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Abstract
Human senses allow for the detection of simultaneous changes in our environments. An

unobstructed field of view allows us to notice concurrent variations in different parts of

what we are looking at. For example, when playing a video game, a player, oftentimes,

needs to be aware of what is happening in the entire scene. Likewise, our hearing makes

us aware of various simultaneous sounds occurring around us. Human perception can be

affected by the cognitive ability of the brain and acuity of the senses. This is not a factor

with machines. As long as a system is given a signal and instructed how to analyze this

signal and extract useful information, it will be able to complete this task repeatedly with

enough processing power.

Automated and simultaneous detection of activity in machine learning requires the use

of multi-labels. In order to detect concurrent occurrences spatially, the labels should rep-

resent the regions of interest for a particular application. For example, in this thesis, the

regions of interest will be either different quadrants of a parking lot as captured on surveil-

lance videos, four auscultation sites on patients’ lungs, or the two sides of the brain’s motor

cortex (left and right). Since the labels, within the multi-labels, will be used to represent

not only certain spatial locations but also different levels or types of occurrences, a multi-

class/multi-level schema is necessary. In the first study, each label is appointed one of three

levels of activity within the specific quadrant. In the second study, each label is assigned

one of four different types of respiratory sounds. In the third study, each label is designated

one of three different finger tapping frequencies.

This novel multi-labeling/multi-class schema is one part of being able to detect useful

information in the data. The other part of the process lies in the machine learning algorithm,

the network model. In order to be able to capture the spatiotemporal characteristics of the



data, selecting Convolutional Neural Network and Long Short Term Memory Network-

based algorithms as the basis of the network is fitting.

The following classifications are described in this thesis:

• In the first study, one of three different motion densities are identified simultane-

ously in four quadrants of two sets of surveillance videos. Publicly available video

recordings are the spatiotemporal data.

• In the second study, one of four types of breathing sounds are classified simulta-

neously in four auscultation sites. The spatiotemporal data are publicly available

respiratory sound recordings.

• In the third study, one of three finger tapping rates are detected simultaneously in

two regions of interest, the right and left sides of the brain’s motor cortex. The spa-

tiotemporal data are fNIRS channel readings gathered during an index finger tapping

experiment.

Classification results are based on testing data which is not part of model training and

validation. The success of the results is based on measures of Hamming Loss and Sub-

set Accuracy as well Accuracy, F-Score, Sensitivity, and Specificity metrics. In the last

study, model explanation is performed using Shapley Additive Explanation (SHAP) val-

ues and plotting them on an image-like background, a representation of the fNIRS channel

layout used as data input. Overall, promising findings support the use of this approach in

classifying spatiotemporal data with the interest of detecting different levels or types of

occurrences simultaneously in several regions of interest.
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Chapter 1

Introduction

Initially, an interest in researching machine learning as it relates to the classification of

human emotions launched the exploration of different methods of achieving this. Two

types of data, video and Functional Near Infrared Spectroscopy (fNIRS) were considered.

For the former, a webcam was used to acquire human reaction data through the acquisition

of facial images in response to auditory stimuli [1]. The features of interest in this research

were changes in pupil size, mouth curvature, eyebrow curvature, and distance between

eyebrows. These types of variances are often linked to a person’s emotional reaction to

a stimulus. For example, the Autonomous Nervous System (ANS), which controls pupil

dilation and constriction, is also linked to our sense of emotion. This means that a change

in emotion can trigger a change in pupil size. Likewise, changes in other facial features in

response to an emotion-evoking stimulus is often instinctive and worth noting.

Using the International Affective Digital Sounds (IADS) database [9], sounds which

elicit various levels of emotion on the valence and arousal scales were chosen. Sounds

rated to evoke positive, neutral, and negative emotions were played while subjects were to

look at a webcam and react naturally to the sounds. The video recordings were analyzed

and various image processing techniques were applied, including the use of wavelets in the

extraction of pupil size, and parameters to analyze facial expressions. Changes in the shape

1



of eyebrows, pupil sizes, and mouth, as well as distances between eyebrows were the facial

parameters of interest. A classifier was built based on a simple neural network that was

trained on the aforementioned facial and pupil measurement features to detect one of three

valence levels of emotion evoked by auditory stimuli. A testing result of 90% was achieved

when discerning unpleasant, neutral, and pleasant sounds in this small research.

The exploration of Human Computer Interaction (HCI) as it pertains to the detection

of emotions continued with research based on fNIRS data collected during a study of

how advertisements affect us. Four groups of emotions were constructed to correspond

to three main categories of advertisements. The groupings were made to represent: (i)

highly engaging advertisement which could elicit two groups of emotions: ‘Excited Happi-

ness’ along with ‘Pleased & Content’, (ii) neutral advertisement which would most likely

elicit ‘Neutral’ emotions, and (iii) badly perceived advertisement which could bring about

‘Displeased’ emotions.

This research was able to support improvement in binary classification results of fNIRS

data with a model based on Convolutional Neural Networks (CNNs) as opposed to shallow

learning algorithms such as Naı̈ve Bayes and Support Vector Machine. Having gained sig-

nificant success and popularity in image processing, CNNs have also been used in building

models which are trained on fNIRS brain signals. For example, CNNs have been used for

gender classification, location of Regions of Interest (ROI), and for the classification of dif-

ferent BCI cognitive tasks [2], [3], [4], [5]. Finally, Bandara et al. [6] used CNNs to classify

the three main emotional responses (negative, neutral, positive) on the valence scale due

to music video stimuli captured by fNIRS experimental data. With these examples, it is

apparent that great interest lies in finding a standard in classifying fNIRS signals with deep

learning. Deep learning is attractive in that it does not require the generation of handcrafted

features and can, therefore, handle raw data. In the case of the CNN algorithm, one of its

advantages is its ability to capture the spatial attributes of input data.

The data for the advertisement study was collected by an ETG-4000 Hitachi fNIRS ma-

2



chine and was based on a dual probe system which provided 46 channels of oxyhemoglobin

(oxyHb) data and 46 channels of deoxyhemoglobin (deoxyHb) data. Neural activity is

correlated with an increase in cerebral blood flow which results in an increase in oxyHb

(when hemoglobin is transporting oxygen) and decrease in deoxyHb (when hemoglobin

is releasing oxygen). Since the absorption spectrum of NIR light is dependent on oxy-

genation levels, a reaction to a stimulus can be recorded. Labeling was based on each

volunteer’s Self-Assessment Manikin (SAM) survey results. The order of the channels was

not changed in the first dataset and then, for comparison, was adapted to reflect the fNIRS

probe layout for the second dataset as shown in Fig. 1.1

(a)

(b)

Figure 1.1: Spatial Channel Order Rearrangement for Advertisement Study
(a)Actual Probe Layout; (b)Final fNIRS Data Channel Set-Up for Dataset #2

A CNN model was trained with two convolutional layers applied to a randomly selected

70% of the data for each of fifteen participants. Block cross-validation and testing were

performed, each on half, of the remaining 30% of the total data for individual participants.
3



Comparing classification results with ground truth participant survey ratings, we sought

to distinguish between the four different groups of emotions defined in the advertisement

study, namely, ‘Excited Happiness’, ‘Pleased & Content’, ‘Neutral’, and ‘Displeased’.

As a result of the pattern recognition capabilities of the CNN algorithm, it became

evident that rearranging the channels in the data files according to the spatial configuration

of the fNIRS probes was beneficial. Table 1.1 showcases the group of statistical measures,

Accuracy, AUC and F-Scores, generated with a CNN algorithm and spatially rearranged

data files (Spatial) next to the original CNN classification results (No Spatial Ordering).

Comparison Average Participant
Results (No Spatial Ordering)

Average Participant
Results (Spatial)

Excited Happiness
vs.

Pleased and Content

Accuracy: 69.4%
AUC: 0.787

F-Score: 0.732

Accuracy: 76.6%
AUC: 0.816

F-Score: 0.785
Excited Happiness

vs.
Neutral

Accuracy: 65.1%
AUC: 0.899

F-Score: 0.726

Accuracy: 74.6%
AUC: 0.902

F-Score: 0.777
Pleased and Content

vs.
Neutral

Accuracy: 71.6%
AUC: 0.770

F-Score: 0.743

Accuracy: 78.6%
AUC: 0.837

F-Score: 0.793
Excited Happiness

vs.
Displeased

Accuracy: 77.4%
AUC: 0.842

F-Score: 0.855

Accuracy: 83.5%
AUC: 0.942

F-Score: 0.889
Pleased and Content

vs.
Displeased

Accuracy: 80.2%
AUC: 0.902

F-Score: 0.870

Accuracy: 86.2%
AUC: 0.918

F-Score: 0.895
Neutral

vs
Displeased

Accuracy: 75.1%
AUC: 0.859

F-Score: 0.821

Accuracy: 80.5%
AUC: 0.898

F-Score: 0.837

Table 1.1: Comparison of Average Participant CNN Accuracies, AUC and F-Score Values
Based on fNIRS Data Files with the Absence of Channel Ordering and Spatially Rear-
ranged Channel Ordering.

The overall improvement in testing metrics for the spatially rearranged input data in the

advertisement study supported the use of the novel approach of adding a spatial component

to input data to enhance the performance of CNN-based models.

Research continued with further exploration into the CNN’s ability to learn the spatial
4



characteristics of input data. More specifically, we began to study how CNNs perform with

other types of spatiotemporal data. Also, as a way of putting emphasis on the spatial char-

acteristics of input data, a multi-labeling schema which assigned spatially descriptive labels

to different regions of interest was developed. Additionally, this type of multi-labeling gave

us the ability to detect simultaneous activity in the regions of interest. Finally, seeking a

way to catch important temporal information in the input data, an RNN was added to the

model.

1.1 Research Impact

Being able to detect simultaneous activity in different regions of multidimensional data

with spatiotemporal characteristics can be useful for many application domains. For ex-

ample, integrating an algorithm, which can automate the process of surveillance by simul-

taneously detecting anomalies in different regions of interest captured through video can

enhance security and provide peace of mind. In a survey of recent research related to in-

telligent surveillance monitoring techniques, Sreenu et al. [7] review different methods to

discern unusual motion in crowd analysis. Jiang et al. [8] focus primarily on detecting

anomalies in vehicular traffic at an intersection and consider both single object anomalies

and co-occurring anomalies.

As research continued, a novel and promising approach to autonomously detect differ-

ent levels of simultaneous and spatiotemporal activity in multidimensional data was estab-

lished. This was aided by a new multi-labeling technique, which assigns different labels

to different regions of interest in the data while enhancing the spatial aspect of the model.

Each label is built to describe the level of activity/motion to be monitored in the spatial

location that it represents, in contrast to existing approaches in current research which

only provide a binary result as the presence or absence of activity. This novel spatially

and motion-level descriptive labeling schema is combined with a CNN and Long Short
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Term Memory (LSTM)-based network for classification to capture different levels of ac-

tivity both spatially and temporally without the use of any foreground or object detection.

The proposed approach can be applied to various types of spatiotemporal data captured for

completely different application domains. Initially, it was evaluated on surveillance video

data as well as respiratory sound data. Metrics commonly associated with multi-labeling,

namely Hamming Loss and Subset Accuracy, as well as confusion matrix-based measure-

ments were used to evaluate performance. Promising testing results were achieved with an

overall Hamming Loss for video datasets close to 0.05, Subset Accuracy close to 80% and

confusion matrix-based metrics above 0.9. In addition, the proposed approach’s ability in

detecting frequent motion patterns based on predicted spatiotemporal activity levels was ex-

plored. Encouraging results were also obtained on a small respiratory sound dataset while

detecting abnormalities in different parts of the lungs. The experimental results demon-

strated that the proposed approach can be applied to various types of spatiotemporal data

captured for different application domains.

Due to favorable results obtained from applying this novel multi-labeling/multi-class

spatially descriptive deep learning classification to a small dataset of respiratory sound

data, the investigation into this model’s compatibility with this type of spatiotemporal

data continued. In this case, the approach was applied to multi-labeling spatiotemporal

data to detect different classes in several regions of interest simultaneously enabling us

to autonomously detect different types of breathing sounds in audio recordings as a sup-

plement to traditional auscultation. In this scenario, the multi-labeling technique assigns

labels to different auscultation sites (i.e. regions of interest), and a given label describes

a type of breathing sound (normal, wheezing only, crackling only, wheezing and crack-

ling) to be monitored in the spatial location that it represents. By considering several areas

of the chest and corresponding labels simultaneously, a CNN and LSTM-based network

was trained to classify the aforementioned pulmonary sounds spatially. Moreover, a Mel-

Spectrogram representation of the audio data as well as raw waveforms were used and their
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performances were compared when using this multi-labeling approach. In addition, the

performance of the spatially informative multi-location/label model was compared with

a single location/label model to support the former’s ability to learn label dependency.

The evaluation and comparison of outcomes was performed with Hamming Loss, along

with confusion matrix-based measurements. The best testing results were generated by the

Mel-Spectrogram multi-location/label model with an average Hamming Loss of 0.10, and

average F-Score of 0.90. The experimental results supported the extended use of this novel

approach to classify different forms of spatiotemporal data.

In the continued investigation into multi-labeling spatiotemporal data to detect differ-

ent classes in several regions of interest simultaneously, we were interested in revisiting

working with fNIRS data. In this study, the goal was to apply this novel approach to au-

tonomously detect different finger tapping levels simultaneously in regions of interest. In

order to do this, our multi-class multi-labeling technique assigned labels to the left and

right index fingers, and a given label described one of the three different finger tapping fre-

quencies (rest, 80 bpm, and 120 bpm) to be monitored in the corresponding contralateral

spatial location in the brain’s motor cortex. We trained a CNN/LSTM-based network to

classify the aforementioned finger tapping levels spatially and simultaneously. The evalu-

ation, based on simultaneous multi-label predictions for two brain regions, was performed

with Hamming Loss, along with confusion matrix-based measurements. Promising testing

results were obtained with an average Hamming Loss of 0.20, average F-Score of 0.80, and

average Accuracy of 0.80. Moreover, we explained our model and novel multi-labeling ap-

proach by generating Shapley Additive Explanation values and plotting them on an image-

like background, which represented the fNIRS channel layout used as data input. Using

these Shapley values helped to add transparency and interpretability to our deep learning

models, which aligns with the recent push to build out explainable and trustworthy AI.

The research presented in this thesis resulted in several publications including respected

and peer-reviewed journals and international conference proceedings.
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1.2 Publications

Peer-Reviewed Journals:

• N. Sommer, B. Kakillioglu, T. Grant, S. Velipasalar, L. Hirshfield, Classification of

fNIRS Finger Tapping Data with Multi-Labeling and Deep Learning, Submitted to

IEEE Sensors Journal, April 2021.

• N. Sommer, B. Kakillioglu, S. Velipasalar, L. Hirshfield, Detecting Wheezes and

Crackles in Respiratory Sound Data Through Multi-Labeling and Deep Learning,

Submitted to Computers in Biology and Medicine, April 2021.

• N. Sommer, S. Velipasalar, L. Hirshfield, Y. Lu, and B. Kakillioglu, Simultaneous

and Spatiotemporal Detection of Different Levels of Activity in Multidimensional

Data, IEEE Access Vol. 8, IEEE; 2020, p. 118205–118218.

• L. Hirshfield, P. Bobko, A. Barelka, N. Sommer, and S. Velipasalar, Toward interfaces

that help users identify misinformation online: Using fNIRS to measure suspicion,

Augmented Human Research, Vol. 4, No. 1, Springer; 2019, p. 1–13.

Peer-Reviewed Conferences:

• L. Hirshfield, T. Williams, N. Sommer, T. Grant, and S. Velipasalar-Gursoy, Workload-driven

modulation of mixed-reality robot-human communication, Proceedings of the Work-

shop on Modeling Cognitive Processes from Multimodal Data, 2018, p. 1–8.

• N. Sommer, L. Hirshfield, and S. Velipasalar, Our Emotions as Seen through a

Webcam, International Conference on Augmented Cognition, Springer; 2014. p.

78–89.
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1.3 Organization of Thesis

Further details of the three main studies that were conducted are provided in the following

chapters:

• Chapter 2 presents research based on applying our novel approach of detecting dif-

ferent activity levels simultaneously in four quadrants of video surveillance frames.

In the context of videos, the multi-label vector represents distinct spatial regions (i.e.

regions of interest) of an image frame, unlike common uses of the multi-label vec-

tor as a representation of the presence or absence of multiple descriptors of interest.

Each region is assigned one of three possible levels of activity to train and validate

a deep learning model. One of three different motion densities are identified simul-

taneously in four quadrants (without loss of generality) of a video. Label imbalance

is also addressed, which is a common problem that is magnified in multi-labeling,

as testing results are presented. Metrics commonly associated with multi-labeling,

namely Hamming Loss and Subset Accuracy, as well as confusion matrix-based mea-

surements are used to evaluate performance.

• Chapter 3 presents the use of our approach in detecting various types of breathing

sounds simultaneously in four auscultation sites using respiratory sound data. The

multi-labeling technique assigns labels to four different auscultation sites (i.e. re-

gions of interest), and a given label describes a type of breathing sound (normal,

wheezing only, crackling only, wheezing and crackling) to be monitored in the spa-

tial location that it represents. By considering several areas of the chest and cor-

responding labels simultaneously, a deep learning model classifies the aforemen-

tioned pulmonary sounds spatially. Two audio data formats are used, namely Mel-

Spectrograms and raw waveforms, to compare performance when using the multi-

labeling approach. In addition, the performance of the spatially informative multi-

location/label model is compared with a single location/label model to support the
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former’s ability to learn label dependency. The evaluation and comparison of out-

comes is performed with Hamming Loss, along with confusion matrix-based mea-

surements.

• Chapter 4 illustrates how the third main form of spatiotemporal data studied in this

research, Functional Near Infrared Spectroscopy (fNIRS) data, is classified with spa-

tially descriptive multi-labels for the simultaneous detection of neural activity due to

different finger tapping rates in the two sides of the brain’s motor cortex. The multi-

labeling technique assigns labels to the two index fingers which correspond to the two

sides of the brain’s motor cortex (i.e. regions of interest). A given label describes a

finger tapping frequency (rest, 80 bpm, and 120 bpm) to be monitored in the spatial

location that it represents. A deep learning-based network is trained to classify the

aforementioned finger tapping levels spatially and simultaneously. The evaluation

of outcomes is performed with Hamming Loss, along with confusion matrix-based

measurements. Also, an explanation of the network is presented with the generation

of Shapley Additive Explanation Values.

• The Conclusion and Future Work Chapter provides a summary of what was learned

during this research and planned future work.
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Chapter 2

Simultaneous and Spatiotemporal

Detection of Different Levels of Activity

in Video Data

2.1 Introduction

Motivated by an interest in the autononous detection of concurrent activity in several re-

gions of interest, a study was conducted with videos. The approach is unique since a novel

multi-label/multi-class way of annotating video input data is introduced. Such a study can

be beneficial for a wide range of application domains. For example, it can provide im-

provements in autonomous surveillance systems. Let’s consider maritime surveillance for

national security [10], [11]. Being able to detect a higher level of activity in regions of inter-

est in SAR (Synthetic Aperture Radar) imagery may trigger other parts of the surveillance

system or prompt an alert to human supervision. In general, integrating an algorithm, which

can automate the process of surveillance by simultaneously detecting anomalies in different

regions of interest captured through video can enhance security and provide peace of mind.

