
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

Theses - ALL

Spring 5-23-2021

Enhancing Usability of Malware Analysis Pipelines With Reverse Enhancing Usability of Malware Analysis Pipelines With Reverse

Engineering Engineering

Jeffrey Ching
Syracuse University

Follow this and additional works at: https://surface.syr.edu/thesis

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ching, Jeffrey, "Enhancing Usability of Malware Analysis Pipelines With Reverse Engineering" (2021).
Theses - ALL. 515.
https://surface.syr.edu/thesis/515

This Thesis is brought to you for free and open access by SURFACE at Syracuse University. It has been accepted for
inclusion in Theses - ALL by an authorized administrator of SURFACE at Syracuse University. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fthesis%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/515?utm_source=surface.syr.edu%2Fthesis%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

Lots of work has been done on analyzing software distributed in binary form. This is a

challenging problem because of the relatively unstructured nature of binaries. To recover high-

level structure, various attempts have included static and dynamic analysis. However, human

inspection is often required, as high-level structure is compiled away. Recent success in this

area includes work on variable-name recovery, vulnerability discovery, class recovery for object-

oriented languages. We are interested in building a pipeline for user to analyze malware. In this

thesis we tackle two problems central to malware analysis pipelines. The �rst is D3RE, an in-

teractive querying tool that allows users to analyze binaries interactively by writing declarative

rules and visualizing their results projected onto a binary. The second is Assmeblage, a tool which

automatically scrapes GitHub for C and C++ repositories and builds these repositories automati-

cally using di�erent compilation settings to produce a variety of con�gurations. These two tools

will enable users to get enough data to do analysis as well for them to do interactive analysis. Fi-

nally, we present future work demonstrating a possible visualization combining d3re and Ghidra

along with some speci�c questions for future user studies.

Enhancing Usability of Malware Analysis Pipelines with

Reverse Engineering

by

Je�rey C. Ching

B.S., SUNY, Stony Brook University, 2017

Thesis

Submitted in partial fulfillment of the reqirements for

Master of science in Computer Science

Syracuse University

May, 2021

Copyright © Jeffrey C. Ching, 2021

All rights reserved

Acknowledgements

First I want to thank my advisor professor Kris Micinski, he taught me a lot on how to do re-

search and point me out when I am stuck. As a student without any background in programming

languages and static analysis, his guidance and knowledge really encouraged me to get inter-

ested into the research. I had a good experience on working with Kris, as well as my two years

at Syracuse. I also want to thank professor Shiu-Kai Chin for being the chair of the committee,

and professor Endadul Hoque and Asif Salekin to be on the committee.

Of course, I couldn’t done this research without the support from the HARP lab, especially

with the help of Yihao, Christian, Daniel, and Davis. We worked together on the Assemblage and

D3RE project, and Yihao taught me a lot on related materials and helped me a lot while doing my

thesis.

Finally, I want to thank my family for supporting me, and give me freedom to do anything. It

is great to have support when you are away from home, which will encourage me to keep moving

forward. It has been a long journey, and the show will go on.

iv

Contents

Abstract i

Acknowledgments iv

List of Figures viii

1 Introduction 1

1.1 Motivation . 2

1.2 D3RE . 3

1.3 Assemblage . 3

1.4 Visualization for Program Analysis . 4

1.5 Overview . 5

1.6 Chapters Preview and Contributions . 6

2 Related work and Background 7

2.1 Ergonomics of Decompilers and Reverse Engineering Tools 7

2.2 Reverse Engineering for Software Understanding 9

2.3 Open-Source data collection . 12

2.4 Visualization for program analysis . 12

2.5 Tools for reverse engineering and binary analysis 13

2.5.1 Interactive Disassembler (IDA) . 13

v

2.5.2 Ghidra . 13

2.6 Binary Analysis Tools . 14

2.6.1 Binary Analysis Platform (BAP) . 14

2.6.2 GrammaTech Intermediate Representation for Binaries (GTIRB) 15

2.6.3 CWE Checker . 16

2.6.4 OOAnalyzer . 17

3 D3RE 20

3.1 Background: reverse engineering with Ghidra . 20

3.1.1 Loading Files and Starting Ghidra . 20

3.1.2 Writing Scripts and Extensions . 21

3.1.2.1 Scripts . 21

3.1.3 Eclipse . 23

3.1.4 Examples . 24

3.1.4.1 non-xor Ghidra . 24

3.1.4.2 Highlight and add Comments 25

3.1.4.3 �ndcrypto . 26

3.1.4.4 OOanalyzer . 26

3.2 D3RE . 28

3.2.1 Introduction . 29

3.2.2 Overview of D3RE . 30

3.2.3 Experiments and Studies in D3RE . 32

3.2.3.1 Experiments and Results in D3RE 34

4 Assemblage 37

4.1 Methodologies and ideas . 38

4.2 Github API scraping . 38

vi

4.3 Pipeline . 39

4.3.1 Methodology . 40

4.3.2 GH torrent . 40

4.3.3 Sqlite Schema . 42

4.3.4 Building Repositories . 42

4.4 Insights of Assemblage . 43

4.5 Combining D3RE and Assemblage . 44

5 Future and user studies 45

5.1 Visualization vs Current . 45

5.2 Future Work and User Studies . 49

6 Conclusion 54

Bibliography 55

vii

List of Figures

1.1 The idea of malware analysis pipeline. Assemblage will collect and build data

from GitHub. D3RE will enable interactive analysis, and the results will be visu-

alized through Ghidra. 6

3.1 The �gure is an example of the starting page of Ghidra. 21

3.2 The �gure is an example of the disassembly and decompiled code for a binary �le. 22

3.3 The UI of how to write and run scripts on Ghidra. 23

3.4 non_xor Datalog . 25

3.5 The GUI of OOanalyzer . 27

3.6 Docker for ooanalyzer . 27

3.7 Ghidra with highlights and comments declaratively speci�ed to output results

inferred via D3RE for our example . 32

3.8 High-level components and their interactions in D3RE. The metadatabase will

communicate with REPL through protobu� and communicate with Ghidra through

Ghidra_bridge [13]. The metadatabase will track through the external database

(EDB) and look for the most related database. 33

4.1 The �gure is an example how github advanced search works in the form of web

user interface. 39

viii

4.2 The idea of the repo scraper. We take in the query with speci�c dates and lan-

guages, and search the repos in gothub. 40

4.3 The ideal pipeline for scraping, cloning, and building the repositories. 41

4.4 The database schema of GhTorrent . 42

5.1 possible bu�er over�ow functions . 47

5.2 code range . 47

5.3 Idea for the design . 49

5.4 Layout of the ideal plugins. 50

ix

List of Tables

2.1 Comparisons between IDA and Ghidra . 14

2.2 CWE numbers included in the cwe-checkers . 17

3.1 Script size (lines of code) of Ghidra script (Python) vs. D3RE 34

3.2 Running time of Ghidra scripts vs. equivalent implementation in D3RE (all num-

bers in seconds). 36

3.3 Runtime of successive invocations to D3RE with (Cached, C) and without (Se-

quential, S) rule caching. 36

x

1 | Introduction

Security is emerging as one of the most important cross-disciplinary focus areas within mod-

ern computing, and comprises a wide range of areas including bug �nding vulnerability discov-

ery [2], malware analysis [49], and other related tasks [25]. In the thesis, we will be working on

enhancing the usability and productivity of malware analysis with a malware analysis pipeline.

We de�ne a malware analysis pipeline as the end-to-end process that involves discovering vul-

nerabilities in large datasets of binary code. These pipelines involve data collection, static and

dynamic analysis, and ultimately human-guided reverse engineering using a reverse engineering

tool. However, it is challenging because reverse engineering on binary �les relies on the reverse

engineers’ experience and normally have to be done manually.

This thesis primarily contributes two tools that tackle foundational challenges in malware

analysis pipelines. My thesis is that malware analysis pipelines may be improved via a combi-

nation of automated vulnerability discovery aided by visualization, along with tooling to build

binaries to collect datasets. The �rst is D3RE: a declarative static analysis tool that integrated

builds on a state-of-the-art logical inference backend (the Datalog solver sou�e) and the NSA’s

Ghidra reverse engineering framework to act as a combined platform for visualization and log-

ical inference of properties of binaries. Second, we study the problem of how to automatically

scrape source code from large software repositories like GitHub and automatically build several

di�erent variants to study the impact of compilation and con�guration parameters. To do this,

we built a tool, Assemblage, which collects C and C++ repositories and builds binary �les for

1

future research on D3RE as well as binary reverse engineering. We expect Assemblage and D3RE

to be the foundation of further research. The thesis will be the introduction as well as a preview

of the project; it is an ongoing work and we are still at the beginning of the research. The work

we have done will be crucial in the future extension of the project.

1.1 Motivation

Reverse engineering is a process of deconstructing the product to reveal the original design

or architecture. Reverse engineering can be applied in di�erent �elds of engineering, including

electrical engineering, electronic engineering, and software engineering. Our focus will be on

software engineering since we will be discussing binary analysis, security problems, and mal-

ware analysis. Several techniques are necessary for reverse engineering, such as disassemblers,

decompilers, and sometimes debuggers.

To have a deeper understanding of reverse engineering, we dedicated to do detailed analysis

on binaries and develop good tools. Reverse engineering is hard and has a lot of di�erent methods

based on di�erent needs and user’s habits. In recent years, National Security Agency (NSA)

released a new reverse engineering tool called Ghidra, which will be used in this project. Ghidra

is an open-source tool that allows users to write plug-ins in Java and Python scripts. In the

future, we want to also look at various usability aspects of Ghidra, and possibly extend it. In

short, Ghidra shows the disassembled and decompiled codes of the binary �le and shows lots of

information through a user interface. However, Ghidra provide some tools to show relationships

between functions, but still lack of tools to do more accurate analysis. Our goals are to look for

and combine binary analysis tools that will be a good �t as plug-ins for Ghidra.

2

1.2 D3RE

In this thesis, we built a declarative demand-driven reverse engineering tool called D3RE

which will be mentioned in chapter 3, where we proposed a new methodology for performing

declarative, and demand-driven reverse engineering. In D3RE we present a vision for reverse en-

gineers which wil enable them to do a visualization-based analysis and understand binaries while

querying their own rules to perform deductive logic inference tasks. Comparing to other binary

analysis tools, D3RE allows user to interactively analyze the binaries. To maximize the usage of

the tool, we want to write a plug-in that will be able to show the results of binary analysis from

D3RE on Ghidra. We evaluated D3RE qualitatively, by implementing several queries, and quan-

titatively by measuring its performance in benchmarks. To be more precise, we compared the

length of the program and the run time with python script in Ghidra, which in most of the cases

Datalog beats Python scripts. The detailed statistics will be shown in chapter3. For now, users

will be inputting new rules through a CLI, and analyze will be processed by the Datalog engine

Sou�e. Currently, the results can be only viewed on the console or have limited visualization.

In the future, we want to take fully advantage of Ghidra and create a user interface plugin that

allows users to click on a speci�c line and get information on it. However, it is challenging that

we have limited information on how reverse engineer will like to interact with Ghidra, thus it is

di�cult for us to design a user interface.

1.3 Assemblage

In a high-level aspect, we want to study the usability of malware analysis pipelines, which

includes data collection. Besides using traditional methods for analyzing binary �les, due to the

popularity of machine learning in the recent computer science society, it will be interesting to

apply machine learning methods to analyze binary �les. However, both machine learning and

3

malware analysis pipelines involve taking a lot of binaries and then studying them.

