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Abstract
Interactive websites generate terabytes of data on a daily basis. This data can

be used in multiple analytical applications to teach computers more about

human behavior. Text classification is such an application. Multiple freely

available user-generated text data can be used to teach computers to iden-

tify the sentiments behind a user’s on-screen interactions without the need

of any human intervention. Sentiment analysis is an interesting problem,

solving which would theoretically get a computer closer to passing the Tur-

ing test. Through this thesis, we test the ability of a classifier to accurately

identify user sentiments. However, we do not focus on standard classifica-

tion settings and the aim is to train the classifier in such a way that it would

also be effective in identifying sentiment behind user generated text gener-

ated from a completely new social media platform. To be able to do this, we

must first identify behavioral bias based on user interactions in two differ-

ent social media sites as well as websites that accept user reviews. This bias

must then be mitigated in order to obtain an unbiased classifier that can then

be used to identify user sentiments on any social media platform. For the

research in this thesis, such user-generated text is obtained from the social

media sites Reddit and Twitter. We also obtain product review data related

to both books and wine. Various natural language processing techniques are

then employed to process the data and extract similar and dissimilar trends.

Vectorized user text would be used to train sentiment classifiers. Finally, clas-

sification bias would be identified and mitigated in order to obtain classifiers

that can identify human sentiments in real-time with an improved accuracy

with limited dependency on source information.
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Chapter 1

Introduction

Millions of users generate large volumes of data online per day. For vari-

ous applications, it is important to be able to process this data in real time

and understand the general opinions of users without having to manually

sort through this data. Various rule-based, machine learning-based, and a

combination of the two techniques exist in performing sentiment analysis.

One of the drawbacks of sentiment analysis however, especially for machine

learning-based approaches, is that the usability of a sentiment classifier is

largely dependent on the type of training data being fed to the classifier.

Users behave in varying ways across various different online platforms.

This difference may arise due to a variety of reasons such as the subjects

being discussed, the anonymity offered by a social media platform, the level

of informality expected from a platform, and the amount of expertise held

by an average user of a platform. As a result, when a sentiment classifier is

introduced to a completely new testing data, it produces biased results due

to the unfamiliarity of a new domain.

There are multiple scenarios that require an unbiased classifier to be able

to perform well on unseen training data. For example, there may not ex-

ist sufficient training data for new online websites to successfully train their

own sentiment classifiers. In this case, having an unbiased classifier trained

on a different set of training data can be a useful alternative. In addition to

this, we can also consider the use for sentiment classifiers in understanding
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the reception of users to a newly launched product. Different kinds of prod-

ucts have different jargons in their reviews that denote sentiments. In this

case, if a method exists to make a sentiment classifier unbiased then it can be

successfully used to test the sentiment of a newly launched products without

having to worry about the jargons,

In this thesis, we will start with exploring the various issues in training

data that need to be overcome while using a sentiment classifier. We will

then proceed to test out the various methods for training a sentiment classi-

fier. After that, we will analyze the bias that occurs when a sentiment clas-

sifier is cross-trained on a different set of training data. We will then propose

various methods to mitigate this bias and compare the results to denote the

best possible solution,

1.1 Contributions

Sentiment Analysis has many real-world applications. It is highly sought out

as a solution for detecting hate speech, understanding customer reception to

various products and weeding out malicious users in various forums.

A major issue in utilizing sentiment analysis however is the need for a

sufficient amount of training data. While this may be readily available in

cases where there is an abundance of existing data, it is harder in cases of

new websites or products. In this project, we explore methods to make a

sentiment classifier useful for text obtained from completely unseen datasets.

To do so, we first aim to reduce the classification bias that exists when a

classifier is used to test text obtained from such unseen datasets.

While we explore reduction of bias in terms of sentiment classification,

the same findings and methodologies can be modified and extended to solve

the reduction of prediction bias in other cross-classification problems.
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1.2 Road Map

In chapter 3, we will explore various datasets for sentiment analysis. We

will evaluate their suitability for sentiment analysis while exploring the var-

ious kinds of noise in the dataset that will impact the performance of our

classifiers. We will then suggest certain methods to reduce this noise and

make our data more suitable for our problem statement. In Chapter 4, we

will explore various methods to perform sentiment analysis and test them

on our data. We will compare these results and determine the best approach

in terms of accuracy. After this, we will detect the presence of bias when

performing cross-classification within the datasets present in each domain of

user-generated data. We will further propose various methods to reduce this

bias and determine the best approach to do so. Finally, in Chapter 5 we will

look into the applications and future work for our project.
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Chapter 2

Literature Review

This research revolves around observing and mitigating classification bias in

text obtained from social media data. This involves researching multiple sub-

domains of data science related to natural language processing, classification,

and bias.

Before diving into the research details, we first look into existing work

across these domains. The scope of this literature review involves analyzing

methodologies to implement the various parts of this research. We start with

defining what bias is in terms of data science, We then proceed to explore

research in text classification and then move on to sentiment analysis and

finally cross-domain classification.

2.1 Bias

In the current day and age, data science is heavily used across multiple do-

mains for recommendations, classification and predictions. Multiple ma-

chine learning algorithms have been created and used depending on the

problem statement. While these algorithms are not discriminatory by them-

selves, bias can seep into many applications due reasons such as unfair rep-

resentation in training data, insufficient training data, or faulty feature selec-

tion.
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Eirini Ntoutsi and colleagues [8] discuss the history of bias in data min-

ing along with ways to mitigate bias depending on the use cases. A system

is said to be biased when it has a higher probability of coming to one conclu-

sion over others. While not inherently undesirable, various machine learning

problems need to do away with bias to ensure that end-users are not being

discriminated against.

Bias mitigation techniques focus on one of the three approaches – collect-

ing data on bias awareness , modifying the machine learning algorithms to

mitigate bias, and finally adjusting the results post-learning to account for

bias. Through experiments, we will determine the presence of bias in a text

classification problem (i.e, sentiment classifiation) by training on a Reddit

dataset and testing on a Twitter dataset. We will then explore methods to

identify the presence of bias in the outcomes followed by testing ways to

mitigate this bias.

2.2 Text Classification

Text classification is not a new problem. Social media websites, online retail

stores, and blogs are among numerous sources that generate a large amount

of user text. Given the volume of text generated, it is often imperative to

devise methods to classify text for analysis without any human involvement.

Before implementing and testing one strategy for text classification, it is worth

mentioning that there is no “best" strategy for text classification. In order

to determine what strategy works the best, often the structure of the input

data needs to be considered. Common strategies to process and classify

text include, but are not limited to nearest neighbor methods such as KNN,

Multi-class SVMs, Web-based categorization techniques, semantic labeling,

and random walks.
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2.3 Sentiment Analysis

Sentiment classification is a form of text classification problem discussed ear-

lier. The rise in end-user generated, opinionated online content has led to the

need of classifying text on the basis of the sentiment behind them. Sentiment

analysis allows a classifier to gauge the underlying sentiment in some text.

This is particularly useful in use cases involving reviews of various products

and services.

The work by Walaa Medhat [15] provides a systematic study of various

sentiment analysis algorithms and situations where their use are appropriate.

A strategic training of a sentiment analysis classifier includes processing

the text, identifying the sentiment, feature selection, and finally classification

of the sentiment.

There are many issues with data extracted from user generated content

that can negatively impact a sentment analysis classifier. These issues are

both semantic as well as syntactic. Under semantic issues, we consider the

paper by Iti Chaturvedi [11] that discusses the issue in sentiment analysis

related to differentiating between opinions and facts. This paper discusses

the methodologies to analyze and remove data instances with neutral senti-

ments prior to training classifiers. In this paper, this sub-task is referred to

as detection of subjectivity in sentiment analysis. They seek to prevent force-

fully classifying data instances into positive and negative sentiments when

they are neutral or fact-based.

Feature selection is an essential precursor to training the classifier. It is

important to extract the correct subset of features from a given text in order

to accurately represent the sentiment-related factors. Some popular options

to select such features in text are detecting the polarity of objectives in text,

identifying the presence of negations in text, and noting the frequencies of

using certain terms in speech.
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Feature selection is followed by selecting a classification algorithm. The

algorithm is responsible for training the classifier. Sentiment classifiers can

be roughly categorized into three broad categories. These are the machine

learning-based approaches, lexicon-based approaches, and a hybrid of the

previous two approaches.

For our project, we have considered sentiment analysis approaches for

social media and product reviews datasets. A survey by Lin Yue [17] fo-

cuses solely on sentiment analysis performed on social media data. This pa-

per provides an extensive study of the current status of sentiment analysis

algorithms. They discuss sentiment analysis approaches under granularity

oriented sentiment analysis, document level sentiment analysis as well as

sentiment analysis based on individual words and sentences. In therms of

methodologies, they broadly classify sentiment analysis approaches in terms

of supervised learning, unsupervised learning and finally semi-supervised

learning approaches. For the datasets, they consider Twitter as well as Face-

book datasets in order to test and analyze various approaches.