In a survey of recent research related to intelligent surveillance monitoring techniques,
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Sreenu et al. [7] review different methods to discern unusual motion in crowd analysis.

Jiang et al. [8] focus primarily on detecting anomalies in vehicular traffic at an intersection

and consider both single object anomalies and co-occurring anomalies. The last two ex-

amples represent models which are trained to specifically detect either pedestrians, in the

first case, or vehicles, in the second case. This model was not built based on detecting the

motion of specific objects but on general activity. That is why this method can be applied

to other domains besides video surveillance such as Neuroscience and other computer vi-

sion applications. For the former, we can gain a better understanding of the concurrent use

of different functional cognitive brain regions, which can help us to understand the types

of cognitive load experienced by the user of an adaptive system. For example, an airline

pilot’s autopilot could provide the pilot with a visual overlay to support them in flight if it

is determined that they have a high working memory load. However, the same system may

choose to provide this information through the auditory channel via a speaker in the cockpit

if it is determined that the pilot is experiencing both high working memory load and high

visual perceptual load [12], [13]. For the latter, detecting simultaneous and various activity

levels in different parts of video frames can lead to an improvement in event annotation.

Ballan et al. [14] emphasize the importance of detecting multiple events happening at dif-

ferent times and locations throughout various types of videos as key to video annotation.

Zhao et al. [15] use concurrent group activity classification to achieve their best results in

annotating mobile videos. Similarly, Liu et al. [16], support the necessity of simultaneous

event detection in videos through the use of multi-labeling.

In this chapter, a novel and promising approach to detecting different levels of simul-

taneous and spatiotemporal activity in multidimensional data will be presented through the

use of a multi-labeling technique initially inspired by León’s research [17], wherein EEG

data is used to look at levels of activation in different regions of the brain simultaneously.

The goal was to help people with disabilities (often paralyzed) to control their environ-

ment simply by thinking about moving fingers on one or both hands. Most publications,
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on spatiotemporal tracking from videos, from the last five years do not use this type of

approach [18], [19], [20], [21], [22]. The use of multiple labels to represent multiple ac-

tions has grown in popularity due to the interest in detecting and recognizing simultaneous

activity in videos. For example, concurrent action recognition in hockey videos [23] could

indicate that a ‘Play’, ‘Face Off’ and ‘Fight’ took place at the same time. Similarly, the

ability to tag multiple facial expressions in videos can be accomplished using multi-labels

to detect emotions, a crucial component of HCI [24]. However, in all of the aforemen-

tioned references, an action or a combination of actions is assigned to a label, which in turn

is given a binary assignment representing its absence (0) or its presence (1).

In addition to the fact that interest lies in monitoring non-binary levels of movement

in multidimensional data, the essence of this multi-labeling technique is also unique from

a spatial perspective. Previous work using multi-labels to classify multidimensional data,

while also interested in recognizing simultaneous actions, focused on describing specific

types of actions, scenes and objects. In addition, the multi-labels used in previous work

do not offer information about the locations of the actions, i.e. they do not address the

spatial aspect. For example, Monfort et al. [25] add multi-labels to their Moments in Time

Dataset to be able to assign a set of distinct actions concurrently to three second videos.

Similarly, Yeung et al. [26], use multi-labels to add detail to the description of human

actions. For example, an extra label will make it possible to distinguish a video of two

people sitting and talking (multi-label: Sit,Talk) versus two people standing and talking

(multi-label: Stand,Talk). Ray et al. [27] expand their multi-labels to include descriptions

of background scenes and objects. In all three of these multi-labeled datasets, labels are

chosen from a pool of choices to describe the events in the entire frame of a video. As

mentioned above, these labels do not provide location information.

This chapter includes the following: i) a novel spatial aspect to a multi-label by assign-

ing each label to a different region of interest. To the best of our knowledge, this is a unique

way of handling the description of concurrent actions within a spatial context; ii) a proposed
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approach that is able to detect different levels of activity, in contrast to existing approaches

providing only a binary result as the presence or absence indicator [23], [24], [17]. Instead

of simply assigning a ‘0’ (absence of motion) or a ‘1’ (presence of motion) to each label, we

can assign, without loss of generality, a ‘0’ (absence of motion), ‘1’ (low level of motion)

or ‘2’ (high level of motion) to describe the level of motion in different regions of interest

at a certain moment in time.; iii) an approach that is not specific to or fine-tuned for one

type of application, but instead is suitable for different types of spatiotemporal data, rang-

ing from videos to brain signals to lung sounds captured over time. To demonstrate this,

we evaluate this approach on video data as well as on respiratory sounds, more specifically

detecting the presence/absence of wheezing and crackling sounds in the lungs.

Also, in aerial maritime surveillance, it is advantageous to be able to detect concurrent

anomalies in different regions of interest such as a coastal area. Moreover, the ability to

not only detect presence, but also describe the level of activity in a region offers an addi-

tional facet to the alert that such a schema could provide in detecting motion. Therefore,

designing a labeling technique that provides the option of assigning a non-binary level of

activity to each label is necessary. For example, in Fig. 2.1, we show two possible maritime

surveillance scenarios. On the left, we consider two regions of interest to monitor activity

and on the right, the number increases to six to accommodate the complexity of the coastal

area. In both cases, the use of a multi-labeling schema which allows for the concurrent

detection of different levels of activity (i.e.: number of ships) in separate regions of interest

would add to the ability of a surveillance system to identify specific patterns of activity. For

example, concurrent activity or events at specific ports (designated as regions of interest)

could indicate that some form of nefarious trafficking is occurring, and the Coast Guard

could be notified.

To achieve spatially and motion-level descriptive classification outputs, we employ a

deep learning approach, more specifically a Convolutional and Long Short Term Mem-

ory (ConvLSTM) Network, as the core of our model. The need for object detection, or
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Figure 2.1: Examples of Maritime Surveillance Regions of Interest and Presence of Con-
current Activity

generation of region proposals is avoided with the proposed method.

In summary, we present an unconventional, though promising, method of using multi-

labels to detect different levels of spatiotemporal motion in multidimensional data. In this

chapter, without loss of generality, we will apply our proposed approach to video data

as an example. As mentioned above, this approach can be applied to different types of

spatiotemporal data captured for completely different application domains. In the context

of videos, the multi-label vector represents distinct spatial regions (i.e. regions of interest)

of an image frame, unlike common uses of the multi-label vector as a representation of

the presence or absence of multiple descriptors of interest [28], [29], [30]. Each region

is assigned one of three possible levels of activity to train and validate our deep learning

model. We also address label imbalance, which is a common problem that is magnified in

multi-labeling, as testing results are presented.

The remainder of this chapter is organized as follows: The related work is discussed in

Section 2.2. The proposed approach and the network model are presented in Section 2.3.

The datasets, labeling structure and the evaluation criteria are described in Section 2.4.

The experimental results are presented in Section 2.5. An example of applying this method

to another type of spatiotemporal data along with a comparison to published research is

discussed in Section 2.6 . The chapter is then concluded in Section 2.7.
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2.2 Related Work

The advent of multi-labeling is often linked to realizing that in describing multimedia re-

sources, a single category is insufficient [31]. In particular, the need to assign simultane-

ous categories to videos is evidenced in the complexity of our environment, and plays an

important role in artificial intelligence (AI) [25], [26], [27]. A conventional multi-class

classification algorithm assumes that there is only one label to be used in the description of

an event. Since the choice for the label is from a set of multiple descriptors (classes), the

term multi-class is used [32]. Oftentimes, multi-labels are treated as subsets of multi-class

labeling [28], [29], [30].

When it comes to dealing with label imbalance in the multi-label domain, there are two

generally accepted approaches. In one case, the model is adapted to minimize the impact of

the imbalance and, in the other case, the dataset is adjusted to minimize the labeling skew.

One method that is commonly used when adapting the model is that the multi-label vector

is split up into smaller sets of labels, each with its own classifier [33], [17], [34]. Another

method involves assigning a new label to each multi-label and using multi-class classifica-

tion [35], [36], commonly referred to as the Label Powerset transformation. The disad-

vantage of both methods resides with the loss of information about the correlation between

the individual labels. The importance of gaining a better understanding of label correlation

is emphasized by Zhang et al. [37]. Finally, another method in this category considers the

occurrences of the classes for each label. The classification algorithm then assigns class

weights to offset the skew between the minority and majority classes [23], [31].

The second approach to seeking a balanced set of labels is to make changes to the

dataset itself. This includes using resampling techniques. Two common approaches use

random undersampling and random oversampling. Applying these approaches to multi-

labels becomes quite complicated. Charte et al. [38] test out these two resampling tech-

niques. The best result was obtained by randomly oversampling each label separately

within the multi-labels. The multi-labels were assigned to various datasets with domains
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ranging from text to images as a preprocessing step before applying the data to different

types of algorithms. Charte et al. [39] also take it one-step further by proposing a SMOTE

(Synthetic Minority Oversampling Technique) that is specific to multi-labeled datasets

(MLSMOTE). MLSMOTE is shown to outperform the other resampling techniques. Liu

and Tsoumakas [61] improve the SMOTE resampling technique by considering the local

distributions of labels when determining the minority class as opposed to the global distri-

bution of labels. This algorithm, called MLSOL, shows promising results although it has

yet to be applied to videos. Even though the outcome of using these resampling techniques

leads to better balanced labels and data, there are certain disadvantages worth mentioning.

In the case of undersampling, important data may be overlooked in the training process of

the model. As for synthetic oversampling, creating artificial multi-labels and data is quite

intricate. This challenge is augmented with raw video data.

Since videos are spatiotemporal in nature, we look to an algorithm which can handle

both characteristics in our model design. There has been research conducted for spatiotem-

poral action detection. Zhu et al. [18] use a hidden two stream network, which combines a

spatial stream CNN with MotionNet/temporal stream CNN to recognize human activity in

geo-tagged videos. Similarly, Weinzaepfel et al. [19] make use of static and motion CNN

features to detect actions in space and time. Also, temporal localization is accomplished

with a sliding window. On the other hand, Saha et al. [21] and Yang et al. [22], use action

tubes to track the actions detected by their networks. These works focus mostly on ob-

ject tracking and rely on feature extraction, object detection or region proposal generation.

In our research, we are interested in detecting various levels of activity simultaneously

in different spatial locations. As seen with the aforementioned papers, along with oth-

ers [40], [41], the world of computer vision has greatly benefited from the CNNs. Their

application to multi-labeled datasets is also common [23], [42], [43]. We also employ

CNNs as part of our design. Furthermore, to address the issue of label dependencies inher-

ent to multi-labels, and temporal information contained in videos, a combination of CNN
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and RNN is appropriate [43], [44], [45], [46], [20]. According to Wang et al. [43], the RNN

framework can focus on the corresponding image regions when predicting different labels,

which is very similar to a human’s multi-label classification process. This quality of an

RNN makes it highly suitable as part of the deep learning process. Additionally, according

to Medel et al. [44], Convolutional LSTM (ConvLSTM) is deemed to be effective in mod-

eling and predicting video sequences. Although CNNs are not developed with temporal

features in mind, integrating them as part of an LSTM cell addresses this limitation. Deep

learning allows the network to learn which features are important. ConvLSTM is able to

temporally propagate spatial characteristics as supported by Shi et al. [47] and Zapata et

al. [48]. One of the papers reviewed by Sreenu et al. [7] uses the ConvLSTM as the deep

learning algorithm to discern unusual motion in crowd analysis [107]. However, unlike the

approach to be described in the next section, the pedestrian trajectories of video inputs are

represented with displacement vectors and used in training the model in lieu of the video

frames. This necessitates the use of an encoder and a decoder.

2.3 Proposed Method

In our case, we will use a multi-label vector to represent distinct spatial regions. The spatial

regions correspond to the regions of interest in the data. We determine the number of re-

gions and the number of labels depending on the application and desired spatial resolution.

For instance, in the case of video surveillance, regions of interest may depend on points of

entry into the area captured by the camera. Without loss of generality, based on the motion

to be detected in the chosen video datasets, as will be illustrated in Sec. 2.5, we visually

determined that assigning four regions of interest to the video frames would be appropriate.

Additionally, if the goal was to monitor the activity in a finer or coarser resolution, then the

number of regions and, consequently, labels would have been adjusted.

In completing our labeling schema, each region is assigned to one of three possible mo-
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tion level descriptors as will be presented in Sec. 2.4. Subsequently, it does seem as if each

label does conform to a multi-class description system. However, in order to avoid confu-

sion, we will refer to our data labeling schema as Spatially and Motion-Level Descriptive

(SMLD) multi-labeling. The spatially descriptive multi-labels provide the ability to rec-

ognize the presence of concurrent actions in different regions of a frame/image, and the

motion level identification offers a non− binary and multi-level descriptor for each label.

It is important to note that the classification of level of motion is performed independently

for each region of interest. Therefore, viewing the results concurrently (i.e. in parallel) or

sequentially would result in the same outcome.

Although the SMLD labels offer a novel way of describing different levels of activ-

ity in spatiotemporal multidimensional data, they too, like most multi-labeling schemas,

are more prone to label imbalance. As stated by Herrera et al. [31], the learning from

imbalanced data is another of the casuistics intrinsically linked to multi-label classifica-

tion. Several techniques to offset this problem have been proposed in the past several

years [34], [36], [39]. We have developed a network model that employs ConvLSTM in

order to address the spatial and temporal properties of the videos. The labeling structure,

which will be further discussed below, was designed to represent different activity levels at

different spatial locations simultaneously. ConvLSTM-based networks have been used suc-

cessfully in different applications, such as weather forecasting, robotic grasp slippage de-

tection and understanding crowd behavior [47], [48], [107]. The ConvLSTM structure [50]

is based on an LSTM cell with convolutional operators replacing the typical matrix multi-

pliers. It is able to make use of a CNN’s ability to extract spatial features and the LSTM’s

ability to extract temporal information while avoiding the problem of the ‘vanishing gra-

dient’ of the RNN. Unlike a standard cascaded CNN-LSTM structure, it accepts multidi-

mensional inputs making it suitable for video data applications. The ConvLSTM uses 3D

tensors to learn spatial and temporal features simultaneously. The inner workings of the

ConvLSTM structure is shown in Fig. 2.2.
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Figure 2.2: ConvLSTM Structure [50]

The details of our network model, which employs a Convolutional LSTM structure

and the SMLD labeling schema, are shown in Fig. 2.3. The parameter values have been

obtained after extensive evaluation. The model was compiled using binary cross-entropy

loss and rmsprop optimization. Binary cross-entropy was a suitable choice, since the values

used in the multi-labeling schema are one-hot encoded. Our empirical studies have shown

better conversion with rmsprop optimization than with Adam optimization. We use early

stopping, which monitors the validation loss. The latter automatically stops the training if

the validation loss has not been decreasing after two epochs. After training, the proposed

model is tested on unseen videos.

Figure 2.3: Proposed Model Structure
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2.3.1 Detecting Motion Patterns

With this proposed approach, in addition to detecting different levels of activity in separate

spatial locations, it is also possible to use these predicted levels of activity to detect motion

patterns from one quadrant to another. We developed a new method that uses the detected

levels of activity to autonomously detect inter-quadrant motion patterns. Therefore, another

advantage of our proposed approach is that it provides the ability to detect motion patterns

or frequent paths without relying on background subtraction, object detection or region

proposal generation. In order to detect most frequent paths of motion from video datasets,

we implemented a pattern detection script that can capture inter-quadrant motion by only

using the predicted activity levels in different quadrants of the testing videos.

2.4 Datasets, Proposed Multi-Labeling Structure and Eval-

uation Criteria

We used two different sets of hand-annotated video data, obtained from open-access surveil-

lance video datasets, as an example scenario to evaluate our proposed approach. Again,

without loss of generality, we considered each video frame to have four quadrants. Each

quadrant was represented by a label in the multi-labels. The decision to look at four regions

of interest in the video frames suited our goal of being able to correctly classify the activity

level in specific areas of a parking lot video, and then support these results by applying our

model to another set of surveillance videos. The choice in the number of regions of interest

is dependent on the information to be gathered from the spatiotemporal data. Depending

on the spatial resolution and type of spatiotemporal data, the number of regions can be

modified accordingly. If, for example, we want to focus on smaller regions, and monitor

the activity in a finer resolution, then the number of regions can be increased. However,

if a smaller number of regions is appropriate, as later shown with the respiratory data in
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Sec. 2.6, our SMLD multi-labeling schema can be adjusted accordingly.

In the first two datasets, we employ the SMLD multi-labeling schema, described be-

low, for each second of video, which is then fed to a ‘doubly deep’ [20] machine learning

algorithm. After learning and capturing the spatial and temporal information contained in

the training videos, our classifier is then tested on unseen video sequences from these two

different sets of video data, and results are compared to ground-truth labels.

The datasets were prepared for training and validation by reading in the videos (frame

rate = 30 fps), and resizing the frames, to 192x108x3 pixels, to reduce the memory re-

quirements. Pixel values were normalized during this process. For temporal analysis via

ConvLSTM, optimal results have been obtained with groups of 15 frames and a sliding

window size of 5 frames. Each group of 15 frames was then assigned the multi-label of

the middle frame in the group, i.e. the multi-label of the eighth frame in this case. The

multi-labeled data was used for training using a batch generator to accommodate its size.

Training was based on 80% of the data, and the remaining 20% was used for validation.

We used different subsets of videos from the VIRAT Video Dataset [51] to perform two

sets of experiments, and evaluate the performance of the proposed work. The description of

the video datasets, the details of labeling, and the discussion of the results will be provided

in detail in Sec. 2.5.

Considering the fact that one possible application area for this proposed approach is

autonomous surveillance, with videos being the multi-dimensional data, we tested our spa-

tiotemporal classification method as a first-level alert indicator. We used a set of parking

lot videos and another set of videos providing the view of a public outdoor space. These

videos, from the VIRAT Video Dataset [51], were captured by a static camera. The types of

motion in these videos included cars entering and leaving the parking lot, people walking

in groups and separately, trees swaying with the wind, moving shadows and glare.

For our analysis, without loss of generality, we considered all the video frames to have

four regions of interest, namely Top Left (TL), Top Right (TR), Bottom Left (BL) and
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Bottom Right (BR). Four quadrants were chosen for illustration, and if finer/coarser res-

olution is desired for spatial regions, this number can be increased/decreased. We then

used labels of ’0’, ’1’ and ’2’ to describe three different levels of motion in each quadrant.

The definition for each level of motion that was used in our labeling schema is shown in

Table 2.1.

LEVEL DEFINITION
0 No Activity
1 Less Than 25% of Quadrant Shows Activity
2 More Than 25% of Quadrant Shows Activity

Table 2.1: Three Different Levels of Activity Are to Be Detected in Each Quadrant.

Each second of video was hand-labeled and given a unique SMLD multi-label assign-

ment with four labels which represented the quadrants of the video frames. This SMLD

multi-label was to be assigned to all 30 frames within this second of video. Before train-

ing and validating our model, the video frames were grouped in chunks of 15 frames with

a sliding window size of 5 frames and assigned a final multi-label, corresponding to the

middle (eighth) frame of the 15-frame group. The optimization of our empirical results led

us to choose groups of 15 frames for temporal processing. This is also supported by the

research of Sager et al. [52] who demonstrate that using chunk sizes of approximately half

of a video’s frame rate leads to the best activity detection accuracy. Similarly, Sozykin et

al. [23] also use a chunk size of 15 frames with a sliding window of 5 frames to classify

activity in hockey videos. This process aids in increasing the number of training samples

and improves continuity in tracking motion.