In order to build test the scalability and performance of the D3RE tool, we need a variety of

binaries. It is hard to directly �nd a bunch of binaries, thus we aim to scrape C and C++ repos-

itories on Github and build the repositories to collect the binaries. Instead of building our data

scraper we take advantage of the existing database GHtorrent in this stage. GHTorrent contains

a lot of open-source repositories scraped from GitHub. Since GHTorrent stopped renewing the

database and we have built a prototype scraper, we want to replicate and modify GHtorrent to

build our scraper. Currently, we created the coordinator and worker in ZMQ to clone and build

the repositories. We have stored all the successfully built binary �les and the error messages for

the unsuccessful build repositories for further researches. These binaries are expected to be the

test data of D3RE in the future. Also we hope to extend the tool so we can build the repositories

in di�erent compilers such as LLVM and GCC for us to study how they work in scale.

1.4 Visualization for Program Analysis

Recent literature suggests that many practitioners follow an iterative approach involving sev-

eral rounds of hypothesis formation and validation/falsi�cation, often assisted via a combination

of static and dynamic analysis [28]. In order to get better results, during reverse engineering, we

might have to switch between static analysis and dynamic analysis. Also, although decompilers

play an important role while doing RE, the results from the decompiler are sometimes “special”

which will be interesting to look into with D3RE and Ghidra such as redundant loops and weird

structures. Despite not being a reverse engineering paper, section 6 of Battle’s work[5] on data

visualization structure analysis is useful for reverse engineering.

Being inspired by the idea from Battle which they mentioned approaches on structure anal-

ysis: First, the user have to de�ne the analysis states of the research; Second, user have to take

advantage of search trees, breadth, and depth analysis; Third, users will look into the Predictabil-

4

ity and Overlap of the project. We can then mirror the above three ideas to reverse engineering,

which are three phases in reverse engineering, overview, sub-component scanning, and experi-

ment. The �rst two phases are most likely to be “get to know the functions” and some kind of

pattern matching. We know that each part of the binary has di�erent functions, so it will be

important to know what is the purpose of each function. The third phase will most likely test the

hypothesis of the engineer and prioritize some characteristics. A good static analysis algorithm is

not enough with a good user interface since reverse engineering has to be practical and applicable.

We want to take advantage of the ideas of the previous work and possibly design a user-friendly

plugin in Ghidra that will ful�ll di�erent phases as proposed in the above statements.

1.5 Overview

It is necessary to have tools for analyzing binary �les and programs, but it is hard and time-

consuming to understand a complicated code. However, with D3RE and Assemblage, we will have

a variety of data and enables the user to interactively analyze them. We can e�ectively point out

the heart of the problem and design a more user-friendly environment. In D3RE, we introduce a

new vision for reverse engineering, wherein experts can rapidly query high-performance logical

inference engines to help them accomplish their day-to-day work in vulnerability discovery and

other reverse engineering works. As for Assemblage, the prominent part of using open-source

data from GitHub is that there will be lots of di�erent types of binary �les. Finally, we proposed

an idea of visualizing the D3RE on Ghidra and plan to do a user study on the behaviors on doing

static analysis, reverse engineering procedures, habits on �nding vulnerabilities as well as their

opinions on visualizing reverse engineering with the help of static analysis.

Overall, the thesis aims create a pipeline the will analyze the the binaries interactively with

Datalog using binaries collected and built by the data collector, which will eventually be visulized

on a reverse engineering tool. The �gure of the pipeline is shown in �gure 1.1

5

Figure 1.1: The idea of malware analysis pipeline. Assemblage will collect and build data from GitHub.
D3RE will enable interactive analysis, and the results will be visualized through Ghidra.

1.6 Chapters Preview and Contributions

Some binary analysis, reverse engineering tools will be introduced in chapter 2. The data col-

lection process and future aspects of the scraper will be introduced in chapter 4. In chapter 3 the

�rst section will be focused on the reverse engineering tool Ghidra, which gives some previews

of the tool and example scripts and its usage. The prototype D3RE will be introduced in section

of chapter 3, which will go through the current stage of D3RE, and the advantages by comparing

with python scripts in Ghidra. Last, future work and possible proposal for a user study will be in

chapter 5. The following are the contributions of the thesis:

• The idea of declarative demand-driven reverse engineering and a prototype implementa-

tion as well as experiments on testing the e�ciency and quality of D3RE.

• Create a prototype, Assemblage which will collect repositories from GitHub and build with

a variety of compilers for further research on the properties of binaries.

• Proposed an idea on visualizing D3RE on Ghidra with few example.

With D3RE and Assemblage integrated in the malware analysis pipeline, we believe the future is

bright and promising.

6

2 | Related work and Background

To get better understanding of reverse engineering, the state-of-the-art techniques and me-

chanics, we collect multiple papers that focus on detail-related knowledge and new open-source

tools. In this chapter, we will be talking about previous academic work that has been done in

reverse engineering or binary analysis tools, as well as reverse engineering for software un-

derstanding. Besides academic papers, we will also show some interesting and popular binary

analysis and reverse engineering tools including Ghidra, BAP, OOAnalyzer an etc.

2.1 Ergonomics of Decompilers and Reverse Engineering

Tools

Yakdan presents some semantics-preserving on transforming the code which make the de-

compiled code more readable and will help the analyst to �nd and target the malware [50]. There

are some interesting results and founds on how they optimized the decompilers on Ghidra, which

are the followings

• Through experiences of using Ghidra from the paper with some examples, the redundancy

often appears on assigning variables, and if else statements. Sometimes, the decompiler

will assign the variables twice, or assign unnecessary constraints.

• To optimize the e�ciency of decompilers, the decompiled codes become ugly and hard to

7

read. For example: Switching while to if with do-while. As for do-while loops, do-while

loops are harder to understand comparing to while loops, which the paper gives some

examples on how they deal with this kind of problem.

• Function outlining is also pointed out in the paper, since several duplicates of the same

code are spread across the program. As result, if facing duplicate codes, the user can use a

transformation rule to replace the codes with functions.

• Variable naming is also important. In Ghidra, the decompilers will give names to the vari-

ables, but just with series of numbers. However, having meaningful names will be better,

since it will be better to follow, and less confused. Ja�e’s research on statistical renaming

has been introduced throughout the discussion [22].

Beside decompilers, disassembler are also one large factor of the research in binary analysis and

malware analysis, where Pang proposed a research focusing on the system and how the disas-

semblers work [29]. Despite the high accuracy they got on their experiments, the novelty of this

research is on presenting a thorough systematization of binary disassembly from the perspective

of algorithms and heuristics. The overall functionality can be divided into the following sections:

• Disassembly: For Ghidra it follows the idea of recursive descent. Starting with a given code

address and performs disassembly following the control �ow.

• Symbolization: Starting by identifying numerical values that are potential pointers. It will

search through all the non-code regions to �nd the data units.

An example in operand extraction Ghidra considers a data unit to be the start of the string if it is

followed by a sequence of a null-byte or ASCII bytes. Otherwise Ghidra will de�ne the pointer

of the data unit with characteristics like. The value is an address or introduction in a non-code

region, the value is an address of an instruction in a known function, etc[29]. Also some other

interesting founding on Ghidra are shown in Pang’s research[29]:

8

• Comparing with other disassemblers, Ghidra can accurately identify grouped pointers like

function tables.

• Ghidra does not guarantee to generate a main function, sometimes it generates the entry

function as the starting point.

• There are three intersting �nd outs on Ghidra �nding for general functions. First, GHIDRA

considers the .eh_frame section to identify functions that have unwinding information.

Second, Ghidra consider targets of direct calls to be function entries, and resolves certain

indirect calls to determine more function entries. Third, Ghidra uses pattern-based ap-

proaches to further recover functions.

• The control �ow graph is probably the most complicated part since it included lots of dif-

ferent function calls. The paper chose several di�erent function calls as examples: Indirect

jumps, indirect calls, tail calls, and non- returning functions.

2.2 Reverse Engineering for Software Understanding

Reverse engineering is an important technique for scientists and engineers to solve problems.

However, reverse engineering is a complex process and can be approached variously based on

di�erent users or goals. Before going deeper into research topics on reverse engineering and

binary analysis, several concepts need to be introduced. While working with binary �les, binary

analysis tools like static analyzer and debugger will be needed. The di�erences between reverse

engineering tools and binary analysis tools are that reverse engineering tools like Ghidra and

IDA focused more on user interaction. Binary analysis tools on the other way focused more on

automated analysis which might generate JSON �les or binary �les for further analysis using

reverse engineering tools [40].

Several problems raise our attention in reverse engineering, vulnerability discovery, variable

9

name recovery, and class recovery. We will introduce some of the previous work in these �elds,

as well as some interesting approaches. Lots of user studies and surveys were done in reverse en-

gineering. In Votipka’s user study, he points out some of the backgrounds on reverse engineering

in the second section of his research [47]. Since malware can be considered as one of the vulnera-

bilities, the survey and experiences in the vulnerability section of Votipka’s research will be most

related to the research on building malware analysis pipeline. However, according to Votipka,

ways of �nding vulnerabilities and bugs can be very subjective [48]. In the research, they inter-

viewed 25 people on �nding vulnerabilities and eventually discussed how the ecosystem can be

changed [47]. Similar idea has been pointed out by Shoshitaishvili, where they proposed a shift in

the vulnerability analysis paradigm, from tool-assisted human-centered to human-assisted tool-

centered [41].

In order to understand the binary �les, Nadi points out there are two typical approaches which

are highly mentioned: Static analysis and dynamic analysis [28]. These two are traditional and the

most popular methods in binary analysis. Many malware binaries are stored in obfuscated form

and only deobfuscated at execution time to complicate reverse engineering. This is commonly

referred to as packing. Besides unpacking, reviewing the string names and API calls are also useful

in identifying going forward on RE. To get more information on the techniques used in RE, the

term beacon has been mentioned which is useful in related researches. Beacons are commonly

schemas or patterns, which inform how developers expect variables and program components to

behave. Most of the participants focused on control �ow and data �ow analysis to get more ideas

on the �les [36].

Ra� pointed out some of the challenges we will be facing while doing malware analysis [33].

However, as the the techniques improve and the development of new techniques and method-

ologies, static analysis and dynamic analysis are no longer the only solution for binary analysis.

Obviously, the most important and the hardest part is data collection. One of the notable struc-

tures in malware binaries is packing, which maybe be applied multiple times, and in di�erent

10

variations. Aghakhano claimed that besides dynamic analysis and static analysis, it is possible for

machine learning based models to identify whether it is none malicious and malicious even when

contents are packed in his research [1]. Also Ra� presents it is possible to use machine learn-

ing on identifying benign and malware data [35], and claims to improved the machine learning

structure in his research [34].

In the above, we are discussing about how users will start reverse engineering and binary anal-

ysis. In the following, we will point out more papers about what kinds of obstacles researchers

will face while doing reverse engineering. Votipka points out one of the largest challenges in

reverse engineering is it is lack of theory in the paper [47], and most of the information is from

reverse engineers’ experiences. Since the goal of reverse engineering is to analyze binary �les,

decompilers, accompany by some symbolic execution tools are necessary [10]. One of the code

browser CodeSurfer created by Balakrishnan, which can eases users’ reading and understand-

ing of the code. It provides, data�ow analysis, point analysis, and call graphs. However, it has

limitations that it does not have integration with IDE like Eclipse [4].

After the software is compiled, the structure of the program is fully breakdown. The rela-

tionship between classes, function inheritance, and the original name of the variables are lost.

While recovering the program by decompiler, the structures and names cannot be recovered.

There are works working on class recovering and variable name recoveries [22, 43]. Other re-

searches working on relationship and �ow between classes where Salah presented a new way of

generating class usage scenarios and method invocations [37]. Some statistical methods can be

introduced on giving reasonable names of variables. Work in these areas seems to be strongly

related to machine learning since it is necessary to work with a lot of metadata. Although not

for every area in reverse engineering, still the relationship between classes is important.

