used to examine or perform statistical tests on the residuals to

subsequently detect the attack or alarm. Such techniques include Cumulative Sum

(CUSUM) [34, 71], Sequential Probability Ratio Testing (SPRT) [93, 96], Generalized

Likelihood Ratio (GLR) testing [10], Compound Scalar Testing (CST) [27, 79] and

windowed techniques. Each of these techniques have their advantages and disadvantages

which are often dictated by the scenario. We focus on attack detectors that employ the

windowed approach to detect attacks in this work.
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The windowed procedure generally accumulates the sum of the residuals over a sliding

window. Many existing solutions have deployed this procedure for fault detection and

attack detection [14, 33]. Compared with one-shot approaches such as the static

chi-squared detectors where only one control period is considered, windowed approach

has the benefit of historical observations and therefore tend to have fewer false alarms.

However, we assert that these time-windowed detectors are inadequate for real-time

systems for two reasons. First, authors of windowed solutions strive to select the “best”

time window length that produces low false alarms and short detection delay. Detection

delay is the time it takes to detect an attack after its launch. As the results in [14] showed,

on one hand, a short time window leads to high false positive alarms and short detection

delay. On the other hand, a longer time window leads to low false positives and longer

detection delay. Clearly, there is a trade-off between the false alarm rate and the detection

delay. Therefore selecting a window length that attains shortest detection delay and low

false alarm can be difficult task if not unachievable.

Secondly, selecting a fixed window length for the attack detector gives it a static

behavior which is contradictory to the behavior of dynamic CPS which evolve into various

states as it interacts with its environment. Choosing a fixed time-window length means

that an alert can only be raised when the time-window expires, causing the detector to

have a fixed detection delay. With a fixed detection delay, these detectors are unable to

meet detection deadline i.e. the time by which attack must be detected before the system

enters unsafe operating state. It is desirable and requisite that the CPS does not enter

unsafe operating states when an attack occurs, unfortunately, fixed-window detectors are

unable to ensure this in dynamic systems. It can be said that existing works have focused
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only on raising attack alerts whilst overlooking detection deadlines. Obviously, raising an

attack alert after damaging consequences have occurred is as bad as the non-existence of

an attack detector.

In this dissertation, (1) we show that a variable-time window detector is more usable in

real-time systems and (2) we propose a variable-time windowed framework for detecting

sensor attacks before the system enters unsafe state. The framework consist of three major

components: attack detector, state predictor and deadline analyzer. At the core of our

framework is the attack detector that uses a stateful detection strategy that performs

statistical tests on residuals using variable window size depending on the detection

deadline to be met. The state predictor utilizes a data model that captures the nominal

behavior of the automotive CPS to predict sensor measurement. The deadline analyzer

component proposes a method that calculates the detection deadline after which the

system might enter unsafe operating state.

The contributions of this work is as follows: (1) we argue and show that a

variable-time window detector is more usable for real-time systems. (2) we propose,

design and implement the variable-time attack detector prototype. (3) we perform

evaluations of the proposed framework using data from a real testbed, real vehicle and

Ardupilot’s SITL Rover simulator
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3.2.1 Preliminaries

Detection Strategy

As noted above, attack detectors perform statistical tests on the residuals rk. They raise

alerts whenever the expected and observed significantly differ i.e. the residual is large.

Two main strategies are used for attack detection namely stateless and stateful tests [91].

In a stateless test, only one time shot is considered and the detector raises an alert for

every deviation at time k (i.e. |yk − ŷk| = rk ≥ τ , where τ is a predetermined threshold).

This strategy tend to produce many false alarms as the cause of the deviation may be a

transient fault at that point in time. Typical example is found in chi-squared (χ̃2) detectors.

Stateful strategy, on the other hand, considers multiple time-steps to determine if an

alert should be raised. It maintains a statistic Sk that keeps track of the historical changes

of rk. An alert is raised whenever a persistent deviation is observed over multiple

time-steps (i.e. Sk ≥ τ ). Keeping track of the historical changes of rk can be done in

multiple ways such as (1) using change detectors (2) taking an exponential weighted

moving average (EWMA) and (3) taking an average over a time-window. We focus on

detectors that use the stateful strategy and uses a fixed-time window.

Threat Model

The threat model assumes that the adversary is able to compromise the sensor by

leveraging any physical attack techniques that injects interfering signals (magnetic field,

light, etc) in the physical environment of the sensor. Such an attack compromises the



64

integrity of sensor measurements, hence, a false system state is transmitted to the

controller. The false sensor data have a misleading ripple effect on the control input that

the controller computes and the control output performed by the actuator. In the end, the

physical attack drifts the system away from its reference state.