For each set of surveillance videos, testing was performed on unseen videos from the

same dataset. After testing, predictions were made for each group of frames. These predic-

tions were a set of probabilities for each activity level assigned to the respective quadrants.

The activity level with the highest prediction probability was chosen to be part of the result-

ing multi-label. Then, to manage the additional labels generated by the sliding window, the

multi-label that occurred the most often defined the final assignment for the corresponding
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second of video. These final multi-labels were then compared to ground truth labels.

2.4.1 Evaluation Criteria

The analysis of the results of multi-label classification is more complex than single label

classification, and a standard set of metrics is yet to be established. Multi-label classifica-

tion results can be instance-based or label-based. In other words, when a metric is based

on an instance, the entire quadruple frame-wise multi-label assigned to a second of testing

video is analyzed. In essence, the labels are looked at concurrently. On the other hand, a

metric that is label-based will consider each single quadrant-wise label in the testing results

separately. In this case, the labels are viewed sequentially. Therefore, the evaluation crite-

ria will include frame-wise quadruple label classification metrics, such as Hamming Loss

and Subset Accuracy, along with single quadrant-based classification metrics, which in-

clude Micro-averaged Precision, Micro-averaged Recall and Micro-averaged F-score [34],

[37], [54]. Pereira et al. [54] recommend using Hamming Loss as a measure due to its pop-

ularity in multi-label research, and ability to report a classifier’s overall prediction error.

i) Hamming Loss

We adapted the conventional binary-based Hamming Loss computation to take into account

the three possible levels of motion by comparing the predicted value for a label during an

instance (a second) with the ground truth value at that time. Average Hamming Loss was

calculated as shown in Eq. (2.1), where S is the number of seconds in a testing video, and

pi,j and gi,j represent the predicted label and the ground truth label, respectively. As seen in

this equation, discrepancies were assigned a ‘1’ when the predicted activity level for each

label within a multi-label did not match the ground truth activity level. These values were

then added and averaged over the product of the number of labels (4) in a multi-label and

the time span of the video in seconds (S).
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1

4S

S∑
i=1

4∑
j=1

[if(pi,j = gi,j, 0, 1)] (2.1)

ii) Subset Accuracy

Another instance-wise metric (i.e. frame-based quadruple label metric in our case), pre-

sented by Pereira et al. [54], is Subset Accuracy. This measure considers how often the

predicted activity levels of the SMLD multi-label matched the ground truth activity levels

for each second. Despite the fact that there is no way of discerning a mismatch for 1, 2, 3

or all 4 quadrants, this measure will still provide useful information in assessing the quality

of the classifier. Subset Accuracy was calculated as shown in Eq. (2.2), where S is the

number of seconds in a testing video, and Pi and Gi represent the 4-quadrant prediction

label and the 4-quadrant ground truth label, respectively.

1

S

S∑
i=1

[if(Pi = Gi, 0, 1)] (2.2)

iii) Micro-Averaged Precision, Recall and F-Score

Shifting focus to label-based (i.e. single quadrant-based) metrics, we also looked at Micro-

averaged Precision, Recall and F-Score, as suggested by Pereira et al. [54]. The Spearman

correlation coefficient values between this set of metrics and Subset Accuracy are low,

and the Spearman correlation coefficient values between this set of metrics and Hamming

Loss are even lower. Thus, that is why this group of metrics provides a complete set of

performance criteria.

The micro-averaging metrics adapt well to the multi-class nature of the labels since we

deal with three different motion level assignments: ‘0’, ‘1’ and ‘2’. For example, instead of

averaging out the calculated precision/recall for each activity level (“class”), we consider

the overall precision/recall for all three activity levels (“classes”) at once. The calculations
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of Micro-Averaged Precision (µAP) and Micro-Averaged Recall (µAR) are shown in Eq.

(2.3) and Eq. (2.4), respectively. In these equations, TPi, FPi and FNi represent the

number of True Positives, the number of False Positives and the number of False Negatives

for activity level i, respectively, where i ∈ {0, 1, 2}.

µAP =
TP0 + TP1 + TP2

TP0 + TP1 + TP2 + FP0 + FP1 + FP2

(2.3)

µAR =
TP0 + TP1 + TP2

TP0 + TP1 + TP2 + FN0 + FN1 + FN2

(2.4)

The harmonic mean of Micro-Averaged Precision and Micro-Averaged Recall is the

Micro-Averaged F-score.

2.5 Experimental Results

First, without loss of generality, we evaluated the proposed approach on different video

data as an example case. The results of this evaluation are detailed in this section. Then, to

demonstrate that the proposed approach can be applied to various types of spatiotemporal

data captured for completely different application domains, we also evaluated it on res-

piratory sounds, more specifically detecting the presence/absence of wheezing and crack-

ling sounds in the lungs. We provide results of this analysis together with a discussion in

Sec. 2.6.

2.5.1 First Set of Experiments

We used a parking lot video for this set of experiments. Our labeling schema can best be

described with an illustration. Suppose that Fig. 2.4 is the representation of what is seen

for one second of video. In the Top Left quadrant, there are 2 people walking (activity level

= ‘1’); no motion in the Bottom Left quadrant (activity level = ‘0’); a car moving in the
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LABEL #1
TL

ACTIVITY

LABEL #2
BL

ACTIVITY

LABEL #3
BR

ACTIVITY

LABEL #4
TR

ACTIVITY
1 0 1 2

Table 2.2: Example of the Spatially and Motion Level Descriptive (SMLD) Multi-label
Schema

Bottom Right quadrant (activity level = ‘1’) and trees swaying in the Top Right quadrant

(activity level = ‘2’). The SMLD multi-label that would be assigned to all 30 frames within

this second of video (determined based on majority) is shown in Table 2.2.

Figure 2.4: Four Quadrants Used to Assign Labels for the First Set of Videos.

Initially, the dataset included 30 videos. The number of instances for different classes/labels,

for these 30 videos, are shown in Table 2.3. As can be seen, there is some skew in the distri-

bution, causing activity level ‘0’ to be considerably more prominent in the TL, BL and BR

quadrants. In order to eliminate the problems inherently associated with imbalanced data,

we sought to obtain a more uniform class distribution, and have more balanced data. At

first, we tried to balance the labels using class weight assignments in our model. However,

this did not provide satisfactory results. Then, we devised a custom dataset augmentation

technique. We wanted to avoid undersampling or creating synthetic samples because of the
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disadvantages mentioned in Section 2.2. Looking at our labels, we noticed that some videos

had significantly more activity level ‘1’ assignments, which is one of the underrepresented

levels as can be seen in Table 2.3. Thus, we augmented the dataset with modified/replicated

versions of these videos in order to make use of these labels for balancing purposes. More

specifically, the new videos were generated by flipping the individual quadrants either hor-

izontally or vertically. Therefore, each video in the augmented dataset was unique. An

example of a rotated version of a video whereby each quadrant has been flipped vertically

is shown in Fig. 2.5. Similarly, an example showing a video generated by flipping the quad-

rants in the horizontal direction is shown in Fig. 2.6. This way, six additional videos were

generated bringing the total size of the dataset to 36 videos, totaling close to 49 minutes

in length. All of these videos were manually labeled, and have been used for training and

validation.

QUADRANT
LEVEL TL BL BR TR

0 41% 41% 39% 34%
1 28% 30% 30% 30%
2 31% 29% 31% 36%

Table 2.3: Initial Activity Level Distribution for the First Dataset

After this customized data augmentation, we successfully obtained a more balanced

dataset with better distribution of the number of label instances as shown in Table 2.4.

QUADRANT
LEVEL TL BL BR TR

0 37% 38% 36% 34%
1 31% 32% 33% 33%
2 32% 30% 31% 33%

Table 2.4: Activity Level Label Distribution after Video Data Augmentation

After testing the proposed model and obtaining predicted labels, we calculated average

frame-wise quadruple-label Hamming Loss using Eq. (2.1). These results are shown in
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Figure 2.5: An Example Showing Four Vertically Rotated Quadrants for Generating a New
Video for Balancing Label Distribution.

Figure 2.6: An Example Showing Four Horizontally Rotated Quadrants for Generating a
New Video for Balancing Label Distribution.

Table 2.5. These Hamming Loss values indicate that, overall, our classifier made prediction

errors about 5% of the time. The lower this value, the better the classifier is at predicting

the correct motion level at each quadrant. It is difficult, and it would not be commensurate

to compare these values to previous work [55], [56], since our experimental set-up and

labeling schema are quite unique. For example, Dai et al. [55] use a concept-oriented

multi-label for classification, which stores the physical attributes and design features of

an object, e.g. shape, color and style of a smart watch, to offer comprehensive product
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descriptive data. Trochidis et al. [56] use a multi-label to represent different emotions that

a music piece might evoke. The type of information that these multi-labels carry is unlike

the combined spatial and temporal characteristics of our SMLD multi-labels. Nonetheless,

it can concluded that these low Hamming Loss results are promising.

Video 1 Video 2 Video 3 Video 4 Video 5
0.0541 0.0496 0.0438 0.0707 0.0476

Table 2.5: Average Hamming Loss Per Testing Video for the First Dataset

We then calculated the average frame-wise quadruple-label Subset Accuracy by using

Eq. (2.2). The results are shown in Table 2.6. It should be noted that Subset Accuracy is

quite unforgiving in that a small classification error for a 4-quadrant label will cause the

entire predicted multi-label to be incorrect. This is because this metric does not distinguish

between a single quadrant label mismatch and multiple quadrant label mismatches. If all 4-

quadrant labels in an instance match the corresponding ground truth multi-label, the subset

accuracy is set to ‘1’; otherwise, it is set to ‘0’. That is why, an average Subset Accuracy

for all testing videos that is close to 80% can be considered to be a good result. It means

that the algorithm is capable of predicting the correct 4-quadrant set of activity levels 80%

of the time.

Video 1 Video 2 Video 3 Video 4 Video 5
81.1% 81.0% 81.3% 71.7% 76.2%

Table 2.6: Average Subset Accuracy Per Testing Video for the First Dataset

The set of metrics calculated for single quadrant-based labeling, namely Micro-Averaged

Precision, Micro-Averaged Recall, and Micro-Averaged F-score values, are shown in Ta-

ble 2.7. Considering that effects of data imbalance have been minimized in our training

and validation data via data augmentation, our results are very promising and a good repre-

sentation of our proposed SMLD model’s ability to successfully predict different levels of

simultaneous activity/motion in different spatial locations. This is exhibited with the confu-

sion matrix parameters presented in Table 2.7. All four quadrants showcase robust values
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for the testing videos. This is also supported by the frame-wise quadruple label-based

Hamming Loss and Subset Accuracy results shown in Tables 2.5 and 2.6, respectively.

QUADRANT
METRIC TL BL BR TR
Micro-Averaged Precision 0.947 0.926 0.964 0.947
Micro-Averaged Recall 0.947 0.949 0.964 0.917
Micro-Averaged F-Score 0.947 0.937 0.964 0.932

Table 2.7: Single Quadrant-Based Label Metrics for the First Dataset

It should be noted that this algorithm was not designed for the purpose of ‘object track-

ing’, since the predicted activity levels produced by our approach do not distinguish be-

tween different types of objects or sources of motion. However, it can be observed that,

with the SMLD labels, it is possible to detect certain singular and distinct motions as an

added benefit. These motion patterns can be detected by looking at the sequence of pre-

dicted activity levels in adjacent quadrants. Most frequent motion patterns or common

trajectories in the first set of videos included cars entering the TL quadrant from the top

and driving to the BL quadrant, cars driving from the bottom of the BR quadrant to the

TR quadrant, and people walking from the BL quadrant to the TL quadrant. We tested the

ability of our proposed approach in detecting these motion patterns. By using the predicted

motion levels at each quadrant over time, for all five test videos, we were able to success-

fully detect the aforementioned inter-quadrant motions simultaneously. Specifically, the

TL to BL motion and BR to TR motion were detected 80% and 100% of the time, respec-

tively. The accuracy of detecting BL to TL motion was 66.7%. Thus, the overall weighted

accuracy for motion pattern detection is 83.3% for these three dominant trajectories/paths.

This indicates that trajectory detection is possible with the predicted levels of activity with-

out relying on object detection or tracking, when the inter-quadrant motion is distinct and

not simultaneous. This accuracy was affected by classification errors during testing, and

interference from additional intra-quadrant motions.

We also performed an experiment to investigate the ability of the proposed SMLD label-
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ing approach in detecting a trajectory of activity across several quadrants (more than two).

This would be possible by extending trajectory detection to less common inter-quadrant

motion patterns. For this experiment, we also considered motion from the TR quadrant to

the TL quadrant, an infrequent motion in the first set of testing videos. Adding this motion

pattern to the more common BR to TR motion would enable us to detect motion from the

BR quadrant up to the TL quadrant. This is still a challenging problem, since the quadrants

of interest are not void of intra-quadrant motion interference, and our algorithm does not

differentiate between different types and sources of motion within a quadrant.

As an example, based on the predicted levels of motion at different quadrants, we were

able to detect a motion pattern from the BR quadrant to the TL quadrant in one of the

test videos. By monitoring the predicted level of motion in the initial quadrant followed

by consecutive motion in the subsequent quadrant, we cascaded the two inter-quadrant

motions (BR to TR followed by TR to TL) in order to detect a trajectory from BR to TL. A

comparison of the timestamps in the test video with those produced by our pattern detection

script showed that the proposed approach was able to follow this type of trajectory of a car

(activity level = ‘1’). Table 2.8 shows the timestamps detected for the BR to TR and the

TR to TL motions. We then observed these moments in time in this test video to visualize

the significance of our results. We present snapshots from the test video at the three main

timestamps in Figures 2.7, 2.8 and 2.9. In Fig. 2.7, a car enters the BR quadrant at the

66th second. This correlates with the first detected start time for the BR quadrant seen

in Table 2.8. At the 71st second of the video (Fig. 2.8), the car leaves the TR quadrant.

Finally, the car leaving through the TL quadrant is seen at the 76th second (Fig. 2.9).

The predicted activity levels in the BR, TR and TL quadrants, which were used to detect

this pattern, are shown in Table 2.9. Looking at the highlighted ‘1’ activity levels, which

have a sequential pattern, the trajectory of the car can be followed as it travels from the

BR quadrant to the TL quadrant while crossing through the TR quadrant. As mentioned

above, our algorithm is designed to detect different levels of simultaneous motion in the
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quadrants, without distinguishing the source of motion. Other non-highlighted activity

levels in Table 2.9 correspond to different sources of motion. For instance, at the 66th

second, a person is walking in the TL quadrant, and at the 74th second, the red parked car’s

hazard lights are turned on in the BR quadrant.

Start Time End Time Start Time End Time
BR TR TR TL
66 s 71s 69 s 76 s

Table 2.8: Start and End Times of the Detected Inter-Quadrant Motions from the Test Video
of the First Set of Videos.

Figure 2.7: Snapshot from the Test Video for BR to TR Motion. A Car Enters at the 66th
Second.

Figure 2.8: Snapshot from the Test Video for BR to TR Motion. A Car Leaves the TR
Quadrant.
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Figure 2.9: Snapshot from the Test Video for TR to TL Motion. A Car Leaves the TL
Quadrant.

Time BR TR TL

66 s 1 0 1

67 s 1 0 1

68 s 1 0 1

69 s 1 1 1

70 s 0 1 0

71 s 0 1 1

72 s 0 0 1

73 s 0 0 1

74 s 1 1 1

75 s 1 1 1

76 s 1 1 1

77 s 1 1 0

Table 2.9: Activity Levels in Regions of Interest to Illustrate Detected Multi-Quadrant
Trajectory for the First Dataset
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2.5.2 Second Set of Experiments

In order to further demonstrate the effectiveness of the proposed SMLD model in detecting

different levels of activity, which happen simultaneously at different spatial locations in a

multidimensional signal, we evaluated it on another group of videos from the VIRAT Video

Dataset [51]. In these videos, a static camera provides the view of a public outdoor space.

The types of activity in these videos include motion of trees, plants and patio umbrellas

with the wind, people walking in groups and separately, and moving shadows as shown in

Fig. 2.10.

Figure 2.10: Four Quadrants Used to Set Up Labels for the Second Set of Videos.

In this case, the threshold for level ‘2’ activity was set slightly lower (to 20%) than for

the first dataset (which had the value 25%). Since the motion in this dataset does not include

larger objects such as vehicles, this adjustment to the threshold was necessary to be able to

better represent an activity level of ‘2’. For example, looking at Fig. 2.10, the bottom left

quadrant shows no activity so it would be assigned a ‘0’. The motions of individuals in the

bottom right and top right quadrants would earn them labels of ‘1’ (since the motion covers

less than 20% of the respective quadrants). In the top left quadrant, a group of people
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are walking and the trees are swaying at the same time resulting in a label of ‘2’ for that

quadrant. Putting these together, the multi-label for Fig. 2.10 is shown in Table 2.10.

LABEL #1
TL

ACTIVITY

LABEL #2
BL

ACTIVITY

LABEL #3
BR

ACTIVITY

LABEL #4
TR

ACTIVITY
2 0 1 1

Table 2.10: Example of Our Spatially and Motion Level Descriptive (SMLD) Multi-label
Schema for the Second Dataset

Initially, this second set of data included 23 videos. Similarly to the previous dataset,

we augmented the data with quadrant-wise flipped versions of the videos for label balanc-

ing purposes. In other words, the new videos were generated by flipping the individual

quadrants either horizontally or vertically as described before. Therefore, each video in the

augmented dataset was unique. This way, 5 additional videos were generated bringing the

total size of the dataset to 28 videos totaling close to 28 minutes in length. All of these

videos were manually labeled, and have been used for training and validation. Table 2.11

shows the distribution of the number of label instances for the second set of videos after

label balancing via video data augmentation.

QUADRANT
LEVEL TL BL BR TR

0 33% 32% 33% 30%
1 33% 32% 31% 40%
2 34% 36% 36% 30%

Table 2.11: Activity Level Label Distribution for the Second Dataset

The set of videos was prepared for training and validation the same way as the first set

of videos except that we had to account for a frame rate of 24 fps (instead of 30 fps as was

the case for the first set). That is why the frames were grouped in chunks of 12 frames with

a sliding window of 4 frames. The process of training and validation was identical to the

one described above. Testing was also performed on five unseen test videos taken by the

same camera.
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The results for this experiment are presented in Tables 2.12, 2.13 and 2.14. Tables

2.12 and 2.13 show the frame-wise quadruple label-based Hamming Loss and the average

Subset Accuracy, respectively. The single quadrant-wise label metrics are presented in

Table 2.14. Applied to this second dataset, our classifier made prediction errors, on average,

of about 4% of the time. The overall Subset Accuracy was close to 83% and, again, the

Micro-Averaged Precision and Recall values were above 0.9. We can therefore conclude

that the proposed method offers a promising model by providing a different approach to

multi-labeling videos.