2.3.1 Machine Learning-based Approaches

Various existing machine learning algorithms can be redesigned in order to

fit a sentiment classification problem. In this case, the training file consists

of a set of records along with their target sentiment class. Machine learning

algorithms can further be broken down into supervised and unsupervised

learning algorithms. Supervised machine learning algorithms are appropri-

ate when we have training data that already contain the target sentiment

class for each record. Traditional machine learning classifers such as Naive

Bayes classifiers, Bayesian networks, Neural networks, Decision tree classi-

fiers, and Support Vector Machines all have comparable accuracies in senti-

ment classification. For the scope of this project, since we have tweets and
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comments with their associated targets, we can initially consider supervised

learning algorithms for training the classifiers.

Support Vector Machines are especially useful in classification of text doc-

uments. This is due in part to the sparsity of the features in a text document

and the relatedness of the features. Chen [4] focuses on utilizing support

vector machines to classify sentiment polarity of user reviews.

A lot of research has been done into utilizing machine learning for clas-

sifying sentiments for social media data. Twitter provides one of the best

sources to extract text classification data from as metrics such as likes and

retweets provide a good metric for labeling the data. A paper by Yung-

MingLi [18] focuses more on classifying tweets using support vector ma-

chines while also adding the feature of user credibility when training the

classifier. A survey by Anastasia Giachanou and Fabio Crestani [9] analyzes

and compares various methods to perform sentiment classification on Twit-

ter data. In this survey, they discuss various Twitter specific data challenges

that need to be dealt with to perform sentiment analysis. These include

length of text, relevance of topics, correctness of grammar, sparsity of data,

stop words and multilingual content. They go ahead to discuss various fea-

tures present in this text based dataset. These include semantic features such

as the different kinds of negations and opinion words present in the text as

well as syntactical features such as term frequencies, bigrams, n grams and

parts of speech. Machine learning approaches are discussed that use SVMs to

predict the sentiments of the data instances as positive, negative and neutral

Tweets. They further discuss evaluation metrics such as F measure, precision,

recall and accuracy in order to evaluate the classifiers.
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2.3.2 Other Approaches

Sentiment classification algorithms are not limited to using machine learning

approaches. In the case where target classes are not available, a lexicon-based

approach can be used to determine the sentiment behind classes. This can

involve incorporating dictionaries to identify positive and negative words,

statistical approaches to identify patterns or corpus-based approaches that

make use of opinion words along with connectives and conjunctions. As the

scope of this project is to identify and mitigate bias, our focus is more towards

a machine learning-based approach. We also look into a more hybrid learn-

ing model that involves lexicon based segregation before utilizing machine

learning for training.

The work of Dalibor [3], shows that it is apparent that we have various

challenges when it comes to analysis of user generated text. These include,

but are not limited to, presence of sarcasm in text, ironic sentences, fake news,

indistinguishable facts and opinions and unstructured data. The algorithm

selected needs to do away with challenges that harm the problem settings.

2.3.3 Applications of Sentiment Classification

The work of [2] studies sentiment analysis in the movie reviews domain.

Movie reviews are some of the more convenient datasets to perform senti-

ment analysis on due to widely available databases for training and a clear

sentiment class in the form of the ‘movie ratings’ provided by the users along

with their text-based reviews. The authors employ three primary machine

learning methods for their study. These are namely Naive Bayes classifier,

maximum entropy classifiers, and support vector machines. These machine

learning models employ standard bag-of-words features. Such an imple-

mentation has a provably higher accuracy than random baselines and clas-

sification models with selected unigrams in predicting sentiments across the
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movie-reviews domain.

We note that the work of [7] best resembles our approach for sentiment

classification. This approach involves using word2vec to convert Chinese

words into their corresponding vectors. Support Vector Machines are then

employed to train the classifier into detecting sentiments.

Another similar line of research is the work of [12], which deals with sen-

timent analysis on social media data obtained from Twitter. The obtained

tweets are preprocessed and cleaned to include parts-of-speech tags as well

as reduce words to their origins. The sentiment analysis problem is then fur-

ther broken down into two sub-problems, namely the target-dependent clas-

sification problem and the target-independent classification problem. The

target-dependent problem deals with sentiment classification in tweets with

the correct sentiment class provided. This proved to display a greater accu-

racy as compared to a target-independent classifier. The latter focuses more

on the content and lexicons in the tweets rather than their subject. The au-

thors further improved accuracy rates by employing a graph-based optimiza-

tion framework to assign sentiments to tweets based on retweets.

While we discuss text base sentiment analysis problems in this project,

it is worth looking into sentiment analysis for user generated content that

involves input data in forms other than that of text. A survey by Alessandro

Ortis [1] discusses sentiment analysis in terms of user responses to various

images. Features in this case are features pertaining to Valence, Arousal and

Control. They discuss classifying the polarity of images in terms of five fine-

grained sentiments - anger, fear, disgust, surprise and sadness.

2.4 Parts of Speech

Any classification problem involves feature engineering and often a way to

generate the best possible subset of features that are relevant to the problem
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at hand. Sentiment analysis deals with the detection of the emotions behind

a user’s textual inputs. From analyzing the English language, we can hy-

pothesize that various parts of speech play an important role in concluding

sentiments. With this in mind, we take a look into ‘parts of speech’ as a pos-

sible way fir feature engineering.

The use of parts of speech tags as features for sentiment analysis has been

explored before. The study by [5] employs the use of parts of speech tags

as a method to weigh certain lexicons prior to training a machine learning

classifier for sentiment analysis. The study initially trains a sentiment analy-

sis classifier without any special weighing. After this, a classifier is retrained

based on the following subsets of features: nouns, verbs, adjectives, and ad-

verbs. After testing the classifier on these subsets, they are retrained based

on all permutations and combinations of the four subsets and the optimal

subgroup of POS tags is selected. These subsets are assigned higher weights

when training a classifier. Their results show that adjectives and adverbs

seem to have high relevance in determining the sentiment behind a given

text. This is later tested and incorporated into our project to improve accu-

racy.

Similarly the work of [16] discusses Parts of Speech in sentiment analysis

for Twitter as a method to reduce the high dimensionality of a text corpus

by reducing the number of features in a text. This paper explores this goal

through a proposed method that helps to determine how related a parts of

speech feature is to the overall sentiment of a given text (using χ2). This

dependency is then used to create a composite set of features that is weighted

based on the relevance of the feature.
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2.5 Cross-Domain Classification

The final stage in detection of bias during classification is testing a classifier

on completely new text. Cross-classification in text-based applications in-

volves training a classifier over one dataset and then testing its accuracy on

another dataset obtained from an unseen domain. Theoretically, this would

lead to lower accuracies as user behaviors across online platforms typically

vary in terms of language and format of the generated text. There is also the

issue of the kinds of content generated. Reddit, being anonymous, typically

has larger amounts of controversial comments and ‘troll’ comments as com-

pared to Twitter, where the identity of the poster is generally known. Our

objective is to spot the bias in languages used across Reddit and Twitter by

employing sentiment classification techniques. We can further analyze the

potential for removing such a bias.

Various state of the art algorithms exist to perform cross-domain classifi-

cation of text documents. The most popular out of these are the spectral fea-

ture alignment and structural correspondence learning algorithms. For instance,

[6] provides an interesting approach towards training classifiers across mul-

tiple domains. Their work expands into the previously discussed concept

of target-dependent classifiers. The dataset involves reviews taken for two

separate products or ‘targets’. For the sake of the experiment, four different

targets are taken - books, DVDs, electronics, and kitchen appliances. Cross-

domain classification is a challenging problem when it comes to text-based

domains as the features of the two training domain do not align with each

other. This problem can be partially solved by creating a sentiment specific

thesaurus. Here, lemmatized sentences can be broken down to create feature

vectors that contain words that express similar sentiments to each other.

Another approach to cross-domain sentiment classification is covered by

the work of [10]. The paper also considers the reviews domain in sentiment
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classification. Different categories of products may have different wordings

for equally positive and equally negative reviews. With this notion, train-

ing a classifier on one domain will give inaccurate results when training on

a completely new domain. The address this problem using a Topical Cor-

respondence Transfer (TCT) approach, where different domains are repre-

sented using a term-document matrix and their relationships are explored.

In other approaches of cross-domain classification, we explore the re-

search paper by Paola Zola [19] that discusses cross-domain classification

in terms of two completely different domains of user generated data. In this

case, data obtained from websites such as Amazon and Tripadvisor are used

to train a machine learning based sentiment classifier, This classifier is then

used to test on datasets from social media such as Facebook and Twitter. Var-

ious evaluation metrics such as F score, accuracy and ROC are then used to

test the efficiency of cross-classifying.
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Chapter 3

Datasets

In this chapter we will analyze the datasets that have been used for our ex-

periments. For this project, we will obtain user-generated text data from two

different domains and observe the similarities in bias trends and sentiment

analysis accuracies across both the domains. The datasets we have picked

are Reddit datasets and Twitter datasets obtained from the social media do-

main as well as the wine reviews and book reviews datasets obtained from

the product reviews domain.