We assume that the attacker, however, does not have access to the control program

running on-board and the proposed framework components. As noted above, we do not

focus on cyber attacks i.e. attacks that are launched via software or firmware, as they can

be effectively defended by existing software security techniques (e.g., CFI). Rather, we

focus only on sensor attacks. Attacks that target non-vehicle control logic such as the

automotive CPS’ computer vision system are out of scope.

Framework Overview

The components of the proposed framework function together to raise an alert for a

sensor attack before the CPS enters into unsafe operating state. The state predictor

component predicts the expected sensor measurements as the system operates. The

window adaptor component computes the detection deadline and the window length

(detection delay) that enables the framework to meet detection deadlines. The attack

detector component takes input from the window adaptor and the state predictor to

perform the following tasks respectively: (1) computes the residual rk which is the

difference between the expected values and the observed. If rk is large, it obtains the

window size as input from the deadline analyzer.
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Fig. 3.16.: System design of variable window real-time sensor attack detection framework.

(2) the window size input is used in the detection strategy. Note that choosing variable

window size allows our detector framework to adapt its behavior to meet detection

deadlines.

3.2.2 Design of Attack Detector

We present the design of the attack detector component in this section. The component

is responsible for performing the attack detection strategy of our framework utilizing

inputs from the Window Adaptor (§3.2.4) and the State Predictor (§3.2.3) components.

We formulate the attack detection problem as follows. Given the predicted (expected)

sensor value ŷt ∈ Rn, the sensor reading yt ∈ Rn, a predetermined threshold τ , and the
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window length l, we want to determine the appropriate time to raise an alarm talarm before

the system touch unsafe state:

talarm =
k∑

t=k−l+1

rt > τ (3.13)

where rt = |yt − ŷt|. Note here that the moving sum of the residuals is taken over a

window [k − l+ 1, k]. ŷt is the output of the state predictor which has the responsibility of

predicting expected sensor values. The window adaptor provides the window length l to

be used in the detection strategy.

3.2.3 Design of State Predictor

We present the design of the state predictor component in this subsection. This

component is responsible for predicting or estimating the system states based on historical

data from a fixed-size sliding window, i.e. fixed-size reception fields.

Temporal Convolutional Network(TCN) is an architecture that is designed to capture

the action segmentation in time-series at first [56, 57]. Recently, some work showed TCN

outperformed RNN-based structure on various time-series tasks [38, 59, 64, 99].

Additionally, TCN can be easily trained in parallel since there is no gate components in

the network. Aside from that, there are 3 motivations of using TCN instead of RNN-based

structure such as LSTM and GRU for our state predictor.

• First, the prediction accuracy is higher than LSTM. In other words, TCN can

generate better prediction that are more close to the the system state.
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Fig. 3.17.: Temporal Convolutional Networks structure

• Secondly, some work showed that the inference time of TCN is less than

LSTM [55]. This attribute can improve the framework’s decision making speed as

the expected sensor speed is inferred more quickly.

• Lastly, since the TCN could be fairly deep, TCN is capable of memorizing longer

history than LSTM. A longer memory helps to generate better prediction when there

are long-term dependency between data among the time horizon.

The structure of TCN as shown in Fig. 3.17, the prediction on each step get benefits from

various length time dependency cross each layer. Therefore, TCN has fairly long memory

with the increment of the depth. TCN does not have complex components in the network

as compared with LSTM which has gates, the inference speed of TCN should be faster

than LSTM at the same level of accuracy.

As shown in Fig. 3.17, each layer has a different dilation rate s, i.e. distance between

convolution steps, which helps the networks decide the steps that the convolution will be

applied to. Furthermore, a residual connection is responsible for combining the
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convolution signal and inputs of the layer. Then, the dilated Ŝ(l)
t of lth layer at step t and

results after implementing residual connections S(l)
t could be formalized as [56]:

Ŝ
(l)
t = f

(
W (1)S

(l−1)
t−s +W (2)S

(l−1)
t + b

)
(3.14)

S
(l)
t = S

(l−1)
t + V Ŝ

(l)
t + e (3.15)

where W (i) denotes the ith convolution filter in the layer, b denotes the bias vector, v and

e denotes the weights and bias vector of the residual.

3.2.4 Design of Window Adaptor

This component functions to determine the time window length to be used in the

attack detector. It is made up two sub-systems: the deadline estimator and window-length

analyzer. Each of the components is discussed below.

Deadline Estimator

The deadline estimation method used here is the same as the one used in the

CUSUM-based framework discussed above and therefore, it shall not be repeated here.

The interested reader is referred to §3.1.4 above for the details of the deadline estimation

method. In the end, this component outputs the detection deadline by which an alert must

be raised before the system enters unsafe state. Again, note that our framework does not
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rely on any specific deadline estimation method, and is always applicable as long as a

detection deadline is outputted.

