
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

Theses - ALL 

Winter 12-22-2021 

Fine Scales, Broad Consequences: Drivers and Effects of Fine Scales, Broad Consequences: Drivers and Effects of 

Microclimatic Variation in Great Smoky Mountains National Park Microclimatic Variation in Great Smoky Mountains National Park 

Jordan Rebecca Stark 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/thesis 

 Part of the Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons 

Recommended Citation Recommended Citation 
Stark, Jordan Rebecca, "Fine Scales, Broad Consequences: Drivers and Effects of Microclimatic Variation 
in Great Smoky Mountains National Park" (2021). Theses - ALL. 575. 
https://surface.syr.edu/thesis/575 

This Thesis is brought to you for free and open access by SURFACE at Syracuse University. It has been accepted for 
inclusion in Theses - ALL by an authorized administrator of SURFACE at Syracuse University. For more information, 
please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/14?utm_source=surface.syr.edu%2Fthesis%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/167?utm_source=surface.syr.edu%2Fthesis%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/575?utm_source=surface.syr.edu%2Fthesis%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract 

Climate is highly variable at scales that are not captured by most weather and climate 

models due to local effects of topography and living systems. This variation in microclimate has 

been noted for many decades but has been difficult to incorporate into quantitative understanding 

of ecological systems and processes due to the large amount of data and complex models 

required to adequately describe fine-scale patterns across complex landscapes. In recent years, 

models of thermal microclimate variation have been developed using low-cost temperature 

sensors, but few of these models have been used to predict the effects of microclimatic variation 

on ecological processes and patterns such as species distributions. In addition, no similar low-

cost tools have been commercialized for soil moisture measurements, limiting the ability of 

microclimate models to fully describe the conditions experienced by organisms. In Chapter 1, I 

compare species distribution models for the plants of Great Smoky Mountains National Park 

(GSMNP) generated using broad-scale climate drivers to those generated using an existing 

thermal microclimate model. While model fit was similar, microclimate projections of future 

suitable habitat under climate change were very different from macroclimate projections, 

highlighting the need to consider local buffering of climate when planning for the future. In 

Chapter 2, I develop, test, and deploy new low-cost soil moisture sensors across GSMNP and 

describe the effects of topographic, vegetation, and weather-related drivers on soil moisture. 

Local variation in moisture was high and was not fully explained by the gradient of precipitation 

or other proxies for moisture availability across the Park, indicating that better models are 

needed to describe the moisture available to organisms across the landscape. Together, these 

results demonstrate the need to consider the effects of microclimate on ecological systems and 

provide new tools for understanding multiple axes of microclimatic variation.
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Introduction 

Climate is a key driver of many ecological and environmental processes. However, 

measurements and models of climate are usually generated from weather station data which can 

describe only broad-scale patterns driven by widespread processes such as weather fronts and 

continental drivers of climate such as latitude. These measurements are made in environments 

selected to be representative of the conditions in open, non-forested areas rather than capturing 

the heterogeneity of natural systems. The mismatch between the climate measured by weather 

stations (macroclimate) and the climates experienced by organisms near the ground 

(microclimate) has been recognized for decades (Geiger, 1966). Differences between local 

climate and climate interpolated from weather stations can be driven by physical factors 

including radiative load, hillslope position, and local topographic position (Bramer et al., 2018; 

Geiger, 1966). Biotic communities can also shape their own climatic conditions: under forest 

canopies, temperatures are generally more buffered than at open weather stations, with summer 

high temperatures several degrees cooler and winter low temperature several degrees warmer 

under forest canopies than in the open (De Frenne et al., 2019; Haesen et al., 2021). These local 

differences in temperature, equivalent to hundreds of miles of latitude, are often ignored in 

models of ecological and environmental processes.  

Understanding the effects of microclimatic variation will be critical for predicting 

ecological processes across space and time, especially in the context of global change. To date, 

while several studies have found effects of microclimatic conditions on species responses to 

warming (De Frenne et al., 2013; Graae et al., 2018; Zellweger et al., 2020), few studies have 

compared predictions of habitat stability and species distributions using macroclimate and 

locally-validated microclimate drivers. The effects of other axes of microclimatic variation, such 
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as variation in moisture availability, are even more poorly described. Microclimatic research has 

overwhelmingly focused on thermal variables (Bramer et al., 2018). Thermal microclimate 

variation has been quantified in large part due to low-cost, easily-deployed sensor technology for 

measuring temperature; sensors needed to take equivalent timeseries measurements of soil 

moisture are generally expensive, bulky, hard to maintain, and have high power requirements. 

This makes deployment of large numbers of sensors difficult, particularly in landscapes where 

sensors could be damaged or destroyed or must be deployed in remote areas. New tools for 

monitoring environmental conditions have been developed that could help to address these 

issues, including the environmental microcontroller units (EMUs) described by Mickley et al 

(2019). These sensor and datalogger units have low power requirements, can be assembled 

inexpensively from commercially available electronic components, and can measure a wide 

range of conditions including temperature, light, humidity, and soil moisture for tens, rather than 

hundreds or thousands, of dollars. However, several issues in the use and calibration of these 

sensors, including temperature-dependency of soil moisture measurements and robustness of 

long-term sensor deployments, have not been resolved by previous work. 

Local variation in moisture and temperature is high across a wide range of environments, 

but short gradients of temperature and moisture are particularly evident in some forested, 

topographically complex systems. Here, I examine drivers and effects of microclimatic variation 

in Great Smoky Mountains National Park (GSMNP; NC and TN, USA). This area is among the 

earliest sites where local climate variation was described as shaping plant distributions, with 

completely different plant community composition in sheltered coves than on adjacent exposed 

ridges. This cove-to-ridge gradient is associated with local variation in moisture availability 

(Whittaker, 1956), and also leads to strong local variation in below-canopy temperatures (Fridley 
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2009). Plant communities in the Park are diverse and include, at the highest elevations, spruce-fir 

forests more commonly associated with boreal regions. Rainfall is high throughout the Park, 

increasing from about 150 cm at low elevation to about 230 cm at high elevation (Shanks, 1954). 

Previous work has described high local variation in below-canopy temperature, with differences 

on hot summer days of up to 4 °C from coves to adjacent exposed ridges (Fridley, 2009). 

However, quantitative measurements of microclimate across the Park have been limited to 

thermal variables, and while effects of microclimate on individual species have been examined 

(Ulrey, Quintana-Ascencio, Kauffman, Smith, & Menges, 2016), Whittaker’s (1956) description 

of local topography as a key driver of species distributions across the Park has not been revisited 

with fine-scale climate data that would allow a more mechanistic understanding of the 

relationship between plant distributions and particular climate variables. Since global change 

may affect some microclimatic variables differently than others, developing a quantitative 

understanding of the effects of multiple microclimatic drivers on species and processes will be 

key to understanding which species and areas are most at risk.  

Here, I use existing thermal microclimate models, species occurrence records, and newly-

developed soil moisture and temperature sensors to describe effects of thermal microclimate on 

plant communities and measure local variation in moisture across GSMNP. While existing 

microclimate models, short climatic gradients, and extensive species records lend themselves to 

this work in the Park, similar processes likely occur in topographically complex and forested 

regions throughout the world. In Chapter 1, I use projections of climate based on interpolated 

weather station data (Fick & Hijmans, 2017) and an existing thermal microclimate model 

(Fridley, 2009) to develop species distribution models for plant species across GSMNP. Below-

canopy temperatures in the Park are buffered compared to weather station predictions, with the 
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strongest effects on very hot days (Fridley, 2009; Lesser & Fridley, 2015). Therefore, plants 

occurring in some areas may be more exposed to atmospheric conditions and risks associated 

with climate change. In Chapter 2, I describe development, deployment, and results of a new 

low-cost, low-power, soil moisture and temperature sensor. These new sensors, which cost more 

than an order of magnitude less than commercial soil moisture sensors and dataloggers, can 

allow distributed monitoring of soil moisture that allows measurement of another axis of 

microclimatic variation. Using these sensors, I describe landscape-wide variation in soil moisture 

conditions in GSMNP. In total, these two chapters examine the variability of microclimatic 

conditions across the complex topography of GSMNP and explore the effects of this 

microclimatic variability on species which have adapted to particular climates and are now under 

threat from climatic changes. 
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Chapter 1: Microclimate-based species distribution models in complex terrain indicate 

widespread cryptic refugia under climate change 

Jordan R. Stark and Jason Fridley 

Currently in review at Global Ecology and Biogeography 

Supplemental figures and tables are available in the Appendix 

Abstract 

Aim: Species’ climatic niches may be poorly predicted by regional climate estimates used in 

species distribution models (SDMs) due to microclimatic buffering of local conditions. Here, we 

compare SDMs generated using a locally validated below-canopy microclimate model to those 

based on interpolated weather station data at two spatial scales to determine the effects of scale, 

topography, and forest cover on potential future ground-level warming and species distributions. 

Location: Great Smoky Mountains National Park (2090 km2; NC, TN, USA) 

Time period: 1970 – 2006, late-century warming 

Major taxa: Vascular plant species of the Southern Appalachians 

Methods: We compared the fit and spatiotemporal predictions of SDMs generated using a 

database of plant occurrences and three climate models: macroclimate (1 km, WorldClim), fine-

scale (30 m) interpolation of macroclimate with elevation, and fine-scale below-canopy 

microclimate from a ground-level sensor network. We projected microclimatic warming with 4 

°C of regional warming to predict future habitat suitability. 

Results: We found that, although SDM fit (area under the curve) was similar across models, 

microclimate-derived SDMs predicted substantially greater species persistence with warming, 

with a difference of 50% of the species pool in some areas. Microclimate SDMs predicted higher 

stability of mid-elevation species, particularly in thermally buffered areas near streams, and 
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critically, less change in species composition at high elevation. In contrast, predictions of 

macroclimate and interpolation models were similar despite improved resolution. 

Main conclusions: Our results demonstrate that careful selection of climate drivers, including 

local near-ground validation rather than interpolation, is critical for projecting species 

distributions. They also suggest that some species at risk from climate change might persist, even 

with 4 °C of macroclimate warming, in cryptic refugia buffered by microclimate, pointing to the 

roles of forest cover and topography in explaining slower-than-expected changes in understory 

communities. However, certain species, such as those currently occurring on low-elevation 

ridges that are sensitive to atmospheric changes, may be at more risk than macroclimate or 

interpolated SDMs suggest. 

 

Introduction 

The role of climate in constraining plant species distributions is a foundational ecological 

concept that has taken on new urgency in light of anthropogenic climate change. While the 

relationship between plant distributions and climate has historically been considered at regional 

to continental scales, local climate variation on scales of tens of meters can also be strong, with 

microclimate conditions varying in complex ways that are sometimes decoupled from regional 

climate (Geiger, 1966). The effects of this small-scale variation in climate on plant species 

distributions are not well understood, although ecologists have long noted steep local gradients in 

climate and species composition in topographically complex terrain. For example, in Great 

Smoky Mountains National Park (GSMNP, NC and TN, USA) the topographic transition from 

coves to ridges is associated with complete turnover of plant species composition in the Park 

across distances less than 500 m (Whittaker, 1956). In contrast, regional climate estimates (≥1 
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km resolution) based on interpolated weather station data largely reflect broad-scale gradients 

such as those generated by latitude, continentality, and the movement of synoptic air masses. The 

effect of local climate variability on plant distributions is particularly important to understand in 

a global change context, since organisms that inhabit relatively warm microclimates under 

current conditions may be able to escape the warming effects of climate change by moving into 

cooler microclimates without needing to disperse over the long distances projected by 

macroclimate models (Graae et al., 2018). In addition, historical data suggest that the difference 

between microclimate and macroclimate temperatures could increase as macroclimate 

temperatures warm (De Frenne et al., 2021). 

Recent evidence supports the idea that the buffering effect of forest canopies on 

temperature is related to slower-than-expected responses of some species to climate change (De 

Frenne et al., 2013; Suggitt et al., 2018; Zellweger et al., 2020). Understory microclimate 

measurements indicate that thermal buffering is strongest on the hottest days (Fridley, 2009; 

Lesser & Fridley, 2015), suggesting that the forest canopy may limit the warming experienced in 

the understory in some systems. This microclimate buffering happens when local terrain and 

physiognomic elements (e.g. topography, canopy structure, and cold-air drainage) drive 

differences between microclimate and macroclimate temperatures, leading to an uneven 

distribution of microclimatic conditions in macroclimate space (Geiger, 1966). In general, 

buffering has its strongest effects on climate extremes (De Frenne et al., 2021). If buffered areas 

are common or increasing with climate change, microclimate-derived models of species 

distributions could allow identification of “cryptic refugia”, defined here as locations where 

climatically sensitive species can persist despite incompatibility with regional climate (Rull, 

2010; Stewart, Lister, Barnes & Dalen, 2010). Cryptic refugia have been proposed as important 
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in understanding the recovery of species distributions following glaciation (Cruzan & 

Templeton, 2000). 

The need for locally validated, biophysically-based microclimate models in predicting 

species distributions under climate change has been widely acknowledged (e.g. Opedal, 

Armbruster, & Graae, 2015; Scherrer & Körner, 2011), but there are few studies that include 

locally-validated microclimate drivers in species distribution models (SDMs). Slavich et al. 

(2014) modelled climate variation at 25 m resolution and found fewer predicted species 

extinctions with climate change than in a downscaled regional climate model. However, they 

projected warming evenly across the landscape, potentially missing complex patterns of warming 

due to the relationship between microclimatic buffering and above-canopy temperatures (De 

Frenne et al., 2021; Fridley, 2009; Lesser & Fridley, 2015). Two other studies compared SDMs 

driven by measured microclimate and other climate products, but did not project climate change 

impacts: Storlie et al. (2013) found improved model fit and patchier species distributions with a 

local climate model, and Lembrechts et al. (2019) found best model fit with local soil 

temperature (compared to several other drivers). As a result, although the importance of 

microclimate in driving species distributions is widely acknowledged, quantitative understanding 

of its role in predicting species responses to climate change remains poor. 

Several studies have modelled the effect of climate change on species distributions using 

spatially downscaled models based on elevation or other proxies for fine-scale landscape 

heterogeneity. However, as these models do not account for any differences between 

temperatures measured at weather stations and temperature in buffered habitats (such as near 

streams or under forest canopies), they may not accurately describe future climatic refugia 

(Dobrowski, 2011). Spatial downscaling has had variable effects depending on the study: Randin 



11 

 

et al. (2009), Maclean et al. (2015), and Meineri and Hylander (2017) found increased predicted 

species persistence under climate change, while Trivedi et al. (2008) and Franklin et al. (2013) 

found decreased persistence. The different results of these tests may relate to true ecological 

differences between species and sites or to specific model choices, including accounting for 

incomplete climate gradients and variable spatial resolution. In most other SDMs, predictions 

have been generated using low-resolution gridded climate estimates (≥ 1 km), although 

microclimate variation is increasingly acknowledged as needing further study (Lembrechts, Nijs, 

& Lenoir, 2019; Potter, Arthur Woods, & Pincebourde, 2013; Seo, Thorne, Hannah, & Thuiller, 

2009).  

