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Abstract 

 Bone is a highly complex and organized tissue that is composed of an abundance of cells 

including the osteocyte. While it is known that osteocytes are responsible for the control of the 

bone remodeling process and the maintenance of calcium (Ca2+) homeostasis using their network 

of gap junction connections, their complete role is not yet fully understood. It is also known that 

various bone related diseases as well as cancer demonstrate an alteration of Ca2+ homeostasis 

during the progression of the disease. Previous researchers have combined computational 

modeling with experimental studies to gain a better understanding of cell-to-cell Ca2+ signaling 

within the osteocyte network in hopes of developing new diagnostic and therapeutic methods for 

bone related diseases. In this work, we connect and expand previously developed computational 

models of Ca2+ propagation within cell populations with the goal to gain more insight of cell-to-

cell signaling amongst in vitro osteocyte network cultures that mimic their native environment. 

Our work demonstrates that unique signal response patterns displayed amongst osteocyte 

networks are attributed to varying specific kinetic parameters. We were also able to determine 

the arrangement of two connected osteocytes with differing signal response patterns from our 

experimental studies using our computational model. The insight of osteocyte heterogeneity 

gained can contribute to future efforts to develop diagnostic and therapeutic treatments for bone 

related diseases and cancer.  
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CHAPTER 1 



1 

 

Introduction 

 

1.1 An Overview of Bone and Osteocytes 

1.1.1 The composition and function of bone 

 Bone is a highly complex and organized tissue that is composed of an abundance of cells 

and blood vessels. The self-repairing ability of bone assists in the preservation of the structure 

and homeostasis of the human body (Tresguerres et al, 2020). The maintenance of bone 

throughout life is controlled by remodeling, a process where bone absorption is implemented by 

osteoclasts and is followed by bone formation implemented by osteoblasts. To initiate the 

process of remodeling, osteoclasts and osteoblasts require direct communication with the most 

abundant cell type found in bone, osteocytes (Chen et al, 2015).  

Representing more than 90% of all bone cells in adults, osteocytes are found within the 

mineralized bone matrix. Although they are descendants of mesenchymal stem cells through 

osteoblast differentiation, osteoblasts are known to have a lifespan of only a few months while 

osteocytes can have a lifespan of up to several decades. Osteocytes are provided with oxygen and 

nutrients from the periosteocytic fluid that surrounds its cell body (Tate et al, 2004). This 

periosteocytic fluid also promotes communication by allowing mechanobiological, biochemical, 

and electromechanical signals to reach osteocytes. Osteocytes are also surrounded with a 

mineralized extracellular matrix (ECM), a fiber matrix composed of proteoglycans and other 

molecules that supports osteocytes in sensing mechanical stimuli (Schneider et al, 2010). 

Osteocytes are embedded in small chambers known as lacuna and are interconnected in a 

three-dimensional layout through thin canals known as canaliculi (see Figure 1.1). The canaliculi 

also establish a connection between osteocytes and the bone surface as well as the vasculature 
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within bone. Due to this network structure, it is believed that one of the osteocytes main 

functions is to respond to mechanical stimuli by sending signals to osteoclasts and osteoblasts 

that initiate the remodeling process (Schneider et al, 2010). While it is known that the shear 

stress produced by blood flow through the bone vasculature is not the same as the shear stress 

experienced by the osteocyte network, the complete mechanism of signaling amongst the 

osteocyte network is not yet fully understood and is still being investigated. 

 

 

 

 

Figure 1.1: Osteocyte lacuno canalicular 

system. An osteocyte is embedded within the 

lacuna and interconnects with other osteocytes 

as well as surface osteoblasts through narrow 

tunnels referred to as canaliculi (Tiede-Lewis 

et al, 2019). 

 

 

1.1.2  The role of osteocytes in bone and non-bone disease 

In the study of osteocytes, it has been reported that these cells produce various proteins 

and growth factors that contribute to maintaining a healthy bone biology. Similarly, it has been 

found that the disruption of the osteocytes' ability to produce these proteins and growth factors 

are a direct cause to the development of many bone diseases (Pathak et al, 2020). Osteoporosis, a 

disease characterized by a decrease in bone mass and the microstructural deterioration of bone 

tissue, is suspected to be caused by an imbalance in the osteocytes ability to conduct the 
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remodeling process (Chen et al, 2015). Previously it has been shown that osteocytes largely 

develop the “Senescence Associated Secretory Phenotype (SASP)” while aging which is 

suspected to contribute to age related bone loss (Bonewald, 2019). Studies have revealed that an 

increase in micropetrosis, a term describing the filling of the lacunae with minerals after 

osteocyte death creating a “living fossil”, can be seen in older patients (Bell et al, 2008). 

Recently, it has been shown that skeletal irregularities can be seen in patients suffering 

from chronic kidney disease. Patients can experience a range of difficulties such as fractures and 

calcification of soft tissues. These irregularities are suspected to be caused by the elevated 

secretion of fibroblast growth factor 23 (FGF23) by osteocytes and have come to be known as 

chronic kidney disease – mineral bone disorder (CKD-MBD) (Misof et al, 2019). Elevated 

FGF23 from osteocytes has also been linked to increased risk of heart disease as well as impaired 

vascular function (Bonewald, 2019). Additionally, aberrations of calcium (Ca2+) signaling seen in 

osteocytes have been connected to bone malfunction (Rubin et al, 2006). Thus, gaining a more 

complete understanding of osteocytes would help in the search for treatments of these various 

diseases. 

1.1.3  Intercellular Ca2+ signaling in osteocytes 

It is widely known that Ca2+ is a crucial signaling molecule found in cells. Many cell 

functions such as secretion, motility, protein synthesis, apoptosis and more can be attributed to 

Ca2+ homeostasis (Corbett et al, 2000). In addition to skeletal remodeling, Osteocytes are 

believed to be the regulators of phosphate and Ca2+ homeostasis (Bonewald, 2011). Osteocytes 

are connected by gap junctions, channels that allow direct cell-to-cell communication by passage 

of small molecules such as Ca2+ (Tresguerres et al, 2020). Studies have shown that osteocytes are 

also able to perform gap junctional intercellular communication with osteoblasts. A unique 
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feature of intracellular Ca2+ signaling typically seen in a number of tissues, including bone, is a 

variety of oscillatory behavior. These dynamic oscillations of intracellular Ca2+ signaling have 

been proven to occur in osteoblasts and osteocytes in live and intact bone (Ishiharaet al, 2012). 

However, a complete understanding of the full dynamics of intracellular Ca2+ in living bone has 

not yet been established.  

1.2 Using Computational Modeling to Study Ca2+ Signaling and Osteocytes 

Calcium signaling has been used previously to study osteocyte communication due to its 

importance as an omnipresent signaling molecule (Jing et al 2014). Scientific models can be 

defined as simplified representations of an experiment which is why they have continuously been 

used in conjunction with these studies. Recent studies have demonstrated with the help of 

computational modeling that Ca2+ signals can oscillate from cell-to-cell both in vivo and in vitro. 

It was also demonstrated that upon coupling through gap junctions, hepatocytes will then 

synchronize oscillated Ca2+ signals (Verma et al, 2016). Similarly, with the use of computational 

modeling, Edwards et al. were able to confirm that intercellular Ca2+ signaling in glial cells are 

propagated through two regenerative pathways, intercellular 1, 4, 5-inositol triphosphate (IP3) 

transfer through gap junctions and extracellular diffusion of adenosine triphosphate (ATP).  It 

was determined that both signaling pathways are necessary to accurately mimic experimental 

results (Edwards et al, 2010).  

Calcium signaling has also been known to play an important role in the development of 

resistance to cancer therapies (Bong et al, 2018). Studies have demonstrated altered intercellular 

Ca2+ in cancer cells that is thought to be involved in tumor initiation, progression, and metastasis. 

This discovery has resulted in including targeting Ca2+ signaling in the research for cancer 

therapies as a potential diagnostic marker, a key clinical need (Cui et al, 2017). The investigation 
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of Ca2+ oscillations has typically been associated with mathematical modelling since its start. 

Due to this, an abundance of knowledge regarding intercellular Ca2+ dynamics has been gained 

over the past years (Schuster et al, 2002). However, there are major obstacles in Ca2+ signaling 

models that still remain, such as matching experimental results exactly with simulations, making 

any attempts of follow-up studies increasingly difficult (Feig et al, 2016). This also includes 

being able to accurately represent the spatial and temporal dynamics within cellular networks 

(Jing et al, 2013). 

1.3 Thesis Overview 

Since researchers have experienced difficulties in studying real-time Ca2+ signaling of 

osteocytes within opaque mineralized bone, a range of in vitro experiments and computational 

models have been developed. A large portion of studies conducted that focus primarily on Ca2+ 

signaling have often used computational and mathematical modeling to obtain insights into the 

underlying mechanisms of self-organized systems composed of cell types such as those in the 

liver, skin, muscle, brain, and bone (Edwards et al, 2010; Kobayashi et al, 2016). Throughout 

these studies, it has been determined that the intercellular Ca2+ waves observed in various cell 

types can result in different mathematical models whilst maintaining similar fundamentals (Yang, 

2006).  Although it is widely known that Ca2+ acts as a signaling agent for a wide range of 

cellular activities amongst these various cell types, the exact function of Ca2+ oscillations and 

transport in regard to intercellular communications and synchronization while under local 

stimulus is not yet fully understood (Yang, 2006). Previous computational models have mainly 

focused on the synchronization of Ca2+ oscillations and not on the heterogeneity of Ca2+ 

signaling within cell networks. 
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This thesis focuses on connecting and extending previous computational models as a tool 

in combination with experimental studies to further investigate the aspects of osteocyte 

communication and gain insight into how spatial organization of intercellular signaling 

components regulate Ca2+ signal propagation as well as generate a vast amount of experimentally 

testable hypotheses. Here we aim to mimic our lab’s simplified experimental design of the 

complex osteocyte network in a computational model. We observed various signal response 

types within the osteocyte network and were able to associate them with specific kinetic 

parameters. We were also able to identify which signal propagation patterns corresponded to 

specific orders of response type connections. The results demonstrated in this thesis allowed us 

to gain insight into cell-to-cell variability in calcium signaling responses and a better 

understanding of Ca2+ signaling heterogeneity within osteocyte networks. 

 

CHAPTER 2 

Model Description 

 

2.1 Computational model of Ca2+ dynamics in cultured osteocytes 

In the current chapter, we discuss the developed mathematical model for Ca2+ signaling in 

osteocytes after mechanical stimulation. This computational model has been developed to mimic 

the experimental setup designed by Kairui Zhang from the Soman Lab with the goal of obtaining 

new insights into interconnected osteocyte signaling. The experimental setup is composed of an 

in vitro hydrogel microchip model intended to replicate the in vivo conditions of bone.  To mimic 

the fluid-induced mechanical forces experienced by osteocytes embedded within mineralized 

bone matrix, a network of the widely used cell-line MLO-Y4 was confined underneath a 
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hydrogel matrix and exposed to defined stimulation using a flow chamber. Osteocyte networks 

were subjected to flow-induced shear stresses and Ca2+ signaling propagation was monitored in 

real-time using fluorescence staining (see Figure 2.1). Experimental results were used to validate 

the modelling results described below. 

 

Figure 2.1: Schematic of 

experimental setup for Ca2+ 

signaling in osteocyte cultures. An 

interconnected MLO-Y4 cell network 

is confined under Gel MA on top of a 

hydrogel microchip. Located on 

either side of the microchip there is a 

channel used to create flow-induced 

shear stresses to stimulate the 

network. 

 

Our computational model is based on a combination of previously proposed models of 

Ca2+ dynamics. Recent investigations into Ca2+ signal propagation at the cellular level revealed 

that in many cases the transmission of Ca2+ waves can occur in two modes of communication; 

the first being through IP3 exchange during gap junction coupling and the second being through 

extracellular diffusion of adenosine triphosphate (ATP) (Edwards et al, 2010; Osipchuk et al, 

1992; Decrock et al, 2017, MacDonald et al; 2008). Therefore, our methods include a simplified 

module for IP3 formation and Ca2+ fluxes of a single cell, a mass transfer function to introduce 

gap junction coupling, and a function demonstrating Ca2+ signaling through extracellular ATP 

transmission (Verma, 2019; Rivet, 2010; Edwards, 2007; MacDonald, 2017). In our 
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computational simulation, the first osteocyte in a chain of N osteocytes is identified as the 

“Mechanically Stimulated Cell” and will be stimulated by shear stress allowing the signal to 

generate. All osteocytes following the first osteocyte are identified as “Chain Stimulation Cells” 

and will propagate the generated signal through IP3 and ATP transmission from the cell located 

before its own placement (see Figure 2.2). 

