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Abstract 

Lipids are the building blocks of biological membranes, and the types of lipids that 

compose these cellular envelopes influence the physicochemical properties of the chemicals that 

can enter or exit the cell across the membrane. This work focuses on the lipid membrane 

compositions of eukaryotic (red blood cells) and prokaryotic (Pseudomonas aeruginosa) 

membranes. By analyzing the lipid-lipid and lipid-protein interactions results of the computational 

simulations, insights into lipid aggregation, bilayer leaflet behavior, membrane asymmetry, and 

small molecule transport through protein channels were obtained. The differences between 

prokaryotic and eukaryotic cell membranes are qualitative known; however, this work provides 

these concepts through quantitative evidence using multiscale molecular dynamics simulations. 

The results show that membrane leaflet asymmetry affects the membrane properties and protein-

lipid interactions. The CLASP algorithm was employed to efficiently simulate the transport of 

small molecules through a bacterial membrane porin and analyze the resulting contacts of that 

molecule with the pore-lining residues. 
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CHAPTER I – Fingerprinting plasma membrane lipidome of human red 

blood cells using computational modeling techniques 

Background 

Lipidomics1. The rapid development of genomics technology, specifically mass spectroscopy, 

has provided immense insight into cell processes and the metabolites that drive these behaviors. 

Metabolomics is studied for healthy and diseased cells with lipidomics reserving its own field of 

exploration. A lipidome is a comprehensive profile of lipid types that is specific to a cell type 

and the characteristic of these lipids to inherently self-assemble into bilayer membranes provides 

insight into the intra- and intercellular pathways of a cell. The study of lipidomics provides 

details on lipid type concentrations in a cellular membrane and their respective locations in the 

bilayer as well as the leaflet. The interactions between lipid types are important to note because 

this can determine properties of lipid-lipid and lipid-protein interactions which can be useful for 

delivery and transport research for diseased cells. Cell membranes composition can be 

influenced by diet2, among other environmental factors, resulting in diseased cells and disrupting 

the homeostasis the cell works very hard to maintain. Such diseases linked to changes in lipid 

composition include cancers, HIV, diabetes, atherosclerosis, cardiovascular disease, and 

Alzheimer’s disease. To study these diseases and discover methods to combat or reverse their 

effects, lipidomics research can identify the change in lipid concentration and position over time 

providing more information concerning transport pathways and their respective proteins. 

Lipidomics can map the composition of cell type plasma membranes as well as individual 

membrane-bound organelles in those respective cell types.  
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Computational Modeling3. Computational modeling systems (CMS) are tools that allow 

scientists and researchers to efficiently study complex systems through mathematical- and 

physics-based algorithms. This iterative modeling technique allows high-throughput testing of 

systems in a comprehensive environment that can be tailored to the researcher’s needs. The 

computational platform provides a wide range of modeling tools depending on the subject matter 

being studied, which can be made even more efficient through different representation methods 

and manipulation of code scripts. Computational systems allow scientists to provide educated 

inferences to experimental researchers based on generated representational structures (R-

structures) and quantitative data approximations. The computational modeling methods provide 

researchers with the ability to manipulate experimental variables while modifying the protocols 

to develop even more logical workflows. A system can be represented by innumerable models 

that are all equivalent in nature, however it is the researcher’s decision of which model to use, 

the manipulations applied to the model, and the efficiency of generating such a model. The 

extraordinary capabilities of computational modeling scientific applications provide researchers 

with more freedom to tune experiments 

in a faster and individualized way.  

Simulation Methods Hierarchy4. The 

hierarchical organization of simulation 

methods was developed on the 

multiscale modeling which is the 

simultaneous implementation of 

multiple models at different scales for 

analyzing a system. These different 

Figure 1. Simulation methods hierarchy schematic plotted based on time 

scale and structure length. 
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scales utilized different levels of resolution; with macroscale models being too broad and not 

accurate enough to microscale models being not efficient enough and too specific. Researchers 

employing multiscale modeling can move between hierarchical levels to ensure the simulation 

and resulting information fit their needs. Multiscale modeling unifies three components: (1) 

analysis allowing researchers to understand the dynamic relationship between the different 

resolutions, (2) models providing visual representations of the coupling of different scales, and 

(3) algorithms implementing multiscale concepts to produce results. The two resolutions used 

most often in biomolecular simulations are atomistic and coarse grain simulations that are 

categorized under molecular dynamics. Atomistic simulations are conducted on the microsecond 

timescale and in the nanoscale. This method maintains the full detail of each atom in the system; 

however, it is not very affordable computationally. Coarse grain simulations are conducted on 

the millisecond timescale and in the nanoscale and follow a mapping pattern by grouping 

approximately 4 atoms to form a bead. This method is computationally affordable while 

preserving the chemical entity of the system. These two methods are easily comparable by 

utilizing reverse mapping algorithms. 

Molecular Dynamics5. Molecular Dynamics (MD) is a computational simulation method of the 

physical movements of atoms and molecules of a system that can be used for studying the 

physical and chemical properties of solids, liquids, amorphous materials, and biological 

molecules. Although quantum mechanics is the accepted theory for studying molecular 

interactions, MD is used to simulate these interactions using Newton’s law of motion and set 

environmental parameters to produce accurate results. The trajectories of the atoms of an MD 

system are collected via an iterative process of positions over a specified time period at each time 

step. A box-shaped environment is constructed for the system and each atom’s position is 
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recorded as an x, y, and z-coordinate and corresponds to the time step in which it is in that 

coordinate. As the particles in the system undergo changes in position, they experience 

interactive forces from other particles and forces can be calculated for an individual atom or 

molecule and the forces acting on it to produce a net force. The change in position of the particle 

is ultimately calculated by an algorithm based on the known mass of the atom or molecule and 

its change in velocity at a given time. A limitation in MD is that the boundaries of the box 

housing the system can interact with the particles causing discrepancies in the data. However, the 

addition of boundary conditions can be applied to allow for an infinite replication of the box to 

allow particles to bass through the box walls, which can be visualized by periodically translating 

the box in a visual molecular dynamics (VMD) software. Furthermore, position restraints can be 

applied to the system or individual particles as needed based on the simulation.  

Introduction 

Lipids7. Lipids are defined as biological molecules 

that are present in all cells and aggregate in order to 

construct membrane matrices. The lipid category of 

molecules is comprised on many subfamilies with 

their own properties; however, all lipids are similar in 

that they are extremely hydrophobic and moderately 

soluble in water. The general functions of lipids are 

(1) to form bilayer membranes of cells and 

organelles, (2) to store energy if lipid contains 

hydrocarbon chains, and (3) to participate in intra- 

and intercellular signaling events. This work focuses on glycerophospholipids which are 

Figure 2. Representative phospholipid structure6. 
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composed of a polar head and a nonpolar fatty acid tail. The polar head consists of a phosphate 

group, a glycerol group, and an alcohol group. Lipid families are differentiated by the alcohol 

present in the headgroup. The fatty acid tails are bonded to the headgroup via an ester bond. 