GSMNP is particularly well suited to analysis of relationships between species 

distributions and climatic factors. Located near the southern end of the Appalachian Mountains 

with >1700 m of elevation change within 2090 km2, the gradients of GSMNP capture much of 

the range of both climatic conditions and species composition present in Eastern North America 

(Braun, 1950). This variation has inspired a long history of compositional gradient analysis, 

including some of the earliest work mapping species habitats onto climatic and topographic 

conditions (Whittaker, 1956). Short topographic gradients are associated with both complete 

turnover of species and strong variability in local climatic conditions driven by biophysical 

processes. When temperatures are warm, the effects of landform can be as strong as the effects of 

elevation, with variation in ground-level temperature between protected coves and adjacent 

exposed ridges of up to 4 °C, or about half of the variation in mean annual temperature due to 

latitude in the continental United States (Fridley, 2009). Historical weather station records allow 

estimation of these local climatic conditions since ca. 1900 (Lesser & Fridley, 2015), so that 

microclimate conditions can be directly compared with commonly used global macroclimate 
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summaries. Park-wide quantitative assessments of the relationship between microclimate 

conditions and species distributions have never been conducted, although work on some rare 

species indicates that particular microclimates are needed for their survival (Ulrey et al., 2016). 

Here, we quantify differences between historical and warmed climate scenarios based on 

three models of the climate in GSMNP: macroclimate conditions from WorldClim 2.1 (Fick & 

Hijmans, 2017; 1 km resolution); interpolation of macroclimate conditions using local variation 

in elevation (30 m resolution); and a locally-validated below-canopy microclimate model 

(Fridley, 2009; 30 m resolution). For each climate model, we estimate future warming using a 4 

°C regional warming scenario based on late-century global climate models (GCMs). For the 

microclimate model, we also account for effects of microclimatic buffering and historical 

relationships between regional temperature and elevational lapse rates to describe expected 

below-canopy warming rates. We use these climate models as drivers of GSMNP-wide plant 

SDMs and analyze differences in current and future predicted habitat suitability to understand 

the species and regions of GSMNP that may be particularly susceptible or resistant to the effects 

of regional climate warming. We address three broad questions. First, how well do macroclimate 

and interpolated climate describe microclimate conditions? Are there particular areas that are 

poorly described, especially in terms of their warming potential? Second, does building SDMs 

with microclimate drivers improve model accuracy compared to macroclimate or interpolated 

climate drivers? Finally, how do future habitat suitability predictions differ in SDMs based on 

the three climate models with 4 °C of regional warming? Are the predictions with elevation-

based interpolation sufficient to identify cryptic refugia, or is the validated microclimate model 

necessary?  
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Methods 

Study area 

GSMNP includes 2090 km2 of primary and secondary forest and is among the most 

diverse biotic regions in North America (Shanks, 1954; Whittaker, 1956). The elevation gradient 

spans over 1700 m (256-2024 m a.s.l.), in some places across distances less than 10 km, and is 

associated with a 10-15 °C ground-level temperature difference during the growing season 

(Fridley, 2009). GSMNP lacks a climatic treeline but most species reach their upper or lower 

climatic limits in the Park. High elevation communities of boreal forest experience heavy cloud 

cover and annual precipitation > 250 cm/year, while the lowest elevations are characterized by 

deciduous oak-hickory vegetation of the southern piedmont with annual precipitation < 150 cm 

(Shanks, 1954), increasing by 10% over the 20th century (Lesser & Fridley, 2015). A steep 

terrain of narrow ridges and rocky coves is associated with a secondary microclimatic gradient 

that Fridley (2009), using a network of ground-level temperature sensors, found to be associated 

with both site water content and radiation exposure; cove sites less than 500 m distant from 

adjacent ridges are as much as 2 °C warmer at night and 4 °C colder during the day, depending 

on season.  

 

Vegetation data 

We compiled a database of vegetation surveys in GSMNP from 1970-2006, including a 

standardized taxonomy for all geo-located observations of vascular plants (Weakley, 2006), 

allowing spatial inferences of both presences and absences. Plot sizes were most often 600-1000 

m2 (range 1-15,000 m2). In total, this dataset includes 36,494 records of plants across 971 plots, 

some of which were surveyed multiple times. While most studies included all vascular plants at 
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each location, two studies (94 total plots) surveyed only trees. Before analysis, data were 

transformed into matrices of presence-absence data. For sites that were surveyed multiple times, 

only the most recent survey was used since there were not enough data to compare change over 

time within sites. Taxa that were not identified to the species level were removed. In addition, 

rare species (<50 occurrences in the database) were removed. This resulted in a final database of 

154 species of vascular plants recorded across 956 plots. Species that were not recorded in plots 

that had surveyed all vascular plants were treated as absent, while species not recorded in plots 

which surveyed only trees were converted to ‘NA’ values. 

 

Climate data 

We estimated recent historical (1970-2000) climate based on three different models. 

First, macroclimate mean annual temperature (MAT) was obtained from the bioclimatic 

variables dataset of WorldClim 2.1 (Fick & Hijmans, 2017). This dataset uses interpolated 

weather station records, elevation, and remote-sensing covariates to estimate climate. Variables 

related to seasonal and diurnal fluctuations in temperature are also included in the dataset; 

however, for GSMNP these were highly correlated with MAT and with each other, so separating 

their effects in models was not possible. We used the finest resolution data available from 

WorldClim: 0.5 x 0.5 arc-minutes or about 1 km resolution. Second, we interpolated WorldClim 

macroclimate using a 30 m grid of elevation as a covariate. To do this, we calculated the slope of 

a linear model relating each climate variable to the 0.5 arc-minute DEM from WorldClim. Then, 

we determined the difference between the elevation of each 30 m grid cell and its corresponding 

0.5 arc-minute grid cell and applied the overall slope to adjust the macroclimate climate estimate 

for the difference in elevation, resulting in a smoothed surface. Third, we estimated below-
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canopy microclimate conditions at the same 30 m resolution using the microclimate model 

developed by Fridley (2009) for GSMNP. In brief, this model was developed and validated using 

temperature data (1 m above ground height) recorded over 400 days at 120 locations in GSMNP 

in 2005-2006. The model estimates below-canopy daily minimum and maximum temperatures 

using above-canopy temperature (calculated from daily lapse rates and intercepts based on 

weather station records; historical data from Lesser & Fridley 2015), topographic variables 

including stream distance and radiation input, and their interactions with seasonality (sine- and 

cosine- transformed day of year; see Table 1 for description of spatial data and Fridley, 2009 for 

full model details). We summarized these below-canopy temperatures to 1970-2000 MAT using 

the same methodology as WorldClim with historical data.  

 We also predicted future (late century) climate under a climate-change scenario for the 

three climate drivers. For the macroclimate and above-canopy models, we uniformly added 4 °C 

to MAT. To check that this climate scenario was reasonable, we examined predicted rates of 

warming in GSMNP for 2080-2100 under Shared Socioeconomic Pathway SSP3-7.0, a middle-

of-the-road, business-as-usual climate change scenario used in the CMIP6 multi-model ensemble 

(Gidden et al., 2019). These data were downscaled from nine global climate models (GCMs) by 

WorldClim to 2.5 arc-minutes (see Table S1 for GCM details). The mean change in MAT from 

the 1970-2000 historical dataset (Fig. S1) varied between models from 3.5 to 6.3 °C , but 

variation in the Park within a single GCM was limited to 0.3 °C in MRI-ESM2-0 and less than 

0.1 °C in each of the eight other models (Table S1). Therefore, we applied a uniform 4 °C 

warming scenario to the macroclimate predictions as a likely scenario. For the microclimate 

model, we added 4 °C to the intercept of the daily regional climate estimates for 1970-2000. We 

then adjusted lapse rates based on the historical relationship between intercept and lapse rate. In 
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the 1970-2000 data, each degree increase in the regional maximum temperature was associated 

with 0.207 ± 0.003 °C decrease in temperature per km elevation, while each degree increase in 

regional minimum temperature was associated with 0.134 ± 0.003 °C decrease temperatures per 

km elevation (Fig. S2). When applied to the climate change scenario, this meant that the mean 

lapse rate for daily minimum temperatures decreased from -4.7 °C/km to -5.2 °C/km, and the 

mean lapse rate for daily maximum temperatures decreased from -5.0 °C/km to -5.9 °C/km. 

After adjusting the intercepts and lapse rates of the 1970-2000 regional climate data to simulate 

climate change, we re-estimated microclimate MAT using the model from Fridley (2009) and 

summarization procedure from WorldClim. 

 We compared the three climate models to determine how well macroclimate describes 

microclimate conditions. For each 30 m pixel we calculated the difference between MAT 

estimates from the microclimate, interpolated climate, and macroclimate models. For the 

microclimate model and interpolation models, we calculated the range of temperatures present 

within 1 km2 areas to compare with the macroclimate model. In addition, we calculated expected 

warming under the 4 °C scenario for each grid cell to determine variation across the Park.  

 

Species distribution models 

We modeled species distributions using the hierarchical modelling of species 

communities approach implemented in the R package ‘Hmsc’ version 3 (Ovaskainen et al., 2017; 

Tikhonov et al., 2020). Species interactions likely play a role in structuring communities here; 

however, given the lack of knowledge about how these interactions will change in the future, we 

chose not to include parameters for species interactions in these SDMs. While this means that we 

are not using the full range of tools available from Hmsc, this framework allowed fitting of 
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SDMs for all species at the same time and facilitated comparison of overall model fit for all 

species. For each climate scenario, we fit a generalized linear model of species presence using a 

probit error distribution. SDMs were fit using Bayesian inference with default weakly 

regularizing priors. Posterior distributions were sampled using three chains for a total of 900 

samples with 500,000 burn-in values discarded and thinning of 1000 values between each 

sample. All potential scale reduction factors were less than 1.1, indicating good model 

convergence (Gelman & Rubin, 1992).  For each climate model we fit SDMs with their own 

estimate of MAT, including a quadratic term to allow for species with maximum occurrence at 

moderate temperatures. Each SDM also included two topographic covariates—annual (above-

canopy) radiation and log-transformed topographic convergence index (TCI; ln(upslope 

area/tan(slope); Bevin & Kirkby, 1979)—and their interactions with MAT. All SDMs also 

included log-transformed plot size to control for sampling effort, and UTM Easting and Northing 

values to control for linear spatial trends. We compared the fit and predictions of these SDMs 

with two simpler model structures: first, an SDM based only on elevation, plot size, and spatial 

location; and second, an SDM with all of the covariates included in our main SDMs but no 

interactions. We scaled all covariates to a mean of zero and standard deviation of one before 

fitting models. We compared overall fit of the SDMs using WAIC and mean AUC. We also 

compared AUC between species to determine which species had poor model fit (AUC < 0.8). 

To predict the distribution of species across the park, we calculated the probability of 

species presence for each 30 m pixel by applying the median SDM parameters to climate, 

topographic, and spatial predictors, with plot size set to 900 m2 to match pixel size. We used the 

same parameters to model distributions and future suitable habitat in climate change scenarios 

(current topographic data, projected future climate data). In order to avoid biased estimates 
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created by suitability thresholds (Benito, Cayuela, & Albuquerque, 2013), we calculated 

expected area occupied by each species as the sum of occurrence probabilities (corrected for 

pixel area) across the park. In addition, we summed probabilities within each pixel for all species 

to determine the expected number of species present (following Slavich et al., 2014). We then 

calculated expected probability of occurrence using the same methods under the climate change 

scenario. For two high-elevation species with positive quadratic effects of elevation on 

occurrence probability, this extrapolation resulted in the nonsensical effect of predicted presence 

in the climate change scenario at low elevations. We removed one of these species (Athyrium 

filix-femina) from further calculations due to low sample size. The other species, Abies fraseri, is 

the highest-elevation tree species in the park and its future distribution is of considerable interest. 

Therefore, we applied a correction to its predicted future distribution by only including predicted 

suitability in areas where future suitability is predicted to be lower than current suitability (a 

reasonable assumption since its distribution is currently limited to the coldest areas in the Park). 

This removed only low-elevation areas that were incorrectly predicted to be suitable under 

climate change. The results presented here include predicted species distributions across GSMNP 

only for those species with highly accurate SDMs (AUC >0.8), although we also included 

predictions based on models of all species to ensure that this criterion did not affect overall 

conclusions. 

For all species, we calculated two estimates of future habitat distributions. First, we 

calculated expected occupied area and number of species present based on an unlimited dispersal 

scenario with the raw outputs of applying historical SDM coefficients to climate change scenario 

data. Second, we calculated stable habitat as the minimum probability of occurrence in each grid 

cell based on the historical and climate change scenarios. The distributions predicted using this 
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approach simulate a no-dispersal scenario, since species can only be as common (or less 

common) in future predictions than in historical predictions. For each species, we used this index 

to estimate the fraction of current area that would remain suitable given climate change as the 

summed probability of the no-dispersal scenario divided by the historical expected occupied 

area, and we estimated the maximum future distribution as the summed probability of the full 

dispersal scenario. To ensure that any differences between models were not driven by incomplete 

climatic gradients from species which do not have low elevation/warm climate limits in our 

datasets, we examined the relationship between expected stability and species mean occurrence 

elevation. We also identified potential microclimatic refugia that could not be detected by 

interpolation by calculating the difference between the fraction of species that would remain 

stable in each grid cell in the interpolation SDM and the microclimate SDM.  

All analyses were conducted using R version 4.0.3 (R Core Team, 2020). Spatial analyses 

were conducted using packages ‘raster’  (Hijmans, 2020), ‘sp’  (R. S. Bivand & Pebesma, 2013), 

and ‘rgdal’  (R. Bivand, Keitt, & Rowlingson, 2020). The packages ‘lubridate’  (Grolemund & 

Wickham, 2011), ‘parallel’, and ‘tidyr’ (Wickham, 2020) were used in some analyses to improve 

processing efficiency. The packages ‘ggplot2’ (Wickham, 2016), ‘patchwork’ (Pedersen, 2020), 

‘RColorBrewer’ (Neuwirth, 2014), ‘ggrepel’  (Slowikowski, 2020), and ‘rasterVis’ (Perpiñán & 

Hijmans, 2020) were used to create figures. 

 

Results 

Present and future temperature regimes 

Microclimate and macroclimate estimates of MAT varied across space, with the 

microclimate model up to 3.1 °C  warmer or 3.0 °C colder than the macroclimate model, 
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depending on location, and the highest overall range of MAT in the microclimate model (Figure 

1). While average MAT across the Park was similar in all models (macroclimate=10.9 °C, 

interpolation mean=11.0 °C, microclimate mean=11.1 °C), variability within a single 1 km2 grid 

cell was up to 5.3 °C in the microclimate model (mean variation=2.9 °C). Interpolation based on 

elevation reduced the temperature discrepancy in some areas but increased the discrepancy in 

others; the microclimate model was up to 2.9 °C  warmer and 3.4 °C  colder than the interpolated 

model (Figure 1F), and the maximum variability within 1 km2 in the interpolation model was 

only 2.4 °C (mean variation=1.2 °C). With 4 °C of macroclimate warming, the microclimate 

model predicted that areas near high elevation streams would warm the least (1.9 °C), while low-

elevation ridgelines would warm the most (3.8 °C; Figure 2). The overall range of microclimate 

MAT increased from 11.0 °C in the historical scenario to 12.8 °C in the warming scenario 

because the areas that were warmest historically were also least buffered from regional climate. 

Since uniform warming of 4 °C was applied to both the macroclimate and interpolation models 

(with variable warming in the microclimate model due to changes in lapse rates and 

microclimatic buffering), the variation in temperature across the park was the same in the 

historical and climate change scenarios. 

