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Abstract 

 

Objective. Respiratory complications may persist several months into the recovery period 

following COVID-19 infection.  This study evaluated respiratory function and oxygen saturation 

variability between young adults with a history of COVID-19 infection and controls.  

Associations between cardiorespiratory function with potential biobehavioral correlates of 

COVID-19 infection were also explored.  

Methods. 57 adults ages 18 to 65 participated in this study (24 COVID+, 33 Control).  

Spirometry was used to assess pulmonary function volumes of forced vital capacity (FVC), 

forced expiratory volume in 1 second (FEV1), FEV1/FVC and peak expiratory flow (PEF).  

Exhaled nitric oxide (FeNO) was measured using the NiOX VERO, a handheld electrochemical 

nitric oxide analyzer and taken as a proxy of airway inflammation.  Systemic inflammation 

levels were assessed using salivary concentrations of inflammatory biomarkers. Oxygen 

saturation variability was quantified via extended continuous oxygen saturation (SpO2) 

monitoring using linear and nonlinear analyses. Network physiology analysis was conducted to 

evaluate cardiorespiratory control between SpO2, heart rate (HR), respiratory rate and skin 

temperature signals measured by continuous ambulatory monitoring with an Equivital EQO2 

LifeMonitor.  Physical activity levels and sedentary time were assessed using 9-day 

accelerometry.  COVID-19 symptom severity was assessed by participant self-report via 

questionnaires. 

Results. No group differences were observed for pulmonary function of FVC (COVID+: 

4.22±1.01, C: 4.43±1.06 L, p=.663), FEV1 (COVID+: 3.45±0.72, C: 3.57±0.92 L, p=.865), PEF 

(COVID+: 349.63±105.54, C: 373.73±140.61 L/min, p=.370), or FeNO (COVID+: 16.61±13.04, 

C: 20.03±20.11 ppb, p=.285).  Linear and nonlinear oxygen saturation variability did not differ 



 

 

between adults with a history of COVID-19 infection and controls with no history of infection 

(p>0.05).  Cardiorespiratory function measured using network analysis of did not differ between 

recovering COVID-19 individuals and controls (p>0.05).  Sedentary time was inversely 

associated with FEV1 (r=-.392, p=.040), PEF (r=-.579, p=.003), and IL-6 concentrations (r=-

.370, p=.049).  COVID-19 disease severity was inversely associated with FVC (r=-.461, p=.012) 

and FEV1 (r=-.365, p=.040).  Number of symptoms was inversely associated with FVC (r=-.404, 

p=.025).    

Conclusions. Pulmonary function, inflammation levels and oxygen saturation variability were 

similar between individuals with a history of COVID-19 infection and controls without a history 

of COVID-19 infection.  Network interactions between regulatory components of the 

cardiorespiratory system were also similar between recovering COVID-19 individuals and 

controls.  Findings suggest that cardiorespiratory function and dynamic control of SpO2 may not 

be impaired following COVID-19 infection in young adults.  Moreover, increased sedentary time 

and disease severity may have negative effects on pulmonary function in individuals recovering 

from COVID-19. 
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Glossary of terms 

 

Abbreviation Term 

FeNO Fractional concentration of exhaled nitric oxide (ppb) 

SpO2 Oxygen saturation (%) 

HR Heart rate (bpm) 

COVID-19 Coronavirus of 2019 

SARS-CoV Severe acute respiratory syndrome coronavirus 

MERS-CoV Middle East respiratory syndrome coronavirus 

ACE2 Angiotensin Converting Enzyme 2 

ARDS Acute respiratory distress syndrome 

FVC Forced vital capacity (L) 

FEV1 Forced expiratory volume in 1 second (L) 

PEF Peak expiratory flow (L/min) 

TNF-α Tumor necrosis factor 

DLCO Diffusion limitation carbon monoxide 

IL Interleukin 

CRP C-reactive protein  

COPD Chronic obstructive pulmonary disease 

SD Standard deviation 

RMS Root mean square 

MSE Multiscale entropy 

DFA Detrended fluctuation analysis 

SEM Sensor electronics module 

ECG Electrocardiogram 

SaO2 Arterial oxygen saturation (%) 
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Chapter 1: Introduction 

 The World Health Organization declared the novel coronavirus disease of 2019 (COVID-

19) a global pandemic in March of 2020.  Since its onset, there have been over 30.5 million cases 

reported globally, with case reports increasing every day.  The United States is ranked number 

one in cases at over 46.25 million confirmed cases to date.1  As time progresses, the number of 

people recovering from COVID-19 increases as well.  As we continue to study the epidemiology 

of the virus in regard to its onset and spread, a focus in research has shifted towards 

understanding the long-term health effects of COVID-19 on survivors.  

 The lungs are the organ most affected by COVID-19 and act as a major point of viral 

entry into the body.  The novel strain of coronavirus is caused by SARS-CoV-2 infection, a 

member of the Coronaviridae family that also encompasses severe acute respiratory syndrome 

coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV).  

The spike (S) protein of SARS-CoV-2 has a significant binding affinity for the Angiotensin 

Converting Enzyme 2 (ACE2) receptor that is prevalent in type 2 alveolar epithelial cells of the 

human lung.2  ACE2 receptors are also widely distributed outside of the lung, including the 

heart, kidneys, vasculature, brain and gastrointestinal tract.  These ACE2 receptors are sites for 

viral replication and spread, leaving these organs at high risk for infection.2 

 Viral replication inside the cell causes cellular pyroptosis, a highly inflammatory cell 

death via infection, which causes the release of damage pattern molecules.  Nearby epithelial 

cells and alveolar macrophages recognize the release of damage pattern molecules and release 

pro-inflammatory cytokines in response.  This cytokine release evokes an immune response via 

monocytes, macrophages and T cells that continue this pro-inflammatory feedback loop.  In 

some patients, a large and nonspecific immune response to cell damage becomes dysregulated 
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and there is an over-production of these cytokines.  This cytokine release can spread systemically 

in a “cytokine storm” through the circulation, leading to multi-organ damage.3  Increased 

systemic inflammation levels are associated with worsened COVID-19 infection disease severity 

and therefore degree of cardiorespiratory injury during acute infection.  More specifically 

however, this dysregulated inflammatory response leads to alveolar damage and acute injury to 

both the lung and its microvasculature.  This causes the alveoli and the lungs to fill with blood 

and plasma fluid rather than air, limiting diffusion capacity and causing respiratory distress.4  

This fluid buildup can lead to pneumonia and in more severe cases, acute respiratory distress 

syndrome (ARDS).  In addition to a prolonged inflammatory state, the exacerbated infections 

that result from COVID-19 and its subsequent respiratory diseases leads to impaired diffusion 

capacity and gas exchange resulting in persistent hypoxemia.5–7  The oxygen deficit as well as 

the acute injury to the lung also manifests as a diminished overall lung capacity.  

The potential sequalae associated with COVID-19 infection can be derived from the 

acute infection caused by SARS-CoV-2 as well as extrapolated from previous follow-up data 

associated with SARS-CoV and MERS-CoV survivors.6,8,9  COVID-19 infection targets the 

lower respiratory tract, primarily the alveoli of the lungs and its surrounding infrastructure.  In 

moderate to severe cases, the infection causes the development of pneumonia and ARDS, 

resulting in consolidation of the lung and increased difficulty breathing.  These secondary 

conditions associated with COVID-19 infection concurrent with a heightened inflammatory state 

cause lasting damage to the alveoli, the pulmonary microvasculature and the lobes of the lung, 

resulting in scarring and are indicated in the pathogenesis of pulmonary fibrosis.8,10–13  Further 

persisting injury and potential fibrogenesis could result in those COVID-19 survivors that 

required mechanical ventilation during the infection period, exacerbating the existing injury to 
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the lower respiratory tract 8,11 and causing atrophy of the respiratory muscles.14  During the 

infection period, the body’s vasculature including the microvessels of the lung exist in a 

procoagulant state, indicating high risk for future occlusions.9,10  These structural changes to the 

lung present as functional changes to the respiratory system primarily including diminished gas 

exchange and general difficulty breathing.  These deficiencies result in persisting symptomology 

from the infection period to recovery including hypoxemia, dyspnea, cough and fatigue.5,10,15  

Similar to the sequalae reported in SARS-CoV and MERS-CoV infections,8,9,12 data published 

on recovering COVID-19 individuals suggests that these pulmonary abnormalities can persist 

several months into the recovery period.8,11–13,16  Standard pulmonary function testing can give 

insight into these changes in general lung function, strength of respiratory muscles and airway 

obstruction from inflammation or swelling.17   

 A nonconventional approach to assessing airway inflammation that is now being 

explored in COVID-19 patients is measurement of exhaled nitric oxide.  Widely utilized with 

asthma patients, exhaled nitric oxide gives indication to airway-specific swelling related to 

inflammation.  During pro-inflammatory states such as COVID-19, cytokines stimulate the 

overproduction of nitric oxide in an attempt to combat reductions in airway caliber due to 

swelling.  The preliminary use of this testing has been both as a supplementary diagnostic tool 

during active infection as well as a means of evaluating airway inflammation during recovery 

post-infection.  Due to the novelty of exhaled nitric oxide testing in the COVID-19 population, 

utilization of this measure in the current study will provide insight into a potentially useful 

clinical indicator directly related to COVID-19 infection that may contribute to ongoing 

symptomology and respiratory limitation experienced post-infection. 
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Persisting hypoxemia is one of the most common symptoms during COVID-19 infection 

and is associated with COVID-19 mortality.5  While standard intermittent pulse oximetry is 

beneficial in classifying a hypoxemic state, continuous sampling is more intuitive when studying 

respiratory function.  Oxygen saturation variability can be derived from continuous pulse 

oximetry measurement, measured both individually and in conjunction with other 

cardiorespiratory signals in a network approach, and gives holistic insight into physiological 

control of the oxygenation process as well as the integrity of the cardiorespiratory system.18  

Variability can be defined using traditional linear metrics such as mean and standard deviation 

(SD) but also quantified using novel nonlinear methods. 

Measurement of oxygen saturation variability via nonlinear methodology provides a 

novel view of hypoxemia, one of the most predictive indicators of COVID-19 infection, allowing 

a better understanding of the oxygen homeostasis process and the lung injury that may be 

responsible for its malfunction.  SpO2 as a physiological signal is constantly changing and 

adapting to overcome stressors and maintain a desired physiological state (normoxia), observed 

as variability.  Linear methods, such as the SD of values around the mean SpO2, fail to account 

for these natural fluctuations, and therefore only provide minimal insight into the complex 

dynamics exhibited by SpO2.  Assessing variability from a nonlinear perspective helps 

researchers successfully capture and define these natural fluctuations in SpO2 and therefore more 

accurately identify exacerbations and hypoxemia in clinical populations, such as those 

recovering from COVID-19 infection.  Nonlinear variability analysis has been extensively 

studied in other physiological signals such as HR, where reductions of variability are indicative 

of aging and disease.19,20  Injuries to gas exchange efficiency observed during COVID-19 

infection may be indicated by similar reductions in variability.   



 

 5 

The cardiorespiratory system as a whole is composed of several regulatory components 

that work together to maintain proper cardiorespiratory function.  These components (e.g., the 

brain and neural circuitry, heart, lungs, circulation, skeletal muscle in the form of the diaphragm) 

are “coupled” to create an integrated physiological network that is in constant communication 

using information signaling.  Signal outputs generated by these organ systems include heart rate, 

respiratory rate, skin temperate and oxygen saturation.  Network analysis can be used to measure 

the regulatory signaling between components, and assesses a system’s ability to maintain a 

desired physiological state by adapting to the physiological and pathological stressors placed 

upon it.  Reductions in signaling between components (i.e., systems/signal isolation) is indicative 

of injury to the system, and occurs in pathology.21–23  Therefore, network analysis of SpO2 

homeostasis as it relates to other cardiorespiratory signals allows researchers to identify any 

points of isolation or injury amongst regulatory components of the cardiorespiratory system 

sustained during COVID-19 infection that may contribute to decreased control of SpO2.  

Integration between these signals can further indicate the degree of control one component has 

on the maintenance of the other (i.e. how much other cardiorespiratory components such as HR 

contribute to SpO2 homeostasis), and vice versa.  Injuries sustained during COVID-19 infection 

may result in persisting cardiorespiratory injury that decreases the system’s ability to adapt to the 

stressors placed upon it.  This isolation amongst system components can lead to overall 

dysfunction (i.e. hypoxemia) seen as system uncoupling.  These measures work in unison with 

standard pulmonary function testing and exhaled nitric oxide to give a comprehensive view of an 

individual’s global cardiorespiratory function and can be used to assess recovery status and 

progression.   
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There are many biobehavioral factors that may favorably or detrimentally modulate 

cardiorespiratory function.  Physical activity levels and amount of sedentary time are two notable 

contributors to cardiorespiratory outcomes.  Adequate physical activity levels can be protective 

for cardiorespiratory function as they have been shown to promote proper pulmonary function 

and reduce systemic inflammation levels.24–28  Conversely, lower levels of physical activity are 

associated with increased respiratory symptomology and general disease severity in clinical 

populations including increased frequencies of exacerbations, gas exchange impairments and 

elevated inflammatory profiles.29–33  Similarly, sedentary time may cause a detraining effect on 

the lungs, including reduction in strength of respiratory muscles and reductions in pulmonary 

function.34–36  Increased sedentary time has also been associated with elevated inflammatory 

profiles in several populations.37–39  With decreased access to physical activity opportunities with 

COVID-related restrictions such as quarantine, individuals who have experienced COVID-19 

infection may not experience the protective effects of adequate physical activity and suffer from 

the detraining associated with increased sedentary behaviors. Whether physical activity and 

sedentary behavior are associated with cardiorespiratory function in a setting of COVID-19 

recovery has not been specifically explored.   

In summary, measures of respiratory function are predictors of COVID-19 mortality5 and 

offer insight into disease severity, progression and recovery.  Additionally, these indicators may 

be used to assess survivor’s susceptibility for future respiratory decline as they may be at 

increased risk for other respiratory conditions due to ongoing inflammation and injury.  The 

proposed relationship between SARS-CoV-2 infection and its long-term implications are 

depicted in Figure 1.  Furthermore, studies utilizing antibody testing reveal that immunoglobulin 

G antibodies for COVID-19 can dissipate as early as three months after disease recovery, 
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indicating that these survivors are at risk for repeated COVID-19 infection.13  Lastly, assessment 

of prolonged effects of COVID-19 can give insight into rehabilitation needs for these 

individuals.  Continuous SpO2 monitoring and network analysis of SpO2 can provide novel 

insight into components of cardiorespiratory control that contribute to fluctuations in oxygen 

saturation variability and subsequent cardiorespiratory uncoupling.  General assessments of 

recovering patients are limited during the infection/hospitalization period with fear of virus 

transmission and lack of resources.  The use of at-home testing can eliminate these concerns and 

allow direct measurement of multiple aspects of lung function.  This modality also is beneficial 

in a follow-up setting, allowing for access to more subjects than with hospital visits alone.  

 Figure 1. Events From Onset of Infection to Long-Term Respiratory Implications 

Progression of acute injuries from SARS-CoV-2 viral entry and replication through development of potential 

future respiratory risk. 