Glycerophospholipids can be saturated; does not contain any double bonds in fatty acid carbon 

tails, unsaturated; contains one double bond in fatty acid tails, or polyunsaturated; contains two 

or more double bonds in fatty acid tails.  

Bilayer Membranes. Lipid bilayer membranes contain two layers of aggregate lipids 

(composition based on cell type) and form due their amphiphilic properties. This bilayer 

arrangement is driven by the hydrophobic repulsion of the fatty acid tails from water and the 

hydrophilic properties of the headgroups. The bilayer consists of an exoplasmic leaflet that faces 

the outside of the cell and a cytoplasmic leaflet that shares a barrier with the cytoplasm of the 

cell. The membrane functions as the gate between the biological environment and the inside of 

the cell and facilitates transport of molecules via embedded protein channels. The characteristics 

of the membrane, types of proteins embedded in the membrane, and lipid composition are 

determined by the structure and function of the specific cell type.  

Red Blood Cells8. Red blood cells (RBCs) are the cellular component of blood that are tasked 

with carrying oxygen from the lungs to the tissues and conversely carry carbon dioxide to the 

lungs for excretion. A mature RBC is round and biconcave to allow for transport through very 

small blood vessels. These cells contain a membrane bilayer with proteins and hemoglobin while 

lacking a nucleus. RBCs are developed in bone marrow beginning as a type of multipotent 

mesenchymal stem cell termed a hemocytoblast and differentiates into an erythroblast. The 

erythroblast then fills with hemoglobin and the cell’s nucleus and cytoplasm are eliminated. In 
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the last stage of differentiation, the cell is termed a 

reticulocyte which becomes a fully mature RBC. On 

average, an adult human has approximately 5.2 

million red blood cells per cubic millimeter of 

blood. In some cases, red blood cells can present an 

abnormal shape as in pernicious anemia (oval), 

sickle cell anemia (crescent), and acanthocytosis 

(spiked). There is a critical need for research into 

the physiochemical properties and biological 

function of asymmetrical RBC membranes.  

Experimental Overview. Advances in membrane lipidomics have revealed a rich chemical 

diversity and leaflet asymmetry in eukaryotic cells1,10-16 which contrast the rudimentary fluid-

mosaic model of cell membranes that depicted the membrane as a simple mixture of lipids that 

accommodated membrane proteins17-18. In addition to functioning as a cell's first line of defense, 

the plasma membrane (PM) is a highly functional interface for many signals transduction events 

to occur mediated via peripheral and membrane-embedded proteins19-23. The leaflet asymmetry 

of the plasma membrane is evident in various eukaryotic cells—red blood cells (RBCs), 

platelets, and neuronal cells. 

 The lipid diversity manifests in two ways: (i) chemical structure of the lipids—charge, 

and type of the headgroups, length of the acyl chains, and the number and location of double 

bonds in the acyl chain backbone; and (ii) compositional diversity—the proportion of lipids in 

membrane leaflets24. These variations confer each leaflet its distinct biophysical property to 

Figure 3. Normal red blood cell structure versus 

red blood cells of an individual with sickle cell 

anemia9. 
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interface with the cell's external and internal environment12-13. In a recent study, human RBC 

plasma membrane's leaflet asymmetry and distinct compositions of the exoplasmic and cytosolic  

leaflets were reported25. The results showed that compared to the cytosolic leaflet (CL), the 

exoplasmic leaflet (EL) is more densely packed and rich in lipids with a higher percentage of 

saturated lipids. Specifically, the EL is composed of phosphatidylcholine (PC), sphingomyelins 

(SM) with one or more unsaturations per acyl chain, and a small percentage of 

phosphatidylserine (PS) and phosphatidylethanolamine plasmalogen (PEP). On the contrary, the 

CL has higher lipid headgroup diversity, including phosphatidylethanolamine (PE), 

Figure 4. RBC plasma membrane composition distribution in exoplasmic leaflet and cytoplasmic leaflet. Lipids separated by category, 

phosphatidylcholine (PC, cyan), sphingomyelin (SM, dark cyan), phosphatidylserine (PS, red), phosphatidylethanolamine plasmalogen 

(PEP, yellow), phosphatidylethanolamine (PE, blue), and phosphatidylinositol (PI, orange). Lipid species annotated as (total number of 

carbon atoms in the acyl chain):(total number of double bonds in acyl chains);(total number of hydroxyl groups in the long acyl chain). 
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phosphatidylinositol (PI), PS, PC, SM, and PEP. Although cholesterol was reported in both 

leaflets, the experimental analysis did not directly provide the cholesterol distribution25. The 

detailed lipid distribution within the major lipid families is reproduced in Figure 4.  

Despite the evidence of plasma membrane leaflet asymmetry, RBC membrane leaflet's 

physicochemical properties and biological function needs more research to formulate a 

comprehensive description. The unique lipid composition of each leaflet impacts the membrane's 

biophysical properties: cholesterol distribution (flip-flop rate, domain formation, and 

oligomerization); membrane thickness (lipid interdigitation at membrane mid-plane); surface 

charge (lipid headgroup distribution); membrane protein distribution (protein hydrophobic 

thickness and shape); and membrane protein's post-translational modifications (CL versus EL). 

Several computational studies have focused on the structure and dynamics of model cell 

membranes with variable lipid complexities and compositions26-42. Ingólfsson et al. modeled an 

idealized plasma membrane consisting of 63 different lipid species that were asymmetrically 

distributed across the two leaflets33. Other computational studies have investigated asymmetric 

cholesterol distribution in the lipid bilayers43-49. A recent study explored the relationship between 

cholesterol distribution leaflet lipid order; the more ordered the leaflet, the higher its cholesterol 

concentration—the type of lipids in the leaflet influence the cholesterol distribution and the flip-

flop rate between the leaflets49. These model membranes have been critical in building a 

foundation for deciphering molecular level lipid-lipid interactions. 

However, the human RBC plasma membrane lipidome is more complex than an idealized 

model membrane previously investigated by computational techniques. In this work, the 

structural and compositional diversities in RBC membrane leaflets using molecular dynamics at 

the coarse-grained (CG) resolution are investigated. Martini force field parameters54-56 are used 
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as they have been widely used to investigate biomembranes36,49,57-60 and proteins49,55,56-57,61-67. 

The parameter sets for a subset of PI, SM, PE, and PEP lipids unavailable in the Martini force 

field were developed in this work. The results show the different lipid type’s behaviors in terms 

of the lipid-lipid mixing parameters, lipid order parameters in the membrane leaflets, cholesterol 

distribution, leaflet densities, and membrane thickness. 