Video 1 Video 2 Video 3 Video 4 Video 5
0.0297 0.0341 0.0473 0.0411 0.0592

Table 2.12: Average Hamming Loss Per Testing Video for the Second Dataset

Video 1 Video 2 Video 3 Video 4 Video 5
88.1% 86.4% 81.1% 83.7% 76.3%

Table 2.13: Average Subset Accuracy Per Testing Video for the Second Dataset

QUADRANT
METRIC TL BL BR TR
Micro-Averaged Precision 0.987 0.948 0.905 0.934
Micro-Averaged Recall 0.987 0.948 0.968 0.934
Micro-Averaged F-Score 0.987 0.948 0.935 0.934

Table 2.14: Quadrant-Based Metrics for the Second Dataset

Frequent paths in the second dataset included people walking from the right of the TR

quadrant to the TL quadrant as well as up and down the staircase on the left of the frames

(i.e. motion between the TL and BL quadrants). Although our algorithm was not designed

to support object tracking, by using the predicted motion levels at each quadrant over time

for all 5 test videos, we obtained promising results in monitoring the aforementioned inter-

quadrant motions simultaneously. Specifically, the TL to BL and BL to TL motions were
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detected 75% and 100% of the time, respectively. The accuracy of detecting TR to TL

motion was 87.5%. Thus, the overall weighted accuracy for motion pattern detection is

86.7% for these three dominant trajectories/paths. This indicates that trajectory detection is

possible with our proposed approach and predicted levels of activity for the second dataset

as well. This was accomplished simply through the detection of activity levels in groups of

quadrants again without relying on any kind of object detection or tracking.

As an example, based on the predicted levels of motion at different quadrants, we were

able to detect a motion pattern from the TR quadrant to the TL quadrant in one of the

test videos. By monitoring the detected level of motion in the initial quadrant followed

by consecutive motion in the subsequent quadrant, a pattern was detected. A comparison

of the timestamps in the test video with those produced by our pattern detection script

showed that the proposed approach was able to follow this type of trajectory of a person

walking (activity level = ‘1’). Table 2.15 shows the timestamps detected for the TR to

TL motion in this example. we then observed these moments in time in this test video to

visualize the significance of our results. We present snapshots from the test video at the

two timestamps in Figures 2.11 and 2.12. In Fig. 2.11, a person is seen in the TR quadrant

at the 53rd second. This correlates with the detected start time for the TR quadrant seen

in Table 2.15. At the 69th second of the video (Fig. 2.12), the person is on the way out of

the TL quadrant headed to the BL quadrant. The video ends at that point so further motion

cannot be detected.

Start Time End Time
TR TL
53 s 69 s

Table 2.15: Start and End Times of the Detected Inter-Quadrant Motion from the Test
Video of the Second Set of Videos.
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Figure 2.11: Snapshot from the Test Video for the Beginning of the TR to TL Motion. A
Person Enters at the 53rd Second.

Figure 2.12: Snapshot from the Test Video for the End of the TR to TL Motion. A Person
Leaves at the 69th Second.

2.6 Discussion

In order to show that the proposed approach can be applied to different types of spatiotem-

poral data, and illustrate the strength of this approach in providing multi-labels together

with location information, we performed an experiment with respiratory sounds. Due to

the current world health crisis that is taking place with COVID-19, we thought that it would

be timely to assess how this approach could be used to detect sounds associated with lung

disease. Using Kaggle’s Respiratory Sound Database [57], we set up our multi-labels to

detect the presence or absence of simultaneous wheezing and crackling sounds in the poste-

rior left and right parts of the lungs. The simultaneous presence of these sounds in different

parts of the lungs could be used to diagnose serious lung disease. Since we were inter-

ested in classifying an overall lung function, we chose two main regions of interest within
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the dataset. This choice supported our goal of evaluating the performance of our SMLD

multi-labeling and proposed approach on a different type of spatiotemporal data (other than

videos) without addressing the medical significance of these sounds.

Since this study only focused on the presence or absence of wheezing and crackling

sounds, the multi-labels became binary in nature. The Posterior Left (PL) and Posterior

Right (PR) lung sound clips were concatenated and labeled with sets of four multi-labels

representing PL crackling, PL wheezing, PR crackling and PR wheezing. The labels for

each side of the lungs were provided in the database. As supported by Lee et al. [58], we

used the raw waveform data instead of converting it to a spectrogram, a common prac-

tice when classifying signals in the audio domain [59], [60]. Lee et al.’s research shows

that performance is not degraded by using raw waveform data. Training and validation

were performed on a balanced label set. We compiled our classification results for com-

parison with the resulting F-scores from Kaggle’s Notebook: CNN Detection of Wheezes

and Crackles [59]. The predictions for the labels were generated independently which

means that the results would be the same were we to consider the labels concurrently or

sequentially. We were able to improve the F-Scores in all categories: absence of crack-

ling/wheezing, presence of a crackling sound, presence of a wheezing sound and presence

of both crackling and wheezing. It is important to note that our experiment is based on a

subset of the overall respiratory sounds dataset with a focus on PL and PR lung sound clips.

Also, the method presented in this Kaggle study differs from mine since a single multi-class

label is used instead of multi-labeling and the algorithm is built out of a cascade of CNNs

without any RNNs. The results showing the improvement by our method are presented in

Table 2.16.

These results further strengthen the validity of our approach. Although our labeling

technique and algorithm are unique, we were able to provide a commensurate comparison

with the results presented in Kaggle. As we have shown, detecting two different types of

patterns using lung sound clips was accomplished successfully with our approach. When
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Sound F-Score: Kaggle [59] F-Score: Our Approach
No Crackling/Wheezing 0.81 0.95
Crackling 0.70 0.91
Wheezing 0.62 0.86
Crackling & Wheezing 0.57 0.92

Table 2.16: A Comparison of F-Scores in Detecting Respiratory Sounds

using the respiratory signals as input into our model, we treated the data with labels repre-

senting two spatial groups (PL and PR). The choice in the number of regions of interest is

dependent on the information to be gathered from the spatiotemporal data. The improve-

ment in classifying a certain type of sound or a combination of sounds inspires us to further

explore this as a non-intrusive way of diagnosing lung disease in the following chapter.

Finally, the context of the spatiotemporal data is important in determining the signif-

icance of the correlations between regions of interest. For example, monitoring the path

of motion is important in surveillance videos for security reasons. Another very important

application domain, which would be well suited to this type of analysis, is in Neuroscience.

If a stimulus elicits activity in different parts of the brain, it can be assumed that these activ-

ities are correlated, and different parts of the brain can be stimulated simultaneously and/or

sequentially. The latter will be addressed in Chapter 4.

2.7 Conclusion

We have presented a novel and promising approach to detecting different levels of simulta-

neous and spatiotemporal activity in multidimensional data through the use of a new multi-

labeling technique. In this chapter, without loss of generality, we applied our proposed

approach to video data as an example, and will explore other domains in the next two chap-

ters. The success of the proposed approach, as supported by a large spectrum of robust

metric values, is encouraging in applying it to a variety of multidimensional datasets with

spatiotemporal characteristics. Moreover, the ability of mapping out trajectories without
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relying on object detection and tracking is an advantageous and preferable outcome. We

also showed that our labeling technique and classification algorithm can produce successful

classification results when applied to respiratory sounds. In the next chapter, we continue

our study of classifying respiratory sounds by expanding our use of Kaggle’s Respiratory

Sound dataset [57]. Additional sound clips captured from other parts of the lungs are to

be added with an increase in labels for our multi-labels. Also, another form of spatiotem-

poral data that we intend to apply to our method are brain data signals captured through a

non-invasive brain measurement device. The nature of brain data offers the spatiotempo-

ral data needed for the multi-label classifier outlined in this chapter. Separating the brain

activity readings into separate regions of interest, as was done via four quadrants for the

video datasets and two regions for the respiratory sound dataset, will enable us to use our

novel multi-labeling system on specific functional brain regions of interest.
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Chapter 3

Detecting Wheezes and Crackles in

Respiratory Sound Data Through

Multi-Labeling and Deep Learning

3.1 Introduction

Motivated by our continued interest in the autononous detection of concurrent activity in

several regions of interest, a study was conducted with sound recordings. The uniqueness

of this research is that, along with a novel multi-label/multi-class way of annotating the

input data, the sound recordings from the various regions of interest were given a spatial

configuration. Such a study may bring benefit to the correct interpretation of respiratory

sounds and an assessment of the severity of pulmonary disease if various regions exhibit

concurrent wheezing and crackling. Classical chest auscultation with an analog stetho-

scope has been used for the past two centuries since its invention by Rene Theophile Hyac

in the Laënnec in 1816. Correct interpretation of breathing sounds has been shown to be

dependent on the skill level and interpretation of the observer [62], [63]. A possible so-

lution would be to use an electronic stethoscope, capable of capturing digital sound data,
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in conjunction with a machine learning-based classification algorithm. Gurung et al. [64]

support the fact that computerized sound analysis may improve diagnostic accuracy when

used in conjunction with conventional chest auscultation. An improvement in diagnostic

accuracy is crucial as auditory human perception can be quite subjective. For example, a

study by Bohadana et al. [62] showed that a group of 143 healthcare professionals were

able to identify normal breath sounds correctly about 17% of the time, wheezes about 85%

of the time and crackles about 67% of the time. Similarly, Hafke-Dys et al. [65] found that

even pulmonologists, who are respiratory disease specialists, achieved an average of 20%

accuracy when identifying normal breathing sounds, an average of 62% accuracy when

identifying wheezing and an average of 41% accuracy when identifying crackling.

Since the correct recognition of breathing sounds is challenging through chest auscul-

tation with a traditional stethoscope, methods that offer improvements are sought after. As

electronic stethoscopes gain popularity with their filtering and amplification abilities, hu-

man interpretation of the sounds has not been shown to improve significantly with these

added features [66]. This could be explained by the undesirable difference in acoustic

characteristics between electronic and analog stethoscopes [150]. Nonetheless, electronic

stethoscopes offer the ability to capture sounds for automated analysis as a complement

to professional interpretation. For example, electronic stethoscopes were also used in a

small study [67] of positively-tested COVID-19 patients’ abnormal breathing sounds. Dis-

parity among the interpretation of these sounds, which included wheezing and crackling

among others, by a group of physicians supported the need for additional diagnostic tools

(i.e. signal processing) to minimize incorrect diagnoses. The use of automated analy-

sis is further reinforced in the work by Brown et al. [68], when classifying coughing and

breathing sounds from healthy, asthmatic and positively-tested COVID-19 patients. Pre-

liminary machine learning results show an Area Under the Curve (AUC) average of 80% in

distinguishing the coughing and breathing patterns of a subject infected with COVID-19.

This supports the advantage of having an automated respiratory sound analyzer as part of a
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pulmonary sound diagnosis.

Wheezing and crackling, among other adventitious sounds, are common abnormal

breathing sounds, which point to lung disease. They can be present in lung diseases such

as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. Accurate

detection of these sounds is also important for early detection of COVID-19 symptoms as-

sociated with the lungs. These sounds, whether localized to one lung (unilateral) or diffused

to both lungs (bilateral) can indicate the type of disease and its severity [69]. In addition to

listening to both lungs, a thorough examination also comprises of auscultating anterior and

posterior sides of the chest [63], [70], [71], [72].

In this chapter, we present a promising approach to detecting different types of breath-

ing sounds concurrently at various spatial locations through our novel spatiotemporal multi-

labeling technique. This type of multi-labeling does not have the spatial information that

our multi-labeling approach has. The multi-location nature of chest auscultation to capture

temporal lung sounds lends itself well to our proposed multi-labeling technique. This ap-

proach differs from traditional multi-labeling methods. In current research, multi-labeling

means that one of more descriptors (classes) can be assigned to the data in question. For

example, when classifying music genre, a musical piece might have elements of different

styles such as pop, Deep House, and Raggae groove and these classes will become the ele-

ments of its multi-label [151]. In Chapter 2, we presented a spatiotemporal multi-labeling

technique, and demonstrated promising results mainly in the classification of different lev-

els of activity at different locations of surveillance video data, and on a very small subset of

Kaggle’s Respiratory Sounds database [57] (a.k.a. the ICBHI 2017 Challenge Respiratory

Sound Database [73]). The subset of respiratory sounds included sound data from the pos-

terior lung locations only. The differences of this work from our earlier study [84] include

the following: (i) In this chapter, the Convolutional Neural Network (CNN) / Long Short

Term Memory (LSTM)-based classification algorithm is adapted to not only handle the

sound data in a raw waveform format, as in our earlier work, but also in a Mel-Spectrogram
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format; (ii) for each of Mel-Spectrogram and raw waveform formats, we trained our mod-

els with the input data formatted in a spatial, quadrant-like configuration for simultaneous

detection of abnormal lung sounds for a multi-output result, and compared the results; (iii)

We also trained models by considering the data for each auscultation site separately and

generating single output results. In the quadrant form, the four labels representing the four

auscultation sites were assigned to the input data simultaneously. In the latter, the labels

were assigned separately to each specific auscultation site’s dataset; (iv) We use a larger

set of respiratory sounds covering both posterior and anterior locations, and include four

auscultation sites in the labels instead of two; (v) We increase the number of classes so that

each label could be described with one of four sounds: normal breathing, wheezing only,

crackling only and a combination of wheezing and crackling.

As mentioned in the previous chapter, León’s research [17] influenced us in developing

this labeling approach. In this research, various regions of the brain were monitored con-

currently to detect levels of activation as a result of hand motor imagery captured with EEG

data. Detecting levels of brain activation can ultimately help disabled (paralyzed) people

interact with their environment as they think about moving fingers on their hands.

Automated spatiotemporal classification is usually associated with videos [8], [19], but

is also being adapted to sounds. Spatiotemporal sound classification examples include

geospatial sound modeling [74], audio scene detection in the realm of environmental sound

analysis [75], and heart murmur detection [76], among others [77], [78]. Multi-labeling,

also popular in videos, is commonly applied to the detection and recognition of concurrent

events. For instance, simultaneous action detection in hockey videos [23] could categorize

that various types of play in the game have taken place at the same moment. The use of

many labels for spatiotemporal data classification has also been applied to sounds. For

example, in their study, Trohidis et al. [56] assign multi-labels to music pieces which might

give rise to various emotions. Nonetheless, in these studies, the multi-labels are a set of

descriptors devoid of spatial context. For the study of sound abatement, Cartwright et
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al. [79] created a database of multi-labeled spatiotemporal data. For the latter example, the

sound tags, descriptive of urban sounds, are a set of descriptive classes based on the type

of noise. Spatial information, provided with latitude and longitude values, is provided as

a separate layer of input data. Spatial information is not ingrained in the actual labels and

how they are defined. This is what sets our multi-labeling approach apart from those found

in current research.

In our quest to classify breathing sounds, we apply this novel multi-labeling technique

by designating a label to a specific auscultation site on the chest. Then, instead of the

common multi-labeling technique of assigning a ‘0’ or a ‘1’ to each possible descriptor [37]

to indicate its absence or presence, we establish a set of classes to choose from for each

spatially descriptive label. Since we are interested in detecting wheezes and crackles, the

four classes will be based on the absence of wheezing and crackling (i.e. normal breathing)

(‘0’), the presence of wheezing only (‘1’), the presence of crackling only (‘2’), and the

presence of both wheezing and crackling (‘3’). Acharya et al. [80] also use these four

classes when detecting these two abnormal breathing sounds. However, their work differs

from mine since only one type of sound is classified at a time. This research is based on

a spatially informative set of multiple labels, which can detect abnormal breathing sounds

simultaneously in various regions of the lungs.

The goals of our proposed approach encompass incorporating a novel spatial aspect

to a multi-label in that each label gets assigned to a specific region of interest. The four

regions of interest represent four lung auscultation sites, namely Anterior Left, Posterior

Left, Anterior Right and Posterior Right. Each region is assigned a label representing one

of the four classes. The four classes correspond to four breathing sounds, namely nor-

mal, wheezing only, crackling only, and a combination of wheezing and crackling. These

multi-labels, assigned to sound data in either a raw waveform format or Mel-Spectrogram

format, help train deep learning models to detect abnormal breathing sounds. To the best

of our knowledge, this is a unique way of handling the detection of wheezing and/or crack-
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ling simultaneously in different parts of both lungs. Our multi-label and spatiotemporal

approach in labeling breathing data differs from the current state-of-the-art methods of

classifying pulmonary auditory anomalies where only one type of sound is classified at a

time [80], [81], [78], [83], [82].

Therefore, we propose an atypical but promising method of detecting wheezes and

crackles in breathing sounds with the use of multi-labels. We use the Kaggle Respiratory

Sounds database [57] (a.k.a. the ICBHI 2017 Challenge Respiratory Sound Database [73])

for our experiments. We compare our classification results from two different formats of the

same input data to published research, which uses the same database. We also discuss label

imbalance, an important consideration which becomes more prominent in multi-labeling.

The remainder of this chapter is organized as follows: The related work is discussed in

Section 3.2. The proposed approach and the network models are presented in Section 3.3.

The dataset, labeling structure and the evaluation criteria are described in Section 3.4. The

experimental results, a comparison to published research, which uses the same database,

and further analysis of our proposed method are presented in Section 3.5. The chapter is

concluded in Section 3.6.

3.2 Related Work

Adventitious sounds, which are sounds that overlay normal breathing sounds, include

wheezes and crackles. Wheezes are continuous in nature while crackles are discontin-

uous [63]. Wheezes are associated with COPD, asthma, COVID-19, and presence of a

foreign object such as a tumor. On the other hand, crackles often occur with COPD, pneu-

monia, lung fibrosis as well as COVID-19. Wheezes are characterized by a dominant

frequency of 1200 Hz and usually last about 100 ms, whereas crackles have a dominant

frequency of 500 Hz lasting about 10 ms [63], [64], [71], [125], [86], [87], [88].

Being able to detect wheezes and crackles through an automated process can assist
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in the diagnosis of the aforementioned diseases [63], [64]. The subjective interpretation of

breathing sounds and disparity in auscultation training amongst medical professionals need

to be addressed [62], [63], [65]. Attempts at improving auscultation skills through virtual

patient simulators have proven to be successful in training medical students [89], [90].

Nonetheless, having an automated process, which can support a medical diagnosis through

auscultation would be highly beneficial. Current research agrees with Gurung et al. [64],

who state that “computerized analysis of recorded lung sounds may be a promising adjunct

to chest auscultation as a diagnostic aid in both clinical and research settings”.

Various methods have been studied for the implementation of an automated diagnostic

tool in classifying abnormal breathing sounds. Using the same database as in our research,

Acharya et al. [80] use Mel-Spectograms as inputs into a deep CNN/Recurrent Neural

Network (RNN) model. An average score based on Sensitivity and Specificity for the

four classes provided by the database’s labeling system was reported as 66.38% with an

improvement to 71.81% for patient specific models. In their study, the classification pre-

diction is one label which indicates one of four possible breathing sounds. The work by

Kochetov et al. [91], which also uses the same database and its four labeled classes, ap-

plies noise masking and Mel-frequency cepstral coefficient features to train an RNN-based

model. Average Sensitivity/Specificity scores of 65.7% (based on all stethoscopes) and

67.9% (for a certain type of microphone, the AKG C417L) were reported. Perna [92], who

also uses the same database, extracted features from a Mel-Spectrogram to train a CNN-

based model. Although the results appear to be more robust, the classification categories

used in this study [92] are quite general in nature. In one case, healthy and unhealthy

sounds are sorted, and in the other case, sounds based on healthy, chronic and non-chronic

diseases are differentiated. In the first case, the reported accuracy was 83% and the F-

Score was 88%. The second case, the less general one, resulted in an accuracy of 82% and

F-Score of 84%. In these last two studies, classification is also a single-label one. Chen

et al. [125] classified three classes from the same database (normal breathing, wheezing,
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crackling) with the use of an optimized S-transform and a deep Residual Network. The

reported classification accuracy was 98.79% and the average Sensitivity/Specificity score

was 98.14%. This latter study [125] was based on a smaller set of recordings, which did

not include the combination of wheezes and crackles. Finally, Shuvo et al. [93] used hy-

brid scalograms derived from feature extractions along with a CNN model to classify three

classes (chronic, non-chronic, and healthy) of lung disease and six classes of pathological

diseases annotated in the database. An accuracy of 98.92% was reported for the former

more general classification and 98.70% for the latter more specific one. These last two

studies, unlike our approach, also classify respiratory sounds with one prediction, i.e. one

label.