 

Figure 2.2: Schematic demonstrating entire Ca2+ signaling computational model for multiple osteocytes 

connected via gap junctions.  

2.1.1 IP3 formation and Ca2+ fluxes 

We expanded a previously developed computational model for Ca2+ signaling in a single 

T cell which consists of a simplified model for IP3 formation through phosphoinositide 

phospholipase C (PLC-γ) activation and tracks Ca2+ fluxes in the endoplasmic reticulum (ER), 

mitochondria, and cytosol (Rivet, 2010). The ligand activated PLC-γ then cleaves 

phosphatidylinositol 4,5-bisphosphate (PIP2) to generate IP3. To mimic our experimental design 

of mechanical stimulation, PLC-γ is instead activated by the force applied from fluid shear stress, 

(F), via tyrosine phosphorylation (PTK) (Lui, 2018; McGarry, 2004). The produced IP3 then 
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binds to the IP3 receptor (IP3R) and triggers the release of ER stored Ca2+ (JIP3). The ER Ca2+ 

sensor, STIM1, is triggered and then signals the interface between the ER and plasma membrane 

which then activates the CRAC channels to establish a longer lasting sustained influx of Ca2+ to 

the cytosol from extracellular space (Jcrac) (Kniss, 2016). Calcium is then pumped out to the 

extracellular space while maintaining the concentration gradient between the cytosol and the 

cellular environment (Jpmca). The pump on the ER membrane (SERCA pump) then drives Ca2+ 

from the cytosol into the ER. The mitochondria uptakes (Jmitin) and then releases (Jmitout) Ca2+ 

back into the cytosol (see Figure 2.3). These Ca2+ kinetics can be represented using the following 

equation: 

𝑑𝐶𝑎𝑐𝑦𝑡

𝑑𝑡
= 𝛽𝑖((𝐽𝐼𝑃3 − 𝐽𝑠𝑒𝑟𝑐𝑎 + 𝐽𝐸𝑅𝑙𝑒𝑎𝑘) + (𝐽𝑚𝑖𝑡𝑖𝑛 − 𝐽𝑚𝑖𝑡𝑜𝑢𝑡) + (𝐽𝑐𝑟𝑎𝑐 − 𝐽𝑝𝑚𝑐𝑎 + 𝐽𝑃𝑀𝑙𝑒𝑎𝑘))       (2-1) 

where 𝛽
𝑖
 represents the ratio of free to total Ca2+ in the cytosol. It is assumed that the ratio 𝛽𝑖 

does not fluctuate with time. 

 

Figure 2.3: Schematic demonstrating the Ca2+ signaling computational model of a single cell.  
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PLC-γ activation: The initiation of Ca2+ signaling begins with the formation of IP3 caused by the 

phosphorylation of PLC-γ. PLC-γ activation is modeled as a simple mass kinetic: 

𝑑𝑃𝐿𝐶𝛾

𝑑𝑡
= −𝑘𝑃𝐿𝐶𝑎𝑐𝑡 ⋅ 𝐹 − 𝑘𝑃𝐿𝐶𝑑𝑒𝑎𝑐𝑡 ⋅ 𝑃𝐿𝐶𝛾                                                                                 (2-2) 

𝐹 = 𝜏 × 𝐴𝑠                                                                                                                                 (2-3) 

where F represents the force applied to the cell from fluid shear stress, 𝛕, distributed over the cell 

surface area exposed to fluid flow, 𝐴𝑠, 𝑘𝑃𝐿𝐶𝑎𝑐𝑡 represents the rate constant for PLC-γ 

phosphorylation, and 𝑘𝑃𝐿𝐶𝑑𝑒𝑎𝑐𝑡 represents the rate constant for PLC-γ dephosphorylation. Due to 

the random seeding of the osteocytes underneath GelMa, 𝐴𝑠 of the cells experiencing shear stress 

along the microfluidic channel is assumed to be half of the cell diameter (CS).  

IP3 production: The production of IP3 is related to the phosphorylation of PLC-γ as well as the 

levels of Ca2+ in the cytoplasm: 

𝑑𝐼𝑃3

𝑑𝑡
= 𝑘𝐼𝑃3𝑝𝑟𝑜𝑑 ⋅ 𝑃𝐿𝐶𝛾 ⋅ 𝐶𝑎𝑐𝑦𝑡 − 𝑘𝐼𝑃3𝑑𝑒𝑔 ⋅ 𝐼𝑃3                                                                       (2-4) 

where 𝑘𝐼𝑃3𝑝𝑟𝑜𝑑 represents the rate constant for IP3 production and 𝑘𝐼𝑃3𝑑𝑒𝑔 represents the rate 

constant for IP3 degradation.  

Ca2+ Flux into the Cytosol: After IP3 is produced, it binds to the IP3R receptor on the ER and 

allows Ca2+ to be released into the cytosol. The activation of the IP3R receptor is modelled by: 

𝐽𝐼𝑃3 = 𝑉𝐼𝑃3 ⋅ 𝑃𝐼𝑃3 ⋅ 𝐶𝑎𝐸𝑅                                                                                                            (2-5) 

where 𝑉𝐼𝑃3 represents the maximal flow rate and 𝑃𝐼𝑃3 represents the open probability of the IP3R 

receptor. 𝑃𝐼𝑃3 is modelled as a function of Ca2+, IP3, and the fraction of available IP3R, h: 

𝑃𝐼𝑃3 = ((
𝐼𝑃3

𝐼𝑃3+𝐾𝐼𝑃3
) (

𝐶𝑎𝑐𝑦𝑡

𝐶𝑎𝑐𝑦𝑡+𝐾𝑎𝑐𝑡
) ℎ)

3

                                                                                         (2-6) 

The fraction of inactivated IP3R, 1-h, is modelled as a function of cytoplasmic Ca2+ and effective 

affinity of Ca2+ to the inhibitory site, Q: 
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𝑑ℎ

𝑑𝑡
= 𝐴 ((1 − ℎ)(𝑄 + 𝐶𝑎𝑐𝑦𝑡) − 𝐶𝑎𝑐𝑦𝑡)                                                                                    (2-7) 

𝑄 = 𝐾𝑖𝑛ℎ
𝐼𝑃3+𝐾𝐼𝑃3

𝐼𝑃3+𝐾𝐼𝑃3𝑖𝑛ℎ
                                                                                                                  (2-8) 

where A represents the relative time scales between the differential equations, 𝐾𝐼𝑃3 represents the 

concentration of IP3 at half maximal observed reaction rate, 𝐾𝑎𝑐𝑡 represents the midpoint of Ca2+ 

dependent channel activation, 𝐾𝑖𝑛ℎ represents the Ca2+ affinity to the Ca2+ inhibitory site, and 

𝐾𝐼𝑃3𝑖𝑛ℎ represents the affinity of IP3 to the IP3 binding site when the Ca2+ inhibitory site is 

occupied. 

Ca2+ leak from the ER: It is assumed that there is a constant leakage of Ca2+ from the ER into the 

cytosol due to the gradient of concentration between them. 𝐽𝐸𝑅𝑙𝑒𝑎𝑘 is modelled as: 

𝐽𝐸𝑅𝑙𝑒𝑎𝑘 = 𝐾𝐸𝑅𝑙𝑒𝑎𝑘 ⋅ 𝐶𝑎𝐸𝑅                                                                                                            (2-9) 

where 𝐾𝐸𝑅𝑙𝑒𝑎𝑘 represents the concentration gradient between the ER and the cytosol. 

Ca2+ flux through the SERCA pumps: 𝐽𝑠𝑒𝑟𝑐𝑎 is modelled as: 

𝐽𝑠𝑒𝑟𝑐𝑎 = 𝑉𝑠𝑒𝑟𝑐𝑎 ⋅
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2+𝐾𝑠𝑒𝑟𝑐𝑎

2                                                                                                  (2-10) 

where 𝑉𝑠𝑒𝑟𝑐𝑎 represents the maximal flux of Ca2+ through the SERCA pump and 𝐾𝑠𝑒𝑟𝑐𝑎 

represents the concentration of 𝐶𝑎𝑐𝑦𝑡 at half the reaction rate of 𝑉𝑠𝑒𝑟𝑐𝑎. 

Ca2+ fluxes through the mitochondria: Ca2+ uptake and efflux in the mitochondria is modelled as: 

𝐽𝑚𝑖𝑡𝑖𝑛 = 𝑉𝑚𝑖𝑡𝑖𝑛 (
𝐶𝑎𝑐𝑦𝑡

4

𝐶𝑎𝑐𝑦𝑡
4+𝐾𝑚𝑖𝑡𝑖𝑛

4)                                                                                               (2-11) 

𝐽𝑚𝑖𝑡𝑜𝑢𝑡 = 𝑉𝑚𝑖𝑡𝑜𝑢𝑡 ⋅ 𝐶𝑎𝑚𝑖𝑡 (
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2+𝐾𝑚𝑖𝑡𝑜𝑢𝑡

2)                                                                            (2-12) 

where 𝑉𝑚𝑖𝑡𝑖𝑛 represents the maximum rate of mitochondrial Ca2+ uptake, 𝐾𝑚𝑖𝑡𝑖𝑛 represents the 

affinity of Ca2+, 𝑉𝑚𝑖𝑡𝑜𝑢𝑡 represents the maximum rate mitochondrial Ca2+ efflux, and 𝐾𝑚𝑖𝑡𝑜𝑢𝑡 

represents the half maximum Ca2+ efflux concentration. 
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Ca2+ fluxes through the plasma membrane: The activation of the ER membrane sensor, STIM1, 

is assumed to be at steady state and dependent solely on Ca2+ concentration: 

𝐽𝑐𝑟𝑎𝑐 = 𝑉𝑐𝑟𝑎𝑐 ⋅ (
𝐾𝑠𝑡𝑖𝑚

3

𝐶𝑎𝐸𝑅
3+𝐾𝑠𝑡𝑖𝑚

3) ⋅ (
𝐶𝑎𝑒𝑥𝑡

𝐶𝑎𝑒𝑥𝑡+𝐾𝑠𝑜𝑐
)                                                                            (2-13) 

where 𝑉𝑐𝑟𝑎𝑐 represents the maximum Ca2+ influx through CRAC channels, 𝐾𝑠𝑡𝑖𝑚 represents the 

dissociation constant of ER Ca2+ to STIM1, and 𝐾𝑠𝑜𝑐 represents the concentration of extracellular 

Ca2+ at the half maximal reaction rate. 

It is also assumed that there is a small leak of Ca2+ through the plasma membrane back 

into the cytosol due to the steep Ca2+ gradient. This is modelled as: 

𝐽𝑃𝑀𝑙𝑒𝑎𝑘 = 𝐾𝑃𝑀𝑙𝑒𝑎𝑘 ⋅ 𝐶𝑎𝑒𝑥𝑡                                                                                                       (2-14) 

where 𝐾𝑃𝑀𝑙𝑒𝑎𝑘 represents the rate of Ca2+ efflux and 𝐶𝑎𝑒𝑥𝑡 represents the concentration of 

extracellular Ca2+. 

 Lastly, the emission of Ca2+ from the cytosol into the extracellular matrix via PMCA 

pumps is modelled as: 

𝐽𝑝𝑚𝑐𝑎 = 𝑉𝑝𝑚𝑐𝑎 ⋅ (
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2+𝐾𝑝𝑚𝑐𝑎

2)                                                                                             (2-15) 

where 𝑉𝑝𝑚𝑐𝑎 represents the maximal rate of Ca2+ efflux and 𝐾𝑝𝑚𝑐𝑎 represents the concentration 

of 𝐶𝑎𝑒𝑥𝑡 at half reaction rate of 𝑉𝑝𝑚𝑐𝑎. 