Methods 

Martini Force Field Parameters. The Martini CG parameters are based on a many-to-one 

mapping scheme, in which four neighboring non-hydrogen atoms are mapped into one CG 

bead54-56,68-69. Martini allows some flexibility to adopt a three-to-one or five-to-one mapping 

scheme, if required, to preserve properties in the chemical structures. The RBC membrane 

contains several lipids (Table 1) with the following lipid families: PC (PIPC, POPC, PAPC, and 

DPPC); SM (DPSM, PNSM, and PLSM); PEP (PEP1 and PEP2); PE (POPE, PUPE, and PEPE); 

PS (PAPS and PAPS2); and PI (PIP2). The Martini force field parameters are available for most 

of the RBC membrane lipids (PIPC, POPC, PAPC, DPPC, PAPS, PAPS2, POPE, PUPE, PAPS, 

and CHOL). For the remaining lipids, the parameters were constructed using the Martini 

headgroup and acyl chain bead types. The current Martini parameter database does not include 

an SM lipid with only one unsaturation, which is inherently present in the sphingosine backbone 

(18:1) of all sphingomyelin lipids. Therefore, we built the parameters for PLSM (42:1;2), which 

translates into PLSM (18:1-24:0), according to the Martini nomenclature. Additionally, unlike 

the available PE lipids, the PEP lipids possess a vinyl-ether linkage at the sn-1 position instead of 

an ester linkage and an ester linkage at the sn-2 position,65 for which Martini parameters had to 

be developed. The parameter sets for the newly developed lipids—PLSM, PEP1, PEP2, PEPE, 

and PIP2 (Table A1-A5) are available for download from the Nangia research website. 
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Table 1. Lipid abbreviations and corresponding head groups and tails. 

 

Lipid Abbreviation 

 

Lipid Head Group Lipid Tails 

PIPC Phosphatidylcholine (PC) 16:0;0-18:2;0 

POPC Phosphatidylcholine (PC) 18:0-18:1 

PAPC Phosphatidylcholine (PC) 16:0-20:4 

POPC Phosphatidylcholine (PC) 16:0-18:1 

DPPC Phosphatidylcholine (PC) 16:0-16:0 

DPSM Sphingomyelin (SM) 34:1;2 

PNSM Sphingomyelin (SM) 42:2;2 

PLSM Sphingomyelin (SM) 42:1;2 

PAPS Phosphatidylserine (PS) 18:0-20:4 

PAPS2 Phosphatidylserine (PS) 16:0-20:4 

PEP1 Phosphatidylethanolamine plasmalogen (PEP) 18:1-22:4 

PEP2 Phosphatidylethanolamine plasmalogen (PEP) 18:2-20:4 

POPE Phosphatidylethanolamine (PE) 16:0-18:1 

PUPE Phosphatidylethanolamine (PE) 16:0-22:6 

PEPE Phosphatidylethanolamine (PE) 18:1-20:4 

PIP2 Phosphatidylinositol (PI) 18:0-22:4 

 

Lipid Membrane. A 30×30 nm2 patch membrane mimicking the human RBC plasma membrane 

composition was constructed in the CG resolution using a locally modified insane.py script70. 

The newly developed lipids are included in this modified insane.py script. The membrane EL 

and CL consisted of the specific lipid compositions presented previously. The membrane was 

placed in a 30×30×15 nm3 simulation box and solvated with standard Martini water (9:1 of 

W:WF) and 150 mM NaCl.  

CG MD Simulations. The GROMACS 5.1.2 package71 was used for all MD simulations. The 

system was energy minimized until the maximum force on any bead was below the tolerance 

parameter of 10 kJmol-1nm-1. The minimization was followed by equilibration in isothermal-

isochoric (NVT) conditions for 25 ns, followed by a two-step isothermal-isobaric NPT (NPT1 

and NPT2) equilibration for 30 and 45 ns, respectively. Position restraints were used at lipid PO4 

headgroup beads in NVT, NPT1, and NPT2 with a force constant set at 100, 10, and 5 kJmol-1 

nm-1, respectively. A 20 fs time step was used for the equilibration and production runs. The 
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temperature was maintained at 300 K for all systems using the v-rescale72 thermostat with τt = 1 

ps. A semi-isotropic pressure coupling of 1 bar was maintained using Parrinello-Rahman 

barostat73 with τp = 8 ps. Both the nonbonded van der Waals and the electrostatic interaction cut-

offs were set to 1.1 nm. The potential-shift-Verlet algorithm was applied to shift the van der 

Waals interactions beyond the cut-off. The Coulombic interactions were calculated using the 

reaction-field algorithm. Periodic boundary conditions were applied in all three dimensions (x, y, 

and z-direction). All position restraints were removed in the production runs. Flat-bottomed 

position restraints were applied to the phosphate beads of the lipid at 2.5 nm above and below the 

membrane with force constant of 1000 kJmol-1nm-2. The simulations were performed in 

triplicates, each for five microseconds, determined by the convergence of mixing parameters 

plots. Thermal annealing simulations were performed from 280 K to 320 K with 5 K interval; 

each temperature step was equilibrated for 500 ns. 

Mixing Parameter. Mixing parameter analyses are performed using multiple, in-house 

developed python scripts with molecular visualization generated using VMD and PyMOL 

software. The mixing parameter of membrane lipids is calculated as 𝑝𝑖𝑗 =
𝐶𝑖𝑗

∑ 𝐶𝑖𝑘
 where 𝑝𝑖𝑗 is the 

mixing parameter between lipid i and lipid j, 𝐶𝑖𝑗 is the number of contacts made by lipid i with 

lipid j, and ∑ 𝐶𝑖𝑘 is the total contacts made by lipid i with all surrounding lipids, including itself. 

A contact is defined to have formed between two lipid molecules if the distance between a lipid 

species and the reference lipid is within a 1.1 nm cut-off. 

Order Parameter. The order parameter of lipid acyl chain is calculated from 2H NMR as 𝑆𝐶𝐷 =

〈
3cos2𝜃−1

2
〉, where 𝑆𝐶𝐷 is the order parameter between the carbon-hydrogen (C−D) bond, θ is the 

angle between the C−D bond vector and a reference axis, which is the membrane normal x ,y, z 

= 0,0,1. The angular brackets determine that order parameters are weighted over time. Two types 
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of order parameters are evaluated, in viewpoint of carbon beads, order parameter was calculated 

between every two adjacent carbon beads and averaged over lipids of the exoplasmic leaflet (EL) 

and the cytoplasmic leaflet (CL), respectively. For the other purpose of analysis, each entire lipid 

acyl chain is calculated with one order parameter generated, averaging over lipids of the same 

type in EL and CL, respectively. 