The aforementioned studies are based on the conventional multi-class classification al-

gorithms using a single label to describe the type of breathing sound detected without taking

into account the location of the recorded sound. In our case, we chose four different loca-

tions for our input data. The Kaggle Respiratory Sounds database [57] (a.k.a. the ICBHI

2017 Challenge Respiratory Sound Database [73]) contains data that is recorded from dif-

ferent chest locations, namely Trachea, Anterior Left, Anterior Right, Posterior Left, Pos-

terior Right, Lateral Left, and Lateral Right. The four locations chosen for our study are:

Anterior Left (AL), Anterior Right (AR), Posterior Left (PL), and Posterior Right (PR).

Knowing the locations of wheezing and crackling sounds is very important. Finding these

sounds in two or more auscultation sites can be a sign of greater risk of advanced disease

and decreased lung function [149]. It is also important to compare the sounds produced by

one side of the lungs to the other side to be able to detect a localized abnormal sound. For

example, if a wheeze is only detected in a certain area of the lungs, it could indicate that a

foreign body such as a tumor is blocking the airway [63], [71], [86]. Also, in a study by

Zayet et al. [87], bilateral crackling sounds were found in the lungs of 24% of COVID-19

patients. This supports the significance of using multi-labels that can represent the simul-

taneous detection of normal breathing, wheezing only, crackling only, and wheezing and
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crackling in different parts of the lungs. By comparing the sounds produced in one region

and side of the lungs to other regions on the other side helps medical professionals ascertain

whether the abnormal sound is localized or widespread. They can also tailor treatments for

patients who have pre-existing lung issues with knowledge about the movement of sound

in/toward specific regions of particular interest in the lungs.

The traditional approach to multi-labeling is prevalent in classifying environmental

sounds. Environmental sounds are usually composed of simultaneous sounds from different

sources. This means that in labeling a polyphonic sound event, multiple descriptors would

be used bringing about the use of many labels. This type of labeling is useful in studying

urban noise pollution, designing smart homes and security systems [74], [79], [94], [95].

Similar multi-labeling applications but, in this case, related to the medical field include

classifying cardiac and pulmonary sounds, among others. For example, Baghel et al. [96]

detect one of five cardiac disorders with a single prediction to aid in diagnosing cardio-

vascular disease from heart sounds recorded by an electronic stethoscope. However, our

interest lies in using a spatially descriptive set of labels to detect abnormal breathing sounds

in different regions of interest simultaneously. To the best of our knowledge, designating

labels to certain spatial locations and classifying the type of sound detected at each of these

locations simultaneously sets our labeling schema apart from most research.

One approach which is closer to our method can be found in Nabi et al.’s research [97].

They present a technique of detecting asthmatic wheezing sounds in nine groups of auditory

data separately. A group represents data from a specific auscultation location and/or the

breathing phase (inspiratory/expiratory). Each group can be assigned one of three possible

classes, which describes the severity of wheezing (mild, moderate, severe). Although this

approach does have a spatial component in the way that the input data is presented, it does

not offer a simultaneous classification of breathing sounds at different spatial locations.

The classification of sounds for the groups was not handled concurrently, and the study

was not geared towards detecting the presence of wheezes in different parts of the lungs at
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the same time.

It is important to note that multi-labeling is prone to label imbalance [31]. This ap-

plies to all forms of spatiotemporal data that have been considered. In the previous chapter

which was based on activity detection from videos, we augmented our video data to in-

crease samples of minority labels by creating additional videos based on the original video

dataset through rotation of frame quadrants. An interesting augmentation technique used

by Baghel et al. [96], which was applied to cardiac audio signals, is called background

deformation. This method adds background noise to the original signal. This type of data

augmentation was also applied to pulmonary sounds to increase the number of samples of

minority classes by Basu et al. [98]. Other techniques, which have also been applied to

sounds, include assigning a greater cost to minority labels/classes during training [80].

Resampling techniques, such as random undersampling (RUS) and Synthetic Minority

Oversampling Technique (SMOTE) are also commonly considered to balance labels and

classes [92]. The use of Sensitivity (Recall) and Specificity metrics to report classification

results is also popular, since these metrics are less prone to label imbalance [80], [91], [97].

The F-Score metric is also less susceptible to class imbalance than accuracy, thus it is com-

monly used to report the success of classification in multi-labeling studies [94], [95].

3.3 Proposed Method

In this chapter, we use a multi-label vector to represent distinct spatial regions that cor-

respond to chest auscultation sites. As previously mentioned, knowing the locations of

wheezing and crackling sounds is very important. By comparing the sounds produced

on one side of the lungs to the other side helps medical professionals ascertain whether

the abnormal sound is localized or widespread. In our study, we used four auscultation

sites of interest, namely AL, AR, PL and PR shown in Fig. 3.4, to maintain label balance

when combining the pulmonary sounds from the four locations spatially and generating
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one sound file. Although more auscultation sites were available in the database, adding

more regions of interest would increase the possible number of different label vectors, and

label balance would be harder to maintain.

In our attempt at improving the classification results, we created two different models

based on different input data formats and representation. In the first case, we converted

the sound input files into spectrograms, since this is a common approach in sound data

classification [80], [81], [82], [86], [59], [60]. This offers an image-like representation of

the spectrum of frequencies contained in the sound signal over time, fitting for the CNN

part of our model. In the second case, we employed raw waveform files that we concate-

nated together to train and validate our second model. The input data, whether in a raw

waveform representation or in a Mel-Spectrogram representation was formatted in adher-

ence to custom quadrant-like configurations. A visualization of the two layouts is shown in

Fig. 3.1.

(a) Mel-Spectrogram Layout (b) Raw Waveform Layout

Figure 3.1: Visualization of Input Data Formats

In our labeling schema, each spatial region is assigned to one of four possible breathing

sounds: normal breathing, wheezing only, crackling only, and the combination of wheezing

and crackling. Our spatially descriptive multi-labels enable the recognition of concurrent

breathing sounds in different auscultation sites of the lungs simultaneously, and the identifi-

cation of different breathing sounds through a multi− class descriptor for each label. Our
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Figure 3.2: Proposed Spectrogram Model Structure

labeling schema, like traditional multi-labeling schemas, is more prone to label imbalance.

That is why we were careful to maintain labeling balance as we chose sound files for the

input data.

Since pulmonary sounds acquired through auscultation are spatiotemporal, we needed

to choose an algorithm, which handles both types of characteristics for our model design.

Our network model is based on CNN/LSTM to be able to detect the spatial and temporal

properties of breathing sounds. Our labeling structure, which will be presented in detail in

Sec. 3.4, was designed to represent different breathing sounds at different spatial locations

simultaneously. By combining the CNN and RNN, we were also able to address the issue

of label dependencies inherent to multi-labels and catch the temporal information [59], [60]

contained in sound recordings. These network models are presented in detail in the next

two subsections.

3.3.1 Network Model Using Spectrogram Input Data

The structure of the first network model, which uses both CNN and LSTM layers, quadrant

formatted Mel-Spectrogram input data and our multi-labeling schema, is shown in Fig. 3.2.

The network contains two 2D convolutional layers, each followed by max pooling and

batch normalization layers. Then, following a dropout layer, there is an LSTM layer and

a dense layer which leads to a final output layer. The parameter values shown in Fig. 3.2

were used in conjunction with an adaptive learning rate which decreased by a factor of 2
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to a minimum of 10−6. Binary cross-entropy loss and rmsprop optimization are used in

our model. Binary cross-entropy was a suitable choice, since the values used in our multi-

labeling schema are one-hot encoded. We used an adaptive learning rate and early stopping,

which monitors the validation loss. The learning rate decreases if the validation loss does

not decrease after two epochs and then, training automatically stops if the validation loss

has not been decreasing after three epochs due to early stopping. After training, we tested

our model on unseen respiratory sound spectrogram files formatted the same way as the

input data.

As seen in Fig. 3.2, the input to our proposed network model is formed like four quad-

rants, wherein top-left, top-right, bottom-left and bottom-right quadrants contain parts of

the Mel-Spectrograms of the recordings of a participant’s AL, AR, PL and PR regions of

the lungs. In other words, for each set of recordings, the Mel-Spectrogram of each region

of interest was divided up into chunks of 40 samples with a sliding window of 10 samples.

Corresponding samples from the four auscultation sites formed the quadrants for each in-

put sequence. Batches of these sequences were then used to train our network. As will be

presented in Sec. 3.5, our experimental results show that the simultaneous training of the

network and the analysis of the data from all quadrants provide better results compared to

treating each of the four parts separately and independently.

3.3.2 Model Based on Raw Waveform Input Data

The details of the second network model, which also employs a CNN/LSTM structure,

data formatted to contain raw waveform data from four regions of the lungs (AL, AR, PL,

PR), and our multi-labeling schema, are shown in Fig. 3.3. The network contains two

1D convolutional layers, each followed by a batch normalization layer. Then, following a

dropout layer, there is an LSTM layer and a dense layer which leads to a final output layer.

The parameter values shown in Fig. 3.3 were used in conjunction with an adaptive learning

rate which decreased by a factor of 2 to a minimum of 10−6. Just as in the first model,
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binary cross-entropy loss and rmsprop optimization are used. We also used the same type

of adaptive learning rate and early stopping. After training, the proposed model is tested

on unseen respiratory sound raw waveform files formatted the same way as the input data.

As seen in Fig. 3.3, the input to our proposed network model is formed to provide

a spatial format, wherein the arrangement (from left to right) contains parts of the raw

waveforms of AL, AR, PL and PR regions of the lungs for each participant. For each

recording, the raw waveform of each region of interest was divided up into chunks of

1000 samples with a sliding window of 200 samples. Corresponding chunks from the four

auscultation sites were concatenated for each input sequence. Batches of these sequences

were then used to train our network.

Figure 3.3: Proposed Raw Waveform Model

3.4 Dataset, Multi-Labeling Structure and Evaluation Cri-

teria

3.4.1 Dataset

In this study, we have used a set of sound files from the Kaggle Respiratory Sounds

database [57] (a.k.a. the ICBHI 2017 Challenge Respiratory Sound Database [73]), which

contains 920 recordings from 126 patients in Portuguese and Greek hospitals compiled in

2017. Respiratory experts annotated each breathing cycle with one of four classes: normal
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breathing, wheezing only, crackling only, and both wheezing and crackling. The record-

ings were captured with different stethoscopes and microphones. Our dataset is comprised

of the recordings captured by the AKG C417L Microphone. As suggested by Kochetov et

al. [91], we only used one type of recording source to maintain consistency. Although the

database contained recordings from seven different auscultation regions (Trachea, Anterior

Left, Anterior Right, Posterior Left, Posterior Right, Lateral Left, and Lateral Right), our

dataset was built out of four regions of interest, Anterior Left (AL), Anterior Right (AR),

Posterior Left (PL), and Posterior Right (PR). These were the locations, which were con-

sistently recorded for the majority of the patients. Many recordings were missing Trachea

and/or Lateral Lung sounds. By choosing data from these four spatial regions, we were

able to maximize the sample size of our dataset. We included very important auscultation

points and maintained a good balance between the labels’ number of classes. Each of these

four regions of interest was assigned a label and one of four possible classes.

Using samples provided for the AKG C417L Microphone (downsampled to 4 kHz),

we generated 62 input files. Out of these files, 54 were chosen for training and validation.

The rest were used for testing. We formed quadrants from the Mel-Spectrograms of the

sound recordings of the four regions of interest (AL,AR,PL,PR), and shaped the input files

as shown in Fig. 3.1(a). We concatenated the raw waveform data for the four regions

of interest as shown in Fig. 3.1(b). These regions of interest define our multi-label and

correspond to the auscultation sites shown in Fig. 3.4.

Figure 3.4: Spatial Multi-labels Correspond to Auscultation Sites: 1. Anterior Left (AL),
2. Anterior Right (AR), 3. Posterior Left (PL), 4. Posterior Right (PR) [73].

Since wheezes are characterized by a dominant frequency of 1200 Hz and crackles
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have a dominant frequency of 500 Hz, a sampling rate of 4 kHz is considered appropri-

ate [63], [64], [71], [125], [86]. The classes provided by the database for these four spatial

locations were combined to create our multi-labels. Each of the 54 input files lasted 20

seconds resulting in 18 minutes of multi-labeled respiratory data for training and valida-

tion. After training, our classifiers were then tested on the remaining 8 similarly configured

respiratory sound files that were not in the training and validation set. Results are then

compared to ground-truth labels obtained from the expertly annotated files in the database.

We used two different formats of our dataset for comparison: Mel-Spectogram and raw

waveform. For the Mel-Spectogram format, each sound waveform file from the dataset

was converted to a 2D-like image with frequencies of the signal represented as pitches

on a mel scale over time. Values were normalized during this process. With a sampling

frequency of 4 kHz, each recording included a total of 80,000 sample values. For temporal

analysis of the model, optimal results have been obtained with a chunk size of 10 ms and

a 25% overlap. Therefore, groups of 40 samples, extracted from each of the four regions

of interest, were formatted as shown in Fig. 3.1(a). The label of the middle sample in each

group at each location, i.e. the label of the twentieth sample, in this case, was used as part

of the multi-label. Our second data input format contained the raw waveform recordings

of our dataset. Values were normalized and optimal results were obtained with a window

size of 250 ms and a 20% overlap. Groups of 1000 samples, extracted from each of the

four regions of interest, were concatenated and formatted as shown in Fig. 3.1(b). The

label of the middle sample in each group, i.e. the label of the five hundredth sample in this

case, was used as part of the multi-label. In both cases, our multi-labeled data was used for

training with a batch generator. Training and validation were based on 54 input files from

the dataset. The data was split so that 80% of it was used for training while keeping the

remainder for validation.
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3.4.2 Proposed Multi-labeling Structure

For our analysis, we considered all data, whether Mel-Spectrogram quadrants or raw wave-

form data from four regions of interest, to be assigned to a multi-label which describes four

auscultation points of AL, AR, PL and PR. We then assigned each spatial region of interest

a value of ’0’, ’1’, ’2’, or ’3’ to describe four different types of breathing sounds. The

definition for each type of breathing sound that was used in our labeling schema is shown

in Table 3.1.

TYPE OF SOUND DEFINITION
0 Normal Breathing Sound
1 Wheezing Sound Only
2 Crackling Sound Only
3 Wheezing and Crackling Sounds

Table 3.1: Four Different Types of Sounds Are to Be Detected in Each of the Four Auscul-
tation Sites of Interest.

As we combined the recordings from four regions of interest (AL, AR, PL, PR) for each

input file, we combined the corresponding annotations from the database for our multi-

label. For example, suppose that for a particular second of sound recording, the AL, AR,

PL and PR regions are annotated to have wheezing (breathing type = ‘1’); normal breathing

(breathing type = ‘0’); both wheezing and crackling (breathing type = ‘3’) and crackling

(breathing type = ‘2’), respectively. The multi-label of [1, 0, 3, 2] would be assigned to the

pertinent samples of the sound recording as shown in Table 3.2.

LABEL #1
AL

Breathing Type

LABEL #2
AR

Breathing Type

LABEL #3
PL

Breathing Type

LABEL #4
PR

Breathing Type
1 0 3 2

Table 3.2: Example of Our Spatially and Breathing Type Descriptive Multi-Label Schema

For each input data format, testing was performed on 8 quadrant-configured sound files

that were not in the training and validation set. After testing, predictions were made for
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each group of Mel-Spectrogram “frames” for the first case and group of raw waveform

sound samples for the second case. Each type of breathing sound was assigned a probability

for the respective region of interest. The class of the sound (‘0’,‘1’,‘2’, or ‘3’) with the

highest prediction probability was then chosen as part of the multi-label. Since additional

labels were generated as the result of a sliding window used for the temporal analysis of our

data, the multi-label with the greatest occurrence defined the final labels for each second of

recording.

3.4.3 Evaluation Criteria

To be able to compare our results to research, which was conducted on the same database,

we report the results based on the micro metrics of Sensitivity (Recall) and Specificity [80], [125],

[91] along with F-Score and Accuracy [125], [92]. In addition, we use the measure of Ham-

ming Loss, a common metric used in multi-label research. It offers a comprehensive look

at a classifier’s prediction error [54]. Metrics for multi-label classification results can be

instance-based or label-based. An instance-based metric is based on the entire multi-label

predicted for each time period of testing data. The Hamming Loss metric falls in this cat-

egory. On the other hand, a label-based metric considers the label assigned to each region

of interest in the testing results separately. Micro-averaged Sensitivity (Recall), Specificity,

F-score and Accuracy [34], [37], [54] fall within this latter category.

i) Hamming Loss.

For each instance (in this case, one second of sound), we compared the group of four

predicted classes of sound in our multi-label with the database’s expert annotations. The

average Hamming Loss for each testing audio recording was calculated as shown in Eq.

(3.1), where S represents the number of seconds in a testing respiratory sound recording,

and pi,j and gi,j indicate the predicted type of sound and the ground truth type of sound,

respectively. Therefore, for each label within a multi-label, a mismatch is assigned a 1.

These values are then added and averaged over the product of the number of labels (4) in a
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multi-label and the time span of the recording in seconds (S).

1

4S

S∑
i=1

4∑
j=1

[if(pi,j = gi,j, 0, 1)] (3.1)

ii) Micro-Averaged Sensitivity, Specificity, F-Score and Accuracy.

In order to provide a complete set of performance criteria, we also consider label-based (i.e.

single auscultation site-based) metrics, such as Micro-averaged Sensitivity, Specificity, F-

Score and Accuracy.

Since our labels can be assigned one of four classes: ‘0’,‘1’,‘2’, or ‘3’ to represent

four types of breathing sounds, it is best to perform a micro-average of these parame-

ters. For instance, instead of taking an average of the calculated Sensitivity (Recall) for

each type of sound, we determine the overall Sensitivity (Recall) for all types of sound at

once. The calculations of Micro-Averaged Sensitivity (µA Sensitivity), Micro-Averaged

Specificity (µA Specificity), Micro-Averaged F-score (µA Fscore), and Micro-Averaged

Accuracy (µA Accuracy) are shown in Equations (3.2), (3.3), (3.4), and (3.5), respec-

tively. In the case of Micro-Averaged Specificity, since we are dealing with more than

two classes (breathing sound types), we define True Negatives by using the one against all

approach. In these equations, TPi, FPi, TNi, FNi represent the number of True Positives,

False Positives, True Negatives, False Negatives for breathing sounds i, respectively, where

i ∈ {0, 1, 2, 3}.