11

2.3 Open-Source data collection

There are some similar works in collecting and building open-source repositories from GitHub.

We need lots of data while designing methods for �nding vulnerabilities, solving security prob-

lems, as well as applying machine learning. As mentioned above, we need a lot of binary �les, and

the best way is to get the data from GitHub. There was an existing GitHub scraping tool GHTor-

rent [16] created by Gousios, which is widely used by researchers in software engineering, and

binary analysis. With access to open-source projects, a lot of things can be done. With GitHub,

users can �nd a large number of open projects in di�erent stages of integration and automation,

which users will be able to do some research or obtain information of di�erent in�uence factors

and the quality. There are some interesting works using this database such as Manes studies

how often stack over�ow references GitHub projects[26], Vasilescu did studies on diversity on

Github[46], and Gousios user this databse to study pull-based developments[17]. Also, another

interesting problem is on dependencies, while compiling a massive number of open-source repos-

itories, the dependency of each package will also be the obstacle we have to overcome [15, 24,

46]. Along with dependencies, there are some studies on continuous integration on open sources,

papers on testing, building, and user studies that can be found in the following references [6, 21].

2.4 Visualization for program analysis

Despite the research Battle’s team are dealing with a totally di�erent task from reverse engi-

neering [5], their idea on visual analysis using Tableau will be related on visualization design. The

nominal part is that similar to RE, the Exploratory Visual Analysis (EVA) researches are based on

researchers’ own experiences, and often have di�erent thoughts and ways to solve and approach

the data. They listed three processes on EVA: goals, structure, and performance, which might be

the typical way of approaching problems that lack o�cial prior works.

12

Most of the work in static analysis focused on developing static analysis algorithms instead

of the design of the tools. Khoo presents a novel user interface toolkit called the Path Projection

that helps the user visualize and understand the program paths in his study [23]. With a good UI

tool, it is shown in the results that it will reduce the completion time but keep the accuracy. Other

works have tried to visualize the binary �le information. Han analyze malware by transforming

binary information into image matrices [19]. Matzan did user studies on how VSA a�ects reverse

engineers’ behavior by monitoring with an eye-tracking system [27].

2.5 Tools for reverse engineering and binary analysis

In this subsection, we will give a short introduction on popular reverse engineering tools such

as Ghidra and IDA. We will not be focusing on academic paper reviews and academic research

tools, but on open-source reverse engineering and binary analysis tools broadly.

2.5.1 Interactive Disassembler (IDA)

IDA is a disassembler that will disassemble the machine codes to assembly and decompile

it to C code as well. With the help of IDA, engineers will be able to analyze di�erent types

of binary �les. IDA performs code analysis in which users can cross-references between code

sections, function calls, and di�erent features. However, IDA is expensive, which makes it hard

to be universally accepted as a tool for reverse engineering.

2.5.2 Ghidra

Ghidra is an open-source reverse engineering tool developed by the NSA. Di�erent from IDA,

Ghidra is written in Java while IDA is written in C++. Fortunately, Ghidra is open-source, it is

more research-friendly, which IDA costs a lot. With Ghidra, the user will be able to look into

the binary executable �les in the disassembled form and decompiled form base on the user’s

13

Table 2.1: Comparisons between IDA and Ghidra

IDA Ghidra
Language C++ Java

Sripts Yes Yes
Cost 589 USD free

Debugger Yes No
Number of open sources Many Less

preferences. Ghidra provides multiple functions (function call graph, python script, and data

�ow graph, etc.) which allow the users to take advantage base on their needs. The comparisons

of IDA and Ghidra can be found in Table 2.1.

2.6 Binary Analysis Tools

Besides reverse engineering tools, we will also introduce some binary analysis tools that are

possible choices to be combined with Ghidra as plugin tools. Several good binary analysis tools

are being developed already. Since Ghidra is open-source, we want to be able to integrate some

of the existing tools with Ghidra in the future, to create a more user-friendly environment for

reverse engineering.

2.6.1 Binary Analysis Platform (BAP)

Although BAP [8] have limitations on supporting formats, there are ways to solve these lim-

itations. Like Ghidra, BAP is an open-source that can take in di�erent kinds of plugins like

analysis, disassemblers, etc. Unlike Ghidra, BAP is a binary analysis tool without user interac-

tion reverse engineering functions. BAP is divided into front-end and back-end which both are

connected by the BAP intermediate language (BIL). The front-end is responsible for lifting the

binary code to the IL, while the back-end can take the BIL and do further program analysis and

program veri�cation. Since BAP can be extended, new analyses can be built on existing analyses

or base on the users’ needs.

14

2.6.2 GrammaTech Intermediate Representation for Binaries (GTIRB)

Grammatech intermediate representation (GTIRB) [38] is an IR designed for binary analysis

and rewriting tools. Among the existing binary analysis, most of the IR are only internal, which

typically speci�es the instruction semantics. However, since the IRs are internal, speci�c IRs will

not be able to communicate with other tools and projects. It is the state of the art that GTIRB is

intended to be the bridge of di�erent binary analysis tools and rewriting. With the decompiler

ddisasm [12] it will be able to lift binaries to GTIRB. To ensure interoperability between tools,

GTIRB does not represent any instruction semantics, which will directly store the raw machine

code into IR.

The goal of Gtirb is to design a universal IR that can communicate with multiple tools since

binary analysis tools have their own internal IRs. For example, BAP has BIL, and Ghidra has P-

code. In order to reach the goal, the raw machine code is directly stored in the IR, and can be later

decoded with the user-selected IL like BIL or P-code. For example, in our case, since we are using

Ghidra, the p-code will be the IR. According to the limitation on plugging in Gtirb to Ghidra,

the Gtirb �le can be created from ELF �les only, supported architectures IA32, ARM, X86-64, and

PPC32, and the version of Gtirb extension has to correspond to the version of Ghidra.

Back to the structure of Gtirb, the very top of Gtirb is the IR element. Under the IR element is

the module. The primary content of the module is Codeblock and Datablock, which respectively

stores module code and data. Every Codeblock and Catablocks belong to a certain section, and

the raw contents are stored in regions in vectors which are called Bytevectors. The size of the

byte vector will a�ect the further usage of rewriting supported by Gtirb. Other structures like:

• IPCFG, is a single graph covering all the code in the IR and shows the relationship between

each block. ProxyBlocks are used to represent control �ow sources or targets that cannot

be resolved to CodeBlocks, and the edges between CodeBlocks are the control �ow in the

IPCFG. The di�erence between CFG and IPCFG is that IPCFG only deals with the edge

15

cases when they are needed for analysis.

• Symbols and Symbolic Expressions: Since the core structure of Gtirb is represented in sym-

bols, these will provide symbolization information of CodeBlocks and DataBlocks.

• Auxiliary data (AuxData) tables: Each structure in Gtirb is the result of the analysis by

Ddisasm, and has a unique identi�er (UUID) used as the reference between each structure

in the IR. Since the core structure is represented in symbols, the AuxData table is used for

communication and store maps and vectors by using UUID.

2.6.3 CWE Checker

Bugs checking in reverse engineering is hard and time-consuming. Due to the complexity and

the size of binary execution �les, it is almost impossible to �nd all the bugs manually through

tools like Ghidra. Moreover, the variety of CPU structures, including x86,x64, and ARM, have

di�erent instruction set. The main goal of reverse engineering are recovering programs, creat-

ing control �ow graphs, and searching for vulnerabilities. For vulnerabilities detection, with a

tool like CWE-checker, the check can be done automatically, and be classi�ed based on com-

mon weakness enumeration (CWE) numbers. CWE-checker is based on BAP, which take the

advantage of BAP intermediate representation (IR) to achieve CPU architecture independence.

In general, cwe-checker will �rst disassemble the binary execution �le. Second, after disassem-

bling the �le BAP will lift it to its IR in binary instruction language (BIL) which is de�ned using

algebraic type. Finally, the CWE-checker will generate the reports of the analysis in the form of

a JSON �le. With the JSON �le, the Ghidra plugin written in python will be able to integrate the

cwe-checker results with Ghidra, which the results will be shown on the user interface on Ghidra

in the form of comments. The CWE numbers that have been included in the checkers are in the

following charts, however, users can still de�ne their checkers.

Each CWE number are classi�ed by the de�nition written in OCaml as the interface with BAP

16

Table 2.2: CWE numbers included in the cwe-checkers

cwe Number type modular structure
CWE 190 Integer Over�ow Static Analysis
CWE 215 Information Exposure Through Debug Information Static Analysis
CWE 332 Insu�cient Entropy in PRNG Static Analysis
CWE 367 Time-of-check Time-of-use Race Condition Static Analysis
CWE 476 NULL Pointer Dereference Static Analysis
CWE 676 Use of Potentially Dangerous Function Static Analysis
CWE 243 Creation of chroot Jail Without Changing Working Directory Static Analysis
CWE 248 Uncaught Exception Static Analysis
CWE 426 Untrusted Search Path Static Analysis
CWE 457 Use of Uninitialized Variable Static Analysis
CWE 467 Use of sizeof() on a Pointer Type Static Analysis
CWE 560 Use of umask() with chmod-style Argument Static Analysis
CWE 782 Exposed IOCTL with Insu�cient Access Control Static Analysis
CWE 215 Out-of-bounds Read Symbolic Execution
CWE 415 Double Free Symbolic Execution
CWE 416 Use After Free Symbolic Execution
CWE 787 Out-of-bounds Write Symbolic Execution

as the backend. Below I will give an example on how CWE-checker worked with the de�nition

provided in the CWE-checker GitHub and more are shown in table 2.2: For CWE-190: Integer

over�ow or wraparound, the CWE190 has a default symbol list that contains the memory alloca-

tion functions malloc, xmalloc, calloc and realloc. At each call to the function in the above list, it

will check whether the basic block directly before the call contains a multiplication instruction.

If it is true, then the call will be �agged since there is no check for over�ow on multiplication

before the function call. However, there are possibilities that false positives (not sure whether the

result of multiplication result is used in a function call) and false negatives (the over�ow may be

caused by addition or subtraction) will appear.

2.6.4 OOAnalyzer

While recovering binary �les, not all �les has simple process. Real-world projects are com-

plicated and hard to be reversed in the correct structure. For C++ class structures, to be able to

17

analyze at the machine code level is challenging, Schawartz and the software engineering lab at

CMU came up with a tool called OOanalyzer [39] which will be able to recover classes and the

relationship of methods in each function. Several background knowledge needs to be informed

before introducing the concept and structure of the tool.

• Virtual Function: In C++, polymorphic methods are known as virtual functions. The entry

points of each virtual function are included in the virtual function table

• Inheritance vs Composition: We say class A is inherited from class B, most variables and

methods in class be will automatically take the de�nition of class A. While we say class A

is composed of class B when class A stores an object of class B as a data member.

• RTTI: RTTI is optional metadata that is used to implement C++ type introspection features.

RTTI includes information such as class name, but only polymorphic class has RTTI, and

some malware programs disabled RTTI.

Most of the previous works can only recover polymorphic classes. OOanalyzer is designed so that

it can deal with all kinds of methods and classes. As mentioned before, if it is a polymorphic class,

it will be able to fetch information in the virtual function table. However, to solve most cases,

OOAnalyzer cannot rely only on the virtual function table, which OOAnalyzer will assign the

methods to the correct class base on the object pointers. Moreover, to cover ambiguous properties,

XSB prolog is used to build the rules and to search for a consistent model. The reason for using

XSB prolog is that it is mature, open-source, can be embedded into C/C++ programs, and has

robust tabling support [40, 45]. The idea of the tool is straightforward, which it will take an

execution �le as the input and get the initial facts based on static analysis.