 

Therefore the purpose of this study was 1) to compare pulmonary function, airway 

inflammation and oxygen saturation variability between individuals with a history of COVID-19 

infection and controls with no history of COVID-19 infection using portable pulmonary function 

testing and extended continuous SpO2 monitoring, respectively, 2) to understand and compare 
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exchange of information between regulatory components of the cardiorespiratory system in 

individuals with a history of COVID-19 infection and controls as measure of dynamic 

cardiorespiratory control using network analysis of SpO2, HR, respiratory rate and skin 

temperature signals, and 3) to explore systemic inflammation, physical activity levels, sedentary 

time and COVID-19 disease severity as potential biobehavioral correlates of cardiorespiratory 

function in individuals recovering from COVID-19 infection.  It was expected that 1) individuals 

with a history of COVID-19 will have reduced respiratory function (decreased pulmonary 

function and increased airway inflammation), and decreased oxygen saturation variability 

compared to controls suggesting individuals with a history of COVID-19 will have decreased 

dynamic cardiorespiratory function, 2) there will be decreased information signaling between 

SpO2, HR, respiratory rate and skin temperature signals in recovering COVID-19 individuals 

suggesting isolation within regulatory components of the cardiorespiratory system (i.e., loss of 

integrated cardiorespiratory control) and 3) that increased systemic inflammation, decreased 

physical activity, increased sedentary time and increased disease severity will be associated with 

decreased cardiorespiratory function in recovering COVID-19 individuals.  The proposed 

measures to evaluate the long-term implications of SARS-CoV-2 infection are shown in Figure 

2. 
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Figure 2. Proposed Measures to Evaluate Cardiorespiratory Function following SARS-

CoV-2 Infection 

Summary of three respiratory sequelae assessed and their associated methodologies. 
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Chapter 2: Literature Review 

 The following literature review will introduce concepts related to 1) the pathophysiology 

of COVID-19 caused by SARS-CoV-2 infection, its clinical manifestations and potential 

sequelae; and 2) the existing uses and implications of the methodology to be used to assess 

respiratory function in COVID-19 survivors (Figures 1 and 2).  This review provides rationale 

for a study to explore the potential long-term cardiorespiratory implications associated with 

COVID-19 infection including measures of pulmonary function, inflammation, and gas exchange 

in survivors.  This review seeks to illustrate the current knowledge provided in the existing 

literature regarding the largely unknown lasting effects of COVID-19 infection.  This study seeks 

to determine whether there is diminished respiratory function in COVID-19 survivors when 

compared to those with no history of COVID-19. 

 

SARS-CoV-2 Infection Pathophysiology 

On March 11, 2020, the World Health Organization declared COVID-19 a global pandemic.40  

This novel strain of coronavirus is caused my SARS-CoV-2 infection, a member of the 

Coronaviridae family that also encompasses SARS-CoV and MERS-CoV.4,7,40  The SARS-CoV-

2 pathogen enters the body through respiratory droplets via receptor-mediated endocytosis,3,7,40 

targeting primarily the lower respiratory tract.3,4,40  The spike (S) protein of SARS-CoV-2 has a 

significant binding affinity for the ACE2 receptor that is prevalent in type 2 alveolar epithelial 

cells of the human lung.3,4,12,41  While most abundant at these type 2 pneumocytes, ACE2 

receptors are also widely distributed in extrapulmonary organs including the heart, kidneys, 

vasculature, brain and gastrointestinal tract.2  Viral replication inside these cells causes cellular 

pyroptosis, a highly inflammatory cell death via infection, causing the release of damage pattern 
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molecules.  Type 2 alveolar epithelial cells and macrophages recognize this pattern release using 

pattern-recognition receptors and respond with a local inflammatory response.3  This process of 

cytokine release prompts surrounding pneumocytes to recruit immune cells such as monocytes, 

macrophages and T cells to the site of inflammation, creating a pro-inflammatory feedback 

loop.3,12,42  In some patients, a large and nonspecific immune response to cell damage becomes 

dysregulated and there is an overproduction of cytokines.  This cytokine release can spread 

systemically in a “cytokine storm” leading to multi-organ damage.3,7,42  More specifically, 

however, this dysregulated immune response leads to diffuse alveolar damage and acute injury to 

both the lung and its microvasculature.3,6,43,44  Diffuse alveolar damage, as defined by 

Katzenstein and colleagues (1976), is a nonspecific reaction of the lung to pathogens and other 

harmful agents, resulting in both alveolar and endothelial injury.45  The injury causes 

desquamation of type 2 alveolar cells, resulting in fluid and cellular exudation, limiting diffusion 

capacity and causing respiratory distress.3,4,11,42–44,46,47  

 

Clinical Respiratory Manifestations of COVID-19 

Viral infection and replication cause injury to the lung’s infrastructure and microvasculature, 

resulting in impaired functionality.  Respiratory distress caused by COVID-19 can be attributed 

to a wide range of symptomology, extending from mild to life-threatening respiratory indicators.  

The aforementioned vascular leakage that occurs at the alveolar epithelium causes abnormal gas 

exchange and inefficient oxygenation of the blood.  This is clinically seen as a low blood oxygen 

SpO2, defined as hypoxemia at values below 95%.5,40  In mild to moderate cases, decreased SpO2 

levels combined with pulmonary inflammation manifest as common respiratory symptoms 

including cough, dyspnea, and fatigue.  Additionally, COVID-19 infection causes an aggressive 
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form of pneumonia4,7,10,40,42,44 that can lead to exacerbated alveolar damage and in more severe 

cases, the development of ARDS.2,3,8,10  These secondary respiratory conditions are often 

identified from radiological abnormalities, most commonly seen as pneumonia, hyaline 

membrane formation, lesions, pulmonary consolidation, and pure or mixed ground glass 

opacities.4,6,7,9,12,13,40,42,43,47  Patients with persisting hypoxemia or severe secondary infection (i.e. 

ARDS) may require supplementary oxygen and in some cases mechanical ventilation due to 

respiratory failure.  A study conducted by Wang et al. studying 36 COVID-19 cases requiring 

admittance to the intensive care unit reported that approximately 89% of patients could not 

breathe spontaneously and required some form of oxygen supplementation or mechanical 

ventilation.48  In summary, the acute lung injury caused by COVID-19 infection manifests most 

commonly as hypoxemic respiratory distress and its associated symptomology, anatomical 

alterations seen by radiological scans and the development of secondary respiratory infections.  

This symptomology may persist long after the infection period and gives insight into potential 

long-term complications that may arise for these survivors. 

Concurrent with respiratory symptomology, the heightened systemic state of 

inflammation during COVID-19 infection, termed the “cytokine storm,” has earned a critical 

rapport in clinical assessment of COVID-19 individuals.  The cytokine storm described in 

COVID-19 patients was previously defined by researchers as “an activation of auto-amplifying 

cytokine production due to an unregulated host immune response.49  The positive inflammatory 

feedback loop between immune cells and inflammatory molecules has lasting implications for 

immune function in the host.  High levels of cytokines lead to the overactivation of lymphocytes, 

specifically T cells.  T cell exhaustion results in amplified levels of inflammatory molecules such 

as interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) that play a role in lymphocyte 
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necrosis.42  With this, lymphopenia has been observed in COVID-19 patients and leaves them at 

higher risk for further inflammation as well as increased susceptibility for future infection.3,40,42  

Furthermore, as this hyperinflammation affects the host in a systemic fashion, respiratory 

function can be indirectly affected by extrapulmonary factors including ongoing cardiac and 

vascular injury.6  Finally, the body’s vasculature, including the microvessels of the lung, exist in 

a procoagulant state after infection, indicating high risk for future occlusions.9,10  These findings 

indicate that chronic inflammation due to COVID-19 infection results in overactivation of the 

immune system, ultimately resulting in lymphopenia and increased susceptibility for future 

respiratory decline.   

 

Potential Sequelae of COVID-19 

As the novelty of the COVID-19 pandemic recedes, the population of recovered cases that can 

and have been accessed to evaluate the long-term physiological implications of COVID-19 

infection on survivors becomes increasingly available.  To date, much of the potential sequelae 

associated with COVID-19 can be derived from both the acute infection caused by SARS-CoV-2 

as well as extrapolated from previous follow-up data associated with SARS-CoV and MERS-

CoV survivors,6,8,9 and from individuals recovering from the secondary respiratory conditions 

that may develop during COVID-19 infection, such as ARDS.43  The secondary infections 

associated with COVID-19 paired with a heightened inflammatory state cause lasting damage to 

the alveoli, the pulmonary microvasculature, the lobes of the lung, and the airway.  In more 

critical cases, injuries may result in scarring and are indicated in the pathogenesis of pulmonary 

fibrosis.8,11–13  Pulmonary fibrosis is associated with chronic inflammation during fibrogenesis50 

and restricted ventilation and diffusion capacity as a result.51  A study investigating the 
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progression of radiological abnormalities one month after discharge in COVID-19 patients found 

despite the gradual resolution of parenchymal findings (i.e. ground glass opacities), 39% of 

participants still displayed residual fibrosis.13  Further persisting injury and potential fibrogenesis 

could result in COVID-19 patients that require mechanical ventilation8,11 and cause atrophy of 

the respiratory muscles.14,52  A study conducted by Levine and associates (2008) showed that 

patients who underwent mechanical ventilation who had diaphragmatic inactivity exhibited a 

more than 50% decrease in muscle cross-sectional area in as little as 18 hours.53  Mechanical 

ventilation is also associated with barotrauma and the development of lesions that may lead to 

edema.54  Taken together these findings suggest that COVID-19 survivors, especially those with 

more severe infection experiences (e.g. development of ARDS, ventilation requirement), are at 

increased risk for lasting respiratory complications following infection including fibrosis and 

mechanical ventilation injury. 

  Existing follow-up data suggests that the pulmonary abnormalities seen during COVID-

19 infection can persist several months into the recovery period.8,11–13,16  These deficiencies 

result in persisting symptomology from infection to recovery including hypoxemia, dyspnea, 

cough and fatigue.10  A study conducted with 110 discharged COVID-19 patients of varying 

disease severity tested pulmonary function three months after hospital release.  Diffusion 

abnormalities were observed in 47.2% of cases (DLCO) followed by diminished total lung 

capacity in 25% of subjects.6  These findings were consistent with that of gas exchange 

efficiency measured as diffusion limitation of carbon monoxide (DLCO) and total lung capacity 

measurement in SARS-CoV survivors at 0.5-2 years follow-up55–57 and DLCO measurement 

alone at 12 months follow-up of MERS-CoV subjects.58  Another study of 55 recovered COVID-

19 patients conducted at three months post-discharge revealed pulmonary function anomalies in 



 

 15 

25.45% of subjects as well as radiological abnormalities in 74.55% of survivors.  This same 

study also conducted immunoglobulin G serum antibody testing and found that 14.55% of their 

cohort tested negative, suggesting that these individuals are susceptible to repeat infection as 

early as three months after recovery.12  Despite the growing number of follow-up studies, if and 

when COVID-19 survivors will return to normal respiratory function and fully recover from the 

effects of the virus still remains largely unknown.  A previous study looking at SARS-CoV 

survivors reported respiratory abnormalities up to 15 years post-infection, including diminished 

diffusion capacity in 38.46% and impaired mid-flow maximum expiration (expiratory flow) in 

40.38% of patients.41  Likewise, long-term studies of ARDS patients revealed persistent 

reduction in health-related quality of life up to five years after hospital discharge,59,60 correlating 

with pulmonary dysfunction in these subjects.61  Overall, current follow-up studies assessing 

respiratory function in COVID-19 survivors resemble that of existing data of individuals 

recovering from similar respiratory infections; reporting impaired gas exchange, radiological 

abnormalities and diminished total lung capacity.  Consequently, measures of respiratory 

function may be valuable predictors of COVID-19 infection severity and symptomology, and 

therefore disease progression and recovery. 

 

Salivary Inflammatory Biomarkers 

The systemic dysregulated inflammatory response known as the cytokine storm is indicative of 

not only the presence of COVID-19 infection, but also can be used for stratification of COVID-

19 disease severity.3,62  These findings are consistent with the relationship between inflammatory 

biomarkers and disease severity and outcomes seen in MERS-CoV, SARS-CoV and chronic 

obstructive pulmonary disease (COPD) patients.62,63  Researchers have found elevated plasma 
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levels of chemokines, interleukins (IL) 2, 6, 8, 10 and 1ß, C-reactive protein (CRP), TNF-α and 

D-Dimer in COVID-19 patients,7,40,62 with higher levels being indicative of more severe 

infection.  These biomarkers of inflammation can be measured in saliva as a proxy for serum 

concentrations.62  While serum levels are representative of systemic inflammation, relationships 

between inflammatory biomarkers and pulmonary injury have been identified.  Elevated 

inflammatory markers, specifically CRP, were found to be associated with severity of 

hypoxemia5 and therefore degree of injury in COVID-19 patients.  Similar indicators were 

shown in a three-month follow-up study where COVID-19 survivors with abnormal computed 

tomography findings had significantly higher CRP concentrations.12  This relationship between 

CRP levels and pulmonary function has previously been reported in patients with COPD as 

higher CRP concentrations were correlated with decrease lung volumes.64  Furthermore, IL-1ß 

has been found to play a strong role in fibrogenesis at the lung65 while TNF-α has been indirectly 

associated with the development of pulmonary edema as it contributes to alveolar membrane 

permeability.66  Moreover, augmented levels of interleukins 6 and 8 have been found as 

predictive of poor outcomes in acute lung injury patients.66,67  More specifically, IL-8 is 

responsible for upregulation of adhesion molecules66 as well as functions in altering the integrity 

of the alveolar membrane.67  The remainder of these biomarkers are also responsible for the 

recruitment of additional inflammatory cells including cytokine and chemokine production and 

neutrophil and macrophage activation.42,66  A comprehensive overview of these biomarkers and 

their inflammatory functions as they relate to respiratory injury can be seen in Table 1.  Because 

these biomarkers are indicative of injury, they may be helpful in identifying recovery progress in 

survivors. 
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Table 1. Inflammatory Biomarker Functions 

IL-6 

 

Predictive of poor outcomes in ALI, 

inflammatory cell recruitment 

IL-8 Predictive of poor outcomes in ALI, 

upregulates adhesion molecules, alveolar 

membrane permeability, inflammatory cell 

recruitment 

IL-1ß Role in pulmonary fibrogenesis, 

inflammatory cell recruitment 

CRP Associated with decreased lung volumes & 

severity of hypoxemia, abnormal CT findings, 

inflammatory cell recruitment 

TNF-α Affects alveolar membrane permeability, 

contributes to pulmonary edema, 

inflammatory cell recruitment 

IL, interleukin; ALI, acute lung injury; CRP, C-reactive protein; CT, computed tomography; TNF-α, tumor 

necrosis factor 

 

Pulmonary Function Testing 

As previously discussed, current follow-up data on COVID-19 survivors suggests that impaired 

lung function may extend several months into the recovery period.6,12  Pulmonary function 

testing can give insight into general lung capacity, strength of respiratory muscles and airway 

obstruction from inflammation or swelling.17  Standard pulmonary function testing utilizes a 

single spirometry maneuver to capture multiple determinants of pulmonary function including 

forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and peak expiratory 

flow (PEF).17,68  This manuever is repeated for three trials, and the best score for each pulmonary 

function volume is taken as a final measure of function.  Spirometry is commonly used in 

clinical practice to assess lung impairment and disease progression in populations with 

respiratory conditions such as asthma and COPD.68–70  Individual predicted values are 
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determined by subject age, height, sex and ethnicity68,71 as pulmonary function scores are often 

reported in percentage of predicted value.17,68–71  FVC is clinically defined as the total volume of 

air that can be exhaled during a forced, maximal expiration effort following complete inflation of 

the lungs.69  Attenuated FVC values are common in restrictive lung diseases such as idiopathic 

pulmonary fibrosis.70  FEV1 refers to the amount of air that can be forcibly expired in 1 second 

following maximal inhalation.69,70  Reduction is FEV1 values indicates increased airway 

resistance to expiratory flow70 and is common in obstructive lung diseases.70,72  Individual FVC 

and FEV1 values of greater than or equal to 80% are considered normal17,69 and these values 

have been found to be independently associated with mortality in asymptomatic (without 

obstructive disease) individuals.73  Additionally, disease severity can be classified by the degree 

of deficiency (how far a score is below 80%) seen in FEV1 scores.68  A ratio of FEV1/FVC can 

be used to distinguish types of lung disease or impairment69,70 however it must be analyzed in 

conjunction with individual FEV1 and FVC values.74  A normal FEV1/FVC ratio has been 

defined as greater than or equal to 70%.  A more pronounced reduction in one value compared to 

another affects the ratio and can be indicative of types of lung disease as mentioned.70  However, 

if both values are reduced to the same extent, the ratio is technically preserved.  Despite this 

presumably normal ratio, this pattern is associated with decreased functional capacity and 

increased mortality.74  PEF is a measure of maximum flow achieved during a forced expiration 

effort following maximal inflation of the lungs.  PEF measurement is indicative of lung volume, 

strength of expiratory muscles, airway caliber and elastic recoil capacity of the lung, where 

diminished PEF is indicative of airflow obstruction and deficiency in one or more of these 

areas.17  According to the British Lung Foundation and American Lung Association, normal PEF 

scores in adults range from 400 to 700 L/min, or 80% or higher of predicted values for 
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participant demographic.71,75  Additional considerations (and potential limitation) regarding these 

measurements are that they are all contingent on subject effort.70  Therefore, proper technique, 

instruction and participant motivation are necessary for accurate data collection.68,70  

 Decreased pulmonary function values have been reported in both COVID-19 survivors 

and in survivors of other respiratory disease.  A three-month follow-up study conducted with 

COVID-19 patients revealed 25% of participants showed pulmonary function deficiency with 

approximately half of them showing reduced FVC or FEV1 values.12  Similar reports were 

published in COVID-19 patients with abnormally low FEV1 and FVC values at 6 weeks follow-

up76 and at the time of patient discharge.6  This is consistent with findings of COPD patients 

showing reduction in both FEV1 and FVC scores independent of markers of inflammation.63   

PEF has also been found to show greater decline in more severe COPD patients, indicating 

disease progression.77  Furthermore, a study of ARDS survivors at an average of 30-months post-

discharge revealed that 56.3% of subjects displayed an obstructive pattern, restrictive pattern, or 

combination of the two.78  These findings indicate that pulmonary function should be utilized to 

assess COVID-19 patients and identify restrictive flow patterns.76  The current study will identify 

if pulmonary dysfunction persists in young adults with a history of infection, and therefore 

provide indication if this population should be monitored during the recovery period and whether 

or not these individuals may require therapeutic intervention post-infection.  