2.1.2 Gap junction coupling 

To extend the single cell model, we introduced a concept established in a calcium model 

focused on hepatocytes which allowed for gap junction mediated IP3 exchange between adjacent 

cells (Verma et al, 2016). Gap junctions are specialized intercellular channels that permit the 

exchange of ions and small molecules between adjacent cells. Connexin 43 (Cx43) is a gap 

junction protein in bone that is known to be responsible for constituting gap junctions when 
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expressed (Taylor et al, 2006). Applying this concept to our model allows us to better mimic 

signaling between osteocytes considering it is well known that bone homeostasis is partly 

maintained by gap junctions (Loiselle et al, 2013).  

While studies have shown that Ca2+ can also be transmitted to connected cells via gap 

junctions, we have neglected this transmission to maintain a simplified model. The exchange of 

IP3 between gap junction coupled osteocytes is modelled as a simplified mass transfer term 

where the rate of exchange is proportional to the mass transfer parameter 𝐺 and the instantaneous 

difference between their respective IP3 concentrations. For a chain of N connected osteocytes, 

Ca2+ signal propagation through gap junctions has been included in our model by modifying the 

original function for IP3 production (equation 2-3): 

𝑑𝐼𝑃3

𝑑𝑡
= 𝑘𝐼𝑃3𝑝𝑟𝑜𝑑 ⋅ 𝑃𝐿𝐶𝛾 ⋅ 𝐶𝑎𝑐𝑦𝑡 − 𝑘𝐼𝑃3𝑑𝑒𝑔 ⋅ 𝐼𝑃3 − (𝐺 ⋅ 𝑎𝑑𝑗𝑠𝑒𝑡)                                           (2-16) 

     {𝐼𝑃3𝑖 − 𝐼𝑃3𝑖+1}   𝑖𝑓 𝑖 = 1 

𝑎𝑑𝑗𝑠𝑒𝑡 = {𝐼𝑃3𝑖 − 𝐼𝑃3𝑖−1}   𝑖𝑓 𝑖 = 𝑁                                                                                      (2-17) 

     {𝐼𝑃3𝑖 − 𝐼𝑃3𝑖−1 − 𝐼𝑃3𝑖+1} 𝑖𝑓 𝑖 = 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where the subscript 𝑖 represents the cell index and 𝐺 represents the mass transfer parameter. 

2.1.3 Extracellular diffusion of ATP 

  After comparing experimental results to previous models, researchers have concluded 

that models representing both gap junction and extracellular signaling pathways working in 

conjunction most accurately resemble experimental results (Edwards et al, 2010; MacDonald et 

al, 2008). Thus, we have also introduced the extracellular diffusion of ATP in our model. Once 

the “Mechanically Stimulated Cell” is stimulated activating PLC-γ, the produced IP3 will then 

release Ca2+ into the cytosol from the ER and simultaneously release ATP into the extracellular 

space from the mitochondria. The released ATP then travels through the extracellular space and 
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activates G protein-coupled receptors (GPCRs) on the neighboring “Chain Stimulation Cell” 

which then induces the activation of PLC-γ and subsequently the production of IP3 and then 

release of Ca2+ and ATP repeating the cycle (Decrocket al, 2017). 

 We have simplified the modelling of ATP transmission by assuming ATP to be a constant 

concentration, 𝐴𝑇𝑃, introduced into the original function for PLC-γ activation (equation 2-2) in 

place of shear stress stimulation, F (Bennett et al, 2005). This modification is only made to the 

‘Chain Stimulated’ osteocytes: 

𝑑𝑃𝐿𝐶𝛾

𝑑𝑡
= −𝑘𝑃𝐿𝐶𝑎𝑐𝑡 ⋅ 𝐴𝑇𝑃 − 𝑘𝑃𝐿𝐶𝑑𝑒𝑎𝑐𝑡 ⋅ 𝑃𝐿𝐶𝛾                                                                          (2-18) 

2.1.4 Signal propagation in relation to cell size 

We have modeled the time of Ca2+ propagation from one osteocyte to an adjacent 

osteocyte by introducing a simplified function which determines the time of particle diffusion 

across cells (Milo et al, 2008): 

𝑇 =
𝑥2

𝑓𝐷
                                                                                                                                     (2-19) 

where x represents the transverse distance, which has been related to osteocyte cell size, D 

represents the diffusion coefficient of a particle, and 𝑓 is a constant factor that varies from 

experiment to experiment (Milo et al, 2008). To simplify the signal propagation in our model, 

we have assumed the time for IP3 to be transmitted via gap junctions and the time for ATP to be 

transmitted through the extracellular space to be equal and have therefore assigned D as the 

diffusion coefficient of ATP. 
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2.1.5 Model parameters 

   Table 2.1: Parameters for computational model. 

Symbol Value Parameter 

IP3 0.54 uM Initial IP3 concentration (Kniss, 2016; Rivet, 2010) 

PLCγ 70 nM  Initial PLCγ concentration (Kniss, 2016; Rivet, 2010) 

𝛕 0.8 Pa Fluid shear stress 

Cacyt 50 nM Initial Cacyt concentration (Kniss, 2016; Rivet, 2010) 

h  0.1 Fraction of inactivated IP3R (Kniss, 2016; Rivet, 2010) 

CaER 350 uM Initial CaER concentration (Kniss, 2016; Rivet, 2010) 

Camit 0.1 uM Initial Camit concentration (Kniss, 2016; Rivet, 2010) 

ATP 0.7 uM ATP extracellular concentration (Bennett et al, 2005; Osipchuk et al, 

1992) 

D 0.033 um^2/s ATP diffusion coefficient (Bennett et al, 2005) 

G 0.9 Mass transfer parameter (Verma, 2019) 

CS [5, 20] um* Average osteocyte cell diameter 

kPLCact [0.001, 0.01] s^-1** Rate constant for PLC-γ phosphorylation (Kniss, 2016; Rivet, 2010) 

kPLCdeact [0.01, 0.1] s^-1** Rate constant for PLC-γ dephosphorylation (Kniss, 2016; Rivet, 2010) 

Vserca 112.75 uM s^-1 Maximal flux of Ca2+ through the SERCA pump (Kniss, 2016; Rivet, 

2010) 

Kserca 0.43 uM Concentration of Cacyt at half the reaction rate of Vserca (Kniss, 2016; 

Rivet, 2010) 

Vpmca 2.14 uM s^-1  Maximal rate of Ca2+ efflux (Kniss, 2016; Rivet, 2010) 

Kpmca 0.11 uM Concentration of Caext at half reaction rate of Vpmca (Kniss, 2016; Rivet, 

2010) 

KERleak 0.0043 s^-1  Concentration gradient between the ER and the cytosol (Kniss, 2016; 

Rivet, 2010) 

Vcrac 2.4 uM s^-1  Maximum Ca2+ influx through CRAC channels (Kniss, 2016; Rivet, 

2010) 

Kpmleak 0.0000011 s^-1 Rate of Ca2+ efflux through the plasma membrane (Kniss, 2016; Rivet, 

2010) 
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Table 2.1: Parameters for computational model cont. 

Kstim 178.1 uM   Dissociation constant of ER Ca2+ to STIM1 (Kniss, 2016; Rivet, 2010) 

VIP3 [0.05,  80] s^-1** Maximal flow rate of Ca2+ into the cytosol (Kniss, 2016; Rivet, 2010) 

KIP3 0.57 uM  Concentration of IP3 at half maximal observed reaction rate (Kniss, 

2016; Rivet, 2010) 

Kact 0.13 uM  Midpoint of Ca2+ dependent channel activation (Kniss, 2016; Rivet, 

2010) 

kIP3prod [0.1, 1] uM^-1 s^-1** Rate constant for IP3 production (Kniss, 2016; Rivet, 2010) 

kIP3deg [0.01,  0.1] s^-1**  Rate constant for IP3 degradation (Kniss, 2016; Rivet, 2010) 

Vmitin 388.6 uM s^-1   Maximum rate of mitochondrial Ca2+ uptake (Kniss, 2016; Rivet, 2010) 

Kmitin 0.81 uM   Affinity of Ca2+ (Kniss, 2016; Rivet, 2010) 

Kmitout 4.03 uM  Half maximum Ca2+ efflux concentration (Kniss, 2016; Rivet, 2010) 

Vmitout 188.9 uM s^-1  Maximum rate mitochondrial Ca2+ efflux (Kniss, 2016; Rivet, 2010) 

A 0.079 Relative time scales between the differential equations (Kniss, 2016; 

Rivet, 2010) 

KIP3inh 0.82 uM Affinity of IP3 to the IP3 binding site (Kniss, 2016; Rivet, 2010) 

Ksoc 363.5 uM  Concentration of extracellular Ca2+ at the half maximal reaction rate 

(Kniss, 2016; Rivet, 2010) 

Bi 0.056 Ratio of free to total Ca2+ in the cytosol (Kniss, 2016; Rivet, 2010) 

* Cell diameters are varied to more closely mimic in vivo conditions. 

** Varied parameters across different signal response types. 

CHAPTER 3  

Results and Discussion 

 

3.1 Computational model demonstrates reasonable fit to various Ca2+ signal response 

patterns displayed by osteocyte networks 

 Experimental results showed that when MLO-Y4 osteocyte networks are exposed to 

mechanically induced fluid shear stresses, various Ca2+ signaling response patterns are displayed. 
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Three different Ca2+ signaling response patterns have been identified which are referred to as 

Type I (Single Peak), Type II (Slow Recovery), and Type III (Plateau). In this work, we will 

refine our focus to results that pertain to Types I and II due to the ongoing analysis being 

performed on the results of Type III. Each type of signal response has been labelled according to 

its individual displayed trend. The Type I Ca2+ signaling response pattern is referred to as “Single 

Peak” due to its instant peak trend after fluid stimulation. Similarly, the Type II Ca2+ signaling 

response pattern is referred to as “Slow Recovery” due to its gradual increase then decrease 

trend. Experimental studies were measured in terms of fluorescence intensity. Both experimental 

and computational results are normalized in terms of Ca2+ concentration. 

 Previous studies have concluded that computational model predictions best mimic 

experimental results when varying rate constant parameters within their respective average 

ranges (see Table 2.1) across cells (Verma, 2019). Therefore, by optimizing specific rate 

parameters, we were able to reasonably fit the prediction of Cacyt concentration from our 

computational model to experimental results for the Type I signal response (see Figure 2.4). Our 

computational prediction best fits experimental results when the PLC phosphorylation (kPLCact) 

rate constant, the PLC deactivation rate constant (kPLCdeact), and the IP3 production rate (kIP3prod) 

are at the greater end of average cell ranges.  



18 

 

 
Figure 2.4: Experimental results compared to computational prediction of an osteocyte Type I (Single Peak) 

Ca2+ signal response. (a) Experimental results of fluid stress stimulated Ca2+ signal in an osteocyte displaying an 

instant peak trend referred to as Type I (Single Peak). (b) Model prediction for an osteocyte with a Type I (Single 

Peak) Ca2+ signal response. 

 Similarly, by varying the same rate parameters as previously discussed we were able to 

reasonably fit our computational prediction of a Type II (Slow Recovery) osteocyte signal 

response to experimental results (see Figure 2.5). It was determined that our computational 

prediction best fits experimental results when the PLC phosphorylation (kPLCact) rate constant, the 

PLC deactivation rate constant (kPLCdeact), the IP3 production rate (kIP3prod), and the maximal flow 

rate of Ca2+ from the ER (VIP3) are at the lower end of average cell ranges.  
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Figure 2.5: Experimental results compared to computational prediction of an osteocyte Type II (Slow 

Recovery) Ca2+ signal response. (a) Experimental results of fluid stress stimulated Ca2+ signal in an osteocyte 

displaying a delay-like trend referred to as Type II (Slow Recovery). (b) Model prediction for an osteocyte with a 

Type II (Slow Recovery) Ca2+ signal response. 

3.2 Gap junction coupling effects the signal response pattern of an osteocyte 

To further determine whether our computational model could accurately predict the Ca2+ 

signal response of osteocyte networks, the signal propagation of two Type I (Single Peak) 

osteocytes connected via gap junctions were analyzed experimentally and compared to 

computational predictions. In order to mimic two cells that are both Type I (Single Peak) and 

connected via gap junctions computationally, the varied rate parameters (see Table 2.2) of cell 1 

had to be slightly altered either higher or lower than cell 2 in order to prevent the simplified gap 

junction mass transfer term (equation 2-16) from equating to zero and therefore voiding gap 

junction connection. It was discovered that our computational model’s prediction of the Ca2+ 

signal propagation of two Type I (Single Peak) osteocytes connected via gap junction was a 

reasonable fit to experimental results which showed that cell 2 will have a peak of lower 

magnitude and shorter duration in comparison to cell 1 (see Figure 2.6).  
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Table 2.2: Specific parameters for Type I (Single Peak) cells. 