OOAnalyzer will reason about the program by matching a built-in set of rules over the facts.

However, sometimes OOAnalyzer is unable to reach new forward reasoning before some proper-

ties are decided. In order to move on, OOAnalyzer will identify an ambiguous property and make

18

a good guess to continue the process [39]. The facts emitted by forwards and hypothetical rea-

soning are called entity facts. Di�erent from initial facts, which initial facts cannot be modi�ed.

The entity facts are the idea of how the tool is attempting to recover the execution �le through-

out the process. After OOAnalyzer �nished processing the execution �le, the user can choose to

output a JSON �le which is the information on how the tool wants to recover the classes. If users

want to view it on Ghidra, the Ghidra plug-in will take the JSON �le as an input and combine the

information of the JSON �le with the Ghidra user interface.

19

3 | D3RE

In this chapter we will talk about the reverse engineering tool Ghidra, and our static analysis

tool D3RE. In the �rst section, we showed some basic ideas in Ghidra, and some scripts that we

used in our experiments. In the second section, we will introduce our tool D3RE, which allows

reverse engineers interact with a deductive database written Datalog.

3.1 Background: reverse engineering with Ghidra

One of the crucial parts of the malware analysis pipeline is how do we productively use

Ghidra. In this section we will introduce the reverse engineering tool Ghidra, and how we would

like to use it in our future works. Ghidra is a reverse engineering tool that allows the users to

view the disassembled and decompiled code of a certain binary as shown in �gure 3.2. In order to

provide better visualization and improve user’s experience, Ghidra has function tress, function

call graph, and others, etc.

3.1.1 Loading Files and Starting Ghidra

Ghidra can be download on the following website [14]. To view a binary �le, the user can

simply create a new project and load the binary into Ghidra. One will then double click the binary

�le on the UI and Ghidra will ask you whether you want to analyze the �le if it is the �rst time you

open the current binary �le on Ghidra. Once Ghidra �nishes analyzing the binary �le, the user

20

will be able to view and explore the �le based on their needs. An example is shown in �gure 3.1.

Figure 3.1: The figure is an example of the starting page of Ghidra.

3.1.2 Writing Scripts and Extensions

Ghidra is a powerful framework for open-ended exploration of properties of binaries. How-

ever, in isolation, Ghidra lacks facilities for automated analysis of binaries. Fortunately, Ghidra

is an open-source tool with a rich API that allows users to extend almost every aspect of its UI.

3.1.2.1 Scripts

Ghidra is written in java but includes a Python interpreter Jython that will call the java code

in the back end. The current Ghidra Python scripting uses the Python 2.7 API. To start creating

scripts in Ghidra, the user will click the green arrow button which is the script manager on the

21

Figure 3.2: The figure is an example of the disassembly and decompiled code for a binary file.

toolbar, and create new scripts. In the script manager window, the user can create a new script

by clicking the red plus button. One will be able to choose the programming language of the

script which can be either java or python. The default directory is Home/ghidra_scripts. Once

the script manager is opened, the user can run the script by double-clicking the script they want

to run or click the run script button shown in �gure 3.3. There are some important built-ins that

are accessible to all Ghidra plugins: currentProgram, which will interact with the database of the

active or the current program in the code browser window, which is the same idea of current

address.

While writing scripts, there are some suggested tags in the header comments, which will help

one on organizing the scripts by labeling their corresponded functions on running the scripts.

The followings are the headers: category, keybinding, menupath, toolbar. Category will allow

the user to store into pre-existed or create a new category. Keybinding allows users to create

hotkeys. Menupath and toolbar will allow users to locate the new scripts on the drop-down

menu, and change the image for the top-level toolbar button. There are some tips on adding

menupath and toolbar. Since users might have more than one script, the drop-down menu might

22

Figure 3.3: The UI of how to write and run scripts on Ghidra.

be overcrowded, so some design should be done while creating these headers. Also suggestions

are to add comments on the scripts, so the short description will be shown in the description box.

This is just for organizing, since there are lots of scripts with similar functionalities.

3.1.3 Eclipse

Since Ghidra is programmed in a way that everything can be extended such as loaders, im-

porters, and etc., extensions and scripts are important. We are going to introduce the IDE, Eclipse,

for writing extensions, and scripts for Ghidra. Ghidra has Eclipse integration and is an IDE typi-

cally for Python and Java, which is suggested to be the platform to work with Ghidra extensions

and scripts. Also, users need to make sure they have the correct JDK version installed. For Eclipse

to integrate with Ghidra, we have to install the GhidraDev plugin. In Eclipse, click Help -> Install

New Software, and click Add -> Archive on the screen. Find the �le GhidraDev-2.1.1.zip(version

can be di�erent) under Ghidra(your Ghidra home folder)/Extensions/Eclipse/GhidraDev, and add

23

it. Restart Eclipse, and you should see GhidraDev on the menu bar. GhidraDev in Eclipse pro-

vides several templates for development such as Ghidra Module Project, and Ghidra script. For

example, in an extension project, things like scripts, data, and native components will be stored

in the correspondent folders under the extension project. When the user �nishes developing the

extension, they can export it and test it in Ghidra.

3.1.4 Examples

In this section, I will give some example Ghidra scripts we have used in our experiments in

section 3.2. The scripts are scripts from either GitHub [3] or some small testing scripts we wrote.

3.1.4.1 non-xor Ghidra

In this script, non-xor �nds xor �nd instructions that are not zeroing registers. In the follow-

ing Ghidra Python script, we �rst have to get the AddressRanges. To start iterate over all the

addresses, setting the variable to begin as the starting point is necessary. The �rst while loop will

opt out until it �nds the �rst instruction, and go to the for loop to �nd the instruction that is XOR.

In the for loop, it loops over instructions and checking against XOR that we want to evaluate.

Although the complexity is linear, however, since it has to check the property every time, we

might be able to improve the performance. In section 3.2, we use Datalog instead of python. We

found that Datalog allowed us to write these not only more succinctly because of the declarative

nature of Datalog but also more e�ciently the Datalog engine Sou�e optimally compiles input

programs to e�cient relational algebra kernels to avoid unnecessary loops, the code is shown in

�gure 3.4. The comparisons will be shown in section 3.2.3.
r a n g e s = cur ren tProgram . getMemory () . ge tAddres sRanges ()

for r in r a n g e s :

beg in = r . ge tMinAddress ()

l e n g t h = r . g e t L e n g t h ()

i n s = g e t I n s t r u c t i o n A t (beg in)

while (i n s ==None) :

i n s = g e t I n s t r u c t i o n A f t e r (i n s)

for i in range (l e n g t h) :

24

mnemonic = i n s . ge tMnemonicS t r ing ()

i f mnemonic == "XOR" :

operand1 = i n s . g e t O p O b j e c t s (0)

operand2 = i n s . g e t O p O b j e c t s (1)

i f operand1 != operand2 :

print (" { } ␣ { } " . format (i n s . a dd r e s s , i n s))

add_bookmark_comment (i n s . a dd r e s s , s t r (i n s))

i n s = g e t I n s t r u c t i o n A f t e r (i n s)

while (i n s ==None) :

i n s = g e t I n s t r u c t i o n A f t e r (i n s)

. d e c l nonzero_xor (EA : a d d r e s s)

. o u t p u t nonzero_xor

nonzero_xor (EA) : −
code (EA) ,
i n s t r u c t i o n (EA , _ , _ , " XOR" , Op1 , Op2 , 0 , 0 , _ , _) ,
Op1 != Op2 .

Figure 3.4: non_xor Datalog

3.1.4.2 Highlight and add Comments

One of the functions that we like to take advantage of in Ghidra is highlight and add comment,

which we these functions can help user doing reverse engineering. For example, in the following

code, the setPreComment function will add a comment before the instruction. We then add a

comment base on the type of instruction. Besides, adding comments, Ghidra can highlight speci�c

address or instructions base on the user’s need. In chapter 3, we will use this scripts to visualize

the analyzed results.
def set_comment (ad d r e s s , comment) :

setPreComment (a d d r e s s , comment)

def add_comment (code_manager , f u n c t i o n _ i t e r a t o r) :

s t a t e = " "

for func in f u n c t i o n _ i t e r a t o r :

i n s _ l i s t = g e t _ i n s t r u c t i o n _ l i s t (code_manager , func)

f b = func . getBody () # f u n c t i o n bound o f fun c

AI = f b . g e t A d d r e s s e s (True) # a d d r e s s i t e r a t o r

print (func)

for i n s in i n s _ l i s t :

address forcomment = i n s . g e t I n s t r u c t i o n C o n t e x t () . g e t A d d r e s s ()

print (ins , address forcomment)

25

s t a t e = c h e c k _ i n s t r u c t i o n _ t y p e (i n s)

i f (s t a t e != None) :

print (" h i ")

set_comment (address forcomment , s t a t e + " t r i a l ")

3.1.4.3 findcrypto

We found script that will look for common cryptographic constants[31]. The original script

is in Python, which the script scans the binary for 256-segments of code. This script is also the

one that we found it has runs slower than the Python scripts in Ghidra. With this example we

will re-implement this script in Datalog and compared the run time and code size in section 3.2.3

as well.

3.1.4.4 OOanalyzer

As introduced in section 2.6.4, we will show how to use the OOAnalyzer plugin in Ghidra.

We take an example from CMU Pharos GitHub, ooex5. Before viewing it on Ghidra, we have to

analyze the binary ooex5 on OOAnalyzer on docker since docker will be the best way to avoid

issues caused by di�erent working environments. We can also set docker to interactive mode, so

all the new documents created during the analysis can be synchronized to the home directory. An

example OOanalyzer analysis process can be found in �gure 3.6. After analysis, we will get the

results in the form of JSON. The OOAnalyzer extension can be found on their GitHub repository.

To install the extension on Ghidra, the version of OOAnalyzer has to match the version of Ghidra.

The users have to download the source �le into Ghidra->extension and click install the extension

in the starting user interface of Ghidra.

After restarting Ghidra, one can see CERT on the function tab. To view the class recovery

results, the user should click CERT->OOAnalyzer, then open the JSON �le produced by running

OOAnalyzer on docker. Finally, click OK and the recovered class can be seen in Symbol Tree as

shown in �gure 3.5. The above is only a demo of how to combine the static analysis tool with

26

Ghidra. In conclusion, for now we have to run the analysis and visualization separately, which is

more time consuming and requires more steps. However, we understand that it is hard to write

a fully automated analysis tool along with visualization, in the future, we hope to come up with

a more systematic way of combining analysis and visualization with simpler steps.

Figure 3.5: The GUI of OOanalyzer

Figure 3.6: Docker for ooanalyzer

27

3.2 D3RE

From the related work and the literature reviews in chapter 2, we noticed that reverse en-

gineers heavily rely on reverse engineering tools like IDA or Ghidra. The process of reverse

engineering can be very subjective, which means that the perspectives or methods used will be

strongly related to the direction or goals the users want to achieve. Ghidra is a good solution for

visualizing decompiled �les and understanding the relations between function calls. However,

since our goal is to "analyze" binary �les, we want to add on some plugins as well as design our

binary analysis tools. We want to create a fast, useful, and interactive tool, which combines the

analysis along the visualization part together.

In this chapter, we would like to talk about the paper we submitted in BAR 2021 [44]. In the

paper, we switched the Ghidra backend to the Datalog backend, which means the user will be able

to interact with the Datalog backend and input the rules and logic based on their need. Finally,

since the whole purpose of the project is to improve the user experience on reverse engineering,

the results will be sent back to the Ghidra frontend and be visualized.

