
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Theses - ALL

Spring 5-23-2021

On Stability and Similarity of Network Embeddings On Stability and Similarity of Network Embeddings

Apurva Shriniwas Mulay
Syracuse University

Follow this and additional works at: https://surface.syr.edu/thesis

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Mulay, Apurva Shriniwas, "On Stability and Similarity of Network Embeddings" (2021). Theses - ALL. 527.
https://surface.syr.edu/thesis/527

This Thesis is brought to you for free and open access by SURFACE at Syracuse University. It has been accepted for
inclusion in Theses - ALL by an authorized administrator of SURFACE at Syracuse University. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fthesis%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/527?utm_source=surface.syr.edu%2Fthesis%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Machine Learning on graphs has become an active research area due to the prevailing graph-

structured data in the real world. Many real-world applications can be modeled with graphs.

Modern application domains include web-scale social networks [26], recommender systems, knowl-

edge graphs, and biological or protein networks. However, there are various challenges. First,

the graphs generated from such applications are often large. Moreover, in some scenarios, the

complete graph is not available, e.g., for privacy reasons. Thus, it becomes impractical to per-

form network analysis or compute various graph measures. Hence, graph sampling becomes an

important task.

Sampling is often the first step to handle any type of massive data. The same applies to

graphs as well, which leads to many graph sampling techniques. Sampling Techniques include

Node-based (e.g., Random Node Sampling), Edge-based (e.g., Random Edge Sampling) and

Traversal-based (e.g., Random Walk Sampling). Graphs are often analyzed by first embedding

(i.e., representing) them in some matrix/vector form with some number of dimensions. Various

graph embedding methods have been developed to convert raw graph data into high dimensional

vectors while preserving intrinsic graph properties [3]. The embedding methods focus on the

node-level, edge- level [28], a hybrid, or at the graph level. This thesis focuses on graph-level

embeddings which allows calculating similarity between two graphs.

With the knowledge of embedding and sampling methods, the natural questions to ask are:

1) What is a good sampling size to ensure embeddings are similar enough to that of the original

graph? 2) Do results depend on the sampling method? 3) Do they depend on the embedding

method? 4) As we have embeddings, can we find some similarity between the original graph and

sample? 5) How do we decide if the sample is good or not? How do we decide if the embedding

is good or not? Essentially, if we have an embedding method and a sampling strategy, can we find

the smallest sampling size that will give an ε-similar embedding to that of the original graph?

We will try to answer the above questions in the thesis and give a new perspective on graph

sampling.

The experiments are conducted on graphs with thousands of edges and nodes. The datasets

include graphs from social networks, autonomous systems, peer-to-peer networks, and collabo-

ration networks. Two sampling methods are targeted namely - Random Node Sampling, and

Random Edge Sampling. Euclidean distance is used as a similarity metric. Experiments are car-

ried out on Graph2vec, and Spectral Features(SF) graph embedding methods. Univariate analysis

is performed to decide a minimum sample which gives, e.g., 40% minimum sample for 80% sim-

ilarity. We also design a Regression model which predicts similarity for a given sampling size and

graph properties. Finally, we analyze the stability of the embedding methods, where we find that

that e.g., Graph2Vec is a stable embedding method.

On Stability and Similarity of Network Embeddings

by

Apurva Mulay

Bachelor of Engineering, Pune University, 2015

Thesis

Submitted in partial fulfillment of the requirement for the degree of

Master of Science, Computer Science

Syracuse University

May 2021

Copyright ©Apurva Mulay 2021

All Rights Reserved

Acknowledgements

My graduate school journey was not an easy one but would not have been fun without help

and support from others.

First, I would like to thank my advisor Prof. Reza Zafarani, without whom this thesis was

impossible. I got interested in data science and research when I took the ”Introduction to data

science” course under him. He always encouraged me to push myself that opened my mind to

work on stuff I thought would be difficult for me. This thesis is a part of it. He strove to keep

the thesis as my original work but steered me in the right direction when required. He not only

guided me in research but also helped me stay motivated during the pandemic. I will always be

grateful to him for bringing out the best in me.

Coming from an industry Software Engineering background into Data Science research re-

quired a shift in the thinking process. Professor Reza and all my lab mates from Data Lab

helped me develop it throughout the thesis. Special thanks to Shengmin for answering all kinds

of questions and to help me think through the research questions. Thank you to Xinyi as well for

showing me the approach for reading research papers.

I would like to thank my committee members Professor Sara Eftekharnejad, Professor Edmund

Yu, and Professor Senem Velipasalar for their time and comments.

Finally, I would like to thank my family and friends for their continuous support and for

cheering me up during my low times.

v

Contents

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

1.1 Motivation . 2

1.2 Research Questions . 3

1.3 Contributions . 3

1.4 Roadmap . 4

2 Related Work . 5

2.1 Conclusion . 10

3 Data Preprocessing and Our Approach . 11

3.1 Datasets . 13

3.2 Exploratory Data Analysis . 16

3.3 Description of Graph Properties . 29

4 Similarity and Stability Analysis . 33

4.1 Univariate Analysis . 34

4.2 Regression for Similarity Prediction . 39

4.2.1 Experiments on Social Media Networks . 39

4.2.2 Experiment with Multi-domain Networks . 56

4.3 Stability of Embedding Methods . 71

4.3.1 Introduction . 71

4.3.2 Analysis . 72

5 Conclusion and Future work . 74

5.1 Conclusions . 74

5.1.1 Minimum Sample Size . 74

5.1.2 Regression . 75

5.1.3 Stability . 75

vi

Page

5.2 Future Work . 76

5.2.1 Directed and Weighted Graphs . 76

5.2.2 Dynamic Graphs . 76

5.2.3 Other Similarity Measures . 77

5.2.4 Mapping Between Minimum Sample Across Embeddings 77

5.2.5 Varying embedding Size . 77

5.2.6 Effect of Sampling and Embedding on Graph Properties 77

REFERENCES . 79

APPENDIX

A Raw Data . 81

B Vita . 82

B.1 Education . 82

B.2 Experience . 82

B.3 Publications. 83

B.4 Projects . 83

B.5 Achievements and Awards . 83

vii

List of Tables

Table Page

3.1 Dataset Statistics showing basic properties of networks used in the thesis 14

4.1 RMSE of Test Dataset for Graph2Vec and Spectral Features embeddings cal-

culated for Random Node and Random Edge Sampling methods. The dataset

contains social networks. 41

4.2 RMSE of Train Dataset for Graph2Vec and Spectral Features embeddings cal-

culated for Random Node and Random Edge Sampling methods. The dataset

contains social networks. 41

4.3 Summary of F -Statistic and R-Squared for Social Network Datasets. It shows

OLS Summary for all embedding and sampling methods for all significant features

of regression model. 43

4.4 RMSE for Facebook TV Show Page to Page Network and Astrophysics Network.

These networks are used to validate how the model performs on new datasets 50

4.5 RMSE for regression model on Test Dataset. The dataset contains graphs from

social, collaboration, autonomous systems, and peer to peer networks i.e., multi

domain networks . 57

4.6 Summary of F-Statistic and R-Squared values for Multi-domain Network Dataset.

It shows OLS Summary for all embedding and sampling methods for all significant

features of regression model. 68

4.7 R-Squared Values for Graph2Vec and Spectral Features embeddings, for Random

Node and Edge Sampling methods. These are R-Squared values of multi domain

regression model . 73

5.1 Summary of Minimum Sample with respect to Sampling and Embedding method. 75

5.2 Summary of the results of our experiments. The numbers denote Adjusted R-

Squared values for Linear Regression on both datasets. 76

viii

List of Figures

Figure Page

3.1 Graphical Representation of our approach to find minimum sample 12

3.2 Graphical Representation of our Approach. to predict the similarity of input sample

size using a regression model . 13

3.3 Graph of Euclidean Distance versus Sampling Sizes for Random Node Sampling

and Graph2Vec Embedding. This includes all social network graphs from SNAP

Facebook dataset [12] . 17

3.4 Graph of Euclidean Distance versus Sampling Sizes for Random Edge Sampling

and Graph2Vec Embedding. This includes all social network graphs from SNAP

Facebook dataset [12] . 17

3.5 Graph of Euclidean Distance versus Sampling Sizes for Random Node Sampling

and Spectral Features Embedding.This includes all social network graphs from

SNAP Facebook dataset [12] . 18

3.6 Graph of Euclidean Distance versus Sampling Sizes for Random Edge Sampling

and Spectral Features Embedding. This includes all social network graphs from

SNAP Facebook dataset [12] . 18

3.7 Box plot of Euclidean Distance versus all social network graphs for Random Node

Sampling and Graph2Vec Embedding. This plot shows distribution of euclidean

distances for multiple samples for each graph. 19

3.8 Box plot of Euclidean Distance versus all social network graphs for Random Node

Sampling and Graph2Vec Embedding.This plot shows distribution of euclidean

distances for multiple samples for each graph. 20

3.9 Box plot of Euclidean Distance versus all social network graphs for Random Edge

Sampling and Graph2Vec Embedding. This plot shows distribution of euclidean

distances for multiple samples for each graph. 20

3.10 Box plot of Euclidean Distance versus all social network graphs for Random Edge

Sampling and Spectral Features Embedding. This plot shows distribution of eu-

clidean distances for multiple samples for each graph. 21

ix

Page3.11 Surface plot of Euclidean distance, Sampling Size and Average Clustering Coeffi-

cient for Random Edge Sampling and Graph2Vec Embedding 22

3.12 Surface plot of Euclidean distance, Sampling Size and Average Clustering Coeffi-

cient for Random Edge Sampling and Spectral Features Embedding 22

3.13 Surface plot of Euclidean distance, Sampling Size and Average Clustering Coeffi-

cient for Random Node Sampling and Graph2Vec Embedding 23

3.14 Surface plot of Euclidean distance, Sampling Size and Average Clustering Coeffi-

cient for Random Node Sampling and Spectral Features Embedding 23

3.15 Surface plot of Graph Properties for Random Node Sampling and Graph2Vec Em-

bedding. It includes Avg. Shortest Path Length, Density, Diameter and Transitivity 25

3.16 Surface plot of Graph Properties for Random Edge Sampling and Graph2Vec Em-

bedding. It includes Avg. Shortest Path Length, Density, Diameter and Transitivity 26

3.17 Surface plot of Graph Properties for Random Node Sampling and Spectral Fea-

tures Embedding. It includes Avg. Shortest Path Length, Density, Diameter and

Transitivity . 27

3.18 Surface plot of Graph Properties for Random Edge Sampling and Spectral Fea-

tures Embedding. It includes Avg. Shortest Path Length, Density, Diameter and

Transitivity . 28

4.1 Graphical Representation of our contributions. It shows the step-by-step process

followed to answer questions from Chapter 1. 34

4.2 Similarity versus Sampling Size for Random Node Sampling and Graph2vec em-

bedding. This gives intuitively minimum 40% sample required for 80% similarity

with original graph . 35

4.3 Similarity versus Sampling Size for Random Node Sampling and Spectral Features

embedding. This gives intuitively minimum 30% sample required for nearly 60%

similarity with original graph . 35

x

Page

4.4 Similarity versus Sampling Size for Random Edge Sampling and Graph2Vec Em-

bedding. This gives intuitively minimum 40% sample required for 65% similarity

with the original graph . 36

4.5 Similarity versus Sampling Size for Random Edge Sampling and Spectral Features

embedding. This gives intuitively minimum 50% sample required for 25% similarity

with original graph . 36

4.6 Ordinary Least Square (OLS) Summary: Random Node Sampling and Spectral

Features Embedding generated by statsmodel package [25] . 44

4.7 Ordinary Least Square (OLS) Summary: Random Node Sampling and Graph2Vec

Embedding generated by statsmodel package [25] . 45

4.8 Ordinary Least Square(OLS) Summary: Random Edge Sampling and Graph2Vec

Embedding generated by statsmodel package [25] . 46

4.9 Ordinary Least Square(OLS) Summary: Random Edge Sampling and Spectral

Features Embedding generated by statsmodel package [25]. This shows summary

for significant features. 47

4.10 OLS Summary: Random Edge Sampling and Spectral Features Embedding all fea-

tures generated by statsmodel package [25].This shows summary for all features.