 

Species distribution models 

Overall fit was similar across SDMs (mean AUC between 0.80 and 0.81). In general, 

SDMs of high-elevation, range-limited species had the highest AUC scores, while SDMs of 

widespread, mid-elevation species had the lowest scores (Fig. S3). All three models performed 

better than the elevation-only baseline model for predicting species occurrence (elevation model 

AUC = 0.72, delta WAIC from full models = 4.4 – 4.6). SDM fit was similar across climate 
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models regardless of whether interactions were included; adding interactions improved fit only 

slightly (delta WAIC=0.2-0.4; Table S2). Given previous work demonstrating that topographic 

effects on plant distributions vary with elevation (e.g. Whittaker, 1956), we conducted the rest of 

this analysis using the SDMs with interactions between climate and topographic variables. This 

choice had little influence on results; predictions of species occurrences from the full models and 

the models without interactions were highly correlated (Pearson’s R=0.97).  

Eighty-five species had AUC values > 0.8 in all three SDMs and were included in spatial 

predictions of species distribution. While goodness-of-fit statistics were similar across models, 

predictions were very different, especially with projected climate change. Some low-elevation 

species were predicted to have nearly completely stable habitat in all models, likely due to the 

lack of information in the model about their probability of occurrence in areas warmer than the 

warmest climates currently found in the Park. However, this was true for a limited number of 

species and did not drive differences between models; predicted stability for all mid- to high-

elevation species was highest in the microclimate SDM (Figure 3).  

The macroclimate SDM predicted that 18 species currently found in the Park would 

nearly disappear (<10 km2 suitable habitat area) in the climate change scenario, but the 

microclimate SDM predicted near disappearance of only two species (Abies fraseri and Acer 

spicatum). More generally, the microclimate SDM predicted that a larger fraction of currently 

occupied habitat would be stable for all mid- to high-elevation species, and the ratio of future to 

current area was usually closest to one when dispersal was allowed (Figure 4, Table S3). Species 

stability and dispersal predictions were qualitatively identical when including SDMs with AUC 

<0.8 (Figs. S4-S7). In addition to effects on high elevation species, differences between the 

SDMs were particularly evident along streams, where microclimate conditions were predicted to 
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be cooler and more resistant to change. For example, Liriodendron tulipifera was predicted to 

have suitable habitat in the climate change scenario only along mid- and high-elevation ridges 

based on the macroclimate and interpolated SDMs, but to retain much of its current low- and 

mid-elevation habitat, especially along streams, based on the microclimate SDM (Figure 5; and 

see Figs. S8-S93 for historical suitability and +4 °C predicted dispersal and stability for all 

species).  

 

Expected regions of greatest compositional change 

The differences between the three climate models were not evenly distributed across the 

range of environmental conditions in the Park. Although high elevation streamside areas were 

predicted to warm most slowly according to the microclimate model (Figure 6, row 2), the 

proportion of species in stable habitat and the  change in richness if species were able to disperse 

freely to suitable habitat were predicted to be highest at mid-elevations in the microclimate SDM 

(Figure 6, rows 3-4). This is because current high-elevation species have narrow thermal niches, 

so even the lower predicted warming of high elevation streams would render much of the 

currently occupied area unsuitable. However, the microclimate SDM did predict some 

persistence of high elevation species which would disappear from the Park in interpolated or 

macroclimate scenarios. For example, Abies fraseri was predicted to disappear in the 

macroclimate and interpolation SDMs but to keep 5 km2 of stable area in the microclimate SDM. 

Similarly, Picea rubens was predicted to retain only 2-3 km2 of its occupied area in the 

macroclimate and interpolation SDMs, but 55 km2 in the microclimate SDM (Fig. S57). 

Community-wide stability was highest in the microclimate SDM except on low-elevation ridges, 

where the interpolated SDM predicted lower temperatures and higher stability. Cryptic refugia, 
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especially at mid- to high- elevations, were only identified using the microclimate model (not the 

interpolation model), and could lead to increased persistence of half of the species currently 

present in some locations (Figure 7). 

 

Discussion 

We found strong effects of climate model choice on the predictions, but not the goodness 

of fit, of SDMs for common plant species in the Great Smoky Mountains. In general, there were 

large differences between the interpolation and microclimate SDM predictions, while the 

interpolation and macroclimate SDM predictions were similar. This demonstrates the need for 

local climate models that incorporate drivers of microclimatic buffering, rather than just 

improving resolution with spatial interpolation. The difference between the interpolation and 

microclimate models here was particularly evident on low elevation ridges. The interpolation 

model predicted that these ridges would be cooler and their plant communities more stable than 

the macroclimate model since they are at higher elevation than the 1 km2 pixel averages. 

However, the microclimate model predicted that the same ridges would be warmer and their 

plant communities less stable than the macroclimate model because their exposed location is not 

as buffered from atmospheric conditions as other habitats. Differences in warming potential were 

also evident at high elevations; according to the microclimate model, MAT in high elevation 

areas, particularly along streams, may warm only about half as much as regional climate. Based 

on these differential effects of warming, we identified potential cryptic refugia for many species 

across the park which could persist in buffered microhabitats even as the climate warms. If 

species are able to persist in these buffered habitats, the number of species lost or nearly lost 
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from the Park will be much lower than predicted by macroclimate SDMs, and some cryptic 

refugia may be able to protect 50% more species than the interpolation SDMs would suggest. 

 The SDMs presented here are by necessity a simplification of the actual drivers of species 

distributions. First, climatic extremes are generally thought to be more closely related to species 

distributions than climatic means, although they are infrequently included in SDMs (Mod, 

Scherrer, Luoto, & Guisan, 2016). We could not include models based on climatic extremes due 

to high collinearity in the season-specific data available from WorldClim in GSMNP (ie models 

could not distinguish between effects of MAT and effects of annual maximum temperature 

because they were highly correlated). However, the microclimate dataset presented here could be 

used to compare climatic extremes and seasonal or annual variability (Lesser & Fridley, 2015), 

supporting further SDM development. In addition, our models do not include an estimate of 

current or future moisture conditions, which can support or constrain species ranges at local 

scales in some environments (McLaughlin et al., 2017). Predictions of climate change in the 

Southeastern U.S. include a small (<10%) increase in spring through fall precipitation and a 10-

20% increase in winter precipitation, as well as an increase in extreme precipitation events 

(Easterling et al., 2017), but little is known about the effects on local availability of water to 

plants. Finally, many non-climatic drivers of species distributions have already been 

demonstrated in GSMNP including biotic interactions with insects and pathogens (Cofer, Elliott, 

Bush, & Miniat, 2018; Smith & Nicholas, 1998; Woods & Shanks, 1959), human disturbance 

including fires, historical clearcutting, and exotic species introduction (Delcourt & Delcourt, 

1998; Duffy & Meier, 1992; Harmon, Bratton, & White, 1983), geographic location (Mackenzie 

& White, 1998), and soil pH (Golden, 1981). These drivers can operate in very different ways 

than climate change; for example, in other systems, recovery from disturbance has been linked to 
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downslope shifts in the range of some tree species (Wason & Dovciak, 2017). To the extent that 

these factors are geographically stable or change in ways that are not correlated with changes in 

temperature, they may also have strong impacts on the future distribution of species in GSMNP. 

Our results indicate the need to explicitly consider microclimatic conditions when 

projecting future climates to understand organismal responses. Theoretically, plants that occupy 

particular microclimates could be modelled accurately by coarse resolution SDMs constructed 

with macroclimate data, assuming that microclimate and macroclimate conditions are well 

correlated so that the microclimates necessary for a species are always present in areas with 

similar macroclimates (Bennie, Wilson, Maclean, & Suggitt, 2014). However, two 

considerations suggest that this is rare in many landscapes. First, regional climate estimates may 

be biased towards climates that occupy more land area (i.e., low-elevation climates in 

mountainous regions; Trivedi et al., 2008). Second, macroclimate and microclimate are often 

poorly correlated due to the mechanisms that lead to buffering or decoupling of microclimates 

from regional macroclimate (De Frenne et al., 2021; Dobrowski, 2011; Hylander, Ehrlen, Luoto, 

& Meineri, 2015).  As demonstrated here, macroclimate conditions will not accurately predict 

species responses if microclimates respond to overall warming in different ways. While 

interpolation is a less effort intensive way to estimate microclimate than developing locally 

validated models, SDMs based on interpolated climate data did not strongly change predictions 

in this system compared to macroclimate SDMs. Previous studies have also found that SDMs 

driven by interpolated macroclimate do not approximate SDMs driven by measured 

microclimate (Lembrechts, Lenoir, et al., 2019; Slavich et al., 2014). Given the difficulty of 

measuring local variation in climate, additional tools, such as mechanistic models for estimating 
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microclimatic conditions (Kearney, Gillingham, Bramer, Duffy, & Maclean, 2020; Kearney & 

Porter, 2017), would be valuable if more widely used and validated.  

Understanding interacting effects of multiple global change drivers on microclimate 

buffering is a critical area for future research; while our historical data (and that from other sites; 

De Frenne et al., 2021) suggest that microclimate buffering may become stronger with increasing 

regional temperatures, changes in forest canopy (e.g. Zellweger et al., 2020), moisture regimes, 

or other drivers of thermal conditions may disrupt this pattern and affect both local climate and 

suitable habitat availability. For example, high elevation forests of GSMNP are often above the 

cloud base, which contributes to thermal buffering, cools overall temperatures, and leads to high 

moisture availability, potentially stabilizing the presence of spruce-fir forests at the southern 

edge of their typical range (Berry & Smith, 2013; Cogbill & White, 1991). If cloud base heights 

in GSMNP change (e.g. due to urbanization; Williams et al., 2015), the climate currently 

supporting high-elevation forests may change much more than we predict here.  

The response of species to microclimatic effects is also more complex than presented 

here, with different species responding to changes in climate in different ways. Many herbaceous 

and subcanopy species spend their whole life-cycle in buffered understory microclimatic 

conditions. While the leaves of canopy trees can exist in a very different thermal and light 

environment, the distribution of these trees could still be influenced by below-canopy 

microclimate during the seedling/sapling stages or through the effects of thermal microclimate 

on local variation in soil moisture (e.g. Oren & Pataki, 2001). The relative influence of these 

differing above- and below-canopy conditions is not well understood, but some evidence 

indicates that canopy and subcanopy individuals, even within the same species, respond 

differently to changing environmental conditions (Rollinson et al., 2020). The ability of a species 
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to persist in microrefugia may depend on its traits and the particular climatic drivers that are 

most tightly tied to its distribution (Hylander et al., 2015), suggesting that while thermal 

microclimate conditions may predict suitable habitat for more species than macroclimate 

conditions, the accuracy of these predictions will vary by species. Given similar model fit but 

widely divergent predictions of response to climate change, improved understanding of which 

species are likely to benefit from microrefugia will be critical for providing recommendations on 

conservation. 

In summary, we found that species that are influenced by below-canopy microclimate 

conditions in GSMNP may respond very differently to climate change than macroclimate SDMs 

predict. We also demonstrated that interpolation of macroclimate using fine-scale variation in 

elevation does not capture the effects of microclimate on species distributions, particularly in 

terms of response to climate change. Our analysis supports improved theoretical understanding 

of the effects of local climate variation on plant community composition and species distribution 

as well as improved risk assessment and planning for conservation of species and landscapes 

affected by climate change. In the coming decades, we predict that even though the coldest 

environments in GSMNP will disappear, the range of microclimatic niches will increase, as the 

low-elevation ridges that are currently the warmest areas of the park are also least buffered from 

atmospheric warming. Species that occupy mesic habitats, especially at mid-elevations, may be 

less sensitive to climate change than otherwise predicted. This raises the possibility that low 

elevation species may not be able to recruit in their current thermal habitats upslope if mid-

elevation forests remain relatively intact. Understanding the effects of this band of relatively 

stable forest on the distribution of other species would require a more thorough understanding of 

species interactions in these diverse forests. These mesic cryptic refugia may also become 
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unstable if the conditions that lead to buffering (e.g., high elevation immersion in clouds and 

dense forest canopy) change in the Park, with unexpected effects on species distributions. 

Additional work focused on the particular climate drivers that constrain different species and life 

stages, and how those drivers will vary over both space and time, is critical to predicting species 

distributions and responses to climate change in GSMNP and other climatically complex 

landscapes. 
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Tables  

Table 1. Description of spatial data used in climate and SDM models 

Dataset Units 
Resolution 

(m) 
Data source 

Macroclimate MAT °C 1000a WorldClim 2.1 

Interpolated MAT °C 30 
Calculated from macroclimate, WorldClim 

elevation, and 30 m elevation 

Microclimate MAT °C 30 
Calculated using model from Fridley 

(2009) 

WorldClim Elevation m a.s.l. 1000a WorldClim 2.1 

Elevation m a.s.l. 30 Fridley 2009; DEM 

Annual radiation W / m2 30 Fridley 2009; sum of daily radiation 

Topographic 

convergence index 
unitless 30 

Fridley 2009; r.topidx routine in GRASS 

GISb 

Stream distancec m 30 
Fridley 2009; calculated from stream 

locations 

Daily radiation W / m2 30 Fridley 2009; r.sun routine in GRASS GISb 

Maximum synoptic 

temperaturec 
°C 30 

Calculated from weather records and 

elevation 

Minimum synoptic 

temperaturec 
°C 30 

Calculated from weather records and 

elevation 

a: approximately; resolution is 0.5 arc-minutes 

b: GRASS development team (2006) 

c: used only in microclimate calculation 
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Figures 

 

Figure 1. Comparison of historical climate estimates of mean annual temperature from 1970-