Window-length Analyzer

This component determines the appropriate window length to be used in the detection

strategy. Remember that the choice of time-window length dictates a trade-off between

false alarm rate and detection delay. This component enables the framework to bias

detection delay and false alarm rate. One of the goals of the proposed attack detector

framework is to meet the attack detection deadline.

This component functions in two phases. The offline phase profiles the CPS to build a

lookup table that establishes the relationship between the time-window length, and the

detection delay. This phase is performed only once for the CPS. During the online phase,

to perform its online adaptive functionality, the window analyzer queries the lookup table

to output the time window length that adjusts the detection delay to meet the given

detection deadline.

3.2.5 Evaluation

This section evaluates the proposed solution’s effectiveness. First, we assess the state

predictor’s ability to learn the nominal system behavior. Second, we compare the fixed

window approach with our variable approach. Lastly, we measure the false-positive and

false negative rates.
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We implemented our deep learning model in Python, utilizing PyTorch Deep Learning

framework. We train the model on Ubuntu 18.04 64-bit with sixteen Intel(R) Xeon(R)

CPU E5-2680 v4 @ 2.40GHz CPUs, two Nvidia GeForce GTX 1080 GPUs and 64 GB

RAM. We follow a 60/20/20 proportions for splitting the original dataset into

training/validation/test sets. We used the publicly-available real-world automotive CAN

bus dataset from the AEGIS Big Data Project [44] 2 for our experiment. The sensor data,

sampled at 20Hz, was collected during trips in the same passenger vehicle.

3.2.6 Experiments and results

Experiment I: This experiment measures the state estimation capability of the state

predictor. Its ability to make predictions means the model captured the nominal behavior

2https://zenodo.org/record/3267184#.X5YtpIhKg2x

0 2000 4000 6000 8000 10000
Time (s)

80

90

100

110

120

130

140

W
he

el
sp

ee
d 

(k
m

/h
)

predicted
observed

Fig. 3.18.: The state predictor forecasting the wheel speed sensor.



71

well. Fig. 3.18 shows the results of the state predictors prediction of the wheel speed

measurement. It can be observed from the figure that the two lines representing the actual

measurements and the forecast are matching closely. It is therefore an indication that the

nominal system behavior were captured. As an approximation of the system behavior, the

model incurred near-zero errors on the average. This can be improved upon by using more

training data that contains more nominal system data.

Experiment II: In this experiment, we measure the false-positive (FP) and

false-negative (FN) rates of the detector. First, we embed ten simulated attack ranges in

the test data set. The first attack range compromises the observed sensor measurement by

adding 0.2 km/h. The magnitude of subsequent attack ranges increases by 0.2 km/h i.e.

the second attack range adds 0.4 km/h to the data, the third 0.6 km/h and so on.

Second, the detector is tasked to detect the ten attacks under different monitoring

parameters (window length and threshold). Fig. 3.19 shows the results of FP. It can be

observed that as the window length gets larger, the FP decreases. This observation is due

to normalization of the accumulated errors before the threshold comparison. Hence, a

larger window results in smaller normalized errors. On the other hand, the FN is observed

in Fig. 3.20 to increase as the window get larger. The same reason for the FP results also

attributes to the FN observation. These two observations show the detector can vary its

behavior by varying the window length and still achieve acceptable low FP and FN.

Experiment III: In this experiment, we show the proposed framework enables the

detector to achieve varying detection delays in order to meet detection deadlines. We

experiment under a scenario shown in Fig. 3.21. An attack occurs at 10s which has to be

detected by 16s (detection deadline). In the figure, we observe that the various window
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Fig. 3.19.: The false-positive rate measurements under various monitoring parameters.
FPR-1 means a threshold of 1. FPR-2 means a threshold of 2 and so on.
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Fig. 3.20.: The false-negative rate measurements under various monitoring parameters.
FNR-1 means a threshold of 1. FNR-2 means a threshold of 2 and so on.
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(a) Window length = 11s
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(d) Window length = 14s
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(e) Window length = 15s
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Fig. 3.21.: Comparing our framework with a fixed time-window approach. In all scenarios
the fixed-time-window detector raises the alarm at 17.5s always. Our approach enables
varying the window length such that alarms can be raised before the detection deadline.
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length achieve varying detection delays. For instance, Fig 3.21a results in a detection

delay of 11s whereas Fig 3.21e results in a detection delay of 15s. Note that a

fixed-time-window detector always have the same detection delay (17.5s in our

experiment) which prevents it from meeting many detection deadline.