. 49

4.11 Actual versus Predicted Similarity for TV Show Validation Dataset: Random Node

and Graph2vec embedding . 52

4.12 Actual versus Predicted Similarity for Astrophysics Dataset: Random Node Sam-

pling and Graph2vec embedding . 52

4.13 Actual versus Predicted Similarity for TV Show Validation Dataset: Random Node

and SF embedding . 53

4.14 Actual versus Predicted Similarity for Astrophysics Dataset: Random Node and

SF embedding . 53

xi

Page

4.15 Actual versus Predicted Similarity for TV Show Validation Dataset: Random Edge

and Graph2Vec embedding . 54

4.16 Actual versus Predicted for Astrophysics Dataset: Random Edge and Graph2Vec

embedding . 54

4.17 Actual versus Predicted Similarity for TV Show Validation Dataset: Random Edge

and SF embedding . 55

4.18 Actual versus Predicted Similarity for Astrophysics Dataset: Random Edge and

SF embedding . 55

4.19 Ordinary Least Squares (OLS) Summary: Random Node Sampling and Graph2Vec

Embedding for all features . 60

4.20 Ordinary Least Squares (OLS) Summary: Random Node Sampling and Graph2Vec

Embedding for Significant Features . 61

4.21 Ordinary Least Square (OLS) Summary: Random Node Sampling and Spectral

features Embedding for all features . 62

4.22 Ordinary Least Square(OLS) Summary: Random Node Sampling and Spectral

features Embedding for Significant Features . 63

4.23 Ordinary Least Square(OLS) Summary: Random Edge Sampling and Graph2Vec

Embedding for all features. 64

4.24 Ordinary Least Square (OLS) Summary: Random Edge Sampling and Graph2Vec

Embedding for Significant Features. 65

4.25 Ordinary Least Square(OLS) Summary: Random Edge Sampling and SF Embed-

ding for all features . 66

4.26 Ordinary Least Square(OLS) Summary: Random Edge Sampling and SF Embed-

ding for Significant Features . 67

4.27 Actual versus Predicted for Astrophysics Dataset on Cross-Domain Regression

Model: Random Node Sampling and Graph2vec embedding . 69

xii

Page

4.28 Actual versus Predicted for Astrophysics Dataset on Cross-Domain Regression

Model: Random Node Sampling and Spectral Features embedding 70

4.29 Actual versus Predicted for Astrophysics Dataset on Cross-Domain Regression

Model: Random Edge Sampling and Graph2vec embedding . 70

4.30 Actual versus Predicted for Astrophysics Dataset on Cross-Domain Regression

Model: Random Edge Sampling and Spectral Features embedding 71

xiii

Chapter 1

INTRODUCTION

We live in a world where networks are ingrained in our daily life. We form a network when

we connect to others on social media or send an email or message to others, forming a friendship

network. We create a post or interact with other posts, thus forming a network of social media

posts. An example of such a network is a retweet network on Twitter or page-to-page network

on Facebook. When we decide to travel, the first thing we check is Google Maps! Google

maps essentially provides a network connecting roads and using different transportation, forming

transportation networks. When we plan a vacation, we check flights from where we live to the

travel destination. Many such flights from one’s home to the same or different destinations

form airline networks. To navigate the Web, we use Google search, where the idea behind its fast

paced search is by ranking a Knowledge graph. When we order products from Amazon or groceries

from Instacart, we are forming product co-purchasing networks. The co-purchasing network is

created when we frequently buy multiple products together. A well-known example of products

bought together is bread and butter. Finally, the electricity and water we have in our homes

are part of the electrical and water networks for our area or state. When thinking of research

papers, citing other papers forms citation networks. As we can see, networks are everywhere.

Formally, networks are represented as graphs. Graphs consist of nodes that represent entities and

edges that represent links between entities. With an underlying representation of networks, many

researchers have started focusing on analyzing these graphs. One simple example we use in our

daily lives is checking the shortest path on google maps to reach the destination. The graphs

are also extremely helpful in understanding the propagation of information on social media. Such

analyses help find out viral posts, combat fake news, and broadcast important information quickly.

While graphs are present in most aspects of our lives, they are becoming larger and larger.

Hence, Machine Learning on large graphs has become a vital research area. However, the larger
1

graphs will come with a caveat of space and computing limitations. Thus, it often becomes

impractical to perform machine learning techniques and analysis on the whole network. The

solution to this problem often involves exploring sampling. Having larger graphs is one of the

motivations for sampling. We direct interested readers to the excellent graph sampling survey

by Hu et al. [8], which provides more inspiration for sampling. Next, we will talk about the

motivations, contributions, and road map for this thesis in detail.

1.1 Motivation

The main motivations behind this thesis can be summarized in terms of (1) lack of data; (2)

surveying hidden populations; (3) graph sparsification; (4) visualization; (5) reducing test cost;

and to (6) create a map between various sampling techniques.

1. Lack of data. It is often practically impossible to collect all of a network, e.g., a social network

such as Twitter. The easiest way is to choose a few users (i.e., nodes) randomly and crawl them.

The Twitter’s search API follows a similar process to retrieve tweets, user information, etc. This

is essentially random node sampling.

2. Survey hidden populations. In sociology, there is a need to survey hidden populations.

Hidden populations have two characteristics. First, no sampling frame exists as boundaries are

unknown. Second, there are privacy concerns as membership involves illegal or stigmatized

behaviors [4]. Thus, it is impossible to sample from whole population. The usual approach is to

start from a small sample and expand the sample based on some prior knowledge. This approach

is known as Snow Ball Sampling [5] and Respondent-Driven Sampling [7]. In this thesis, we do

not discuss these two sampling methods, but the techniques presented can be easily extended to

those in future. Surveying hidden population is one major motivation for sampling.

3. Graph Sparsification. Real world graphs are very large in size which makes it difficult

to process or manipulate them. This calls for Graph Sparsification. Graph Sparsification is

classical problem in computer science theory and involves stringent mathematical constraints on

transformation of graphs that ensure major properties of the graphs are preserved.

4. Visualization. With the amount of data being generated, there is often a difficulty to

2

visualize large graphs as they do not fit in the computer screen. One option is to adjust the

resolution which often leads to edges crossing and being too cluttered. Kurant et al. [10] show

how graph sampling can be used to obtain a coarse-grained topology proper for visualization,

i.e., a category-graph estimation. Another approach is to perform Dimensionality Reduction and

Graph Embedding. We discuss two graph embedding techniques in this thesis for sampling graphs.

5. Reducing test cost. In biochemical research, Protein Interaction Network [6] is often studied.

Accurate testing of interaction between all neighboring proteins is often costly. A approximate

solution here is to test on sampled edges.

6. Mapping between various sampling methods. Different researchers sample graphs using

various methods. One use case is Graph sparsification which includes edge and vertex sparsifica-

tion. It is difficult to compare two analyses when both analyses use different sampling methods.

Thus, our work can provide research directions of the mapping between minimum sampling sizes

across different samples.

1.2 Research Questions

1. What is a good sampling strategy to get embeddings similar to original graph?

2. What is a good embedding method that gives higher stability?

3. If we have an embedding method and a sampling strategy, what is the smallest sampling size

that will give an embedding similar enough to that of the original graph?

4. If we know the sample size, embedding method and a sampling strategy, can we predict the

similarity of the sample to that of original graph?

1.3 Contributions

In this thesis, we make the following contributions:

Identifying minimum sampling size. We start with identifying the minimum sampling size

with which the graph needs to be sampled to get an ε-similarity to the original graph, for a given

embedding and sampling method. The ε varies with embedding and sampling methods. We start

3

with social networks data and then including networks from multiple domains to generalize the

results.

Regression Model to predict similarity. Identifying the minimum sample size calculation is

merely based on the similarity between embeddings with respect to sampling sizes. However, this

would not be specific to graphs. So we build a regression model which, given a sampling size and

graph properties, predicts similarity. The model is again domain-specific for social networks and

is then generalized to the autonomous systems networks, collaboration networks, peer-to-peer

networks.

Stability of Embeddings. We can decide which sampling method to chose, but how do we

know which embedding method is better? Hence, we decided to analyze the stability of the

embedding methods. We decide stability using the R-Squared measure of the regression model

defined earlier. The output of regression model is similarity which is nothing but euclidean

distance between sample and original graph bounded between 0 and 1. Thus, the higher the

R-Squared, the more stable the model, as ultimately stability would mean how much predictable

the result is. Note that while a higher R-Squared value indicates higher stability, the specific

value of R-Squared does not capture much information on stability and is method-dependent.

1.4 Roadmap

The remainder of the thesis is organized as follows. We first discuss related work and summa-

rize related research in Chapter 2. Chapter 3 details our approach, datasets used, our exploratory

data analysis, and graph properties used in our approach. In Chapter 4, we discuss the exper-

iments on similarity and stability analysis. Chapter 5 concludes our results and provides future

directions.

4

Chapter 2

RELATED WORK

This chapter provides a summary of the papers related to graph sampling and embedding,

and the related research to the research pursued in this thesis.

The work of Leskovec et al. [11] answers similar questions to ours about the best sampling

method and minimum sampling size; however, not within the context of graph embedding. This

work considers static directed graphs and graphs with temporal (time) information. The authors

define two goals on sampling namely: Back-in-time sampling and Scale-down sampling. The

back-in-time goal includes traveling back in time and taking the static snapshot of Graph Gt at

that time instant t. The goal is to find the sample S from the original graph G which is similar

to snapshot Gt. Scale-down goal consist of finding sample graph S with n′ nodes taken from

Graph G having n nodes such that n >> n′. In simple words, we have Graph G and the size of

sample s′ (say), then we need to find sampled graph Gs with size s′ which has properties similar

to Graph G. Next paragraph talks about criteria for evaluation, experiments, and conclusion for

static and temporal evolution of graphs considered in this work.

The similarity for static and dynamic graphs is based on similarity of 14 distributions. Cri-

teria for static graphs include the distribution of in-degrees, out-degrees, sizes of the weakly

connected and strongly connected components, hop plot, hop plot of the largest weakly con-

nected component, first left singular vector of graph adjacency matrix versus the rank, singular

values of graph adjacency matrix versus the rank and clustering coefficient. Criteria for dynamic

graphs are measured on the sequence of graphs over time and include Densification Power Law

diameter, normalized size of the largest connected component, and average clustering coefficient.

Kolmogorov-Smirnov D-statistic is used to compare distribution of the graph properties in sample

and the original graph. Their work concludes that there is no single perfect answer to graph sam-

pling and best sampling depends on properties and application, but exploration sampling performs
5

best overall. Additionally, they conclude that node and exploration-based sampling methods yield

good results for 50% sampling while back-in-time gives good samples for 15% sampling using

forest fire sampling method.

Morstatter et al. [14] perform a similar analysis for figuring out a good sample of Twitter’s

streaming API. This work is specific to Twitter APIs while our work generalizes results to all types

of graphs. They compare data from twitter’s sampled streaming API and the ground truth: the

Firehose. Sampled streaming API returns limited data while Firehose has unlimited data. The

dataset collected is with the same parameters. The analysis is carried out from various perspec-

tives and considers dataset coverage, statistical differences, topical analysis, hashtag analysis,

network measures at node and network level, and geographical measures. Network measures are

of interest to us as it is related to the thesis. Network measures are calculated for the unweighted

User×User network. The only graph level property that is considered is clustering coefficient and

all the properties considered are at node level such as degree centrality, betweenness centrality,

and potential reach. Inversely, we consider graph level properties and refrain from using any

node level properties. The reason being averaging node level properties to graph level in terms

of embedding space comes with numerous limitations. This work does not use any context of

embedding and only compare values of properties in the streaming API and Firehose. This work

considers largest connected component similar to ours for analysis. They achieve 50-60% accu-

racy for one day of Streaming API. The network-level measures reveal the correlation between

the network centralization index and the proportion of data covered by the streaming API. The

authors conclude that the result of using Streaming API highly depends on the coverage and the

type of analysis that a researcher wishes to perform.

The earlier paragraphs have work related to ours, however, our methodology differs from them

in certain aspects. The next paragraphs will talk about the work that we apply practically in this

thesis.

Our work directly relates to graph sampling and the sampling approaches discussed in this

work. Pili Hu and Wing Cheong Lau [8] discuss different graph sampling approaches and various

6

classical as well as advanced properties of graphs. The authors present a taxonomy of graph

sampling strategies based on context. Firstly, they categorize sampling methods by objective.

Objectives could be getting a representative set of vertices for use cases such as polling on

opinion, random street survey, or targeting a hidden population. Secondly, sampling also involves

preserving a specific graph property. The use cases consist of estimating the graph properties

of the original graph from the sample, or supporting graph algorithms that aim to optimize

particular objectives related to specific graph property. Thirdly, some graph generation literature

also mentions graph sampling. These methods views graph sampling as generating a graph from

the family of graphs. The authors also discuss various categories of graph sampling: vertex

sampling, edge sampling, traversal-based sampling, and relationships among them. A traversal-

based sampling approach includes various methods such as BFS, DFS, RDS, Random Walk,

Metropolis-Hastings Random Walk, Forest Fire, etc. As sampling is often pursued to preserve

properties of the graph. Hence, the authors discuss various classical and advanced graph properties

that sampling often aims to preserve. Classical properties are network size, degree distribution,

average degree, density, average path length, radius, diameter, centrality, etc. We consider these

properties in our analysis as well. Advanced properties capture the graph structure in a more

detailed way and are used as objectives in graph algorithms. Some examples of advanced graph

properties are ratio cut, normalized cut, association, modularity, cohesion, etc.