Cholesterol Flip-Flop. The cholesterol flip-flop rate is calculated as an average frequency of the 

intermembrane flipping of cholesterol. Cholesterol flipping is identified when the molecules 

leave the cytoplasmic/exoplasmic leaflet, enter the cytoplasmic/exoplasmic leaflet, and then 

return to its original leaflet49. The frequency of cholesterol flip-flop is calculated as 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑓𝑙𝑖𝑝𝑝𝑖𝑛𝑔

𝑡𝑖𝑚𝑒
, with time in 𝜇s.   

Density Analysis. The number density of CG beads in the pure EL, pure CL, and mid-zone is 

calculated using the MDAnalysis library. The density profile is approximated by discretizing the 

simulation box into areas of 1nm×1nm and calculating the local number density in each region. 

Results and Discussion 

Plasma membrane lipid families display unique mixing affinities for other lipid species. The 

physiochemical properties of the RBC membrane were evaluated based on lipid-lipid 

interactions among the different lipid families throughout the 5 𝜇s simulation. The lateral 

assembly of a lipid within the family (self-association) or with other lipid families (co-

localization) was determined by mixing parameter analysis. It is concluded that the SM and PC 

families, key lipids in the RBC membrane’s EL, exhibit a heterogeneous lipid distribution. The 

SM lipids tend to self-associate and co-localize with cholesterol to form nanodomains (Figure  
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5a). These nanodomains do not extend more than 3-4 nm and are separated by PC lipids. The 

SM’s tendency to form nanodomains is supported by the visualization of the mixing parameters 

(Figure 6a). SM lipids have the highest proportion of self-association (46%) followed by a 

mixing affinity with cholesterol (30%) and PC (22%). The other lipid families collectively 

represent <3% mixing. The SM concentration in the CL in negligible to form clusters. The PC 

lipids self-associate to a lesser extent than the SM (Figure 5b). As a result, the PC lipids in the 

EL fill the area not occupied by the SM nanodomains leading to some local clustering. The PC 

clustering in the CL is characteristically distinct from the EL; here the PC lipids are much more 

dispersed due to the lack of SM nanodomains in the CL and lower mole fraction. The remaining 

lipid families in the EL have a less significant contribution to the exterior surface of the RBC. 

The negatively charged PS lipids have a self-associating affinity, but their clustering is not 

continuous to form domains. The PS lipids have almost equal mixing with PC, PE, and PEP 

lipids as indicted by the mixing parameter plot (Figure 5c). The highly charged PI lipids have 

been a focus of several computational studies75-76. The PI lipids are in tiny mole fractions in both 

leaflets and do not exhibit colocalization with any lipid family. A few examples of PI clusters in 

Figure 5. RBC plasma membrane plots for mixing parameter percents over time in 𝜇s. (a) PC as the reference lipid, (b) 

SM and the reference lipid, and (c) PS as the reference lipid 
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the membrane protein interface have been reported77-78. The PE lipids are heterogeneously 

distributed in the CL with minimal self-association or clustering. The PE molecules do not 

exhibit affinity to any specific lipid family in the CL. The PEP is a subclass of the PE lipid that 

shares the same headgroup but has a vinyl ether linkage for one of its carbon chains. Like other 

PE lipids, the PEP lipids are found only in the CL. The mixing parameters for PEP mimic the PE 

lipid properties. These results display that human RBC plasma membrane leaflets have very 

distinct surface properties. The EL has distinct SM nanodomains while the CL has a near random 

distribution of PS, PE, and PEP lipid families. The remainder of the mixing parameter plots can 

be found in Figure A2.  

 

Lipid order parameters influence the bilayer assembly of the EL and CL. Membrane 

asymmetry is reflected in terms of membrane composition. Comparing lipid orders in the EL and 

Cl is another approach to show lipid packing in this asymmetry RBC plasma membrane. The 

order parameter, SCD, was generated for the acyl chain beads for each lipid. Within each leaflet, 

the cumulative SCD was calculated from the same set of carbon beads (Figure 7). The SCD 

decreases as the acyl chain beads of interest move from headgroups towards lipid tails, meaning 

Figure 6. Top view of RBC plasma membrane displaying aggregation of SM (blue), PC (pink), and cholesterol (grey) 

lipids after 5 𝜇s of simulation. (a) Nanodomain formation of SM with cholesterol, (b) Nanodomain formation of PC with 

cholesterol, and (c) Mixing of SM, PC, and cholesterol lipids. 
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the farther the carbon bead is location away from the 

headgroups, the less ordered it becomes. This trend 

holds true for both leaflets. Overall, the EL has a larger 

SCD and contains more ordered lipids than the CL, which 

is consistent with the latest reports25,49. After analyzing 

order parameters from the perspective of position of the 

carbon beads, the order parameter of each acyl chain in 

the lipid molecules was calculated (Table 2). It is evident 

from the order parameters that saturated and unsaturated 

acyl chains have remarkably different contributions to a 

lipid’s shape and packing in the membrane (Figure A1). The box plots of notable lipids are 

shown in Figure A6. For example, PAPC’s 16:0 acyl chain is much more ordered (0.52±0.258) 

than the 20:4 (0.13±0.214) chain. All the SM family lipids exhibit differences in the lipid order 

of their two acyl chains. There is a remarkable disparity in the median values of the PUPE lipid’s 

order parameters; the shorter, saturated (16:0) chain is ordered (0.41±0.281), while the longer, 

unsaturated chain (22:6) is disordered (0.04±0.196). The PEP1 and PEP2 acyl chains also show 

differences in the vinyl ester linked chain versus the ether linked acyl chain. Interestingly, the 

saturated DPPC lipid (16:0-16:0), sequestered in the CL in the plasma membrane, has high order 

parameters (0.46±0.274 and 0.49±0.272) for both acyl chains. The statistical analysis of the lipid 

order parameters highlights three important aspects: (a) on average the El lipids are more ordered 

than the CL lipids; (b) this unbalanced order of lipids between the leaflets is relative to the 

packing of lipids in each leaflet; (c) between the two acyl chains of a lipid, the shorter and  

Figure 7. SCD by carbon Bead. Order parameters of all 

lipids in EL (black) and the CL (red), excluding 

cholesterol lipids. The dashed lines (grey) indicate the 

mid-plane of the bilayer where one leaflet ends and the 

other begins.  
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Table 2. Lipid order parameters (SCD) separated by exoplasmic and cytoplasmic leaflets 

and fatty acid tail. 

 

saturated chain is more ordered than the longer, unsaturated acyl chains. The pairing of 

short/long, saturated/unsaturated, and charged/zwitterionc lipids along with asymmetric lipid 

compositions of the leaflets is critical in the lipid assembly into a bilayer that ultimately results in 

unique biophysical properties of the plasma membrane. 