In the paper, we are trying to build a tool called Declarative Demand-Driven Reverse Engi-

neering (henceforth D3RE). D3RE is designed to interact with a deductive database by user inputs.

The rules in the database are inductively computed relations over facts of a certain binary. De-

ductive databases have also enabled several recent advances in binary analysis demonstrating

both e�ciency and robustness over conventional techniques. For example, the Datalog based

disassembler ddisasm achieves both faster and more precise disassembly than other state-of-the-

art disassemblers, and OOAnalyzer uses Prolog to enable declarative recovery of classes from

compiled C++ code.

To better understand and prove our tool can reach a certain level of e�ciency, we will give

some examples and background on our tool D3RE. More details on the experiments and back-

ground will be introduced in the following sections.

28

3.2.1 Introduction

Binary reverse engineering is the process starting by the user input some binary �les and

employs various reasoning principles to explicate its behavior when executed as code. As men-

tioned in the related work chapter, di�erent types of reverse engineering have been applied in

researches(assisted by machine learning, static analysis, etc.). Most of the reverse engineering

tasks are partially automated assisted by decompiler or disassemble, however, it is often impos-

sible to turn full automation: the extreme semantic expressivity a�orded to binaries (including

encrypted code, stripped symbol tables, etc..) often necessitates open-ended exploration and the

processes are di�erent case by case.

To rapidly interact with a binary, RE practitioners often use reverse engineering tools such

as Ghidra [14], IDA Pro [20], or Radare2 [32]. Since reverse engineers are expected to be expert

users, and often skilled programmers, tools like Ghidra and IDA enable the engineers to plugin

extensions on doing reverse engineering. Tools like Ghidra have a broad range of popular exten-

sions that exist for several tools which perform di�erent functionalities such as static analysis

static analyses [18, 38], and interacting with debuggers. These extensions are created to make

the reverse engineering process more complete and organized.

However, there are less tools that enable user to do reverse engineering interactively. Users

have to switch between tools and create a lots of scripts. The goal of these tools is to allow an

reverse engineer to quickly explore the binary and visualize it in an interactive way via a GUI or

command-line interface(CLI).

In this chapter, we argue that Datalog, a deductive databases serve as a natural abstraction

boundary between RE tools and logical inference tasks over binaries. We envision a future in

which a reverse engineer interactively explores a binary using reverse engineering tools while

simultaneously inputting rules by querying logical properties in a declarative style. In D3RE, a

reverse engineer interacts with a deductive database by giving inputs to a rule-based deductive

29

inference system written in a declarative language such as Datalog. Rules inductively compute

relations over facts about the binary. In our vision, D3RE allows reverse engineers to interactively

compute with and visualize the results of queries over these deductive rules.

We see D3RE as the state of the start of being a natural extension of several observations.

First, many existing reverse engineering tools assemble databases to index various properties (e.g.,

addresses, symbols, etc...) of binaries for quick exploration. Deductive databases further allow

reverse engineers to write arbitrary logical queries which are computed maximally e�ciently via,

e.g., compilation to relational algebra kernels as done in Sou�e.

In the following, we describe our process on implementing a prototype tool, D3RE. D3RE

allows the user to interactively de�ne and calculate queries of arbitrary complexity over large

binary �les and visualize the results on Ghidra. Analogously to the indexing and analysis oper-

ations provided by Ghidra (and other RE tools), D3RE invokes ddisasm once to build an initial

database.

To implement D3RE we have designed an interface, which we call the mediator, that sits

between a traditional Datalog solver and an RE tool. We brie�y formalize this interaction between

the reverse engineering tool and logic solver in Section III of the paper [44] we submitted in BAR

2021, which we will not talk about it in this thesis. Using this formalism, we describe how D3RE

readily enables a broad range of binary analyses and sketch a vision for how we believe D3RE

will prove to be a natural ergonomic for reverse engineering.

3.2.2 Overview of D3RE

There are lots of existing reverse engineering tools that assemble databases to index various

properties. Deductive databases also allow users to write arbitrary logical queries through a cer-

tain engine, and enable several recent advances in binary analysis, demonstrating both e�ciency

and robustness over conventional techniques.

Here, I will give an idea of the formalism, semantics, and the structure of D3RE; the high-level

30

structure can be found in �gure 3.8. In D3RE, the users will build queries based on the decompiler

ddisasm. The rules will be built on top of the fact of which ddisasm created when the ddisasm

decompiled the binary. Ddisasm already includes facilities to parse object �les and transform

them into the input databases that are required by Sou�e. The current tool is a prototype written

in Python, and the high-level architecture is shown in �gure 4.3.In the �gure, there are REPL,

Ghidra, and Metadatabase. For now, the Read–Eval–Print Loop (REPL) is a CLI environment

that will take in new rules, by loading new �les or editing existed �les.The metadatabase takes

the form of a server which accepts Datalog programs to run to a �xed-point. After each run, the

metadatabase will link the output facts and associate them with the program. In our experiments,

we refer to this as “caching." D3RE will cache the database, so if one has a subsequent query,

D3RE will �nd the best database with the most facts to start from. The metadatabase will track

through the external database (EDB) and look for the most related database which can be used for

analyzing the binaries. Broadly, we want to maintain the metadatabase, where the metadatabase

is a daemon that calls out to Sou�e to do the relevant work and show the results in Ghidra,

along with accepting user inputs from the CLI, to allow clients incremental reuse of previously

computed databases. (An example will be given in the next section.)

Since Datalog is monotonic, we can say that the users will be able to add on their own rules

based on the pre-calculated result or previous rules. A more detailed formalism can be found in

section III of our paper [44], which, with this formantics, will allow us to analyze a broad range

of binaries, as well as visualization. Besides analysis, visualization is also part of the project. In

this project, we found a "platform" that can e�ectively work between Datalog and the front end

GUI: Ghidra. D3RE is implemented in two parts: a REPL that will communicate with the Ghidra

frontend, and a background service that will manage the metadatabase and the Datalog engine.

The REPL is now communicating with Ghidra using a Ghidra extension called ghidra-bridge [13],

however, it has some security issues and we plan to replace it imminently with an extension using

protocol bu�ers. The reason we need ghidra-bridge is that since Ghidra Python is using Python

31

2, however, some of the scripts will need Python3 packages, and it will be hard to import those

packages without help from a good extension tool. The metadatabase will take in new rules from

the REPL (CLI); the communication is done by protocol bu�er.

In the future, we are anticipating to expand the project, which, using protocol bu�er, will

give us scalability during the expansion. Overall, after each analysis, the users can choose to

highlight or add comments on the instructions or addresses that they want to keep track on.

Although D3RE is still in the early stage of the design process, it has shown some promising

results. (Figure 3.7 is an example showing how the current state of D3RE can be visualized on

Ghidra.)

Figure 3.7: Ghidra with highlights and comments declaratively specified to output results inferred via
D3RE for our example

3.2.3 Experiments and Studies in D3RE

In this study, we want to look into whether D3RE can be the tool for professional reverse

engineers to do their daily tasks. Designing a good tool is a challenging problem, which we

32

Figure 3.8: High-level components and their interactions in D3RE. The metadatabase will communicate
with REPL through protobu� and communicate with Ghidra through Ghidra_bridge [13]. The meta-
database will track through the external database (EDB) and look for the most related database.

plan to eventually do ask experts in reverse engineers on their preferences and what kind of

tools will they like to input in D3RE. We modi�ed some scripts on the awesome-ghidra GitHub

repository [3] and written some scripts in Python or Java, which most of the scripts are written

in Python. The �rst three are relatively small and �nd instructions that match a speci�c template,

e.g., non-xor �nds xor instructions that aren’t zeroing registers shown in the previous section,

and over�ow heuristically searches for potential over�ows in calls to common functions such

as strcpy. Our largest was �ndcrypto, which looks for common cryptographic constants. In the

future, we plan to do user studies on experienced users on �nding vulnerabilities and malware

analysis with the assist of reverse engineering, binary analysis, and symbolic execution.

33

Table 3.1: Script size (lines of code) of Ghidra script (Python) vs. D3RE

Ghidra Python D3RE
non-xor 33 8
basicblk 37 4
over�ow 60 18

�ndcrypto 166 45

3.2.3.1 Experiments and Results in D3RE

In theory, it seems D3RE is promised to have good results on reverse engineering. Although

D3Re is still a work in progress tool, we did several hypotheses that we want to clarify before

moving on. The basic idea of these experiments is that whether D3RE can replace Ghidra scripts.

First, we want to make sure D3RE is the tool that can provide the necessary building blocks to

enable replacing the currently existing Ghidra scripts written in Python or Java. Second, we want

to test the performance of D3RE and compare the performance with the Ghidra Python scripts.

Lastly, we want to test the di�erence between the caching-based approach and the none-caching

based approach.

Qualitative Results of our Replication Study: Since we are using Datalog and functional pro-

gramming, the user will have to have a proper understanding of the context and relevant knowl-

edge. Comparing Datalog and python, D3RE enabled us to succinctly write equivalent imple-

mentations of each Ghidra script which we rewrote the script with less Datalog code. In table 3.1,

we can see the di�erence between the lines of codes between Python scripts in Ghidra and Dat-

alog. The reason is that Datalog will eliminate the need for certain things that are necessary for

languages like Python and Java. For example: looping over instructions and checking against a

type that we found in our evaluation scripts. We believed the reason D3RE can be represented in

fewer lines is that its ability to directly use relations from ddisasm.

Quantitative Results of our Replication Study: We expect that the tool D3RE will have better

results compared to the Ghidra Python scripts since D3RE is based on a high-performance Datalog

34

solver. We benchmarked Ghidra vs D3RE on six binaries from ddisasm test suite. To test the

Ghidra scripts, we use Python standard time at the start and the end of the script. We evaluated the

corresponding Datalog program by using Sou�e’s internal performance timers. In the table 3.2,

it compares the runtime of each Ghidra script versus its corresponding implementation in D3RE.

The single occurrence of – indicates that Ghidra did not �nish within an hour. In most of the

cases, the results have reached our expectation which D3RE outperformed the Ghidra Python

scripts. We believe it is because that desgin of D3RE allowed us to leverage useful relations from

ddisasm since it is built on top of it. Comparing D3RE and Python, we found that in the Python

scripts, we need to write naive loops to loop over sets of functions or symbols in order to locate

certain properties. However, on the other side, D3RE allowed us to write more succinctly which

Datalog naturally aggregates results. Moreover, D3RE can execute much more e�ciently, because

Sou�e optimally compiles input programs to e�cient relational algebra kernels that loop only

when necessary.

Despite the success of D3RE, there are still limitations that could cause performance issues.

For example, in our last example, �ndcrypto looks for common cryptographic constants. The

crypto script scans for the binary for 256-segments of code, D3RE is built on Sou�e, which sup-

ports 64-bit primitive ints, but not 256-byte sequences. On some large binary �les, Ghidra will fail

to �nish within an hour, which makes D3RE a great success on the matter of time of completion.

Evaluating End-to-End Behavior in Subsequent Invocations: Last, to understand the e�ect of

caching via repeated calls to D3RE, we ran four di�erent tests in a row using the caching-based

approach and without caching. As each query builds on the previous, we expect caching to reduce

the amount of work and will also reduce the runtime. We found out that caching makes a great

di�erence according to table 3.3. Caching is expected to reduce the number of works and reduce

the runtime. Overall, we found rule caching was especially important on larger binaries versus

sequential runs, justifying our choice to structure the metadatabase as a graph.