Our work involves embedding the original graph as well as the samples. We use the embedding

by by Narayanan et al. [15] in our work. In other words this work is directly related to our

work. The authors first summarize various representations of graphs, which have been used up

till now, to address several use cases across domains. The approaches used for representing

graphs suffer from quite a few problems, such as loss of generality. This limits the representation

approach (using handcrafted features) to be used only for specific domains to solve specific

problems. To overcome this limitation, this work proposed a new approach called graph2vec.

Graph2vec is a task-agnostic method to create representations or embeddings of graphs in a

generalized and data-driven way, using [unsupervised] clustering approach. It is formed using

7

a neural embedding network. Existing embedding techniques in the space of NLP have been

explored. First, word2vec, which is based on the idea that words appearing in the ”similar”

context should have similar vector representations. An architecture called ”skipgram” is used for

this. The concept on which skipgram is based, is the maximization of log likelihood, considering

the probability of occurrence of context words, given the target word. A context is defined as

a fixed number of words surrounding the target word. The second is Negative Sampling, which

uses iterations to embed the target word. The third is neural document embedding, which uses

a paragraph vector-distributed Bag Of Words, which is also referred to as doc2vec skipgram.

Just as doc2vec uses individual words to check if they occur in the same context, graph2vec

uses rooted subgraphs to perform the same function. The two reasons why rooted subgraphs

are used are: Higher order substructure and Non-linear substructure. The paper describes the

way by which rooted subgraphs can be extracted, and how skipgrams with negative sampling can

be implemented. The evaluation of the proposed graph2vec model has been performed on five

different datasets, namely: MUTAG, PTC, PROTEINS, NCI1, NCI109. SVM algorithm has been

used to perform the classification task on these datasets, using each of the embedding methods.

The embeddings used for comparison are node2vec, sub2vec, WL Kernel, and Deep WL Kernel.

Graph2vec outperforms all other embeddings in the case of MUTAG, PTC, PROTEINS. In the

case of NCI1 and NCI109, Deep WL Kernel performs better.

Just as the earlier work, this work is also related directly to our work. In fact, we use the

embedding method by de Lara [4] to calculate embeddings for graphs in this thesis. This

work is about the simple algorithm for Graph Classification. Graph classification is divided into

three categories: graph kernels, sequential methods, and embedding methods that focus on the

structure of the graph.

Kernel methods perform pairwise comparisons between graphs of the dataset and apply a

classifier on the similarity matrix. These methods aim to construct a kernel to capture useful

features and applicable on all graphs.

Sequential methods handle varying sizes of graphs by processing them as a sequence of nodes.

8

The disadvantage is that it is order-dependent. Embedding methods derive a fixed number of

features for each graph that is used as a vector representation for classification. This approach

does not depend on the sequence of nodes. The approach in de Lara’s work belongs to this

category. Next, let us understand the model.

Graph G = (V,E) is an undirected and unweighted graph. The assumption is that the

graph is connected. Otherwise, they extract the largest connected component. Matrix A is the

adjacency matrix, and D is the diagonal degree matrix. Normalized Laplacian is the crux of this

paper. They use the k smallest positive eigenvalues of the normalized Laplacian in ascending

order as input to the classifier. If the graph has less than k nodes, right zero paddings are applied

to match dimensions. This embedding is called the Spectral Features (SF). Laplacian eigenvalues

lie between 0 and 2 and thus eliminates the need for rescaling or preprocessing. The experiments

are conducted on standard datasets from biology. Datasets include MUTAG, PTC, Enzymes,

Protein Full, DD, and National Cancer Institute. Each dataset is divided into 10 folds using

StratifiedKFold and RandomForest classifier is used with balanced class weights. The embedding

dimension is set as the average number of nodes for each dataset. The results are compared with

those obtained by Earth’s Mover’s Distance, Pyramid Match, Feature-Based, Dynamic-Based

Features, and Stochastic Graphlet embedding. The SF with random forest classifier performs the

best overall with efficient computation time.

Finally, Von Luxburg [27] discusses the concept of stability in the context of machine learning

model build and selection. We refer to the methodology by Luxburg to decide stability of em-

beddings in this thesis. The methodology of clustering is taken in this case to explain stability.

Initially, the paper focuses on defining the metric and calculations for computing instability. In

other words, a stable clustering methodology could roughly be defined as one which produces

the same output distribution, given different datasets or different versions of a dataset. One of

the parameters used for the clustering model selection is the number of clusters. Different values

are chosen for this parameter, and the model outputs corresponding to each of these are com-

pared. The stability scores computed for each of the selections are aggregated using statistical

9

techniques and normalized to arrive at a standard figure for comparison. Furthermore, the paper

also states that this approach is similar to the one defined and could be extended to even other

types of clustering algorithms (and not just e.g., k-means). It concludes that the approach needs

to be fine-tuned to the particular algorithm or methodology under consideration. We refer the

approach from this paper to define stability for embeddings.

2.1 Conclusion

In this section we discussed similar works as well as the methods we used in this thesis.

Our work differentiates from the previous work in the aspects of using embeddings and graph

properties. To the best of our knowledge, we are the first one calculate minimum sample using

embeddings. We use methods Graph2vec [15] and Spectral Features [4] directly in this thesis for

calculating embeddings. We refer to concept of stability from Luxburg [27] to analyze stability

of embedding methods.

10

Chapter 3

DATA PREPROCESSING AND OUR APPROACH

This chapter will provide details on our approach to answer questions we initially posed in

the introduction section. We first discuss datasets and their statistics, followed by exploratory

data analysis and finally input (features) and output (labels) variables for our Machine Learning

Model. To get a quick idea, the next paragraph will summarize the complete chapter followed by

exact details.

Our datasets consist of graphs from Social Networks, Autonomous Systems, Internet Peer-to-

Peer Networks, and Collaboration Networks from SNAP repository [12]. We consider connected

graphs. If the graph is not connected, we consider the largest connected component. Firstly,

we divide our analysis into two parts. First, we consider only social networks. Second, we

add more domains for generalization. Secondly, we create a dataset using graph properties,

graph embedding and sampling methods. We focus on two graph embeddings: Graph2vec &

Spectral Features, and on Random Node & Random Edge sampling methods. Thirdly, we sample

the original graph and create multiple subgraphs using sampling methods mentioned earlier for

different sampling sizes (10% to 80%). We get the embeddings for all these samples and that of

the original graph based on embedding methods mentioned earlier. Fourth, for each subgraph,

we calculate distance between the embeddings of the original graph and that of the sample using

Euclidean distance measure. Next, we bound euclidean distances by transforming the similarity

values by e−x. Then, we plot the graph of normalized euclidean distance (y-axis) versus sampling

size (x-axis) which allows deriving the minimum sampling size that gives a similarity ε times to

the original graph. Value ε varies with embedding and sampling methods but our findings show

that generally graph2vec gives higher similarity. We hypothesize that one of the reason could be

because it is unsupervised and uses neural networks. This analysis will only consider embeddings.

However, a graph can also be represented using its properties. Hence, we consider various graph
11

invariants or properties that capture the connectivity of graph efficiently. Lastly, the regression

model is used to predict the similarity for a given sampling size and graph properties. We use

R-Squared values of the model as a measure of stability for graph embeddings. Figures 3.1 and

3.2 illustrates the approach we followed in this thesis to answer our research questions.

Raw Graph
Data

Embeddings
for Whole

Graph

S1

S2

S3

Create
samples

Embeddings
for Samples Samples

Calculate
embeddings

Calculate
Similarity

Minimum
Sample for

ε-similar
embedding

Finding
Similarity using
Euclidean
Distance

Approach for minimum sample

Convert value
between 0 and 1

Figure 3.1: Graphical Representation of our approach to find minimum sample

12

Raw Graph
Data

S1

S2

S3

1

Create
samples

ML
Model

Predict
Similarity for
input sample
size

Calculate
Graph
Properties

Graph
Properties
s1

Graph
Properties
s2

Graph
Properties
s3

Sample size

GP1

GP2

GPn

GP

Approach for Similarity Prediction

Figure 3.2: Graphical Representation of our Approach. to predict the similarity of input

sample size using a regression model

3.1 Datasets

In this thesis we focus on undirected and unweighted network datasets from SNAP [12] large

network datasets collection. Some of the datasets are directed but we convert it to undirected

during implementation. We consider undirected and unweighted graphs to allow a straightforward

analysis.

Table 3.1 summarizes the datasets and their basic properties.

We summarize these datasets next:

(a) Facebook GEMSEC Dataset:

This dataset is anonymized and was collected as a part of the GEMSEC [21] paper. It consists

of data from Facebook pages collected in November 2017. It represents verified Facebook page

13

Type Network |V | = n |E| = m
Average Shortest

Path Length

Average Clustering

Coefficient

Collaboration

Network

CaGrqc [12] 5,242 14,496 6.0493 0.5296

Ca-HepTh [12] 9,877 25,998 5.9454 0.4714

Ca-AstroPh [12] 18,772 198,110 4.1940 0.6306

Social

Network

Fb-Athletes [12] 13,866 86,858 4.274 0.27

Fb-Government [12] 7,057 89,455 3.78 0.410

Fb-Politician [12] 5,908 41,729 4.664 0.385

Fb-Public figure [12] 11,565 67,114 4.622 0.179

Fb-Company [12] 14,113 52,310 5.31 0.2392

Fb-TV Show [12] 3,892 17262 6.275 0.3737

Twitch-EN [12] 7,126 35,324 3.677 0.1309

LastFM-Asia [12] 7,624 27,806 5.232 0.219

Autonomous Systems As-Jan02-2000 [12] 6,474 13,895 3.705 0.2522

Peer to Peer Network p2p-Gnutella06 [12] 8,717 31,525 4.571 0.0067

Table 3.1: Dataset Statistics showing basic properties of networks used in the thesis

to page networks of different categories. Pages are the nodes and edges represent mutual likes

among them. There are eight different types of categories: Government, New Sites, Athletes,

Public Figures, TV Shows, Politician, Artists, and Company Edges. We have not used New

Sites and Artist edges due to computation limitations. The statistics of these categories is as

mentioned in table 3.1.

(b) Twitch Social Network Datasets:

This dataset is provided for MultiScale attributed Node Embedding by Rozemberczki [20]. The

dataset consists of Twitch user-user network of gamers who stream in particular language and

was collected in May 2018. We focus on the dataset of the English language. Nodes represent

the users themselves and the link shows mutual friendships between them.

14

(c) Autonomous systems AS-January 2, 2000:

The dataset was collected from University of Oregon Route Views Project - Online data and

report. Autonomous system graphs is graph of routers of internet. The dataset contains daily

instances from January 2 2000 onwards. Nodes and edges can get added or deleted overtime.

(d) Gnutella peer-to-peer network:

The dataset was first studied by Leskovec [13] and Ripeanu [18]. It consists of snapshots of

Gnutella peer-to-peer file sharing network. There are a total of nine snapshots collected in August

2002; we use one snapshot from August 6. Nodes represent hosts in the Gnutella network topology

and edges represent connections between the Gnutella hosts. The original dataset is directed but

we convert it to undirected to be consistent with other datasets. To make it undirected, we add

edge B → A for every edge A → B where A,B are nodes of the graph.

(e) High Energy Physics - Phenomenology collaboration network:

This dataset was first used by Leskovec [13] to study Graph evolution. It covers scientific

collaborations between authors of papers submitted to High Energy Physics - Phenomenology

category. This is an undirected graph. There is an edge from i to j if author i co-authored a

paper with author j. if The data covers papers in the period from January 1993 to April 2003

(124 months).

(f) Astro Physics collaboration network:

The dataset was first studied by Leskovec [13] and is collected from arxiv.org for studying graph

evolution. It covers scientific collaborations between authors of papers submitted to Astro Physics

category. The nodes are authors and edges are undirected. There is an edge between two authors

i and j if they have co-authored a paper. Since the edges are undirected, the direction of co-

authoring is irrelevant to this thesis. The data covers papers in the period from January 1993 to

April 2003 (124 months). In this thesis, we use this dataset as a validation dataset.

(g) General Relativity and Quantum Cosmology collaboration network:
15

This dataset [13] covers scientific collaborations between authors of papers submitted to General

Relativity and Quantum Cosmology category. Here, again nodes are authors and edges are

collaboration relationship between them.

(h) LastFM Asia Social Network:

This dataset was also used by Rozemberczki [19] to validate feathergraph embeddings. It shows

social network of LastFM users and was collected in March 2020 using public API. The LastFM

users from Asian countries form the nodes and edges show mutual follower relationships among

them.

3.2 Exploratory Data Analysis

The datasets used are in the form of edge lists. These datasets needs to be transformed to

perform analysis. So we transform the graph using graph embedding methods. A point to note

here is that we only consider connected graphs. If the graph is not connected, we extract the

largest connected component. First, we explored social networks dataset and then added datasets

from other domains to see the performance of the model. The details of these experiments will

be discussed in next chapter. Next, we go through the analysis process step by step.