Cholesterol lipids flip between leaflets with preference for the EL. Several simulation studies 

have focused on evaluating the interaction of cholesterol with the lipids and the flip-flop 

dynamics between the membrane leaflets. Analyzing this dynamic behavior of cholesterol is 

experimentally challenging due to multiple confounding factors46,79-80. The use of computational 

tools can capture the cholesterol flip-flop dynamics43-45,47-49. In the initial system set-up, 

cholesterol was distributed equally in each leaflet. In the pre-equilibrium NVT and NPT stages 

of the simulation, more molecules of cholesterol flipped from the CL to the EL than vice-versa. 

 

 

Lipid 

 

 

Acyl chain 

Exoplasmic Leaflet  Cytoplasmic Leaflet 

Tail 1 Tail 2  Tail 1 Tail 2 

Mean 

SCD 

Mean 

SCD 

 Mean 

SCD 

Mean 

SCD 

PNSM 42:2;2 0.47±0.187 0.71±0.259  — — 

PLSM 42:1;2 0.51±0.215 0.70±0.265  — — 

PAPC 16:0-20:4 0.52±0.258 0.13±0.214  — — 

POPC 18:0-18:1 0.55±0.252 0.47±0.257  — — 

DPSM 34:1;2 0.63±0.221 0.71±0.256  0.44±0.277 0.30±0.348 

PIPC 16:0-18:2 0.53±0.255 0.26±0.267  0.42±0.280 0.21±0.249 

PAPS 18:0-20:4 0.52±0.250 0.29±0.326  0.42±0.278 0.11±0.204 

PEP1 18:1-20:4 0.38±0.265 0.14±0.218  0.30±0.265 0.11±0.202 

POPE 16:0-18:1 — —  0.41±0.280 0.34±0.264 

PUPE 16:0-22:6 — —  0.41±0.281 0.04±0.196 

PEPE 18:1-20:4 — —  0.31±0.264 0.11±0.203 

PEP2 18:2-20:4 — —  0.20±0.244 0.11±0.207 

DPPC 16:0-16:0 — —  0.46±0.274 0.49±0.272 

POPC 16:0-18:1 — —  0.42±0.280 0.35±0.262 

PAPS2 18:0-20:4 — —  0.40±0.280 0.10±0.201 

PIP2 18:1-20:4 — —  0.32±0.259 0.13±0.199 
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At equilibrium, the rate of cholesterol flip-flop between the two leaflets reached a stable 

distribution (Figure 8a and 8b); the EL and CL cholesterol distribution is 64±3% and 36±3%, 

respectively. Although a vast majority of the cholesterol molecules are solitary, some dimers, 

trimers, and tetramers were observed (Figure 8c). The cholesterol oligomers were prevalent in 

the EL (16%) compared to the CL (4%). The oligomerization of cholesterol in the EL can be 

explained by the higher cholesterol concentration and the affinity to colocalize with the SM 

lipids. The cholesterol dimers have weak interactions with a short residence time of 5-10 ns. The 

presence of cholesterol oligomers was confirmed in a recent study in which model phospholipid 

Figure 8. Quantitative analysis of cholesterol partitioning in the RBC membrane. (a) Number of cholesterol flips from CL 

to EL (back), from EL to CL (red), and the total number of flip-flops (green) as a function of simulation time. (b) Percent 

cholesterols in EL (black) and in CL (red) over the five microseconds. (c) Bar plot of cholesterol oligomers (%) in the form 

of dimers, trimers, or tetramers in the EL (vertical lines) versus CL (solid) at equilibrium. (d) Mixing parameters of 

cholesterol with other lipid families. 
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membranes were probed with solid-state nuclear magnetic resonance (NMR) spectroscopy81. 

Previous experimental and computational studies have demonstrated the preferred interaction of 

cholesterol with the saturated lipids78. It has been suggested that the interaction between 

cholesterol molecules and SM lipids lead to the formation of lipid domains82-83. The lipid mixing 

parameters revealed the lateral association of cholesterol with membrane lipids: SM (37%), PC 

(29%), cholesterol (17%), PS (8%), PE (5%), PEP (3%), and PI (1%), as shown in Figure 8d. 

The preferential association of cholesterol with the SM and PC lipids is established within the 

first few microseconds of the simulations and remains unchanged after equilibration. The 

triplicate simulation runs show the same cholesterol lipid mixing trends. Thus, cholesterol 

localization occurs disproportionately in the SM-enriched EL.  

Conclusions 

This research reports a detailed molecular description of the human RBC plasma membrane that 

replicates the experimentally determined lipid composition of each of the two asymmetric 

membrane leaflets. The mixing parameter, order parameter, and cholesterol flip-flop results 

provide evidence for the consequences of membrane asymmetry on the plasma membrane 

structure and its physiochemical properties. Cholesterol oligomerizes into short-lived dimers, 

trimers, and tetramers in the exoplasmic leaflet. The SM lipids and cholesterol laterally associate 

to form nanodomains in the exoplasmic leaflet. In contrast, the cytoplasmic leaflet has a near-

random distribution of the PC, PS, PE, and PEP families. Excluding cholesterol, all lipid families 

have the highest mixing parameter with the lipids of their species. It was concluded that 

cholesterol lipids have an affinity for SM and PC lipids, where there are more of these in the EL 

than the CL. This supports the cholesterol flip-flop results that display a bias of cholesterol to 

flip towards the EL. Since both leaflets in the simulation have the same area, as the EL 
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accumulates more cholesterol, it must accommodate more lipids per area than the CL. This leads 

to the EL being more densely packed than the CL. In addition, cholesterol has a planar structure 

and prefers to orient itself between saturated tails. The results display that the EL is overall more 

saturated than the CL, which provides another aspect that attracts cholesterol to the EL. The 

physiochemical properties of this realistic RBC membrane model can be applicable to protein 

assembly simulations. Due to the high density of the EL, RBC plasma membrane proteins tend to 

have longer and thinner transmembrane domains (TMDs) in the thicker, saturated, and more 

tightly packed leaflet. Therefore, the biophysical plasma membrane asymmetry of the red blood 

cell is attributed to the CL containing more unsaturations per lipid than the EL due to the vast 

difference in their lipid species compositions. Fingerprinting the plasma membrane lipidome is 

pivotal in elucidating how cells exchange metabolites, transfer signals, and facilitate protein 

assembly. 