µA Sensitivity =

∑3
i=0(TP )i∑3

i=0((TP )i + (FN)i)
(3.2)

µA Specificity =

∑3
i=0(TN)i∑3

i=0((TN)i + (FP )i)
(3.3)
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The harmonic mean of Micro-Averaged Precision and Micro-Averaged Recall is the Micro-

Averaged F-score, which can also be calculated the following way:

µA FScore =

∑3
i=0(2 ∗ TP )i∑3

i=0((2 ∗ TP )i + (FP )i + (FN)i)
(3.4)

µA Accuracy =

∑3
i=0((TP )i + (TN)i)∑3

i=0((TP )i + (TN)i + (FP )i + (FN)i)
(3.5)

3.5 Experimental Results

We evaluated our approach on two different formats of respiratory sound data. The goal

was to detect different types of breathing sounds in four different spatial locations of lung

auscultation simultaneously. Through our novel multi-labeling schema and deep learning-

based algorithm, we built models to be able to perform automated classification of spa-

tiotemporal breathing data and determine where (within our four regions of interest) nor-

mal sound, wheezing, crackling, and/or both wheezing and crackling were exhibited at the

same time. The results of this evaluation are detailed in this section.

3.5.1 Simultaneous and Spatially Descriptive Region of Interest Anal-

ysis on Mel-Spectrogram Data

The training/validation dataset included 54 input files. The number of instances for dif-

ferent classes/breathing types, for these 54 files, was void of skew and imbalance. Each

recording lasted 20 seconds resulting in 18 minutes of multi-labeled respiratory recordings

for training and validation. Optimal results have been obtained with a window size of 10

ms and a 25% overlap. During training and validation, macro accuracy, macro F-Score and

binary cross-entropy loss were calculated at the end of each epoch for each output label.
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Training was monitored to make sure that validation loss was always smaller than training

loss to prevent any possible overfitting. Once the validation loss did not improve for three

epochs with an adaptable learning rate, training/validation would end. The final training

and validation results are shown in Tables 3.3 and 3.4, respectively.

Label Accuracy F-Score Loss
Label #1 (AL) 0.9740 0.9453 0.0670
Label #2 (AR) 0.9742 0.9670 0.0811
Label #3 (PL) 0.9728 0.9453 0.0677
Label #4 (PR) 0.9711 0.9416 0.0730

Table 3.3: Training Results on Mel-Spectrogram Data

Label Accuracy F-Score Loss
Label #1 (AL) 0.9817 0.9632 0.0473
Label #2 (AR) 0.9742 0.9482 0.0613
Label #3 (PL) 0.9802 0.9605 0.0499
Label #4 (PR) 0.9758 0.9511 0.0578

Table 3.4: Validation Results on Mel-Spectrogram Data

After training on 54 input files, the classifier is then tested on an additional 8 similarly

configured respiratory sound files captured with the AKG C417L Microphone. Results

were compared to the labels provided by the expertly annotated files in the database. We

determined the overall Hamming Loss using Eq. (3.1) by calculating the average for all

groups of four labels for the testing audio files. These results are shown in Table 3.5.

These values indicate that our classifier is capable of making correct predictions for our

multi-labels for the testing audio recordings an average of about 90% of the time.

Test
File #1

Test
File #2

Test
File #3

Test
File #4

Test
File #5

Test
File #6

Test
File #7

Test
File #8

0.1250 0.1375 0.1250 0.1125 0.0875 0.1375 0.1000 0.0875

Table 3.5: Average Hamming Loss Per Testing Respiratory Sound File for the Mel-
Spectrogram Based Model

Additional metrics, namely Micro-Averaged Sensitivity (Recall), Specificity, F-score,
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and Accuracy values, were also calculated for each quadrant. In the case of Micro-Averaged

Specificity, it is important to note that since we are dealing with more than two classes

(breathing sound types), we define TN by using the one against all approach. Our model’s

ability to predict various respiratory sound types in different spatial chest areas is based on

the compilation of our test file results for each label. Our results are presented in Table 3.6.

A discussion of these results and a comparison to our second set of experimental results

and published work that is based on the same database can be found in Sec. 3.5.5.

SPATIAL LABELS
METRIC AL AR PL PR
µA Sensitivity 0.9467 0.9467 0.8736 0.8322
µA Specificity 0.9754 0.9815 0.9563 0.9471
µA F-Score 0.9430 0.9534 0.8750 0.8478
µA Accuracy 0.9350 0.9520 0.8764 0.8750

Table 3.6: Auscultation Site-Based Label Metrics for the Mel-Spectrogram Dataset

3.5.2 Simultaneous Region of Interest Analysis on Raw Waveform Data

For the experiments with the raw waveform data, training and validation were also based on

the same 54 sets of sound recordings. Optimal results have been obtained with a window

size of 250 ms and a 20% overlap. During training and validation, macro accuracy, macro

F-Score and binary cross-entropy loss were calculated at the end of each epoch for each

output label. We also monitored training to make sure that validation loss was always

smaller than training loss to prevent any possible overfitting. Once the validation loss did

not improve for three epochs as the learning rate was adjusted, training/validation would

stop. The final training and validation results are shown in Tables 3.7 and 3.8, respectively.

Testing was performed on the same 8 sound files previously used with the Mel-Spectrogram-

based experiment but formatted according to the raw quadrant format. We determined the

average Hamming Loss using Eq. (3.1) for all groups of four labels for the testing audio
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Label Accuracy F-Score Loss
Label #1 (AL) 0.9023 0.7858 0.2306
Label #2 (AR) 0.8803 0.7533 0.2586
Label #3 (PL) 0.9067 0.8034 0.2246
Label #4 (PR) 0.8961 0.7727 0.2413

Table 3.7: Training Results on Raw Waveform Input

Label Accuracy F-Score Loss
Label #1 (AL) 0.8906 0.7640 0.1732
Label #2 (AR) 0.8841 0.7498 0.1751
Label #3 (PL) 0.8924 0.7729 0.1620
Label #4 (PR) 0.8962 0.7716 0.1457

Table 3.8: Validation Results on Raw Waveform Input

files, and the results are shown in Table 3.9. The Hamming Loss values indicate that our

classifier made incorrect predictions about 26% of the time. It is important to seek the

lowest value possible for this parameter since it would mean that the better the classifier

is at predicting the overall group of breathing sound types for the four auscultation sites

simultaneously.

Test

File #1

Test

File #2

Test

File #3

Test

File #4

Test

File #5

Test

File #6

Test

File #7

Test

File #8

0.2125 0.2125 0.2500 0.2225 0.3000 0.3250 0.2750 0.3250

Table 3.9: Average Hamming Loss Per Testing Respiratory Sound File for the Raw Wave-
form Based Model

Micro-Averaged Sensitivity (Recall), Specificity, F-score, and Accuracy values, were

also calculated for each quadrant, and are shown in Table 3.10. Our model’s ability to

predict various respiratory sound types in different spatial chest locations is based on the

compiled results of our test files for each label. We analyze these results in the following

subsections.
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SPATIAL LABELS
METRIC AL AR PL PR
µA Sensitivity 0.7692 0.7769 0.7243 0.7218
µA Specificity 0.9001 0.9119 0.8921 0.8868
µA F-Score 0.7408 0.7761 0.7092 0.7196
µA Accuracy 0.7217 0.7569 0.7246 0.7167

Table 3.10: Auscultation Site-Based Label Metrics for the Raw Waveform Format Dataset

3.5.3 Treating Each Region of Interest Separately and Independently

In order to illustrate the benefit of analyzing all four regions of interest simultaneously

and forming data as spatiotemporal, we compared the proposed multi-output spatially-

descriptive method with a single-output one. More specifically, we trained the models

by using the data for each auscultation site separately for both Mel-Spectrogram and raw

waveform data formats. In order to calculate the metrics, a “multi-label” was then formed

out of the four separate outputs obtained. In other words, we placed the individual quadrant

predictions in the same format as our true multi-label outputs (i.e. AL-AR-PL-PR), for a

commensurate comparison of results. The average quadruple-label Hamming Loss values

are shown in Tables 3.11 and 3.12 for Mel-Spectrogram and raw waveform data formats,

respectively. Based on the increase in Hamming Loss to an average above 40% for both

input data formats and comparing Tables 3.11 and 3.12 with Tables 3.5 and 3.9, it is notice-

able that there is a dependency between labels of different locations, and the original pro-

posed approach can better capture this dependency by providing a much lower Hamming

loss. The increase in Hamming Loss is also accompanied by a drop in the other metrics

(shown in Tables 3.13 and 3.14) when four regions of interest are treated separately and

independently. When the results in Tables 3.6 and 3.10 are compared to results in Tables

3.13 and 3.14, respectively, a drop is observed in the latter set of tables. Again, this drop

can be attributed to the fact that the dependency across different labels cannot be captured

when each region is treated individually, and each auscultation site was used separately to

train the neural network models with the use of a single label. Thus, the simultaneous and
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spatially descriptive analysis of the regions of interest was significantly more robust than

the independent region of interest and single output analysis, and our research shows the

benefit of using spatiotemporal data, and analyzing multiple regions concurrently with an

LSTM.

Test
#1

Test
#2

Test
#3

Test
#4

Test
#5

Test
#6

Test
#7

Test
#8

0.4000 0.3750 0.4250 0.3500 0.4625 0.35 0.375 0.4625

Table 3.11: Average Hamming Loss for the Mel-Spectrogram Based Model when Each
Region Is Treated Separately

Test
#1

Test
#2

Test
#3

Test
#4

Test
#5

Test
#6

Test
#7

Test
#8

0.3125 0.3750 0.4000 0.3125 0.3750 0.45 0.525 0.575

Table 3.12: Average Hamming for the Raw Waveform Based Model when Each Region Is
Treated Separately

SPATIAL LABELS
METRIC AL AR PL PR
µA Sensitivity 0.6888 0.6414 0.5776 0.7242
µA Specificity 0.8724 0.8748 0.8219 0.9080
µA F-Score 0.6953 0.6559 0.5904 0.7719
µA Accuracy 0.6590 0.6455 0.5786 0.7250

Table 3.13: Auscultation Site-Based Label Metrics for the Mel-Spectrogram Model when
Each Region Is Treated Separately

SPATIAL LABELS
METRIC AL AR PL PR
µA Sensitivity 0.5570 0.6956 0.6277 0.6575
µA Specificity 0.8310 0.8584 0.8008 0.8763
µA F-Score 0.5839 0.6910 0.6384 0.6886
µA Accuracy 0.5439 0.6012 0.5813 0.6324

Table 3.14: Auscultation Site-Based Label Metrics for the Raw Waveform Model when
Each Region Is Treated Separately
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3.5.4 Analysis of Correctly Labeling Two Regions of Interest

Even though the Hamming loss provides a statistical way of representing the extent of mis-

labeling that occurs within a predicted multi-label, it does not specify which regions are

correctly classified at the same time. We performed further analysis and experiments to

evaluate the accuracy of correctly classifying two lung regions at the same time. Similar

to the analysis above, we performed a comparison between the proposed spatiotemporal

multi-labeling approach, and classifying each region separately on Mel-Spectrogram data.

Tables 3.15 and 3.16 show the average accuracy of correctly classifying two lung regions

(AL&AR, PL&PR, AR&PR, AL&PL, AL&PR and AR&PL) at the same time with our

original approach and independent region analysis, respectively. As can be seen, the accu-

racy values are significantly higher when multiple lung regions are analyzed simultaneously

with our original proposed approach. Moreover, the accuracy values for correctly labeling

AR&PR and AL&PL at the same time are the highest in Table 3.15 indicating the model’s

ability to detect a stronger correlation for simultaneous analysis of recordings from the

same sides of the lungs.

Quadrants AL&AR PL&PR AR&PR AL&PL AL&PR AR&PL
Average
Accuracy 0.74 0.7 0.86 0.79 0.74 0.78

Table 3.15: Accuracy of Classifying Two Lung Regions at the Same Time by Using Mel-
Spectrograms with Proposed Approach

Quadrants AL&AR PL&PR AR&PR AL&PL AL&PR AR&PL
Average
Accuracy 0.25 0.45 0.35 0.31 0.42 0.35

Table 3.16: Accuracy of Classifying Two Lung Regions at the Same Time by Using Mel-
Spectrograms and Analyzing each Region Separately
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3.5.5 Further Discussion of Results

Although training and validation metrics were robust for both types of simultaneous region

of interest/spatially descriptive input data, the Mel-Spectrogram format provided better

classification results on test data. More specifically, the Mel Spectrogram-based Hamming

Loss shows that, on average, our classifier made incorrect predictions for our multi-labels

about 10% of the time, whereas the raw waveform-based Hamming Loss almost tripled

to approximately 26%. This trend was further supported by all the other metrics. Micro-

Averaged Sensitivity (Recall) was greater than 0.90 for all four spatially-labeled locations

for the Mel-Spectrogram sound format as compared to a range of values between 0.72

and 0.78 for the raw waveform input format. Micro-Averaged Specificity, F-Score, and

Accuracy also showed better results for the Mel-Spectrogram format, as seen in Table 3.6 in

comparison to Table 3.10. Thus, our results support the use of Mel-Spectrogram input data

with deep learning in classifying sound recordings. This is further supported by Becker et

al. [99], who obtained a higher accuracy with spectrogram-based data than raw waveform-

based data when classifying audio signals of spoken digits (0-9) in English. Xie et al. [100]

also confirmed that the Mel-Spectrogram is the best type of spectrogram to use with a CNN

model when classifying bird sounds.

Although the sound recordings of the database were described to be noisy by Rocha et

al. [73], our proposed method was successful at classifying four different types of sounds

at four different chest auscultation locations simultaneously. Our multi-labeling and simul-

taneous region analysis technique is unique and offers a spatial aspect to our multi-labels.

For existing studies, which have used the same database, the approaches consist of using

a single label, which gets assigned a class or a group of classes provided by the annota-

tions from the database. Most studies focused on a smaller number of classes, and have

not addressed the spatial aspect as mentioned above, For instance, the results by Perna [92]

were based on generalized categories of healthy and unhealthy sounds in one case, and then

healthy, chronic and nonchronic diseases in the other case. Accuracy of 83% and F-Score of
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88% for the former case, and accuracy of 82% and F-Score of 84% for the latter case were

presented, which are lower than the results we obtained with the Mel-Spectrogram format,

as we achieved an average accuracy of 91% and an average F-Score of 90%. Since the

categories (classes) for our multi-labels were specific to the ones provided by the database

and not generalized into broader groups, our results can be considered more robust. Chen

et al. [125] focused on three classes of the same database (normal breathing, wheezing,

crackling) with the use of an optimized S-transform and a deep Residual Network. The

reported classification accuracy was 98.79% and the average Sensitivity/Specificity score

was 98.14%. Despite the good performance, the type of classification that was performed

is also less specific than mine. Firstly, the class of combined wheezing and crackling

sounds was not included. Secondly, their results were based on the detection of a par-

ticular sound excluding any spatial auscultation site information. Acharya et al. [80] and

Kochetov et al. [91] used all four types of breathing sounds. The best reported averages

of Sensitivity/Specificity scores were 71.81% and 67.9%, respectively. Our simultaneous

and spatially descriptive analysis of regions of interest with Mel-Spectrogram data out-

performs these numbers achieving average scores of 90% and 97%, respectively. Finally,

Shuvo et al. [93], achieved exceptional results in classifying the data into both broad lung

disease categories (chronic, non-chronic, and healthy) and specific pulmonary disease cat-

egories with 98.9% and 98.7% accuracies, respectively. Similarly to previously mentioned

research, these categories do not offer a snapshot view of specific types of sounds at dif-

ferent spatial locations, as provided by our model. The classification is not as complex as

ours.

Our proposed approach uses LSTM, which is a modified RNN known for its ability to

detect label dependencies [101], [43], [102]. The results in Table 3.15 show that the use

of our simultaneous and spatially descriptive multi-labeling schema, in conjunction with

LSTM, can learn the dependencies across different regions of interest well.
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3.6 Conclusion

In this chapter, we have shown that our approach of multi-labeling spatiotemporal data

to detect different classes in several regions of interest simultaneously, can be applied to

autonomously detect different types of breathing sounds ((normal, wheezing only, crack-

ling only, wheezing and crackling) in audio recordings. Our multi-labels represented four

auscultation sites (AL, PL, AR and PR). We presented a CNN and LSTM-based network

to classify the pulmonary sounds spatially. We used Mel-Spectrograms as well as raw

waveforms to represent the audio data, and compared their performances when using our

multi-labeling approach. Moreover, we compared the performance of our approach, which

analyzes four regions of interest simultaneously, with that of treating each region sepa-

rately and independently. Our results support the use of simultaneous and spatially de-

scriptive Mel-Spectrogram input data and labels with deep learning in classifying sound

recordings with an average Hamming Loss of 0.10, and average F-Score of 0.90. It was

reported that the diagnosis of normal breathing sounds through classical auscultation has

an accuracy of about 20% [62], [65]. Our optimal average accuracy for sound type ’0’

(normal breathing) after testing was 84.8%. Although wheezing and crackling detection,

with a diagnosis based on the use of a conventional stethoscope, had higher accuracy values

of 85% and 67%, an automated classification of recordings of these sounds would still be

beneficial. Our model would offer an accuracy of 88.8% for detecting wheezing (sound

type ’1’) and 86.7% for detecting crackling (sound type ’2’). Another possible applica-

tion of our proposed method is to create an automated tool for detecting various patterns

and coughs related to the onset of COVID-19 symptoms. Creating an application which

can offer monitoring of breathing sounds can aid in determining the correct moment to of-

fer medical intervention [103], [53]. Finally, autonomous detection of different types of

breathing sounds in various chest locations concurrently can offer an improved assessment

of the locality, severity and progression of pulmonary disease.
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Chapter 4

Classification of fNIRS Finger Tapping

Data with Multi-Labeling and Deep

Learning

4.1 Introduction

The study of brain activation in Human Computer Interaction (HCI) and Brain-Computer

Interfacing (BCI) lends itself well to the importance of detecting concurrent reactions to

stimuli in several regions of interest. Motivated by making a contribution to HCI/BCI

research, our novel multi-label/multi-class way of annotating input data is applied to Func-

tional Near Infrared Spectroscopy (fNIRS) data. Making strides in the advancement of

machines as an aid to people with disabilities and for rehabilitation drives us to continue

applying our novel classification method, as described in Chapters 2 and 3, to another form

of spatiotemporal data, channel readings from fNIRS probes. Gathering brain data through

non-intrusive mediums along with finding robust ways of interpreting the data have been

an integral part of this research. For instance, through image processing, a nose tracking

cursor and an eye gazing interface give people with impaired motor function the ability
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to communicate with others [119], [105]. In another work, a classification model was pre-

sented based on the use of Electroencephalogram (EEG) data to distinguish between mental

counting and wrist rotations [106]. EEG data was also used by León [17] as she classified

combinations of hand and feet movement imagery for robotic arm control. Other examples

include utilizing a hybrid set of data such as a combination of EEG and fNIRS to detect

different types of motor imagery. Such experiments included classifying the motor imagery

related to the force and speed of right hand clenching [108] and motor imagery of left and

right hand grasping [109]. Another area of interest in HCI/BCI is to explore the separate

ability of fNIRS signals to represent movement and imagery. Three right foot soccer play-

ing motion imageries (i.e. passing, stopping, shooting) were classified by Li et al. [107]

with an average accuracy of approximately 79%. Right thumb and little finger physical

tapping were distinguished with a validation accuracy of 97.17% by Woo et al. [110]. All

the aforementioned studies offer ways of helping those who have compromised motor abil-

ities by providing a possible means of communication with the outside world. Moreover,

by increasing our knowledge of the brain and how to best capture and classify its signals

gives hope to those who suffer from locked-in syndrome.