In the following sections, we will analyze the breakdown of this data, the

noise present in it and methods to mitigate this noise in order to make the

data more suitable for sentiment analysis.

3.1 Datasets

Our data has been sourced from social media posts and review datasets. We

start with smaller subsets of data and proceed to using larger datasets to mea-

sure the change in accuracy and compare the eventual similarities between

the datasets.

The data is manually labeled with sentiments corresponding to each tweets,

or comments. Value -1 denotes a negative sentiment, +1 a positive sentiment,

and 0 a neutral sentiment.
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The datasets for both these domains for this project have been sourced

from Kaggle.

3.1.1 Social Media Datasets

We run our first set of experiments on data obtained from social media web-

sites. This data has been extracted from English language comments ob-

tained from Reddit as well as English language tweets that are obtained from

Twitter.

Reddit Dataset

The Reddit dataset is a subset of approximately 100,000 comments taken

from Reddit and labeled with 0,1, or -1 depending on the correct sentiment

class. To accurately depict a comparison between datasets, we obtain a dis-

tribution of the Parts-Of-Speech tags in the text corpus. The distribution is

shown in Figure 3.1.

Adjectives

18%

Pronouns

1%

Nouns

52%

Adverbs

4%

Verbs

12%

Other
24%

FIGURE 3.1: Distribution of Reddit data
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Twitter Dataset

The Twitter dataset is a subset of approximately 100,000 English tweets taken

from Twitter and labeled with 0,1 or -1 depending on the correct sentiment

class. We find that the Parts-Of-Speech distribution for this text corpus is

similar to that of Reddit (see Figure 3.1). The distribution is shown in Figure

3.2

Adjectives

16%

Pronouns

1%

Nouns

55%

Adverbs

3%

Verbs

11%
Other

14%

FIGURE 3.2: Distribution of Twitter data

3.1.2 User Reviews Dataset

Most online retail websites provide the option for end-users to leave text-

based reviews as well as ratings. This data is highly suitable for sentiment

analysis as the sentiment class can be inferred from the user ratings instead

of manually assigning the sentiment class. For demonstration, we obtain

reviews data for two kinds of products: books and wine.

Wine Reviews Dataset

The wine reviews dataset is a subset of 280,000 reviews of wines. Users as-

sign each product a rating from 1-100 and also leave a text-based review.

Through the ratings, we check the distribution and assign values of -1,0 and
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FIGURE 3.3: Distribution of Wine Reviews data

1 sentiment classes to each review. As with social media datasets, we also

calculate the Parts-of-Speech distribution for this dataset. We can see that

this (Figure 3.3) too follows a similar distibution to Figures 3.1 and 3.2, with

a majority of the text being Nouns.

Book Reviews Dataset

The book reviews dataset is a subset of 280,000 reviews of books obtained

from Amazon. Users assign each product a rating from 1-5 and also leave a

text-based review. Through the ratings, we again check the distribution and

assign values of -1,0 and 1 sentiment classes to each review. We also calculate

the Parts-of-Speech distribution for this dataset, as shown in Figure 3.4
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FIGURE 3.4: Distribution of Book Reviews data

3.2 Noise in Data

One of the main reasons that text classification problems are challenging is

that user-generated text is highly unreliable. This unreliability comes from

the various inconsistencies with which users choose to interact with one an-

other online. As we are using text-based user-generated data to conduct our

study, the data cleaning approach will be more focused on the noise sur-

rounding user behaviours on these platforms.

We can classify noise in user-generated text into two categories: issues

related to clarity of speech, and issues related to unusable features in text.

3.2.1 Unusable Features in Text

Stop words

Stop words are words that make topical and grammatical sense when used

in a sentence but otherwise add no impact on determining the overall senti-

ment behind it. This includes words such as I, me, you and your. The goal

of cleaning the data should be to make the training data as meaningful as
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possible. As these stop words do not contribute to the underlying sentiment

of a sentence, they are classified as noise for sentiment classification. Each

data instance should have a majority of words that can indeed contribute to

determining the sentiment class. This would ensure that unusable or noisy

features do not impact the data instance averages or shift the data distribu-

tion.

Spelling mistakes

Websites that allow user-generated text provide an informal environment for

users to interact with each other. Due to this, end users are under no pressure

to proof-read text before posting them on a website. Data scraped from social

media sites is hence often ridden with spelling mistakes or “typos". These

features are meaningless when converted to vectors and add noise to the

training data.

Special characters and numbers

Numbers and special characters are unreliable indicators of sentiment in so-

cial media data. An exception to the rule is when special characters combine

to form emoticons. Exclamation marks may add heightened polarity to the

sentence and question marks can add ambiguity. However, for most parts it

is more useful to have training data that does not account for this possibility.

Mixture of Languages

Social media texts can be a mixture of multiple languages. For the scope of

our research, we will be dealing with only the English language and so, the

presence of other languages in the text will be considered as noise.
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3.2.2 Clarity of Speech

Synonyms

In a text corpus, we often have multiple words that have similar meanings.

This is an issue when using text for any kind of classification problem. If

similar words can be mapped to the same vectors, then we can reduce the

number of features that determine a certain outcome and subsequently im-

prove the efficiency of the classifier.

For instance, words such as "beautiful":"pretty" imply the same positive

sentiment whereas words like "sad":"upset" imply the same negative senti-

ment. If these words can both be reduced to the same n-dimensional vector,

then we can increase the meaningfulness of these words and ensure that the

classifier learns how to identify the sentiment behind them more accurately.

Variations of words

Various parts of speech such as adjectives and adverbs have different forms

of their word that amount to the same meaning. For instance, superlatives

and comparatives combine the same root word with a prefix or a suffix.

"happy":"happier" and "bright":"brighter" convey the same information when

it comes to determining the polarity of a sentiment. It is more meaningful for

a classifier to use the same vectors for such words that have the same roots.

Negations

Negations include words such as ’not’, ’non-’ and ’un-’. It is important to

appropriately account for the impact of negations on the polarity. For in-

stance, ignoring these negations leads to opposite sentiments. The weights

that a negative sentiment holds should be appropriate. For instance, given

the text “Not great", if the words "Not" and "great" both account for opposite
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and equal weights, then the aggregate sentiment would turn out to be 0 or

’neutral’, even though we can clearly see that it is a negative sentiment.

Sarcasm

Sarcasm is one of the most challenging properties of text to deal with in text

processing. Although certain features strongly suggest one polarity, the ac-

tual context behind a sentence may imply the opposite sentiment.

Vagueness

Not all user-generated text contains the presence of highly polarized state-

ments. Many generated statements only contain vaguely positive or nega-

tive wordings. This can add unnecessary features to a classifier in the form

of vectors that do not always contribute to the polarity of a sentiment.

Hyperboles

Hyperboles or exaggerations can denote a sentiment opposite to the literal

meaning. For instance, “This is just great." may mean that things are in fact,

not great according to the context in which the sentence is being spoken.

While a human mind can easily infer the correct sentiment behind the words,

they have the potential to confuse a classifier.

3.2.3 Domain Specific Data Issues

Apart from the issues listed above, there are some data issues specific to the

context of the user-generated text.

Social Media Dataset

Social media data is generally loaded with slang words, misspellings, and in-

formal jargons. This makes it hard for a machine to understand words out of



22

context. Another issue with social media datasets for sentiment classification

is the label for each comment or tweet. The correct label cannot be inferred

from the number of upvotes for the Reddit dataset as a negative opinion may

also be a popular one. Similarly for Twitter, a tweet having a high number of

retweets does not automatically mean that the tweet carries a positive senti-

ment as a number of factors could lead up to that. As a result, we have to rely

on human judgement to get the ‘correct’ polarity values for a given Reddit

comment or Twitter tweet.

Reviews Dataset

For the reviews dataset, we include reviews for wine as well as reviews for

books. An upside to using a product reviews dataset for sentiment analysis

is the fact that we can infer the sentiment class based on the ratings provided

by the users. In case of product reviews however, the words used to describe

one product might denote a positive sentiment just for that specific product.

This would make an improperly trained classifier produce incorrect results.

3.3 Data Cleaning

In the previous section, we have discussed multiple issues with the training

data that impact the accuracy of a sentiment classifier. While some of those

issues need to be handled by making adjustments to a classifier or penaliz-

ing the outputs of the classifier, a reasonable number of these issues can be

resolved by cleaning the data before training the classifier.

The following steps have been taken to clean the data to make it appro-

priate for a classifier.
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Removing stop-words

For this issue, we make use of the nltk ’stopwords’ library. This library pro-

vides a list of stop words that are irrelevant to sentiment analysis. Every

instance of the input data is processed and the words matching the members

of this set are removed.