2000 across climate models. (A) macroclimate; WorldClim 1 km resolution grid, (B) interpolated 

climate; lapse-rate correction of WorldClim data to 30 m resolution, (C) microclimate; locally 

validated below-canopy climate model, (D) difference between interpolated climate and 

macroclimate, (E) difference between validated microclimate and interpolated climate, (F) closer 

image of northeastern corner of panel E (location indicated by box in panel E). Differences 

between macroclimate and interpolated climate are small, but differences between interpolated 

climate and microclimate are often >2 °C cooler along north-facing streams and warmer along 

south-facing ridges. 
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Figure 2. Projected ground-level warming (°C increase in MAT) across GSMNP based on a 

locally validated microclimate model with 4 °C of macroclimate warming. The most buffered 

sites, near high-elevation streams, warm only half as much as regional temperatures, while the 

least buffered sites, along low-elevation exposed ridges, warm nearly the same amount as 

regional temperatures. 
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Figure 3. Proportion of current suitable habitat area that will remain suitable according to SDMs 

driven by the three different climate models. Points are arranged on the x axis according to 

species current mean elevation; lines are loess smoothing across the points for each climate 

model. Low elevation species may have erroneously high predicted stability due to lack of 

maximum temperature limits in our dataset; however, differences in stability between models 

occur in mid- to high-elevation species which do have thermal limits in GSMNP. 
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Figure 4. Responses of plant species to 4 °C of regional warming. In both panels, the Y axis is 

the ratio of future species area to current species area. Panel A shows the ratio for a no-dispersal 

scenario; points represent the fraction of current area that will still be suitable. Panel B shows the 

ratio for an unlimited dispersal scenario; points represent the change in suitable habitat area with 

climate change. The grey line in both panels indicates an equal area of future and current habitat; 

lower values represent a reduction in habitat area (note different scales of Y-axes). Species 

which had >98% stable habitat in any SDM were removed for visualization. Full species names 

and area projections can be found in Table S3. 
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Figure 5. Historical (first row), future suitable (second row), and stable (third row) habitat area 

projection for Liriodendron tulipifera in macroclimate (left column; AUC=0.85), interpolated 

climate (middle column; AUC=0.86), and microclimate (right column; AUC=0.86) SDMs in the 

northeast corner of GSMNP (see Figure 1 for location). Darker colors indicate more suitable 

habitat. Stable habitat in macroclimate and interpolated climate habitats is at mid elevations; low 

elevation habitat remains stable in the microclimate model near streams. In the macroclimate and 

interpolated SDMs, dispersal occurs up to the highest elevations, but in the microclimate SDM 

the highest ridges remain too cold. 
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Figure 6. Effect of climate model and topographic position on warming and species response to 

warming. Colors show binned mean values of MAT (°C, row 1), change in MAT with warming 

scenario (row 2), fraction of current species that will still be within suitable habitat (row 3), and 

number of future species/number of current species with unlimited dispersal (row 4). Values are 
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based on 10,000 regularly sampled points within the Park; bins are shown only if they contain at 

least 10 values.   
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Figure 7. Potential cryptic refugia in GSMNP: geographic differences in the effect of below-

canopy microclimate on stable habitat (additional proportion of species that are still within stable 

habitat) in each 30 m pixel. Blue indicates areas where the microclimate model predicts greater 

stability; red indicates areas where the interpolation model predicts greater stability. Panel (A) 

shows all of GSMNP, panel (B) shows the northeast corner. See Figure 1 for exact spatial 

location of panel B. 
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Chapter 2: Low-cost sensor networks allow description of spatial and temporal variation in 

soil moisture across the complex forested terrain of the Great Smoky Mountains (USA) 

Jordan R. Stark and Jason Fridley 

Introduction 

Research on microclimate, or the variation in climate at scales experienced by organisms, 

has increased dramatically in the past several decades (Bramer et al., 2018). Ecologically 

important climate variables include temperature, moisture, seasonality, and other factors, but 

microclimate research has focused primarily on temperature rather than moisture (Maclean, 

Bennie, Scott, & Wilson, 2012; Robinson et al., 2008; Vereecken et al., 2014). Soil moisture is a 

key driver of species distributions (Engelbrecht et al., 2007), carbon balance (Green et al., 2019), 

soil respiration (Curiel Yuste et al., 2018; Orchard & Cook, 1983), and risk for extreme events 

including floods and fires. Fine-scale, landscape-wide descriptions of soil moisture variability 

would be valuable for understanding and predicting these processes, but the cost and difficulty of 

using commercial soil moisture sensors has prevented deployment of sufficient numbers of 

sensors to capture the range of conditions in topographically complex regions. To address this 

challenge, we have developed a new low-cost, low-power sensor designed for distributed soil 

moisture monitoring and used data collected with these sensors to describe patterns of soil 

moisture availability across the complex forested landscape of Great Smoky Mountains National 

Park (GSMNP). 

Several variables, including annual precipitation and topographic position, have been 

used as proxies for moisture availability in the absence of distributed moisture measurements. On 

the scale of hillslopes to watersheds, a common metric for potential wetness is topographic 

convergence index (TCI; ln(upslope area/tan(slope)); Beven & Kirkby, 1979). Sites with high 
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TCI values should be wetter because they collect more water from upslope areas and lose less 

water to drainage. However, the strength of the relationship between this index and soil moisture 

may depend on overall landscape wetness, seasonality, and other variables, depending on the site 

(Burt & Butcher, 1985; Tromp-van Meerveld & Mcdonnell, 2006; Western, Grayson, Blöschl, 

Willgoose, & McMahon, 1999). Other indices, such as radiation intensity, may also be related to 

transpiration or direct evaporation. On the highly local scale, site slope or local topographic 

position (TPI; difference between elevation of a raster cell and its surrounding cells; Wilson, 

O’Connell, Brown, Guinan, & Grehan, 2007) could influence plant communities, drainage and 

water retention. Finally, plant density and canopy cover can affect soil moisture in complex 

ways. Increased transpiration and interception with canopy cover can reduce soil moisture 

availability under canopies (Breshears, Rich, Barnes, & Campbell, 1997; Peck, Zenner, & Palik, 

2012; Scharenbroch & Bockheim, 2007), but the cooling and shading effects of canopy cover 

can also reduce direct evaporation and increase soil moisture (Walsh et al., 2017). Highly local 

effects have been recognized as drivers of soil moisture for decades (Ball & Williams, 1968; 

Krumbach, 1959), but quantitative estimates of their strength are still rare. 

Current products predicting soil moisture in most areas are at broad scales and generally 

not locally validated (e.g. SMAP L4 Surface Soil Moisture, 9km; Zhang, Zhang, Zhou, Shao, & 

Gao, 2017). In contrast, local temperature variation can be predicted at scales of tens of meters 

using mechanistic models globally (e.g. Kearney et al., 2020; Maclean & Klinges, 2021) and 

using locally validated statistical models across many regions (e.g. Fridley, 2009; Haesen et al., 

2021; Holden et al., 2016; Vanwalleghem & Meentemeyer, 2009; Von Arx et al., 2012). 

Development of similar fine-scale models of soil moisture has been limited by both physical and 

logistical factors. Variation in moisture even at scales of centimeters to meters can be high, 
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leading to difficulty in scaling up from sensors to landscapes (Robinson et al., 2008). Constraints 

on the deployment of large commercial sensor networks have limited the development of 

landscape-level fine-scale soil moisture models (Robinson et al., 2008; Vereecken et al., 2014). 

Low-cost, low-power sensor technology for monitoring soil moisture has lagged behind similar 

technology for monitoring temperature (e.g. the iButton; Maxim integrated; San Jose, CA). 

Commercial moisture sensors are often hundreds of dollars and many require separate expensive 

dataloggers powered by large batteries. Developing accurate microclimate models in complex 

terrain generally requires deployment of extensive sensor networks, which can be expensive and 

logistically challenging using these existing tools.  

Here, we have modified the design of inexpensive, self-contained environmental 

microcontroller units (EMUs) developed by Mickley et al. (2019) to improve durability and 

allow long-term deployment in the wet climate of GSMNP. While these sensors and dataloggers 

are more labor intensive to set up than commercially available soil moisture equipment (about 

two hours of work to construct each sensor), they have several major advantages. First, the total 

cost is more than an order of magnitude less than commonly used sensor and datalogger 

combinations at about $20 per unit including sensors, housing, batteries, and data storage. 

Second, the sensors have very low power usage, running on 4-AAA batteries and one watch 

battery for more than a year, which allows deployment of a large number of sensors in remote 

locations. Third, the sensors are re-useable, with replaceable batteries and rewritable memory. 

Finally, the design is easily modified for particular projects that may require different 

microcontroller housing or sensors. The low cost of these sensor units enables deployment of the 

large numbers needed to describe patterns of moisture variation across environmental gradients, 

including in areas where some sensors are likely to be damaged or destroyed during deployment. 
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Local gradients of moisture in GSMNP have been proposed as a key driver of ecological 

processes for decades (Whittaker, 1956). Here, we present the first landscape-wide timeseries 

data describing this variation. We address several broad questions. First, we test the performance 

and calibration of new low-cost, low-power soil moisture sensors. Second, we examine 

relationships of commonly used landscape proxies of moisture availability to measured soil 

moisture data across the complex landscape of GSMNP. Finally, we compare the magnitude of 

soil moisture variation in GSMNP to the magnitude of precipitation variation, and discuss the 

implications for moisture variability under a changing climate. These new tools and data 

demonstrate the feasibility of monitoring fine-scale variation in soil moisture across a complex 

landscape and will allow the development of new models at similar scales to thermal 

microclimate models, improving our understanding of the role of local climate in determining 

ecological function. 

 

Methods 

Sensor design 

We developed environmental microcontrollers based on the components and design from 

Mickley et al. (2019) with modifications to improve durability in the field and allow storage of 

data in microcontroller internal memory (Serial Peripheral Interface Flash File System or 

SPIFFS). Major components of the system were (1) an Arduino-like microcontroller (Wemos d1 

mini) to run a sensing program and store data; (2) a real-time clock (ds3231) and MOSFET to 

activate the system once per hour and prevent battery drainage when the system was off; (3) two 

solder-plated generic volumetric moisture sensors (resistance-based) and an analog-to-digital 

converter (ads1115) to read the sensor outputs; (4) a digital soil temperature probe (ds18b20); (5) 

a battery holder and 4-AAA batteries; (5) a custom printed circuit board; and (6) a sensor 
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housing constructed from PVC fittings. The microcontrollers were programmed in C++ via the 

Arduino IDE to read sensor values once per hour and store data to internal memory for later 

download. Sensor construction details are found in Appendix 2; for a full sensor construction 

protocol, microcontroller code, and bill of materials see 

https://github.com/jordanstark/Soil_temp_moisture_EMU. Total cost of components was 

approximately $20 per sensor. 

 

Soil moisture calibration 

Soil resistance probes were calibrated to volumetric moisture content (vmc) using two 

complementary methods: mass balance and comparison with commercial (Decagon EC-5) soil 

moisture probes. While a previous calibration for these resistance probes has been published 

(Mickley et al. 2019), that calibration did not account for effects of temperature on resistance 

which were large across the temperatures measured in this study. Temperature sensitivity of soil 

moisture probes is common, and is in part due to the changes in electrical conductivity of soils 

with temperature; commercial sensors including the Decagon EC-5 are sensitive to temperature 

variation and several procedures have been developed for removing the signal of temperature 

from moisture data (Saito, Fujimaki, Yasuda, Inosako, & Inoue, 2013). 

Mass balance calibration was conducted using kitchen scales (Ozeri ZK14-S) retrofitted 

with a microcontroller that logged data hourly from the load cell as well as a soil resistance 

probe and a soil temperature probe. For each trial, a small pot of soil (142 mL) from GSMNP  

was mixed with water until saturated. Soil moisture and temperature probes were installed in the 

pot, and both the pot and a datalogger (Wemos d1 mini ESP8266) were placed on the modified 

scales in a growth chamber. Soils were then allowed to air dry for several days to weeks 
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(depending on temperature). Drying trials were conducted at every 5 degrees C from 10-35 

degrees, with two replicates at each temperature. One replicate at 10 degrees was removed 

because of a balance malfunction; another replicate at 35 degrees was removed because final soil 

weight was not correctly recorded. Readings from the scales’ load cells were converted to weight 

using known values and balances were tared with the empty pot and datalogger at each 

temperature. After air drying, each pot was removed from the balance and the soil was dried at 

50 °C for at least 48 hours to determine the dry weight. Hourly volumetric soil moisture values 

were then calculated as [(wet soil weight – dry soil weight)/pot volume] for each time point. 

Calibration against commercial moisture probes was conducted using Decagon EC-5 

loggers and EM-50 datalogger. Three pots of pool sand were saturated with water and placed in a 

growth chamber. In each pot, one EC-5 sensor, two resistance sensors, and one soil temperature 

sensor were installed (~4cm apart; increasing distances were checked and did not have any effect 

on EC-5 readings). Data from the resistance and temperature sensors were stored hourly on 

dataloggers identical to those used in the field; data from the EC-5 sensors were stored hourly on 

an EM-50 datalogger. Three trials were conducted using this method – first at 25 degrees; then at 

variable temperatures from 10-35 degrees during each 24 hour period, and finally at variable 

temperatures from 10-25 degrees during each 24 hour period. Data from the EC-5 sensors 

exhibited some temperature sensitivity; therefore, these data were smoothed using a 24-hour 

rolling mean before comparison with the resistance probe data. 

Based on the over- and under-fitting at the ends of the range in Mickley et al. (2019) and 

initial testing at different temperatures, a maximal model of soil moisture as a cubic function of 

resistance plus a cubic function of temperature and an interaction of resistance and temperature 

was fit to the data. The model also included a random intercept for each trial to account for 
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differences in installation or other effects. This model was fit to the data using the ‘lmer’ 

function in the ‘lme4’ package in R; AIC was then compared with all nested models using the 

‘dredge’ function in the ‘MuMIn’ package. Only models that included lower power terms for all 

variables with interactions or higher power terms were accepted.  

 

Sensor installation 

23 proof-of-concept sensors were deployed at locations along low-, mid- and high-

elevation trails in the eastern portions of GSMNP in October 2019. Site locations for sensors 

deployed after October 2019 (March and June-July 2020, n=63) were stratified according to the 

distribution of three factors in the Park: elevation, log-transformed TCI, and annual potential 

relative radiation (Pierce, Lookingbill, & Urban, 2005). To determine the strata, a raster layer of 

each environmental variable was sampled across a 250 m2 grid throughout the Park, and then 

boundaries were determined to split points into 27 equal groups (low, middle, and high values 

for each of the three factors) based on these gradients. Once strata were calculated, three points 

in each stratum in each of two watersheds (Big Creek and Cosby) were randomly selected from a 

100 m2 sampling grid masked to areas within 5 km of parking and between 25 and 150 m of 

trails. After each point was selected, the nearest 25 points were checked and removed if they 

were from the same stratum to reduce local spatial effects. Stratification and point selection were 

conducted in R 3.6 using the ‘sf’ and ‘raster’ packages; TCI was calculated using the ‘topmodel’ 

package; potential relative radiation was calculated using the ‘hillshade’ function in the ‘raster’ 

package and the ‘solartime’ package. 

Sites selected based on the stratified random sampling protocol were screened in the field 

based on (1) difficulty of access – sites that were inaccessible on foot were excluded; (2) 
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availability of soil – sites where a 2” PVC tube could not be installed to a depth of 6” were 

excluded; (3) consistency with research permit – sites in broad flat areas or historical sites were 

not permitted, and (4) canopy cover – since the processes governing soil moisture may be very 

different between open and forested sites, only sites with closed canopies in the summer were 

selected. When sites were rejected, an effort was made to find a nearby site (generally within 100 

m and always within 250 m) to install the sensor. If a suitable site was not found nearby, the 

point was skipped. In March 2020, 23 sensors were installed following these guidelines, 

primarily in low- and mid-elevation sites. In June and July 2020, an additional 40 sensors were 

installed following these guidelines. 13 more sensors were deployed in the central part of the 

Park (along US Hwy 441, Newfound Gap Road, Clingmans Dome Road, and Lakeview Drive) 

for model validation. Their distribution was not determined through stratified random sampling 

but they were spaced across elevation in both NC and TN, and in vegetation representative of 

wet and dry areas.  

At each site where sensors were installed, leaf litter was removed and a 6” deep core of 

soil was taken with a tulip bulb planter. The datalogger housing was installed in this hole and 

covered. Soil moisture and temperature sensors were installed ~15 cm upslope of the datalogger 

housing. One soil moisture sensor and the soil temperature sensor were installed vertically just 

below the leaf litter layer (measuring depths of 0-5 cm), while the other soil moisture sensor was 

installed 10 cm deeper (measuring depths of 10-15 cm). A shallow trench connecting the sensors 

and datalogger housing was created to protect sensor wires. Sensors which were damaged when 

examined in March or June 2020 were replaced at the same locations. All other sensors were 

collected in July or early August 2021. In total, 114 sensors were deployed across 99 sites 

(including some sites that had sensors replaced), with data collected between October 2019 and 
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July 2021 (Figure 9). We tested whether sensor success rates (fraction of deployed days with 

sensors collecting data) were related to the stratification gradients of elevation, TCI, and 

radiation using a linear model. 