First, we take nine samples of the graphs from 10% to 90% using both Random Node and

Random Edge sampling methods. We take 15 samples per sampling size. Thus, we collect 135

samples per dataset. There are a total of eight comma separated values files belonging to datasets

from social networks. Please refer table 3.1 and social network rows in the column ’Type’ for

details about dataset. We refer these comma separated values as datasets. Next, we calculate

embeddings for both the original graph and the samples, using Spectral Features and Graph2Vec

embedding methods. Now, since we have embeddings of samples and that of the original graph,

we calculate similarity using Euclidean Distance measure between two vectors:

d (p, q) =

√√√√ n∑
i=1

(qi − pi)
2 (3.1)

where p,q are two vectors, i.e., graph embeddings in our case.
16

0.2 0.4 0.6 0.8 1.0
sampling

0.0

0.5

1.0

1.5

2.0

2.5

3.0

di
st

an
ce

artist_edges.csv
athletes_edges.csv
company_edges.csv
government_edges.csv
musae_ENGB_edges.csv
new_sites_edges.csv
politician_edges.csv
public_figure_edges.csv
tvshow_edges.csv

Figure 3.3: Graph of Euclidean Distance versus Sampling Sizes for Random Node Sam-

pling and Graph2Vec Embedding. This includes all social network graphs from SNAP

Facebook dataset [12]

0.2 0.4 0.6 0.8 1.0
sampling

0.0

0.5

1.0

1.5

2.0

2.5

3.0

di
st

an
ce

government_edges.csv
tvshow_edges.csv
musae_ENGB_edges.csv
public_figure_edges.csv
athletes_edges.csv
company_edges.csv
new_sites_edges.csv
artist_edges.csv
politician_edges.csv

Figure 3.4: Graph of Euclidean Distance versus Sampling Sizes for Random Edge Sam-

pling and Graph2Vec Embedding. This includes all social network graphs from SNAP

Facebook dataset [12]

17

0.2 0.4 0.6 0.8 1.0
sampling

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

di
st

an
ce

artist_edges.csv
athletes_edges.csv
company_edges.csv
government_edges.csv
musae_ENGB_edges.csv
new_sites_edges.csv
politician_edges.csv
public_figure_edges.csv
tvshow_edges.csv

Figure 3.5: Graph of Euclidean Distance versus Sampling Sizes for Random Node Sam-

pling and Spectral Features Embedding.This includes all social network graphs from

SNAP Facebook dataset [12]

0.2 0.4 0.6 0.8 1.0
sampling

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

di
st

an
ce

artist_edges.csv
athletes_edges.csv
company_edges.csv
government_edges.csv
musae_ENGB_edges.csv
new_sites_edges.csv
politician_edges.csv
public_figure_edges.csv
tvshow_edges.csv

Figure 3.6: Graph of Euclidean Distance versus Sampling Sizes for Random Edge Sam-

pling and Spectral Features Embedding. This includes all social network graphs from

SNAP Facebook dataset [12]

Then, we plot this distance versus sampling sizes for all datasets. The plots are shown in

18

Figures 3.3 to 3.6. The non-linearity of graphs show that there is a potential to find a minimum

sample size. Also, from these graphs, it seems that around 40% seems to be a good sample

as distances are nearly remaining constant after that. Next, we check the distribution of data,

i.e., distribution of Euclidean distances across sampling size for all datasets. The distribution is

visualized using box plots of euclidean distances versus datasets. Figures 3.7 to 3.10 show the

box plots for Random Node Sampling and Graph2Vec Embedding, Random Edge Sampling and

Graph2Vec Embedding, Random Node Sampling and Spectral Features Embedding, and Random

Edge Sampling and Spectral Features Embedding. Box plots reveal that there is a large variation

between different graphs in the data that needs to be normalized.

government tvshow musae_ENGBpublic_figure athletes company new_sites artist politician

Datasets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
uc

lid
ea

n
di

st
an

ce
s

Box Plot of graph2vec

Figure 3.7: Box plot of Euclidean Distance versus all social network graphs for Random

Node Sampling and Graph2Vec Embedding. This plot shows distribution of euclidean

distances for multiple samples for each graph.

19

government tvshow musae_ENGBpublic_figure athletes company new_sites artist politician

Datasets

0

1

2

3

4

E
uc

lid
ea

n
di

st
an

ce
s

Box Plot of sf

Figure 3.8: Box plot of Euclidean Distance versus all social network graphs for Random

Node Sampling and Graph2Vec Embedding.This plot shows distribution of euclidean

distances for multiple samples for each graph.

government tvshow musae_ENGBpublic_figure athletes company new_sites artist politician

Datasets

0.5

1.0

1.5

2.0

2.5

3.0

E
uc

lid
ea

n
di

st
an

ce
s

Box Plot of graph2vec

Figure 3.9: Box plot of Euclidean Distance versus all social network graphs for Random

Edge Sampling and Graph2Vec Embedding. This plot shows distribution of euclidean

distances for multiple samples for each graph.

20

government tvshow musae_ENGBpublic_figure athletes company new_sites artist politician

Datasets

2

4

6

8

10

12

14

E
uc

lid
ea

n
di

st
an

ce
s

Box Plot of sf

Figure 3.10: Box plot of Euclidean Distance versus all social network graphs for Random

Edge Sampling and Spectral Features Embedding. This plot shows distribution of

euclidean distances for multiple samples for each graph.

These line plots provide only a two dimensional perspective. Note that one can represent a

graph using its properties. Standard properties include average clustering coefficient, number of

nodes, number of edges, transitivity, diameter, and density. These properties are also mentioned

on SNAP website for respective datasets which is also the source of our utilized datasets [12].

Finally, we also plot a 3D surface to analyze the relation between graph properties, sam-

pling size, and Euclidean distance. We draw the surface plots for every sampling and embedding

method. The 3D surfaces show how e.g., clustering coefficient behaves for different sampling and

embedding methods. Figure 3.13 and Figure 3.14 show the surface of average clustering coeffi-

cient with respect to Graph2Vec and Spectral Features embedding for Random Node Sampling.

In both cases, clustering coefficient increases with respect to sampling sizes. Figures 3.11 and

3.12 show the surface of average clustering coefficient with respect to Graph2Vec and Spectral

Features embedding for Random Edge Sampling. In both cases, clustering coefficient decreases

with respect to sampling size. The decrease is sharp in case of Figure 3.12.

21

Sample

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Average Cluste
rin

g Coeffic
ient

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
uc

lid
ea

n
D

is
ta

nc
e

0.5

1.0

1.5

2.0

2.5

3.0

Surface plot for Random Edge Sampling (10%-90% sampling) for graph2vec embedding

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3.11: Surface plot of Euclidean distance, Sampling Size and Average Clustering

Coefficient for Random Edge Sampling and Graph2Vec Embedding

Sample

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Average Cluste
rin

g Coeffic
ient

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
uc

lid
ea

n
D

is
ta

nc
e

2

4

6

8

10

12

14

16

Surface plot for Random Edge Sampling (10%-90% sampling) for sf embedding

2

4

6

8

10

12

14

Figure 3.12: Surface plot of Euclidean distance, Sampling Size and Average Clustering

Coefficient for Random Edge Sampling and Spectral Features Embedding

22

Sample

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Cluste
rin

g Coeffic
ient

0.18

0.20

0.22

0.24

0.26

0.28

0.30

E
uc

lid
ea

n
D

is
ta

nc
e

0.5

1.0

1.5

2.0

2.5

Surface plot for Random Node Sampling (10%-90% sampling) for graph2vec embedding

0.5

1.0

1.5

2.0

2.5

Figure 3.13: Surface plot of Euclidean distance, Sampling Size and Average Clustering

Coefficient for Random Node Sampling and Graph2Vec Embedding

Sample

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Average Cluste
rin

g Coeffic
ient

0.18

0.20

0.22

0.24

0.26

0.28

0.30

E
uc

lid
ea

n
D

is
ta

nc
e

1

2

3

4

5

6

7

Surface plot for Random Node Sampling (10%-90% sampling) for sf embedding

1

2

3

4

5

6

7

Figure 3.14: Surface plot of Euclidean distance, Sampling Size and Average Clustering

Coefficient for Random Node Sampling and Spectral Features Embedding

23

The figures 3.15 to 3.18 show the surface plot for Average Shortest Path Length, Density,

Diameter and Transitivity for Random Node and Edge Sampling, and for Graph2Vec and SF

embedding. Our Observations are as follows:

For Graph2vec Embedding: Density decreases with increase in sample size for both random

node and random edge sampling methods. Transitivity increases with sample size for node and

edge sampling methods. Diameter decreases in random node while it increases in random edge

with increase in sample size. Finally, average shortest path length decreases in random node and

increases in random edge with increase in sample size.

For Spectral Features Embedding: Density decreases in both random node and random edge

sampling. Diameter increases sharply in random edge while it decreases in random node sampling.

Transitivity decreases in random node while increases in random edge with increase in sample

size. Finally, average shortest path length decreases sharply in random node sampling while it

increases in random edge sampling when sample size is increases. As we can see all properties

behave different depending on sampling and embedding method.

24

Random Node Sampling and Graph2Vec Embedding

Avg shortest path length Density

Diameter Transitivity

Figure 3.15: Surface plot of Graph Properties for Random Node Sampling and

Graph2Vec Embedding. It includes Avg. Shortest Path Length, Density, Diameter

and Transitivity

25

Random Edge Sampling and Graph2Vec Embedding

Average Shortest Path Length Density

Diameter Transitivity

Figure 3.16: Surface plot of Graph Properties for Random Edge Sampling and

Graph2Vec Embedding. It includes Avg. Shortest Path Length, Density, Diameter

and Transitivity

26

Random Node Sampling and Spectral Features Embedding

Average Shortest Path Length Density

Diameter Transitivity

Figure 3.17: Surface plot of Graph Properties for Random Node Sampling and Spectral

Features Embedding. It includes Avg. Shortest Path Length, Density, Diameter and

Transitivity

27

Random Edge Sampling and Spectral Features Embedding

Average Shortest Path Length Density

Diameter Transitivity

Figure 3.18: Surface plot of Graph Properties for Random Edge Sampling and Spectral

Features Embedding. It includes Avg. Shortest Path Length, Density, Diameter and

Transitivity

The exploratory data analysis provides us with all the details needed to perform regression

with sample and graph properties as independent variables and similarity as dependent variable.

Before delving into the details of regression, we discuss all the graph properties in brief.

28

3.3 Description of Graph Properties

We will discuss all the graph properties that are used in our experiments. We use networkx

and grinpy libraries [?] to calculate graph properties. Definitions are taken from wikipedia and

the Social Media Mining book [29].

(a) Clustering coefficient: A clustering coefficient is a measure of the degree to which nodes

in a graph tend to cluster together. There are two versions: local and global. Global gives

overall indication of clustering in the network and the local gives an indication of embeddedness

of single nodes. Global clustering coefficient can be calculated in an alternate way by averaging

local clustering coefficients of all vertices. This alternate method is called as network average

clustering coefficient and we use it in this thesis. The network average clustering coefficient is

given by:

C̄ =
1

n

n∑
i=1

Ci, (3.2)

where Ci is clustering coefficient for node i.

(b) Transitivity: is the fraction of all possible triangles present in graph G. The transitivity is

given by:

T = 3
#triangles

#triads
(3.3)

(c) Average Shortest Path Length: Average path length is defined as the average number

of steps along the shortest paths for all possible pairs of nodes in the network. It is given by

formula:

lG =
1

n · (n− 1)
·
∑
i ̸=j

d(vi, vj), (3.4)

where n is number of vertices in G.

(d) Density: The density is the ratio of the number of edges the graph G(V,E) has over

maximum number of edges it can have. It can be formalized as:

γ =
|E|(|V |
2

) . (3.5)

29

(e) Diameter: It is the length of longest shortest path between any pair of nodes in the graph.

Formally, for a graph G the diameter is defined as:

diameterG = max (vi,vj)ϵV×V li,j (3.6)

(f) Order: The order of a graph is its number of vertices |V |.

(g) Size: The size of a graph is its number of edges |E|.

(h) Assortativity: It measures similarity of connections i.e., correlation between two nodes. One

way to capture such correlation is Assortivity Coefficient.

The assortativity coefficient is the Pearson correlation coefficient of degree between pairs of

linked nodes and is given by:

r =

∑
jk jk(ejk − qjqk)

σ2
q

. (3.7)

The term qk is the distribution of the remaining degree and captures edges leaving the node.

(i) Estrada Index: It is graph invariant related to eigen values of adjacency matrix. The index

was first defined by Ernesto Estrada as a measure of the degree of folding of a protein.