35

Table 3.2: Running time of Ghidra scripts vs. equivalent implementation in D3RE (all numbers in sec-
onds).

bison sou�le gzip re2c redis rsync
non-xor Ghidra 3.569 107.5 2.205 3.903 10.52 3.050

non-xor d3re 0.518 6.515 0.097 0.756 1.306 0.486
over�ow Ghidra 0.370 0.247 0.600 0.240 0.760 0.180

over�ow d3re 0.617 0.319 0.051 0.094 0.095 0.044
basicblk Ghidra 340.6 – 4.664 472.1 1806 107.4

basicblk d3re 0.539 7.13 0.094 0.812 1.433 0.571
�ndcrypt Ghidra 0.207 1.033 0.224 0.214 0.475 0.289

�ndcrypt d3re 1.287 14.53 0.224 1.701 2.938 1.186

Table 3.3: Runtime of successive invocations to D3RE with (Cached, C) and without (Sequential, S) rule
caching.

ddisasm stack_var heap_var static_var unl_static
sou�le C 170 11.88 58.35 5.008 0.039
sou�le S 170 11.79 66.02 67.00 66.52
bison C 7 0.932 1.409 0.545 0.022
bison S 7 0.934 1.916 2.122 2.075
re2c C 9 1.457 4.417 0.704 0.025
re2c S 9 1.494 5.257 5.449 5.458
redis C 11 1.918 2.544 1.302 0.025
redis S 11 1.919 3.525 3.712 3.726
rsync C 8 0.766 0.908 0.481 0.028
rsync S 8 0.783 1.325 1.423 1.384

36

4 | Assemblage

Reverse engineering tools like Ghidra and IDA allow malware analysts to interactively dis-

cover properties of binaries in an open-ended way. However, these tools are challenging for users

to interact with, and there is an inherent tension between automatability and open-ended explo-

ration. We want to work with various types of binaries on di�erently built-on operating systems

as well as written di�erent types of languages. To be more precise, the purpose of assemblage is

to study the properties of binaries at a scale that exists using a variety of compiler tool chains.

For example, using LLVM and GCC compiler on compiling C++ and C repositories.

To go further on the research, collecting open-source repositories online massively and build

them will be necessary. Thanks to modern software tools like GitHub, GitLab, and Bitbuckets, we

can collect a variety of open-source projects for our data sets. Down the line, we are considering

using this dataset as input to a machine learning algorithm or more, but that is explicitly out-

of-scope for this thesis. However, we do validate that Assemblage is working and found several

interesting insights of it as well as some problems to be solved while expanding Assemblage. The

purpose of Assemblage is to collect a variety of binaries. Since we are creating a analysis tool

D3RE, we need a data provider to test D3RE. Assmeblage will play the data provider role in the

pipeline, which feed D3RE data to do analysis.

37

4.1 Methodologies and ideas

To understand the process of reverse engineering, and simulate certain situations in real-

world circumstances we need a lot of data that we can compile them using various compilers and

di�erent strategies. To achieve this goal, we found a database GHTorrent which has scraped a

lot of repositories from GitHub and will ful�ll our need in the current stage. GHTorrent not only

gets the URLs, but also push, pull, fork, and other related information in GitHub repositories.

However, since GHTorrent is written in ruby and can be improved, in long term, we have the

idea to build our scraper based on GHTorrent with modi�cations. The idea of the scraper is to

search for repositories that ful�ll our requirements and perform corpus compilation where we

will most likely use LLVM or GCC compilers. Finally, we want to list all the compiled repositories

with its corresponded binaries on a web front end for further research purposes.

4.2 Github API scraping

The goal of the task is to collect, binary �les, so we aim to collect as many C and C++ open-

source repositories as possible. We �gure out that GitHub will be the best source to collect data,

which will have a good amount of C and C++ programs and examples. There are a variety of ways

on building the scraper, including using text related strategies and API. To make our work easier,

we choose to build the scraper in python, which provides a large amount of scraping packages and

more important there are GitHub API written in Python. The scraper will be mostly assisted by

pygithub using GitHub API, which will provide us advanced searching methods within GitHub.

GitHub has provided a good amount of tools for searching data, including time constraints, lan-

guages, and ratings. The web version of the GitHub API is shown in �gure4.1. In the web version,

we will be able to do some testings and check out how the search works, and understand how to

use the GitHub API for scraping the repositories we need.

38

Figure 4.1: The figure is an example how github advanced search works in the form of web user interface.

However, while GitHub API brings convenience, it also brings challenges. Github API will

make the whole searching process a lot easier, but it has rate limits. Github allows 30 searches

per minute, and only 40 repositories can be found during each search. Also, the API only shows

1000 results per search to prevent tra�cs we believe, which means we have to divide our search

into parts. For example, a user wants to search all the repositories written in C in 2018, which

has about 235,000 repositories in total. The user would not be available to get everything in

one search. To get all the repositories, the user will have to shorten the time range. With some

researches, the repositories created in a day in language C or C++ is about 1000 which is about the

maximum we can take in one search. In order to "play" with the rate limit, and most e�ciently

to use the rate limits, the code will be weird. For example, since writing the scraped repositories

take time, the rate limit might be restored, so we can switch to the new rate limit to avoid possible

sleep. The idea of coding this scraper will be to replace or sleep whenever it almost reaches the

rate limit. Although this seems to be on the strategy, we still hope to �nd other more optimal

ways on avoiding rate limits.

4.3 Pipeline

The pipeline consists of three di�erent stages, web scraping, repositories cloning, and building

�les. Since we are scraping both C and C++ repos, we have to provide two queries. As shown in

39

�gure 4.2 (which will iterated by for loops), the queries consist of the date and the language we

are searching. The current pipeline is based on using the database GHTorrent.

Figure 4.2: The idea of the repo scraper. We take in the query with specific dates and languages, and
search the repos in gothub.

4.3.1 Methodology

The web scraper allows only 30 searches in one minute, and 40 repositories in one search. In

order to avoid the rate limit, the scraper will wait in two circumstances: reach 25 searches, or

reach the limit of extracting repositories after one search. as shown in �gure4.3. To use the time

e�ciently, all the functions in the scraper and cloner will be written in the async function, which

the asyncio will schedule the works for us. However, since we are using GHTorrent right now, it

will temporarily solve the issue of rate limits since we already got all the URLs we need.

4.3.2 GH torrent

According to the GitHub home page, there are currently 100+ million repositories and 56+

million developers. Due to a large amount of data, GitHub has certain rate limits. According to

the paper, GitHub allows 5,000 requests per hour, and the generation rate is already higher than

40

Figure 4.3: The ideal pipeline for scraping, cloning, and building the repositories.

the rate allowed. Eventually, we have to enable multiple users to retrieve data in parallel.

While designing our web scrapper, and open-source collector, there was an existed project

called GHTorrent which seems pretty successful. We decide to take a look into the project and

take the data they collected in this stage, and hopefully to modify GHTorrent and have our

scraper. Although both GHTorrent and our ideas are targeting to scrape GitHub, we have di�er-

ent perspectives on scraping Github. They focused on getting all the events from including forks,

pull requests, commits, and other information. They provide a database schema in the paper to

show how they collect the data and store the data. GHTorrent will cache the data into MongoDB

database However, we only want the repository data and the language they are written with. We

have a relatively easier task on scraping, but the big ideas are similar. By fetching URL in the

database, we can clone the repositories. However, since the database is old, certain repositories

are either removed or switched to private. This is also another interesting problem to look into

as well. How many repositories are still existed, and how many repositories can be successfully

built with simply make commands.

41

4.3.3 Sqlite Schema

After cloning the repositories from GitHub, we will store all the repositories in the database.

For future extensions, we have designed a database schema that we think will be the most appro-

priate and useful. At this stage, we probably will stick to the database schema from GHTorrent.

The database schema is shown in �gure 4.4. The most important items we need are _id, URL,

name, language, created_time, and clone_status. We create the _id: management purposes in the

future, URL and name: cloning repositories, language: since we have C and C++, we need to

identify what the repositories are written with, created_time: tracking purposes, clone_status:

for tracking whether the repository is cloned or not, buil_status: for tracking the current stage

on building repositories and error messages. The error messages are crucial and important, while

the unsuccessful building might be caused by missing packages, or we need speci�c commands

to builds. By collecting these messages, we can tackle these problems by switching our design

schema by adding more patterns.

Figure 4.4: The database schema of GhTorrent

4.3.4 Building Repositories

With the database GHtorrent, we can scrape the repositories base on the URL. Currently, we

tried to build the repositories by running the make command. We build a coordinator and worker

42

with ZMQ, which the cooedinator will distributed works to the worker, and the worker can clone

and build the repositories. When we get a new repository we will check if a make�le (Make�le)

exists, if it exists, it will simply execute the make command. If the build succeeds, it will return

0, or it will return error messages and stored back to the database. The build process is expected

to be expanded in the future, which might be able to analyze the readme �le to have a better

understanding of how to proceed with the build process.

4.4 Insights of Assemblage

As we use GHTorrent as our database for Assemblage, we have successfully clone a number of

repositories. Until now the lab (with one PhD and other undergraduate students) has Assemblage

start working and reach a number of clones and builts. Total repositories cloned is 1872, and total

built repositories is 27. We organized some reasons that clone and built failed.

Since GHTorrent is an old database, some repositories have already been closed or turned

private which leads to clone failed. We want avoid this kind of errors as little as possible. On the

other hand, since we are only checking whether the repositories contains make�le (Make�le),

it is often that the building process will fail. For now, we clone all the URLs included in the

GHTorrent, and lots of them are not C or C++ �les. In the future, we want to improve pre-analysis

to determine when they’re C or C++. In such cases, and other buildable cases that we’re missing.

As for those failed building with make�le (Make�le), it is likely cased by missing pacakges or

customized make�les. Besides these more strategy related error, still other errors including syntax

errors in code or make�les, etc.

We are still adding more functions on Assemblage, and make the built process more gen-

eralized. Our next next goal will be on revising the GHTorrent database, for example: remove

homework repositories, and outdated repositories, to lower the fail rate of cloning process, and

maybe analyze the readme �le to improve the building process.

43

4.5 Combining D3RE and Assemblage

The environment that we are creating are the foundation to study how reverse engineering

will perform their work across various compilers, which in C and C++ are gcc and clang. As

mentioned in chapter 4, we cloned the repositories and build. In the future, we will build the

repositories in gcc and clang. After that, we can take the binary �les, run D3RE and study the

results. We expect to see di�erent results and study what can we do with the results. Although it

seems to be straightforward, building open-source repositories won’t be a easy task. Also since

D3RE is using gtirb as the IR, we will need a gtirb extension on Ghidra in order to load the

�le. However, the version will always be the challenge part of combining di�erent open-source

tools, which gtirb and Ghidra will have to be the same version. Currently, D3RE and Assemblage

haven’t been combined , since there are some version di�erences between the open-source tools

that will cause problems that we can’t �x yet. Also Assemblage is still in the early stage, we have

limited data and are still running the scraper to get more.

44

5 | Future and user studies

Since the project is still in an early stage, there will be a lot of future work waiting. Here,

we plan to separate the future goal into two di�erent categories, the repo scraper and building

our own analysis tool. As for building the tool, we propose an idea of visualization, and possibly

do user studies. The user studies will be on how our tool can improve the experience of reverse

engineering and static analysis as well as how the experienced user do reverse engineering and

how speci�c information can help them.

5.1 Visualization vs Current

In chapter 3, we introduced a declarative way of analyzing the binary �les. We want to try

some other examples to list out strategies for improving the visualization of D3RE on Ghidra.

With the results of the 3 short experiments (qualitative, quantitative, and cache) in the D3RE

paper, it seems d3re has a promising future in analyzing binary �les. However, we want to have

reverse engineers interactively explore a binary using a reverse engineering tool while simulta-

neously querying their own rules into the CLI of D3RE in a declarative style.