3.2.7 Conclusion

In this work, we have shown that sensor detectors should be able to bias its metrics

when the system sits in various states. Specifically, we argue that window-based detectors

can vary the window length to achieve faster detection delay to meet a detection deadline

or to achieve a certain rate of false alarm. Further, we proposed and evaluated an adaptive

detection framework that uses three components to achieve these.
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4. RECOVERY-BY-LEARNING

Autonomous cyber-physical systems (CPS) are susceptible to non-invasive physical

attacks such as sensor spoofing attacks that are beyond the classical cybersecurity domain.

These attacks have motivated numerous research efforts on attack detection, but little

attention on what to do after detecting an attack. The importance of attack recovery is

emphasized by the need to mitigate the attack’s impact on a system and restore it to

continue functioning. There are only a few works addressing attack recovery, but they all

rely on prior knowledge of system dynamics. To overcome this limitation, this dissertation

proposes Recovery-by-Learning, a data-driven attack recovery framework that restores

CPS from sensor attacks. The framework leverages natural redundancy among

heterogeneous sensors and historical data for attack recovery. Specially, the framework

consists of two major components: state predictor and data checkpointer. First, the

predictor is triggered to estimate systems states after the detection of an attack. We

propose a deep learning-based prediction model that exploits the temporal correlation

among heterogeneous sensors. Second, the checkpointer executes when no attack is

detected. We propose a double sliding window based checkpointing protocol to remove

compromised data and keep trustful data as input to the state predictor. Third, we

implement and evaluate the effectiveness of our framework using a realistic data set and a

ground vehicle simulator. The results show that our method restores a system to continue

functioning in presence of sensor attacks.
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4.1 Preliminaries

4.1.1 Scope and Contributions.

This paper focuses on sensor attack-recovery. We assume an attack detector is already

in place, and our goal is to take the alerts generated by the detector to recover the system

from the attacks. The contributions of this work are as follows. (i) We propose

Recovery-by-Learning, a model-free attack recovery framework. (ii) We propose a deep

learning based state prediction method and a double sliding window based checkpointing

protocol. (iii) We perform extensive data-driven simulations to validate the proposed

methods.

4.1.2 Sensor Correlation

Autonomous CPSs are equipped with a number of sensors that enable them to perform

their function. The sensors monitor various physical properties such as engine revolutions,

vehicle and wheel speed, oil temperature, boost pressure, accelerator pedals, location, etc.

It is observed that a subset of sensors on the CPS responds to a physical phenomenon in a

correlated or related manner. Such a group of sensors are referred to as heterogeneous

sensors or are said to exhibit inherent sensor redundancy. For instance, applying the

brakes of a vehicle causes decrements in the engine’s RPM, wheel speed, vehicle speed

and GPS speed sensors measurements. Similarly, pressing the accelerator pedal leads to

increases in the readings of these heterogeneous sensors. Fig. 3.3 shows the pairwise

correlation among sensors in an automobile using the dataset of [44]. Details of the data
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set will be given in Section 4.3.2. It is observed in the figure that the wheel speed sensors

have a strong correlation with the engine RPM and boost pressure sensors. Hence, when

the wheel speed sensor reading increases as a result of applying the accelerator pedals, the

readings of the engine RPM and boost pressure will also be observed to increase under

normal conditions [25, 31, 58, 90, 94].

We believe that exploiting and capturing this inherent sensor redundancy allows us to

approximate the nominal system behavior which in turn, enables the accurate prediction

of system behavior such as sensor readings. We leverage this notion in our proposed

attack recovery system.

4.1.3 Threat Model

We consider the attack scenario where an attacker launches physical attacks against

the CPS sensors. Examples of such attacks include optical sensor spoofing [17],

gyroscope sensor spoofing [87], accelerometer spoofing attacks [88] among others. These

attacks transmit compromised sensor data which does not reflect the actual system state.

When the controller receives and processes such data, erroneous control inputs are

calculated and issued resulting in safety problems, abnormal system operation and

possibly stalling the CPS.

As noted above, there are many proposed attack detection solutions, therefore, we

assume the existence of a sensor attack detector that is able to raise an alert whenever any

of these attacks occur. Our goal is to automatically respond to the attack alert and steer the

system towards a reference state thereby ensuring safety and CPS operation continuity.
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We also assume the controller, actuator, the proposed deep learning model and the stored

historical sensor data are not compromised.

4.1.4 System Overview

Fig. 4.1 shows an overview of the proposed system. It consists of an offline phase and

an online phase. The offline phase involves the data collection, pre-processing of the data,

and training the model on the data. The online phase has two major components: the State

Predictor and Checkpointer. The state predictor estimates system states when the observed

sensor data are no longer trustworthy. The state predictor is built on a deep learning model

that captures the nominal system behavior. The Checkpointer ensures valid historical state

estimates are stored so that the state predictor can output accurate state estimations.