Let G = (V,E) be a graph of size |V | = n and and let λ1 ≥ λ2 ≥ · · · ≥ λnλ1 ≥ λ2 ≥ · · · ≥ λn

be a non-increasing ordering of the eigenvalues of its adjacency matrix A, the Estrada index is

defined as:

EE(G) =
n∑

j=1

eλj . (3.8)

(j) Circuit Rank: It is the minimum number of edges that must be removed from the graph to

make it a tree. It is equal to the number of independent cycles in the graph. It is computed by

using the formula:

r = m− n+ c (3.9)

, where m is the number of edges in the given graph, n is the number of vertices, and c is the

number of connected components.

30

(k) Girth: The girth of an undirected graph is the length of a shortest cycle contained in the

graph.

(l) Weiner Index: It is defined as the sum of the shortest-path distances between each pair of

reachable nodes [6]. The Wiener index is named after Harry Wiener, who introduced it in 1947.

(m) Independence Number: It is the cardinality of a largest independent set of nodes in the

graph.

(n) Annihilation Number: as defined in paper [17], the annihilation number is the largest

integer k such that the sum of the first k terms of the non-decreasing degree sequence of G

is at most the number of edges in G. It is denoted by γ(AD) where D is degree sequence to

which process was applied.

(o) Average Degree: Average degree is simply the average number of edges per node in the

graph. It is total number of edges over total number of nodes:

Average Degree =
TotalEdges

TotalNodes
. (3.10)

(p) Spectral Moments: We consider 3 spectral moments second spectral moment (m2), third

spectral moment (m3) and fourth spectral moment (m4). First spectral is always 0, hence we

eliminate it. To calculate these moments, we refer to code in [9] paper. This authors explain

the spectral moments as follows:

The lth spectral moment ml of a graph G using the spectrum of its random walk transition

matrix P ,

ml = E(λl) (3.11)

as 1
n

∑n
i=1 λ

l
i = E(λl)

31

(q) Radius: is the minimum graph eccentricity of any vertex in the graph. The eccentricity ε(v)

of vertex v in connected graph is maximum distance between v and any other vertex u of Graph

G.

(r) Residue: The residue of a graph G is the number of zeros obtained in final sequence of

the Havel-Hakimi process. Given the degree sequence d of a simple graph, the Havel–Hakimi

algorithm is the procedure that iteratively removes a largest term t from the sequence and

subtracts 1 from the t largest remaining terms, stopping when a list of zeroes is produced.

We hence have access to the values of the aforementioned graph properties, sampling and

embedding methods, sampling sizes, and euclidean distance between embeddings. How can we

use this information to answer our questions? The answer to this and all earlier questions will be

in the next chapter. In the next chapter we will dive deeper into the experiments we performed

and the thought process behind it.

32

Chapter 4

SIMILARITY AND STABILITY ANALYSIS

This chapter details our experiments on similarity and stability analysis. The analysis includes

three parts: First, we study the relationship between similarity and sampling size, i.e., a single

variable analysis. This gives us an overall minimum sampling size that gives a similarity nearly

equal to original graph. Second, we perform regression to predict similarity for a given sample size

and graph properties. We perform this experiment initially on social media graphs followed by

utilizing graphs from other domains to generalize the approach. The regression model is created

for each pair of embedding and sampling methods. Finally, we perform stability analysis using

R-Squared to determine the stable embedding method.

For implementation, we use Networkx Package [6] to read edgelists and calculate the graph

properties. For sampling methods and extracting samples using those methods, we use little-

balloffur library [23] by Rozemberczki. To calculate embeddings for graphs, we use the methods

from the karateclub [22] library again developed by Rozemberczki. We set the default size for

embedding vectors, i.e., the embedding dimension is 128.

Before going into details, we first revise sampling methods used in this thesis. Note that we

consider sampling with replacement.

Random Node Sampling: The approach, in which, the set of nodes N are selected randomly

with uniform probability is called Random Node Sampling. The sampled graph is the graph

induced by the set of nodes N .

Random Edge Sampling: Just like random node sampling, Random Edge Sampling selects

edges uniformly at random. Meaning that, this method will sample an edge connecting two

nodes. The drawback of this method is that it creates very sparsely connected samples. We

consider the largest connected component that reduces the probability of getting sparse samples.
33

Figure 4.1 illustrates the graphical representation for visualization.

Figure 4.1: Graphical Representation of our contributions. It shows the step-by-step

process followed to answer questions from Chapter 1.

4.1 Univariate Analysis

As discussed in previous chapter, we have sampling size, graph properties, and Euclidean

distances. As the distance has no bounds, we first bound the distance between zero and one

using the formula as per Y. Bai et al. [1]:

Similarity = e−y, (4.1)

where y is Euclidean distance. The equation (4.1) converts Euclidean distance to similarity.

First, we try to analyze how the similarity changes with respect to sampling size by gathering

15 samples for each graph and for each sampling size. There are ten graphs and eight sampling

size and 15 runs. Thus, in total we have 1,200 instances. Next, instances are grouped based on

sampling size and we take the median of them. The points on the graph are these medians. The

reason the average is not considered is because it is sensitive to the outliers in the dataset. This

analysis is performed for each embedding and sampling method. Figures 4.2 to 4.5 are for graphs

from diverse domains. In these figures, we observe

34

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling Percent

0.2

0.4

0.6

0.8

S
im

ila
rit

y

Graph of Similarity v/s Sampling Percent

Random Node Sampling and GRAPH2VEC Embedding

Figure 4.2: Similarity versus Sampling Size for Random Node Sampling and Graph2vec

embedding. This gives intuitively minimum 40% sample required for 80% similarity

with original graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling Percent

0.0

0.2

0.4

0.6

0.8

S
im

ila
rit

y

Graph of Similarity v/s Sampling Percent

Random Node Sampling and SF Embedding

Figure 4.3: Similarity versus Sampling Size for Random Node Sampling and Spectral

Features embedding. This gives intuitively minimum 30% sample required for nearly

60% similarity with original graph

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling Percent

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
im

ila
rit

y

Graph of Similarity v/s Sampling Percent

Random Edge Sampling and GRAPH2VEC Embedding

Figure 4.4: Similarity versus Sampling Size for Random Edge Sampling and Graph2Vec

Embedding. This gives intuitively minimum 40% sample required for 65% similarity

with the original graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling Percent

0.00

0.05

0.10

0.15

0.20

S
im

ila
rit

y

Graph of Similarity v/s Sampling Percent

Random Edge Sampling and SF Embedding

Figure 4.5: Similarity versus Sampling Size for Random Edge Sampling and Spectral

Features embedding. This gives intuitively minimum 50% sample required for 25%

similarity with original graph

36

In Figure 4.2, the similarity rapidly increases with sampling size from 0.2 to 0.4, after which

it remains nearly stable. Thus at 40% sample, we get close to 83% similarity to the original

graph. In other words, if we analyze a 40% sample, our embeddings are 83% similar compared

to that of the original graph.

Figure 4.3 shows similarity versus sampling curve for Random Node Sampling and Spectral

Features (SF) embedding. As we can see, 50% sampling gives up to 70% similarity. It also

suggests that sampling size cannot be less than 30%. In other words, any value above 30% will

work as the similarity keeps increasing with sampling size after 30%.

Figure 4.4, shows similarity versus sampling for Random Edge Sampling and Graph2Vec

embedding. Here too, close to 50-55% gives 70% similarity to the original graph. Thus, the

graph with half the size of the original is enough to analyze and would be nearly as good as the

original graph.

Figure 4.5 shows similarity versus sampling for Random Edge Sampling and Spectral Features

embedding. The 2D plot is similar to others, but it gives the maximum similarity of 22-24% for

50% sampling. The similarity is below 70%. As the similarity is not that stable as after certain

sampling size (50%), the similarity starts to drop.

The goal of this analysis is to obtain an intuition of how much a small the sample can be.

However, this just considers the sample size and similarity. The way we calculated the similarity

was through embeddings. All the embeddings capture the connectivity of the graph differently.

So it is incorrect to conclude anything just based on single variable analysis. So, we decided to

consider various properties of the graphs that capture connectivity from different angles.

The properties that we will be considering are discussed in the section 3.3 in chapter 3. There

are a total of 21 properties. Now question comes up such as how do we check these properties?

Can we check individually? or can we assess the overall effect of all these properties? If we check

individually, it will be same as our earlier analysis. Therefore, it will not be sufficient to conclude

based on individual properties. Thus, we drop this option. Next, we try to figure out the overall

effect of all these properties. One way is to calculate the graph properties for multiple instances

37

and then take a weighted average of all of these properties. Average will be influenced by majority

values and might give incorrect results. Another way is to calculate the median. Median will work

for one property, but calculating across various properties will mislead the results. The primary

reason being the scale for all properties being different. Scaling hints us that properties need to

be normalized to bring them to the same scale. Scaling every feature can be done for a limited

number of features. However, data will keep increasing, and hence the number of features. Thus,

manual work will have limitations for the huge amount of data and a large number of features.

Additionally, manual work will be also limited to the number of datasets at present. What if we

need determine the results for a completely new dataset? This takes us on the route of using a

machine learning model. We need to train model on existing data or graphs for model to learn

the properties of graphs. The model developed by providing training data for learning is called

as a supervised learning model. Supervised machine learning models are mainly of two types:

Classification and Regression. Let us understand them briefly, so we know why we selected one

method over the other.

Classification is used when we are predicting discrete values, e.g., Classifying credit card

transactions as legitimate or not. This is saying a yes or no. This ”yes” or ”no” are called as

labels. When there are two labels, it is binary classification, else it is multi-label classification.

Regression, on the other hand, is used when we are predicting continuous values, e.g., given

weather and rainfall data of one year, what is the amount of rain we will receive today? Thus,

here we predict actual value rather than a yes or no. In our case, we are predicting similarity

which is a continuous value. Hence, we can formulate our problem as a regression problem.

Additionally, as we were trying to calculate average across all properties, earlier, the regression

will also do the same but in an optimized manner based on the kind of model. Hence, regression

solves the challenge of finding averages and predicting on new datasets.

The question we are asking is, given a sampling size, and the properties for that sampling size

of the graph, how much similarity we can get? Next, let us see how the regression is performed

and how different variables affect the output.

38

4.2 Regression for Similarity Prediction

We performed the set of experiments in two sets. The reason being if domain plays a role

in prediction or not. So, we first train the regression model with only social media datasets and

then add more datasets.

4.2.1 Experiments on Social Media Networks

Dataset descriptions are given in chapter 3. From all the datasets mentioned, we first consider

(a) Facebook GEMSEC dataset and (b) Twitch Social Network datasets. We consider the basic

properties defined by SNAP website [12] for those datasets for these two datasets. Then we

follow as outlined next:

Sampling from Datasets and Computing Graph Properties

As discussed in Chapter 3, we first collected the data for the facebook and twitch datasets.

The collected data included sampling sizes (10-80%) and graph properties respective to those

samples. The graph properties we considered are: sampling size, clustering coefficient, average

shortest path length, number of edges, number of nodes, diameter, transitivity, and density.

These properties along with the sample size will be our features for the model.

Shuffling Datasets

Next, we shuffle the dataset to prevent models from learning the order. In simple words, we want

to make sure model treats each data point or row as independent and that it is unrelated to the

points above or below it in the dataset.

Scaling the values

As all the features have different scale, we need to bring them all to the same scale. This process

is called as standardization. Standardization means to subtract the mean from every instance

39

and divide by the standard deviation. The formulation is as follows:

z = (x− u)/s (4.2)

where u is the mean of the training samples and s is the standard deviation of the training

samples.

The reason to do standardization of the data is to prevent model from being biased on scale

thereby resulting in incorrect predictions. We use StandardScaler from package sklearn [16] and

API [2]. The dependent variable is Euclidean distance and to convert it to a value between zero

and one, we use e−y, as specified by Bai et.al [1] where y is Euclidean distance.

Test/Train Split

We have the dataset preprocessed and ready to analyze. We will divide our dataset into train and

test sets. The reason is to train the model for learning the pattern in the data and the test for

some arbitrary data to verify model’s performance. In the regression, we check the performance

by amount of error in the actual versus predicted values. So, we divide the dataset into 70% train

and 30% test. Meaning that 70% of the data will be shown to model and 30% will be hidden. For

the splitting, we use test train split method from Sklearn [2].This method also guarantees that

the distribution of data is even in the train and the test sets. We finally perform linear regression

by fitting the model on the train dataset and predicting on the test dataset. We calculate Root

Mean Square Error (RMSE) to measure the performance of model. We note down the RMSE

for different embedding methods and sampling approaches as shown in the Table 4.1. As we can

see, Tables 4.2 and 4.1 have similar values, indicating that the model is not overfitted.

Perform Ordinary Least Squares Regression

We get the RMSE values from the regression model, but how do we know the RMSE we got

is good or not, and which properties are significant or contributed most to model? To answer

these questions, we analyze using OLS (Ordinary Least Square) method from statsmodel package

40

Sampling Method Embedding Method

Graph2Vec Spectral Features (SF)

Random Node Sampling 0.17 0.18

Random Edge Sampling 0.17 0.13

Table 4.1: RMSE of Test Dataset for Graph2Vec and Spectral Features embeddings calculated

for Random Node and Random Edge Sampling methods. The dataset contains social networks.