During our installation of D3RE, particularly ddisasm, multiple errors will pop out while

working on di�erent working environments (Linux, MacOSX). Some of the errors will need some

tricks to tackle down, and others just take plenty of e�ort. In order to avoid these burdens, we

create a docker�le to run all the required packages for ddisasm on docker. Besides writing actual

45

rules in Datalog on D3RE, we will combine and modify some existing scripts or plugins on Ghidra

In the D3RE paper, our goal is to test some methodologies for designing the user interface of the

tools.

In D3RE, the user can start their analysis based on a set of Datalog rules built above ddisasm, a

Datalog-based disassembly engine. Since Datalog is monotonic, we can evaluate the program base

on the results of the previous program. Moreover running ddisasm once allows pre-populating a

large set of relations for which has a lot of interesting facts of the binary �le.

Besides the rules based on ddisasm, the user can input their own rules. This allows the user to

input rules based on their own needs. For example, the user can input rules targeting uninitialized

variables, possible bu�er over�ow, etc. In D3RE, the communication between the logical rules and

the state of the reverse engineering tool is reconciled by input and output tables reverse engineers

can write queries that consume the state of the reverse engineering tool such as currentAddress

or the currently-selected address as input relations, perform logical inference. Currently, our

REPL allows loading rules by loading new �les. If the user wants to add a new rule, the user will

create a new �le, which can be edited in the future as well. In the current settings, D3RE can

highlight or add comments which will be displayed on the data marked on Ghidra.

As for the search range of D3RE, the user can search through the binary �le. However, if the

user wants to focus on a certain function or address set, the user can set the range of the code

along with the rules in the same uploaded �le.

In the following experiment, we used one of the CGC Challenge Binaries as an example. The

CGC repository has a lot of examples for testing binary vulnerabilities, which in this case, I chose

CROMU_00038. I the user wants to �nd all the possible over�ow functions in the binary, the user

can input the example Datalog program as follow. The user will add a �le with the new rule, and if

the user only wants to search for a certain function of the �le, the user can add the code_in_range

rule in the �le as well. Finally, the user can highlight and add comments to the function call that

over possibly will appear.

46

. d e c l o v e r f l o w _ s i n k (SymName : symbol)

o v e r f l o w _ s i n k (" s t r c p y ") .
o v e r f l o w _ s i n k (" g e t s ") .
o v e r f l o w _ s i n k (" getpw ") .
o v e r f l o w _ s i n k (" memcpy ") .
o v e r f l o w _ s i n k (" s p r i n t f ") .
o v e r f l o w _ s i n k (" p r i n t f ") .
o v e r f l o w _ s i n k (" s t r c a t ") .
o v e r f l o w _ s i n k (" v s p r i n t f ") .

. d e c l o v e r f l o w _ t a r g e t (EA : a d dr e s s , Index : operand_ index)

. o u t p u t o v e r f l o w _ t a r g e t
o v e r f l o w _ t a r g e t (EA , Index) : −

o v e r f l o w _ s i n k (Sym) ,
symbo l i c_operand (EA , Index , OverflowFuncAddr , _) ,
g o t _ r e f e r e n c e (OverflowFuncAddr , Sym) .

Figure 5.1: possible bu�er overflow functions

. d e c l c o d e _ i n _ r a n g e (from : a d dr e s s , t o : a d d r e s s)
c o d e _ i n _ r a n g e (1 9 2 1 0 , 2 8 7 0 7)

Figure 5.2: code range

However, in the current version of D3RE the user can only add comments and highlight in-

structions to assist them on doing reverse engineering. With some experience in Ghidra, we

believe there are more to be done on visualizing reverse engineering using static analysis. We

propose a new UI that can create some function graphs and �ow relations along with highlights

as well as comments that will help the user on �nding possible over�ow functions with reverse

engineering.

In the above example, D3RE will be able to highlight or add comments on related function

calls. However, we believe there is still more to be done. Since we are using Ghidra, we should

take advantage of the visualization tools provided in Ghidra. In the CROMU_00038 example, we

run the script to �nd possible bu�er over�ow functions. In the function, we modi�ed the function

so it will list out the address of the possible bu�er over�ow functions, as well as the actual actress

of where this particular function is declared. We want to create an idea of taint analysis, in which

47

the particular functions, registers, or variables will be tainted for the user to do further analysis.

For example, when we run the script on the binary �le CROOMU_00038, it will print out possible

bu�er over�ow functions can be highlighted. One of the functions is vsprintf. In this case since

the size is declared 4096 in the stack if the size is greater than 4096, a bug will appear.

The purpose of creating the UI is not only to show the bug in GUI but also to improve the

user experiences. An idea is shown in �gure 5.3. We come up with this idea from experiences

from previous Ghidra scripts and some of out own opinions. The following is the reason why it

is important and plans for the next stage of developing plugins or extensions for D3RE.

Our REPL is now a CLI, in which the user can input the code range along with the declared

rules. We have two ideas on the REPL, the �rst which is keeping the original idea on the REPL,

which the user will have to input the address range manually. The second will be when the user

clicks on a particular instruction on Ghidra, the Ghidra will get the address of the instruction and

which function does it belongs to. In this way, it will be more user-friendly, but also increase the

di�culty of connecting d3re and Ghidra (it is now connected by Ghidra bridge [13]).

In our CROMU_00038 example, after the possible over�ow function is found, the user might

want to know more about the information �ow, so they can keep track of where the possible

vulnerability travels. We’re suggesting the user to right-click the instruction. Then the user can

�nd out the data�ow graph, function call graph, and call graphs. The other proposal will be, list

out all the possible vulnerabilities in a pop-out, so the user won’t have to search one by one.

In �gure 5.4, it showed a sample idea on how the extension will work. By right-clicking on the

instruction, the user can view the graph based on their need. In the future, we hope to integrate

the ideas from the following bullet points on designing UIs

• What kind of plugins do you wish to see in Ghidra while doing RE?

• What kind of user interaction do you wish to see in GHidra while doing RE (ex: select a

region of binary to add rule in GUI)?

48

• How do you wish the tool to help you visually on doing RE (commands, highlights, control

�ow graph, function call relation etc)

These questions are created based the current situation of D3RE, and the future expectation of

D3RE according to our need to vision building the malware analysis pipeline.

Overall, we are thinking about right-click, enter in a combobox, and other GUI interface that

will help the user the most. It is hard to design a good UI since we are not expert in reverse engi-

neering. According to our experiences, we have collect some of the possible cases, and functions

that will �t the experts’ need.

Figure 5.3: Idea for the design

5.2 Future Work and User Studies

With the examples above, we can say that we have a start. However, to continue, we believe

user studies are necessary. The user studies will be related to D3RE and future works in visual-

izing reverse engineering. In D3RE and the above sample, we believe the idea is applicable, but

can be more crisp. In the paper [42], it pointed out that while focusing on security vulnerabilities

49

Figure 5.4: Layout of the ideal plugins.

problems, we can not only consider the potential attacks, but also how the software works and

the related resources.

Multiple analysis can be done in reverse static analysis and reverse engineering. However,

it is very hard to automatically analyze the binary �les especially in static analysis. Some semi-

automatically analyze work were done in dynamic analysis, and symbolic execution. However

since the de�nition of static analysis is analyze the program without running the program, two

kinds of strategies were suggested in multiple papers which are heuristics and declarative.

Reverse engineering can be totally di�erent based on di�erent goals. Since we are focusing

on malware and vulnerabilities, we hope to focus on reverse engineers who mainly focus on

vulnerabilities discovery and malware analysis. Since the area of vulnerabilities are large, I am

going to give the examples and introduce some previous works in detecting bu�er over�ow as

shown in the previous section.

We summarized the problems and obstacles that might be solved by user studies. Overall two

50

questions are raised from the D3RE paper:

• Determine whether D3RE could realistically be used to accomplish the kinds of tasks that

reverse engineers face on a day-to-day basis.

• Should we allow the user to select a region of the binary and build a rule that applies only

to that region build a rule speci�c to callers of that function.

Some previous work have been done is related �elds. Not all of the work are about visual-

ization, but some of them point out certain characteristics that will be useful on createing UIs.

Matzan showed that VSA might have help, and did an eye tracing user study, and proved that

the more detail the VSA is, the better the experts will perform [27]. Similar researches showed

that user declared graph and user assisted automated analysis might help [9]. Moreover, some

Wang proposed it is possible to include AI and machine learning techniques on �nding bu�er

over�ows. Besides visualization, Zitser and Feng found some of the circumstances that bu�er

over�ow will exists [51] [11].

These kind if papers are useful because they provided conditions and information that a bu�er

over�ow might appear. According to these previous work, we can narrow down to certain prop-

erties that we will be looking for which are: Path classi�cation: What kind of typical path will

it lead to a bu�er over�ow; Heuristics:What kind of circumstances will lead to bu�er over�ow;

How does while loops and if-else statements a�ect the appearances of bu�er over�ow? Declar-

ative Base on our ultimate goals we have listed out two main topics we will be focusing on the

future user studies:

• While our ultimate goal is to design a user interface working with Datalog backend, the

design is important.

• Due to the purpose of the project, we want to design the interface closely to reverse engi-

neers who focused on malware and �nding vulnerabilities.

51

However, although the goal is clear, every experts in reverse engineering have their own habits,

we would like to know some background information about them. We listed out some background

problems that will be important for us to know while designing the UI for D3RE.

• Have you ever programmed extensions in Ghidra (what tools or packages are you using

Gtable, Gtree, or etc. . .)?

• Have you regularly use Ghidra to discover malware?

• Have you regularly discover vulnerabilities with Ghidra?

• How well are your functional programming skills (Datalog etc)? Since we are inputting the

rules in Datalog.

Since we are designing malware analysis pipeline, we want to focus only on malware analysis

experts. We chose these questions based on our research and experiments own D3RE and Ghidra.

Ghidra provides lots of user interface tools, but we �gure out that not all the extension developers

will use these packages we would like to know why. Also since. Also, we realized we are using

Datalog as the programming language while declaring rules, we want to know how comfortable

experts is on coding in Datalog. We have also created some general questions, some of them are

from user studies on reverse engineering. Most of the questions are related to control �ow and

call information [42].

• Where is the method being called?

• How can I get calling information?

• Who can call this?

• Are all calls coming from the same class?

• What gets called when this method gets called?

52

For now we have some ideas on targeting bu�er over�ow problems, and we know �nding vul-

nerabilities in bu�er over�ow is di�cult in binary �les. This chapter is still under experiment

and hypothesis. We have a lot of thoughts and ideas on how our UI for D3RE to be, but we are

not sure it will meet the public expectation since we are not experts. In the future, we hope to

generalize the idea we have now and some prototypes to do a user study in visualizing reverse

engineering.

Moreover, while there are a broad range of plugins for Ghidra and IDA Pro to load the results

of static analyses, we believe D3RE is the �rst to focus on the combination of open-ended de-

ductive logical inference with a reverse engineering tool front end. We believe the most closely

related work is Ponce [30], which enables GUI-based symbolic execution. We plan to integrate

symbolic execution into D3RE as a long-term goal, inspired by the recent work of Formulog [7].

Visualization-based tools such as Ghidra are of immense value in understanding a binary, but

have fundamentally di�erent design considerations than high-performance logical inference en-

gines, where a good UI will solve the problem.

53

6 | Conclusion

Reverse engineering plays a big roll in our malware analysis pipeline. Since reverse engi-

neering in binaries required users to inspect manually, it makes it challenging but fascinating.