The proposed system works as follows: When a time-window-based attack detector

raises an alert, the state predictor is activated. The checkpointer provides valid and trustful

sensor values as input to the state predictor to predict state estimates. The predicted values

are forwarded to the controller to perform recovery control commands. In the event the

attack detector does not raise an alert, the system continues to function and only the

checkpointer performs tasks to warrant that only valid historical sensor data is stored as

checkpoints.

4.2 Recovery System Design

We describe the details of the proposed attack recovery system in this section.
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Rationale. Estimating the accurate behavior of a cyber-physical system, specifically

sensor measurement is non-trivial, yet it is a crucial step in attack recovery. The actual

behavior of the CPS is guarded by physical laws hence under normal conditions, the

physical system properties, called physical invariant should always hold. While physical

invariant can be captured using a physical system model, it requires in-depth knowledge

of the system dynamics which may not be easy to attain.

We propose an attack recovery system that does not require substantial knowledge of

system dynamics. We treat the physical system as a black box yet we are able to

approximate the nominal system behavior. We achieve this through a deep learning

technique that explores the natural redundancy among its heterogeneous sensors. Our

approach is based on the insight that under normal conditions, where physical laws are

obeyed, the sensor readings also indirectly obey physical laws. Therefore, by learning the

relationships among sensor data, the physical invariants are approximated. Having

modeled the system from sensor data, we are able to estimate sensor readings with a

near-zero error.

4.2.1 Problem formulation

We envision a solution for the attack recovery problem to involve two main steps. The

first step seeks to replace the corrupted sensor data that no longer reflect the true state of

the system with reconstructed system state estimates. The second step attempts to control

the CPS with the reconstructed values which we call recovery control. Given that we

consider multiple heterogeneous sensor time-series data or measurements in making a
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Fig. 4.1.: Design overview of our Recovery-by-Learning framework.

prediction, we formulate the first step as a deep learning multivariate time series

forecasting problem [54].

Hence, given valid historical time series output of n heterogeneous sensors

Y = {y1, y2, y3, ...yK} where yk ∈ Rn, we aim to predict yk+h where h is a time ahead of

the current time k. We ensure Y = {y1, y2, y3, ...yK} is always available by proposing a

checkpointing protocol to store such valid historical sensor data. For ease of presentation,

we assume that the system has full observability. Thus, we formulate the input matrix as

XK = {y1, y2, y3, ..., yK} ∈ Rn×K . Once a valid prediction is made, the second step

undertakes a recovery control that uses the predicted values to drive the system.

4.2.2 System Components

Data Processor: Data pre-processing is an important step in a machine or deep

learning task. Specifically, we ensure we extract only features that have a strong
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correlation with the sensor of interest. While this can be achieved from domain

knowledge, we leverage Pearson Correlation Coefficients (PCC) statistic to observe this

correlation in the dataset. This step also has the potential to reveal correlations that may

not be obvious to humans. PCC outputs values between −1.0 and +1.0. Feature pairs that

have a strong positive correlation have PCC values close to +1.0. Conversely, a strong

negative correlation has PCC values close to −1.0. A zero PCC value indicates there is no

correlation between the features. For example, in Fig. 3.3, the vehicle speed sensor has

PCC of approximately 1.0 with the engine RPM and the wheel speed sensors. The vehicle

speed sensor, however, has a PCC value close to zero with the ambient temperature sensor.

LSTNet Training: In order to automatically exploit the correlation that exists in the

sensor data, we train a deep learning model based on LSTNet [54]. LSTNet was originally

developed to model long and short term temporal forecasting for multivariate time series.

The deep learning architecture captures nonlinear aspects of the system by using a

convolutional neural network (CNN) and recurrent neural network (RNN) for exploiting

short and long term correlations respectively. To improve scalability and robustness, the

model also includes autoregressive units that enable the DL model to capture linear

aspects of the system as well. Fig. 4.2 shows the deep learning architecture that trains our

model. Training the model requires a number of hyperparameters to be specified, notable

among them is the window p. The window p specifies how many historical data points

should be used in making a prediction.

State Predictor: This component is built on the trained deep learning model training

discussed above. At this point, the data model has captured the nominal behavior of the

system by exploring the correlation among heterogeneous sensors. It serves as a nominal
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Fig. 4.2.: Overview of deep learning model architecture (LSTNet [54]). FC refers to Fully
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Fig. 4.3.: A double sliding window based checkpointing protocol.

approximation of the system behavior and hence it is able to make predictions of the

system behavior given the right input. In order to make the deep learning model useful in

a non-Python environment, we utilize Torchscript to build an intermediate representation

(IR) so that it can be used in high-performance environments such as C++ to make

predictions. The firmware of the ground vehicle simulator used in our experiment is

written in C++.