Reducing variations in text

The PortStemmer class in the nltk package takes a word and reduces them to

their root words. Preprocessing text in such a way ensures that words with

the same roots get converted to the same vectors, thus reducing the number

of features in a meaningful way.

Removing numbers and special characters

We use Regex pattern matching to remove special characters and numbers

present in a text to make them more suitable for a sentiment classifier.

Removing words from a different language

We make use of a dictionary to ensure that the words that are being fed to

a classifier are a part of the English language and can be reliably used in

a classifier. Data instances containing no English words are skipped while

vectorizing the words.

Fixing spelling mistakes

Spelling mistakes can be fixed by taking words that are misspelled and us-

ing a dictionary to find the closest matching words. These words are then

replaced with their correct spellings. The same words may be misspelt in

multiple places in different ways and so fixing all spelling mistakes ensures

a reduction in noisy data.
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Adding parts of speech tags

The final stage of data cleaning is to add tags to the input data determining

what kind of words are present in a text. This will be useful later during

sentiment classification to perform feature engineering to determine the most

relevant parts of speech in terms of determining polarity.
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Chapter 4

Methodology and Results

In this chapter, we will discuss our approach using various sentiment anal-

ysis technologies on our datasets. We will then discuss the bias associated

with cross-classification and propose various methods to mitigate this bias.

4.1 Sentiment Classification

In order to test the bias trends in cross-training using classification, we con-

sider sentiment analysis, a subproblem of text classification. Sentiment anal-

ysis is a complicated text classification problem due to the various nuances

in text that determine its overall sentiment. For instance, the presence of

sarcasm, negations in text, and figures of speech all make sentiment clas-

sification more complicated than a regular context-based text classification

problem.

For demonstration purposes, we can test out various sentiment analysis

approaches to understand the best approach for our dataset. Sentiment anal-

ysis methods can broadly be classified into rule-based and machine learning-

based approaches or conversely, a hybrid of the previous two.
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4.1.1 Rule-Based

Rule based sentiment analysis approaches deal with individual subsets of

text rather than the entire training set as a whole. These approaches are un-

supervised and do not need a sentiment class in order to make predictions.

The objective of this research does not focus on unsupervised learning and

we focus more on the challenges regarding machine learning algorithms.

For our experiments, we consider the VADER rule-based approach. This

approach combines a cumulative scoring of sentiment specific words with

considerations for hard-coded language features such as negations and words

that denote extremeness of a sentiment. Each analyzed text receives a score

denoting the positivity, neutrality, and negativity present in the sentence

along with a cumulative score that combines the aforementioned values with

the hard-coded values for various sentiment features. This cumulative score

is then normalized between -1 and 1 values, following which we can bin

them into -1, 0 and 1 values denoting negative, neutral, and positive values

of sentiment.

Rule-based approaches are cost effective and practical for sentiment anal-

ysis. In problems that involve text along with a rating such as in the case of

movie reviews and product reviews, the ‘target’ value for a sentiment is al-

ready available in the form of the rating (we assume that a high rating would

be accompanied by a positive text). However, in almost every other case, it

can be tedious to obtain an accurate metric for determining the correct senti-

ment of a given text. In these cases, a rule-based approach would provide a

quick and inexpensive way for sentiment analysis.

From the results of the experiments performed in tables 4.1 and 4.2, we

can see that machine learning methods largely outperform rule-based ones

for multiple datasets. For our social media datasets, we can see that VADER



27

provides a comparable accuracy. The reviews datasets however have a sig-

nificant performance gain when switching to a machine learning approach.

Rule based algorithms tend to stagnate in terms of their accuracy and are

demonstratively inferior to machine learning and hybrid approaches.

TABLE 4.1: Rule based sentiment classification: Social Media

Social Media Dataset Vader Performance
Reddit 42.8784267
Twitter 44.34813569

TABLE 4.2: Rule based sentiment classification: Reviews
Dataset

Reviews Vader
Wine 43.57478257
Books 50.73638043

4.1.2 Machine Learning-Based

One of the reasons text classification is challenging is the sparseness of the

features. In an unprocessed text corpus, the number of features is equal to

the number of words in the vocabulary. This leads to unreliable results when

it comes to training a classifier.

In order to train a classifier correctly, we first explore methods for dimen-

sionality reduction. Dimensionality reduction methods convert words into

n-dimensional vectors. We can do this in multiple ways. One approach is

to use the standard Bag-of-Words method. In this method, each word in the

vocabulary is a feature. The value of the feature refers to the frequency of

the occurrence of that word in the give sentence. While bag of words method

has comparable accuracy in small datasets, it is undesirable in a text corpus

with a larger vocabulary due to the sparseness of the features. Another issue

with this approach is the loss of sequence of words.
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A more recent approach to vectorize words is by using the WORD2VEC

or DOC2VEC algorithms. This approach mitigates the sparseness problem

in the bag-of-words approach and converts each word to an n-dimensional

vector. Each instance in the dataset is then converted to an average of the

vectors of the words present in that sentence.

After the dataset is vectorized using one of the two approaches listed

above, it can be used to train the classifier. We have used multiple classi-

fication techniques (Decision Trees, SVM, Random Forest, Naive Bayes, and

XGBoost) and compared the classification performance. Each classifier has

its own set of advantages and trade-offs. We use multiple classifiers to track

bias and accuracy rates to ensure incorporating their advantages into our fi-

nal results. For completeness we briefly review these classification methods.

TABLE 4.3: Machine Learning Approach - Social Media Dataset

Algorithms Reddit(R) Twitter(T)
Decision Trees 49.06546275 48.45204723
SVM 53.69751693 36.38149414
Random Forest 61.21896163 60.97071883
Naive Bayes 50.96162528 47.31845061
XGBoost 61.89616253 61.50068548

TABLE 4.4: Machine Learning Approach - Reviews Dataset

Algorithms Wine(W) Books(B)
Decision Trees 85.41253812 72.04613687
SVM 77.40385186 53.30303426
Random Forest 90.51156388 83.27894531
Naive Bayes 56.46087165 50.34309057
XGBoost 83.43558282 84.99839803

We can see the results of our machine learning approach in tables 4.3 for

Social Media datasets and table 4.4 for product reviews datasets. It is clear

that the machine learning approach outperforms the rule-based approach in
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all instances. It can also be seen that XGBoost and Random Forest outperform

all the other classifiers in terms of accuracy scores for sentiment analysis.

Decision Trees

A decision tree is classification method used for a dataset, which allows de-

termine the best possible features from multiple features in data. The algo-

rithm determines a set of sequential best-splits in order to help the classifier

determine the correct target class. In problem statements with large number

of features, this helps the machine determine the most relevant features. A

downside of using decision tree at times is their tendency to overfit the data.

Pruning of the tree needs to be done sometimes to ensure that this does not

occur.

SVM

Support Vector Machines(SVMs) Support Vector Machines is a supervised

machine learning algorithms. The method is initially designed and some-

times best suited for two-class classification problems such as our current

sentiment classification problem. In our case, the two classes are positive and

negative. SVMs process the input data and learns a decision boundary that

separates the data points.

Random Forest

Random Forrest is an algorithm that involves the construction of multiple de-

cision tree classifiers. The output class of the classifier is a mean of the results

of individual decision trees. Random forest often yields a higher accuracy

than that of decision trees and can often overcome overfitting.
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Naive Bayes

Naive Bayes classifiers are simple probabilistic classifiers. These classifiers

assume an independence of all the features given the class variable in the

input data. These classifiers are highly scalable, making them suitable for

text processing problems with a large number of features.

XGBoost

XGBoost is a recent machine learning algorithm. XGBoost[13] [14] provides

an implementation of decision trees that are gradient boosted for heightened

accuracies and performance. This method often outperforms random forest

in terms of both speed and accuracy. We can see in our implementation that

this method continually outperforms the other classification algorithms in

terms of performance.

4.1.3 Hybrid Approach

For this approach, we make use of VADER’s sentiment scores as a feature

in addition to the machine leaning methods discussed earlier. From train-

ing a classifier with the rule-based approach discussed earlier, we have the

positive, negative and compound scores listed for each data instance in the

dataset. We take the N dimensional feature vector and convert it to N + 2

by adding 2 more dimensions- one with the negative score and one with the

positive score for every data instance. This N + 2 dimensional vector is then

passed to the classifier for training.