Symbol Cell 1 Value Cell 2 Value 

CS 15.1 um 15.3 um 

kPLCact 0.0055 s^-1 0.0055 s^-1 

kPLCdeact 0.0996 s^-1 0.0996 s^-1 

kIP3prod 0.535 uM^-1 s^-1 0.536 uM^-1 s^-1 

kIP3deg 0.0155 s^-1 0.0156 s^-1 

VIP3 4 s^-1 4 s^-1 

 

Figure 2.6:  Experimental results compared to computational prediction of two osteocytes with a Type I 

(Single Peak) Ca2+ signal response connected via gap junctions. (a) Experimental results of two osteocytes with a 

Type I (Single Peak) Ca2+ signal response connected via gap junctions. (b) Model prediction of two osteocytes with 

a Type I (Single Peak) Ca2+ signal response connected via gap junctions. 

The same analysis was performed for the signal propagation of two Type II (Slow 

Recovery) osteocytes connected via gap junctions and it was discovered that, similar to the 

results for Type I (Single Peak) osteocytes, our computational model’s prediction of the Ca2+ 

signal propagation of two Type II (Slow Recovery) osteocytes connected via gap junctions was a 

reasonable fit to experimental results. In this analysis, the varied rate parameters (see Table 2.3) 
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of cell 1 were slightly altered either higher or lower than cell 2, similar to that in the analysis of 

Type I (Single Peak) cells. It was discovered that when two Type II (Slow Recovery) osteocytes 

are connected via gap junctions, cell 2 will have a peak of higher magnitude and shorter duration 

in comparison to cell 1 (see Figure 2.7). 

Table 2.3: Specific parameters for Type II (Slow Recovery) cells. 

Symbol Cell 1 Value Cell 2 Value 

CS 15.1 um 15.3 um 

kPLCact 0.0018 s^-1 0.0018 s^-1 

kPLCdeact 0.00725 s^-1 0.00725 s^-1 

kIP3prod 0.335 uM^-1 s^-1 0.336 uM^-1 s^-1 

kIP3deg 0.0165 s^-1 0.0166 s^-1 

VIP3 3.5 s^-1 3.5 s^-1 

 
Figure 2.7: Experimental results compared to computational prediction of two osteocytes with a Type II 

(Slow Recovery) Ca2+ signal response connected via gap junctions. (a) Experimental results of two osteocytes 

with a Type II (Slow Recovery) Ca2+ signal response connected via gap junctions. (b) Model prediction of two 

osteocytes with a Type II (Slow Recovery) Ca2+ signal response connected via gap junctions. 
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3.3 Computational results can be used to identify the signal response type of an osteocyte 

Experimental results of the calcium signal propagation of two osteocytes, one Type I 

(Single Peak) and one Type II (Slow Recovery), connected via gap junctions were also collected 

and analyzed. However, it is not possible to determine the signal type of osteocyte 1 and 

osteocyte 2, meaning whether osteocyte 1 has a Type I or Type II response type and similarly for 

osteocyte 2, solely based on experimental results. Therefore, model predictions for the Ca2+ 

signal propagation of osteocyte 1 with a Type I (Single Peak) response pattern connected to 

osteocyte 2 with a Type II (Slow Recovery) response pattern via gap junctions were created and 

compared to experimental results. Similarly, predictions of osteocyte 1 with a Type II (Slow 

Recovery) response pattern connected to osteocyte 2 with a Type I (Single Peak) response 

pattern via gap junctions were also created and compared to experimental results. Upon 

comparison, we were able to match model predictions to experimental results to determine the 

calcium signal response of a Type I (Single Peak) osteocyte connected to a Type II (Slow 

Recovery) osteocyte via gap junctions (see Figure 2.8) and a Type II (Slow Recovery) osteocyte 

connected to a Type I (Single Peak) osteocyte via gap junctions (see Figure 2.9). 
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Figure 2.8: Experimental results of two connected osteocytes in unknown order compared to computational 

prediction of a Type I (Single Peak) osteocyte connected to a Type II (Slow Recovery) osteocyte via gap 

junctions. (a) Experimental results of the Ca2+ response of two osteocytes in unknown order connected via gap 

junction. (b) Model prediction of a Type I (Single Peak) osteocyte connected to a Type II (Slow Recovery) osteocyte 

via gap junctions. 

 

Figure 2.9:  Experimental results of two connected osteocytes in unknown order compared to computational 

prediction of a Type II (Slow Recovery) osteocyte connected to a Type I (Single Peak) osteocyte via gap 

junctions. (a) Experimental results of the Ca2+ response of two osteocytes in unknown order connected via gap 

junction. (b) Model prediction of a Type II (Slow Recovery) osteocyte connected to a Type I (Single Peak) osteocyte 

via gap junctions. 
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3.4 Discussion 

 Our model is intended to connect and extend previous models of Ca2+ propagation within 

cell populations with the goal to gain more insight of cell-to-cell signaling amongst osteocyte 

networks. In addition to the extension of previous models, the development of our model is 

aimed to assist with the study of real-time Ca2+ signaling within osteocyte networks that closely 

mimics in vivo conditions. As discussed in the previous chapter, the predictions of Ca2+ signal 

propagations amongst cells connected via gap junctions made by our computational model were 

a reasonable fit to experimental results seen in osteocyte networks when under mechanical 

stimulation. We were able to replicate both Type I (Single Peak) and Type II (Slow Recovery) 

Ca2+ signal response types seen in osteocytes. We were also able to determine the response types 

of two gap junction connected osteocytes when differed through our computational analysis.  

Our results, as well as the results of other research groups, demonstrate that cell-to-cell 

variability in Ca2+ signaling responses is commonly observed and can be attributed to varying 

kinetic parameters (Yao, 2016). Through the use of differential equations, we are able to connect 

each differing signal response to a corresponding kinetic parameter. As previously discussed, it 

was discovered that osteocytes will display a Type I (Single Peak) response when the PLC 

phosphorylation (kPLCact), PLC deactivation (kPLCdeact), and the IP3 production (kIP3prod) rate 

constants are all at the higher end of the average range of a cell. Similarly, it was also discovered 

that osteocytes will display a Type II (Slow Recovery) response when the PLC phosphorylation 

(kPLCact), PLC deactivation (kPLCdeact), IP3 production (kIP3prod), and the maximal flow of Ca2+ 

from the ER (VIP3) rates are all on the lower end of the average range of a cell. The cellular 

heterogeneity seen in our study as well as other studies has been noted to be a fundamental 

property of cellular networks and thought to provide a mechanism for these networks to adapt to 
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changing environments by altering its responses (Altschuler et al, 2010). By developing a 

computational model to analyze the various signal responses displayed within an osteocyte 

network, we were able to develop a reproducible method that allows us to gain a better 

understanding of how osteocytes adapt to this type of environment. 

The study of cellular heterogeneity in networks such as that of osteocytes can assist in the 

major obstacle of effectively treating diseases such as osteoporosis and cancer. Studies have 

revealed that tumor cells also demonstrate cellular heterogeneity in properties such as signaling 

pathways (Almendro et al, 2013). It was also revealed that the alteration of Ca2+ homeostasis is 

involved in the initiation, angiogenesis, progression, and metastasis of tumors (Cui et al, 2017). 

Similarly, osteoporosis is the result of an unbalance in the bone remodeling process which is 

under the control of the osteocyte network (Rochefort, 2014). Therefore, insight gained from 

studying signaling within osteocyte networks, such as our results, can be used in the 

development of diagnostic testing and therapeutic targeting of cancer and osteoporosis. 

 

CHAPTER 4 

Conclusions and Future Works 

 

In conclusion, this thesis has presented a computational model geared towards gaining 

insight into the various cell-to-cell Ca2+ signaling responses amongst osteocyte networks while 

under mechanical stimulation. In addition to the assumptions made in the development of our 

model, limitations can also be seen in our work. These limitations include utilizing T cell rate 

parameters (Kniss, 2016; Rivet, 2010), randomly varying rate parameters between connected 

cells (Verma, 2019), and the simplification of complex structures. Although containing various 
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limitations and assumptions, this simplified model allowed us to further investigate the 

heterogeneity seen within osteocyte networks by enabling us to characterize different response 

types and link them to corresponding parameter changes.  

The analysis of the various signal responses seen within osteocyte networks has provided 

some initial insight of a more complete understanding of their communication within the 

network. While our model generated useful results here, they were created based upon simplified 

models of complex structures and parameters of a different cell type that could be updated in 

future work if available. Further, the addition of the analysis of the results for the signal response 

defined as Type III (Plateau) would also contribute to the significance of this work once 

available. By increasing our knowledge of heterogeneity in the signaling responses of osteocyte 

cultures, we can come closer to understanding the changes during disease progression and 

developing diagnostic markers and therapeutic treatments for them. 
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Appendix: Code 

 

# Courtney Ogando 

"""Calcium Propagation 

Calculates Cacy, Camit, Caex, IP3, PLCgamma and activation rate of PLC ligand. 

It will return 6 values (x(1)-x(6)) respectively for each cell. 

The "NO GAP" function produces the signal response of each cell when not connected 

by gap junctions to an adjacent cell. The "GAP" function produces the signal response 

of each cell when connected to an adjacent cell via gap junctions. 

Variables: 

    x: 

        0 = IP3, Inositol Triphosphate                                        = 0.54 uM micro molar 

        1 = PLCy, phospholipase-Cγ                                          = 70 nM  

        2 = tau, fluid shear stress                                                = 0.8 Pa 

        3 = Ca cyt, cytoplasmic Ca2+                                        = 50 nM 

        4 = h = fraction of IP3R that does not have Ca2+ bound to inhibitory site                  = 0.1 

        5 = Ca ER, endoplasmic reticulum Ca2+                       = 350 uM 

        6 = Ca mit, mitochondrial calcium                                 = 0.1 uM 

    b: 

        0 = V serca, maximal flux of Ca2+ through the SERCA pump = [85.8, 300] uM s^-1            

= 112.75 

        1 = K serca, concentration of Cacyt at which the reaction rate is half of Vserca = [0.15, 0.8] 

uM                     = 0.43 

        2 = V pmca, maximal rate of efflux = [1.5, 10] uM s^-1                = 2.14 

        3 = K pmca, concentration of Caext at reaction rate half of Vpmca = [0.1, 0.5] uM      = 0.11 

        4 = K ER leak, constant leak of Ca2+ through the ER membrane = [0.0005, 0.05] s^-1         

= 0.0043 

        5 = no corresponding parameter                                         = 0 

        6 = V crac, maximal Ca2+ influx through CRAC = [0.01, 10] uM s^-1      = 2.4 

        7 = K pm leak, small leak of Ca2+ through plasma membrane = [2.5e^-7, 3.5e^-5] s^-1        

= 0.0000011 

        8 = K stim, dissociation constant of ER Ca2+ to STIM1 = [150, 250] uM                  = 178.1 

        9 = V IP3, maximal flow rate of Ca2+ from the ER = [0.05, 80] s^-1                 = 4 

        10 = B er/p er = B er, ratio of free to total Ca2+ in the ER/0.015                         = 3.26667 

        11 = K IP3, concentration of IP3 at half maximal observed reaction rate = [0.1, 1] uM         

= 0.57 

        12 = K act, midpoint of Ca2+-dependent channel activation = [0.05, 0.5] uM               = 0.13 

        13 = k IP3 prod, IP3 production = [0.1, 1] uM^-1 s^-1                                      = 0.48 

        14 = k IP3 deg = [0.01 0.1] s^-1                                                     = 0.01 

        15 = V mitin, maximal rate of uptake = [100, 800] uM s^-1              = 388.6 

        16 = K mitin, concentration of Cacyt at which the reaction rate is half of Vmitin = [0.5, 1.5] 

uM                      = 0.81 

        17 = V mitout, maximal flow rate = [50, 500] uM s^-1                                       = 188.9 