 

Exhaled Nitric Oxide 

Ongoing inflammation from COVID-19 infection can be measured systemically in the 

circulation or saliva, but also can be assessed specifically to the airway.  Airway inflammation 

can be measured as concentrations of nitric oxide and may act as a partial source of pulmonary 
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dysfunction as it affects expiratory flow measures by obstructing the airway.  Fractional nitric 

oxide in exhaled breath, or exhaled nitric oxide (FeNO), measurement is commonly used in 

patients with respiratory disease79–81 but has been only preliminarily used with COVID-19 

patients.82–86  FeNO is an indicator of airway caliber and inflammation as nitric oxide is essential 

in regulating vasomotor tone in the pulmonary circulation80,87 and has previously been associated 

with changes in lung function.79  Aside from its role in broncho- and vasodilation, nitric oxide 

has also been identified in immune function as it can damage pathogens and recruit T-helper 

cells to produce antibodies.81  Under inflammatory conditions, several cytokines that are 

prevalent in COVID-19 (i.e. IL-1ß, TNF-α, etc.) stimulate the overproduction of nitric oxide in 

order to combat the change in airway size due to adjustments in vascular tone.80  Higher 

concentrations of nitric oxide in expired breath represent increased levels of inflammation in the 

airway and airway caliber reduction.79,80  Reference FeNO values are dependent on subject age, 

sex, anthropometrics, smoking status and dietary habits.81   

A study conducted on 49 intensive care patients found that exhaled NO values in 

critically ill patients with pneumonia were elevated compared to those without.  This study also 

found that FeNO values were independent of systemic NO levels, indicating that FeNO values 

were specific to airway inflammation.80  These findings were echoed in a recently published 

study that used FeNO as a rapid screening tool for COVID-19 patients, where it successfully 

identified 88% of infected subjects.83  Similarly, Yang and colleagues also applied this modality 

for COVID-19 diagnostic use.  Results of this study were consistent with previous findings and 

found that FeNO levels were significantly higher in COVID-19 patients compared to healthy 

controls.  It is important, however, to complete additional testing as patients with other chronic 

diseases (asthma, COPD, etc.) will be classified similarly to COVID-19 subjects in this 
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assessment.82  Few studies have evaluated FeNO levels in recovered COVID-19 individuals and 

have yielded mixed findings.84–86  Thus, FeNO measurement may be a useful modality in 

complementing other forms of respiratory evaluation such as pulmonary function testing 

however more data is necessary to understand its true significance as a measure of respiratory 

recovery post-infection. 

 

Oxygen Saturation  

Diminished lung capacity and functionality due to the acute lung injury caused during infection 

are largely attributed to reductions in diffusion capacity due to diffuse alveolar damage.  The 

efficiency of gas exchange at the lungs is therefore compromised, and oxygen cannot reach and 

bind to the red blood cells that pass by in the circulation.  This efficiency can be measured as 

SpO2, and can fluctuate throughout the day based on a number of things, including ambient 

oxygen, activity levels, and general lung health.  Desaturations due to pathology in the lung can 

be classified as exacerbations and result in bouts of hypoxemia or low blood SpO2 levels.  These 

changes in blood oxygen levels can be monitored closely and give important insight into 

functionality of not only the lung but the entire cardiorespiratory system.  While spot check SpO2 

is considered the fifth vital sign, continuous monitoring may be a more effective way of 

evaluating these fluctuations. 

SpO2 is a measure of the percentage of hemoglobin binding sites that are occupied by 

oxygen molecules relative to how many hemoglobin binding sites there are total.  Each 

hemoglobin is able to carry four oxygen molecules for transport to the rest of the body.88  

Denoted as a percentage, normal saturation values for a healthy individual at sea level range 

between 96% and 98%.89  Persistent hypoxemia is one of the major symptoms associated with 
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COVID-19, and hypoxemia has been found to be independently associated with in-hospital 

mortality in COVID-19 patients.5  SpO2 measurement has also been shown to be predictive of 

acute exacerbations in diseased individuals90 and displayed a high negative predictive value (92-

94%) for predicting severe illness in children.91  Clinically, hypoxemia is defined as an SpO2 

below 95%,18,92 and severe hypoxemia is defined as an SpO2 value below 90%.5,40  Patients 

experiencing severe hypoxemia require some form of oxygen therapy through supplementation 

or mechanical ventilation in cases of hypoxemic respiratory failure.92  Oxygen concentrations in 

the blood are determined by a variety of factors, including ventilation and gas exchange, as 

specific to the lung.89  As previously mentioned, SARS-CoV-2 viral infection and replication in 

alveolar epithelial cells causes excessive inflammation and acute lung injury, causing fluid 

exudation into the lung.  The most prevalent of these injuries is diffuse alveolar damage, which 

directly damages the alveolar blood gas barrier at the lung where gas exchange occurs.  The 

potentiated inflammation in this area also damages the pulmonary microvasculature, which 

includes the alveolar capillaries that transport blood adjacent to the alveoli to allow for 

oxygenation to occur.3,6,43,44  This causes limited gas exchange capabilities, which is why oxygen 

levels in the blood fall below normal. 

 Spot check pulse oximetry is a standard noninvasive method for measuring oxygen 

concentration which uses light wavelengths to determine the ratio of oxygenated hemoglobin, 

providing an instant SpO2 value for that given point in time.88  While this is the clinical standard 

for SpO2 measurement, continuous measurement of SpO2 gives more extensive saturation data to 

analyze than intermittent collection93,94 and spot check measurement fails to differentiate 

between natural fluctuations and acute exacerbations of SpO2.94  Oxygen saturation variability 

can be defined as the complex pattern of SpO2 fluctuations93 and gives insight into physiological 
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control of the oxygenation process as well as the integrity of the cardiorespiratory system.  

Variability analysis can be conducted using both linear and nonlinear methods.  Linear analysis 

consists of basic variability measures such as mean, SD, root mean square (RMS), range, and 

average hourly change.  Nonlinear variability analysis attempts to capture the true pattern of 

SpO2 fluctuations through measurement of pattern regularity, complexity and self-similarity.18,95 

 

Oxygen Saturation Variability and Complexity 

In the field of physiology across all types of biological signals, the concept of homeostasis, or a 

state of equilibrium, is thought to be the overall goal for an organism and its many systems.  

However, the most basic understanding of homeostasis suggests that the human body is 

constantly stable, or at least in a “steady” state.  Research has repeatedly demonstrated, however, 

that the human body is changing physiological states constantly- rest to wake, stress to 

relaxation, experiencing a wide range of emotions, and continuously adapting to changes to their 

environment and the stressors placed upon it (i.e. cold weather, exercise).  Therefore, the systems 

use signaling, or regulatory information exchanged between the structural units of a system to 

elicit a physiological response, usually to maintain/return to a homeostatic state.96  In contrast to 

classical concepts of physiologic control and homeostasis, the goal of these signals is not to 

maintain constancy or equilibrium,97 but rather to successfully adapt to the constant stressors 

placed upon it.98  Adaptation to these stressors is characterized by changes in  signaling between 

regulatory components of the body, spanning from the molecular (cellular) to the systemic level 

(organ systems).96  With this, we observe inherent variability in physiological signaling, 

representing the natural adaptation to ongoing changes in stimuli and stressors.22,98–101  

Variability, from its most basic standpoint, is defined as lack of consistency or fixed pattern.102  
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Therefore, variability observed in physiological signaling suggests responsivity to adaptation to 

potential stimuli, rather than lack of physiological control.  This concept can be observed in HR 

signaling, where increased heart rate variability is suggestive of better autonomic cardiac 

regulation.100,101 

Physiological variability can be observed across systems and their intrinsic signals, 

demonstrated across multiple time scales.  This includes variable patterns seen between just 

seconds (HR) to months (hormonal cycles).  Traditionally, physiological monitoring is 

conducted under two assumptions- 1) that these signals are largely stable (not variable) and 2) 

that the signal occurs on a singular time scale (linear).  Under these assumptions, variability 

measurement of these signals is conducted at a singular point in time to provide one “tell-all” 

value that is compared to a normative value range for classification.  As we have now discussed, 

physiological signaling is variable, and therefore single point measurement fails to account for 

natural variations in signaling, only giving indication as to what that signal looks like under those 

specific internal/external conditions.  Furthermore, assumptions of linearity when assessing 

physiological signals limit clinicians from observing the depth of physiological signal patterns 

across multiple time scales.   

Under these assumptions of stability and linearity, traditional metrics of variability such 

as mean and SD are often used to assess variable patterns in physiological signals.  Mean values 

can be quickly compared to a normative value or range established for a given signal.  While SD 

and other variation metrics do assess variability, these metrics fall under traditional views of 

homeostasis, where increased variation is thought to be indicative of poor physiological control 

rather than natural adaptation within a signal.  While these signals provide very general and 

simplified insight into physiological function, these measures fail to recognize the complex and 
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fractal dynamics within physiological signals.  Complexity is used to assess the interaction 

(information signaling) between regulatory components of a system.  Changes in complexity 

represent an individual’s ability to adapt to the stimuli placed upon it, to maintain or transition to 

a given physiological state.98,100  In contrast to variability, complexity assesses the patterns 

created during adaptation to stimuli, rather than simply the level of variation from a steady state 

(baseline).  The concept of variability v. complexity is shown in Figure 3.  Variable signals are 

not necessarily complex, and complex patterns are not necessarily variable (i.e. reductions in 

variability do not automatically reflect reductions in complexity).103  Signals can exhibit 

increased variability without complexity, illustrating a non-calculated and potentially 

maladaptive response to a stimulus.  Furthermore, fractality is an important form of complexity, 

used to assess self-similarity of signaling across multiple time scales, such that small scale 

patterns represent larger scale patterns.  Fractal patterns improve communication efficiency of 

information, something observed in the structures of systems (anatomy) and the ability to 

translate those signals for a physiological effect.  Fractals are widely recognized in anatomical 

structures such as the bronchial and arterial trees, where the part (small) looks like the whole 

(large).98  When assessing physiological signals, fractal patterns are those that exhibit the same 

patterns over small scales (seconds) to long term scales (hours).  Examples of fractal patterns in 

anatomical structures and physiological signaling is shown in Figure 4.  Complexity and 

fractality in physiological signaling has been well documented in HR (electrocardiogram) 

(ECG), nerve signals (electroencephalogram) (EEG), blood pressure and muscle outputs 

(electromyography).98,100,104,105   

Both complexity and fractality acts as indicators of the ability of that system/signal to 

adapt to the physiological/pathological stimuli placed upon it.  That is, loss of complexity and 
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fractality are characterized by a reduction of interaction between regulatory components, 

resulting in a hindered adaptive capacity of that signal.  Individuals with higher baseline (non-

stimulated at rest) levels of complexity exhibit a higher readiness and ability to respond to 

stressors.100  Similarly, increased power observed in fractal patterns indicates stronger patterns 

within the data.  With this, reductions in complexity and breakdowns of fractal patterns are 

usually observed in cases of aging or disease, often due to isolation or injury to one or more of 

the regulatory components of a physiological system.100,106  These complex and fractal signals 

exhibit “hidden information” about physiological patterns that cannot be properly be quantified 

using conventional linear methods as signaling occurs on both nonlinear and multiple spatio-

temporal scales.97,107  Linear methods suggest that the level of variation will be proportional to 

the degree of effect (physiological response)106 which is not the case for most physiological 

systems.  An example of how linear methods can fail to detect the hidden dynamics of 

physiological signaling is shown in Figure 5 with HR signals.  By conventional standards, these 

individuals exhibit the same level of variability, indicated by similar mean and SD values.  In 

contrast, assessment of complex signaling illustrates the reduction in complexity observed with 

aging in the old subject, denoted by a lower entropy value.  Therefore, to capture more accurate 

and dynamic variability of physiological signals, nonconventional nonlinear methods of analysis 

are indicated.104 

Complex dynamics of a signal are assessed using a nonlinear analytical approach, 

quantified as entropy.18,100,108  Contrary to the entropy definition used in physics, entropy from a 

mathematical and analytical standpoint is used to define the dynamic behavior of a variable, 

rather than inherent disorder.98  That is, increased levels of entropy actually indicate a higher 

degree of physiological control, rather than disorder in signaling.  Entropy analysis of 
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physiological variables began in the early 1990’s,108 but has yet to be defined in many 

physiological signals.  To date, entropy analysis has primarily been used to define nonlinear 

variability patterns in HR, EEG (brain waves) and electromyography.19,20,105,109  Analysis of 

these variables suggests that reductions in entropy are observed with aging and disease, 

representing the decrease in complexity (regulatory signaling) and compromised ability to adapt 

to stimuli of these signals/systems.  With this, reduced entropy levels have been observed in 

older populations, individuals with coronary artery disease, Alzheimer’s and 

epilepsy.18,100,105,110,111  Similar to these pathological conditions, injury to gas exchange during 

COVID-19 infection may result in reduced entropy levels of SpO2 signaling.  This would suggest 

a decreased ability to maintain normoxic conditions with the increased stress of injury placed on 

the cardiorespiratory system, observed as exacerbations or hypoxemic episodes.  Entropy 

analysis can be utilized to assess multiple types of nonlinear dynamics within SpO2 signals, 

including patterns of regularity, complexity and fractality.  Each of these nonlinear analytical 

approaches and how they will be used to assess these patterns in SpO2 signaling will be 

discussed here. 