The results of this experiment are demonstrated in table 4.5 for social me-

dia datasets and table 4.6 for the product reviews dataset. We can see that

this method outperforms the rule-based and machine learning methods for

sentiment analysis.
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TABLE 4.5: Hybrid Approach - Social Media Dataset

Algorithms Reddit(R) Twitter(T)
Decision Trees 55.19638826 52.93732479
SVM 60.00902935 36.98717031
Random Forest 66.65462754 65.03857093
Naive Bayes 55.25959368 50.99343169
XGBoost 67.11512415 65.10404944

TABLE 4.6: Hybrid Approach - Reviews Dataset

Algorithms Wine(W) Books(B)
Decision Trees 85.44813756 73.35738273
SVM 77.41571834 56.53308967
Random Forest 90.46528462 83.66223256
Naive Bayes 74.40400612 75.57285424
XGBoost 83.7797107 85.51696313

4.1.4 Comparison of Sentiment Analysis approaches

We train each of the four datasets using all the three aforementioned senti-

ment analysis approaches. We first go over the rule-based approach using

the VADER algorithm. Next, we train using the WORD2VEC features ob-

tained on our datasets and the five classifiers. This allows us to obtain the

“best" classifier among them. Finally, we compare the previous two methods

by incorporating VADER scores along with the WORD2VEC vectors prior to

training the classifier.

We can see that in the case of the social media datasets(Table 4.7), the ac-

curacy is significantly higher using a hybrid approach. In the case of the

reviews datasets(Table 4.8, we find that the machine learning and hybrid

approaches both have comparable accuracies but both outperform the rule-

based approach. Figure 4.1 helps to illustrate these results.
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TABLE 4.7: Comparison of Sentiment Analysis - Social Media
Dataset

Social Media Vader ML Hybrid
Reddit 42.8784267 61.89616253 67.11512415
Twitter 44.34813569 61.50068548 65.10404944

TABLE 4.8: Comparison of Sentiment Analysis - Reviews
Dataset

Reviews Vader ML Hybrid
Wine 43.57478257 83.43558282 83.7797107
Books 50.73638043 84.99839803 85.51696313

FIGURE 4.1: Comparison of Sentiment Analysis approaches
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Results on Social Media Datasets

We train sentiment classifiers for our two social media datasets - Reddit and

Twitter. We observe that a hybrid approach performs the best for both the

datasets with the machine learning approach coming as a close second. The

accuracy for a sentiment analysis classifier for social media datasets varies

from 40-45 for VADER, 60-62 for Machine learning, and 65-70 for a hybrid

approach, incorporating the previous two approaches. A lower accuracy of

a sentiment analyzer can be attributed to the varying subjects of text present

in the training data obtained from a social media domain.

Results on Reviews Datasets

For the reviews dataset, we obtain the training and testing data from two dif-

ferent subsets of reviews - reviews of wines and books. For this approach, we

can see that the machine learning approach and the hybrid approach have a

similar accuracy, with the hybrid approach slightly outperforming the other.

In this case as well, we can see that VADER does not have high accuracy.

For the reviews dataset, we can see that a sentiment analyzer outperforms

the results obtained on social media data. This is due to the fact that the

reviews dataset has a clearer depiction of the ‘correct’ class based on the rat-

ings provided. It also helps that in both these datasets the subject discussed

is consistent, providing a more reliable training data.

4.2 Cross-Domain Classification

After training and testing a classifier on dataset of one domain at a time, we

run a few more experiments. The goal of this next set of experiments is to

check the performance of one classifier on completely unseen data.
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Users generally behave differently on different online platforms. Due to

this, classifiers perform notably worse when testing on data from a different

platform, even though the language and source of data is the same. We use

the same set of classifiers trained in the previous section and perform cross-

classification in order to spot this drop in accuracy.

Figure 4.2 explores the steps of cross-classifying using datasets obtained

from two completely dissimilar text domains.

FIGURE 4.2: Cross-Domain Classification

4.2.1 Social Media

While social media sites have a lower accuracy for a sentiment classifier, we

can see that a cross-trained classifier is not as biased in this case, providing

an average drop in accuracy of around 10% in cases of machine learning and

hybrid approaches(Table 4.9 and 4.11). This suggests that for this domain,

users often behave (i.e., write) in a similar manner, reducing the presence of

behavioral bias.
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TABLE 4.9: Cross-Domain - Social Media Dataset

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 49.06546275 48.45204723 45.54401806 42.21931207
SVM 53.69751693 36.38149414 36.93002257 49.86392748
Random Forest 61.21896163 60.97071883 60.06320542 53.18696159
Naive Bayes 50.96162528 47.31845061 45.93227991 42.15997217
XGBoost 61.89616253 61.50068548 61.76975169 52.73475067

TABLE 4.10: Cross-Domain Drop Rates - Social Media Dataset

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.07177033493 0.1286371891
SVM 0.3122582815 -0.3705849269
Random Forest 0.01887905605 0.1276638588
Naive Bayes 0.09868887314 0.1090162162
XGBoost 0.002042304887 0.1425339367
Average 0.1007277701 0.02745325477

TABLE 4.11: Hybrid Cross-Domain - Social Media Dataset

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 55.19638826 52.93732479 49.95936795 48.99019869
SVM 60.00902935 36.98717031 38.78103837 55.42755417
Random Forest 66.65462754 65.03857093 66.35665914 59.36035686
Naive Bayes 55.25959368 50.99343169 50.50112867 48.1860408
XGBoost 67.11512415 65.10404944 67.69300226 59.35012584

TABLE 4.12: Hybrid Cross-Domain Drop Rates - Social Media
Dataset

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.09487976444 0.07456225117

SVM 0.3537466145 -0.4985616287
Random Forest 0.004470333243 0.0873053327

Naive Bayes 0.08611111111 0.05505397055
XGBoost -0.008610251581 0.08838042556
Average 0.1061195143 -0.03865192974
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4.2.2 Reviews

For the reviews dataset, it is apparent that the classification bias is much more

evident when cross-training a classifier for both, machine learning and hy-

brid approaches(Table 4.13 and Table 4.15). This is due to the fact that for

both the wine and books datasets, users are taking about completely differ-

ent products. The jargons and keywords used in these datasets are vastly

different from each other, rendering a classifier barely usable on the other

dataset. In the next section, we will look into reducing this classification bias

and explore various existing and proposed techniques to do so.

TABLE 4.13: Cross-Domain - Reviews Dataset

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 85.41253812 72.04613687 48.76291963 52.36558247
SVM 77.40385186 53.30303426 44.51828031 59.14727486
Random Forest 90.51156388 83.27894531 47.7056164 57.30678407
Naive Bayes 56.46087165 50.34309057 46.0773756 49.3098139
XGBoost 83.43558282 84.99839803 50.77547436 60.29713662

TABLE 4.14: Cross-Domain Drop Rates - Reviews Dataset

Algorithm W(data)B(model) B(data)W(model)
Decision Trees 0.429089444 0.2731659914
SVM 0.4248570421 -0.1096417997
Random Forest 0.4729334644 0.3118694785
Naive Bayes 0.183906053 0.02052469681
XGBoost 0.3914410058 0.2906085524
Average 0.3804454019 0.1573053839

4.3 Bias in Cross-Classification

4.3.1 Analyzing drops in accuracy

We can see from training sentiment classifiers on multiple domains of user-

enerated text that a classifier does not perform well when working with test
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TABLE 4.15: Hybrid Cross-Domain - Reviews Dataset

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 85.44813756 73.35738273 51.62748751 51.7414057
SVM 77.41571834 56.53308967 44.81019568 61.6511018
Random Forest 90.46528462 83.66223256 50.26758909 57.6449787
Naive Bayes 74.40400612 75.57285424 47.10873254 60.41936135
XGBoost 83.7797107 85.51696313 51.03772353 61.09575061

TABLE 4.16: Hybrid Cross-Domain Drop Rates - Reviews
Dataset

Algorithm W(data)B(model) B(data)W(model)
Decision Trees 0.3958032441 0.2946666882
SVM 0.4211744509 -0.09053126509
Random Forest 0.4443438795 0.3109796746
Naive Bayes 0.3668522033 0.2005150269
XGBoost 0.3908104586 0.2855715594
Average 0.4037968473 0.2002403368

data taken from an unseen subdomain. From the initial sentiment cross-

classification experiment, we can see that the drop rate is higher in cases of

the reviews datasets(Table 4.14) as compared to social media datasets(Table

4.10). This would suggest that users interact in a more consistent manner

in different social media platforms as opposed to reviews datasets. For the

reviews datasets for instance, we deal with wine reviews and book reviews.

Words like delicious, aromatic, fruity, and acidic are used to exclusively

describe positive sentiments in reference to wine reviews whereas pungent

and unbalanced denote negative sentiments. In contrast, interesting, riveting

and amusing denote positive sentiments only for books whereas boring and

unreadable suggest negative sentiments. Since adjectives used in such a con-

text are vastly different, a classifier does not recognize them when test data

from a different subdomain is introduced to it.

In this section, we will explore various experiments to potentially reduce

this drop in frequency when switching to an unseen text domain. The goal
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of these sets of experiments is to train classifiers that are more suitable to be

used on multiple domains, regardless of what data they have originally been

trained on.