Sampling Method Embedding Method

Graph2Vec Spectral Features (SF)

Random Node Sampling 0.17 0.17

Random Edge Sampling 0.16 0.14

Table 4.2: RMSE of Train Dataset for Graph2Vec and Spectral Features embeddings calculated

for Random Node and Random Edge Sampling methods. The dataset contains social networks.

[25]. The OLS is another name for linear regression. The interesting thing about the statsmodel

package is that it gives a detailed summary of the model including some statistical measures.

The summary table for Random node Sampling and Spectral Features embedding is presented in

Figure 4.6

Let us understand some important terms that we are mainly considering. We have a total

of eight independent variables or features denoted by x1 to x8. R-squared captures the size of

variation in the dependent variable that is explained by the independent variables. Here, 72.3%

variation in distances is explained by x1 to x8. The drawback of R-squared is that it is directly

proportional to the input or predictors or output variable that makes the value inconclusive in

41

some cases. Hence, the next term Adjusted R-squared, which is the improved version of R-

squared that is adjusted for the number of variables. F-statistic shows the overall significance of

regression with multiple features. It is calculated as:

F -statistic =
the mean regression sum of squares

the mean error sum of squares
(4.3)

F -statistic values can range from zero to an arbitrary large number. However, this alone does not

determine significance. There is one more value Prob(F -Statistic). It evaluates the significance

level of all the variables together unlike the t-statistic that evaluates it for individual variables.

It depicts the probability of the null hypothesis being true. As per the results in Table 4.3, the

probability is zero. This implies that the overall regressions is meaningful. For all independent

variables, we have (P > |t|) values. Here, P is denotes the p-value and tests the null hypothesis

that the variable has no correlation with the dependent variable. That means, change in one

input variable has no effect on the output variable. To decide when to reject null hypothesis, we

decide significance level or threshold before experiment. In general, the value of this threshold

is 0.05. So, if the p-value of input variables is less than threshold, the data least agrees with

hypothesis. Thus, we reject null hypothesis that there is no correlation between input and output

variables. To map this in our case, if any of the variables (x1, ..., x8) has p-value< 0.05, then

the change in that variable will affect the similarity significantly.

Table 4.3 summarizes all values at once. A point to note is that Adjusted R-Squared from

OLS summary is very similar to 10-fold cross-validation calculated using cross val score function

from sklearn library [16].

42

Sampling Method Embedding Method F -Statistic Adjusted R-Squared

Random Node

Sampling

Graph2Vec 1509.0 0.72

Spectral Features 2876.0 0.76

Random Edge

Sampling

Graph2Vec 52.21 0.70

Spectral Features 15.69 0.18

Table 4.3: Summary of F -Statistic and R-Squared for Social Network Datasets. It shows OLS

Summary for all embedding and sampling methods for all significant features of regression model.

43

Figure 4.6: Ordinary Least Square (OLS) Summary: Random Node Sampling and

Spectral Features Embedding generated by statsmodel package [25]

We follow the same process for other embedding and sampling methods.

44

Figure 4.7: Ordinary Least Square (OLS) Summary: Random Node Sampling and

Graph2Vec Embedding generated by statsmodel package [25]

45

Figure 4.8: Ordinary Least Square(OLS) Summary: Random Edge Sampling and

Graph2Vec Embedding generated by statsmodel package [25]

46

Figure 4.9: Ordinary Least Square(OLS) Summary: Random Edge Sampling and Spec-

tral Features Embedding generated by statsmodel package [25]. This shows summary

for significant features.

Here, as we can see, there are just four important features (x1, x2, x3, and x4). The reason

being other features had higher p-values than our threshold of 0.05, which means those features do

not contribute significantly to predicting similarity. Another perspective to think about features

47

is, we can still keep the features we removed as they contribute but only slightly. In case of

graphs, the more structural properties we gather, the more information we capture. This is also

captured by the increased R-Squared value. Figure 4.10 shows the summary for Random Edge

Sampling and Spectral Features Embedding with all input variables available. As we can see, for

all features, R-Squared increased slightly but F -Statistic decreased. This decrease in F -Statistics

shows model is less significant.

48

Figure 4.10: OLS Summary: Random Edge Sampling and Spectral Features Embedding

all features generated by statsmodel package [25].This shows summary for all features.

Next, we also try LASSO and Ridge regression, but LASSO gives RMSE more or less equal

to Linear Regression. Ridge regression too was nearly close to value. Hence, we consider Linear

Regression model for further analysis for clarity.

49

Performance on Validation Datasets

We checked how our model performs on test data. The goal is to see how generalized the model

is by validating it on different datasets. We performed validation on the social media dataset and

a dataset from collaboration network. Table 4.4 shows actual versus predicted values for social

media dataset for each embedding and sampling method.

Validation Datasets that we used are: ”Astro Physics collaboration network” and ”Social

Network from Facebook page to page network for TV Shows category”. To review datasets

please refer Chapter 3. We took one sample for every sampling size (percentage) for both the

datasets.

Sampling Methods TV Show Page to Page Network Astrophysics Network

Graph2Vec Spectral Features (SF) Graph2Vec Spectral Features (SF)

Random Node Sampling 0.29 0.17 0.23 0.29

Random Edge Sampling 0.17 0.12 0.27 0.11

Table 4.4: RMSE for Facebook TV Show Page to Page Network and Astrophysics Network.

These networks are used to validate how the model performs on new datasets

From the Table 4.4, we can see Graph2Vec embedding for Random Node Sampling and

Spectral Features (SF) embedding for Random Edge Sampling gives nearly the same RMSE for

both datasets. However, SF embedding for Random Node and Graph2Vec embedding for Random

Edge shows difference of RMSE. One reason for such difference in values is also because all the

four combinations do not have the exact same number of instances. The reason being both

embedding methods took very long time to embed graphs after random edge sampling. Another

reason is also because Astrophysics is a large dataset with 18k nodes and 198k edges. So although

these numbers look close and good, but they are not telling the complete story. To understand

the full story, let us visualize them.

50

Let us see the actual versus predicted plots for both the validation datasets. X-axis shows

the sampling size. Y -axis shows Normalized Euclidean Distance, i.e., similarity. Next, we discuss

insights from Figures 4.11 to 4.18. As we can see in all figures, the plot for TV Show Facebook

Page-to-Page Network is better than astrophysics network.

For TV Show Dataset:

For Random Node Sampling with Graph2Vec and SF Embedding (Figure 4.11), the plots are

nearly perfect, i.e., model is able to predict all the values with minimal errors. The reason being

validation dataset belongs to the same domain of train dataset, i.e., social networks. For Edge

Sampling though, graph2vec embedding is again good as expected but the plot is completely

opposite for SF embedding, where a single point somehow matches but for the rest of the data

points, difference between actual and predicted is large.

For Astrophysics Dataset:

For this dataset, there is a vast difference between actual and the predicted values of similarity.

For Random Edge sampling, the curves do not even overlap in Figures 4.16 and 4.18. What does

this show? Our model works the best for dataset for Social Media domain but cannot be applied

for other domains. That makes sense because properties of every network are different, e.g.,

degree distribution in social networks follow power law distribution but it is not the same case

for, e.g., collaboration networks. What does this tell us? For a model to be generalized, it should

understand how one property behaves differently when the network changes. Thus, we decide to

add datasets from other domains as well as various properties.

51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sampling percent

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random node sampling: Graph2Vec

Actual similarity
Predicted similarity

Actual v/s Expected plot

Figure 4.11: Actual versus Predicted Similarity for TV Show Validation Dataset: Ran-

dom Node and Graph2vec embedding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random node sampling: Graph2Vec

Actual similarity
Predicted similarity

Actual v/s Expected plot

Figure 4.12: Actual versus Predicted Similarity for Astrophysics Dataset: Random Node

Sampling and Graph2vec embedding

52

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random node sampling: SF

Actual similarity
Predicted similarity

Actual v/s Expected plot for TV Show FB Page to Page Network

Figure 4.13: Actual versus Predicted Similarity for TV Show Validation Dataset: Ran-

dom Node and SF embedding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random node sampling: SF

Actual similarity
Predicted similarity

Actual v/s Expected plot for Astrophysics Network

Figure 4.14: Actual versus Predicted Similarity for Astrophysics Dataset: Random Node

and SF embedding

53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random Edge sampling: Graph2Vec

Actual similarity
Predicted similarity

Actual v/s Expected plot for TV Show Page to Page Network

Figure 4.15: Actual versus Predicted Similarity for TV Show Validation Dataset: Ran-

dom Edge and Graph2Vec embedding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random Edge sampling: Graph2Vec

Actual similarity
Predicted similarity

Actual v/s Expected plot for Astrophysics Network

Figure 4.16: Actual versus Predicted for Astrophysics Dataset: Random Edge and

Graph2Vec embedding

54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sampling percent

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random Edge sampling: SF

Actual similarity
Predicted similarity

Actual v/s Expected plot for TV Show FB Page to Page Network

Figure 4.17: Actual versus Predicted Similarity for TV Show Validation Dataset: Ran-

dom Edge and SF embedding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 E
uc

lid
ea

n
D

is
ta

nc
e

Random Edge sampling: SF

Actual similarity
Predicted similarity

Actual v/s Expected plot for Astrophysics Network

Figure 4.18: Actual versus Predicted Similarity for Astrophysics Dataset: Random Edge

and SF embedding

55

4.2.2 Experiment with Multi-domain Networks

As we saw in previous figures, our model did not do a good job in predicting the similarities for

graphs from domains other than social media. So, we decide to add datasets from other domains.

Additionally, graph properties also behaves differently depending on domain. We decided to

add datasets incrementally instead of adding them all at once. Hence, we add datasets from

collaboration, peer-to-peer, and autonomous systems domain. We also add properties which

capture the connectivity of graphs. We try to include properties which capture the underlying

structure of graph as well as those that are faster to compute. The point to note here is that

we only capture properties which are calculated at the Network/Graph level and not at the node

level. For example, centrality is calculated at the node level so we do not consider it. The

graph properties we consider are: clustering coefficient, average shortest path length, edges,

nodes, diameter, transitivity, density, assortativity coefficient, Estrada index, circuit Rank, girth,

wiener index, independence number, annihilation number, average degree, second moment, third

moment, fourth moment, radius, and residue. Next, we will deep dive into the experiment

following a step by step process.

Multiple Samples

We now consider all datasets outlined in our dataset section (page 13) and all graph properties

(described on page 29). Facebook dataset contains many Page-to-Page networks which increases

number of graphs for social media domain. Hence, we remove two network graphs: company and

athletes from it to make the dataset balanced. Next, we sample the graph between 10% and 80%

and take 15 samples for each sample size. So, we have 15× 8 = 120 samples for each dataset.

There are ten types of graphs from different domains and 15 samples or subgraphs per domain

yielding 150 instances per sample. we calculate the graph properties mentioned in section 3.3 for

all these subgraphs.

56

Shuffle and Preprocessing dataset

Next, we shuffle datasets five times to avoid the model from learning order dependency. Now,

we need to preprocess the dataset before giving it to the model. Just like we did in previous

experiment, we will scale the independent variables or features using Standard Scaler. For output

or dependent variable, we need the value to be between zero and one. So for every value, we will

calculate e−y, where y is dependent variable or output which is similarity in our case.

Test-Train Split

Now, we have a cross-domain (multi-domain) dataset of subgraphs, sampling sizes, respective

graph properties, and similarity. We feed this data to the regression model to predict similarity.

First, we divide the dataset into 70% train and 30% test. Next, we perform Linear Regression on

the dataset by training with train data and predicting on test data. We create regression model

for every pair of Random Node Sampling, Random Edge Sampling with Graph2Vec and Spectral

Features Embedding. We again create table of RMSE for test dataset. To remind, table 4.1

shows RMSE for previous experiments for social media networks.

Sampling Method Embedding Method

Graph2Vec Spectral Features (SF)

Random Node Sampling 0.14 0.14

Random Edge Sampling 0.12 0.11

Table 4.5: RMSE for regression model on Test Dataset. The dataset contains graphs from social,

collaboration, autonomous systems, and peer to peer networks i.e., multi domain networks

All the four values in the dataset are nearly same. So it is difficult to get insights on these

values. We run Ordinary Least Squares (OLS) from stats models package [25]. The summary

57

created by statsmodels package will give more insights from model. The figures shows summary

given by OLS model for each embedding and sampling method.

(a) Random Node Sampling and Graph2Vec Embedding:

Figure 4.19 shows the OLS summary for Random Node Sampling and Graph2Vec Embedding.