The most basic form of nonlinear variability analysis, sample entropy is used to quantify 

the regularity of a variable in a time series, a method that is recognized amongst cardiovascular 

dynamic variable measurement.18  The concept of sample entropy is displayed in Figure 6.  More 

irregular signal patterns exhibit higher amounts of information, and therefore increased sample 

entropy.  In contrast, more regular and predictable patterns exhibit less information, and 

therefore lower sample entropy.  More regularity in signaling may be indicative of decreased 

sensitivity of the signal’s regulatory components to stressors, and demonstrated by less 

informational regulatory inputs/outputs to physiological (SpO2) signaling.108  Several studies 
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have shown that differences in sample entropy can distinguish between normal and diseased 

participants with reductions in entropy occurring with pathology.19,112,113  For example, increased 

regularity has been observed in EEG signals during an epileptic seizure, as well as decreased 

entropy in ECG signals during heart failure.98,114  Reductions in entropy may also be predictive 

of future mortality from pathology.95,98  Injury to the gas exchange process and therefore SpO2 

signaling observed during/after COVID-19 infection may contribute to increased regularity in 

signaling, denoted by decreased sample entropy levels in these individuals, but this has not yet 

been studied.   

MSE quantifies the complexity of a variable in a time series and employs cross-scale 

correlations by calculating the sample entropy of a time series and its multiple derived sub-time 

series.18  Multiple time series are created by repeated downsampling of the data by averaging 

adjacent data points together.  That is, variability is quantified as sample entropy levels for “beat 

to beat” measurement of SpO2, including analysis of every consecutive SpO2 value (scale 1) up 

to analysis of the average of every 10 consecutive SpO2 values (scale 10).  Visualization of the 

downsampling process is depicted in Figure 7.  Interpretation of these sample entropy levels 

across scale gives indication of complexity v. randomness in a signal.  If the downsampling 

process cancels out sample entropy, a signal exhibits randomness rather than complexity.  This 

suggests that non-physiological “noise” created the variations in the signal, rather than calculated 

engagement of a system in an effort to adapt to a stressor, creating a false front of complexity 

that is not consistently observed over different time series.  Continuous increases in sample 

entropy levels across scale despite the downsampling process, however, suggests true complexity 

within a signal.110  Complexity observed in SpO2 signaling indicates that there are patterns to be 

recognized within the signal, rather than random fluctuations that cannot be quantified.  As 
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previously discussed, complexity has further been defined as dynamic interaction of regulatory 

components that work together to allow for adaptation to stressors.18,100  Therefore, this analysis 

indicates the ability of SpO2 to properly regulate itself, despite the potential stressors placed 

upon it (COVID-19 related injury).  Previously used to analyze other physiological variables, 

reduced MSE has been indicated as weakened engagement of the control system (reduced 

adaptive signaling amongst its regulatory components)18,95 and has been shown to be predictive 

of future decline and poor health outcomes.20  Similarly, as previously mentioned, aging and 

disease has been shown to result in decreased complexity signaling.18  Therefore, persisting 

injuries sustained during COVID-19 infection could emulate that of early aging to the system 

and its structural units, seen as decreased complexity.    

The final nonlinear method, DFA, is used to identify fractal-like (self-similarity) patterns 

in a fluctuating time-series,18 where small scale patterns are representative of the larger scale 

pattern.100  DFA assesses self-similarity patterns of a variable across multiple time scales using 

correlations.18,100  This method further allows researchers to distinguish meaningful fractal 

properties from potentially random and nonphysiologically influenced patterns,100,104 adding to 

the specificity of this analysis.  As previously mentioned, fractality in signaling suggests that 

variations over a small amount of time are representative of longer time series.  While smaller 

scales may be representative of larger scales, this method also allows comparison of complexity 

levels between scales,18 which may be a helpful indicator for researchers of future investigations 

as to what is the most informational and efficient length of signal monitoring is to properly 

capture and assess these patterns.  By confirming that SpO2 signaling is in fact fractal, it allows 

researchers to now classify significant patterns in signaling, similar to that of ECG patterns.106  

Similar to other nonlinear metrics, decreased fractality of physiological signals occurs with aging 
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and disease.100,106,111  This breakdown of fractal patterns may be associated with excessive 

regularity (similar to that of decreased entropy), classified by repetitive, periodic (and most 

likely pathological) signaling.100,104,115  COVID-19 infection could potentially reduce the power 

observed in fractal patterns of SpO2, serving as a predictor of adverse outcomes such as future 

respiratory decline.  Collectively, the utilization of nonlinear analysis of oxygen saturation 

variability to supplement traditional linear methods will provide a novel perspective of complex 

control of gas exchange and oxygenation homeostasis as it relates to potential persisting injury 

from COVID-19 infection. 

 Bhogal et al. was the first to attempt to quantify “normal” oxygen saturation variability 

using continuous SpO2 monitoring in adults, as it has only been previously established in infants.  

This study functioned to provide an important baseline for understanding the intrinsic patterns 

within oxygen saturation variability, as much of its theory was based upon variability measures 

of other physiological signals (i.e. heart rate variability).  These novel findings showed that 

oxygen saturation variability exhibits a fractal-like pattern, and that variability is better indicated 

by long-term measure as denoted by increased complexity in long-term scales.  Bhogal also 

identified an inverse relationship between SpO2 and sample entropy, where there was higher 

entropy seen at lower SpO2 values.  Findings suggest that there is tighter control system coupling 

at lower saturations, further suggesting that system uncoupling seen in aging and disease could 

be indicated by lower complexity.  Thus, Bhogal and colleagues proposed that nonlinear pattern 

analysis could be utilized to study network physiology, examining how organ systems work 

together to control a given physiological variable.18  Another study attempted to observe changes 

in oxygen saturation variability by introducing healthy individuals to a hypoxic stimulus, 

anticipating increased signaling between regulatory components (increased complexity) to be 
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activated to maintain SpO2.  When exposed to graded normobaric hypoxia, individuals displayed 

increased sample entropy and SD fluctuations in SpO2.  Nonlinear analysis was also found to be 

more sensitive to the stimulus than linear variables, however linear variability measures were 

strongly correlated with sample entropy.  Furthermore, Costello identified a significant 

correlation between entropy and dyspnea during hypoxia, and sample entropy proved to be more 

predictive of hypoxemia than other nonlinear analysis variables.95   

Although complexity analysis has not been conducted in clinical populations, oxygen 

saturation variability has been studied in these individuals.  Buekers et al. collected seven-day 

continuous pulse oximetry measurement in 20 individuals with COPD.  Results revealed an 

average daily fluctuation of 10.8% for these subjects, with 3.2% fluctuations during 5% of 

daytime resting values.94  These findings reiterate previous concerns of false identification of 

acute exacerbations when discounting natural fluctuations18,94 and represent the applicability of 

extended continuous SpO2 measurement in individuals with respiratory conditions.94  Therefore, 

nonlinear variability analysis can be used to observe the natural variability of SpO2 signaling 

over an extended period of time, and therefore define true bouts of potential hypoxemia in these 

populations. 

Figure 3. Variability v. Complexity99 

Concepts of variability compared to complexity.  Variability in a signal, demonstrated as large deviations from 

the mean of a sine wave dones not equate to complexity.  This concept can be observed in a signal that is 

variable but not complex (left), complex but not variable (middle), or both variable and complex (right). 
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Figure 4. Fractals in Anatomical Structures and Physiological Signaling100 

 

Examples of fractal patterns observed in anatomical structures and physiological signaling.  Spatial patterns are 

observed in anatomical structures such as arterial tree.  HR signaling fluctuation patterns appear similar for 

smaller time scales of three minutes (bottom) as they look at larger scales of 30 minutes (middle) and 300 

minutes (top). 
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Figure 5. Linear and Nonlinear Measurement of Heart Rate Variability100 

Variability analysis of a heart rate tracing of a young (top) and old (bottom) subject.  Linear methods of 

variability mean and SD suggest nearly identical levels of cardiovascular control between subjects.  Nonlinear 

analysis of variability using entropy, however, suggests that the complex cardiovascular dynamics are much 

lower in the old subject than the young. 

 

Figure 6. Examples of Sample Entropy116 

 

 

 

 

 

 

 

Examples of signals with varying levels of sample entropy.  More irregular signals exhibit higher levels of 

sample entropy (orange) while more predictable signals exhibit lower sample entropy (red). 
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Figure 7. Downsampling Process Used for MSE Analysis110  

 

Examples of the downsampling process for MSE anaylsis for scale 2 (A) and scale 3 (B).  Each scale is created 

by averaging adjacent data points together.  For scale 2, every two consecutive data points are averaged 

together to create a singular value (y1).  For scale 3, every three consecutive data points are averaged together 

to create a singular value.  This process is repeated for a given number of scales throughout the time series or 

data collection period. 

 

Cardiorespiratory Network Physiology Analysis 

Just as singular signals have regulatory components that exchange information, organ systems 

have similar structures of regulatory components that interact for proper function as well.  These 

regulatory components create a physiological network that is in constant communication.  An 

example of a network components and how they interconnect are displayed in Figure 8.  The 

nodes of a network represent each regulatory component while the edges demonstrate the 

information signaling that connects them.  This can be seen as system coupling, and is observed 

throughout physiological processes as control systems work together to maintain their 

perspective functions.23,107  Examples of coupled physiological systems include 

cardiorespiratory, cardiovascular, neuromuscular, neuroendocrine systems, etc.  These integrated 

systems are again composed of several regulatory components that interact in a network, 

constantly exchanging information between them to elicit physiological responses.  Using 

exercise as an example, network interactions are stimulated amongst several components of the 
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cardiorespiratory system, including HR, breathing rate, blood pressure and skin temperature.  

These components all communicate bidirectionally between each other to maintain adequate 

blood flow to working muscles, avoid hypoxemia, regulate body temperature, adjust blood 

pressure to accommodate increases in HR in a simultaneous manner.  Injury to one or more of 

these components therefore can consequently cause an entire physiological network to 

breakdown.  These types of breakdowns are observed during aging and disease and can be 

classified as system uncoupling.  In the example above, this means the cardiovascular and 

respiratory systems are no longer communicating to allow for adequate adaptation to the stimuli 

placed upon it, resulting in poor physiological or pathological control of its signals (i.e. 

tachycardia for HR, hypoxemia for SpO2, heat stroke for skin temperature). 

These network interactions amongst physiological systems can be quantified and compared 

using network analysis.  Similar to sample entropy levels assessed within singular physiological 

signals, these interactions of information exchange between multiple physiological signals are 

measured as transfer entropy.93  Reductions or interruptions in network signaling are 

demonstrated with disease and aging, and are indicated by reduced transfer entropy levels.  In a 

healthy working network, exposure to physiological or pathological stimuli should evoke an 

increase in network information signaling amongst regulatory components, denoted by an 

increase in transfer entropy levels.  In cases of aging and disease, degradation of network 

signaling is observed (reduced transfer entropy), compromising the ability of that 

system/network to adapt to the given stimulus.  While not extensively studied in the 

cardiorespiratory system, network analysis has been conducted on other physiological systems 

such as the brain.  The brain as a network has been assessed not only at rest, but under several 

pathological stimuli including network responses to insomnia, depression, mental disorders and 
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post-traumatic stress disorder.21,23,109,117,118  These investigations successfully captured 

significant information processing between components of neurological signaling and indicate 

that pathological stimuli may result in negative alterations to the system such as reductions in 

transfer entropy levels within the network.  Negative alterations to these networks may be 

suggestive of systemic risk, observed as vulnerability, symptomology and adaptability.21–23,98  

The results of these studies also suggest that there may be a hierarchy amongst the regulatory 

components of a system, suggesting that certain parts of a network may be more influential to 

desired system outputs than others.  In the cardiorespiratory system, for example, physiological 

signals may differentially contribute to the maintenance and regulation of SpO2, and vice versa.  

Reductions in network signaling due to aging or disease therefore also may result in modification 

of this structural hierarchy,98 where some signals may have to overcompensate for the injury to 

others, or there is failure to compensate altogether.  By identifying points of potential injury and 

determining the magnitude to which they contribute to other signals, clinicians and researchers 

may be more equipped to understand and treat signals of interest with therapeutic intervention.  

In summary, network analysis is used to assess the degree of integration amongst the regulatory 

components of a system/network, assess the ability of these components to adapt to potential 

stressors, and to identify a hierarchy of physiological structure and control amongst these 

components (i.e. the magnitude to which each component contributes to proper function). 

As previously discussed, the cardiorespiratory system is made up of several regulatory 

components that continuously interact to maintain proper physiological function.  These include 

SpO2, HR, breathing rate and skin temperature.  In cases of cardiorespiratory injury, often 

observed during and following COVID-19 infection, these regulatory components may not 

properly compensate for the stressors placed up on them, resulting in dysfunction of the overall 
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system seen as cardiorespiratory uncoupling.  Representation of the signals used for the proposed 

cardiorespiratory network analysis are displayed in Figure 9.  These signals were explored due to 

their established physiological interdependence as well as due to the potential effect COVID-19 

infection may have on each component.  Post-COVID effects on HR have been reported due to 

inflammatory damage to heart tissue at ACE2 receptors and to the endothelial tissue of the 

heart’s microcirculation.119  These persisting injuries may cause heart palpitations, 

breathlessness, and autonomic dysfunction of HR regulation.120,121  Other COVID-related 

respiratory symptomology include exacerbations of hypoxemia and dyspnea followed by 

increases in respiratory effort to compensate for low SpO2 and decreased air flow.  These 

symptomologies simultaneously effect SpO2, respiratory rate and subsequent HR regulation due 

to respiratory control.  Similar to the heart and lungs, endothelial tissue throughout the body is 

damaged, leaving the body’s microcirculation in a damaged and procoagulant state.9,10,119,121  

These injuries may cause disruptions to thermoregulation in the body, effecting skin temperature 

as a result.  Thermoregulatory signaling may result in changes to respiratory rate and HR, 

subsequently affecting SpO2.  Furthermore, neurological manifestations of COVID-19 indicate 

injury to the hypothalamus, a portion of the brain that is responsible for several physiological 

processes including thermoregulation, respiratory control and cardiovascular regulation- directly 

impacting each of the proposed signals.122,123  As the effects of COVID infection extend further 

than just the lungs, it is important to explore the cardiorespiratory system as a whole when 

discussing these highly interdependent signals. 

Network physiology analysis assessing cardiorespiratory signaling regarding SpO2 control 

has only been conducted once prior to the current work.  Costello et al. employed a network 

physiology approach to understanding cardiorespiratory control of oxygen saturation variability, 
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assessing transfer entropy between simultaneous respiratory rate, tidal volume, minute 

ventilation, HR, SpO2, and both end-tidal O2 and CO2 signals during exposure to graded 

normobaric hypoxia.93  This novel analysis revealed a significant exchange of information 

between these cardiorespiratory signals, giving insight into the integrity of the overall 

physiological system.  The current work will set out to understand the flow of information 

between similar cardiorespiratory variables (SpO2, HR, respiratory rate and skin temperature) 

when challenged with a pathological (previous COVID-19 infection) rather than environmental 

(graded hypoxia) stimulus.   

 

Figure 8. Example of  General Interconnect Network124 

 

Example of an interconnected network.  Nodes represent the components of a network and edges represent the 

relationships that connect them.  In physiological analysis, nodes represent physiological signals, and edges 

represent the exchanges of information that are communicated between them. 
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Figure 9. Proposed Cardiorespiratory Signals for Network Physiology Analysis 

 

 
Representation of proposed dynamic interaction of transfer entropy (TE) between cardiorespiratory signals 

including: SpO2 (A), ECG (B), respiratory rate (C) and skin temperature (D). 

 

Summary 

The acute lung injury, chronic inflammation and subsequent respiratory complications observed 

in COVID-19 patients have important implications for potential sequelae on the respiratory 

system and methodology that should be used to assess recovery status in these individuals.  