Functional magnetic resonance imaging (fMRI) represents the gold standard for brain

measurement in cases where it is possible to place participants in the fMRI magnet with

minimal motion permitted. Although fNIRS cannot measure deep brain structures like

fMRI, it can take comparable measurements of hemodynamic responses across the brain

cortex, and it can do so in naturalistic real-world environments due to portability, ease

of set up, and decreased sensitivity to a subject’s motion [111]. Thus, fNIRS could be a

suitable device for BCI applications, where target users can wear the non-invasive device

in their naturalistic environments. The motion sensitivity of fNIRS sensors is also smaller

than that of EEG sensors and fNIRS can provide greater spatial resolution [112]. Although

its acquisition of neural information is restricted to 1 cm below the surface of the brain,

fNIRS has been a popular way of collecting brain data signals as it is capable of capturing
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hemodynamic information in a non-restrictive and practical way while providing ample

spatial and temporal resolutions.

The classification of finger tapping activities with the use of fNIRS data is a popular

area of research [112], [113]. Finding a suitable interpretation of data collected by fNIRS

sensors as it relates to a subject’s physical or mental activity is key to making the data useful

for HCI/BCI. In this chapter, we propose an approach that aims at capturing the spatiotem-

poral nature of the fNIRS data with a robust deep learning algorithm, which combines a

Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). Moreover,

assigning labels to the data which represent the spatial nature of the probe configuration

can yield information about the location of activation. Therefore, by handling the readings

acquired by the fNIRS probe channels similar to video frames, we can apply our novel

multi-label/multi-class deep learning classifier, first introduced to detect different activity

levels in various regions of interest simultaneously in video data [84]. In this case, finger

tapping data would be formatted to represent two regions of interest in the brain, namely,

the left and right motor cortices. Channel readings, based on the corresponding probe lo-

cation, would be formatted to represent these two sides of the brain.

The data used in this study was collected at a University in the Western United States.

The dataset contains 51 trials of index finger tappings from the right and left hands at two

different frequencies. Each trial included sequences of both index fingers tapping at the

same frequencies, single index finger tappings and rest periods. The different levels of

finger tapping frequency (rest, 80 bpm, and 120 bpm) lend themselves well to a multi-class

labeling scheme. Then, applying our novel spatial multi-labeling technique of designating

two labels to the two sides of the brain, each of which is assigned a finger tapping frequency

level, classification would be based on a multi-label/multi-class schema. This is a novel

approach to multi-labeling since in most studies, binary labels are used for the presence (1)

or absence (0) of each class in a multi-label [23], [79]. In these cases, the multi-label does

not provide spatial information the way that our schema does.
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We propose a unique and promising approach to classifying various frequency levels

of index finger tapping simultaneously with the use of a multi-label/multi-class labeling

schema. Our novel multi-labeling approach provides a concurrent detection of different

levels of brain activation in the two sides of the brain.

The spatiotemporal nature of the fNIRS signal acquired during finger tapping trials

is captured during the training and validation of a Convolutional LSTM model. Differ-

ent from our previous work described in Chapters 2 and 3, which focuses on video and

recorded sound data, in this work (i) the labels are assigned to fNIRS data formatted to rep-

resent the probe configuration for the two sides of the brain; (ii) we employ and generate

Shapley Additive Explanation values [138] to help explain the spatial characteristics of our

Convolutional LSTM model; (iii) we plot the Shapley values on an image-like background,

which represents the fNIRS channel layout used as data input. Applying Shapley values

is notable as it can be used to view the structure of deep learning models (and these deep

learning ’black boxes’ can often be difficult to interpret) and to show the regions of the

brain that were most important for different model predictions. Finger tapping has been

heavily studied in the brain measurement domain, and there are known brain activations in

the contralateral primary motor cortices, based on which finger is being tapped (left finger

activates right primary motor cortex, and vice versa). We use our Shapley values to show

that the most predictive channels in our deep learning model align with known spatial char-

acteristics of the brain during finger tapping. By using our model explainability techniques

on a benchmark finger tapping task, we demonstrate the potential of applying this approach

to more complex classification tasks (e.g. classifying types of workload or emotional states

from fNIRS data), where the use of Shapley values can help to explain the model, while

also having the potential to add to the field of cognitive neuroscience, whereby complex

interactions between interconnected brain regions could be identified with an explainability

technique.

The organization of this chapter is as follows: We discuss related work in Section 4.2.
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We then describe our network model and illustrate the formatting of our dataset, and label-

ing structure in Section 4.3. We present our experimental results along with further analysis

of our proposed method with Shapley Additive Explanations (SHAP) values in Section 4.4.

We then conclude the chapter in Section 4.5.

4.2 Related Work

Finger tapping abilities have been studied as a way of determining the progression of

Parkinson’s Disease [114], [115]. Similarly, other neuromuscular disabilities caused by

cerebral palsy and stroke can be better understood with finger tapping exercises [116], [117].

This means that studying the relationship between the brain and finger tapping motions can

contribute towards an improved understanding of neuromuscular impairment. Furthermore,

by acquiring brain data signals non-intrusively during finger tapping exercises and building

a robust classification model, can aid in the fields of HCI and BCI for people with com-

promised motor function. Training BCI applications on real, or imagined, finger tapping

motions has been heavily studied in part because finger tapping has been found to result

in consistent patterns of activation in brain areas involved in motor function. Specifically,

right finger tapping shows reliable activation in the left primary motor cortex, and vice

versa. Tapping both fingers simultaneously will result in both left and right primary cor-

tices being activated (amongst a host of other regions that are implicated in the execution

of motor function) [17], [152]. The study outlined in this paper leverages these known

correlations between finger tapping and left/right primary cortices, which can be readily

measured with the fNIRS modality.

The classification of brain signals which show greatest activation during finger tapping

motions, can also lead to establishing a brain mapping based on sensor locations [119]

thereby assisting in motor skill rehabilitation [118]. Moreover, the study of finger tapping

motor imagery is instrumental in the fields of HCI/BCI [122], [123]. Correctly classifying
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brain signals retrieved during motor imagery can provide a means for locked-in patients to

communicate with their environments. Since fNIRS signals evoked during finger tapping

imagery and execution are correlated [120], [124], an improvement in the interpretation of

data collected during finger tapping movement can bring insight into its mental visualiza-

tion.

Research based on fNIRS has gained popularity over the last several years [125], [126].

Compared to other neuroimaging technologies, such as fMRI and MEG, fNIRS is adapt-

able to real-world environments due to its portability and ease of use. Compared to EEG

signals, fNIRS signals are less susceptible to motion artifact and provide a greater spatial

resolution. The acquisition of fNIRS signals is non-intrusive. Using optical wavelengths

between 650 nm and 1000 nm produced by the emitter probes, the detector probes de-

tect the reflected light due to changes in oxygenated (OXY) and deoxygenated (DEOXY)

hemoglobin concentrations at the cerebral cortex. The changes in hemoglobin oxygenation

are a result of neural activity elicited by stimuli.

The study of neural activation due to finger tapping using fNIRS signals has shown

interesting results. Bak et al. [127] performed a binary classification of left index finger

tapping versus right index finger tapping with an SVM model and obtained an average ac-

curacy of about 83%. Woo et al. [110] used a deep convolutional generative neural network

to augment their data and trained a CNN model which produced accuracy results of 92.42%

and 97.17% for thumb tapping and little finger tapping classifications, respectively. Nazeer

et al. [121] used vector-based phase analysis features and a Linear Discriminant Analysis

(LDA) model to distinguish left index finger tapping from right index finger tapping and

also these two finger tappings from rest. The results, based on a sample size of 7 were

98.7% for the two-class distinction and 85.4% for the three-class distinction. Siddique

et al. [128] used a Bayesian Neural Network to discern left index and right index finger

tappings and obtained an average classification accuracy of 86.44% for 30 volunteers.

It is difficult to compare the results of the aforementioned studies since different mod-
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els were used and different finger tapping exercises were conducted. All were based on

fNIRS data and reported classification accuracies are robust. However, the disadvantage

of using shallow learning (i.e. SVM, LDA) is the need to choose features that best fit the

nature of the data. Nazeer et al. [121] reported robust classifications results with LDA but

with a very small sample size of 7 subjects. Woo et al. [110] reported their robust results

based on a slightly larger sample size of 11 subjects but with a deep learning CNN model.

The latter study along with research by Trakoolwilaiwan et al. [129] and Wickramaratne at

al. [130] have demonstrated that the CNN-based algorithm is suitable for learning patterns

in raw fNIRS data, thereby eliminating the need for generating handcrafted features. Ad-

ditionally, recent research has been conducted to support the use of LSTM networks in the

classification of fNIRS data [131], [132]. Although the data was not finger tapping related,

improvements in classification results were shown as the algorithm was able to capture the

temporal characteristics of the data.

The monitoring of simultaneous activity based on spatiotemporal data has been studied

for a variety of applications. For example, a Convolutional LSTM was used to predict the

simultaneous demands of different modes of transportation in an urban environment [142].

Also, using magnetoencephalography (MEG) and SVM, four types of simultaneous bilat-

eral hand movements were classified with average accuracies of 75% and 70% for phys-

ical and imagined movements, respectively [141]. Classification of concurrent events of-

fers a snapshot view of the output states through time providing additional information

related to the correlation of these actions. For example, this provides a means of explor-

ing the neural correlates of finger tapping performed by fingers on different hands. Our

interest in detecting simultaneous activity in spatiotemporal data necessitates the use of

multi-labels. Multi-labeling has been used in video and other spatiotemporal data classi-

fication [31], [43]. However, most multi-labeling schemas in current research are based

on selecting one of more descriptors (classes) and then referring to them as a multi-label.

For example, the multi-labels in the YouTube-8M database [133] are annotations which
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describe the contents of the video. Similarly, in combating noise pollution, environmental

sounds, including simultaneous sounds from different sources, are tagged, thereby form-

ing the multi-labels [79]. In the medical field, multi-labels have been used in classifying

motor execution and imagery. For example, Olsson et al. [134] classified compound hand

movements based on high density surface electromyography (HD-sEMG) recordings using

a series of labels that describe the basic movements (i.e.: individual finger movements)

needed to attain the final compound movement (i.e.: fist). Therefore, the basic movements

defined the individual labels which were used to build the multi-labels. Also, León [17]

used multi-labels to represent different combinations of hand and feet motor imagery cap-

tured by EEG data. One of the labels would be assigned a ‘1’ based on the motion(s)

detected and all other labels would then receive a ‘0’. The previously mentioned examples

utilize a pool of classes to choose from in building multi-labels. This approach is a com-

mon type of multi-label/multi-class schema, To the best of our knowledge, the spatially

descriptive multi-label/multi-class approach that we employ in our research has not been

attempted. In our case, the labels represent spatial regions of interest. Each region of in-

terest gets assigned one of many classes depending on the activity level in the area that is

monitored.

Ensuring that labels are balanced is important to avoid classification skew which can

impact results. Multi-labeling can magnify the problem of label imbalance [31]. Data

augmentation is a technique which increases the number of samples, and helps balance la-

bels [110], [135]. For example, when classifying different levels of activity in surveillance

videos [84], as described in Chapter 2, we augmented the video data by creating additional

videos based on our original video dataset through rotation of frame quadrants to increase

samples of minority labels. Additionally, another approach to label and class balancing is to

use resampling techniques, such as Random Undersampling (RUS) and Synthetic Minority

Oversampling Technique (SMOTE). SMOTENN [137], an interesting balancing technique,

combines both oversampling and undersampling. More specifically, it combines SMOTE
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oversampling (for the minority classes) with Edited Nearest Neighbors undersampling (for

the majority classes). This balancing technique is utilized in our proposed method.

4.3 Proposed Method

By considering the two sides of the brain as the two regions of interest, it is important to

visualize the fNIRS probe layout used in this study which is shown in Fig. 4.1.

Figure 4.1: fNIRS Probe Layout, with Regions on the Left and Right Primary Motor Cortex
Covered

Paying attention to the channels in between the sources (in red) and detectors (in blue),

the OXY and DEOXY data channels in the fNIRS readings were separated into the two

sections of interest, namely, left primary motor cortex and right primary motor cortex.

Then, the channels in each respective region were rearranged to reflect the proximity of

detectors to the sources. The final configuration is shown in Table 4.1.
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LEFT MOTOR CORTEX RIGHT MOTOR CORTEX
CH 1 CH 14 CH 20 CH 6 CH 11 CH 24 CH 45 CH 31 CH 27 CH 40 CH 42 CH 28
CH 2 CH 15 CH 17 CH 3 CH 16 CH 23 CH 44 CH 30 CH 34 CH 47 CH 36 CH 29
CH 7 CH 21 CH 9 CH 4 CH 18 CH 12 CH 38 CH 25 CH 37 CH 48 CH 35 CH 41

CH 13 CH 22 CH 8 CH 5 CH 19 CH 10 CH 32 CH 26 CH 39 CH 46 CH 33 CH 43

Table 4.1: Channel Order Format To Reflect Probe Configuration in the Left and Right
Regions of Interest

The two distinct spatial regions each correspond to a label assigned to an index finger

as part of our multi-label. With this set-up, we are able to determine the types of activation

taking place in each side of the brain simultaneously during index finger tappings.

In our labeling schema, each spatial region corresponds to an index finger which gets

assigned one of three possible finger tapping frequencies: rest, 80 bpm, and 120 bpm.

Our spatially descriptive multi-labels enable the recognition of concurrent finger tappings

by the right and left index fingers simultaneously, and the identification of different rates

of tapping through a multi − class descriptor for each label. Our labeling schema, like

most multi-labeling schemas, is more prone to label imbalance. That is why we chose

SMOTENN, which uses hybrid oversampling/undersampling, to balance our labels. The

effect of SMOTENN on the class sample distributions for our two labels is shown in Table

4.2.

Before SMOTENN Label #1 Label #2
Class ’0’ 45.9% 47.1%
Class ’1’ 27.2% 26.3%
Class ’2’ 26.8% 26.6%
After SMOTENN
Class ’0’ 34.5% 33.8%
Class ’1’ 32.9% 32.5%
Class ’2’ 32.6% 33.7%

Table 4.2: Class distribution before and after label balancing with SMOTENN

Our network model, dataset and the labeling structure are described in detail in the

following subsections.
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4.3.1 Network Model

Since the fNIRS signals acquired during index finger tappings are spatiotemporal, we chose

to base our network model on a Convolutional LSTM to be able to detect the spatial and

temporal properties of the data. The structure of our network model is shown in Fig. 4.2.

The fNIRS input data is formatted into two regions of interest and labeled with our multi-

labels. The network contains two 2D convolutional layers, with the first followed by a max

pooling layer. Then, following a dropout layer, there is an LSTM layer and a dense layer

which leads to a final output layer. An adaptive learning rate which decreased by a factor

of 2 to a minimum of 10−6 was used along with binary cross-entropy loss and rmsprop

optimization. The adaptive learning rate and early stopping monitor validation loss so

that adjustments are made to the learning rate if the validation loss does not decrease after

two epochs and consequently, training automatically stops if the validation loss has stopped

decreasing after three epochs. After training, the model was tested on unseen fNIRS finger

tapping .csv files formatted the same way as our input data (detailed next).

As illustrated in Fig. 4.2, the input to our proposed network model is formatted into

two sections, wherein the left and right include the channels which capture the changes

in hemoglobin concentrations for the left and right motor cortices for each participant.

Specifically, the channels for each region of interest, with a rearranged channel order that

conforms to the probe layout, were grouped into chunks of 50 samples with a sliding win-

dow of 10 samples. Batches of these groups were then used to train and validate the model.

4.3.2 Dataset

Our fNIRS data in this study was collected with a NIRx NirsSport2 device at a sampling

rate of 10.2 Hz. We used the standard NIRX montage that covers the right and left primary

motor cortices, and changes in hemoglobin concentrations were recorded by the Aurora

fNIRS software. Data was bandpass filtered from 0.01 Hz and 0.5 Hz to remove noise. The

modified Beer-Lambert Law was applied to convert the light intensities into data repre-
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Figure 4.2: Proposed Deep Learning Model Structure

sentative of relative change in OXY and DEOXY hemoglobin. Z-score normalization was

applied to each channel. For each sample (OXY and DEOXY), the channels belonging to

the left motor cortex of the brain were rearranged and reshaped to correspond to the probe

layout. Subsequently, after the channels for the right motor cortex were formatted accord-

ingly, the two sets of data were concatenated as illustrated in Table 4.1. The final format

of the comma-separated values (.csv) data files included a layer of 4x12 channel-ordered

OXY data followed by a layer of 4x12 channel-ordered DEOXY data.

Each file included sequences of the following finger tapping combinations: both index

fingers at rest; one index finger at rest and the other tapping at either 80 bpm or 120 bpm,

both index fingers tapping at 80 bpm, and both index fingers tapping at 120 bpm. Therefore,

there were seven possible multi-labels. Using two labels to spatially represent the left and

right motor cortices, one of three classes characterizing the tapping frequency was assigned

to each label. The SMOTENN [137] label balancing algorithm, a combination of SMOTE

oversampling (for the minority classes) and Edited Nearest Neighbors undersampling (for

the majority classes) was applied to the training and validation data before samples were

grouped in sets of 50 with a sliding window of 10 samples. During the grouping process,
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the label of the middle sample in each group at each location (region of interest), i.e. the

label of the twenty-fifth sample, in this case, was used as part of the multi-label. With a total

of 51 finger tapping data files, we randomly chose 46 files for training and validation. We

used 80% of the 46 files for training, and kept the remainder for validation. The remaining

5 unseen finger tapping files were then used for testing. This process was repeated seven

times for cross-validation.

4.3.3 Proposed Multi-Labeling Structure

Given two spatial regions of interest, namely, the left and right motor cortices, we estab-

lished a novel approach to multi-labeling. Due to the contralateral relationship between

an index finger’s tapping motion and motor cortex activation [153], the left index finger

was assigned a label which represents the right motor cortex. The right index finger was

assigned a label that represents the left motor cortex. The three tapping frequencies in our

data were rest, represented with a ‘0’, 80 bpm, represented with a ‘1’, and 120 bpm, repre-

sented with a ‘2’. The definition for each type of finger tapping frequency that was used in

our labeling schema is shown in Table 4.3.

LEVEL OF TAPPING DEFINITION
0 Rest (No Tapping)
1 Index Finger Tapping at 80 bpm
2 Index Finger Tapping at 120 bpm

Table 4.3: Three Different Types of Finger Tapping Frequencies Are to Be Detected in
Each of the Two Sides of the Brain.

As we rearranged and reshaped the fNIRS data into our two regions of interest (left

and right) for each input file (for both OXY and DEOXY layers), we combined the corre-

sponding labels (left index finger and right index finger) for our multi-labels. For example,

suppose that for a particular sample of finger tapping data, the right and left regions of the

brain are labeled to have left index finger tapping at 120 bpm (level of tapping = ‘2’); and
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right index finger tapping is at rest (level of tapping = ‘0’), respectively. The multi-label of

[2, 0] would be assigned to the pertinent sample of fNIRS data as shown in Table 4.4.