It contains all the features described in previous chapter except first moment as it is always zero

and matching number. We also remove edges as a feature as the summary gives multicollinearity

error. With all the features, our Adjusted R-Squared is 0.83 which means our model is able

to predict correctly 83% of the time. We see if all the features contribute significantly. So,

we will check P > |t| column which will give p-value for each feature. Our threshold is again

0.05 to reject the null hypothesis. So, we will take features which has this p-value less than

0.05 (our threshold). Thus, we consider features which are contributing significantly to predict

our output. Finally, as shown in Figure 4.20, all 10 features are significant. However, as we

can see, Adjusted R-Squared is decreased to 0.81 and F-statistic increased from 203 to 353

which means the current set of features are more significant. We removed girth as it needs

more computation time for large graphs and one of our validation datasets is large. Moreover,

adding or removing girth does not change model significantly. Feature x7 is the girth in Figure

4.20. Thus, we can safely remove girth from our feature set. So, we can say that if we have the

9 features, and sampling ratio is between 10%-80%, our model predicts 81% more accurately.

These 9 features are: sample, transitivity, nodes, density, assortativity coefficient, circuit Rank,

Wiener index, independence number, and third moment.

(b) Random Node Sampling and SF Embedding

The same experiment is performed for SF embedding and in the same setting, i.e., same instances

and datasets. Figures 4.21 and 4.22 show the OLS summary for the model with all features

and significant features. Here, we again removed ’girth’ and ’edges’ to solve multicollinearity

problem. Girth seems to be capturing the same properties as that of transitivity. In other

words, transitivity and girth has some correlation. Also, if we observe, sample(x1) p-value

58

is greater than our threshold. It means that sample is not contributing significantly to the

similarity prediction. We will still keep the sampling size as our graph properties are for that

sampling size and coefficient is not too small. The Adjusted R-Squared here is 0.78, which

means 78% of the time it predicts the data correctly. The features we select here are: Sample,

Clustering Coefficient, Average Shortest Path Length, Transitivity, Circuit Rank, Wiener Index,

Independence Number, Annihilation Number, Second Moment, and Fourth Moment.

(c) Random Edge Sampling and Graph2Vec Embedding:

Figures 4.23 and 4.24 show OLS summary for Random Edge sampling and Graph2Vec embed-

ding. Initially, we considered all the features and ran the OLS on that. On checking summary,

we got the error that input variables have correlation. On analyzing, we removed girth and

nodes from features and the error was fixed. Figures 4.23 and 4.24 show summaries after the

error was fixed. As we did before, we selected features with p-value less than 0.05 and reduce

the number of features from 19 to 11. Adjusted R-Squared is not changed much but there is

increase in F-statistic which gives significance of complete model. So we can say our model

which has 11 features is more significant. As per adjusted R-Squared, our model can predict

the similarity correctly 86% of the time. The significant features are: Sample, Average Short-

est Path Length, Edges, Density, Circuit Rank, Wiener Index, Annihilation Number, Average

Degree, Third Moment, Fourth Moment, and Radius

(d) Random Edge Sampling and SF Embedding: Figures 4.25 and 4.26 show OLS summaries

for Random edge sampling and SF embedding. Compared to other models, Adjusted R-Squared

here is less along with F-statistic. Here again we take significant features by considering p-

Model can accurately predict correctly 57% of the time. The significant features are: Sample,

Average shortest path length, edges, transitivity, density, circuit Rank, Independence Number,

Annihilation number, Average degree, Second Moment, Third Moment, and Residue.

59

Figure 4.19: Ordinary Least Squares (OLS) Summary: Random Node Sampling and

Graph2Vec Embedding for all features

60

Figure 4.20: Ordinary Least Squares (OLS) Summary: Random Node Sam-

pling and Graph2Vec Embedding for Significant Features

61

Figure 4.21: Ordinary Least Square (OLS) Summary: Random Node Sampling and

Spectral features Embedding for all features

62

Figure 4.22: Ordinary Least Square(OLS) Summary: Random Node Sampling and

Spectral features Embedding for Significant Features

63

Figure 4.23: Ordinary Least Square(OLS) Summary: Random Edge Sampling and

Graph2Vec Embedding for all features.

64

Figure 4.24: Ordinary Least Square (OLS) Summary: Random Edge Sampling and

Graph2Vec Embedding for Significant Features.

65

Figure 4.25: Ordinary Least Square(OLS) Summary: Random Edge Sampling and SF

Embedding for all features

66

Figure 4.26: Ordinary Least Square(OLS) Summary: Random Edge Sampling and SF

Embedding for Significant Features

Table 4.6 gives the summary of all the the figures from 4.19 to 4.26 summary tables. A point
67

to note is that the Adjusted R-Squared we get is very similar to 10-fold cross-validation using

cross val score function from scikit-learn library [16].

Sampling Method Embedding Method F-Statistic Adjusted R-Squared

Random Node

Sampling

Graph2Vec 353.6 0.811

Spectral Features 309.3 0.78

Random Edge

Sampling

Graph2Vec 469.1 0.86

Spectral Features 96.09 0.58

Table 4.6: Summary of F-Statistic and R-Squared values for Multi-domain Network Dataset.

It shows OLS Summary for all embedding and sampling methods for all significant features of

regression model.

Performance on Validation Datasets:

The OLS summary tables from figures 4.19 to 4.26 show results of how model is performed on the

test data. To get a general perspective of how model performs on the completely new dataset,

we decided to try on a new network that the model has not seen before. We call this dataset as

validation dataset. To make it more realistic, we validate the model on a larger dataset than on

which the model was trained on.

We used the Astrophysics dataset as our validation dataset(page 15). Figures 4.27 to 4.30

show the graph of actual similarity versus predicted similarity on the validation datasets for

Random Node Sampling & Graph2Vec Embedding, Random Node Sampling & Spectral Features

Embedding, Random Edge Sampling & Graph2Vec Embedding, and Random Edge Sampling &

Spectral Features Embedding.

Figure 4.27 shows that our model predicts the values accurately. At 40% and 50% sampling,

the values are very close. We think the reason for it could be as we got maximum similarity for
68

40% sampling from the experiment in section 4.1.

Figure 4.28 does not give very good results, but for 30% and 40% sampling the error between

prediction and actual is less.

Figure 4.29 gives good results for lower sampling sizes but not for higher sampling sizes. The

error increases after 30-40% sampling.

Figure 4.30 does not give good results because the training data does not have high similar-

ities. As per figure 4.5, the highest similarity is around 0.2 which is less, so our model predicts

similarities around that range but actual similarities are below 0.5. Thus performance of model

on validation dataset depends on variation of values on dataset being validated. We can also

see from performance of validation and test datasets that Spectral Features Embedding does not

work well for Random Edge Sampling.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.2

0.4

0.6

0.8

S
im

ila
rit

y

Random node sampling: Graph2Vec

Actual similarity
Predicted similarity

Actual v/s Expected plot

Figure 4.27: Actual versus Predicted for Astrophysics Dataset on Cross-Domain Re-

gression Model: Random Node Sampling and Graph2vec embedding

69

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
im

ila
rit

y

Random node sampling: SF

Actual similarity
Predicted similarity

Actual v/s Expected plot

Figure 4.28: Actual versus Predicted for Astrophysics Dataset on Cross-Domain Re-

gression Model: Random Node Sampling and Spectral Features embedding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y

Random Edge sampling: Graph2Vec

Actual similarity
Predicted similarity

Actual v/s Expected plot

Figure 4.29: Actual versus Predicted for Astrophysics Dataset on Cross-Domain Re-

gression Model: Random Edge Sampling and Graph2vec embedding

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sampling percent

0.2

0.1

0.0

0.1

0.2

0.3

S
im

ila
rit

y

Random Edge sampling: SF

Actual similarity
Predicted similarity

Actual v/s Expected plot

Figure 4.30: Actual versus Predicted for Astrophysics Dataset on Cross-Domain Re-

gression Model: Random Edge Sampling and Spectral Features embedding

4.3 Stability of Embedding Methods

This section introduces stability from two papers and then provides our definition and stability

analysis on the embedding methods.

4.3.1 Introduction

As we analyzed the two embedding methods for two sampling methods, we observe same

embedding method behaves differently for different sampling methods. Hence, we want to go

further to see if we can decide on the stability of embedding methods. Our prior analysis shows

embedding methods also depend on the sampling method, so we define the stability of the

embedding method for a particular sampling method. We build our idea of stability based on

clustering stability [27]. The paper focuses on model selection based on clustering stability

of K-means algorithm. It attempts to find K which generates stable clusters. We are more

interested in the approach that the Von Luxburg takes to decide stability. Another approach

is by the Schumacher et al. [24], where he calculates the stability of node embeddings using
71

two approaches. First, they consider geometric stability where they consider measures such as

aligned cosine similarity, k-NN Jaccard Similarity, and Second-Order Cosine Similarity. Second,

they studied Downstream Stability which is defined as (in)stability induced by embeddings on

downstream classifiers. They perform experiments with GraphSAGE, HOPE, LINE, node2vec, and

SDNE embeddings on synthetic and real-world graphs. They conclude HOPE results in constant

embeddings while GraphSage appears to be volatile. For downstream stability experiments, overall

classification was robust but individual node classification caused variations due to embeddings.

They also study effect of graph properties such as size and density on stability of node embeddings

for synthetic graphs and conclude that graph properties have small influence on stability but is

overshadowed by choice of embedding algorithm. This paper is not directly related to our work

but is included due to its relation to stability of embeddings.

4.3.2 Analysis

We define the stability of the embedding method as follows: ”Given a subgraph S taken

from Graph G obtained by Sampling approach P and embedding method E, can we predict

the similarity between S and G using just the graph properties of S, with a good amount of

confidence? If yes, then we say the embedding method is stable.” In simple words, we define

stability of the embedding method as the predictibility of the model as ultimately stability would

also mean how much predictable the result is. So, we need to average the effect of all graph

properties across all sampling sizes. But all the properties will not have the same scale, so need

to do a weighted average. The Von Luxburg [27] also calculates the mean distance between

clusterings and calculates stability for the clusters based on the mean distance. The lesser

the mean distance, the more stable are clusters. In our case, we need to consider all properties

including similarity, so we decide to consider R-Squared value of our regression model. R-squared

is the coefficient of multiple determination for the multiple regression model.

R-Squared fits well here for two reasons: First, we use the same Linear Regression Model

across all sampling and embedding methods. Second, it calculates the average with uniform

72

weights as defaulted by Scikit Learn. We are considering Scikit learn [16] R-Squared function

as it is well defined with parameters. A point to note here is that the values given by OLS and

by Scikit learn are the same with minor decimal differences which does not change the results.

We get R-Squared Values for the four models for multi-domain dataset as shown in Table

4.7:

Sampling Method Embedding Method

Graph2Vec Spectral Features (SF)

Random Node Sampling 0.81 0.78

Random Edge Sampling 0.87 0.57

Table 4.7: R-Squared Values for Graph2Vec and Spectral Features embeddings, for Random Node

and Edge Sampling methods. These are R-Squared values of multi domain regression model

If we observe the values in the table 4.7 almost match the adjusted R-Square values from

Figures 4.20, 4.22, 4.24 and 4.26.

From the table 4.7 we can say, Graph2Vec is a more stable algorithm than spectral features

embedding. This shows Graph2Vec is stable embedding method overall. Another way to look at

stability is that it directly relates to scalability. The stable method would be easily scalable. In

the graph2vec [15] paper, the Narayanan et al. mention graph2vec is scalable due to the limited

runs of skipgram training. Thus, it aligns with our definition of stability.

73

Chapter 5

CONCLUSION AND FUTURE WORK

In this chapter, we summarize the key findings of our experiments and methods, and provide

directions for future work.

5.1 Conclusions

This section concludes the three points mentioned in contributions section. Please refer to

page 3 to review contributions.

5.1.1 Minimum Sample Size

We introduced a new method for deciding the minimum sampling size for graph sampling

based on distance between the graph embeddings of sample and that of the original graph. This

gives an intuitive idea of minimum sample size to get ε-similarity to the original graph where

the parameter ε differs for embedding and sampling methods. However, the graph is defined by

various properties so we need to consider them along with the distances between the embeddings.

Thus, same minimum sample will not work for all use cases or kinds of graphs. We solve this

problem using Regression.

The table 5.1 gives summary for the minimum sample size as per sampling and embedding

methods. Please refer to figures 4.2 to 4.5 for better visualization of overall results. As we can

see, best results are obtained with Random Node Sampling which was also aligns with the finding

by Leskovec et al. [11]. Higher similarity is obtained with Graph2Vec embedding.

74

Sampling Method Embedding Method Min. Sample Size Similarity

Random Node

Sampling

Graph2Vec 40% 80%

Spectral Features 30% 60%

Random Edge

Sampling

Graph2Vec 40% 65%

Spectral Features 50% 25%

Table 5.1: Summary of Minimum Sample with respect to Sampling and Embedding method.