CHAPTER II – Utilizing CLASP for antibiotic screening of P. 

aeruginosa porins 

Introduction 

Antibiotic Resistance. Since the discovery and subsequent research of antibiotics in the early 

20th century, scientists have developed over 100 types of antibiotics to fight infections of a vast 

range of bacteria. However, in recent years, these antibiotics are decreasing in effectiveness in 

treating common infections. This ineffectiveness can be attributed to the excessive use of 

antibiotics in hospitals and agriculture of developed, high-income countries causing selection 

pressure for resistant strains of bacteria to strive84. Bacterial antibiotic resistance is a 

consequence of mutations in microbes to provide a competitive advantage for these mutated 
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strains in the environment84. Examples of resistant bacteria include meticillin-resistant, gram-

positive Staphylococcus aureus (MRSA) USA 300 and Escherichia coli ST131 and are 

becoming even more prevalent among diagnosed bacterial infections. The spread of these 

resistant bacteria can be attributed to interspecies gene transmission, poor sanitation and hygiene 

in communities and hospitals, and the consistent increase in global disease transmission. 

Epidemiology research has displayed the ease at which this resistance can spread worldwide with 

antibiotic-resistant gonorrhea surfacing in Vietnam in 1967 spreading to the Philippines and 

ultimately to the United States. In addition, even synthetic antibiotics, such as Quinolone, have 

become ineffective in the 30 years since its inception and this resistance has been connected to 

the evolution of hospital MRSA84. In the past 75 years since antibiotics were introduced, almost 

all disease-causing bacteria have become resistant to the antibiotics that treat them. This trend 

can be observed in the 𝛽-lactamases antibiotic class with a 10-fold increase in resistant 𝛽-

lactamases since 1990. 𝛽-lactam antibiotics in Gram-negative bacteria have been the focus of 

critical research for battling antibiotic resistance. Specifically, Pseudomonas aeruginosa, 

Acinetobacter baumannii and Klebsiella pneumoniae are Gram-negative bacteria that have 

evolved into multi-drug resistant (MDR) pathogens85, bacteria that are resistant to three or more 

classes of antibiotics.  
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Pseudomonas aeruginosa. Pseudomonas aeruginosa is a Gram-negative bacterium that is at the 

forefront of hospital environment infections. This bacterium is the cause of 17% of healthcare-

associated pneumonia and is the seventh most common organism found in bloodstream 

infections85. The P. aeruginosa 

species includes numerous 𝛽-

lactam resistance determinants: 

efflux pumps (mexAB), porin 

mutations (OprD), inducible AmpC 

𝛽-lactamases, extended spectrum 

(PER and OXA) and metallo- 𝛽-

lactamases (IMP and VIM), 

and biofilm production. 𝛽-

lactams are inhibited from penetrating P. aeruginosa cell via the resistance-nodulation-cell 

division (RND) family of efflux pumps. These pumps work with periplasmic membrane fusion 

proteins and outer membrane efflux proteins to span both cell membranes to extrude antibiotics 

from the cytoplasm and periplasmic space. Specifically, with an increased expression of the 

MexAB-OprM multi-drug efflux pump, the more resistant the bacterium is towards targeted 

antibiotics. P. aeruginosa has evolved resistance to most antibiotics except for imipenem, since it 

is not extruded from the bacteria itself and does not possess RND efflux pumps. This low 

susceptibility to efflux has allowed imipenem to remain an effective candidate against P. 

aeruginosa. Imipenem enters the bacterial cell via the OprD2 porin which presence decreased 

because of drug pressure85. Moreover, the loss of this porin is caused by significant novel 

Figure 9. Resistance mechanisms interactions to 𝛽-lactam antibiotics in the Gram-

negative bacterial cell85.  
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insertion sequences interrupting the expression of the OprD2 porin, providing a decrease in 

channels by which antibiotics can enter through.  

Table 385. P. aeruginosa Porins and their respective PDB IDS and known antibiotic 

transport. 

Porin Antibiotic Transport PDB ID 

OccD1 Imipenem/meropenem 3SY7 

OccK1 Carbenicillin, cefoxitin, tetracycline, temocillin 3SYS 

OccK2 Carbenicillin, cefoxitin, gentamycin, temocillin 3SZD 

OccK3 Cefotaxime 3SZV 

OccK7 Meropenem 4FRT 

 

 The P. aeruginosa outer membrane contains porins that are passive transporters of water-

soluble molecules (600-700 Da)86. These porins fold in the outer membrane as 𝛽-barrels 

comprised of antiparallel 𝛽-sheets with hydrophobic amino acid residues facing outward and 

hydrophilic residues facing inward, lining the constricted pore87. The OprF is the major outer 

membrane porin that performs structural, adhesion, and signaling functions. Other porins include 

OprB and OprB2 responsible for glucose diffusion, OprG and OprH (small outer membrane 

proteins), OprP and OprO responsible for phosphate/pyrophosphate uptake. There are nineteen 

additional proteins in the OprD (Occ) family that are separated into two subfamilies; 8 porins in 

the OccD family and 11 porins in the OccK family87. The antibiotic transport for each known P. 

aeruginosa porin and their respective possible functions are outlined in Table 3.  
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Experimental Overview. This work aims to computationally prepare the eight OccK porins and 

six possible antibiotic candidates for use in the Computational Antibiotic Screening Platform 

(CLASP88). CLASP can produce comprehensive thermodynamic and kinetic output data at a fast 

rate, to make drug screening more efficient.  The preparation of these proteins and molecules is 

critical for the success of CLASP because the structures need to be translated into the CG 

resolution for the simulation to run in the optimal computational timescale and length. Once the 

porin and antibiotic inputs are prepared, the CLASP protocol (Figure 10) can be executed which 

will produce a trajectory of the antibiotic through the porin channel. The output files are 

analyzed by producing a free energy profile of the potential mean force (PMF) of the antibiotic 

molecule transport from the extracellular to the periplasmic space, the permeation barrier of the 

molecule, the orientational analysis of the molecule, and the contact analysis of the molecule 

with the protein residues in the porin channel.  

Figure 10. The CLASP workflow. The systematic representation of CLASP inputs and outputs. The porin and solute coordinates 

are the required inputs, which then are processed to generate 𝑁 parallel umbrella sampling runs. The post simulation analysis 

scripts combine the 𝑁 trajectories to generate the free energy profile, solute-protein residue contact map, and solute orientational 

analysis88. 
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Methods 

Porin Preparation. The x-ray crystallographic porin structures for OccK1-OccK8 were obtained 

from the RCSB Protein Data Bank (PDB); the porin IDs are listed in Table 3. These porins were 

centered within the periodic boundary condition (PBC) box before performing homology 

modeling. Homology modeling, also known as comparative modeling, constructs an atomistic-

resolution model of the protein from the provided amino acid sequence (Figure 11). The 

homology modeling software YASARA89 was utilized by providing the PDB structure as the 

query sequence which is used in conjunction with an alignment that maps the remaining residues 

to produce a homologue of more known protein structures. Moreover, the software 

acknowledges gaps in the residue sequence of the input structure and fills the gaps based on 

known protein structures. Then the structures were optimized in the atomistic resolution using 

the CHARMM36 force field90. The structures then underwent equilibration in the isothermal-

isochoric (NVT) and isothermal-isobaric (NPT) conditions where the output of the NPT is the 

starting input structure for CLASP. Both the NVT and NPT simulations were conducted for 200 

ns each at T = 320 K. The point mutations of each porin structure were generated by the 

CHARMM-GUI open-source webserver and these mutated structures were optimized as well. 