 

Data processing and cleaning 

Following download of data from sensors, we checked all records to remove invalid 

points. Raw resistance and temperature values were converted to soil moisture based on the 

laboratory calibration. We then manually checked data from each sensor for anomalous readings, 

including sensor removal from soil, disconnected wires, or odd readings immediately after 

installation. Some data were removed from 31 sensors; most of these were damaged enough to 

stop recording soil conditions but still collected some data after sensors were not attached to the 

datalogger (visible in the data as a sudden change, followed by near stability of readings) or not 

in the ground (visible in the data as a sudden drop in soil moisture or increase in daily soil 

temperature range). Since soil temperature was used to calibrate soil moisture readings, any 

readings where soil temperature was not accurately recorded were also removed from the soil 

moisture datasets. 

 

Meteorological and vegetation data 

Daily below-canopy mean temperatures were estimated using the microclimate model 

developed in Fridley (2009). In brief, above-canopy minimum and maximum temperatures were 

calculated based on the relationship between elevation and weather-station temperatures using a 

30 m DEM. These above-canopy temperatures were then used to calculate below-canopy 

minimum and maximum temperatures based on relationships between temperature, seasonality, 
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and topographic factors developed using a 120-sensor, 400-day dataset in 2005-2006. Here, we 

took the average of each day’s below-canopy thermal minima and maxima to represent the mean 

conditions for direct soil evaporation below the canopy throughout the day.  

Precipitation and vapor pressure deficit (VPD) estimates were obtained from PRISM at 4 

km scale in October 2021 (PRISM climate group, 2021). Using the 4 km PRISM DEM, we 

calculated the daily slope and intercept of a regression predicting VPD based on elevation at 

10,000 randomly sampled sites in the Park (we did not downscale precipitation due to the lack of 

strong relationships between daily precipitation and elevation). Most daily regressions had strong 

explanatory power (r2>0.8). Regressions with lower r2 values were on days with little variation in 

VPD across the Park that would be adequately predicted based on the intercept of the line. To 

estimate the VPD at each sensor site, we applied the daily regressions to a 30 m DEM of the park 

and extracted values at each point location. To determine the elevation gradient of precipitation 

in the Park, we also downloaded precipitation data from the weather stations used in thermal 

microclimate modelling. Mean annual precipitation was calculated for each weather station and 

linear regression was used to determine expected precipitation at high and low elevations in the 

Park. 

Seasonality was estimated using the MODIS yearly land cover dynamics (MCD12Q2) 

product version 6 at 500 m resolution (Friedl, Gray, & Sulla-Menashe, 2019). We downloaded 

estimates of maturity and senescence (first and last cross of 90% of annual maximum enhanced 

vegetation index) for the years 2010-2019 (most recent available decade). After removing all 

pixels that were designated as less than ‘best’ quality for the given variable, we calculated the 

decadal mean maturity and senescence times for each raster cell. These dates were used to screen 

data for description of summer soil moisture variation when forest canopies were most active. 
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Using the same dataset, we also calculated maximum annual Enhanced Vegetation Index (EVI) 

values by adding minimum EVI values and the amplitude of EVI at each site for each year, and 

then taking the mean over the 2010-2019 decade. A full list of spatial data products used in this 

paper is found in Table 2. 

 

Description of soil moisture patterns across spatial gradients 

We describe the variation in soil moisture mean and variation over time across spatial 

gradients present in the Park. Site effects and local variability appeared higher in surface 

moisture sensors so we used data from the 10-15 cm deep sensors only for this analysis (Figure 

8). Since sensors were deployed and functioning for different amounts of time, including during 

differentially wet and dry periods, we first used the subset of sensors that were all deployed and 

took at least 90% of readings between July 11 2020 and July 10 2021 (the one-year period with 

the most useable sensors, n=42). For each sensor, we calculated the median annual soil moisture 

and the coefficient of variation (CV) in annual soil moisture. We then used linear models to 

determine the effects of elevation and slope (the topographic factors that appeared most strongly 

related to soil moisture) on median annual moisture and the effects of elevation and topographic 

indices on CV of soil moisture. Moisture values were logit-transformed to improve normality. 

We also compared variation in soil moisture over elevation to the gradient of precipitation in the 

Park. To determine whether effects of topography and climatic conditions varied seasonally, we 

developed linear mixed models on the effect of topographic conditions on soil moisture (logit-

transformed) including interactions with sine- and cosine-transformed day of year using the same 

subset of sensors which functioned from summer 2020 – summer 2021. A random intercept for 

each site was included to account for site effects 
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To examine the effects of topography, weather, and vegetation on soil moisture during 

the summer months when plant canopies are active, we extracted the subset of soil moisture 

values between EVI-derived canopy maturity and senescence (Table 2) and developed a linear 

mixed model of the effects of elevation, TCI, slope, TPI, maximum annual EVI, precipitation, 

VPD, radiation, and below-canopy temperature. Soil moisture was logit-transformed to improve 

normality. All predictors were standardized to a mean of zero and standard deviation of one 

before model fitting. This model also included random intercepts for site effects. Conditional 

(fixed effects) and marginal (full model) r2 values were calculated following Nakagawa and 

Schielzeth (Nakagawa, Johnson, & Schielzeth, 2017; Nakagawa & Schielzeth, 2013). 

Collinearity was checked using variance inflation factors with the function ‘vif’ from the 

package ‘car’. Data analysis was conducted in R 4.1.0; all scripts are available at 

github.com/jordanstark/GSMNP_moisture_drivers. 

 

Results 

Sensor calibration 

There were three calibration models with equivalent AIC values (delta AIC <2): a model 

with all terms except for cubed soil temperature, a model with all terms except for cubed soil 

temperature and squared soil temperature, and the full model with all terms (Table 3). Of these 

three models with similar AIC, the most parsimonious model without higher-order terms for soil 

temperature was selected (Table 4). Using the same process with data from only the mass-

balance or only the commercial probe trials resulted in similar predicted values in the regions 

where data was collected in both trials; however, the pool sand did not retain as much water so 

high-moisture points were not present in those trials and the extrapolated calibration was 
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somewhat different at the wet end. Combining both methods allowed the greatest range of data to 

be included; temperature could not be varied during individual mass-balance trials due to the 

strong temperature sensitivity of the balances. When applied back to the data without the random 

intercepts, the best model had a mean absolute error (MAE) of 0.034 and a root mean square 

error (RMSE) of 0.040. All residuals were less than 0.102. The calibration published by Mickley 

et al. (2019) fell within the range of values here for higher resistance values but slightly below 

the range of model predictions when very wet; since soil temperature was not reported during 

that trial direct comparison is not straightforward (Figure 10). The full calibration model 

presented here had comparable accuracy to commercial probes (RMSE=0.04; reported accuracy 

of Decagon EC-5 probes ± 0.03) and worked well across soils ranging from pool sand to organic 

duff. 

 

Sensor performance under field conditions 

Out of 114 sensor deployments, 56 sensors recorded for their entire deployment period, 

12 sensors were not found, 2 sensors never recorded data, and 22 were destroyed or sufficiently 

damaged (by wildlife, humans, frost-heave, or other physical causes) to stop recording data. This 

left 22 sensors which failed for unknown reasons; after testing we were able to determine that 

about half of these failed due to loss of battery power in the real-time clock. No sensors ran out 

of main battery power. Data were successfully downloaded from all but two sensors (both badly 

damaged and corroded) that ran and were collected; even sensors that had some water infiltrate 

into the sensor housing generally did not have data loss. Three other sensors collected some data 

but the data were not useable due to very short collection periods or faulty sensors. For the 

sensors that recorded data and were collected, 77% of deployed days had recorded soil moisture 
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measurements (Figure 11). Sensor deployment adequately covered the major elevation and 

topographic gradients of the Park over time (Figure 12). There were no significant relationships 

between topography (elevation, TCI and radiation) and the fraction of possible data recorded by 

a sensor (p>0.5). 

 

Topographic, meteorological, and seasonal gradients of annual soil moisture 

Median 10-15 cm deep soil moisture within sites for the subset of sensors functioning 

between July 11 2020 and July 10 2021 ranged from 0.04 to 0.33 (v/v). The strongest single 

topographic driver of soil moisture was elevation; based on a linear model of the effect of 

elevation only on logit-transformed annual median soil moisture, sites at the highest elevations 

(2025 m) in the Park had about 4.7x higher median volumetric water content than sites at the 

lowest elevations (267 m) in the Park (p=0.0001, r2=0.301). Over the same gradient, the highest 

elevations of the Park received about 1.5x more annual precipitation than the lowest elevations in 

the Park, so this relationship is not explained entirely by precipitation.  

After controlling for the effect of elevation, slope had the strongest relationship with soil 

moisture. A linear model of the effect of slope and elevation on logit-transformed annual median 

soil moisture explained additional variance (r2=0.339) compared to the elevation-only model. 

The effect of slope (coefficient=-0.14; p=0.138) was about 40% as strong as the effect of 

elevation (coefficient=0.42, p<0.001) across the dataset after centering and standardizing 

predictors. Based on this model, a high elevation site with a 40° slope would have the same 

median annual soil moisture as a flat site more than 700 m lower (Figure 13). Adding an 

interaction between slope and elevation to the model did not explain additional variance.  
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A linear model of the effects of topographic variables on within-site variability in soil 

moisture (CV) found that elevation was negatively correlated with variability (standardized 

coefficient=-0.07, p<0.001), while slope (standardized coefficient=0.03, p=0.038) and TPI 

(coefficient=0.04, p=0.018) were positively correlated with variability. Maximum EVI and TCI 

were not correlated with variability in moisture (p>0.2). 

Examining effects of slope and elevation over time revealed interactions between season 

and spatial variation. A model of the effects of seasonality (sine- and cosine-transformed day of 

year), elevation, and slope on soil moisture values showed that the strongest seasonal effects 

occurred at low elevations and on steep slopes, where moisture was generally low (Figure 14). 

The effects of elevation (positive) and slope (negative) were strongest in the summer and fall 

(Table 5). The marginal (fixed effects) r2 was 0.33 and the conditional (full model) r2 was 0.95. 

Variance inflation factors for all variables were less than 1.1, indicating no problems with 

collinearity. 

In a linear mixed model of the effects of all topographic, weather, and vegetation drivers 

on logit-transformed summer soil moisture, the strongest single driver was elevation 

(coefficient=0.36, p<0.001). Several daily drivers had significant relationships with soil moisture 

(p<0.001 in all cases): moisture decreased with VPD, radiation, and below canopy temperature, 

and increased with precipitation (Figure 15). None of the site variables had significant 

relationships with soil moisture but after elevation, the next strongest effects were negative 

relationships between soil moisture and slope (coefficient=-0.14, p=0.095), and between soil 

moisture and EVI (coefficient=-0.1, p=0.213; Table 6). The marginal (fixed effects) r2 was 0.31 

and the conditional (full model) r2 was 0.94. Variance inflation factors for all variables were less 

than 1.7, indicating no problems with collinearity. 
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Discussion 

Soil moisture variation at local scales is high, but has rarely been quantified across 

complex landscapes. Using new low-cost, low-power sensors, we have described patterns of 

moisture variation across the complex forested landscape of GSMNP. Across sites, we found that 

elevation has the strongest topographic relationship with soil moisture; high-elevation sites in the 

park have 4.8x higher median soil moisture than low-elevation sites. Local effects, including 

slope, are also strongly related to soil moisture, with steep (40°) slopes having moisture 

equivalent to flat areas that are 700 m lower in elevation. Within sites, the coefficient of variation 

in soil moisture availability was highest in low-elevation, high-slope, and high-TPI areas. The 

strongest effects of both slope and elevation in the 2020-2021 season occurred in late summer 

and fall. When considering all summer data, the strongest driver of moisture was elevation (+) 

followed by slope (-), maximum annual EVI (-), precipitation (+), radiation (-) and below-canopy 

temperature (-). TCI, an index commonly used to predict moisture distributions, was not strongly 

related to measured soil moisture across the whole dataset, although it may be more predictive 

during wet or dry periods. The elevation gradient in precipitation was significantly weaker than 

the elevation gradient in soil moisture, suggesting that evapotranspiration or soil properties are 

critical to local moisture availability.  

The implications of local moisture variation across a landscape are not yet well 

understood, but water availability is a critical factor for a wide range of ecological processes.  

Since there have been many fewer measurements and models of fine-scale variation in moisture 

than temperature, research on the effects of local moisture variability have lagged behind 
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research on thermal microclimate. However, several case studies indicate that local moisture 

regimes could play an important role in determining species distributions and responses to global 

change (Crimmins, Dobrowski, Greenberg, Abatzoglou, & Mynsberge, 2011; e.g. Mcdowell et 

al., 2019; McLaughlin et al., 2017). Below-canopy variation in moisture and temperature are 

linked, with high soil and plant moisture levels contributing to buffered below-canopy 

temperatures (Fridley, 2009; Von Arx, Graf Pannatier, Thimonier, & Rebetez, 2013), so changes 

to moisture availability may exacerbate change in understory temperatures under climate change 

(Davis, Dobrowski, Holden, Higuera, & Abatzoglou, 2019). Some effects of fine-scale variation 

in temperature, such regulation of species distributions (Lembrechts, Nijs, et al., 2019; Slavich et 

al., 2014; Storlie et al., 2013) and responses to global change (De Frenne et al., 2013; 

Dobrowski, 2011; Zellweger et al., 2020) may be partly related to variation in moisture; 

additional work disentangling effects of local moisture and temperature variation will require 

fine-scale predictions of both variables over space and time. With improved tools for measuring 

local soil moisture availability, it may be possible to develop models capturing additional 

ecological patterns that are driven by non-thermal climate trends and better predict below-canopy 

conditions of the future. 

Several dimensions of global change may influence local water availability in GSMNP. 

Precipitation is predicted to increase by 10-20% (depending on season) in the southeastern 

United States under climate change (Easterling et al., 2017). However, more of the precipitation 

is predicted to fall in the winter and during extreme events. Full consideration of the overall 

effects of climate change on moisture availability across the landscape must consider both the 

timing of rainfall and the spatial distribution of evapotranspiration. Even if more rainfall occurs 

over the course of a year, soil moisture levels may decrease overall during the growing season 
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between storms, particularly if drivers of evapotranspiration such as temperature and vapor 

pressure deficit also rise. If current moisture patterns continue into the future, low elevation and 

high slope areas may be most susceptible to drought conditions. However, the effects of some 

soil moisture drivers, particularly those related to transpiration (EVI, VPD), may also change as 

plant communities adapt to new climatic conditions and are affected by other aspects of global 

change. For example, forest declines following infestation by hemlock woolly adelgid have led 

to different effects on transpiration and soil moisture at different sites; long-term changes likely 

depend on the species that replace hemlock forests (Brantley, Ford, & Vose, 2013; Orwig, Cobb, 

D’Amato, Kizlinski, & Foster, 2008).  

Future changes in multiple climatic conditions (e.g. precipitation and temperature) may 

not occur simultaneously in the same direction, leading to broad-scale reductions in suitable 

habitat for species (Oldfather, Kling, Sheth, Emery, & Ackerly, 2020). Novel microclimatic 

conditions may similarly influence community structure and ecological processes across scales 

in areas with complex relationships between topography, climate, and species distributions. 