5.1.2 Regression

We characterize a graph using graph properties. When we know sampling size, we define

graph properties at that sampling size. As we have the sample and the original graph, we can get

embeddings which is used to calculate similarity. Hence, we develop a regression model which

predicts similarity for a given sample based on the graph properties. We consider graph properties

which captures structure and connectivity of graph from different perspectives. Experiments are

conducted on domain specific and cross-domain graphs. Our observation states that domain

specific gives nearly perfect results for that domain but fails on graphs from other domains. So,

we add cross domain datasets and the model performs better for datasets of other domains.

5.1.3 Stability

The analysis in previous two steps will help in deciding minimum sample but we need some

method that measures the goodness of the embedding method. So, we perform stability analysis

based on R-Squared value which suggest Graph2Vec is overall stable for Random Node and

Random Edge Sampling. The same is also illustrated in the summary table 5.2 of the results.

75

Sampling Method Social Networks Multi-domain Networks

Graph2Vec Spectral Features (SF) Graph2Vec Spectral Features (SF)

Random Node Sampling 0.72 0.76 0.81 0.78

Random Edge Sampling 0.70 0.18 0.86 0.58

Table 5.2: Summary of the results of our experiments. The numbers denote Adjusted R-Squared

values for Linear Regression on both datasets.

5.2 Future Work

Our experiments and analysis led to interesting usecases and applications. We discuss them

in the subsections below:

5.2.1 Directed and Weighted Graphs

In this thesis, we focus on unweighted and undirected graphs. This approach can be ex-

tended to weighted and directed graphs. Along with additional properties for directed graphs,

we also need to think about handling the weighted edges. Many complex networks, especially,

social networks can also be represented using hypergraphs. Hypergraphs are more powerful and

reveal information that is beyond simple node-edge relationship. It would be interesting to see

if the information revealed by hypergraphs can be useful in finding out good samples and good

embeddings.

5.2.2 Dynamic Graphs

We consider static graphs so we have embedding of original graph which always stays constant.

For dynamic graphs, there is a possibility, same minimum sampling size will not work as graph

evolves. To overcome this possibility, we can find minimum sampling size for a graph at time

T . In addition, sampling and embedding methods also needs to be selected so that they are not

76

sensitive to evolution of graphs.

5.2.3 Other Similarity Measures

We consider Euclidean distance as the similarity measure. However, Euclidean distance comes

with its limitations not giving correct results for high dimensional spaces, i.e. suffering from curse

of dimensionality. For SF embedding, we have the highest similarity as 0.20, which might not be

the real similarity. If we use a different metric, the similarity might give even higher value. Thus

other similarity measures need to be explored. Using different similarity measure will also change

the minimum sampling size. So, it will be interesting to further go ahead and see if there is a

relation between similarity measures and minimum sampling sizes.

5.2.4 Mapping Between Minimum Sample Across Embeddings

In many studies of graphs, the approach or method in the study samples the graph using

different sampling methods. To compare different methods, we need to know for example, x% of

node sampling on one graph maps to y% of edge sampling on the same graph. The knowledge of

this mapping between different samples for the same embedding method will help in comparing

various studies of graphs in future.

5.2.5 Varying embedding Size

We currently consider the default embedding size as 128 provided by karateclub library [22].

The experiments can be done by varying embedding sizes and see if the embedding size impacts

the minimum sampling size.

5.2.6 Effect of Sampling and Embedding on Graph Properties

In this thesis, graph properties for a particular sample is given to regression model as input.

An interesting question to answer would be how different graph properties change with respect

to sample? We define stability in terms of R-Squared value which considers the graph properties.

77

Some research directions in these areas include answering questions such as what is the behavior of

properties in stable versus less stable embedding methods? or, Do the graph properties contribute

significantly to the stability of embeddings?

78

BIBLIOGRAPHY

[1] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang. Simgnn: A neural network
approach to fast graph similarity computation. In Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining, pages 384–392, 2019.

[2] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pret-
tenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varo-
quaux. API design for machine learning software: experiences from the scikit-learn project.
In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–
122, 2013.

[3] F. Chen, Y.-C. Wang, B. Wang, and C.-C. J. Kuo. Graph representation learning: a survey.
APSIPA Transactions on Signal and Information Processing, 9, 2020.

[4] N. de Lara and E. Pineau. A simple baseline algorithm for graph classification. arXiv preprint
arXiv:1810.09155, 2018.

[5] L. A. Goodman. Snowball sampling. The annals of mathematical statistics, pages 148–170,
1961.

[6] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

[7] D. D. Heckathorn. Respondent-driven sampling: a new approach to the study of hidden
populations. Social problems, 44(2):174–199, 1997.

[8] P. Hu and W. C. Lau. A survey and taxonomy of graph sampling, 2013.

[9] S. Jin and R. Zafarani. The spectral zoo of networks: Embedding and visualizing networks
with spectral moments. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1426–1434, 2020.

[10] M. Kurant, M. Gjoka, Y. Wang, Z. W. Almquist, C. T. Butts, and A. Markopoulou. Coarse-
grained topology estimation via graph sampling. In Proceedings of the 2012 ACM workshop
on Workshop on online social networks, pages 25–30, 2012.

[11] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 631–636,
2006.

[12] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[13] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

[14] F. Morstatter, J. Pfeffer, H. Liu, and K. Carley. Is the sample good enough? comparing
data from twitter’s streaming api with twitter’s firehose. In Proceedings of the International
AAAI Conference on Web and Social Media, volume 7, 2013.

79

http://snap.stanford.edu/data

[15] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal.
graph2vec: Learning distributed representations of graphs, 2017.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011.

[17] R. Pepper. On the annihilation number of a graph. In Recent Advances In Electrical
Engineering: Proceedings of the 15th American Conference on Applied Mathematics, pages
217–220, 2009.

[18] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella network: Properties of large-
scale peer-to-peer systems and implications for system design. arXiv preprint cs/0209028,
2002.

[19] B. Rozemberczki and R. Sarkar. Characteristic Functions on Graphs: Birds of a Feather,
from Statistical Descriptors to Parametric Models. In Proceedings of the 29th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’20), page 1325–1334.
ACM, 2020.

[20] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding, 2019.

[21] B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton. Gemsec: Graph embedding with self
clustering. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2019, pages 65–72. ACM, 2019.

[22] B. Rozemberczki, O. Kiss, and R. Sarkar. Karate Club: An API Oriented Open-source
Python Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th ACM
International Conference on Information and Knowledge Management (CIKM ’20), page
3125–3132. ACM, 2020.

[23] B. Rozemberczki, O. Kiss, and R. Sarkar. Little Ball of Fur: A Python Library for Graph
Sampling. In Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM ’20), page 3133–3140. ACM, 2020.

[24] T. Schumacher, H. Wolf, M. Ritzert, F. Lemmerich, J. Bachmann, F. Frantzen,
M. Klabunde, M. Grohe, and M. Strohmaier. The effects of randomness on the stability of
node embeddings. arXiv preprint arXiv:2005.10039, 2020.

[25] S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with python.
In 9th Python in Science Conference, 2010.

[26] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook social
graph. arXiv preprint arXiv:1111.4503, 2011.

[27] U. Von Luxburg. Clustering stability: an overview. 2010.

[28] C. Wang, C. Wang, Z. Wang, X. Ye, and P. S. Yu. Edge2vec: Edge-based social network
embedding. ACM Transactions on Knowledge Discovery from Data (TKDD), 14(4):1–24,
2020.

[29] R. Zafarani, M. A. Abbasi, and H. Liu. Social Media Mining: An Introduction. Cambridge
University Press, New York, NY, USA, 2014. ISBN 1107018854, 9781107018853.

80

APPENDIX A

RAW DATA

The code for all the experiments in this thesis can be found on Github:
https://github.com/apurvamulay/Embedding-Similarity-and-Stability.

81

https://github.com/apurvamulay/Embedding-Similarity-and-Stability

APPENDIX B

VITA

Apurva Mulay
asmulay@syr.edu | linkedin.com/in/apurva-mulay/ | github.com/apurvamulay

Education

Syracuse University, Syracuse, NY Aug. 2019 – May 2021
Master of Science,Computer Science, Thesis (Machine Learning) GPA: 3.72/4

Courses: Analysis of Algorithms, Intro to Data Science, Analytical Data Mining, Social Media Mining,
NLP

Pune University, Pune, India Jul. 2011 – May 2015
Bachelor of Engineering, Computer Engineering GPA: 3.6/4

Experience

Research Assistant Apr. 2020 – Present
Syracuse University Syracuse, United States

• Researching on Similarity and Stability of Graph embedding methods in thesis advised by Dr.
Reza Zafarani - Networkx, Stanford SNAP datasets, Linear Regression, Decision Tree Regressors

• Analyzing COVID-19 related news on Twitter to derive patterns during pandemic and predict
misinformation

• Collaborated on developing first fake news multimodal dataset using REST API, news API and
performed data cleaning, preprocessing, data normalization, and feature engineering with
Python3, Pandas, matplotlib, Sklearn

Software Engineering Intern Jun 2020 – Aug 2020
Xandr, AT&T New York City, United States

• Visualized 10GB data in line graphs, pie charts and bar graphs to help publishers in decision
making by reducing analysis time by 70% in D3.js, Javascript, and Vertica Database

• Utilized GraphQL APIs to improve page load time performance by 50% and automated
deployment using Kubernetes

• Created core graph library to be used across projects and presented it in Lightning talks
• Conducted informational interviews with Data Scientists, and Product Managers to gain domain
knowledge

Software Engineer July 2015 – Aug 2019
Mediaocean Pune, India

• Implemented new features to serve 58 major advertising agencies, across US, UK and Australia
using Java, Javascript, ReactJS, HTML5 and CSS3. Unit tested using Jest and Enzyme.

• Analyzed and reported advertising campaign performance for over 50 campaigns using MYSQL
• Dockerized projects to reduce external library version dependency and integrated them using
Jenkins

• Worked on proof of concept projects on recommendation systems, chatbot and classification to
apply Machine learning to advertising domain

mailto:x@x.com
https://www.linkedin.com/in/apurva-mulay/
https://github.com/apurvamulay

Publications

ReCOVery: A multimodal dataset for COVID-19 news credibility research

• Crawled news articles from 22 reliable and 38 unreliable news websites with corresponding 140k
tweets

• Co-authored dataset paper ReCOVery to be analyzed by researchers and accepted into CIKM
2020 Conference

• Technologies: Scikit-Learn, SVM, Pandas, Seaborn, Matplotlib, NLP, Twitter Advanced and
Streaming APIs, Text-CNN, RNN, Git, Beautifulsoup, NLTK, Naive Bayes

Projects

Retweet Prediction | Python, Regression, Sklearn Nov 2020 – Dec 2020
• Performed prediction of retweets count for TweetsCOV19 dataset using Linear, Ridge and
LASSO regression

• Inspired by CIKM 2020 Analyticup competition and achieved MSLE of 0.2 using Ensemble
methods

Spread of COVID-19: Analysis and Prediction | LIWC, TFIDF Apr 2020 – May 2020
• Conducted time series forecasting to predict new cases with MSE of 0.17 using ARIMA

• Performed sentiment analysis on effect of government policies on 10k tweets

Music Taste Analysis using Spotify API | Python, Classification Nov 2019 – Dec 2019
• Predicted music taste analysis of Spotify user across multilingual songs and genre using Python,
Sklearn, K-Fold cross validation, regularized logistic regression, decision trees and ensemble
methods

• Collected data using Spotify REST API for 5 user profiles

• Achieved F1 Score of 0.90 and accuracy of 91% with Random Forest classifier and visualized
using Tableau

Mediaocean Hackathon: Chatbot | Microsoft Azure May 2018 – May 2018
• Developed a chatbot application with active learning to reduce turnaround time for support
tickets by 70% using Microsoft Azure, Apache OpenNLP, and React.js for visualization

• Award: 1st Place Winner out of 30 teams

Achievements and Awards

• Secured First runner-up position at Google Tech Challenge at Syracuse University where over
15 teams participated

• Recognized for distinguished performance at work and presented with the Brand Value Award
- Initiative (Global award) for initiating React.js architecture and Machine Learning
presentations at Mediaocean

	On Stability and Similarity of Network Embeddings
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Research Questions
	Contributions
	Roadmap

	Related Work
	Conclusion
	Data Preprocessing and Our Approach
	Datasets
	Exploratory Data Analysis
	Description of Graph Properties

	Similarity and Stability Analysis
	Univariate Analysis
	Regression for Similarity Prediction
	Experiments on Social Media Networks
	Experiment with Multi-domain Networks

	Stability of Embedding Methods
	Introduction
	Analysis

	Conclusion and Future work
	Conclusions
	Minimum Sample Size
	Regression
	Stability

	Future Work
	Directed and Weighted Graphs
	Dynamic Graphs
	Other Similarity Measures
	Mapping Between Minimum Sample Across Embeddings
	Varying embedding Size
	Effect of Sampling and Embedding on Graph Properties
	REFERENCES
	Raw Data
	Vita
	Education
	Experience
	Publications
	Projects
	Achievements and Awards