The output porin structures were coarse grained using the martinize.py script with 

MARTINIlv2.1 force field parameter56 to maintain the porin’s secondary structure88. 
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Figure 11. Homology modeled P. aeruginosa porin structures displayed in front and top view. (a) OccK1, (b) OccK2, (c) OccK3, 

(d) OccK4, (e) OccK5, (f) OccK6, (g) OccK7, and (h) OccK8. The porin surface is also displayed as a transparent shadow. 
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Porin-Membrane System. Each CG porin was separately embedded (along the z-axis) into an 

asymmetrical 10 × 10 nm2 (in the xy-plane) patch of P. aeruginosa membrane using the BOB.py 

script; Bacterial Outermembrane Builder58,91, a modified insane.py script with CG parameters for 

bacterial outer membranes. The exoplasmic leaflet of the membrane patch is comprised of P. 

aeruginosa lipid A and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) in a 9:1 ratio. 

The periplasmic leaflet contained pure DPPE. The porin-membrane system was placed in a 10 × 

10 × 12 nm3 simulation box and was solvated with standard MARTINI water (9:1 of W:WF) and 

150 mM CaCl2. 

Antibiotic Coarse Grain Preparation. Carbenicillin, Cefoxitin, Cefotaxime, and Temocillin 

were prepared using PyCGTOOL92, a python script that generates CG model parameters for the 

Figure 12. Antibiotic CG mapping. (a) Carbenicillin, (b) Cefotaxime, (c) Cefoxitin, and (d) Temocillin. Green beads denote the 

first bead of the molecule, and the yellow bead denotes the last bead.  
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molecule based on its respective atomistic dynamical data88. This script provides molecular 

topologies and CG parameters to the inputted atomistic structure of the antibiotic. The CG 

mappings of the four antibiotic molecules are displayed in Figure 12. The molecules were coarse 

grained based on MARTINI CG93 which recommends mapping four adjoining nonhydrogen 

atoms into one CG bead which will preserve bonded and nonbonded interactions of the atomistic 

level.  

CG MD Simulation. Using GROMACS 5.1271, the porin-membrane system was energy 

minimized using the steepest-decent algorithm88 until the maximum force on any bead was 

below the tolerance parameter of 10 kJmol-1nm-1. Then NVT and NPT equilibration was 

conducted for 0.02 𝜇s and 2 𝜇s, respectively. A 20 fs time step was used for the equilibration and 

production simulations with a temperature of 320 K for all systems using the v-rescale 

thermostat with τt = 1 ps. A semi-isotropic pressure coupling of 1 bar was maintained using 

Parrinello-Rahman barostat73 with τp = 4 ps. Both the nonbonded van der Waals and the 

electrostatic interaction cut-offs were set to 1.2 nm and periodic boundary conditions were 

applied in all three dimensions.  

CLASP. CLASP was performed to generate 𝑁 = 400 separate folders (US windows), each with 

a substrate molecule of a unique location defined within its free energy profile. The molecule’s 

permeation coordinate (𝑠) is parallel to the z-axis and the length of the protein channel from the 

extracellular to periplasmic region along 𝑠 is termed 𝐿𝑠  (Figure 13). The free energy profile 

along 𝑠 is generated by dividing 𝐿𝑠 into 𝑁 umbrella sampling windows (𝑊𝑖) with uniform 

spacing of 𝐿𝑠/𝑁 nm88. The antibiotic molecule is inserted into each 𝑊𝑖 window and the insertion 

coordinates are calculated relative to the porin’s center-of-mass (COM). The porins contain a 

constriction zone within the channel forming an hourglass shape, therefore the COM can be 
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found in the middle 

of the porin. The 

COM location is 

accepted as 𝑊𝑁/2, 

where there is an 

equal number of 

windows above and 

below the COM. 

Each of the US 

folders were 

equipped with input 

files and python 

scripts to perform energy minimization and US simulations independently. All 𝑁 simulation jobs 

run synchronously in separate computer cluster nodes to promote maximum efficiency and fast 

completion time.  

Free Energy Profile Analysis. The free energy profile of the antibiotic molecule’s transport from 

the extracellular to the periplasmic region is computed as the potential of mean force (PMF) 

along the 𝑠 path. The starting structure, molecular topology, the simulation parameters, and other 

data files from the CLASP simulation can be used as inputs for the GROMACS wham 

commands to generate a plottable PMF file. Arginine was used an appropriate control due to its 

small size and +1 charge, that was translated to three CG beads, which is significantly smaller 

than the seven to eight CG beads of the antibiotic molecules. Glycine, with a charge of 0 and 1 

Figure 13. CLASP simulation setup. The membrane embedded porin channel oriented 

parallel to the z-axis is divided into 𝑁 equidistant umbrella sampling windows. The probe 

molecule is inserted into each 𝑊𝑖  window88.  
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CG bead, and glutamate, with a charge of -1 and 2 CG beads are also being explored as controls 

for CLASP to cover a range of charges and beads sizes.  

Histogram Analysis. Another output graphable file generated from the same procedure as the 

PMF is the Histogram. The Histogram contains different colored bars of varying heights that 

represent the sampling of a single US window. The overlap of the bases of these bars is of 

importance to display the continuous sampling from one window the next, forming a cohesive 

trajectory of the solute molecule through the porin (Figure 17b).  

Contact Analysis. As the solute molecule travels through the porin it interacts with protein 

residues lining the channels. A contact is said to have occurred if the distance between any CG 

beads of the solute and residue is within 1.2 nm of each other. These interactions for all 𝑁 

windows are determined by assigning them values; 1 when formed or 0 when contact is broken. 

Then, the cumulative number of contacts made by the solute with each residue in the windows is 

calculated and sorted from smallest to largest based on the total number of residue-solute 

contacts. This is done to identify the highest contacting residues in the 99th percentile.  

Results and Discussion 

The results of a simulation with the small molecule arginine traveling through the OccK1 porin 

of P. aeruginosa are displayed in Figure 14. The PMF profile of arginine displays a stabilization 

in energy before entering the porin and after exiting the porin, which is to be expected (Figure 

14a). Once arginine moves closer to the N-terminus, the small molecule is pulled into the porin 

where the energy (E) experienced by the molecule increases in the channel. The spike in energy 

is displayed between 0 and 1 nm, which can be determined to be the bottleneck region of the 

porin. The contact analysis map (Figure 14c) for arginine exhibits tyrosine (Y290), arginine 

(R311), and phenylalanine (F318) as the protein residues with the highest contact with arginine. 
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This is due to the large sizes and charges that protrude into the bottleneck region causing high 

contact with the small molecule as it travels. In addition, the US windows 310-350 can be 

concluded as the bottleneck due to the high frequency of contacts, especially contacts in the 90th 

percentile. The high energy profile in the bottleneck region of OccK1 corresponds to the three  

 

amino acid residues that interfere with the small molecule’s trajectory. In addition, when 

analyzing the porin residues it can be observed that the tyrosine, arginine, and phenylalanine 

residues do protrude into the channel and can obstruct the trajectory of a molecule. 