While many studies have projected that thermal microclimate variability could reduce the need 

for species range shifts under climate change (e.g. Graae et al., 2018; Chapter 1), the presence of 

analogous thermal environments in nearby locations may not be enough to maintain suitable 

habitat if the distribution of moisture and other climatic factors change in ways that are not the 

same as temperature. In addition to effects on species distributions, ecosystem function can be 

impacted strongly by the combined effects of multiple climate drivers; for example, several 

experiments have found that warming leads to different consequences for ecosystem productivity 

under different moisture regimes (Töpper et al., 2018; Winkler, Chapin, & Kueppers, 2016). 
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More work is needed to predict local variability across multiple climate factors, changes in 

microclimate under climate change, and effects on species and ecosystems. 

Multiple approaches have been proposed for predicting soil moisture availability across 

space and time. One common approach to site- or watershed-scale models is modeling the water 

balance of a site, which requires detailed knowledge of precipitation inputs, evaporation, 

transpiration, and soil characteristics. While several studies have compared water balance models 

with topographic indices (e.g. Dyer, 2009; Hoylman et al., 2019), the distributions of many of 

the drivers of water balance models have been mapped only at broad scales that are not suitable 

as inputs for a fine-scale model. Water balance models also tend to deviate from on-the-ground 

conditions over time as model error compounds. Therefore, generating landscape-wide water 

balance models over time at fine scales in topographically complex areas is generally not 

possible. Another approach proposed by Pan (2012), the soil moisture diagnostic equation, 

avoids this issue of compounding error by modelling current moisture conditions with a 

declining effect of previous days’ precipitation and evapotranspiration rather than using previous 

soil moisture as an input. This approach has been adapted to make predictions across sites or 

landscapes using spatial kriging or other interpolation techniques (Bell et al., 2015; Evan J. 

Coopersmith, Cosh, Petersen, Prueger, & Niemeier, 2015; Stillman et al., 2014). However, the 

large number of soil- and site-specific parameters in this model make prediction across a 

topographically variable landscape challenging. Several networks of sensors have been used to 

create soil moisture products in other sites (e.g. Chaney, Roundy, Herrera-Estrada, & Wood, 

2015; Evan J. Coopersmith et al., 2015; Kang et al., 2017; Sheikh, Visser, & Stroosnijder, 2009; 

Stillman et al., 2014), but in general these use highly site- and time-specific methods for 

modeling soil moisture variation (e.g. spatial kriging) that do not allow prediction across 
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complex topographic gradients or over time. Other studies focused on fine-scale prediction 

across plots or hillslope have found that variation in moisture is linked to soil depth, slope 

position, local temperature, and transpiration rates (Tromp-van Meerveld & Mcdonnell, 2006; 

Walsh et al., 2017), but these results have not been generalized across landscapes. 

In addition to the structural challenges in selecting a model to predict soil moisture, 

several physical factors limit the accuracy of predictive soil moisture models. Soil moisture 

varies at scales much smaller than those measured by remote-sensing techniques or interpolated 

from weather station precipitation data. The extremely fine scale of local variation presents 

challenges for scaling up from sensor measurements, which integrate over very small soil 

volumes, to landscape models (Robinson et al., 2008). While topographic indices can be 

generated at fine scales, our data suggest that none of these indices, on their own, explain a large 

fraction of the variation in soil moisture across the complex landscape of GSMNP. Developing 

models that can predict variation in moisture conditions across complex topography is still a 

critical task even if not all local variation can be explained; without this fine-scale, broad-extent 

understanding of soil moisture variation, it is difficult to determine whether soil moisture 

represents another critical axis of microclimatic conditions like local variation in temperature. 

Given the central role of moisture availability in ecological processes at broader scales, it 

is likely that our understanding of the role of microclimatic conditions in determining ecological 

function is limited by a focus on thermal microclimates rather than a broader understanding of 

microclimatic conditions across multiple climatic axes. This work demonstrates the feasibility of 

using a network of low-cost custom sensors to monitor soil moisture in complex forested 

landscapes where existing soil moisture and precipitation products do not adequately describe the 

moisture available to organisms and provides insight on the drivers of soil moisture variation 
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across space and seasons. Our results, particularly the strong elevation gradient of moisture that 

is not entirely driven by the gradient of precipitation, indicate that local controls can be key 

predictors of moisture availability to organisms across a landscape.  
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Tables 

 

Table 2. GIS data used in microclimate models 

Variable Resolution 

(m) 

Source Description 

Elevation 30 Fridley 2009 Elevation in meters above sea level 

Slope 30 terrain() from 

‘raster’ 

Slope of each cell in elevation raster 

TPI 30 terrain() from 

‘raster’  

Difference between cell elevation and mean 

elevation of 8 surrounding cells 

TCI 30 Fridley 2009 ln(upslope area/tan(slope)) 

Mean T 30 Calculated from 

Fridley 2009 model 

Mean daily below-canopy temperature 

Precip 4000 PRISM1 Daily precipitation interpolated from weather 

station data using elevation 

VPD 30 Interpolated from 

PRISM1 

Daily maximum vapor pressure deficit; 

interpolated from 4km PRISM dataset using 

30m elevation data 

Max EVI 500 MODIS 

MCD12Q2v6 

Maximum annual EVI; 10-year mean 

derived from minimum EVI and EVI 

amplitude 

Maturity 500 MODIS 

MCD12Q2v6 

Day of year when EVI first crosses 90% of 

maximum EVI; 10-year mean 

Senescence 500 MODIS 

MCD12Q2v6 

Day of year when EVI last crosses 90% of 

maximum EVI; 10-year mean 

1: PRISM climate group (2021); downloaded October 2021 

 

Table 3. AIC table for soil moisture calibration. This table shows only models with lower-order 

terms for soil resistance or temperature when higher-order terms were present. Each column 

shows model coefficients for a given model term; each row shows a different model. 

Int resistance resistance2 resistance3 tempC tempC2 tempC3 resistance 
*tempC 

DF AICc delta 

0.33 3.56E-05 -3.24E-09 5.64E-14 -0.0033 
  

5.18E-08 8 -16560.6 0 
0.35 3.48E-05 -3.20E-09 5.56E-14 -0.0042 2.39E-05 

 
5.43E-08 9 -16559.8 0.76 

0.38 3.50E-05 -3.21E-09 5.58E-14 -0.0095 3.08E-04 -4.97E-06 6.54E-08 10 -16559.8 0.81 
0.30 4.02E-05 -3.44E-09 6.00E-14 -0.0023 

   
7 -16557.0 3.56 

0.30 3.98E-05 -3.41E-09 5.95E-14 -0.0029 1.86E-05 
  

8 -16555.8 4.81 
0.31 4.01E-05 -3.43E-09 5.98E-14 -0.0046 1.11E-04 -1.62E-06 

 
9 -16554.0 6.58 

0.67 -2.06E-05 -1.21E-10  -0.0049 3.49E-05  7.85E-08 8 -16523.1 37.49 
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Table 4. Calibration coefficients for soil volumetric moisture content 

Parameter value 

Intercept 0.334876 

Resistance 3.56 * 10-5 

Resistance2 -3.24 * 10-9 

Resistance3 5.64 * 10-14 

Soil temperature -0.00327 

Resistance * soil temperature 5.18 * 10-8 

 

 

 

 

 

 

 

Table 5. Effects of slope, elevation, day of year, and their interactions on 10-15 cm deep soil 

moisture in sensors which functioned for the entire period between summer 2020 and summer 

2021. Slope and elevation were standardized to a mean of zero and standard deviation of one to 

allow comparison of effect sizes. Soil moisture was logit transformed. 

Parameter Standardized estimate T value P value 

Intercept -2.09 -22.0 <0.001 

cosine(doy*0.0172) 0.12 63.0 <0.001 

sine(doy*0.0172) 0.05 23.3 <0.001 

Elevation 0.43 4.5 <0.001 

Slope -0.14 -1.5 0.141 

cosine(doy*0.0172)*Elevation -0.09 -43.3 <0.001 

sine(doy*0.0172)*Elevation -0.08 -38.7 <0.001 

cosine(doy*0.0172)*Slope 0.01 3.9 <0.001 

sine(doy*0.0172)*Slope 0.03 17.1 <0.001 

 

 

 

Table 6. Effects of topographic and meteorological drivers on summer soil moisture across all 

sensors. 

Parameter Standardized estimate T value P value 

Intercept -2.29 -31.0 <0.001 

Elevation 0.36 4.2 <0.001 

Log(TCI) -0.04 -0.5 0.635 
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Slope -0.14 -1.7 0.095 

TPI -0.04 -0.5 0.628 

Precipitation 0.07 20.0 <0.001 

VPD -0.04 -8.4 <0.001 

Radiation -0.07 -9.6 <0.001 

Below-canopy temperature -0.06 -12.6 <0.001 

sqrt(Maximum EVI) -0.10 -1.3 0.213 
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Figures 

 

Figure 8. Relationships between surface (0-5 cm) and deep (10-15 cm) soil moisture 

measurements. Soil moisture measurements were logit-transformed for visualization. Point and 

line colors are different for each site. Lines represent beset-fit linear models for each site. The 

black line shows a 1:1 relationship. Marginal distributions show the probability distribution 

function for each dataset.   
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Figure 9. Map of locations where soil moisture and temperature sensors were installed in 

GSMNP. Only points where sensors were collected and some data were downloaded are shown. 

Orange points do not have any recorded 10-15 cm deep soil moisture values due to sensor 

damage. All other points are colored based on their median deep soil moisture content. The inset 

map includes Big Creek and Cosby watersheds where stratified random sampling was used to 

choose sensor locations. 

 



74 

 

 
Figure 10. Predicted soil volumetric moisture content across resistance and temperature values. 

Solid lines represent model predictions at 5 degree temperature increments ranging from 10 

degrees (blue) to 35 degrees (red). Dotted black line shows previously published calibration 

(Mickley et al 2019). Parameter values are in Table 4. 
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Figure 11. Sensor success rates in data collection. This figure shows only sensors which were 

collected and recorded some data. An additional 13 sensors were not relocated and five sensors 

collected no useable data. 
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Figure 12. Distribution of sensors across environmental gradients within the Park. In each panel, 

black points are 10,000 points evenly spaced across the Park; purple points are sensor locations. 

Point size indicates the length of soil moisture sensor records.  
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Figure 13. Effect of slope and elevation on median annual 10-15 cm deep soil moisture in 

sensors deployed from July 2020-July 2021. Lines represent predictions of an additive model of 

elevation and slope; points are measured median soil moisture values (color of points is based on 

slope rounded to the nearest 10 degrees). Soil moisture was logit-transformed to improve 

normality and back-transformed for visualization. 
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Figure 14. Annual variation 10-15 cm deep soil moisture in sensors deployed from July 2020-July 2021. Panels represent low (mean – 

sd), middle (mean) and high (mean + sd) elevation. Thin lines show data binned into nearest integer standard deviation from the mean 

for elevation and slope. Thick lines represent predictions of soil moisture from a linear model with sine- and cosine- transformed day 

of year, slope, elevation, and interactions between the topographic variables and the seasonal variables. Soil moisture was logit-

transformed to improve normality and back-transformed for visualization
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Figure 15. Effects of topographic and daily weather predictors on summer soil moisture across 

all measured sites. Lines show partial slopes from linear mixed model of the effect of all 

predictors and random site intercepts on logit-transformed vmc. All predictors were standardized 

to a mean of zero and standard deviation of one to allow comparison of effect sizes. Points show 

vmc values used in the model; only values when canopies were between maturity and senescence 

dates were used. The color of the points reflects site identity. Soil moisture was logit-transformed 

to improve normality and back-transformed for visualization. Full model results are in  Table 6. 
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Conclusion 

 Local variation in moisture and temperature has been proposed as a key factor structuring 

the spatial variation in plant communities and ecological process in GSMNP since at least the 

1950s (Whittaker, 1956). However, microclimate data at scales relevant to the cove-to-ridge 

gradients over which plant communities change dramatically were not available until recently. 

Sixty-five years after Whittaker’s influential work qualitatively describing the relationship 

between local climate and plant communities in GSMNP, I quantitatively describe and model 

these patterns from two distinct angles. In Chapter 1, I used local temperature models (Fridley, 

2009) to model the distribution of plant species throughout the Park. The current distribution of 

plant species in the Park was not predicted better by microclimate data than macroclimate data; 

however, microclimatic buffering suggested that some species, particularly those in near-stream 

or high-TCI areas at middle elevations, could persist in their current locations even under 4 °C of 

regional climate warming. On the other hand, focusing on the single axis of temperature 

variation does not fully capture the climatic niches of plants. In Chapter 2 I developed new soil 

moisture sensors and collected soil moisture data to allow exploration of local moisture variation. 

The elevation gradient of soil moisture was much stronger than the corresponding precipitation 

gradient, suggesting that local controls (evapotranspiration or soil depth/texture) are key drivers 

of moisture availability in the Park. In addition, while several potential topographic (slope), 

plant-related (EVI), and meteorological (VPD, below-canopy temperature) drivers were 

correlated with moisture, no single proxy explained a large amount of variation. This 

demonstrates the critical need to develop better local models of soil moisture dynamics across 

complex landscapes to improve understanding of the drivers and effects of microclimatic 

conditions. 



91 

 

 Research on microclimate has always been limited by the available tools. Early studies of 

local variation in temperature and moisture relied on techniques that were labor-intensive and 

limited the ability of researchers to understand variation over time (e.g. Ball & Williams, 1968; 

Geiger, 1966). While tools for measuring thermal microclimate over time across landscapes are 

now commonly used in microclimate studies, many recent examinations of landscape-wide 

moisture variation still use techniques that require a person to be present to collect each sensor 

reading (e.g. Kaiser & McGlynn, 2018; Lookingbill & Urban, 2004). Soil moisture timeseries 

have been collected for other sites, but most examine single watersheds, sites selected for 

homogeneity across systems, or other areas where spatial kriging or other smoothing techniques 

can represent conditions between sparsely-placed sensors (e.g. E. J. Coopersmith, Minsker, & 

Sivapalan, 2014; Holden et al., 2016). New sensors such as those developed in Chapter 2 will 

facilitate increased sampling and improved understanding of the drivers and effects of local 

variation in soil moisture. 

Global change threatens ecological communities around the world, but understanding the 

effects of warmer temperatures, changes to rainfall patterns, and increases in extreme events will 

require improved understanding of the climatic conditions actually experienced by organisms. In 

topographically complex regions and under forest canopies, the processes that control 

temperature and moisture are complex and not captured by the climate data collected at weather 

stations. Chapter 1 suggests that many species which respond to below-canopy temperature may 

be impacted less by warming temperatures than global circulation models would indicate. 