Checkpointer: Attack detection mechanisms take some time to detect an attack after

the attack’s launch, called detection delay, before raising an alert. As a result, we cannot

trust the sensor readings during the detection delay since they may have been

compromised. A successful recovery cannot be achieved if we rely on corrupted data,
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hence to address this issue, checkpointing protocols [50,51,62,72] have been proposed to

provide trustworthy historical data that can be used for recovery. Though viable,

especially for model-based recovery methods [102], these protocols have limitations of

storing only one data point making it unsuitable for learning-based methods such as ours

which require an interval of data points for reconstructing sensor data.

The checkpointer component addresses this limitation by proposing a checkpointing

protocol shown in Fig. 4.3 that is not only applicable to learning-based methods but

model-based methods as well. The proposed protocol adopts a double sliding window

instead of the single sliding window approach used in existing works. This approach

enables the protocol to capture an interval of historical data and the detection delay. The

two windows of the protocol slide forward and records the sensor values x(t) as time ticks.

The protocol has three steps namely buffer, store, and delete. (1) Buffer: The data in

this step is possibly compromised and has a duration equivalent to the detector’s detection

delay. State estimates or sensor data within the detection window, x(t0), ..., x(th) are first

buffered. (2) Store: Given that the detection window equals the detection delay, the data

points in this step have moved outside the detection window and are therefore considered

trustworthy. Note that an interval of time series datapoints (logging window data) are

stored instead of a single data point. Hence, for the interval [tk, t0 − 1], datapoints

{x(tk), ..., x(t0 − 1)} are stored. Remember that this length is equal to the p window

hyperparameter of the LSTNet component discussed above. (3) Delete: All historical data

that are older than those in the logging window are no longer needed and should therefore

be deleted. Data points x(tk − 1) and x(tk − 2) are discarded as shown in the figure.
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When the detector raises an alarm, time series datapoints of the interval [tk, t0] will be

used to rebuild estimate x(th).

4.3 Evaluation

We perform experiments to evaluate the effectiveness of our proposed attack recovery.

4.3.1 Implementation and Experimental Setup

We implemented our deep learning model in Python, utilizing PyTorch Deep Learning

framework. The experimental model is made up of 120 convolutional layers, 120 GRU

layers and an AR model. A batch size of 128 serves as input to the network. We train our

proposed DL model on Ubuntu 18.04 64-bit with sixteen Intel(R) Xeon(R) CPU E5-2680

v4 @ 2.40GHz CPUs, two Nvidia GeForce GTX 1080 GPUs and 64 GB RAM. We split

the original dataset into 60% training, 20% validation and 20% test sets.

4.3.2 Dataset Description

We evaluate the efficiency of the proposed recovery system using the

publicly-available automotive CAN bus dataset from the AEGIS Big Data Project [44]

and data collected from Ardupilot SITL virtual ground vehicle.

The AEGIS data was collected during trips conducted by three drivers driving the

same vehicle. It contains more than 40 sensor measurements including but not limited to

the four wheel speed sensors, engine speed, vehicle speed, steering angle, ambient

temperature, GPS, oil temperature and boost pressure.
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Ardupilot SITL (software in the loop) is a simulator package that provides a native

executable that allows one to run Plane, Copter or Rover (ground vehicle) without any

hardware. The virtual ground vehicle that we use in our experiment runs a firmware

(APMrover2 2.5) that is used in real unmanned ground vehicle boards. The vehicle is

equipped with a number of sensors including GPS, IMU, RPM, optical flow sensors.

4.3.3 Experiments and Results

Experiment I: This experiment verifies if the State Predictor learned the nominal

behavior of the CPS and evaluates its effectiveness in reconstructing sensor data. We build

two models: the first one is based on the AEGIS dataset and the second is based on the

virtual unmanned ground vehicle’s sensor data. The second model is also used in a case

study to demonstrate how the proposed framework recovers the unmanned ground vehicle

(UGV) from a speed sensor attack.

Note, however, that in this experiment no attack has been launched. Fig. 4.4 and

Fig. 4.5 show the model predictions for the engine speed and boost pressure sensors in the

AEGIS test dataset. In the figures, the predicted speed (red line) closely matches the

observed speed (blue line) indicating the model captured the nominal behavior of the

vehicle. The figures also show the mean error or residual is near zero indicating the

predictor is not biased. Residual analysis shows the error follows a normal Gaussian

distribution and it is free from any cyclic, trend and seasonal structures.