Existing follow-up studies evaluating respiratory function in COVID-19 survivors suggest that 

abnormalities seen during the infection phase may persist months into the recovery period, 

similar to that seen in survivors of SARS-CoV, MERS-CoV, ARDS and COPD.6,8,56,57,59,60,76–

78,125,9,11–13,41,43,53,55  With this, chronic inflammation poses its own enduring challenges for 

COVID-19 survivors including a suppressed immune system and increased susceptibility for the 

development of future infections and general respiratory decline.3,6,9,40,42,62,63  These attributes of 

COVID-19 infection and recovery can be assessed both in a clinical and home setting, allowing 
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for increased accessibility to this population.  Standard pulmonary function values identify 

restrictive lung patterns and elaborate on the source of diminished lung capacity observed in 

these individuals.17,55,68,69,71,75,76  Additionally, both systemic inflammation and inflammation 

specific to the airway can be assessed using salivary biomarker samples3,5,7,12,40,62,63 and exhaled 

nitric oxide measurement,80–82,87,126 respectively.  Furthermore, quantifying oxygen saturation 

variability and transfer entropy in COVID-19 patients will offer mechanistic insight into the 

persistent hypoxemia that is hallmark to this population and the degree of control exhibited by 

the cardiorespiratory system as it functions holistically,5,18,89–91,93–95,100 in contrast to standard 

spot-check measurement.  These methodologies will collectively allow for evaluation of 

respiratory function in COVID-19 survivors and supplement the forthcoming literature of 

recovery assessment and prolonged respiratory health in this population. 
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Chapter 3: Methods 

Participants 

57 adults (both men and women) ages 18 to 65 were recruited to participate in this study.  The 

participants were allocated to two groups- one case group of participants who have previously 

been diagnosed with COVID-19 infection (n=24) and a control group with no history of COVID-

19 (n=33).  The diagnosis of the participants in the case group was confirmed via documentation 

of a clinical diagnosis including either a positive viral test or positive antibody test.  Participants 

in the control group were required to provide documentation of both a negative viral test to 

indicate no active infection and a negative antibody test to rule out previous infection.  

Documentation of one of these negative tests was required in the two weeks prior to the 

participant enrolling in the study.  All participants were required to provide documentation of a 

negative viral test within two weeks prior to contacting researchers to prevent possible 

transmission.  Sex, age, and race-/ethnicity were similar between recovering COVID-19 

individuals and healthy controls.  Prior to participation, subjects completed a screening 

questionnaire for COVID-19 exposure/infection to confirm their eligibility.  The screening 

questionnaire provided a list of common COVID-19 symptoms and asked about their recent 

travels and contact with persons who had COVID-19 in the last two weeks as well as any 

symptomology they may have experienced within the last two weeks.  All participants provided 

oral informed consent prior to study involvement in accordance with university institutional 

review board guidelines. 
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Exclusion Criteria 

Participants were excluded from the study if they were under the age of 18 and/or if they had a 

pacemaker.  Additionally, participants who experienced symptoms, had contact with someone 

who has COVID-19, or have traveled out of state in the two weeks prior were not allowed to 

participate in this study.  Participants who were unwilling or unable to engage in Zoom calls with 

the researcher were also excluded from the study.  Finally, participants who did not complete 

both respiratory measures (pulmonary function and exhaled nitric oxide) were excluded from 

analysis.  

 

Study Design 

This study used a case-control design, with the case group consisting of participants with a 

history of COVID-19 infection and a control group of participants with no history of COVID-19.  

The study was conducted remotely with limited to no face-to-face interaction to prevent potential 

exposure of both participants and researchers to COVID-19.  All physiology measurements were 

completed by the participant with assistance from research personnel via Zoom.  Due to the 

remote functionality of this study, the consent process included an oral informed consent 

conducted via Zoom.  During this Zoom meeting a member of the research team explained the 

study purpose and methods to the potential participant. Oral consent was then provided by the 

participant if they met all inclusion criteria and agreed to participate in the study.  All study 

procedures were approved by the Syracuse University Institutional Review Board. 

Upon completing the oral consent process, researchers coordinated a date and time to 

delivery study equipment to the participant’s home.  The equipment was delivered in two boxes, 

one (box 1) with cardiovascular equipment and the other (box 2) with respiratory equipment.  
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These two boxes corresponded to two additional Zoom meetings.  When university research 

restrictions lifted, two brief, socially distanced 15-minute in-person meetings were held at the 

Syracuse University Human Performance Laboratory for data collection in place of these two 

Zoom meetings.  Two separate meetings were decided upon to minimize participants burden and 

to maximize the efficiency of testing.  Box 1 containing cardiovascular equipment included a 24-

hour ambulatory blood pressure monitor, an activity monitor, a fingertip pulse oximeter, a digital 

scale, a HR monitor, a saliva collection kit (containing a collection tube and funnel for saliva 

collection aid) and an instruction sheet for all measures.  Box 2 containing respiratory equipment 

included a handheld spirometer to assess lung function, a handheld NiOX machine to measure 

airway inflammation, an Equivital EQ02 LifeMonitor (chest bioharness) to assess continuous 

blood SpO2 and cardiorespiratory measures and a new instruction sheet. 

Prior to both meetings participants were asked to undergo a three-hour fast (no food or 

sugary drinks for at least three hours) as food or drink containing nitrates may affect FeNO 

measurement.127,128  Participants were also asked to refrain from exercise, alcohol, smoking and 

caffeinated beverages for at least 12 hours.  Equipment from each Zoom meeting besides the 

activity monitor was picked up the day following the meeting.  The activity monitor was picked 

up nine days after the first meeting at the participant’s home after completing data collection.  At 

this time, researchers dropped off a standard blood pressure cuff as compensation for 

participation in the study.  Full study design is displayed in Figure 10. 
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Figure 10. Study Design 

 

 

 

 

Study design from initial participant recruitment through completion of all study measures. 

Anthropometrics 

Height, weight and body composition were collected for anthropometric data.  Height was self-

reported by the participant to researchers during remote collection.  This measure has been found 

valid for assessing height in adults under the age of 60.129  For those who completed in-person 

data collection, height was also assessed using an automated stadiometer in addition to self-

reported measurement.  A digital scale equipped with bioelectrical impedance analysis was used 

to obtain both weight and body fat percentage.  Body mass index was calculated from height and 

weight as kg/m2.   

 

Pulmonary Function Testing 

 Lung function was assessed via pulmonary function testing using a handheld CareFusion 

MicroGP Spirometer (Becton, Dickinson and Company, Franklin Lakes, NJ).  This device was 

successfully applied in home spirometry monitoring in diseased populations where it 

demonstrated sufficient validity and reliability, as well as highly predictable in early 

identification of disease progression and FVC decline in this cohort.130  Additionally, this 

spirometer has been standardized against both American Thoracic Society and European 

Respiratory Society guidelines.131  A Viromax™ bacterial-viral filter (A-M Systems, Sequim, 

WA) was attached to the spirometer (>99.99% viral filtration efficiency) to prevent the spread of 
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COVID-19 through airborne aerosol particles.132  Participants were asked to wear the provided 

nose clip during the test to ensure all exhaled air is directed through the mouth.  They were then 

asked to assume a seated, upright position with feet uncrossed and flat on the floor.  After 

inserting the viral filter mouthpiece, participants input their subject information (sex, age, height) 

as well as an ethnic correction factor as directed by the CareFusion MicroGP company.  Three 

trials were completed consisting of one deep breath that provided both absolute and percentile 

(of expected value for inputted subject information) of four measures of pulmonary function: 

FVC, FEV1, FEV1/FVC and PEF.  FVC is the amount of air exhaled forcefully and quickly out 

of the lungs after maximal inflation and emptying the lungs completely.  FEV1 is a measurement 

of the amount of air that is expired in the first second (1 second) of the test.  FEV1/FVC is the 

proportion of the total forced vital capacity that is exhaled in 1 second.  PEF is a measurement of 

air flow out of the lungs and the maximal flow of air achieved during the sharp expiration of the 

test.  These four lung function measurements were collected simultaneously during the same 

spirometry maneuver and give insight into lung function, strength of expiratory muscles and the 

general condition of the airway.  They were then asked to place the nose clip on their nose and 

take a deep breath, maximally inflating their lungs.  Participants then placed the mouthpiece in 

their mouth and close their lips tightly.  Research personnel instructed the participant to exhale as 

quickly and forcefully as they could into the mouthpiece.  To ensure the participant fully emptied 

their lungs, the researcher encouraged them to exhale for three seconds even after the lungs felt 

empty to void of any excess air.  Participants completed this maneuver for a total of three times, 

and the highest score of the three trials was taken as their final score for each measure.   
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Airway Inflammation 

Airway inflammation was measured by quantifying exhaled nitric oxide levels using the NiOx 

VERO™ FeNO device (Circassia, Morrisville, NC).  Elevated nitric oxide levels in expired 

breath are indicative of airway inflammation caused by respiratory distress.  This device has 

shown sufficient validity and reliability in monitoring of patients with asthma.133  The NiOx 

VERO™ FeNO device uses a disposable mouthpiece to minimize transmission potential.  

Although this type of testing is not an aerosol generating procedure, the disposable mouthpiece 

included a bacterial-viral filter with over 99.97% viral filtration efficiency and has been tested 

with microbes up to four times smaller than SARS-CoV-2, indicating its efficiency in 

filtration.134  Prior to beginning the testing procedure, participants were instructed to assume a 

seated, upright position with feet uncrossed and flat on the floor.  This test was completed by 

first inhaling through the mouthpiece as directed by the prompt on the display screen followed 

by exhaling into the mouthpiece at a steady flow rate of 50 mL/s for approximately 10 seconds.  

The NiOX VERO utilizes an electrochemical sensor, reporting the fractional concentration of 

exhaled nitric oxide in approximately 60 seconds on the display screen.   

 

Arterial Blood Oxygen Saturation 

Noninvasive spot check pulse oximetry at rest was conducted to measure arterial blood oxygen 

saturation (SaO2) using a fingertip pulse oximeter on the index finger.  The pulse oximeter 

measures infrared and red-light wavelength absorption v. reflection to determine the ratio of 

oxygenated hemoglobin to total hemoglobin, reported at as a percentage.   
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Continuous Cardiorespiratory Monitoring 

Continuous SpO2 monitoring and other continuous cardiorespiratory measures were collected 

using the Equivital EQ02 LifeMonitor (Equivital Hidalgo, Cambridge, UK).  This system is a 

three-piece ambulatory multi-parameter telemetry device consisting of a bioharness with three 

textile sensors that was worn around the lower chest attached to a Sensor Electronics Module 

(SEM) and wired fingertip pulse oximeter. The Equivital EQ02 LifeMonitor has previously 

demonstrated high validity and reliability for ECG and skin temperature signaling and the 

feasibility of wear for collecting multiple signals simultaneously makes it desirable for 

continuous physiological data collection.135,136  Although the device has not been implemented 

with diseased populations, it has been used in several cohorts including healthy individuals, 

military personnel, athletes and occupational measurement.135–137  Its primary use was for 

continuous pulse oximetry measurement but was also used to simultaneously collect important 

variables of cardiorespiratory function including HR derived from ECG, respiratory rate, skin 

temperature.  SpO2 was collected using the Nonin wired pulse oximeter ancillary sensor, 

connected directly to the sensor belt, relaying SpO2 values 1/15 s (2 Hz) directly to the SEM to 

create one continuous signal.  Two chest leads built into the textile sensors of the sensor belt 

captured ECG at a sampling rate of 256 Hz.  HR was then calculated directly from the ECG 

channel using the cyclic measurement function in LabChart.  Respiratory rate was derived using 

the cyclic measurement function directly from an intrinsic chest expansion signal, captured using 

the textile sensors located on the chest at sampling rate of 25.6 Hz.  Skin temperature was 

collected every 15 seconds via medical grade infra-red thermometer located on the sensor belt 

under the left arm.   
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Prior to device setup participants were asked to remove any nail polish from their index 

finger, any lotions or oils from their chest region and to wash their hands thoroughly.  The 

researcher instructed the participant in how to set up and wear the device on the Zoom meeting.  

The participant was instructed to moisten the textile sensors using clean water to help keep close 

contact with the skin and strengthen all signals.  The bioharness was worn with direct contact 

with the skin under any sort of clothing or undergarment.  The pulse oximeter was worn on tip of 

the index finger of the participant’s choice, usually their nondominant hand.  Once the device 

setup was complete the participant was asked to wear the Equivital EQ02 LifeMonitor for four 

daytime hours during which they completed their normal daily activity.  Data collection was 

standardized to begin between 8:00-10:00 am to account for the circadian rhythm of this signal 

and was carried out for four continuous hours.  Four-hour data collection was chosen as the 

device previously displayed superior reliability during shorter time periods (four hours v. eight 

hours) however was still long enough to capture the natural fluctuation of SpO2 signals.  A 

previous study showed that a minimum of one hour was necessary to observe SpO2 variability, 

however this same study also observed that oxygen saturation variability was predominantly 

made up of long-term variations.18 Therefore, to see this higher degree of variability, a longer 

collection window was chosen.  Participants were asked to refrain from consumption of caffeine 

and alcohol, exercise, smoking, prolonged exposure of equipment to direct sunlight, and 

immersion of any equipment in water as these can affect one or more of the cardiorespiratory 

signals.  
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Oxygen Saturation Variability 

Oxygen saturation variability was calculated using both linear and nonlinear analysis 

methodology using the continuous SpO2 signal captured over four hours.  Linear analysis is a 

more elementary method of looking at variability, including variables such as mean, SD, RMS, 

and average hourly change.  However, to get the true essence of SpO2 fluctuations, nonlinear 

analysis looking at entropy patterns on several scales is more representative of true variations in 

SpO2.  Nonlinear analysis methods include sample entropy assessing the regularity and 

predictability of the variable, MSE assessing the complexity of the variable, and DFA to identify 

fractal-like behavior of the variable.  Low entropy values of SpO2 have previously indicated 

cardiorespiratory uncoupling and lack of physiological control.  Finally, network physiology 

analysis was used to quantify the interaction between four of these cardiorespiratory signals 

(continuous SpO2, HR derived from ECG, respiratory rate, and skin temperature) measured as 

transfer entropy. 

 

SpO2 Signal Processing 

SpO2 was collected every 15 seconds continuously for four hours at a sampling rate of 2 Hz.  All 

files were downloaded from the device to the Equivital Manager software and subsequently 

converted to a LabChart files consisting of eight channels.138  Data files were considered 

complete if the subject completed at least 3.5 hours of data collection, and the raw signal was not 

lost for greater than 15 minutes during collection due to device removal or excessive artifact.  

Complete files were then “cleaned” using a combination of internal arithmetic functions within 

LabChart.  The algorithm included Threshold, Smoothsec, Window and NanRemover 

functions.139  A summary of each function and its use for the data can be found in Table 2.  A 
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minimum threshold of 90% was chosen for the data file, such that if the raw signal read values of 

below 90%, the algorithm interpolated the mean value for the overall signal in its place.  This 

threshold was chosen to eliminate artifact and preserve the natural variability of the signal as it 

can be assumed that none of our participants were experiencing severe hypoxemia such that they 

would require a supplemental oxygen requirement.  Examples of a raw and clean data file can be 

seen in Figure 11.   

Table 2. LabChart Arithmetic Cleaning Functions 

Threshold (90) Detects data points that fall below 90% 

Smoothsec (1) Calculates a moving average in a specified 

sliding window of one second 

Window (90,100) Detects SpO2 data within the range of 90-

100%, any data points outside this range 

assigned a zero 

NanRemover Removes Not a Number (Nan) and out of 

range data from data file to create one 

continuous signal 

 

Figure 11. Example Raw and Clean SpO2 File 
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Examples of raw (top) and cleaned (bottom) extended SpO2 files for four continuous hours.  Cleaned files 

include data file treated with combination cleaning functions from Table 2. 

 

Linear Analyses 

Linear analysis of clean files was conducted directly in LabChart using the DataPad function.  

SpO2 mean, SD, and RMS were calculated for the entire four-hour collection period.  The range 

for each of the four hours was calculated individually and these four values were then averaged 

to derive the average hourly change in SpO2 for the overall file.  An example data output for 

linear analysis from DataPad can be found in Figure 12. 