        18 = A, controlling the difference in time scales between equations = [0.01, 0.5]       = 0.079 



28 

 

        19 = K IP3 inh, affinity of IP3 to IP3 binding site when Ca2+ inhibitory site is occupied      

= [0.5, 1.5] uM              = 0.82 

        20 = B mit/p mit = B mit, ratio of free to total Ca2+ in the mitochondria/0.08            = 4.125 

        21 = no corresponding parameter                                         = 0 

        22 = K mitout, concentration of Cacyt at which the reaction rate is half of Vmitout = [1, 10] 

uM                       = 4.03 

        23 = K soc, concentration of Caext at half maximal observed reaction rate = [50, 1000] uM                              

= 363.5 

        24 = no corresponding parameter                                         = 0 

        25 = no corresponding parameter                                         = 0 

        26 = Bi, ratio of free to total Ca2+ in the cytosol = [0.001, 1]       = 0.056 

    𝜌𝑚𝑖𝑡 and 𝜌𝑒𝑟 correct for difference in volume between ER and mitochondria        

    compared to cytosol 

""" 

 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from scipy.integrate import odeint 

 

 

CaEx = 1500 

Gij = [0, 0.9] #Gap junction mass transfer variable 

b = [112.75, 0.43, 2.14, 0.11, 0.0043, 0, 2.4, 0.0000011, 178.1, 4, 3.26667, 

     0.57, 0.13, 0.48, 0.01, 388.6, 0.81, 188.9, 0.079, 0.82, 4.125, 0, 4.03, 

     363.5, 0, 0, 0.056] 

x0 = [0.5400, 0.07, 0.8, 0.05, 0.1, 350, 0.1] 

atp = 0.5 #ATP extracellular concentration 0.5 to 10 uM 

atpdiff = 0.033 #ATP diffusion coefficient:  3.3×10^-6 cm^2/s or 0.033 um^2/s 

cs = [15.1, 15.3, 15.5, 15.7, 15.9] #cell sizes; average osteocyte cell size: 5-20 um in diameter; 

average cell to cell distance: 20-30 um 

dx = np.zeros(7) 

#Parameters for average cell  

b13 = [0.488, 0.487, 0.486, 0.485, 0.484] #Saturation IP3 synthesis rate [0.1, 1] uM^-1 s^-1 

b14 = [0.0155, 0.0156, 0.0157, 0.0158, 0.0159] #IP3 degradation 0.01 [0.01 0.1] s^-1 

plcact = 0.0045 #k PLCact = (0.0033, 0.0043) s^-1 = varying 

plcde = 0.0396 #k PLCdeact = (0.037, 0.057) s^-1 = varying 

b9 = 4 #maximal flux of Ca2+ through IP3R into the ER; 4 s^-1 [0.05, 80] s^-1 

 

#Parameters for cell type I (Single Peak Type) 

b13a = [0.535, 0.536, 0.537, 0.538, 0.539]  

plcacta = 0.0055 

plcdea = 0.0996 #varying 0.0396 in Jplcdeact 

 

#Parameters for cell type II (Slow Recovery Type) 

b13b = [0.335, 0.336, 0.337, 0.338, 0.339] 
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b14b = [0.0165, 0.0166, 0.0167, 0.0168, 0.0169] #IP3 degradation 0.01 [0.01 0.1] s^-1 

plcactb = 0.0018 

plcdeb = 0.00725 #varying 0.0396 in Jplcdeact 

b9b = 3.5 

 

#Parameters for cell type III (Ramping Type) 

b13c = [0.381, 0.383, 0.385, 0.387, 0.389] #[0.18, 0.17, 0.16, 0.15, 0.14] 

b14c = [0.015, 0.016, 0.017, 0.018, 0.019] #IP3 degradation 0.01 [0.01 0.1] s-1 

plcactc = 0.00135 

plcdec = 0.00396 #varying 0.0396 in Jplcdeact 

b9c = 2.5 #maximal flux of Ca2+ through IP3R into the ER; 4 s^-1 [0.05, 80] s^-1 

 

# #Parameters for cell type D (No Response Type) 

# #b13a 

# b14d = [0.039, 0.038, 0.037, 0.036, 0.035] #IP3 degradation 0.01 [0.01 0.1] s-1 

 

 

def noinhibitorNOGAP(x, tspan, i, b13, b14, plcact, plcde, b9): 

    Jplc = b13[i] * x[1] * x[3] #production of IP3 from PLCp 

    Jip3deg = b14[i] * x[0] #degradation of IP3 by phosphatase         #NO 

    if i == 0: 

      adjset = ((b13[i] * x[1] * x[3])- Jip3deg) - ((b13[i+1] * x[1] * x[3])- (b14[i+1] * x[0])) 

    elif i == 4: 

      adjset = ((b13[i] * x[1] * x[3])- Jip3deg) - ((b13[i-1] * x[1] * x[3])- (b14[i-1] * x[0])) 

    else: 

      adjset = (2*((b13[i] * x[1] * x[3])- Jip3deg)) - ((b13[i-1] * x[1] * x[3])- (b14[i-1] * x[0])) - 

((b13[i+1] * x[1] * x[3])- (b14[i+1] * x[0])) 

    Jplcact = plcact * (x[2]*(cs[i]/2)) #activation of PLCp by fluid shear stress 

    Jplcdeact = plcde * x[1] #dephosphorylation of PLCp              #NO 

    Jcrac = b[6] * ((b[8]**3)/((b[8]**3)+(x[5]**3))) * (CaEx/(b[23]+CaEx)) 

    Jpmca = b[2] * ((x[3]**2)/((x[3]**2)+(b[3]**2))) 

    Jserca = b[0] * (x[3]**2)/((x[3]**2) + (b[1]**2)) #serca 

    Jerleak = x[5] * b[4]  

    Jip3 = x[5] * b9 * (((x[0] - (Gij[0] * adjset))/((x[0] - (Gij[0] * adjset))+b[11]))**3) * 

((x[3]/(x[3]+b[12]))**3) * (x[4]**3)  

    Jpmleak = b[7] * CaEx 

    Jmitout = b[17] * x[6] * ((x[3]**2)/((x[3]**2)+(b[22]**2))) 

    Jmitin = b[15] * ((x[3]**4)/((x[3]**4)+(b[16]**4))) 

    Q = 1 * (x[0]+b[11]) / (x[0]+b[19]) #Q= effective affinity of Ca2+ to the site of inhibition 

     

    dx[0] = Jplc - Jip3deg - (Gij[0] * adjset) #IP3 

    dx[1] = Jplcact - Jplcdeact #PLCgammap 

    dx[2] = -Jplcact #Ligand 

    dx[3] = b[26] * ((Jip3-Jserca+Jerleak)+(Jcrac-Jpmca+Jpmleak)+(Jmitout-Jmitin)) #Cacyt 

    dx[4] = b[18] * (Q-x[4]*(x[3]+Q)) #h 

    dx[5] = b[10] * Jserca - b[10] * Jip3 - b[10] * Jerleak #CaE 
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    dx[6] = b[20] * Jmitin - b[20] * Jmitout #Camit 

    return dx 

 

tdata = 80 * np.array([0, 1, 2, 3, 5, 10]) 

tspan = np.arange(0, tdata[5], 0.1) 

tspan2 = np.arange(30, 1030, 0.125) 

 

R1 = (cs[0]/2) + (cs[1]/2) #center of cell 1 to center of cell 2 

R2 = (cs[1]/2) + (cs[2]/2) #cell 2 to 3 

R3 = (cs[2]/2) + (cs[3]/2) #cell 3 to 4 

R4 = (cs[3]/2) + (cs[4]/2) #cell 4 to 5 

#for peak to peak gap connection 

tdelay1v = np.int(np.round((R1**2)/(2400*atpdiff))) #time to diffuse to next cell; on average τ ≈ 
x2/D 

tdelay2v = np.int(np.round((R2**2)/(2400*atpdiff))) #time to diffuse to next cell 

tdelay3v = np.int(np.round((R3**2)/(2400*atpdiff))) #time to diffuse to next cell 

tdelay4v = np.int(np.round((R4**2)/(2400*atpdiff))) #time to diffuse to next cell 

 

#time delay between signals 

cell2_tspanv = np.arange((30 + tdelay1v), (1030 + tdelay1v), 0.125) 

cell3_tspanv = np.arange((30 + tdelay1v + tdelay2v), (1030 + tdelay1v + tdelay2v), 0.125) 

cell4_tspanv = np.arange((30 + tdelay1v + tdelay2v + tdelay3v), (1030 + tdelay1v + tdelay2v + 

tdelay3v), 0.125) 

cell5_tspanv = np.arange((30 + tdelay1v + tdelay2v + tdelay3v + tdelay4v), (1030 + tdelay1v + 

tdelay2v + tdelay3v + tdelay4v), 0.125) 

 

#for delay to delay gap connection 

tdelay1 = np.int(np.round((R1**2)/(230*atpdiff))) #time to diffuse to next cell; on average τ ≈ 
x2/D 

tdelay2 = np.int(np.round((R2**2)/(230*atpdiff))) #time to diffuse to next cell 

tdelay3 = np.int(np.round((R3**2)/(230*atpdiff))) #time to diffuse to next cell 

tdelay4 = np.int(np.round((R4**2)/(230*atpdiff))) #time to diffuse to next cell 

 

#time delay between signals 

cell2_tspan = np.arange((30 + tdelay1), (1030 + tdelay1), 0.125) 

cell3_tspan = np.arange((30 + tdelay1 + tdelay2), (1030 + tdelay1 + tdelay2), 0.125) 

cell4_tspan = np.arange((30 + tdelay1 + tdelay2 + tdelay3), (1030 + tdelay1 + tdelay2 + tdelay3), 

0.125) 

cell5_tspan = np.arange((30 + tdelay1 + tdelay2 + tdelay3 + tdelay4), (1030 + tdelay1 + tdelay2 

+ tdelay3 + tdelay4), 0.125) 

 

 

#Average calcium signal 

x1nogap = odeint(noinhibitorNOGAP, x0, tspan, args=(0, b13, b14, plcact, plcde, b9)) 

 

plt.figure(1) 
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plt.subplot(2,4,1) 

plt.plot(tspan,x1nogap[:,2],'k') 

plt.ylabel('TCRligand (uM)') 

plt.ylim=(0, 6) 

plt.xlabel('Time (s)') 

 

plt.subplot(2,4,2) 

plt.plot(tspan, x1nogap[:,0],'k') 

plt.ylabel('IP3 (uM)') 

plt.ylim=(0, 6) 

plt.xlabel('Time (s)') 

 

plt.subplot(2,4,3) 

plt.plot(tspan,x1nogap[:,1],'k') 

plt.ylabel('PLCgamma (uM)') 

plt.ylim=(0, 6) 

plt.xlabel('Time (s)') 

 

plt.subplot(2,4,4) 

plt.plot(tspan,x1nogap[:,4],'k') 

plt.ylabel('IP3R activation (uM)') 

plt.ylim=(0, 6) 

plt.xlabel('Time (s)') 

 

plt.subplot(2,4,5)  

plt.plot(tspan,x1nogap[:,3],'k') 

plt.ylabel('Cacyt (uM)') 

plt.ylim=(0, 0.5) 

plt.xlim(0, 250) 

plt.xlabel('Time (s)') 

plt.tight_layout() 

 

plt.subplot(2,4,6)  

plt.plot(tspan,x1nogap[:,5],'k') 

plt.ylabel('CaER (uM)') 

plt.ylim=(0, 400) 

plt.xlabel('Time (s)') 