LABEL #1
Left Index Finger
Level of Tapping

LABEL #2
Right Index Finger
Level of Tapping

2 0

Table 4.4: Example of Our Spatially and Tapping-Level Descriptive Multi-Label Schema

The finger tapping combinations in the fNIRS database resulted in seven possible multi-

labels, namely, [0, 0], [0, 1], [0, 2], [1, 0], [2, 0], [1, 1], and [2, 2]. For each cross-validation

run, testing was performed on the 5 finger tapping files that were not in the training and

validation set. After testing, predictions were made and each type of finger tapping level

was assigned a probability for the respective region of interest. The class of the finger

tapping frequency (‘0’, ‘1’, or ‘2’) with the highest probability was then chosen as part of

the predicted multi-label.

4.3.4 Evaluation Criteria

We report our results based on the micro metrics of F-Score and Accuracy. Addition-

ally, we use the measure of Hamming Loss, a common metric used in multi-label research.

Hamming Loss offers an overall look at a classifier’s prediction error [54]. It is an instance-

based metric since it is based on the entire multi-label prediction for each time period of

testing data. On the other hand, micro-averaged F-Score and Accuracy are label-based

metrics since the label assigned to each region of interest in the testing results is considered

separately [34], [37], [54].

i) Hamming Loss.

For each instance, we compared the group of two predicted classes of finger tapping in our

multi-label with the ground truth label assignments. The average Hamming Loss for each
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testing finger tapping trial was calculated as shown in Eq. (4.1), where S represents the

number of seconds in a testing finger tapping trial, and pi,j and gi,j indicate the predicted

level of tapping and the ground truth level of tapping, respectively. Therefore, for each

label within a multi-label, a mismatch is assigned a 1. These values are then added and

averaged over the product of the number of labels (2) in a multi-label and the time span of

the recording in seconds (S).

1

2S

S∑
i=1

2∑
j=1

[if(pi,j = gi,j, 0, 1)] (4.1)

ii) Micro-Averaged F-Score and Accuracy.

In order to provide a complete set of performance criteria, we also consider label-based

(i.e. single side of the brain) metrics, such as Micro-averaged F-Score and Accuracy.

Since our labels can be assigned one of three classes (‘0’, ‘1’, or ‘2’) to represent

three levels of finger tapping frequency, it is best to perform a micro-average of these pa-

rameters. For instance, instead of taking an average of the calculated Accuracy for each

level of finger tapping, we determine the overall Accuracy for all levels of tapping at once.

The calculations of Micro-Averaged F-score (µA Fscore), and Micro-Averaged Accuracy

(µA Accuracy) are shown in Equations (4.2), and (4.3), respectively.

µA FScore =

∑2
i=0(2 ∗ TP )i∑2

i=0((2 ∗ TP )i + (FP )i + (FN)i)
(4.2)

µA Accuracy =

∑2
i=0((TP )i + (TN)i)∑2

i=0((TP )i + (TN)i + (FP )i + (FN)i)
(4.3)
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4.4 Experimental Results

Our goal was to detect different levels of finger tapping in two different spatial sides of the

brain simultaneously. Through our novel multi-labeling schema and deep learning-based

algorithm, we built a model to be able to perform automated classification of spatiotemporal

finger tapping data and determine the simultaneous types of tapping taking place by both

index fingers. The training/validation dataset included 46 fNIRS data files based on finger

tapping trials. Since the SMOTENN algorithm was applied to this data, the number of

instances for different classes, was void of skew and imbalance. After label balancing,

approximately 200 minutes of multi-labeled fNIRS finger tapping data was available for

training and validation. Optimal results have been obtained with a window size of 5 seconds

and a 20% overlap. During training and validation, we monitored training to make sure that

validation loss was always smaller than training loss to prevent any possible overfitting.

Once the validation loss did not improve for three epochs with an adaptable learning rate,

training/validation would end.

After training on 46 trials of fNIRS data, the classifier is then tested on an additional 5

similarly configured finger tapping files captured with the NIRx NirsSport2 device. Results

were compared to the database’s ground truth label annotations. We determined the overall

Hamming Loss using Eq.(4.1) by calculating the average for all groups of two labels for the

5 testing finger tapping files. We cross-validated our model seven times and our results are

shown in Table 4.5. These values indicate that our classifier is capable of making correct

predictions for our multi-labels for the testing finger tapping data an average of about 80%

of the time.

Additional metrics, namely Micro-Averaged F-Score, and Accuracy values, were also

calculated for each region of interest (i.e. side of the brain). Results are presented in

Table 4.6. A discussion of these results can be found in Sec. 4.4.2.
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Cross-Validation
Run 1 2 3 4 5 6 7

Average
Hamming Loss 0.185 0.209 0.235 0.217 0.161 0.211 0.188

Table 4.5: Average Hamming Loss of 5 Testing fNIRS Finger Tapping Files for 7 Cross-
Validation Runs

Cross -
Validation

Micro-Averaged
F-Score

Micro-Averaged
Accuracy

Run # Label #1 Label #2 Label #1 Label #2
1 0.819 0.823 0.810 0.818
2 0.803 0.787 0.790 0.786
3 0.775 0.748 0.750 0.752
4 0.793 0.819 0.804 0.812
5 0.838 0.839 0.829 0.841
6 0.760 0.783 0.765 0.759
7 0.827 0.803 0.814 0.811

Average 0.802 0.800 0.796 0.797

Table 4.6: Right (Label #1) and Left (Label #2) Sides of the Brain Average Label Metrics
for the 5 Testing fNIRS Finger Tapping Files for 7 Cross-Validation Runs

4.4.1 Visualizing Our Proposed Method with SHAP

Motivated by our promising Hamming Loss, Micro-Averaged F-Score and Micro-Averaged

Accuracy values, our next goal was to gain a further understanding of our network model

with Shapley Additive Explanations (SHAP) values. SHAP, with its basis in game the-

ory [138], is a way of illustrating model interpretation by assigning impact values on

learned features (in the case of deep learning) as they relate to a model’s predictions

[139], [140]. Using the deep explainer which is specialized for neural network models,

we generated the SHAP values to visualize how our model handles the channel readings

when making predictions. The SHAP values represent a channel’s marginal contribution to

the output class predictions.

For example, for the prediction of [0,0], meaning that both the left and right index

fingers are at rest, the SHAP values show that the channels on the right side (top right) and
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also left side (bottom left) have the highest impact values for ‘0’ (rest). Using the channel

layout illustrated in Table 4.1 as the background, the channels with the greatest positive

effect on the classification result are coded in the brightest color of red in Fig. 4.3.

Figure 4.3: SHAP Values for Multi-Label [0,0]

A large body of research has found that real, or imagined, finger tapping has reliably

been found to activate the primary motor cortex. Tapping the right finger activates the left

primary motor cortex, and vice versa for the left finger. Tapping of both fingers has been

found then to activate both regions simultaneously [17], [152].

When comparing these SHAP values to the channel layout in Table 4.1, the specific

channels with the largest positive impact can be located in this table. This is shown in

Fig. 4.4.

Figure 4.4: Mapping SHAP Values to Specific Channels for [0,0]
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Therefore, this allows a visualization of the channels with the highest positive predic-

tion impact on the actual probe layout as shown in Fig. 4.5.

Figure 4.5: Highlighting Channels with Highest Positive SHAP Values on Probe Layout
for [0,0]

Subsequently, the SHAP values for the multi-labels [0,1] and [0.2] are shown in Fig. 4.6

and Fig. 4.7, respectively.

Figure 4.6: SHAP Values for Multi-Label [0,1]
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Figure 4.7: SHAP Values for Multi-Label [0,2]

In Fig. 4.6, the multi-label [0,1] represents the simultaneous motion of the right index

finger tapping at 80 bpm while the left index finger is at rest. Similarly, in Fig. 4.7, the

multi-label [0,2] represents the left index finger at rest while the right index finger is tapping

at 120 bpm. In both results, as expected, a greater number of positive SHAP values are

shown in the right side channels for a prediction of ‘0’ for Label #1. The second label

shows the brightest positive SHAP values in the left side channels for predictions of ‘1’

and ‘2’ for multi-labels [0,1] and [0,2], respectively. It is interesting to note the difference

in scale between Fig. 4.6 and Fig. 4.7 which seems to indicate that the activation levels for

the simultaneous detection of an index finger at rest while the other one is tapping at 80

bpm is lower than when the tapping is at a higher rate, 120 bpm.

A similar difference in scale persists when comparing the SHAP values for the multi-

labels [1,0] and [2,0] are shown in Fig. 4.8 and Fig. 4.9, respectively.

Figure 4.8: SHAP Values for Multi-Label [1,0]
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Figure 4.9: SHAP Values for Multi-Label [2,0]

In Fig. 4.8, the left finger is tapping at 80 bpm while the right finger is at rest. In

Fig. 4.9, the left finger is tapping at the higher rate, 120 bpm, and the right finger is at rest.

Corresponding channels from the two sides of the motor cortex show the brightest SHAP

values, as expected.

Finally, the SHAP values for the multi-labels which represent both index fingers tapping

at the same rate, namely [1,1] and [2,2], are shown in Fig. 4.10 and Fig. 4.11, respectively.

As anticipated, simultaneous activation is seen in the channels representing both sides of

the motor cortex for the same classes in the two figures.

Figure 4.10: SHAP Values for Multi-Label [1,1]
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Figure 4.11: SHAP Values for Multi-Label [2,2]

Overall, the SHAP values support the well-established contralateral correlation between

the sides of motor cortex activation and finger tapping hand [153]. Also, higher levels of

activation are exhibited when one finger is at rest and the other finger is tapping at a class

level of ‘2’ as compared to a class level of ‘1’ as seen in Fig. 4.6 through Fig. 4.9. The

smaller scale for the resulting 80 bpm SHAP values (Fig. 4.6 & Fig. 4.8) as compared to

the 120 bpm (Fig. 4.7 & Fig. 4.9) supports this. Therefore, this study reinforces the use of

SHAP values as a way of understanding a deep learning “black box” model. The locations

of the brighest positive SHAP values provide an affirmative backing of León’s [17] state-

ment that: “During the preparation of a motor task certain cortical and subcortical regions

are activated; contrarily, in the course of motor imageries most of the activity is found

within the primary motor cortex over the corresponding contralateral hemisphere.”

4.4.2 Further Discussion of Results

We have presented the predictions for all seven of our multi-labels using SHAP values and

was able to demonstrate that the positive impact values (in red) were located in correspond-

ing sides of the brain. For example, the SHAP values for the multi-label [2,0] are showing

the highest activation on the right motor cortex for class ‘2’ and left motor cortex for class

‘0’. These map correctly to the left index finger tapping label of ‘2’ and the right index

finger tapping label of ‘0’. This supports our model’s weight assignments for the learned
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features after it completes training and validation.

Our Hamming Loss results show that on average, for the 5 testing files and seven cross-

validation runs, correct predictions were made 80% of the time. The corresponding micro-

averaged F-score and accuracy were also close to 80% in both cases. This outcome is

similar to the accuracy obtained by Bak et al. [127] who obtained an average accuracy of

about 83% when classifying fNIRS data based on left index finger tapping versus right

index finger tapping with an SVM model. However, their model was meant to distinguish

between the two types of tapping separately and not simultaneously, as in our approach

with a multi-label. Moreover, classification was binary and not multi-class. Another study

as reported by Woo et al. [110] showed that augmentation followed by training a CNN

model resulted in classification results of 92.42% and 97.17% for thumb tapping and little

finger tapping, respectively. These results are based on a simpler classification than ours.

Once again, a binary classifier was used to distinguish the tappings of two different fingers

but, in this case, the fingers were on the same hand. Nazeer et al. [121] used a very small

sample size of 7 subjects in support of classification accuracy results of 98.7% when dis-

tinguishing right index finger tapping from left index finger tapping and 85.4% when also

including the state of rest. The latter result is closer to our approach since it comprises of

classifying right index finger tapping, left index finger tapping, and rest. However, it does

not include different tapping frequencies and multi-labels. Similarly, Siddique et al. [128]

discerned left index and right index finger tappings using a binary classifier and obtained

an average classification accuracy of 86.44%. In general, it is non-commensurate to com-

pare our accuracy results to the aforementioned research since the models in question were

performing binary and single label types of classifications.

Our proposed approach introduces a novel spatial multi-labeling schema which uses

two labels to represent the two sides of the brain. As both labels are classified simultane-

ously, one of three finger tapping frequencies can be assigned to each label. As the SHAP

values illustrate, our model is able to learn the correct features of the fNIRS data which
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contribute to the class predictions of our multi-labels. Finally, our multi-labeling classifi-

cation was able to benefit from the use of the LSTM, known for its ability to detect label

dependencies [101], [43], [102].

4.5 Conclusion

Providing a means of communicating with the outside world for those who have compro-

mised motor function has played an important role in HCI/BCI research. Gaining a better

understanding of how to capture the information in fNIRS brain signals to autonomously

detect different levels of simultaneous index finger tapping frequencies can contribute to

this endeavor. We have presented a promising approach to multi-labeling spatiotemporal

data to detect different classes in two regions of interest concurrently. In this case, we

have applied our approach to detect three different levels (rest, 80 bpm, and 120 bpm) of

finger tapping for both index fingers at the same time. The spatial aspect of our fNIRS

data, formatted to reflect probe layout, is captured with CNNs and the temporal one is

captured with an LSTM. Our novel multi-labeling technique enables us to classify activity

on both sides of the brain simultaneously with our network. Our network’s SHAP values

support its ability to choose appropriate spatial features (which importantly aligns with the

known spatial characteristics of finger tapping on the primary motor cortex) when mak-

ing predictions. By using Shapley’s model explainability technique on these benchmark

finger tapping tasks, we demonstrate the potential of applying this approach to more com-

plex classification tasks (e.g. classifying types of workload or emotional states from fNIRS

data), where the use of Shapley values can help to explain the model, while also having the

potential to add to the field of cognitive neuroscience. There is a need in the AI domain to

build transparent and explainable AI, and with this paper we demonstrate one way that this

can be done for deep learning on high density fNIRS data.
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Chapter 5

Conclusion and Future Work

What began as an interest in finding ways of classifying emotions with webcam video

footage and then fNIRS data, developed into researching how to optimize models, which

detect simultaneous activity in different regions of interest in different kinds of spatiotem-

poral data. In Chapter 2, the data was a set of two types of surveillance videos. Video

frames were treated as having four regions of interest (i.e. quadrants) and different levels

of activity were to be monitored in these quadrants simultaneously. In order to accomplish

this, a novel multi-labeling/multi-class system was developed and a model based on a Con-

vLSTM was designed. In Chapter 3, the spatiotemporal data was sound data, specifically,

respiratory sound recordings from different auscultation sites. The sites defined the regions

of interest/multi-labels and four contrasting types of sounds were classified simultaneously

with a model based on a combination of CNN and LSTM. Finally, in Chapter 4, we cir-

cled back to working with fNIRS data. In this case, the spatiotemporal data due to finger

tapping stimuli was to be classified to detect the rates of tapping of the two index fingers

concurrently. The regions of interest were the two sides of the brain and the model was a

CNN/LSTM one.

At the core of this research, spatiotemporal data was handled spatially through multi-

labeling. The number of regions of interest (i.e. labels) was defined based on the chosen
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spatial resolution and characteristics of the dataset. For example, surveillance video frames

were labeled according to a four quadrant resolution. This was a fitting choice because

there were four main entry/exit points in the videos. Also, a group of four labels was

used to represent the respiratory sound recordings in four auscultation sites. Making the

choice of using the data from four sites was mostly based on maintaining a well-balanced

dataset. Adding additional data from other ausculation sites and increasing the number of

labels would have introduced unwanted skew. Similarly, using two labels to represent the

two sides of the brain’s motor cortex was the appropriate resolution for the fNIRS finger

tapping data. Therefore, the number of regions of interest and multi-labels in our approach

can be adapted to best suit the context of the spatiotemporal data. Also, when applicable,

data was to be reformatted to fit the desired spatial structure.

Another aspect of our approach, which can be adjusted to befit the setting of a spa-

tiotemporal dataset, is the number of possible classes to be defined. In the case of surveil-

lance videos, since three different levels of activity are to be detected in four spatial quad-

rants in Chapter 2, three classes are defined to represent these levels. Likewise, to depict

three types of abnormal breathing sounds and healthy breathing, four classes are designated

in the classification of respiratory sounds in Chapter 3. Finally, in Chapter 4, three finger

tapping rates necessitated the use of three classes. In all three studies, it was imperative to

maintain label/class balance for optimal classification performance. In the first study, cus-

tom data augmentation was performed by rotating and flipping frame quadrants to increase

the number of samples which included minority classes. In the second study, the data

selected from the Kaggle Respiratory Sounds database [57] (a.k.a. the ICBHI 2017 Chal-

lenge Respiratory Sound Database [73]) resulted in a balanced dataset. In the third case,

SMOTENN, an algorithm based on a combination of SMOTE oversampling and Edited

Nearest Neighbors undersampling, was applied to finger tapping dataset.

All three studies produced simultaneous classification predictions of class assignments

for the multi-label outputs. The network models, deep in nature, had varying hyperparam-
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eters to adapt to the characteristics of the spatiotemporal datasets. The core structure of

the first network was a ConvLSTM. The basis of the other two networks were separate

CNN and LSTM layers. These slightly different structures were determined empirically

with respect to training and validation accuracy and F-Score measures. The ConvLSTM,

which embeds convolutional operators within an LSTM cell, has been successfully used

for action recognition/detection in videos [143], [144], [145]. This supports our promis-

ing results for the detection of different levels of activity in videos as reported in Chap-

ter 2. The decisions to use CNN/LSTM structures for the studies described in Chapters

3 and 4 were also based on the success of training and validation results. In general,

cascades of CNN(s) and LSTM(s) are well suited for audio and fNIRS signal classifica-

tion [146], [147], [130], [148]. Therefore, the decision to use ConvLSTM or a sequence of

CNN(s) and LSTM(s) is dependent on how well the model is able to learn the important

characteristics of the spatiotemporal data as it goes through training and validation. This is

ultimately determined by whether the internal convolutions embedded in the LSTM cells

(ConvLSTM) are able to catch the spatial features of the data while working on extract-

ing the temporal features or whether handling these two processes independently conforms

better to the data.

The novel approach introduced in this research can be adapted to many types of spa-

tiotemporal data. A spatially descriptive multi-labeling schema is suitable for applications

which benefit from having the ability to detect different levels and types of simultaneous

activity. In the first study with videos, the advantage of this type of classification could

be seen in security-type systems. Being able to spatially detect different levels of activity

concurrently can also be applied to the medical field whereby autonomous classification of

various types of abnormal respiratory or heart sounds can assist in the determination of the

severity of disease. Finally, simultaneous detection of varied levels of activity in different

regions of the brain can aid in finding the neural correlation between the stimulus and how

the brain responds to it. Our research can bring benefit to many different types of fields.
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Domain experts in security systems, pulmonology along with other medical fields, and neu-

roscience can specify a preferred number of regions of interest and classes and a customized

model can be developed. Our approach can offer further insight into the implications of de-

tecting simultaneous activation in the brain for the neuroscience field. Likewise, providing

impactful diagnostic techniques by being able to classify different types of sounds in the

lungs or other organ simultaneously could make a contribution to the medical field.

Future work is planned for further exploration into applying this approach to other

spatiotemporal datasets. For example, it will be interesting to continue the analysis of

sound data but, in this case, cardiac sounds, to classify different types of murmurs which

may be difficult to detect through traditional auscultation. Also, the approach presented in

this research would be suitable for the investigation of how to determine different cognitive

load levels based on fNIRS data gathered while volunteers perform various mental tasks.
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