However, several important caveats exist. First, some of the drivers of microclimatic buffering 

may themselves be affected by climate change; for example, if forest canopies are disrupted by 

disease or pest outbreaks, below-canopy climatic conditions may change much more rapidly than 



92 

 

predicted by either fine- or broad-scale climate models. Second, chapter 2 demonstrates that soil 

moisture also varies strongly on local scales in GSMNP. If moisture and temperature gradients 

do not shift synchronously, the range of suitable habitats for species which occupy particular 

microclimatic niches on both of these (or other) axes may shrink. Finally, it is not clear whether 

(or which) species respond most strongly to buffered below-canopy microclimatic conditions 

rather than above-canopy temperatures. For example, if canopy tree species’ distributions are 

most tightly linked to seedling survival, they may respond more strongly to below-canopy 

microclimates than if their distributions are linked to mature tree photosynthetic rates. Creating 

models that allow prediction of future microclimatic conditions based on weather data and other 

drivers will be critical for understanding the effects of global change on organisms and 

ecological processes. 
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Appendix 1: Supplemental material for Chapter 1 

Tables 

Table S1. Climate warming scenarios used as comparison for 4 – degree projected warming in 

GSMNP. All data obtained from 2.5 minute downscaling at worldclim.org. Warming is for the 

change in MAT from SSP3-7.0 in 2080-2100 compared to historical WorldClim data from 1970-

2000 in GSMNP. 

Model 

name 
Citation Institution 

Mean 

warming 

Range 

warming 

BCC-

CSM2-

MR 

(Zhang et al., 

2019) 
Beijing Climate Center, Beijing 100081, China 4.95 4.91-4.97 

CanESM5 
(Swart et al., 

2019) 

Canadian Centre for Climate Modelling and 

Analysis, Environment and Climate Change Canada, 

Victoria, BC V8P 5C2, Canada 

6.34 6.30-6.39 

CNRM-

CM6-1 

(Voldoire, 

2019) 

CNRM (Centre National de Recherches 

Meteorologiques, Toulouse 31057, France), 

CERFACS (Centre Europeen de Recherche et de 

Formation Avancee en Calcul Scientifique, Toulouse 

31057, France) 

4.41 4.40-4.43 

CNRM-

ESM2-1 

(Seferian, 

2019) 

CNRM (Centre National de Recherches 

Meteorologiques, Toulouse 31057, France), 

CERFACS (Centre Europeen de Recherche et de 

Formation Avancee en Calcul Scientifique, Toulouse 

31057, France) 

4.18 4.13-4.22 

GFDL-

ESM4 

(Horowitz et 

al., 2018) 

National Oceanic and Atmospheric Administration, 

Geophysical Fluid Dynamics Laboratory, Princeton, 

NJ 08540, USA 

3.49 3.46-3.52 

IPSL-

CM6A-

LR 

(Boucher et 

al., 2018) 
Institut Pierre Simon Laplace, Paris 75252, France 5.41 5.37-5.44 

MIROC-

ES2L 

(Hajima et al., 

2019) 

JAMSTEC (Japan Agency for Marine-Earth Science 

and Technology, Kanagawa 236-0001, Japan), AORI 

(Atmosphere and Ocean Research Institute, The 

University of Tokyo, Chiba 277-8564, Japan), NIES 

(National Institute for Environmental Studies, Ibaraki 

305-8506, Japan), and R-CCS (RIKEN Center for 

Computational Science, Hyogo 650-0047, Japan) 

4.37 4.33-4.40 

MIROC6 
(Takemura, 

2019) 

JAMSTEC (Japan Agency for Marine-Earth Science 

and Technology, Kanagawa 236-0001, Japan), AORI 
4.17 4.13-4.21 
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(Atmosphere and Ocean Research Institute, The 

University of Tokyo, Chiba 277-8564, Japan), NIES 

(National Institute for Environmental Studies, Ibaraki 

305-8506, Japan), and R-CCS (RIKEN Center for 

Computational Science, Hyogo 650-0047, Japan) 

MRI-

ESM2-0 

(Yukimoto et 

al., 2019) 

Meteorological Research Institute, Tsukuba, Ibaraki 

305-0052, Japan 
3.84 3.72-4.04 
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on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling 

groups for producing and making available their model output, the Earth System Grid Federation 

(ESGF) for archiving the data and providing access, and the multiple funding agencies who 

support CMIP6 and ESGF.  
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Table S2. Effects of model structure choice on model fit. 

 formula Mean AUC Overall WAIC 

Elevation 
~ elev + Easting + Northing + 

log(Plotsize) 
0.72 53.5 

  macro interp micro macro interp micro 

No 

interactions 

~ MAT + MAT2 + log(TCI) + 

totrad + Easting + Northing + 

log(Plotsize) 

0.80 0.80 0.80 49.3 49.3 48.7 

Full model 

~ (MAT + MAT2)*(log(TCI) + 

totrad) + Easting + Northing + 

log(Plotsize) 

0.80 0.80 0.80 49.0 49.0 49.1 
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Table S3. Model fit and change in area for each species with AUC > 0.8 

 

Species Code Species Name AUC Stable future:current Dispersal future:current 

    elev  macro interp micro macro interp micro macro interp micro 

ABIEFRA Abies fraseri 0.98 0.98 0.99 0.98 0.00 0.00 0.04 0.00 0.00 0.04 

ACERRUB Acer rubrum 0.79 0.83 0.82 0.82 0.63 0.59 0.82 0.91 0.83 1.07 

ACERSPI Acer spicatum 0.90 0.91 0.90 0.91 0.00 0.00 0.06 0.00 0.00 0.06 

ACTARACR Actaea racemosa 0.63 0.83 0.84 0.85 0.12 0.12 0.41 0.20 0.17 0.46 

ADIAPED Adiantum pedatum 0.72 0.89 0.90 0.90 0.41 0.48 0.79 1.91 2.04 2.03 

AESCFLA Aesculus flava 0.69 0.83 0.83 0.83 0.04 0.06 0.30 0.04 0.06 0.32 

AGERALS Ageratina altissima 0.81 0.83 0.83 0.84 0.01 0.02 0.16 0.01 0.02 0.16 

ARISMAC Aristolochia macrophylla 0.71 0.87 0.86 0.86 0.11 0.15 0.37 0.35 0.43 0.79 

BETUALL Betula alleghaniensis 0.82 0.86 0.86 0.87 0.03 0.04 0.28 0.03 0.04 0.28 

CALYFLOG Calycanthus floridus 0.83 0.89 0.89 0.88 0.00 0.01 0.14 0.08 0.07 0.41 

CARDDIP Cardamine diphylla 0.62 0.84 0.84 0.85 0.05 0.09 0.35 0.10 0.15 0.41 

CAREDEB Carex debilis 0.81 0.83 0.82 0.83 0.07 0.20 0.24 0.09 0.25 0.27 

CARYALB Carya alba 0.87 0.88 0.87 0.88 1.00 1.00 1.00 6.79 6.00 4.21 

CARYGLA Carya glabra 0.80 0.82 0.82 0.82 0.80 0.81 0.99 2.58 2.47 2.15 

CASTDNT Castanea dentata 0.70 0.81 0.81 0.81 0.06 0.07 0.37 0.13 0.17 0.59 

CAULTHA 
Caulophyllum 

thalictroides 0.66 0.87 0.88 0.89 0.02 0.02 0.24 0.06 0.06 0.36 

CHIMMAC Chimaphila maculate 0.79 0.84 0.84 0.85 0.36 0.36 0.84 1.45 1.30 1.68 

CLINUMB Clintonia umbellulate 0.72 0.80 0.82 0.82 0.02 0.02 0.24 0.02 0.03 0.30 

COLLCAN Collinsonia canadensis 0.80 0.84 0.85 0.86 0.01 0.02 0.23 0.03 0.04 0.27 

COREMAJ Coreopsis major 0.81 0.92 0.92 0.92 1.00 0.63 0.99 3.81 1.16 1.66 

CORNFLO Cornus florida 0.87 0.88 0.87 0.87 1.00 1.00 1.00 3.37 3.41 2.47 

CYSTPRO Cystopteris protrusa 0.66 0.80 0.80 0.81 0.11 0.11 0.40 0.20 0.20 0.61 

DEPAACR Deparia acrostichoides 0.68 0.87 0.88 0.88 0.01 0.02 0.19 0.02 0.03 0.22 
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DESMNUD Desmodium nudiflorum 0.78 0.82 0.81 0.82 0.83 0.64 1.00 3.75 2.54 3.24 

DICHCMM 
Dichanthelium 

commutatum 0.80 0.88 0.88 0.88 0.99 0.77 0.78 5.57 2.66 1.51 

DRYOINT Dryopteris intermedia 0.73 0.84 0.84 0.84 0.04 0.05 0.29 0.05 0.06 0.30 

DRYOMAR Dryopteris marginalis 0.59 0.81 0.81 0.81 0.23 0.27 0.51 0.57 0.54 0.88 

EPIGREP Epigaea repens 0.71 0.86 0.86 0.86 0.17 0.09 0.34 0.57 0.25 0.66 

EUONAME Euonymus americana 0.85 0.86 0.86 0.85 1.00 1.00 1.00 4.64 5.13 3.25 

GALAURC Galax urceolata 0.65 0.84 0.82 0.83 0.06 0.09 0.32 0.33 0.32 0.66 

GALICRC Galium circaezans 0.83 0.86 0.85 0.85 1.00 1.00 1.00 12.27 11.68 7.13 

GAULPRO Gaultheria procumbens 0.62 0.82 0.81 0.83 0.19 0.35 0.42 0.63 0.95 0.81 

GAYLBAC Gaylussacia baccata 0.77 0.88 0.88 0.89 0.05 0.05 0.25 0.14 0.18 0.45 

GAYLURS Gaylussacia ursina 0.76 0.87 0.87 0.87 0.01 0.01 0.25 0.27 0.22 0.74 

HALETETM Halesia tetraptera 0.64 0.83 0.83 0.83 0.10 0.13 0.41 0.18 0.20 0.55 

HOUSSER Houstonia serpyllifolia 0.78 0.82 0.81 0.81 0.01 0.02 0.24 0.01 0.02 0.24 

HUPELUC Huperzia lucidula 0.78 0.81 0.81 0.81 0.46 0.33 0.57 0.46 0.33 0.57 

ILEXOPAO Ilex opaca 0.85 0.84 0.85 0.84 0.87 0.99 0.94 2.87 3.47 2.11 

KALMLAT Kalmia latifolia 0.64 0.82 0.80 0.81 0.25 0.23 0.50 0.53 0.49 0.84 

LAPOCAN Laportea canadensis 0.65 0.82 0.82 0.83 0.07 0.09 0.34 0.09 0.09 0.36 

LINDBEN Lindera benzoin 0.74 0.84 0.84 0.83 0.35 0.56 0.94 0.99 1.58 2.06 

LIRITUL Liriodendron tulipifera 0.82 0.85 0.85 0.84 0.30 0.42 0.74 0.77 1.04 1.34 

MAGNACU Magnolia acuminata 0.70 0.81 0.81 0.81 0.02 0.02 0.28 0.08 0.07 0.50 

NYSSSYL Nyssa sylvatica 0.80 0.88 0.88 0.88 0.40 0.27 0.64 1.16 0.90 1.24 

OSMOCLA Osmorhiza claytonii 0.58 0.84 0.85 0.86 0.02 0.04 0.25 0.17 0.17 0.50 

OXALMON Oxalis montana 0.80 0.86 0.86 0.86 0.06 0.11 0.22 0.06 0.14 0.24 

OXYDARB Oxydendrum arboretum 0.79 0.86 0.86 0.86 0.31 0.32 0.58 0.84 0.84 1.04 

PARTQUI 
Parthenocissus 

quinquefolia 0.79 0.82 0.82 0.81 1.00 1.00 1.00 3.92 4.20 3.08 

PHEGHEX 
Phegopteris 

hexagonoptera 0.66 0.82 0.83 0.83 0.04 0.07 0.32 0.27 0.31 0.68 
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PICERUB Picea rubens 0.95 0.95 0.96 0.96 0.00 0.01 0.15 0.00 0.01 0.15 

PINUPUN Pinus pungens 0.74 0.91 0.90 0.90 0.00 0.00 0.13 0.07 0.08 0.41 

PINURIG Pinus rigida 0.81 0.89 0.89 0.89 0.58 0.37 0.66 2.21 1.34 1.34 

PINUSTR Pinus strobus 0.88 0.89 0.90 0.90 1.00 1.00 1.00 3.60 3.40 2.40 

PINUVIR Pinus virginiana 0.90 0.93 0.93 0.94 1.00 0.99 1.00 5.50 3.65 2.26 

POLYPUB Polygonatum pubescens 0.75 0.84 0.85 0.84 0.02 0.02 0.23 0.05 0.04 0.33 

POTECND Potentilla canadensis 0.76 0.81 0.82 0.82 1.00 1.00 1.00 7.20 7.04 3.93 

PROSLAN Prosartes lanuginose 0.64 0.82 0.83 0.84 0.10 0.15 0.39 0.17 0.21 0.49 

PRUNPEN Prunus pensylvanica 0.89 0.90 0.90 0.90 0.00 0.00 0.10 0.00 0.00 0.10 

PTERAQU Pteridium aquilinum 0.78 0.90 0.90 0.90 0.28 0.10 0.37 1.23 0.38 0.74 

QUERALB Quercus alba 0.81 0.85 0.85 0.85 1.00 1.00 1.00 4.14 3.87 2.85 

QUERCOCC Quercus coccinea 0.77 0.88 0.88 0.88 0.14 0.10 0.44 0.70 0.52 0.98 

QUERMON Quercus montana 0.72 0.87 0.87 0.86 0.20 0.12 0.41 0.78 0.49 0.89 

QUERVEL Quercus velutina 0.81 0.86 0.86 0.87 1.00 0.93 0.99 3.87 2.92 2.06 

SANGCND Sanguinaria canadensis 0.63 0.84 0.84 0.84 0.09 0.12 0.60 0.38 0.50 1.29 

SANICANC Sanicula canadensis 0.80 0.82 0.82 0.82 1.00 1.00 1.00 6.36 6.61 3.63 

SASSALB Sassafras albidum 0.77 0.84 0.84 0.84 0.22 0.23 0.50 0.76 0.69 0.97 

SMILGLA Smilax glabra 0.85 0.89 0.89 0.89 0.98 0.99 0.95 2.86 2.80 1.94 

SMILHER Smilax herbacea 0.77 0.81 0.81 0.81 0.01 0.03 0.26 0.01 0.03 0.29 

SMILROT Smilax rotundifolia 0.75 0.80 0.80 0.80 0.42 0.40 0.73 0.71 0.69 1.07 

SMILTMN Smilax tamnoides 0.78 0.82 0.81 0.80 0.24 0.32 0.94 0.75 0.83 1.84 

STELPBR Stellaria pubera 0.72 0.81 0.82 0.82 0.05 0.07 0.31 0.06 0.08 0.32 

THALTHA Thalictrum thalictroides 0.74 0.85 0.86 0.85 0.47 0.27 0.92 1.27 0.70 1.66 