 

plt.subplot(2,4,7)  

plt.plot(tspan,x1nogap[:,6],'k') 

plt.ylabel('CaMit (uM)') 

plt.ylim=(0, 10) 

plt.xlabel('Time (s)') 

plt.show() 
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#Type II (Single Peak) 

x1peak = odeint(noinhibitorNOGAP, x0, tspan, args=(0, b13a, b14, plcacta, plcdea, b9)) 

x2peak = odeint(noinhibitorNOGAP, x0, tspan, args=(1, b13a, b14, plcacta, plcdea, b9)) 

x3peak = odeint(noinhibitorNOGAP, x0, tspan, args=(2, b13a, b14, plcacta, plcdea, b9)) 

x4peak = odeint(noinhibitorNOGAP, x0, tspan, args=(3, b13a, b14, plcacta, plcdea, b9)) 

x5peak = odeint(noinhibitorNOGAP, x0, tspan, args=(4, b13a, b14, plcacta, plcdea, b9)) 

xx1peak = np.hsplit(x1peak, 7) #split array into columns 

xx2peak = np.hsplit(x2peak, 7) 

xx3peak = np.hsplit(x3peak, 7) 

xx4peak = np.hsplit(x4peak, 7) 

xx5peak = np.hsplit(x5peak, 7) 

peak1xx = (xx1peak[3]-np.mean(xx1peak[3]))/(np.std(xx1peak[3]))  # subtracting the first index 

allows it to start at 0 

peak2xx = (xx2peak[3]-np.mean(xx2peak[3]))/(np.std(xx2peak[3])) 

peak3xx = (xx3peak[3]-np.mean(xx3peak[3]))/(np.std(xx3peak[3])) 

peak4xx = (xx4peak[3]-np.mean(xx4peak[3]))/(np.std(xx4peak[3])) 

peak5xx = (xx5peak[3]-np.mean(xx5peak[3]))/(np.std(xx5peak[3])) 

peak1x = peak1xx - np.min(peak1xx) 

peak2x = peak2xx - np.min(peak2xx) 

peak3x = peak3xx - np.min(peak3xx) 

peak4x = peak4xx - np.min(peak4xx) 

peak5x = peak5xx - np.min(peak5xx) 

 

#Type II (Slow Recovery) 

x1delay = odeint(noinhibitorNOGAP, x0, tspan, args=(0, b13b, b14b, plcactb, plcdeb, b9b)) 

x2delay = odeint(noinhibitorNOGAP, x0, tspan, args=(1, b13b, b14b, plcactb, plcdeb, b9b)) 

x3delay = odeint(noinhibitorNOGAP, x0, tspan, args=(2, b13b, b14b, plcactb, plcdeb, b9b)) 

x4delay = odeint(noinhibitorNOGAP, x0, tspan, args=(3, b13b, b14b, plcactb, plcdeb, b9b)) 

x5delay = odeint(noinhibitorNOGAP, x0, tspan, args=(4, b13b, b14b, plcactb, plcdeb, b9b)) 

xx1delay = np.hsplit(x1delay, 7) #split array into columns 

xx2delay = np.hsplit(x2delay, 7) 

xx3delay = np.hsplit(x3delay, 7) 

xx4delay = np.hsplit(x4delay, 7) 

xx5delay = np.hsplit(x5delay, 7) 

delay1xx = (xx1delay[3]-np.mean(xx1delay[3]))/(np.std(xx1delay[3]))  # subtracting the first 

index allows it to start at 0 

delay2xx = (xx2delay[3]-np.mean(xx2delay[3]))/(np.std(xx2delay[3])) 

delay3xx = (xx3delay[3]-np.mean(xx3delay[3]))/(np.std(xx3delay[3])) 

delay4xx = (xx4delay[3]-np.mean(xx4delay[3]))/(np.std(xx4delay[3])) 

delay5xx = (xx5delay[3]-np.mean(xx5delay[3]))/(np.std(xx5delay[3])) 

delay1x = delay1xx - np.min(delay1xx)   

delay2x = delay2xx - np.min(delay2xx) 

delay3x = delay3xx - np.min(delay3xx) 

delay4x = delay4xx - np.min(delay4xx) 

delay5x = delay5xx - np.min(delay5xx) 
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#Type III (Ramping) 

x1linear = odeint(noinhibitorNOGAP, x0, tspan, args=(0, b13c, b14c, plcactc, plcdec, b9c)) 

x2linear = odeint(noinhibitorNOGAP, x0, tspan, args=(1, b13c, b14c, plcactc, plcdec, b9c)) 

x3linear = odeint(noinhibitorNOGAP, x0, tspan, args=(2, b13c, b14c, plcactc, plcdec, b9c)) 

x4linear = odeint(noinhibitorNOGAP, x0, tspan, args=(3, b13c, b14c, plcactc, plcdec, b9c)) 

x5linear = odeint(noinhibitorNOGAP, x0, tspan, args=(4, b13c, b14c, plcactc, plcdec, b9c)) 

xx1linear = np.hsplit(x1linear, 7) #split array into columns 

xx2linear = np.hsplit(x2linear, 7) 

xx3linear = np.hsplit(x3linear, 7) 

xx4linear = np.hsplit(x4linear, 7) 

xx5linear = np.hsplit(x5linear, 7) 

linear1xx = (xx1linear[3]-np.mean(xx1linear[3]))/(np.std(xx1linear[3]))  # subtracting the first 

index allows it to start at 0 

linear2xx = (xx2linear[3]-np.mean(xx2linear[3]))/(np.std(xx2linear[3])) 

linear3xx = (xx3linear[3]-np.mean(xx3linear[3]))/(np.std(xx3linear[3])) 

linear4xx = (xx4linear[3]-np.mean(xx4linear[3]))/(np.std(xx4linear[3])) 

linear5xx = (xx5linear[3]-np.mean(xx5linear[3]))/(np.std(xx5linear[3])) 

linear1x = linear1xx - np.min(linear1xx) 

linear2x = linear2xx - np.min(linear2xx) 

linear3x = linear3xx - np.min(linear3xx) 

linear4x = linear4xx - np.min(linear4xx) 

linear5x = linear5xx - np.min(linear5xx) 

 

 

plt.figure(2) 

plt.subplot(1,3,1) 

plt.plot(tspan2, peak1x, 'k') 

plt.title('Type I (Single Peak)') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

plt.xlim(0, 350) 

 

plt.subplot(1,3,2) 

plt.plot(tspan2, delay1x, 'k') 

plt.title('Type II (Slow Recovery)') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

plt.xlim(0, 350) 

 

plt.subplot(1,3,3) 

plt.plot(tspan2, linear1x, 'k') 

plt.title('Type III (Ramping)') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

plt.xlim(0, 350) 
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#plt.tight_layout() 

 

def noinhibitorGAP(x, tspan, i, b13, b14, plcact, plcde, b9): 

    Jplc = b13[i] * x[1] * x[3] #production of IP3 from PLCp 

    Jip3deg = b14[i] * x[0] #degradation of IP3 by phosphatase         #NO 

    if i == 0: 

      adjset = ((b13[i] * x[1] * x[3])- Jip3deg) - ((b13[i+1] * x[1] * x[3])- (b14[i+1] * x[0])) 

      Jplcact = plcact * (x[2]*(cs[i]/2)) #activation of PLCp by fluid shear stress 

    elif i == 4: 

      adjset = ((b13[i] * x[1] * x[3])- Jip3deg) - ((b13[i-1] * x[1] * x[3])- (b14[i-1] * x[0])) 

      Jplcact = plcact * atp 

    else: 

      adjset = (2*((b13[i] * x[1] * x[3])- Jip3deg)) - ((b13[i-1] * x[1] * x[3])- (b14[i-1] * x[0])) - 

((b13[i+1] * x[1] * x[3])- (b14[i+1] * x[0])) 

      Jplcact = plcact * atp 

    Jplcdeact = plcde * x[1] #dephosphorylation of PLCp              #NO 

    Jcrac = b[6] * ((b[8]**3)/((b[8]**3)+(x[5]**3))) * (CaEx/(b[23]+CaEx)) 

    Jpmca = b[2] * ((x[3]**2)/((x[3]**2)+(b[3]**2))) 

    Jserca = b[0] * (x[3]**2)/((x[3]**2) + (b[1]**2)) #serca 

    Jerleak = x[5] * b[4]  

    Jip3 = x[5] * b9 * (((x[0] - (Gij[1] * adjset))/((x[0] - (Gij[1] * adjset))+b[11]))**3) * 

((x[3]/(x[3]+b[12]))**3) * (x[4]**3)  

    Jpmleak = b[7] * CaEx 

    Jmitout = b[17] * x[6] * ((x[3]**2)/((x[3]**2)+(b[22]**2))) 

    Jmitin = b[15] * ((x[3]**4)/((x[3]**4)+(b[16]**4))) 

    Q = 1 * (x[0]+b[11]) / (x[0]+b[19]) #Q= effective affinity of Ca2+ to the site of inhibition 

     

    dx[0] = Jplc - Jip3deg - (Gij[1] * adjset) #IP3 

    dx[1] = Jplcact - Jplcdeact #PLCgammap 

    dx[2] = -Jplcact #Ligand 

    dx[3] = b[26] * ((Jip3-Jserca+Jerleak)+(Jcrac-Jpmca+Jpmleak)+(Jmitout-Jmitin)) #Cacyt 

    dx[4] = b[18] * (Q-x[4]*(x[3]+Q)) #h 

    dx[5] = b[10] * Jserca - b[10] * Jip3 - b[10] * Jerleak #CaE 

    dx[6] = b[20] * Jmitin - b[20] * Jmitout #Camit 

    return dx 

 

#Average calcium signal 

x1gap = odeint(noinhibitorGAP, x0, tspan, args=(0, b13, b14, plcact, plcde, b9)) 

#Type I (Single Peak) 

x1peakgap = odeint(noinhibitorGAP, x0, tspan, args=(0, b13a, b14, plcacta, plcdea, b9)) 

x2peakgap = odeint(noinhibitorGAP, x0, tspan, args=(1, b13a, b14, plcacta, plcdea, b9)) 

x3peakgap = odeint(noinhibitorGAP, x0, tspan, args=(2, b13a, b14, plcacta, plcdea, b9)) 

x4peakgap = odeint(noinhibitorGAP, x0, tspan, args=(3, b13a, b14, plcacta, plcdea, b9)) 

x5peakgap = odeint(noinhibitorGAP, x0, tspan, args=(4, b13a, b14, plcacta, plcdea, b9)) 

xx1peakgap = np.hsplit(x1peakgap, 7) #split array into columns 

xx2peakgap = np.hsplit(x2peakgap, 7) 
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xx3peakgap = np.hsplit(x3peakgap, 7) 

xx4peakgap = np.hsplit(x4peakgap, 7) 

xx5peakgap = np.hsplit(x5peakgap, 7) 

peakgap1xx = (xx1peakgap[3]-np.mean(xx1peakgap[3]))/(np.std(xx1peakgap[3]))  # subtracting 

the first index allows it to start at 0 

peakgap2xx = (xx2peakgap[3]-np.mean(xx2peakgap[3]))/(np.std(xx2peakgap[3])) 

peakgap3xx = (xx3peakgap[3]-np.mean(xx3peakgap[3]))/(np.std(xx3peakgap[3])) 

peakgap4xx = (xx4peakgap[3]-np.mean(xx4peakgap[3]))/(np.std(xx4peakgap[3])) 

peakgap5xx = (xx5peakgap[3]-np.mean(xx5peakgap[3]))/(np.std(xx5peakgap[3])) 

peakgap1x = peakgap1xx - np.min(peakgap1xx) 

peakgap2x = peakgap2xx - np.min(peakgap2xx) 

peakgap3x = peakgap3xx - np.min(peakgap3xx) 

peakgap4x = peakgap4xx - np.min(peakgap4xx) 

peakgap5x = peakgap5xx - np.min(peakgap5xx) 

 