We perform a similar experiment on the UGV. Using Mission Planner [8], we generate

missions (trajectory) that the vehicle executes. We collected the sensor data from the
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Fig. 4.4.: Observed and predicted engine speed sensor readings in the AEGIS dataset.
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Fig. 4.5.: Observed and predicted boost pressure sensor readings in the AEGIS dataset.

dataflash log and used it to build a data model. The model’s predictions for the UGV’s

speed sensor test dataset is shown in Fig. 4.6. The results depict a close match between

the model predictions and the observed sensor values. Similar to the results in Fig. 4.4 and

Fig. 4.5, there is a mean error in the model that is near-zero.

Experiment II - Case Study: We demonstrate attack recovery in this case study. The

attacker launches attack on the speed sensor which leads the cruise/speed controller to

issue wrong control inputs resulting in the UGV to travel above its cruise speed of 5 m/s.

Fig. 4.7 shows the case study considered in this experiment. At 60 sec, we simulate an

attack that transmits ρ− 4 m/s as the forward speed of the vehicle, where ρ is the actual
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Fig. 4.6.: Observed and predicted boost speed measurements of the unmanned ground
vehicle.
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Fig. 4.7.: UGV cruises above its reference speed of 5 m/s.
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speed of the vehicle. Hence, in order to maintain the reference speed, the PID controller

issued a higher throttle output that resulted in the vehicle to cruise at about 9 m/s. In

real-life, this scenario can be a safety concern.

Recovery control: When this attack is detected, we can no longer trust the sensor data

and therefore the system states must be estimated or reconstructed. Our proposed

framework responds with the goal of getting the UGV to cruise at its reference speed (5

m/s). It achieves that by activating the state predictor component which uses the data in the

checkpointer as input. The state predictor reconstructs sensor values that are forwarded to

the cruise controller. The controller calculates throttle outputs based on the reconstructed

values that eventually cause the vehicle to travel at the reference speed as seen in Fig. 4.8.

Experiment III: The effectiveness of the proposed framework largely depends on the p

value selected i.e. how many historical values are used for the deep learning model’s

prediction (see Section 4.2.2). Remember also that the p value is equal to the length of the

logging window in the proposed checkpointing protocol. In this experiment, we provide

an analysis of the p value so that the optimal value can be selected to predict more

accurate sensor values. We compare various p values based on accuracy metrics: mean

square error (mse), root relative squared error (rse) and relative absolute error (rae). Table

4.1 shows the results of the vehicle speed sensor values in the AEGIS dataset. Values

between 56 and 84 produced the highest prediction values. A similar analysis done on the

ground vehicle showed a slightly different results which leads us to conclude that the best

p value is device/dataset-specific.
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Fig. 4.8.: Speed attack recovery.
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Table 4.1: Comparison of p values based one accuracy metrics.

p mse rse rae

28 0.020843 0.0034 0.0020
42 0.019189 0.0034 0.0020
56 0.012859 0.0031 0.0018

84 0.011068 0.0032 0.0018
168 0.021194 0.0034 0.0020
188 0.008365 0.0034 0.0018

4.4 Conclusion

In this paper, we have presented a model-free attack recovery system that does not

require in-depth knowledge of system dynamics and also allow autonomous CPS to use

existing components (controllers and sensors) without further duplication. We achieve this

by applying a novel deep learning framework to capture the nominal behavior of the

cyber-physical system. We proposed a new generalized double sliding window

checkpointing protocol that is usable both in model-based and learning-based recovery

methods. We performed experiments to evaluate the effectiveness of the proposed

framework using real-world dataset and realistic unmanned ground vehicle simulator. Our

results show that our method restores a system to continue functioning in the presence of

sensor attacks.
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5. SUMMARY

Autonomous cyber-physical systems have transitioned from once-closed architectures to

open architectures due to the integration with information technology (IT). Increasingly,

these systems are getting more connected to the outside. The integration has enabled the

development of many convenient features but at the same time, it has exposed the system

to many new threats. The research community has proposed sensor attack detection

solutions as a reactive attack resilience measure. However, these solutions have not

adequately addressed timing constraints and usability.

This dissertation states the thesis that attack detection should bias different metrics

when a system sits in different states. For example, if the system is close to unsafe states,

reducing the detection delay is preferable to lowering the false alarm rate, and vice versa.

To that end, this dissertation presents the design and evaluation of two new frameworks

for the real-time detection of sensor attacks. Chapter 3 presents the two frameworks.

The first framework is a cumulative sum (CUSUM) based detection framework that

enables real-time adaptive detection using three necessary components: attack detector,

behavior predictor, and drift adaptor.