TIARCOR Tiarella cordifolia 0.62 0.82 0.82 0.83 0.09 0.17 0.51 0.09 0.18 0.52 

TILIAME Tilia americana 0.77 0.84 0.83 0.83 0.09 0.14 0.44 0.22 0.31 0.74 

TILIAMEH 
Tilia americana 

(heterophylla) 0.58 0.82 0.83 0.84 0.03 0.05 0.29 0.10 0.12 0.43 

TOXIRAD Toxicodendron radicans 0.89 0.88 0.89 0.89 1.00 1.00 1.00 8.85 9.21 5.96 
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VACCERY 
Vaccinium 

erythrocarpum 0.87 0.87 0.87 0.86 0.00 0.01 0.11 0.00 0.01 0.11 

VACCHIR Vaccinium hirsutum 0.84 0.89 0.89 0.89 0.03 0.04 0.26 0.08 0.10 0.41 

VACCPAL Vaccinium pallidum 0.75 0.86 0.86 0.86 0.85 0.64 0.92 2.01 1.29 1.34 

VACCSIM Vaccinium simulatum 0.76 0.82 0.82 0.81 0.02 0.02 0.19 0.02 0.02 0.23 

VACCSTA Vaccinium stamineum 0.72 0.85 0.85 0.85 0.48 0.34 0.73 1.12 0.80 1.00 

VIBULAN Viburnum lantanoides 0.89 0.91 0.91 0.90 0.00 0.00 0.08 0.00 0.00 0.08 

VIOLROT Viola rotundifolia 0.68 0.82 0.82 0.83 0.03 0.05 0.31 0.06 0.10 0.42 

VIOLSOR Viola sororia 0.85 0.88 0.88 0.87 1.00 1.00 1.00 12.25 12.53 5.68 

VITIAES Vitis aestivalis 0.76 0.81 0.80 0.81 0.41 0.36 0.68 1.77 1.63 1.81 
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Figures 

 
Figure S1. Projected warming from SSP3-7.0 for each of the nine GCMs downscaled by 

WorldClim 2.1 compared to 1970-2000 records. 
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Figure S2. Relationship between regional temperature and thermal lapse rates. The first row 

shows the relationship between daily lapse rates and inferred temperatures at sea level (lapse rate 

model intercepts) for (a) thermal maxima and (b) thermal minima. Panel (c) shows the predicted 

above-canopy thermal maxima and panel (d) above-canopy thermal minima across elevation for 

a warm (18 °C at sea level) and cold (14 °C at sea level) day. Differences in temperature at low 

elevation (300 m) and high elevation (2000 m) are shown as black line segments. Since the 

slopes are less steep on cold days, increasing regional temperatures lead to larger predicted 

changes in temperature at lower elevations. 
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Figure S3. AUC scores for each model; species are arranged on the x-axis based on their mean 

elevation in sampled plots. Red points are macroclimate models, yellow points interpolation 

models, and blue points microclimate models. Triangles represent trees and shrubs; circles 

represent herbaceous species. The grey line at AUC=0.8 was the threshold used for including 

species in predictions. Species were only included in main paper predictions if all three models 

had AUC > 0.8. 
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Figure S4. Proportion of current suitable habitat area that will remain suitable with 4 °C of 

macroclimate warming; without regard to model goodness-of-fit (this is equivalent to Fig. 3 in 

the main text but with more species) Points are arranged on the x axis according to species 

current mean elevation; lines are loess smoothing across the points for each climate model.  
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Figure S5. Responses of plant species to 4 °C of macroclimate warming; without regard to model 

goodness-of-fit (this is equivalent to Fig. 4 in the main text but with more species). Panel A 

shows the ratio for a no-dispersal scenario; points represent the fraction of current area that will 

still be suitable. Panel B shows the ratio for an unlimited dispersal scenario; points represent the 

change in suitable habitat area with climate change. The grey line in both panels indicates an 

equal area of future and current habitat; lower values represent a reduction in habitat area (note 

different scales of Y-axes). Species which had >98% stable habitat in any SDM were removed 

for visualization.  
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Figure S6. Effect of climate model and topographic position on warming and species response to 

warming; without regard to model goodness-of-fit (this is equivalent to Fig. 6 in the main text 

but with more species). Colors show binned mean values of MAT (row 1), change in MAT with 

warming scenario (row 2), fraction of current species that will still be within suitable habitat 
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(row 3), and number of future species/number of current species with unlimited dispersal (row 

4). Values are based on 10,000 regularly sampled points within the Park; bins are shown only if 

they contain at least 10 values.   

 

 

Figure S7. Potential cryptic refugia in GSMNP; without regard to model goodness-of-fit (this is 

equivalent to Fig. 7 in the main text but with more species). Geographic differences in the effect 

of below-canopy microclimate on stable habitat (additional proportion of species that are still 

within stable habitat) in each 30 m pixel. Blue indicates areas where the microclimate model 

predicts greater stability; red indicates areas where the interpolation model predicts greater 

stability. Panel (A) shows all of GSMNP, panel (B) shows the northeast corner. See Fig. 1 for 

exact spatial location of panel B. 
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Supplemental information - Projections of microclimate-based species distributions in complex terrain indicate widespread 

cryptic refugia under climate change 
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Figs S51 – S65 

Jordan R. Stark, Jason Fridley 
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Appendix 2: Sensor design and construction 

The following design is based on the Environmental Microcontroller Units (EMUs) of 

James Mickley and colleagues at UCONN. See https://github.com/mickley/EMU and:  

Mickley, J. G., T. E. Moore, C. D. Schlichting, A. L. DeRobertis, E. Mason, & R. Bagchi (2018). 

Measuring Microenvironments for Global Change: DIY Environmental Microcontroller Units 

(EMUs). Methods in Ecology and Evolution. 1-7. doi: 10.1111/2041-210X.13128  

The below modifications include programming and data access via Arduino IDE rather than Lua; 

more robust external wiring and housing, soldered connections on a pre-printed circuit board in 

place of a breadboard; a soil temperature sensor; and two rather than one soil moisture sensors.  

Total per-unit cost is about $20. 

This ‘B’ version of sensors was primarily designed to be completely belowground and 

not detected by animals in the field, but it contains several other improvements compared to the 

‘A’ version including (1) pre-printed circuit boards which reduce construction time and improve 

reliability, (2) improved housings constructed from PVC for lower cost and increased water 

resistance, and (3) new code that allows sensor to enter ‘deep sleep’ if there is an error with the 

RTC and allows data download without uploading a different program. All Arduino scripts as 

well as data processing scripts are available at 

github.com/jordanstark/Soil_temp_moisture_EMU/ . 

The Arduino code was written with Arduino IDE version 1.8.9. The board manager was 

used to install ‘esp8266’ version 2.5.2 (note that more recent versions may be incompatible with 

the SPIFFS storage!). The following Arduino libraries are also required: ‘RTClib’, ‘uRTClib’, 

‘OneWire’, ‘DallasTemperature’, and ‘Adafruit_1x15’. Drivers to install and communicate with 

the microcontrollers are available from https://www.wemos.cc/en/latest/ch340_driver.html . 

https://www.wemos.cc/en/latest/ch340_driver.html
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Wiring & testing components 

For testing, it is useful to have a copy of the printed circuit board on a breadboard—wired 

as in this diagram. A battery pack can be attached to the lower power rails to provide power. I 

generally test (1) microcontrollers-just make sure that they turn on; (2) RTCs, both to check that 

the time can be set and that the alarm function works; (3) MOSFETs, to make sure they work 

with the alarm. I have not had issues with other components but they could also be checked using 

this wiring. 

 

Fig S93. Fritzing circuit diagram for use with a breadboard. 

 

1. Circuit board – upgraded to a custom printed circuit board – design attached. We ordered 

these from JLCPCB for ~$0.50 per board--they decrease cost and time. If you are only 
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making a few, you could solder these instead (see ‘A’ protocol at 

https://sites.google.com/site/fridleylab/home/protocols). 

Gerber design files in ‘Construction’ folder; download ‘B sensor PCB Gerber.zip’. 

i. Solder ~10 cm of color-coded wires to the “1wire” section of the board (red to 3v, 

black to gnd, yellow to OneWire). If using any I2C probes (not described in this 

protocol but see Mickley et al. or the ‘A’ sensor protocol) additional wires can be 

soldered to the I2C section 

  

Fig S94. Printed circuit board with soldered components 

 

 

2. Other components soldered to circuit board 

These components (pre-tested) can be wired into their correct locations on the circuit board 

above: 

https://sites.google.com/site/fridleylab/home/protocols
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i. microcontroller – lolin d1 mini 

Use short pins with black plastic part underneath. Test to make sure that the 

microcontroller can be programmed by uploading any sketch.                                                        

 ii. real-time clock – ds3231sn 

Remove upper-left resistor marked “102” and 4x472 resistor across from vcc. Remove 

LED lights to save power. MAKE SURE TO TEST THESE-about 25% do not work (either cannot 

accept time input or will not enable alarm). I am setting and checking the time with 

board_config.ino and then running test_clock_blink.ino which should turn the microcontroller 

on once per minute and blink the onboard LED 3x. 

iii. analog-to-digital converter – ads1115 

 Solder to pins. I haven’t had any issues with these. 

 iv. P-mosfet 

Test these with test_clock_blink.ino sketch to make sure they work before soldering in! 

The front (where the black box sticks out) should point in the direction of the arrow on the circuit 

board. 

 v. Battery pack 

 Solder to ‘5V’ (red) and ‘GND’ (black) near the RTC and d1 mini. 

vi. Chip for soil moisture sensors (x2) 

Attach ~15 cm leads and cover each top pin with heat shrink before soldering to board. 

Do not insert completely into board—you want to be able to bend the chips back slightly to fit in 

the PVC housing. Remove the LEDs to save power. 

 vii. Pins for jumper 

Use extra pins from microcontrollers or other components, cut to only 2 pins. 
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 viii. Resistors 

1k and 330k resistors-easiest to wire these on the back of the board and cover 

connections with a piece of electrical tape to avoid accidental shorts. Can wire on the front if 

careful… 

3.  Sensors 

 i. soil temp – ds18b20 

Cut wire to 50 cm length. Remove ~3cm of shielding and strip ~ 1cm of each wire. 

 ii. soil moisture (x2) 

Remove pins, taking as much solder out of pin holes as possible with solder sucker. To 

make the shallow probe, cut excess wire from soil temp probe to 40 cm. Cut off excess yellow 

wire and solder red and black wires to probe; direction does not matter. Strip as little of the wire 

as possible. To make the deep probe, use 50cm of 2-strand 24awg wire. After soldering wires to 

probes, cover connection between wire and probe generously with 100% silicone and let dry at 

least overnight—this often requires touching up on the side the wire was resting on the next day. 

Paint modified silicone sealant over soldered connections on the other side. Remove ~2 cm of 

exterior shielding from the other end and strip 1-2cm.  
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Fig S95. Preparation of soil moisture sensors. Panel A (left) shows removal of pins and solder; 

panel B (right) shows moisture sensors with new wires attached and waterproof silicone around 

connections. 

 

Housing and assembly 

1. PVC and fittings – 2” FTP cap, 2” adapter, 2” x ½” bushing, PG13.5 cable gland 

Use PVC primer and cement to permanently attach adapter to bushing. When dry, coat 

cable gland threads with 100% silicone and tightly screw into bushing. Apply thin layer of 100% 

silicone around the connection between cable gland and PVC. Let dry again.   

2. Sensor attachment to circuit board 

Insert wires from soil moisture and temperature probes through cable gland. Solder the 

wires from the 50 cm long moisture probe to the chip in the ‘VMC2’ slot and the 40 cm long 

moisture probe to the chip in the ‘VMC3’ slot. Solder wires from temp probe to respective wires 

from ‘onewire’ slots (yellow- OneWire, red- 3V, black – gnd). Cover connections with heat 

shrink to avoid shorts. Solder wires for battery pack onto their connectors.  
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Fig S96. Soldering sensor wire to prepared circuit board. Note that it is generally easiest to 

install circuit boards in housing before attaching sensors since the moisture sensor will not fit 

through cable glands. 

 

3. Waterproofing 

Position wires for soil sensors so that the stripped portion of wire is just inside of the 

PVC housing. Remove the outer screw cover of the cable gland and fill the inner ring around the 

wires with 100% silicone. Let dry at least 24h.  
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Fig S97. Nearly assembled sensors  

  

Testing, software and assembly 

1. Board and clock configuration: files at https://github.com/jdfridley/Sensors 

Run board_config.ino with SPIFFS set to 3M to format SPIFFS and set the clock time. 
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Fig S98. Settings configuration for SPIFFS in Arduino IDE 

2. ESP8266 code 

Upload B_sensor_read_dl.ino to microcontroller. Make sure to edit the sensor number! This 

code will write data from each sensor to SPIFFS every hour. Check back in several days to make 

sure all sensors are reading reasonable values (see ‘data download’ section below). For sensors 

with unusual values, check wiring/sensors/etc to determine cause. This program will continue 

reading after downloading data; to stop reading remove one or more batteries. DO NOT store 

using board_config.ino program as this will drain batteries. 
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Assembly 

Wrap battery pack in duct tape (electrical tape also works) to avoid damaging batteries by 

scraping against electrical components. Place battery pack between clock and D1 mini and 

insert all into PVC housing (it is a tight fit!). Place jumper over pins on circuit board. Wrap 

threads with PTFE tape. Place two silica gel packets in housing and seal tightly.  

 

 

Fig S99. Final sensor assembly. Panel A (left) shows circuit board inside sensor housing without 

battery pack; Panel B (right) shows circuit board and battery pack inside sensor housing.  

 

Sensor installation 

Use tulip bulb planter to create a hole slightly deeper than sensor housing and place sensor 

housing tightly in hole. Install soil moisture sensors upslope and to the left, with wires in a 

shallow trench leading back to housing. Pack soil back around housing and cover with removed 

leaves. Flag trees on either side of the sensor and note position between trees (ie center, or 3 feet 
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from right tree looking upslope). Sensors are easily detected for data retrieval using a metal 

detector. 

 

Data download and processing 

1. Downloading data with PuTTY 

To download data, remove the jumper, plug microcontroller into computer and save serial input 

using PuTTY (input will start as soon as the microcontroller is plugged in). Files are saved as a 

raw text file (you can use the .txt extension to open in notepad or another text program). 

 

 

Fig S100. Configuration of PuTTY for data download. Note that the COM port may not be 

COM5 on all systems. 

 

2. Converting raw files to .csv (in R) 

For anything but a very small dataset, it is most convenient to process the files into a more 

standard format that can be read into R or other data analysis programs. To do this, place all of 

the raw data files in an otherwise empty folder. In a separate folder, save the calibration 
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coefficients (calib_coefs.csv) that convert raw readings from the soil moisture probes and soil 

temperature probe to volumetric soil moisture. You can then run the R script ‘ReadBSensors.R’; 

edit the ‘data_path’ at the top to the folder with sensor files in it, the ‘Metadata_path’ to the 

folder with calib_coefs.csv in it, and the ‘Out_path’ to the folder where you would like to save 

the finished .csv file with all of the data. The file will be saved as ‘sensordata.csv’ unless you edit 

the last line of code to include some other name. Note that this script assumes the temperature is 

the same for both of the soil moisture probes and the soil temperature probe; if they are installed 

at different depths you may want to calculate a temperature correction. Additional R scripts for 

removing dates when sensors were not deployed in the field and identifying malfunctioning 

sensors are available at https://github.com/jordanstark/Soil_temp_moisture_EMU/DataCleaning 

 

Useful links and resources 

  

The components and connections in this design are based largely on Mickley, J. G., T. E. 

Moore, C. D. Schlichting, A. L. DeRobertis, E. Mason, & R. Bagchi (2018). Measuring 

Microenvironments for Global Change: DIY Environmental Microcontroller Units 

(EMUs). Methods in Ecology and Evolution. 1-7. doi: 10.1111/2041-210X.13128 .  

 

In addition to this paper, Mickley et al have a fantastic github resource for EMUs with 

troubleshooting and calibration information: https://github.com/mickley/EMU 

 

Many thanks to Fernanda Santos at Oak Ridge National Lab for comments on this 

protocol. 

http://dx.doi.org/10.1111/2041-210X.13128
https://github.com/mickley/EMU
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