#Type II (Slow Recovery) 

x1delaygap = odeint(noinhibitorGAP, x0, tspan, args=(0, b13b, b14b, plcactb, plcdeb, b9b)) 

x2delaygap = odeint(noinhibitorGAP, x0, tspan, args=(1, b13b, b14b, plcactb, plcdeb, b9b)) 

x3delaygap = odeint(noinhibitorGAP, x0, tspan, args=(2, b13b, b14b, plcactb, plcdeb, b9b)) 

x4delaygap = odeint(noinhibitorGAP, x0, tspan, args=(3, b13b, b14b, plcactb, plcdeb, b9b)) 

x5delaygap = odeint(noinhibitorGAP, x0, tspan, args=(4, b13b, b14b, plcactb, plcdeb, b9b)) 

xx1delaygap = np.hsplit(x1delaygap, 7) #split array into columns 

xx2delaygap = np.hsplit(x2delaygap, 7) 

xx3delaygap = np.hsplit(x3delaygap, 7) 

xx4delaygap = np.hsplit(x4delaygap, 7) 

xx5delaygap = np.hsplit(x5delaygap, 7) 

delaygap1xx = (xx1delaygap[3]-np.mean(xx1delaygap[3]))/(np.std(xx1delaygap[3]))  

delaygap2xx = (xx2delaygap[3]-np.mean(xx2delaygap[3]))/(np.std(xx2delaygap[3])) 

delaygap3xx = (xx3delaygap[3]-np.mean(xx3delaygap[3]))/(np.std(xx3delaygap[3])) 

delaygap4xx = (xx4delaygap[3]-np.mean(xx4delaygap[3]))/(np.std(xx4delaygap[3])) 

delaygap5xx = (xx5delaygap[3]-np.mean(xx5delaygap[3]))/(np.std(xx5delaygap[3])) 

delaygap1x = delaygap1xx - np.min(delaygap1xx) 

delaygap2x = delaygap2xx - np.min(delaygap2xx) 

delaygap3x = delaygap3xx - np.min(delaygap3xx) 

delaygap4x = delaygap4xx - np.min(delaygap4xx) 

delaygap5x = delaygap5xx - np.min(delaygap5xx) 

 

#Type III (Ramping) 

x1lineargap = odeint(noinhibitorGAP, x0, tspan, args=(0, b13c, b14c, plcactc, plcdec, b9c)) 

x2lineargap = odeint(noinhibitorGAP, x0, tspan, args=(1, b13c, b14c, plcactc, plcdec, b9c)) 

x3lineargap = odeint(noinhibitorGAP, x0, tspan, args=(2, b13c, b14c, plcactc, plcdec, b9c)) 

x4lineargap = odeint(noinhibitorGAP, x0, tspan, args=(3, b13c, b14c, plcactc, plcdec, b9c)) 

x5lineargap = odeint(noinhibitorGAP, x0, tspan, args=(4, b13c, b14c, plcactc, plcdec, b9c)) 

xx1lineargap = np.hsplit(x1lineargap, 7) #split array into columns 

xx2lineargap = np.hsplit(x2lineargap, 7) 

xx3lineargap = np.hsplit(x3lineargap, 7) 
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xx4lineargap = np.hsplit(x4lineargap, 7) 

xx5lineargap = np.hsplit(x5lineargap, 7) 

lineargap1xx = (xx1lineargap[3]-np.mean(xx1lineargap[3]))/(np.std(xx1lineargap[3])) 

lineargap2xx = (xx2lineargap[3]-np.mean(xx2lineargap[3]))/(np.std(xx2lineargap[3])) 

lineargap3xx = (xx3lineargap[3]-np.mean(xx3lineargap[3]))/(np.std(xx3lineargap[3])) 

lineargap4xx = (xx4lineargap[3]-np.mean(xx4lineargap[3]))/(np.std(xx4lineargap[3])) 

lineargap5xx = (xx5lineargap[3]-np.mean(xx5lineargap[3]))/(np.std(xx5lineargap[3])) 

lineargap1x = lineargap1xx - np.min(lineargap1xx) 

lineargap2x = lineargap2xx - np.min(lineargap2xx) 

lineargap3x = lineargap3xx - np.min(lineargap3xx) 

lineargap4x = lineargap4xx - np.min(lineargap4xx) 

lineargap5x = lineargap5xx - np.min(lineargap5xx) 

 

plt.figure(3) 

plt.subplot(1,2,1) 

plt.plot(tspan2, peak1x, 'k') 

plt.plot(cell2_tspanv, peak2x, '--') 

# plt.plot(tspan2, peak3x, 'b') 

# plt.plot(tspan2, peak4x, 'm') 

# plt.plot(tspan2, peak5x, 'y') 

plt.xlim(0, 350) 

plt.title('Type I (Single Peak) NO Gap Junction Connection') 

plt.text(150, 5, 'Cell 1 and Cell 2 are overlapping', style='italic', fontsize=9) 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

 

peakgap2new = np.insert(peakgap2x, 0, np.zeros(tdelay1)) 

peakgap3new = np.insert(peakgap3x, 0, np.zeros(tdelay1 + tdelay2)) 

peakgap4new = np.insert(peakgap4x, 0, np.zeros(tdelay1 + tdelay2 + tdelay3)) 

peakgap5new = np.insert(peakgap5x, 0, np.zeros(tdelay1 + tdelay2 + tdelay3 + tdelay4)) 

plt.subplot(1,2,2) 

plt.plot(tspan2, peakgap1x, 'k') 

plt.plot(cell2_tspanv, peakgap2x, '--') 

# plt.plot(cell3_tspan, peakgap3new, 'b') 

# plt.plot(cell4_tspan, peakgap4new, 'm') 

# plt.plot(cell5_tspan, peakgap5new, 'y') 

plt.xlim(0, 350) 

plt.title('Type I (Single Peak) Gap Junction Connection') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

plt.legend(["cell 1", "cell 2","cell 3", "cell 4", "cell 5"], loc="upper right") 

#plt.tight_layout() 

 

 

#plt.figure(4) 

#plt.title('Type I (Single Peak) NO Gap Junctions') 
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fig, axs = plt.subplots(ncols=2, gridspec_kw=dict(width_ratios=[1, 1])) 

sns.heatmap(peak1x[0:899], vmin=np.min(peak1x), vmax=np.max(peak1x), annot=False, 

yticklabels=150, xticklabels='1', cbar=False, ax=axs[0], cmap='Greys') 

sns.heatmap(peak2x[0:899], vmin=np.min(peak2x), vmax=np.max(peak2x), annot=False, 

yticklabels=False, xticklabels='2', cbar=True, ax=axs[1], cmap='Greys', cbar_kws={'label': 

'Calcium Concentration'}) 

# sns.heatmap(peak3x, vmin=np.min(peak3x), vmax=np.max(peak3x), annot=False, 

yticklabels=False, xticklabels='3', cbar=False, ax=axs[2], cmap='BuPu') 

# sns.heatmap(peak4x, vmin=np.min(peak4x), vmax=np.max(peak4x), annot=False, 

yticklabels=False, xticklabels='4', cbar=False, ax=axs[3], cmap='BuPu') 

# sns.heatmap(peak5x, vmin=np.min(peak5x), vmax=np.max(peak5x), annot=False, 

yticklabels=False, xticklabels='5', cbar=True, ax=axs[4], cmap='BuPu', cbar_kws={'label': 

'CaCyt/CaCytMax (uM)'}) 

#plt.ylabel("Time (s)") 

plt.xlabel('Cells') 

plt.show() 

 

# plt.figure(5) 

# plt.title('Type I (Single Peak) Gap Junctions') 

fig, axs = plt.subplots(ncols=2, gridspec_kw=dict(width_ratios=[1, 1])) 

sns.heatmap(peakgap1x[0:899], vmin=np.min(peakgap1x), vmax=np.max(peakgap1x), 

annot=False, yticklabels=150, xticklabels='1', cbar=False, ax=axs[0], cmap='Greys') 

pg2n = peakgap2new.reshape(len(peakgap2new),1) 

sns.heatmap(pg2n[0:899], vmin=np.min(peakgap2new), vmax=np.max(peakgap2new), 

annot=False, yticklabels=False, xticklabels='2', cbar=True, ax=axs[1], cmap='Greys', 

cbar_kws={'label': 'Calcium Concentration'}) 

# sns.heatmap(peakgap3new.reshape(len(peakgap3new),1), vmin=np.min(peakgap3new), 

vmax=np.max(peakgap3new), annot=False, yticklabels=False, xticklabels='3', cbar=False, 

ax=axs[2], cmap='BuPu') 

# sns.heatmap(peakgap4new.reshape(len(peakgap4new),1), vmin=np.min(peakgap4new), 

vmax=np.max(peakgap4new), annot=False, yticklabels=False, xticklabels='4', cbar=False, 

ax=axs[3], cmap='BuPu') 

# sns.heatmap(peakgap5new.reshape(len(peakgap5new),1), vmin=np.min(peakgap5new), 

vmax=np.max(peakgap5new), annot=False, yticklabels=False, xticklabels='5', cbar=True, 

ax=axs[4], cmap='BuPu', cbar_kws={'label': 'CaCyt/CaCytMax (uM)'}) 

#plt.ylabel("Time (s)") 

plt.xlabel('Cells') 

plt.show() 

 

 

plt.figure(6) 

plt.subplot(1,2,1) 

plt.plot(tspan2, delay1x, 'k') 

plt.plot(cell2_tspan, delay2x, '--') 

# plt.plot(tspan2, delay3x, 'b') 

# plt.plot(tspan2, delay4x, 'm') 
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# plt.plot(tspan2, delay5x, 'y') 

plt.xlim(0, 350) 

plt.title('Type II (Slow Recovery) NO Gap Junction Connection') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

 

delaygap2new = np.insert(delaygap2x, 0, np.zeros(tdelay1)) 

delaygap3new = np.insert(delaygap3x, 0, np.zeros(tdelay1 + tdelay2)) 

delaygap4new = np.insert(delaygap4x, 0, np.zeros(tdelay1 + tdelay2 + tdelay3)) 

delaygap5new = np.insert(delaygap5x, 0, np.zeros(tdelay1 + tdelay2 + tdelay3 + tdelay4)) 

plt.subplot(1,2,2) 

plt.plot(tspan2, delaygap1x, 'k') 

plt.plot(cell2_tspan, delaygap2x, '--') 

# plt.plot(cell3_tspan, delaygap3new, 'b') 

# plt.plot(cell4_tspan, delaygap4new, 'm') 

# plt.plot(cell5_tspan, delaygap5new, 'y') 

plt.xlim(0, 350) 

plt.title('Type II (Slow Recovery) Gap Junction Connection') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

plt.legend(["cell 1", "cell 2","cell 3", "cell 4", "cell 5"], loc="upper right") 

#plt.tight_layout() 

 

#plt.figure(7) 

#plt.title('Type II (Slow Recovery) NO Gap Junctions') 

fig, axs = plt.subplots(ncols=2, gridspec_kw=dict(width_ratios=[1, 1])) 

sns.heatmap(delay1x[0:4499], vmin=np.min(delay1x), vmax=np.max(delay1x), annot=False, 

yticklabels=300, xticklabels='1', cbar=False, ax=axs[0], cmap='Greys') 

sns.heatmap(delay2x[0:4499], vmin=np.min(delay2x), vmax=np.max(delay2x), annot=False, 

yticklabels=False, xticklabels='2', cbar=True, ax=axs[1], cmap='Greys', cbar_kws={'label': 

'Calcium Concentration'}) 

# sns.heatmap(delay3x, vmin=np.min(delay3x), vmax=np.max(delay3x), annot=False, 

yticklabels=False, xticklabels='3', cbar=False, ax=axs[2], cmap='BuPu') 

# sns.heatmap(delay4x, vmin=np.min(delay4x), vmax=np.max(delay4x), annot=False, 

yticklabels=False, xticklabels='4', cbar=False, ax=axs[3], cmap='BuPu') 

# sns.heatmap(delay5x, vmin=np.min(delay5x), vmax=np.max(delay5x), annot=False, 

yticklabels=False, xticklabels='5', cbar=True, ax=axs[4], cmap='BuPu', cbar_kws={'label': 

'CaCyt/CaCytMax (uM)'}) 

#plt.ylabel("Time (s)") 

plt.xlabel('Cells') 

plt.show() 

 

#plt.figure(8) 

#plt.title('Type II (Slow Recovery) Gap Junctions') 

fig, axs = plt.subplots(ncols=2, gridspec_kw=dict(width_ratios=[1, 1])) 
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sns.heatmap(delaygap1x[0:4499], vmin=np.min(delaygap1x), vmax=np.max(delaygap1x), 

annot=False, yticklabels=300, xticklabels='1', cbar=False, ax=axs[0], cmap='Greys') 

dg2n = delaygap2new.reshape(len(delaygap2new),1) 

sns.heatmap(dg2n[0:4499], vmin=np.min(delaygap2new), vmax=np.max(delaygap2new), 

annot=False, yticklabels=False, xticklabels='2', cbar=True, ax=axs[1], cmap='Greys', 

cbar_kws={'label': 'Calcium Concentration'}) 

# sns.heatmap(delaygap3new.reshape(len(delaygap3new),1), vmin=np.min(delaygap3new), 

vmax=np.max(delaygap3new), annot=False, yticklabels=False, xticklabels='3', cbar=False, 

ax=axs[2], cmap='BuPu') 