(i) Attack Detector. As the core of our framework, this component detects anomalies using

a CUSUM algorithm that monitors the cumulative sum of residuals between the nominal

(estimated by the behavior predictor) and observed sensor values. The algorithm raises an

alarm when the cumulative sum of the residuals is greater than a predefined threshold.
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Importantly, we augment this algorithm with a drift parameter that governs both the

detection delay and false alarms. That is, the algorithm can adjust the two metrics by

changing the drift parameter.

(ii) Behavior Predictor. This component estimates nominal sensor values that are fed to

the core component. It uses a deep learning (DL) model that is offline extracted through

uncovering and exploiting both the local and complex long-term dependencies in

multivariate sequential sensor measurements. Thus this model depends on little

knowledge of the physical system (e.g., dynamics). Further, this model leverages

convolutional neural network (CNN) and recurrent neural network (RNN) to capture

non-linear aspects in sensor data and uses autoregressive models to capture linear aspects.

This combination results in high robustness and scalability in handling the sequential

sensor data.

(iii) Drift Adaptor. The third component is a drift adaptor that estimates a detection

deadline and then determines the drift parameter. The detector component uses this

parameter for adjusting the detection delay to ensure timely detection as the detection

deadline varies over time.

We implement our framework and validate it using realistic sensor data of automotive

CPS from the AEGIS Big Data Project [44]. The results demonstrate that our framework

can detect attacks in a real-time manner.

The second framework, also presented in Chapter 3, is a real-time adaptive attack

detector that biases detection delay and false alarm metrics by varying the window length

of the attack strategy. The three components of the proposed framework function together

to raise an alert for a sensor attack before the CPS enters into unsafe operating state.
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(i) State Predictor. Utilizing the higher prediction accuracy and inference time of

Temporal Convolutional Network (TCN), this component models the nominal system

behavior from offline system data. The trained model predicts the expected sensor

measurements in its online phase.

(ii) Window Adaptor. It computes the detection deadline and output the window length

(detection delay) that enables the framework to meet the detection deadlines.

(iii) Attack detector. This component determines the time at which an alert must be raised.

It combines the output of the window adaptor and the state predictor in the detection

algorithm. The algorithm computes the residual sequence rk over a window length. rk is

the difference between the expected sensor reading and the observed sensor measurement.

If rk is larger than the predetermined threshold, an alert is raised. Note that choosing

variable window size allows our detector framework to adapt its behavior to meet

detection deadlines.

The results obtained in the real-time adaptive sensor attack detection frameworks

shows we can dynamically alter the behavior of a detector by altering the CUSUM drift

parameter and time window length within a certain range. Values outside this range can

produce unacceptable system and detector functionalities.

Further, this dissertation notes that raising an alert alone after an attack occurs is not a

holistic solution for attack resiliency, this dissertation proposes Recovery-by-Learning, a

data-driven attack recovery framework that restores automotive cyber-physical systems

from sensor attacks. The framework, presented in Chapter 4, requires little knowledge of

the system’s dynamics, but leverages natural redundancy among heterogeneous sensors

and historical data for attack recovery. Specially, the framework consists of two major
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components: state predictor and data checkpointer. The state predictor is activated to

estimate system states when an attack is detected. The predicted states are forwarded to

the controller to calculate and issue appropriate control commands to bring the system

back to normalcy. The data checkpointer executes in the normal mode when no attack is

detected. It employs a checkpointing protocol to remove corrupted data and keep valid

historical data as input to the state predictor to make state estimation. The protocol uses

double sliding windows: detection window and logging window. The former

accommodates the substantial detection delay (i.e., the time interval between the start of

an attack and the detection of it), during which the correctness of the sensor data is still in

question and thus using them may result in unsuccessful recovery. The logging window

governs sufficient trustful data for the state prediction.

The recovery framework is implemented and evaluated on AEGIS dataset and

Ardupilot SITL rover. The results of the experiment and case study shows the framework

enables the CPS to return to its reference point after an attack has been detected.

In conclusion, this dissertation has argued that attack detection should have a

preference on different metrics when a system sits in different states. We have proposed

solutions that enable CPS to achieve that and a solution to provide a recovery measure that

mitigates the effects of an attack. The proposed solutions in this dissertation provide a

holistic real-time attack resilient solution. Also, our real-time adaptive attack detection

sets a new research direction that creates the awareness for the need of dynamic detectors,

and motivates the proposal of new solutions to achieve that.

Future Work: This dissertation has carried out simulation-based evaluation of the

proposed frameworks as our lab’s testbed is still under construction. While the results
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show a viable solution, future work is required to provide hardware evaluations and make

necessary improvements to the framework. Further, to ensure the smooth interaction of

system components, future work is required to handle the scheduling of the component.

Lastly, code and model optimization tasks are required to ensure the frameworks are

executable on resource constrained systems.
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