Figure 12. Example Linear Oxygen Saturation Variability DataPad Output  

Example of four-hour output of linear oxygen saturation variability measures using DataPad function in 

LabChart. 
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Nonlinear Analyses 

1. Sample Entropy. Sample entropy was calculated to assess the degree of regularity of the 

continuous SpO2 signal in our time series (four hours).  This value calculates the probability that 

an event (SpO2 fluctuation) during a set window length described as “m”, with tolerance “r”, will 

be repeated later in a time series.18,140  For the current analysis, sample entropy was calculated 

where “m” was set at 2 and “r” at 0.2 as described in previous studies.18,140,141  Low sample 

entropy indicates regularity in a signal and decreased complexity, and potential isolation of 

regulatory components of cardiorespiratory control.140  In contrast, high sample entropy suggests 

higher irregularity in a time series, and increased engagement of cardiorespiratory control.18  

Sample entropy was calculated using MATLAB codes shared at PhysioNet by Goldberger et al.97 

2. Multiscale Entropy. MSE was assessed by calculating sample entropy across 10 different 

time series and plotting each value against one another to determine if these scaled sample 

entropy values are correlated.18  Each scale functions to evaluate the time series at a 

progressively lower resolution (termed “coarse graining”), achieved by averaging consecutive 

SpO2 values of increasing length.  For example, at scale 1, sample entropy is calculated for the 

original time series.  At scale 2, sample entropy is calculated by averaging every two consecutive 

SpO2 values, functioning to down sample the signal x2.  This process is repeated up to scale 10, 

where sample entropy is calculated for every 10 consecutive SpO2 values, and the original time 

series has been coarse grained x10.110  The resulting plot displays sample entropy across multiple 

time series, indicating the change in complexity based on the direction of the change in values.  

This process also functions to expose randomness (decreased complexity) of a signal through 

coarse graining, reflected by a decrease in sample entropy as scale increases.18  In contrast, if 

sample entropy values remain the same or increase concurrently with scale, this indicates 
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increased complexity within the signal.  MSE analysis was conducted using MATLAB coding 

shared at PhysioNet.97,141 

3. Detrended Fluctuation Analysis. DFA was conducted to identify fractality (self-

similarity) within SpO2 signals by calculating the RMS of fluctuation across different time series 

(scales) plotted against one another on a log-log scale.18  The signal is fractal if this plot exhibits 

linearity.  The slope of this line was then determined as the scaling exponent, denoted as alpha 

(α), for both short- (α1) and long-term (α2) time series.  α values of 0.5 indicate uncorrelated 

random data.18  α values of greater than 0.5 to 1.0 indicate complexity of a signal,140 with a slight 

decrease in complexity at α >1.0.  DFA was conducted using software at PhysioNet developed 

by Goldberger et al.97  

4. Network Physiology Analysis. Network analysis of the cardiorespiratory control system 

was conducted by calculating bidirectional transfer entropy between continuous physiological 

signals of SpO2, HR, respiratory rate and skin temperature for one hour of the data collection 

period.  Transfer entropy reflects both the direction and magnitude of information processing 

between these regulatory components of the physiological system, defining the interaction of 

complexity between each signal over the same time series.  Network analysis was conducted 

using an open source function in MATLAB shared at PhysioNet.97 

 

Biobehavioral Correlates of Cardiorespiratory Function 

Potential biobehavioral correlates of cardiorespiratory function were explored in order to gain 

insight into potential modifiable factors that could impact cardiorespiratory recovery in a 

COVID-19 setting.  Chronic elevations in inflammation post-infection may contribute to ongoing 

injury, resulting in reduced respiratory function in recovering individuals.  Increased physical 
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activity levels may be protective to cardiorespiratory function while low physical activity levels 

and increased sedentary time amongst recovering patients due to persisting symptomology (or 

non-infection related reasons) may result in worsened inflammatory profiles as the anti-

inflammatory effects of activity are not seen.  Disease severity may give an indication of whether 

persisting impairments are related directly to the acute injury caused by infection. 

 

Salivary Biomarkers 

Systemic inflammation was assessed using salivary C-reactive protein (CRP) and cytokine (IL-

1β, IL-6, IL-8 & TNF-α) levels via a passive drool.  These cytokines have been deemed major 

components of the “cytokine storm” seen in COVID-19 patients and are significantly elevated 

due to infection.  Participants were asked to refrain from eating a major meal for one hour prior 

to measurement and to rinse their mouth with water 10 minutes before collection.  The 

measurement was conducted using passive drool through the Saliva Collection Aid (Salimetrics, 

Carlsbad, CA) and into a SalivaBio’s 2 mL cryovial.  Participants were asked to fill the vial to 

the line provided, collecting two separate 1.8 mL of samples.  Samples were stored at -80 

degrees Celsius until they were shipped to Salimetrics, Carlsbad, CA for analysis.  Using the 

Salimetrics ELISA “sandwich” immunoassay kits, saliva samples were analyzed in duplicate and 

assayed for CRP, IL-1β, IL-6, IL-8, and TNF-α concentrations in pg/mL.   

Physical Activity and Sedentary Time 

Physical activity levels in all participants were assessed using tri-axial accelerometry.  

Participants continuously wore an ActiGraph wGT3x-BT accelerometer (ActiGraph LLC, 

Pensacola, FL) around the waist and above the right hip 24 hours a day (except when 

participating in water-based activities) for nine consecutive days.  Accelerometry data was 



 

 55 

downloaded to the ActiLife Software (version 6.13, ActiGraph LLC) to be analyzed.  Data was 

collected at 80 Hz and processed in 60-second epochs.  Sleep wear and awake wear time were 

distinguished using a previously validated algorithm (SAS syntax available at http:// 

www.pbrc.edu/pdf/PBRCSleepEpisodeTimeMacroCode.pdf) developed by Barriera et al. (2018) 

using SAS version 9.4.142  Activity was measured as moderate-to-vigorous (MVPA) based on 

activity counts per minute.  MVPA was defined as greater than 2020 activity counts per 

minute.143  Sedentary time was defined as any movement ≤25 counts per 15 seconds.144,145  Non-

wear time was determined as 60 or more consecutive minutes of zero activity counts, with the 

exception of 1-2 minutes of activity counts between 0 and 100.143  A complete day of 

accelerometer data collection was determined as at least 10 hours of awake wear time.  A 

minimum of 4 days of complete wear data was considered valid and included in the final 

analysis.143 

 

Infection History and Experience 

After the completion of all Zoom meetings, participants were sent an email containing a secure 

link via Research Electronic Data Capture (REDCap) to an online health survey consisting of a 

compilation of questionnaires assessing infection experience in participants with a history of 

COVID-19 disease as well as a general health history.  REDCap is a web-based data collection 

system that allows for secure computerized collection and storage of data as well as stratified 

randomization algorithms (https://projectredcap.org).  COVID-19 infection experience in 

recovering individuals was assessed using a survey developed by our researchers that asked 

about symptomology and participant experience with COVID-19 infection, including number of 

days since positive test, number of symptoms experienced during infection, and disease severity 

http://www.pbrc.edu/pdf/PBRCSleepEpisodeTimeMacroCode.pdf
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rated on a five-point scale based on reported symptomology as per the World Health 

Organization’s guidelines.146  Infection experience will be assessed as a potential covariate of 

respiratory function, systemic inflammation and physical activity levels within the COVID-19 

group.  General health history was assessed using a patient health history questionnaire, which 

asked participants about chronic cardiovascular, respiratory, liver and kidney diseases. 

 

Statistical Analyses 

Descriptive statistics were calculated as mean ± SD.  All variables were tested for normality of 

distribution and outliers using Shapiro-Wilks test, Q-Q plots, and histograms.  Pulmonary 

function, exhaled nitric oxide, linear oxygen saturation variability, systemic inflammation and 

physical activity measures did not meet assumptions for parametric analysis, therefore we 

proceeded with nonparametric analyses.  Nonlinear measures of oxygen saturation variability did 

meet assumptions for normality, therefore we proceeded with parametric analyses for these 

variables only.  Group differences in pulmonary function, airway inflammation and linear 

oxygen saturation variability between recovering COVID-19 individuals and controls were 

assessed using the Mann-Whitney U-Test.  Group differences in nonlinear oxygen saturation 

variability were assessed using independent samples T-test.  Two-way ANOVA was used to 

assess group differences in MSE variability to evaluate the effect of both COVID-19 infection 

history and scale on MSE only.  Categorical group differences were evaluated with Chi-Square.  

One-Tail Spearman correlation was used to explore any associations between components of 

respiratory function, oxygen saturation variability and measures of systemic inflammation (CRP 

and cytokine levels) as well as physical activity (MVPA and sedentary time) in recovering 

COVID-19 participants.  Partial eta-squared (η2) as a measure of effect size and observed power 
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were calculated for all variables to give indication of the strength of potential group differences 

observed based on our sample size.  Statistical significance will be set a priori at p<0.05.  All 

analyses were performed using IBM Statistical Package for Social Sciences (SPSS, version 27, 

IBM, Chicago IL). 
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Chapter 4: Results 

Participant Characteristics 

Fifty-seven participants consented for this study, completed all respiratory function measures and 

were included for analysis of pulmonary function and inflammation levels.  Participant 

descriptive characteristics are displayed in Table 3.  Participants were age, sex, and race-

ethnicity matched between COVID-19 and Control study groups (p>0.05).  Our cohort was 

generally normotensive, normoxic and of healthy weight-status and these measures of SaO2, 

BMI and body fat percentage were not different between groups (p>0.05).   

Table 3. Participant Characteristics 

*p<0.05 

Abbreviations: BMI, body mass index 

 

Respiratory Function  

Pulmonary Function and Airway Inflammation 

Group differences in respiratory function can be found in Table 4.  Both groups exhibited normal 

pulmonary function, achieving 80% or above of their predicted values for all pulmonary function 

parameters based on participant sex, age, height, and race-ethnicity.  Non-parametric 

 COVID+ (n=24) Control (n=33) p value 

Age (years) 25.0 ± 9.0 24.0 ± 6.0 .570 

Sex (%)   .813 

       Male 8 (33.3) 12 (36.4) - 

       Female 16 (66.7) 21 (63.6) - 

Race/Ethnicity (%)   1.00 

       White 19 (79.2) 27 (79.4) - 

       Hispanic 0 (0) 0 (0) - 

       African American 3 (12.5) 4 (11.8) - 

       Asian American 2 (8.3) 3 (8.8) - 

SaO2 (%) 97.92 ± 0.78 97.75 ± 2.26 .403 

BMI (kg/m2) 24.02 ± 3.45 25.07 ± 3.52 .264 

Body Fat (%) 22.30 ± 4.57 22.76 ± 4.50 .703 

Days Since Positive 94.0 ± 82.0 - - 

COVID Disease Severity 2.2 ± 0.83 - - 

COVID Symptoms 6.0 ± 5.0 - - 
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independent samples analysis revealed that pulmonary function did not differ between our study 

groups, such that FVC, FEV1, FEV1/FVC and PEF were not significantly different (p>0.05) 

between COVID-19 individuals and controls.  Airway inflammation measured as exhaled nitric 

oxide levels did not significantly differ between our study groups (p>0.05).  Both groups 

exhibited slight airway inflammation, but did not reach abnormal levels, minimally surpassing 

the cut-off for no inflammation (16 ppb).  

Table 4. Full Sample Respiratory Function, Systemic Inflammation and Physical Activity 

*p<0.05 

Abbreviations: η2, partial eta-squared; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 

second; PEF, peak expiratory flow; IL, interleukin; TNF, tumor necrosis factor; CRP, C-reactive protein; 

MVPA, moderate to vigorous physical activity 

 
 

 COVID+ (n=24) Control (n=33) p value  Partial η2 
 

Observed 

Power 

Respiratory Function      

       FVC, L (%) 4.22 ± 1.01 (102) 4.43 ± 1.06 

(102) 

.663 .010 .115 

       FEV1, L (%) 3.45 ± 0.72 (97) 3.57 ± 0.92 

(95) 

.865 .005 .083 

       FEV1/FVC (%)  84.88 ± 10.68 

(99) 

81.27 ± 8.93 

(94) 

.293 .034 .275 

       PEF, L/min (%) 349.63 ± 105.54 

(81) 

372.73 ± 

140.61 (80) 

.370 .008 .101 

Nitric Oxide          

(ppb) 

16.61 ± 13.04 20.03 ± 20.11 .285 .009 .108 

Systemic 

Inflammation 

     

       IL-8 (pg/mL) 1206.90 ± 2021.4 871 ± 944.1 .508 .012 .126 

       IL-1ß (pg/mL) 302.61 ± 869.4 149.05 ± 155.5 .959 .017 .158 

       IL-6 (pg/mL) 8.81 ± 16.7 5.98 ± 7.9 .973 .013 .129 

       TNF-α (pg/mL) 14.86 ± 49.4 5.25 ± 5.9 .364 .021 .185 

       CRP (pg/mL) 1226.72 ± 1642.1 735.16 ± 

1112.9 

.067 .032 .254 

Physical Activity      

       MVPA 

(min/day) 

35.37 ± 17.02 35.65 ± 17.49 .925 .000 .050 

Sedentary Time 

(min/day) 

717.91 ± 166.92 717.82 ± 

167.08 

.763 .000 .050 
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Oxygen Saturation Variability  

Oxygen saturation variability analysis was conducted on a subsample of 40 participants from our 

original cohort. Determination of which participants were included in this subsample is depicted 

in Figure 13.  From the original sample, three participants were lost at follow-up, 10 participants 

were lost due to device malfunction, and four participants’ SpO2 data files failed to meet 

inclusion criteria, bringing the final sample for SpO2 analysis to n=40.  Device malfunction 

included participants that wore the Equivital EQ02 LifeMonitor however experienced a failed 

SpO2 signal due to connectivity issues between the sensor belt and pulse oximeter (n=10).  

Participants who did not complete at least 3.5 hours of data collection or had missing data of ≥15 

minutes at a time during the collection period due to excessive artifact from activity and/or 

device removal were not included for analysis (n=4).   

Participant characteristics for the subsample included for SpO2 analysis are displayed in 

Supplementary Table 2.  Similar to our overall sample, age, sex and race-ethnicity were similar 

between groups (p>0.05).  Our subsample was normotensive, normoxic and of normal weight-

status.  Additionally, none of these measures of SaO2, BMI or body fat percentage differed 

between our study groups (p>0.05).  Recovering COVID-19 participants in our subsample were 

measured on average 121.0 ± 132.0 days post-infection, experiencing mild-to-moderate COVID-

19 infection with an average of 5.0 ± 5.0 symptoms).  Group differences for all respiratory 

function, systemic inflammation and physical activity measures in our subsample can be found in 

Supplementary Table 3.   
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Figure 13. Inclusion Process for Oxygen Saturation Variability Analysis 

Breakdown of inclusion process for participants included in oxygen saturation variability analysis.  Of the full 

sample of 57 participants, three were lost at follow-up, 10 did not successfully complete data collection due to 

device malfunction, and four participants’ data files did not meet inclusion criteria for analysis. 

 

Linear Analyses 

Group differences in linear oxygen saturation variability are displayed in Table 5.  Participants in 

both groups were normoxic and spot check SaO2 values did not differ between groups (p>0.05).  

In our subsample, no group differences were observed for any linear oxygen saturation 

variability parameters such that mean, SD, RMS and average hourly change were not 

significantly different between groups (p>0.05).   

Table 5. Linear Oxygen Saturation Linear Variability Group Differences in Subsample 

Abbreviations: η2, partial eta-squared; SaO2, arterial oxygen saturation; O2, oxygen; SD, standard deviation; 

RMS, root mean square; avg, average 

 
 

 COVID+ (n=16) Control 

(n=24) 

p value  Partial 
η2 

Observed Power 

Spot SaO2 (%) 98.00 ± 0.63 97.71 ± 2.56 .503 .005 .072 

Full O2 Mean (%) 97.51 ± 0.62 97.29 ± 0.68 .070 .072 .386 

Full O2 SD (%) 1.12 ± 0.39  1.19 ± 0.41 .469 .006 .076 

Full O2 RMS (%) 97.52 ± 0.62  97.15 ± 0.69 .070 .072 .387 

Avg Hourly O2 

Change (%) 

5.97 ± 1.21 6.35 ± 1.35 .469 .022 .146 
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Nonlinear Analyses 

Group differences for all nonlinear analyses of sample entropy, MSE and DFA oxygen saturation 

variability can be found in Table 6. 