 

Figure 14. Small molecule arginine simulation through the OccK1 porin. (a) PMF graph displaying the energy of arginine as it 

proceeds through the outer membrane region (green), the constriction zone (white), and the periplasmic region (blue); (b) 

Simulation histogram of all US windows; (c) Contact Analysis Map where axis values correspond to the residue number in OccK1.  
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Conclusions and Future Work 

By conducting a control experiment for the OccK1 porin of the P. aeruginosa porin, OccK1, a 

better comprehensive understanding of the channel is obtained. Since arginine is a very small 

molecule, the free energy of a larger molecule can be hypothesized and can be better set up for 

the CLASP simulation. In addition, insight into the prominent amino acid residues in the porin 

channel of OccK1 allows us to apply this information to subsequent antibiotic screenings for this 

porin. The control protocol outlined in this work can be applied to the other seven porins in the 

OccK family using arginine, glycine, and glutamate to establish a foundation understanding of 

the porin and how it interacts with molecules before testing larger, more complex molecules, 

such as antibiotics. This work will be continued by utilizing the prepared porins (OccK1-OccK8) 

and antibiotics to conduct analyses, such as the ones presented here. Once a collective profile is 

obtained from these simulations, it can be used to guide experimental researchers in antibiotic 

research and aid in the discovery of better antibiotics for antibiotic-resistant bacteria.  
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Appendix 

Table A1. MARTINI CG beads and parameters for PLSM 
 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

4-8 0.47 1250 

8-9 0.47 1250 

9-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 180 45 

5-6-7 180 25 

4-8-9 180 25 

8-9-10 180 25 

9-10-11 180 25 

10-11-12 180 25 

11-12-13 180 25 
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Table A2. MARTINI CG beads and parameters for PEP1 
 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

7-8 0.47 1250 

8-9 0.47 1250 

4-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 100 10 

5-6-7 100 10 

6-7-8 100 10 

7-8-9 120 45 

4-10-11 180 25 

10-11-12 120 45 

11-12-13 180 25 
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Table A3. MARTINI CG beads and parameters for PEP2 
 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

7-8 0.47 1250 

8-9 0.47 1250 

4-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 100 10 

5-6-7 100 10 

6-7-8 100 10 

7-8-9 120 45 

4-10-11 180 25 

10-11-12 100 10 

11-12-13 120 45 
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Table A4. MARTINI CG beads and parameters for PEPE 
 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.47 1250 

2-3 0.47 1250 

3-4 0.37 1250 

3-5 0.47 1250 

5-6 0.47 1250 

6-7 0.47 1250 

7-8 0.47 1250 

8-9 0.47 1250 

4-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

2-3-4 120 25 

2-3-5 180 25 

3-5-6 100 10 

5-6-7 100 10 

6-7-8 100 10 

7-8-9 120 45 

4-10-11 180 25 

10-11-12 120 45 

11-12-13 180 25 
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Table A5. MARTINI CG beads and parameters for PIP2 

 

Bond R(nm) Kbond (kJ mol−1 nm−2) 

1-2 0.40 30000 

1-3 0.40 30000 

2-3 0.40 30000 

2-5 0.30 25000 

2-6 0.35 30000 

1-5 0.40 25000 

3-6 0.31 30000 

5-6 0.60 25000 

1-4 0.35 1250 

4-7 0.47 1250 

7-8 0.37 1250 

7-9 0.47 1250 

9-10 0.47 1250 

10-11 0.47 1250 

11-12 0.47 1250 

12-13 0.47 1250 

8-14 0.47 1250 

14-15 0.47 1250 

15-16 0.47 1250 

16-17 0.47 1250 

 

Angle θ (deg) Kangle (kJ mol−1) 

1-4-7 140 25 

7-9-10 100 10 

9-10-11 100 10 

10-11-12 100 10 

11-12-13 125 45 

8-14-15 180 25 

14-15-16 120 45 

15-16-17 180 25 
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Figure A1. Representative lipid image after 5 𝜇s of simulation 

a) PIPC, (b) DPSM, (c) PNSM, (d) PLSM, (e) POPC, (f) PAPC, (g) PAPS, (h) PEP1, (i) POPE, 

(j) PUPE, (k) PEPE, (l) PEP2, (m) DPPC, (n) PIP1. Coarse-grained bead types are denoted as 

saturated carbon (dark gray), unsaturated carbon (light gray), NC3 (dark blue), PO4 (pink), GL1 

and GL2 (green), AM1 and AM2 (cyan), CNO (light blue), C1, C2, and C3 (orange), and P1 and 

P2 (purple).  
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Figure A2. Mixing Parameter Plots 

RBC plasma membrane plots for mixing parameter percents over time in μs. (a) cholesterol as 

the reference lipid, (b) PEP and the reference lipid, (c) PE as the reference lipid, and (d) PI as the 

reference lipid. The data is displayed as PC (pink), cholesterol (black), SM (blue), PS (green), 

PEP (red), PE (yellow), and PI (orange). 
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Figure A3. Order Parameters Box Plots 

Order parameters of notable lipids in (a) EL and (b) CL are shown as a box-whisker plot. The 

two acyl chains of a lipid are distinguished by solid and striped boxes. 



 40 

References 

[1] G. Van Meer, “New EMBO Member’s Review Cellular lipidomics,” vol. 24, no. 18, pp. 

3159–3165, 2005, doi: 10.1038/sj.emboj.7600798. 

[2] T. S. Carpenter, H. Bhatia, P. Bremer, S. J. Marrink, H. I. Ingo, and F. C. Lightstone, 

“Computational Lipidomics of the Neuronal Plasma Membrane,” Biophys. J., vol. 113, pp. 

2271–2280, 2017, doi: 10.1016/j.bpj.2017.10.017. 

[3] Terence R. Smith, J. S., Amr El Abbadi, Divyakant Agrawal, Gustavo Alonso, Amitabh 

Saran. (1995). Computational modeling systems. Elsevier, 20(2), 127-153. 

doi:doi.org/10.1016/0306-4379(95)98558-U  

[4] Weinan E, J. L. (2011). Multiscale modeling. Schloarpedia, 6, 11527. 

doi:10.4249/scholarpedia.11527  
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