4.3.2 Experiments to Mitigate Bias

We will now experiment with various hypothesized ways to reduce the bias

of a classifier when testing on a completely new text subdomain. We will

compare the drops in accuracy with our initial drops and determine the best

approach to train a classifier for our needs. We will do this using four ap-

proaches listed: (1) using subsets of features; (2) amplifying relevant features;

(3) incorporating rule-based features along with amplified features; and fi-

nally, (4) increasing the relevance of common words among datasets.

We will explore the advantages and trade-offs of all the proposed meth-

ods and discuss the motivation behind using each of them. Finally, we will

select the best proposed bias reduction method for our problem settings.

Using subsets of features

From the initial parts-of-speech breakdown of the datasets discussed in the

previous chapter, we can see that there are four major parts-of-speech in each

of the datasets: Nouns, Verbs, Adjectives and Adverbs. For this experiment,

we can consider each of these to be separate features. The goal is to determine

which subsets of these features have the greatest impact on determining the

classification accuracy.

From the way the English language is structured, we can hypothesize that

the most relevant parts-of-speech are adjectives and adverbs. For instance,

in both the sentences “This is a great book” and “He swims well”, the key

lexicon that specifies the sentiment behind the sentence is either an adjective

or an adverb.
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With this method, we create various different feature subsets: one that

includes only adjectives in a sentence, one that has only adverbs, one with

both adjectives as well as adverbs, and finally one with only nouns and verbs.

We can see that the highest accuracy is obtained when the features are a

subset of adjectives and adverbs(Tables 4.29, 4.21). In addition to that, when

we use such a subset of features, the average drop rate when cross-training

the classifier reduces(Tables 4.30, 4.22). This is due to the fact that when

different text based datasets have different subjects, the presence of the nouns

and verbs add unnecessary noise to the classifier as an unseen data will not

have the same context behind the sentiment. On the other hand we can see

that using a subset of nouns and verbs provide the least accuracy. (Tables

4.23, 4.31)

We also note that using just adjectives provides a similar accuracy(Table

4.25, 4.17) to using a dataset with all features included. This would suggest

the correctness of our hypothesis that they have the highest impact on deter-

mining the polarity of a sentiment. Using a subset of adverbs provides an

overall reduced accuracy(Tables 4.27, 4.19). This may be due to the fact that

the breakdown of adverbs in the overall sentence is lower than that of other

features.

TABLE 4.17: Social Media: Feature subset - Adjectives

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 52.83069977 47.60287287 46.94356659 44.01997094
SVM 52.33408578 34.03859139 33.82392777 46.10709828

Random Forest 63.41309255 58.59712304 58.41083521 54.08729103
Naive Bayes 48.44243792 42.38914694 47.62076749 41.45607825

XGBoost 63.85553047 57.6947474 59.54853273 53.83356183
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TABLE 4.18: Drop Rates of Social Media Feature subset - Adjec-
tives

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.1114339429 0.07526650619

SVM 0.3536922015 -0.3545536519
Random Forest 0.07888366795 0.07696336907

Naive Bayes 0.01696178938 0.02201197142
XGBoost 0.06744909502 0.06692438644
Average 0.1256841394 -0.02267748376

TABLE 4.19: Social Media: Feature subset - Adverbs

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 54.35665914 50.15039594 50.8261851 44.10795768
SVM 46.21218962 33.55568742 25.10158014 44.82617503

Random Forest 61.39954853 58.21857543 59.72009029 51.04663297
Naive Bayes 55.20541761 44.87323771 53.751693 44.67270979

XGBoost 61.64334086 58.02623233 60.80361174 51.30854699

TABLE 4.20: Drop Rates of Social Media Feature subset - Ad-
verbs

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.06495016611 0.120486352

SVM 0.4568190699 -0.3358741387
Random Forest 0.02735294118 0.1231899339

Naive Bayes 0.02633300622 0.00446876425
XGBoost 0.01362238172 0.1157698004
Average 0.117815513 0.005608142374

TABLE 4.21: Social Media: Feature subset - Adjectives and Ad-
verbs

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 51.00677201 47.50260891 45.38148984 42.48736469
SVM 51.79232506 44.25733052 47.57562077 45.72650447

Random Forest 62.68171558 59.3235252 57.95936795 53.87653209
Naive Bayes 49.98645598 42.31957603 42.20316027 44.70544904

XGBoost 63.09706546 58.46411983 60.25282167 53.92973338
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TABLE 4.22: Drop Rates of Social Media Feature subset - Adjec-
tives and Adverbs

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.1102850062 0.1055782899

SVM 0.08141562064 -0.03319617181
Random Forest 0.07533851916 0.09181843267

Naive Bayes 0.1557080925 -0.05637752635
XGBoost 0.04507727533 0.07755844883
Average 0.09356490276 0.03707629465

TABLE 4.23: Social Media: Feature subset - Nouns and Verbs

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 47.73814898 47.30208099 43.04288939 40.06875243
SVM 51.66591422 33.92809642 33.48984199 49.10069366

Random Forest 59.09706546 58.12649629 57.30925508 50.73356387
Naive Bayes 50.69074492 47.25706452 46.86230248 42.47099507

XGBoost 58.95259594 57.71316323 58.42889391 50.38366311

TABLE 4.24: Drop Rates of Social Media Feature subset - Nouns
and Verbs

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.09835445432 0.1529177661

SVM 0.3518000699 -0.4471986008
Random Forest 0.03025210084 0.127186961

Naive Bayes 0.07552547203 0.1012773328
XGBoost 0.0088834431 0.1269987591
Average 0.112963108 0.01223644363

TABLE 4.25: Reviews: Feature subset - Adjectives

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 85.60240178 72.15530847 51.1385886 54.53833466
SVM 75.20380677 49.13315375 43.63778761 59.2350868

Random Forest 89.6809104 81.45625423 50.07179219 59.95775534
Naive Bayes 72.47095679 73.84153505 50.71614197 59.76551839

XGBoost 80.65052035 81.71375681 50.67342265 59.32527204
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TABLE 4.26: Drop Rates of Reviews Feature subset - Adjectives

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.4026033436 0.2441535375

SVM 0.419739645 -0.205603188
Random Forest 0.441667218 0.2639269273

Naive Bayes 0.3001866649 0.1906246485
XGBoost 0.3716913117 0.2739867269
Average 0.3871776366 0.1534177304

TABLE 4.27: Reviews: Feature subset - Adverbs

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 85.56205575 71.87051299 51.54086222 52.89957399
SVM 77.32197316 53.28048795 44.62270532 59.2623797

Random Forest 90.42849853 83.21842627 48.22062157 58.30831484
Naive Bayes 74.33755384 73.73355009 46.70764557 59.14134162

XGBoost 83.61951324 85.00789121 51.02823035 59.2101672

TABLE 4.28: Drop Rates of Reviews Feature subset - Adverbs

Algorithm W(data)B(model) B(data)W(model)
Decision Trees 0.3976201043 0.2639599775

SVM 0.4228974831 -0.1122717149
Random Forest 0.46675415 0.2993340843

Naive Bayes 0.3716816985 0.1979045964
XGBoost 0.3897569075 0.3034744615
Average 0.4097420687 0.190480281

TABLE 4.29: Reviews: Feature subset - Adjectives and Adverbs

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 85.55849581 73.3989154 50.88227267 54.75311792
SVM 75.13735449 47.28316977 52.89364075 57.97842674

Random Forest 89.76753569 82.5942495 47.78749511 61.97149672
Naive Bayes 71.07427229 69.79031933 48.08297042 57.10149399

XGBoost 80.85937036 83.00720295 50.87633943 61.06964436
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TABLE 4.30: Drop Rates of Reviews Feature subset - Adjectives
and Adverbs

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.4052925757 0.2540336922

SVM 0.2960406829 -0.226195854
Random Forest 0.467652813 0.2496875135

Naive Bayes 0.3234827615 0.1818135446
XGBoost 0.3708046551 0.2642849995
Average 0.3726546976 0.1447247792

TABLE 4.31: Reviews: Feature subset - Nouns and Verbs

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 85.41728471 70.39906967 49.2185924 51.61799433
SVM 77.40385186 53.30303426 44.51828031 59.14727486

Random Forest 90.51156388 83.27894531 47.7056164 57.30678407
Naive Bayes 56.46087165 50.34309057 46.0773756 49.3098139

XGBoost 83.43558282 84.99839803 50.77547436 60.29713662

TABLE 4.32: Drop Rates of Reviews Feature subset - Nouns and
Verbs

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.4237865022 0.2667801638

SVM 0.4248570421 -0.1096417997
Random Forest 0.4729334644 0.3118694785

Naive Bayes 0.183906053 0.02052469681
XGBoost 0.3914410058 0.2906085524
Average 0.3793848135 0.1560282184
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Amplifying relevant features

We can see from the results of the previous experiment that adjectives and

adverbs have a higher impact in determining the polarity of a sentiment. Be-

cause of this, we propose a method to increase the impact that these features

have when they appear in the training dataset.

We approach this problem by using NLTK’s list of Parts-of-Speech tags.