# sns.heatmap(delaygap4new.reshape(len(delaygap4new),1), vmin=np.min(delaygap4new), 

vmax=np.max(delaygap4new), annot=False, yticklabels=False, xticklabels='4', cbar=False, 

ax=axs[3], cmap='BuPu') 

# sns.heatmap(delaygap5new.reshape(len(delaygap5new),1), vmin=np.min(delaygap5new), 

vmax=np.max(delaygap5new), annot=False, yticklabels=False, xticklabels='5', cbar=True, 

ax=axs[4], cmap='BuPu', cbar_kws={'label': 'CaCyt/CaCytMax (uM)'}) 

#plt.ylabel("Time (s)") 

plt.xlabel('Cells') 

plt.show() 

 

 

plt.figure(9) 

plt.subplot(1,2,1) 

plt.plot(tspan2, linear1x, 'k') 

plt.plot(cell2_tspan, linear2x, '--') 

# plt.plot(tspan2, linear3x, 'b') 

# plt.plot(tspan2, linear4x, 'm') 

# plt.plot(tspan2, linear5x, 'y') 

plt.xlim(0, 350) 

plt.title('Type III (Ramping) NO Gap Junction Connection') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

 

lineargap2new = np.insert(lineargap2x, 0, np.zeros(tdelay1)) 

lineargap3new = np.insert(lineargap3x, 0, np.zeros(tdelay1 + tdelay2)) 

lineargap4new = np.insert(lineargap4x, 0, np.zeros(tdelay1 + tdelay2 + tdelay3)) 

lineargap5new = np.insert(lineargap5x, 0, np.zeros(tdelay1 + tdelay2 + tdelay3 + tdelay4)) 

plt.subplot(1,2,2) 

plt.plot(tspan2, lineargap1x, 'k') 

plt.plot(cell2_tspan, lineargap2x, '--') 

# plt.plot(cell3_tspan, lineargap3new, 'b') 

# plt.plot(cell4_tspan, lineargap4new, 'm') 

# plt.plot(cell5_tspan, lineargap5new, 'y') 

plt.xlim(0, 350) 

plt.title('Type III (Ramping) Gap Junction Connection') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 
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plt.legend(["cell 1", "cell 2","cell 3", "cell 4", "cell 5"], loc="upper right") 

#plt.tight_layout() 

 

#plt.figure(10) 

#plt.title('Type III (Ramping) NO Gap Junctions') 

fig, axs = plt.subplots(ncols=2, gridspec_kw=dict(width_ratios=[1, 1])) 

sns.heatmap(linear1x, vmin=np.min(linear1x), vmax=np.max(linear1x), annot=False, 

yticklabels=500, xticklabels='1', cbar=False, ax=axs[0], cmap='Greys') 

sns.heatmap(linear2x, vmin=np.min(linear2x), vmax=np.max(linear2x), annot=False, 

yticklabels=False, xticklabels='2', cbar=True, ax=axs[1], cmap='Greys', cbar_kws={'label': 

'Calcium Concentration'}) 

# sns.heatmap(linear3x, vmin=np.min(linear3x), vmax=np.max(linear3x), annot=False, 

yticklabels=False, xticklabels='3', cbar=False, ax=axs[2], cmap='BuPu') 

# sns.heatmap(linear4x, vmin=np.min(linear4x), vmax=np.max(linear4x), annot=False, 

yticklabels=False, xticklabels='4', cbar=False, ax=axs[3], cmap='BuPu') 

# sns.heatmap(linear5x, vmin=np.min(linear5x), vmax=np.max(linear5x), annot=False, 

yticklabels=False, xticklabels='5', cbar=True, ax=axs[4], cmap='BuPu', cbar_kws={'label': 

'CaCyt/CaCytMax (uM)'}) 

#plt.ylabel("Time (s)") 

plt.xlabel('Cells') 

plt.show() 

 

#plt.figure(11) 

#plt.title('Type III (Ramping) Gap Junctions') 

fig, axs = plt.subplots(ncols=2, gridspec_kw=dict(width_ratios=[1, 1])) 

sns.heatmap(lineargap1x, vmin=np.min(lineargap1x), vmax=np.max(lineargap1x), annot=False, 

yticklabels=500, xticklabels='1', cbar=False, ax=axs[0], cmap='Greys') 

sns.heatmap(lineargap2new.reshape(len(lineargap2new),1), vmin=np.min(lineargap2new), 

vmax=np.max(lineargap2new), annot=False, yticklabels=False, xticklabels='2', cbar=True, 

ax=axs[1], cmap='Greys', cbar_kws={'label': 'Calcium Concentration'}) 

# sns.heatmap(lineargap3new.reshape(len(lineargap3new),1), vmin=np.min(lineargap3new), 

vmax=np.max(lineargap3new), annot=False, yticklabels=False, xticklabels='3', cbar=False, 

ax=axs[2], cmap='BuPu') 

# sns.heatmap(lineargap4new.reshape(len(lineargap4new),1), vmin=np.min(lineargap4new), 

vmax=np.max(lineargap4new), annot=False, yticklabels=False, xticklabels='4', cbar=False, 

ax=axs[3], cmap='BuPu') 

# sns.heatmap(lineargap5new.reshape(len(lineargap5new),1), vmin=np.min(lineargap5new), 

vmax=np.max(lineargap5new), annot=False, yticklabels=False, xticklabels='5', cbar=True, 

ax=axs[4], cmap='BuPu', cbar_kws={'label': 'CaCyt/CaCytMax (uM)'}) 

#plt.ylabel("Time (s)") 

plt.xlabel('Cells') 

plt.show() 

 

 

def noinhibitorGAPmix(x, tspan, i, b13nw, b13af, b13bf, b14nw, b14bf, b14af, plcact, plcde, b9): 

    Jplc = b13nw * x[1] * x[3] #production of IP3 from PLCp 
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    Jip3deg = b14nw * x[0] #degradation of IP3 by phosphatase         #NO 

    if i == 0: 

      adjset = ((b13nw * x[1] * x[3])- Jip3deg) - ((b13af * x[1] * x[3])- (b14af * x[0])) 

      Jplcact = plcact * (x[2]*(cs[i]/2)) #activation of PLCp by fluid shear stress 

    elif i == 4: 

      adjset = ((b13nw * x[1] * x[3])- Jip3deg) - ((b13bf * x[1] * x[3])- (b14bf * x[0])) 

      Jplcact = plcact * atp 

    else: 

      adjset = (2*((b13nw * x[1] * x[3])- Jip3deg)) - ((b13bf * x[1] * x[3])- (b14bf * x[0])) - 

((b13af * x[1] * x[3])- (b14af * x[0])) 

      Jplcact = plcact * atp 

    Jplcdeact = plcde * x[1] #dephosphorylation of PLCp              #NO 

    Jcrac = b[6] * ((b[8]**3)/((b[8]**3)+(x[5]**3))) * (CaEx/(b[23]+CaEx)) 

    Jpmca = b[2] * ((x[3]**2)/((x[3]**2)+(b[3]**2))) 

    Jserca = b[0] * (x[3]**2)/((x[3]**2) + (b[1]**2)) #serca 

    Jerleak = x[5] * b[4]  

    Jip3 = x[5] * b9 * (((x[0] - (Gij[1] * adjset))/((x[0] - (Gij[1] * adjset))+b[11]))**3) * 

((x[3]/(x[3]+b[12]))**3) * (x[4]**3)  

    Jpmleak = b[7] * CaEx 

    Jmitout = b[17] * x[6] * ((x[3]**2)/((x[3]**2)+(b[22]**2))) 

    Jmitin = b[15] * ((x[3]**4)/((x[3]**4)+(b[16]**4))) 

    Q = 1 * (x[0]+b[11]) / (x[0]+b[19]) #Q= effective affinity of Ca2+ to the site of inhibition 

     

    dx[0] = Jplc - Jip3deg - (Gij[1] * adjset) #IP3 

    dx[1] = Jplcact - Jplcdeact #PLCgammap 

    dx[2] = -Jplcact #Ligand 

    dx[3] = b[26] * ((Jip3-Jserca+Jerleak)+(Jcrac-Jpmca+Jpmleak)+(Jmitout-Jmitin)) #Cacyt 

    dx[4] = b[18] * (Q-x[4]*(x[3]+Q)) #h 

    dx[5] = b[10] * Jserca - b[10] * Jip3 - b[10] * Jerleak #CaE 

    dx[6] = b[20] * Jmitin - b[20] * Jmitout #Camit 

    return dx 

 

#single peak to slow recovery 

#def noinhibitorGAPmix(x, tspan, i, b13nw, b13af, b13bf, b14nw, b14bf, b14af, plcact, plcde, 

b9): 

x1p = odeint(noinhibitorGAPmix, x0, tspan, args=(0, b13a[0], b13a[1], 0, b14[0], 0, b14[1], 

plcacta, plcdea, b9)) 

x2d = odeint(noinhibitorGAPmix, x0, tspan, args=(4, b13b[1], 0, b13a[0], b14b[1], b14[0], 0, 

plcactb, plcdeb, b9b)) 

#x2d = odeint(noinhibitorGAPmix, x0, tspan, args=(1, b13a[1], b13a[2], b13a[0], b14[1], b14[0], 

b14[2], plcacta, plcdeb, b9b)) 

#x3l = odeint(noinhibitorGAPmix, x0, tspan, args=(4, b13c[2], 0, b13c[1], b14c[2], b14c[1], 0, 

plcactc, plcdec, b9c)) 

xx1p = np.hsplit(x1p, 7) #split array into columns 

xx2d = np.hsplit(x2d, 7) 

#xx3l = np.hsplit(x3l, 7) 
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p1xx = (xx1p[3]-np.mean(xx1p[3]))/(np.std(xx1p[3])) 

d2xx = (xx2d[3]-np.mean(xx2d[3]))/(np.std(xx2d[3])) 

p1x = p1xx - np.min(p1xx) 

d2x = d2xx - np.min(d2xx) 

 

plt.figure(12) 

plt.plot(tspan2, p1x, 'k') 

plt.plot(cell2_tspan, d2x, '--') 

#plt.plot(cell3_tspan, l3x, 'b') 

plt.xlim(0, 400) 

plt.legend(["Type I cell", "Type II cell","cell 3"], loc="upper right") 

plt.title('Type I (Single Peak) to Type II (Slow Recovery) Gap Junction Connection') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

#plt.tight_layout() 

 

#slow recovery to single peak 

#def noinhibitorGAPmix(x, tspan, i, b13nw, b13af, b13bf, b14nw, b14bf, b14af, plcact, plcde, 

b9): 

# x1l = odeint(noinhibitorGAPmix, x0, tspan, args=(0, b13c[0], b13b[1], 0, b14c[0], 0, b14b[1], 

plcactc, plcdec, b9c)) 

x1d = odeint(noinhibitorGAPmix, x0, tspan, args=(0, b13b[0], b13a[1], 0, b14b[0], 0, b14[1], 

plcactb, plcdeb, b9b)) 

x2p = odeint(noinhibitorGAPmix, x0, tspan, args=(4, b13a[1], 0, b13b[0], b14[1], b14b[0], 0, 

plcacta, plcdea, b9)) 

# xx1l = np.hsplit(x1l, 7) #split array into columns 

xx1d = np.hsplit(x1d, 7) 

xx2p = np.hsplit(x2p, 7) 

d1xx = (xx1d[3]-np.mean(xx1d[3]))/(np.std(xx1d[3])) 

p2xx = (xx2p[3]-np.mean(xx2p[3]))/(np.std(xx2p[3])) 

d1x = d1xx - np.min(d1xx) 

p2x = p2xx - np.min(p2xx) 

 

plt.figure(13) 

# plt.plot(tspan, l1x, 'b') 

plt.plot(tspan2, d1x, 'k') 

plt.plot(cell2_tspanv, p2x, '--') 

plt.xlim(0, 400) 

plt.legend(["Type II cell", "Type I cell","cell 3"], loc="upper right") 

plt.title('Type II (Slow Recovery) to Type I (Single Peak) Gap Junction Connection') 

plt.ylabel('Calcium Concentration') 

plt.xlabel('Time (s)') 

#plt.tight_layout() 
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