1. Sample Entropy. No group differences in sample entropy over the 4-hour collection 

period were observed between individuals with a history of infection and controls 

(p>0.05).   

2. Multiscale Entropy. Multiscale entropy analysis revealed that oxygen saturation 

variability exhibits a complex, but not random, correlated data signal across a 10-scale 

time series.  This relationship is reflected by an increase in sample entropy concurrent 

with the increase in scale (Figure 14).  One-way ANOVA reflected no differences in 

sample entropy at any time scale (p>0.05) between study groups.  According to two-way 

ANOVA, while there was a significant factor effect as previously noted (i.e., sample 

entropy increases with increasing scale, p<0.05), there was not factor-by-group 

interaction (p = 0.068) suggesting that both groups experienced similar increases in 

sample entropy with increasing scale.   

3. Detrended Fluctuation Analysis. Based on DFA, oxygen saturation variability exhibits 

fractality, illustrated by the linear pattern of the scaled signal (Figure 15).  DFA was 

conducted for both short-term and long-term time scales, where we did not observe a 

significant difference between groups for α1 or α2 (p>0.05).  This analysis did reveal, 

however, that oxygen saturation variability exhibits more powerful complexity during 

long-term variation as opposed to short-term, indicated by a mean α2 closer to 1.0 (in 

contrast to a mean α1 value closely approaching 1.5). 

4. Network Physiology Analysis. Network analysis of SpO2, HR, respiratory rate and skin 
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temperature demonstrated significant bidirectional exchanges of information between 

SpO2 and other cardiorespiratory signals over the same time series.  These exchanges 

information was quantified as transfer entropy levels between signals, displayed by the 

graphical representation in Figure 16.  The direction and magnitude of transfer entropy 

between signals are illustrated by the orientation and thickness of the arrows between 

signals, respectively.  Transfer entropy between all signals in either direction was similar 

between groups (p>0.05).   

Table 6. Nonlinear Oxygen Saturation Variability Group Differences in Subsample 

 COVID+ (n=16) Control (n=24) p value 

Sample Entropy .119 .134 .240 

MSE     

    Scale 1 .105 .121 .166 

    Scale 2 .191 .222 .179 

    Scale 3 .261 .302 .205 

    Scale 4 .323 .377 .191 

    Scale 5 .374 .440 .184 

    Scale 6 .422 .478 .306 

    Scale 7 .470 .517 .437 

    Scale 8 .499 .565 .283 

    Scale 9  .537 .616 .241 

    Scale 10 .577 .664 .245 

DFA    

    α1 1.40 1.40 .811 

    α2 1.01 1.02 .640 

Abbreviations: MSE, multiscale entropy; DFA, detrended fluctuation analysis 
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Figure 14. Multiscale Entropy Analysis  

 

 
Multiscale entropy analysis of sample entropy levels across 10 scales comparing complexity patterns between 

individuals with previous COVID-19 infection (blue) and controls (orange) over four hour collection period.  

Increased sample entropy with increasing scale is suggestive of complexity in both groups.   

 

Figure 15. Detrended Fluctuation Analysis Sample for One Participant 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample detrended fluctuation analysis for one participant.  Plotted calculation of root mean square of 

fluctuation for short-term (scales 0.5 to 1.5) and long-term (scales 1.5 to 3.0) time scales.  Linear shape of 

graph suggests fractality in variability signaling. 
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Figure 16. Network Physiology Analysis  
 

Results from network physiology analysis between oxygen saturation, heart rate, respiratory rate and skin 

temperature signals (nodes) for individuals with previous COVID-19 infection (left) and controls (right) 

conducted for one hour of monitoring.  Exchanges of transfer entropy (edges) represented by the direction of 

information flow (orientation of arrow) and the magnitude of information flow (thickness of arrow). 

 

Covariates of Infection 

Inflammatory Salivary Biomarkers 

Group differences in systemic inflammation biomarkers are displayed in Table 4.  Systemic 

inflammation measured with salivary cytokine biomarkers did not differ between our study 

groups such that IL-8, IL-1ß, IL-6, and TNF-α did not significantly differ between COVID-19 

individuals and controls (p>0.05).  Differences in CRP levels were observed between groups 

however this difference did not reach significance (p=.067).  No group differences were 

observed in systemic inflammation between recovering COVID-19 individuals and controls in 

our subsample (p>0.05) (Supplementary Table 3). 

No associations between inflammatory biomarkers and any measures of respiratory 

function were observed in individuals with a history of COVID-19 infection.  IL-6 was inversely 
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associated with sedentary time (r=-.370, p=.049).  For linear metrics of oxygen saturation 

variability, average hourly change was inversely associated with TNF-α concentrations (r=-.497, 

p=.025).  IL-6 was associated with several nonlinear variability metrics, including short-term 

DFA variability (α1) (r=-.593, p=.015), and MSE scales 5 (r=.426, p=.050) and 6 (r=.461, 

p=.036). 

 

Physical Activity and Sedentary Time 

Participants in both groups met suggested physical activity guidelines for MVPA.  No group 

differences were observed for two of our accelerometer-derived physical activity measures such 

that MVPA and sedentary time were not significantly different between COVID-19 and control 

groups (p>0.05).  All physical activity measures between groups are reported in Table 4.  MVPA 

was positively associated with FeNO levels (r=.473, p=.015).  While no group differences were 

observed, sedentary time was inversely associated with several pulmonary function parameters 

including FEV1 (r=-.392, p=.040) and PEF (r=-.579, p=.003) in our overall COVID-19 group.  

Additionally, no group differences were observed in physical activity measures within our 

subsample (p>0.05) (Supplementary Table 3).  Associations between sedentary time with PEF 

(r=-.533, p=.050) remained in our subsample of COVID-19 individuals.  No associations 

between physical activity or sedentary time with linear or nonlinear oxygen saturation variability 

were observed. 

 

Infection Experience 

Individuals in the COVID-19 group participated on average 94.0 ± 82.0 days since their positive 

test, experiencing mild-to-moderate COVID-19 infection and an average of 6.0 ± 5.0 symptoms.  
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Frequencies of specific symptoms experienced by those with a history of COVID-19 infection 

are displayed in Supplementary Table 1.  The most common symptoms experienced were fatigue 

(79%), headache (75%) , nasal congestion (67%), and loss of smell (63%).  Four participants 

(16%) reported experiencing asymptomatic infection.  No participants required hospitalization 

for infection.  Inverse associations were observed between FVC with both disease severity (r=-

.461, p=.012) and number of symptoms (r=-.404, p=.025).  Additionally, disease severity was 

negatively associated with FEV1 (r=-.365, p=.040).  No associations were found with infection 

experience and any linear or nonlinear oxygen saturation variability parameters.  Number of days 

since positive infection status was inversely correlated with sedentary time (r=.386, p=.042). 
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Chapter 5: Discussion 

 

This study primarily sought to assess the effect of COVID-19 infection on respiratory function in 

young adults by comparing group differences in pulmonary function, airway inflammation, and 

both linear and nonlinear metrics of oxygen saturation variability between individuals with a 

history of COVID-19 infection and controls.  Furthering our nonlinear analyses, we then 

conducted a network physiology analysis to understand exchange of information between 

regulatory components of the cardiorespiratory system by quantifying transfer entropy between 

continuous SpO2, HR, respiratory rate and skin temperature signals.  This was done to further 

explore potential cardiorespiratory uncoupling between groups in our sample.  Finally, we 

explored the role of potential correlates of cardiorespiratory function including salivary 

biomarkers of systemic inflammation, physical activity levels and sedentary time, and infection 

experience as they relate to respiratory function and oxygen saturation variability in the COVID-

19 group.  These findings indicate that there are no group differences in any of the primary 

cardiorespiratory measures, suggesting that respiratory function and oxygen saturation variability 

(linear and nonlinear) are similar between infection and control groups, in contrast to the study 

hypothesis.  Several associations amongst respiratory function, oxygen saturation variability, 

systemic inflammation biomarkers, physical activity levels and infection experience were 

observed and will be discussed below.   

 Taken together, the results of the current study show similar pulmonary function, airway 

inflammation levels and oxygen saturation variability between recovering COVID-19 individuals 

and controls with no history of infection.  This suggests that mild-to-moderate COVID-19 

infection does not have lasting effects on respiratory function and oxygen saturation variability 

approximately three months into recovery.  Similarly, results from network physiology analysis 
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show similar levels of exchanges of transfer entropy amongst cardiorespiratory signals between 

groups.  These findings further suggest that cardiorespiratory integration and complexity of 

control of SpO2 is not impaired following mild-to-moderate COVID-19 infection, indicating 

there is no isolation within the cardiorespiratory system in those who have experienced COVID-

19 infection. 

 

Group Differences in Respiratory Function 

Pulmonary Function 

The current study did not find any significant differences in any of our measures of respiratory 

function; including pulmonary function, exhaled nitric oxide levels, linear and nonlinear 

measurement of oxygen saturation variability, between individuals with a history of COVID-19 

infection and healthy controls.  Assessment of pulmonary function via spirometry included 

measurement of FVC, FEV1, FEV1/FVC and PEF.  The lack of group differences observed 

between our study groups differs from findings of several previous studies, including accounts of 

pulmonary function anomalies and diminished total lung capacity in 25% of subjects at three 

months post-discharge from COVID-19 infection.6,12  In the former study, investigator Zhao 

reported that approximately half of those exhibiting pulmonary function anomalies showed 

reduced FVC or FEV1 values.12  Similarly, abnormally low FVC and FEV1 values were 

published at 6 weeks follow-up to COVID-19 infection76 and at the time of patient discharge.6   

An important distinction to make between the cohort of the current study and those 

reported in these publications is the severity of COVID-19 infection experience and timeline of 

measurement relative to infection.  The cohort of the current study experienced mild-to-moderate 

infection, was assessed on average three months into recovery, with no hospitalizations required.  
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In contrast, the majority of literature evaluating individuals during recovery from infection is 

reporting on follow-up assessments conducted post-hospitalization, encompassing the residual 

effects of a far more severe tier of COVID-19 infection.  However, one study identified the 

frequency of pulmonary dysfunction at six months follow-up, revealing low FVC, FEV1, and 

FEV1/FVC values in only 3%, 8% and 8% of the 89 patients included, respectively, however 

these participants were also hospitalized during infection.147  A more representative study of our 

cohort evaluating non-critical COVID-19 patients with mild-to-moderate infection reported no 

differences in pulmonary function pre-to-post infection,148 aligning with our findings.  

Furthermore, a larger scale study of 661 young adults (mean age 22.6 years) disclosed no 

differences in mean change in FVC, FEV1 or FEV1/FVC between seronegative and seropositive 

individuals.84  Abnormal pulmonary function has been deemed “rare” in children and adolescents 

who did not experience severe infection.149  These studies evaluating younger cohorts and those 

who had a more mild infection experience are more representative of our cohort and report 

findings seemingly parallel to the current study.   

Minimal studies have measured PEF in individuals with a history of COVID-19, however 

one study reported normal mid-expiratory flow in conjunction with normal FVC and FEV1/FVC 

values.85  Two accounts of direct measurement of PEF can be identified, one study yielding 

normal PEF, FVC, FEV1, FEV1/FVC values in 379 patients four months post-infection (aligning 

directly with the current study),150 and another an ongoing clinical trial yet to release their 

findings.151  These findings taken together with the current study suggest that pulmonary 

function is normal in young adults 3 months following mild-to-moderate COVID-19 infection. 
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Exhaled Nitric Oxide 

Our cohort exhibited slightly elevated exhaled nitric oxide (FeNO) levels, with average scores of 

16.61 ppb (COVID+) and 20.03 ppb (Control), however these values were not significantly 

different between groups.  Prior to our investigation, few studies had considered FeNO 

measurement as a means of evaluating post-COVID airway inflammation, as it was primarily 

used in assessing individuals with asthma and other related respiratory conditions.  FeNO may be 

useful in a COVID_19 setting as several of the inflammatory molecules that compose the 

cytokine storm characteristic to COVID-19 infection stimulate overproduction of NO in order to 

contest constrictive changes to the airway80 and has previously been found to be associated with 

changes in lung function.126  Higher FeNO values have been reported in critically ill patients 

with pneumonia compared to those without.80  It is important to note, however, that the ailments 

in this study were not COVID-19 related, although pneumonia is a common condition associated 

with COVID-19 infection.  The Yang et al. study appeared to be the first to use FeNO 

measurement directly for evaluating respiratory function in COVID-19 patients, reporting 

significantly higher values compared to healthy controls.82  Nevertheless, these values were 

acquired during active infection, and do not give indication about FeNO measurement during 

recovery.   

As the novelty of the pandemic has decreased, more studies have now assessed FeNO in 

recovering COVID-19 patients, with comparable results to the current study.  A large scale study 

of 661 young adults reported no differences in FeNO values between recovering COVID-19 

individuals and controls, including 123 individuals with asthma in the analysis.84  Another study 

that evaluated FeNO in a much smaller sample of 20 recovering COVID-19 individuals at 5 

months post-infection revealed that 7 (39%) of their cohort had slightly elevated FeNO levels 
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(25-50 ppb) indicating possible inflammation, but none reaching abnormal levels of over 50 

ppb.85  Furthermore, a study measuring multiple-flow FeNO values reported no significant 

differences in FeNO levels at a flow rate of 50 mL/s,86 the same flow rate used for data 

collection with the NiOX VERO here.  These findings suggest that FeNO measurement may be 

plausible as a diagnostic tool during active COVID-19 infection, but more research is needed to 

understand its significance during recovery.  The findings of the current study indicate that 

young adults with a history of COVID-19 infection have mild, but not abnormal airway 

inflammation levels approximately three months into recovery from infection. 

 

Oxygen Saturation Variability 

This study employed both linear and nonlinear methods to quantify and compare oxygen 

saturation variability between individuals with a history of COVID-19 infection and controls.  

Assessing oxygen saturation variability using continuous monitoring accounts for the natural 

fluctuations in SpO2 that spot check measurement cannot.  This attempt to capture true 

variability was conducted through analysis of a four-hour SpO2 signal, including basic variability 

measures of mean, SD, RMS and average hourly change in conjunction with novel nonlinear 

analyses of sample entropy, MSE and DFA.  Further insight into cardiorespiratory system 

control of SpO2 was provided via network physiology analysis of SpO2 as it relates to HR, 

respiratory rate and skin temperature.  While no group differences were observed for any linear 

or nonlinear variability parameters during our continuous collection period, the results of these 

analyses can be utilized to help define oxygen saturation variability and provide a baseline for 

young adults both with and without histories of COVID-19 infection moving forward. 



 

 73 

A novel approach to SpO2 measurement, oxygen saturation variability, both linear and 

nonlinear, has only been calculated in a handful of studies.  Prior to the current work, oxygen 

saturation variability had been quantified in specified populations and/or under unique 

conditions, including infants,152 healthy adults,18 COPD patients,94 and healthy adults under a 

graded hypoxic stimulus95 but had not been evaluated in a COVID setting.  The literature 

suggests that increased linear variability metrics associated with desaturation may be indicative 

of disease, such as in the extended home monitoring of COPD patients.94  In contrast, decreased 

nonlinear variability may indicate lower complexity and control system uncoupling associated 

with aging and disease.18  It is important to note that although increased entropy/higher 

complexity has been associated with  tighter control system coupling during pathological or 

environmental stimuli (desaturation or hypoxia)18,95 oxygen saturation variability is theoretically 

more engaged during these conditions where homeostatic intervention by the cardiorespiratory 

system is required.  Despite this, however, oxygen saturation variability may still be decreased 

compared to healthy counterparts due to injury or isolation to one or more of the regulatory 

components involved in cardiorespiratory control.  In summary, during a stimulus, it appears that 

increased linear variability and decreased nonlinear variability distinguishes healthy and diseased 

individuals.19,94,112,113  

 In the current study, no differences were observed in linear or nonlinear oxygen 

saturation variability between our study groups.  Our findings are supported by two recent 

publications, suggesting that COVID-19 infection may not affect oxygen saturation homeostasis 

in the same manner as we see in other respiratory conditions such as COPD.  Mapelli et al. 

reported no significant change in SpO2 at 7-12 days post-discharge (2-hour bout per day) but did 

not compare these findings to a control population.153  Moreover, Banzi et al. conducted 8-day 
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continuous SpO2 data collection during symptomatic COVID-19 infection, where no patient 

experienced a 5% or greater decrease in saturation during monitoring.154   

 Network physiology analysis in the current work indicated that while there were 

significant exchanges of information signaling between regulatory components of the 

cardiorespiratory system, that the integrity of said control system is not compromised in those 

with a history of COVID-19 infection when compared to their healthy counterparts.  