Parts of Speech is a predefined set of tags that can be used to identify the

context of a word and determine the part of speech that it belongs to such as

nouns, adjectives, verbs, adverbs, etc. Parts of Speech provide an additional

context to a classifier and provides necessary weightage to words that are

more relevant to the sentiment classification problem statement.

We modify our initial machine learning algorithm by implementing a

one-hot encoder to encode the POS tags. We only include the tags for ad-

jectives and adverbs as those are the features that we would like to have

more weightage for. These tags are then concatenated with the initial 100-

dimensional word vectors for each WORD2VEC model. We use k-fold cross

validation to test the relevance of using POS tags in addition to the WORD2VEC

model.

We find in every case that amplifying the adjectives and adverbs feature

subsets assists in reducing the overall drop rates of the cross-classification(Tables

4.34,4.36), however reduces the accuracy of the classifier(Tables 4.33, 4.35)

and . This method has a lower processing time than the previous method as

subsets do not need to be formed. At the same time however, the vocabulary

size is larger in this case and so the training can take longer.

Incorporating rule-based features

In this experiment, we use the amplification of feature subsets technique dis-

cussed in the previous section and combine them with a hybrid machine
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TABLE 4.33: Parts-Of-Speech (POS) Feature Amplification: So-
cial Media

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 51.72911964 49.55085838 46.9255079 45.36432649
SVM 56.61399549 47.11178408 49.76975169 53.62484909

Random Forest 62.70880361 61.57230259 62.00451467 55.9472898
Naive Bayes 54.21218962 48.64029793 47.79232506 49.38716212

XGBoost 63.94582393 62.29665855 62.90744921 56.43223998

TABLE 4.34: Drop Rates of POS Feature Amplification: Social
Media

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.09286088323 0.08448959366

SVM 0.1208931419 -0.1382470466
Random Forest 0.01123110151 0.09135621947

Naive Bayes 0.1184210526 -0.01535484414
XGBoost 0.01623835075 0.0941369683
Average 0.07192890601 0.02327617815

TABLE 4.35: Parts-Of-Speech (POS) Feature Amplification: Re-
views

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 82.2964009 56.36102574 49.67545182 51.15520167
SVM 67.11917504 51.48983636 54.88958242 53.52019081

Random Forest 86.79142291 66.61484971 49.48677481 54.29744515
Naive Bayes 61.59176941 56.63870133 53.9663704 52.05705403

XGBoost 76.35604182 68.42923426 49.0275421 53.95569057

TABLE 4.36: Drop Rates of POS Feature Amplification: Social
Media

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.3963836659 0.0923656729

SVM 0.1822071355 -0.03943214031
Random Forest 0.4298195242 0.1849047865

Naive Bayes 0.1238054871 0.08089252043
XGBoost 0.3579088055 0.2115111157
Average 0.2980249236 0.1060483911
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learning approach. Adding VADER positive and negative scores gives an

added boost to sentiment analysis algorithms, especially in terms of reduc-

ing the bias of the classifier when testing on a completely new domain.

In this approach, classifiers are trained in a similar method to the ’Ampli-

fying Relevant Features’ method. In addition to the word vectors and one-hot

encoded vectors, VADER positive and negative scores are appended prior to

training.

We can see that this method performs really well as compared to the other

methods of reducing bias. It provides a considerably high accuracy for classi-

fication (Tables 4.37, 4.39) while reducing the bias during cross-classification

(Tables 4.38, 4.40)

TABLE 4.37: Incorporating rule based features: Social Media

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 51.72911964 49.55085838 46.9255079 45.36432649
SVM 56.61399549 47.11178408 49.76975169 53.62484909

Random Forest 62.70880361 61.57230259 62.00451467 55.9472898
Naive Bayes 54.21218962 48.64029793 47.79232506 49.38716212

XGBoost 63.94582393 62.29665855 62.90744921 56.43223998

TABLE 4.38: Drop Rates of Incorporating rule based features:
Social Media

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.09286088323 0.08448959366

SVM 0.1208931419 -0.1382470466
Random Forest 0.01123110151 0.09135621947

Naive Bayes 0.1184210526 -0.01535484414
XGBoost 0.01623835075 0.0941369683
Average 0.07192890601 0.02327617815

Among the proposed methods, this approach has proved to be the best

one to reduce the presence of bias during cross-classification. In order to

test our method further, we introduce a new testing dataset to check the bias

trends. For this purpose, we will combine our social media datasets and then
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TABLE 4.39: Incorporating rule based features: Reviews

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 85.55612251 73.13903953 50.55475786 52.25403757
SVM 77.36706578 56.5188499 44.86003489 61.74840693

Random Forest 90.47596445 83.65985926 50.55357122 57.37442299
Naive Bayes 74.41112601 75.5443747 47.15501181 60.48700027

XGBoost 83.67053909 85.50391 52.14249267 59.67889309

TABLE 4.40: Drop Rates of Incorporating rule based features:
Reviews

Algorithm W(data)B(model) B(data)W(model)
Decision Trees 0.4091041485 0.2855520402

SVM 0.4201662628 -0.09252766172
Random Forest 0.4412486065 0.3141941249

Naive Bayes 0.3662908447 0.1993182746
XGBoost 0.3768117997 0.3020331691
Average 0.4027243324 0.2017139894

use this to train the Word2Vec model. After this, we will test this on a com-

pletely new domain which is our product reviews domain for our set of wine

reviews. Table 4.41 Has the accuracy scores for this experiment. The table

4.42 lists the average bias when performing this experiment. We compare

the trends with bias values from Table ??

We can see that using this method, we obtain a reduced bias even in cases

where the models are trained from a completely new domain. In this case,

the social media domain.

TABLE 4.41: Incorporating rule based features: Reviews with
Social Media

Algorithm Wine(W) Cross-Training
Decision Trees 81.4265880314699 41.3131444981073

SVM 66.7192747208411 43.542855786688186
Random Forest 86.00230209680673 45.216029239002744

Naive Bayes 62.93030817244366 57.445621862799776
XGBoost 75.44232298180869 47.776815274530975
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TABLE 4.42: Drop Rates of Incorporating rule based features:
Reviews

Algorithm Drop in Accuracy
Decision Trees 0.4466619013

SVM 0.6252618536
Random Forest 0.3049689961

Naive Bayes 0.2415559207
XGBoost 0.1817108505

Bias 0.3600319044

Increasing the weightage of common words

In this method, we improve the relevance of the words that lead up to the

same sentiment on both datasets. For instance, we find that the word “good"

leads to a positive sentiment in both of the social media datasets and the

word “ugly" leads to a negative sentiment.

We use this new subset of words, both for the positive as well as the neg-

ative sentiment and aim to reduce the bias of the classifier by assigning more

weight to these common words.

Initially, the sentiment classifier was trained by converting the input text

of the testing data into a WORD2VEC model. We perform this current set

of experiments by modifying the testing data with which all the classifiers

have been trained. We take our set of common words for both the positive as

well as the negative sentiments. We then proceed to repeat and shuffle these

words throughout the training data on all the sub-domains against their rel-

evant sentiment classes. For our previous example, if we find that the word

“good" implies a positive sentiment across both the social media datasets,

then we increase the frequency of the lexicon in our WORD2VEC model by

replacing the word with a different word of a similar POS tag. By doing this,

we increase the overall Jaccard similarity of both the social media datasets

and make it so that the models are more similar to begin with and that the

bias that comes with cross-classification is reduced.
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We then proceed to test the accuracy of the classifiers in identifying senti-

ments and also measure the drop in accuracy, or bias, when cross-classifying

in all four subdomains.

TABLE 4.43: Increasing the weightage of common words: So-
cial Media

Algorithm Reddit(R) Twitter(T) Cross-Training Cross-Training
R(data)T(model) T(data)R(model)

Decision Trees 51.72911964 49.55085838 46.9255079 45.36432649
SVM 56.61399549 47.11178408 49.76975169 53.62484909

Random Forest 62.70880361 61.57230259 62.00451467 55.9472898
Naive Bayes 54.21218962 48.64029793 47.79232506 49.38716212

XGBoost 63.94582393 62.29665855 62.90744921 56.43223998

TABLE 4.44: Drop Rates of Increasing the weightage of com-
mon words: Social Media

Algorithm R(data)T(model) T(data)R(model)
Decision Trees 0.09286088323 0.08448959366

SVM 0.1208931419 -0.1382470466
Random Forest 0.01123110151 0.09135621947

Naive Bayes 0.1184210526 -0.01535484414
XGBoost 0.01623835075 0.0941369683
Average 0.07192890601 0.02327617815

TABLE 4.45: Increasing the weightage of common words: Re-
views

Algorithm Wine(W) Books(B) Cross-Training Cross-Training
W(data)B(model) B(data)W(model)

Decision Trees 51.72911964 49.55085838 46.9255079 45.36432649
SVM 56.61399549 47.11178408 49.76975169 53.62484909

Random Forest 62.70880361 61.57230259 62.00451467 55.9472898
Naive Bayes 54.21218962 48.64029793 47.79232506 49.38716212

XGBoost 63.94582393 62.29665855 62.90744921 56.43223998

We can see from our results that this method does not perform as well as

the previously mentioned methods. This method provides the highest bias

which is undesirable(Tables 4.44, 4.46) This is due to a couple of reasons.
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TABLE 4.46: Drop Rates of Increasing the weightage of com-
mon words: Reviews

Algorithm W(data)B(model) B(data)W(model)
Decision Trees 0.09286088323 0.08448959366

SVM 0.1208931419 -0.1382470466
Random Forest 0.01123110151 0.09135621947

Naive Bayes 0.1184210526 -0.01535484414
XGBoost 0.01623835075 0.0941369683
Average 0.07192890601 0.02327617815

Firstly, while this method works to make the WORD2VEC models more con-

sistent, in doing so we lose the legibility of the text and so the classifier is not

able to learn the text as properly. Future work can be done in increasing the

similarities of datasets while retaining the context of the data instance.