Specifically, two additional studies have discussed similar system control as it relates to SpO2 

monitoring in COVID-19 patients.  Mapelli et al. carried out extended at-home seven-day 

continuous monitoring of identical cardiorespiratory parameters in recently discharged COVID-

19 patients, yielding similar results to the current study.  No differences in any cardiorespiratory 

parameters were observed from the day of hospital discharge to the last day of monitoring.153  It 

is important to note, however, that these measures were not compared to a control group and the 

average age of this cohort was 54 years, unlike the current sample.  Desaturation during exercise 

was observed in this same cohort, illustrating the cardiorespiratory dynamics discussed in 

Michard et al.’s evaluation of continuous cardiorespiratory monitoring in individuals with 

COVID-19 infection155 as hypothesized in the current study.  While these multisignal 

interactions were not different between our study groups, the results of our network analysis 

echo that of previous studies,93,140 highlighting the exchange of physiological information across 

the cardiorespiratory system.  By successfully capturing this flow of information, we can 

potentially identify points of isolation amongst regulatory components in the system during/after 

not only COVID-19 infection, but also other pathological/environmental stimuli.93 

When discussing the findings of the current work as they relate to the literature, the 

timing of measurement and target populations should be considered.  More specifically, the 
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current cohort does not fall in a high-risk demographic, in terms of severity of infection and 

potential age-related comorbidities.  As previously highlighted regarding pulmonary function 

performance, the present sample of healthy young adults experienced mild-to-moderate 

infection, were assessed approximately three months post-infection, and required no 

hospitalizations.  Furthermore, in a risk assessment of COVID-19 patients, the presence of one or 

more comorbidities such as diabetes or hypertension was found to be a strong risk factor for 

hypoxia post-COVID infection.156  Because of our sample demographic, we may fail to see the 

ongoing cardiorespiratory injury reported in other populations at similar points in recovery.   

While no group differences were observed in any oxygen saturation variability measures, 

we were able to gain important insight into oxygen saturation variability dynamics overall.  

Similar to reports by Bhogal et al., SpO2 exhibited both fractality (self-similarity) and increased 

long-term complexity in our overall sample.18  Furthermore, SpO2 displayed increased long-term 

complexity when compared to short-term variations, denoted in our DFA, also echoing previous 

investigations.18  As the demonstration of the feasibility and accessibility to similar 

methodologies for home monitoring of SpO2 and associated measures increases in the COVID-

19 population,153–155 the current work functions to establish points of reference in regards to 

oxygen saturation variability metrics, allowing for refinement in future methodical approaches 

and comparison of observed patterns across populations.  Our findings suggest that while 

cardiorespiratory control of oxygen saturation is not impaired in young adults three months into 

recovery from COVID-19 infection, there is significant information to be acquired within these 

cardiorespiratory signals. 
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Biobehavioral Correlates of Cardiorespiratory Function 

Salivary biomarkers of inflammation, physical activity, sedentary time and infection experience 

were explored in our COVID-19 group to assess potential correlates of cardiorespiratory 

function.  Although no group differences were observed in cardiorespiratory function, these 

correlates were explored as potential mechanisms contributing to pulmonary injury, airway 

inflammation or hindered oxygen saturation variability during COVID-19 recovery.  Elevated 

inflammatory profiles characteristic of increased disease severity may be responsible for injury 

to the cardiorespiratory system, resulting in poor performance outcomes.  Physical activity 

metrics (MVPA and sedentary time), on the other hand, were chosen to assess the potential 

protective effects of activity (or detrimental effects of lack thereof) on the cardiorespiratory 

system and its functionality.  When discussing physical activity metrics, an important distinction 

to be made is the difference between physical activity and sedentary time, as well as the 

physiological implications on cardiorespiratory function for each.  While closely correlated with 

one another, it is possible for an individual to be both physically active (meeting physical activity 

guidelines) while still exhibiting substantial amounts of sedentary time.  Additionally, these 

constructs may offer individual insight into cardiorespiratory function as both exhibit 

relationships with cardiorespiratory outcomes independent of the other.34,157–160  Therefore, we 

distinguished between the two measures and assessed them as potential correlates of 

cardiorespiratory function individually.  

In the current sample, no associations between MVPA and pulmonary function were 

observed.  This lack of association could potentially be attributed to the activity levels of our 

cohort, as our sample met suggested physical activity guidelines.  While no associations were 

found with pulmonary function, MVPA did exhibit a positive association with FeNO.  Higher 
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levels of physical activity have been found associated with increased FeNO levels in healthy 

young adults.161  In contrast to the inflammatory response during infection, activity stimulates 

endothelial production of eNOS, and releases nitric oxide into the airway, increasing NO 

bioavailability and raising FeNO levels.161,162  Unlike MVPA, increased sedentary time exhibited 

a relationship with respiratory decline, demonstrated by an inverse association with both FEV1 

and PEF.  Increased bouts of sedentary time have been reported to accelerate age-related decline 

in lung function, and has previously demonstrated negative relationships with FEV1 and PEF 

specifically.35,36  Reductions in cardiorespiratory function characterized by lower pulmonary 

function may be attributed to a detraining effect at the lungs from lack of activity.34  Therefore, 

while similar between our study groups, it is plausible that reductions in pulmonary function may 

be due to increased bouts of sedentary time rather than the injuries related to acute COVID-19 

infection. 

 Furthermore, sedentary time has previously been associated with elevated inflammatory 

profiles, as the anti-inflammatory effects of increased activity are not seen.  While we did not 

observe any relationships between sedentary time and the pro-inflammatory cytokines (IL-8, IL-

1ß, TNF-α, CRP), we did note an inverse association between sedentary time and IL-6.  In 

contrast to other cytokines, IL-6 has functional roles outside of pro-inflammatory processes, and 

increased concentrations have been documented in more active populations.163,164  More 

specifically, muscle-derived IL-6 produced during activity has documented anti-inflammatory 

effects, reported to combat pro-inflammatory cytokines such as its measured counterpart IL-

1ß.165  These findings suggest that sedentary time may contribute to an elevated inflammatory 

profile due to a low production of anti-inflammatory IL-6.  
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Regarding infection experience, disease severity exhibited a negative impact on 

pulmonary function, noted by inverse relationships with both FVC and FEV1. Previous studies 

assessing pulmonary function based on disease severity have yielded mixed findings.6,148,150,166–

168  Interestingly, the relationship between disease severity and pulmonary function appears to be 

more likely driven by more severe cases that include exacerbated inflammatory responses to 

secondary injury such as COVID pneumonia, supplemental oxygen requirements or ARDS, 

however this was not demonstrated in our recovering individuals.  Not only did the current 

sample report mild to moderate infection, but no associations between disease severity and any 

inflammatory biomarkers were observed.  Regardless, the reduction in pulmonary function in our 

cohort may be due in part to the acute lung injury brought on by infection, independent of 

inflammation levels.  Taken together our findings suggest that both sedentary time and disease 

severity may be indicative of respiratory decline in young adults recovering from COVID-19 

infection.  Finally, sedentary time may be a modifiable point of intervention for improving 

pulmonary function during recovery in this population. 

 

Limitations and Implications 

While this study did provide a novel perspective into cardiorespiratory function of young adults 

recovering from COVID-19 infection, it is not without limitations.  Primarily, this study was 

cross-sectional and correlational in design, and therefore cannot claim causality.  Additionally, 

due to the viral transmission risks posed to both participants and researchers when conducting 

this study, much of the data collection was completed remotely, adding additional limitation for 

achieving accurate and complete measurement of study variables.  Furthermore, documentation 
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of COVID-19 infection experience was self-reported up to six months post infection, and 

therefore may not be entirely accurate. 

 Due to the novelty of the Equivital LifeMonitor device, there were several unforeseen 

complications and extraneous variables that led to the failed sampling of several of our 

participants, causing them to be excluded from our secondary analysis for oxygen saturation 

variability metrics.  Prior to its use in the current study, the Equivital was piloted in a small-scale 

study, where it exhibited good reliability for eight-hour continuous measurement.  However, due 

to the remote functionality of our study, the set-up of the device was done over Zoom and 

removal of device unsupervised, so neither could be physically conducted by a researcher.  

Additionally, as has been mentioned in the few studies where the same device was used, the 

quality of the data and successful collection by the device heavily relies on participant 

cooperation with the device restrictions, as the pulse oximeter easily generates artifact during 

higher activity levels and fidgeting with the device connection.  Furthermore, our sample and 

subsample were both predominantly white for our secondary analysis that decreased the 

generalizability of our findings.  However, it is important to note that there are no established 

racial differences in oxygen saturation metrics per se, so it may not have contributed to the lack 

of group differences observed in our cohort. 

 This study highlighted several measures that may be beneficial to managing recovery of 

COVID-19 patients after infection. Future studies should continue to evaluate these components 

of respiratory function in populations of varying infection severity and age.  Additionally, pre-to-

post measurement of individuals who contract COVID-19 would allow for a more direct 

comparison of changes in respiratory function, and repeated measurement throughout recovery 

would be beneficial.  More research is needed to quantify, understand, and compare oxygen 



 

 80 

saturation variability metrics and cardiorespiratory function in all populations, and may be 

valuable in more severely impacted populations.  The current work provides an important 

baseline to be referenced moving forward when discussing oxygen saturation variability and 

cardiorespiratory dynamics in any future bodies of work.  As vaccination rates increase and 

transmission risk decreases, more accurate and direct measurement of these populations should 

become more plausible. 

 

Conclusion 

Respiratory function measured as pulmonary function, exhaled nitric oxide and oxygen 

saturation variability does not differ between young adults who experienced mild-to-moderate 

COVID-19 infection and healthy controls.  Moreover, the significant exchange of information 

(transfer entropy) between SpO2, HR, respiratory rate and skin temperature did not differ 

between groups suggesting that both complexity and integrity (i.e., dynamic integration) within 

the cardiorespiratory control system is not compromised during recovery from COVID-19.  

Increased sedentary time and disease severity may have negative effects on pulmonary function 

in this population. In conclusion, young adults who have experienced mild-to-moderate COVID-

19 infection do not appear to be at increased risk for future respiratory decline. 
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Supplementary Table 1. Frequency of COVID-19 Symptomology 

 

 

  

Symptom Number of Participants 

Fever 10 

Cough 12 

Fatigue 19 

Loss of Appetite 11 

Shortness of Breath 9 

Hyperventilation 1 

Muscle Pain or Ache 13 

Joint Pain or Ache 9 

Sore Throat 12 

Nasal Congestion or Runny Nose 16 

Headache 18 

Diarrehea 3 

Nausea or Vomiting 4 

Loss of Smell 15 

Loss of Taste 11 

Dehydration 5 

Reduced Alertness 6 

Purple Lesions on Hands or Feet 0 

Persistent Chest Pain or Pressure 3 

Confusion 3 

Inability to Wake/Stay Awake 3 

Blush Lips or Face 0 

Other 3 

Asymptomatic 4 

Hospitalization 0 
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Supplementary Table 2. Subsample Participant Characteristics for Secondary Analysis 

Abbreviations: BMI, body mass index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 COVID+ (n=16) Controls (n=24) p value 

Age (years) 26.6 ± 10.3 24.5 ± 7.1 .733 

Sex (%)   .505 

       Male 6 (37.5) 10 (41.7) - 

       Female 10 (62.5) 14 (58.3) - 

Race/Ethnicity (%)   .191 

       White 13 (81.3) 23 (95.8) - 

       Hispanic 0 (0) 0 (0) - 

       African American 1 (6.2) 1 (4.2) - 

       Asian American 2 (12.5) 0 (0) - 

BMI (kg/m2) 23.69 ± 3.62 25.45 ± 3.79 .062 

Body Fat (%) 22.47 ± 5.11 23.07 ± 4.69 .389 

Questionnaire Data    

       Days Since Positive 120.88 ± 132.20 - - 

       COVID Disease Severity 2.06 ± 0.85 - - 

       COVID Symptoms 5.0 ± 5.0 - - 
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Supplementary Table 3. Subsample Group Differences in Respiratory Function, Systemic 

Inflammation and Physical Activity 

Abbreviations: FVC, forced vital capacity; FEV1, forced expiratory volume in 1 second; PEF, 

peak expiratory flow; IL, interleukin; TNF, tumor necrosis factor; CRP, C-reactive protein; 

MVPA, moderate to vigorous physical activity 

 

 

 

 

 

 

 

 

 

 

 

 

COVID+ (n=16) Control (n=24) p value  Partial η2 Observed 

Power 

Respiratory Function      

       FVC, L (%) 4.28 ± 1.04 (105) 4.60 ± 1.11 (106) .557 .021 .143 

       FEV1, L (%) 3.49 ± 0.77 (100) 3.71 ± 0.87 (99) .672 .020 .136 

       FEV1/FVC (%)  85.06 ± 11.26 (99) 81.96 ± 8.43 (95) .345 .025 .163 

       PEF, L/min (%) 363.75 ± 118.05 (88) 394.05 ± 141.85 

(86) 

.389 .013 .106 

      Nitric Oxide(ppb) 12.33 ± 4.44 21.21 ± 23.24 .123 .054 .294 

Systemic 

Inflammation 

     

       IL-8 (pg/mL) 711.44 ± 750.4 954.41 ± 1039.2 .641 .017 .122 

       IL-1ß  (pg/mL) 104.87 ± 112.6 161.75 ± 174.9 .177 .034 .200 

       IL-6 (pg/mL) 3.95 ± 3.7 5.14 ± 4.8 .454 .019 .129 

       TNF-α (pg/mL) 4.53 ± 4.2 5.11 ± 5.8 .641 .003 .063 

       CRP (pg/mL) 942.86 ± 1395.3 483.37 ± 563.8 .159 .052 .285 

Physical Activity      

       MVPA (min/day) 29.69 ± 17.71 34.85 ± 19.04 .500 .020 .121 

Sedentary Time 

(min/day) 

710.62 ± 171.90 719.46 ± 170.78 .796 .001 .052 
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Supplementary Table 4. Participant Characteristics for Included v. Excluded Sample for 

Secondary Analysis  

*p value <0.05 

Abbreviations: BMI, body mass index 

  

 Included (n=40) Excluded (n=17) p value 

Age (years) 25.4 ± 8.5 21.5 ± 2.8 .011* 

Sex (%)   .874 

       Male 15 (37.5) 6 (35.3) - 

       Female 25 (62.5) 11 (64.7) - 

Race/Ethnicity (%)   .007* 

       White 36 (90.0) 9 (52.9) - 

       Hispanic 0 (0) 0 (0) - 

       African American 2 (5.0) 5 (29.4) - 

       Asian American 2 (5.0) 3 (17.6) - 

BMI (kg/m2) 24.75 ± 3.8 24.55 ± 2.86 .875 

Body Fat (%) 22.83 ± 4.81 22.07 ± 3.77 .601 

Questionnaire Data    

       Days Since Positive 121.0 ± 132.0 89.0 ± 62.0 1.00 

       COVID Disease Severity 2.06 ± 0.85 2.50 ± 0.76 .264 

       COVID Symptoms 5.0 ± 5.0 7.0 ± 4.0 .214 
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