4.3.3 Evaluating and Comparing Bias Reduction methods

In the previous section, we have proposed various methods to mitigate clas-

sification bias in sentiment classifiers. In this section, we aim to evaluate

these proposed bias reduction methodologies and their drawbacks in order

to determine the best one for our settings.

TABLE 4.47: Comparing Bias Reduction Methods

Datasets Original Review Subsets Amp. relevant features Inc. rule based features Increasing common word weights
R(data)T(model) 0.1007277701 0.09356490276 0.07192890601 0.07192890601 0.1318049096
T(data)R(model) 0.02745325477 0.03707629465 0.02327617815 0.02327617815 0.166325439
W(data)B(model) 0.3804454019 0.3726546976 0.2980249236 0.2980249236 0.3798952909
B(data)W(model) 0.1573053839 0.1447247792 0.1060483911 0.09604839105 0.1856189347
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FIGURE 4.3: Comparison of Bias Reduction approaches

Figure 4.3 compares the bias after cross-classification for all our datasets

as detailed in Table 4.47. The aim is to have the least possible bias while

cross-classifying the sentiment analysis data while still having considerably

high accuracy in terms of sentiment analysis.

We can see that using the Incorporating rule based features approach dis-

cussed in section 4.2 provides the least bias in all our training datasets. Am-

plifying relevant features method provides comparable bias but with a reduced

accuracy. Overall, we see that all proposed methods other than the Increasing

Similarities method have a positive impact in bias reduction.

The above observations are consistent in all our datasets obtained from

both user domains. From our proposed methods, we conclude that the Incor-

porating rule based features method provides the best trade-off between miti-

gating bias and maintaining accuracy.
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Chapter 5

Conclusions and Future Work

Through this thesis, we have explored the various issues that affect the per-

formance of sentiment classifiers. We have proposed various methods to re-

duce this classification bias and compared results. While there is still a lot of

research to be done in order to perfect the process of removing bias, our work

can act as a good starting point. There are various applications of having an

unbiased classifier irrespective of the training data. In this chapter, we will

discuss the applications of such a classifier and the future work in this field.

5.1 Observations

In this section, we will summarize the various conclusions that we have ar-

rived at through various experiments.

5.1.1 Data

In this thesis, we work with user-generated text from two main domains -

Social Media and Product Reviews. When working with English text, we can

see that even when text is obtained from different sources, the basic structure

of the text in terms of the number of adjectives, nouns, verbs, adverbs, and

other parts of speech remains consistent.
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5.1.2 Sentiment Classification

We explore sentiment classification of text in the form of sentences. We check

the results of sentiment classification using Rule-Based, Machine Learning

and Hybrid methods.

• Rule-Based Methods

– Rule-Based methods provide a lower accuracy for sentiment clas-

sification.

– Sentiment classification results remain comparable despite the size

and source of the datasets.

• Machine Learning Methods

– Accuracies are higher than those of rule-based methods.

– Product reviews datasets have a higher accuracy as compared to

rule based methods. This is due to larger size of training data.

– XGBoost and Random Forrest classifiers outperform other classi-

fiers in terms of accuracies.

• Hybrid Methods

– This method has the highest accuracy among the explored senti-

ment classification methods.

– An advantage of using this method is the reduced dependency on

training data. A trade-off however is needing larger training data

and and increased number of computations.

5.1.3 Cross-Domain Classification

Cross-domain classification is the method of testing the accuracy of a classi-

fier on data obtained from an unseen domain. We use the cross-classification

algorithm on each dataset and observe the trends in bias.
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• Machine Learning approaches provide a bias of 2-10% for Social Media

Data and 15-40% for Product Reviews Data.

• Hybrid Approaches provide a bias of 3-10% for Social Media data and

20-40% for Product Reviews data.

• Social Media datasets are more similar to each other as compared to

Product Reviews datasets as they provide less bias during cross-domain

classification.

5.1.4 Bias-Reduction Methods

We propose and test out four methods for reduction in bias. The results and

observations for each of those methods are listed as follows.

• Using Feature Subsets

– Adjectives and adverbs have a high impact in both datasets in pre-

dicting the correct sentiment.

– Adverbs have a positive impact but have a higher bias in some

cases. This is due to the distribution of adverbs in data.

– Nouns+Verbs have a considerable impact in predicting sentiments

but only in the product reviews datasets. While their accuracies

in sentiment analysis are high, the bias produced during cross-

classification is higher while using this subset in both cases.

• Amplifying Relevant Features

– This method provides a reduced bias than using the Adjectives+Adverbs

subsets.

– The accuracy for this approach is lower than that of the previous

method.
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– The computation time is lower as feature subsets need not be cal-

culated.

• Incorporating rule-based features

– This method outperforms the previous two in terms of bias reduc-

tion.

– It provides the advantages of a reduced bias through amplification

of relevant feature subsets. At the same time, it also provides the

improved accuracies from using a Hybrid approach.

• Increasing Similarities

– This method does not perform as well as the previous methids for

bias reduction.

– Even though the model is more similar, the legibility is reduced

and so the classifiers do not perform as well.

5.2 Limitations

In this section, we will discuss the various limitations in the application for

our thesis caused by our scope and assumptions.

• Limitations of Input Data

– For our scope, we have used comments from social media websites

as well as reviews from product review websites. While Word2Vec

is suitable in this instance, we would require different machine

learning approaches such as Doc2Vec where we need to process

larger user inputs.

– We have only worked with text written in the English language

for our approach. As a result, the assumptions made have been
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proven just for English and cannot be generalized to other lan-

guages without prior testing.

• Limitations of Sentiment Analysis approaches

– For our approach, we have considered classification bias only for

the Word2Vec vectorizer along with a list of different classifiers.

The results obtained have been tested only for this approach. Ex-

periments need to be done to test if our hypotheses holds up for

other approaches.

– For our hybrid method, we have only used lexicon data obtained

from the VADER approach as it is a suitable measure when cross-

classifying.

• Limitations of Bias

– The bias trends observed have mainly been tested on datasets ob-

tained from the same general domain. Our methods may not hold

up as well with unseen data obtained from a different domain such

as news forums or online journals.

– While the bias reduction experiments hold true for the datasets

we have tested, further work is needed to test the stability of our

model.

5.3 Applications

There are various applications of our findings on sentiment classification and

other cross-domain classification problems. These are listed in this section.
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5.3.1 Detection of hate speech in new social media sites

One of the major issues with social media sites is the issue of detecting and

controlling hate speech. Various new social media sites emerge on a regular

basis. For newer sites, it is difficult to analyze the sentiments behind user

generated text due to the lack of substantial training data. Through an unbi-

ased classifier trained on a different social media site, this issue can be over-

come. Such a classifier would make for a considerably accurate sentiment

classifier till additional training data can be obtained from the new social

media site.

5.3.2 Detection of popularity in newly launched products

For product reviews, sentiment classification provides an important applica-

tion to judge the general consensus and reception regarding a newly launched

product. Through experiments we can see that a sentiment classifier is highly

biased when testing on a brand new product review dataset. If we can suc-

cessfully reduce this bias, we would be able to understand the sentiments of

users irrespective of the fact that we do not have enough training data.

5.3.3 Comparing the behaviours of users

While there are many applications of reducing bias, we can also use the pres-

ence of bias to make various observations. A large amount of bias would

suggest a large amount of behavioral bias in the ways that users interact in

various domains. This could have applications in determining the most simi-

lar subsets of users and compare the likeness of various different social media

platforms.
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5.3.4 Applications beyond sentiment analysis

In this project, we have experimented with the detection and mitigation of

classification bias in the case of sentiment analyzers. While this has many ap-

plications the same techniques of analyzing and mitigating bias can be used

for various different classifiers as well. Classification bias based on training

data exists in many different applications and so devising methods to over-

come the limitations of our training data is important.
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