Throughout the literature review, we’ve found a good amount of work have been done in us-

ing static analysis and dynamic analysis on recovering binaries. However, since the task is too

subjective and lack of standard procedures, there haven’t been a speci�c or a perfect way on

tackling reverse engineering. We hope that with this project, we can bring up two important

part of reverse engineering and static analysis. First, D3RE the tool of visualising the results of

static analysis. With D3RE we’ve shown that it’s possible to use Datalog in a declarative style

to analyze binary �les, and we hope to take advantage of the visualization functions provided

in Ghidra to improve users’ experience on reverse engineering. Second, collecting repositories

from GitHub and build the open-source projects with di�erent compilers. Last but not least, by

integrating assemblage and D3RE, we hope to extend the project even further. We hope to do

user studies on user experiences on reverse engineering, and how to design D3RE’s plugin on

Ghidra. Overall, the project is still on en early stage, it looks promising, but of course a lot of

work are still waiting for us.

54

Bibliography

[1] Hojjat Aghakhani et al. “When Malware is Packin’ Heat; Limits of Machine Learning Clas-

si�ers Based on Static Analysis Features”. In: Jan. 2020. doi: 10.14722/ndss.2020.24310.

[2] Omar Alhazmi and Yashwant Malaiya. “Modeling the Vulnerability Discovery Process”. In:

2010 IEEE 21st International Symposium on Software Reliability Engineering 0 (Nov. 2005),

pp. 129–138. doi: 10.1109/ISSRE.2005.30.

[3] awesome ghidra. https://github.com/AllsafeCyberSecurity/awesome_ghidra.

[4] Gogul Balakrishnan et al. “CodeSurfer/x86—A Platform for Analyzing x86 Executables”.

In: vol. 3443. Apr. 2005, pp. 250–254. isbn: 978-3-540-25411-9. doi: 10.1007/978-3-540-

31985-6_19.

[5] Leilani Battle and Je�rey Heer. “Characterizing Exploratory Visual Analysis: A Literature

Review and Evaluation of Analytic Provenance in Tableau”. In: Computer Graphics Forum

38 (June 2019), pp. 145–159. doi: 10.1111/cgf.13678.

[6] Moritz Beller, Georgios Gousios, and Andy Zaidman. “Oops, My Tests Broke the Build: An

Explorative Analysis of Travis CI with GitHub”. In: May 2017, pp. 356–367. doi: 10.1109/

MSR.2017.62.

[7] Aaron Bembenek, Michael Greenberg, and Stephen Chong. “Formulog: Datalog for SMT-

Based Static Analysis”. In: Proc. ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi: 10.1145/

3428209.

55

https://doi.org/10.14722/ndss.2020.24310
https://doi.org/10.1109/ISSRE.2005.30
https://github.com/AllsafeCyberSecurity/awesome_ghidra
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1111/cgf.13678
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1145/3428209
https://doi.org/10.1145/3428209

[8] David Brumley et al. “BAP: A binary analysis platform”. In: vol. 6806. Jan. 2011, pp. 463–

469. doi: 10.1007/978-3-642-22110-1_37.

[9] Cristina Cifuentes and Bernhard Scholz. “Parfait - Designing a Scalable Bug Checker”. In:

(June 2008). doi: 10.1145/1394504.1394505.

[10] Robin David et al. “BINSEC/SE: A Dynamic Symbolic Execution Toolkit for Binary-Level

Analysis”. In: Mar. 2016, pp. 653–656. doi: 10.1109/SANER.2016.43.

[11] Chao Feng and Xing Zhang. “A Static Taint Detection Method for Stack Over�ow Vulner-

abilities in Binaries”. In: July 2017, pp. 110–114. doi: 10.1109/ICISCE.2017.33.

[12] Antonio Flores-Montoya and Eric Schulte. “Datalog Disassembly”. In: (June 2019).

[13] Ghidra Bridge. https://github.com/justfoxing/ghidra_bridge. Accessed: 2020-01-

10.

[14] Ghidra released by National Security Agency. https://ghidra-sre.org/.

[15] Georgios Gousios. “The GHTorent dataset and tool suite”. In: May 2013, pp. 233–236. isbn:

978-1-4799-0345-0. doi: 10.1109/MSR.2013.6624034.

[16] Georgios Gousios and Diomidis Spinellis. “GHTorrent: Github’s data from a �rehose”. In:

IEEE International Working Conference on Mining Software Repositories (June 2012), pp. 12–

21. doi: 10.1109/MSR.2012.6224294.

[17] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. “Work practices and chal-

lenges in pull-based development: the contributor’s perspective”. In: May 2016, pp. 285–

296. doi: 10.1145/2884781.2884826.

[18] Grammatech. Gtirb. https://github.com/GrammaTech/gtirb-ghidra-plugin.

[19] KyoungSoo Han, Jae Lim, and Eul Gyu Im. “Malware analysis method using visualization

of binary �les”. In: Oct. 2013, pp. 317–321. doi: 10.1145/2513228.2513294.

[20] Hexray. Hex-rays:The IDA Pro disassembler and debugger.

56

https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1145/1394504.1394505
https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1109/ICISCE.2017.33
https://github.com/justfoxing/ghidra_bridge
https://ghidra-sre.org/
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1145/2884781.2884826
https://github.com/GrammaTech/gtirb-ghidra-plugin
https://doi.org/10.1145/2513228.2513294

[21] Michael Hilton et al. “Usage, costs, and bene�ts of continuous integration in open-source

projects”. In: Aug. 2016, pp. 426–437. doi: 10.1145/2970276.2970358.

[22] Alan Ja�e et al. “Meaningful variable names for decompiled code: a machine translation

approach”. In: May 2018, pp. 20–30. isbn: 978-1-4503-5714-2. doi: 10.1145/3196321.

3196330.

[23] Yit Khoo et al. “Path projection for user-centered static analysis tools”. In: Nov. 2008, pp. 57–

63. doi: 10.1145/1512475.1512488.

[24] Riivo Kikas et al. “Structure and Evolution of Package Dependency Networks”. In: May

2017, pp. 102–112. doi: 10.1109/MSR.2017.55.

[25] Zhenmin Li et al. “CP-Miner: A Tool for Finding Copy-paste and Related Bugs in Operating

System Code”. In: Jan. 2004, pp. 289–302.

[26] Saraj Manes and Olga Baysal. “How Often and What StackOver�ow Posts Do Developers

Reference in Their GitHub Projects?” In: May 2019, pp. 235–239. doi: 10.1109/MSR.2019.

00047.

[27] Laura Matzen, Michelle A Leger, and Geo�rey Reedy. “E�ects of Precise and Imprecise

Value-Set Analysis (VSA) Information on Manual Code Analysis”. In: Jan. 2021.

[28] Sarah Nadi et al. “Mining con�guration constraints: static analyses and empirical results”.

In: (May 2014). doi: 10.1145/2568225.2568283.

[29] Chengbin Pang et al. “SoK: All You Ever Wanted to Know About x86/x64 Binary Disassem-

bly But Were Afraid to Ask”. In: (July 2020).

[30] Ponce (IDA Pro Plugin). https://github.com/illera88/Ponce. Accessed: 2020-01-10.

[31] py-�ndcrypt-ghidra. https://github.com/AllsafeCyberSecurity/py- findcrypt-

ghidra.

[32] Radare2. https://github.com/radareorg/radare2.

57

https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/3196321.3196330
https://doi.org/10.1145/3196321.3196330
https://doi.org/10.1145/1512475.1512488
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/MSR.2019.00047
https://doi.org/10.1109/MSR.2019.00047
https://doi.org/10.1145/2568225.2568283
https://github.com/illera88/Ponce
https://github.com/AllsafeCyberSecurity/py-findcrypt-ghidra
https://github.com/AllsafeCyberSecurity/py-findcrypt-ghidra
https://github.com/radareorg/radare2

[33] Edward Ra� and Charles Nicholas. “A Survey of Machine Learning Methods and Chal-

lenges for Windows Malware Classi�cation”. In: June 2020.

[34] Edward Ra� et al. “Classifying Sequences of Extreme Length with Constant Memory Ap-

plied to Malware Detection”. In: Dec. 2020.

[35] Edward Ra� et al. “Malware Detection by Eating a Whole EXE”. In: (Oct. 2017).

[36] Atanas Rountev, Olga Volgin, and Miriam Reddoch. “Static control-�ow analysis for reverse

engineering of UML sequence diagrams”. In: ACM SIGSOFT Software Engineering Notes 31

(Jan. 2006), p. 96. doi: 10.1145/1108768.1108816.

[37] Maher Salah et al. “Scenariographer: A tool for reverse engineering class usage scenarios

from method invocation sequences”. In: vol. 2005. Oct. 2005, pp. 155–164. isbn: 0-7695-

2368-4. doi: 10.1109/ICSM.2005.78.

[38] Eric Schulte et al. “GTIRB: Intermediate Representation for Binaries”. In: (July 2019).

[39] Edward Schwartz et al. “Native ×86 decompilation using semantics-preserving structural

analysis and iterative control-�ow structuring”. In: Aug. 2013, pp. 353–368.

[40] Edward Schwartz et al. “Using Logic Programming to Recover C++ Classes and Methods

from Compiled Executables”. In: Oct. 2018, pp. 426–441. doi: 10.1145/3243734.3243793.

[41] Yan Shoshitaishvili et al. “Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning

Systems with Human Assistance”. In: Oct. 2017, pp. 347–362. isbn: 978-1-4503-4946-8. doi:

10.1145/3133956.3134105.

[42] Justin Smith et al. “Questions developers ask while diagnosing potential security vulnera-

bilities with static analysis”. In: Aug. 2015, pp. 248–259. doi: 10.1145/2786805.2786812.

[43] Venkatesh Srinivasan and Thomas Reps. “Recovery of Class Hierarchies and Composition

Relationships from Machine Code”. In: Apr. 2014, pp. 61–84. doi: 10.1007/978-3-642-

54807-9_4.

58

https://doi.org/10.1145/1108768.1108816
https://doi.org/10.1109/ICSM.2005.78
https://doi.org/10.1145/3243734.3243793
https://doi.org/10.1145/3133956.3134105
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1007/978-3-642-54807-9_4
https://doi.org/10.1007/978-3-642-54807-9_4

[44] Yihao Sun, Je�rey Ching, and Kristopher Micinski. “Declarative Demand-Driven Reverse

Engineering”. In: Jan. 2021.

[45] Terrance Swift and David Warren. “XSB: Extending Prolog with Tabled Logic Program-

ming”. In: Theory and Practice of Logic Programming 12 (Dec. 2010). doi: 10.1017/S1471068411000500.

[46] Bogdan Vasilescu et al. “Quality and productivity outcomes relating to continuous integra-

tion in GitHub”. In: Aug. 2015, pp. 805–816. doi: 10.1145/2786805.2786850.

[47] Daniel Votipka et al. “An Observational Investigation of Reverse Engineers’ Process and

Mental Models”. In: Apr. 2019, pp. 1–6. isbn: 978-1-4503-5971-9. doi: 10.1145/3290607.

3313040.

[48] Daniel Votipka et al. “Hackers vs. Testers: A Comparison of Software Vulnerability Dis-

covery Processes”. In: May 2018. doi: 10.1109/SP.2018.00003.

[49] Carsten Willems, Thorsten Holz, and Felix Freiling. “Toward Automated Dynamic Malware

Analysis Using CWSandbox”. In: Security & Privacy, IEEE 5 (Apr. 2007), pp. 32–39. doi:

10.1109/MSP.2007.45.

[50] Khaled Yakdan et al. “Helping Johnny to Analyze Malware: A Usability-Optimized De-

compiler and Malware Analysis User Study”. In: May 2016, pp. 158–177. doi: 10.1109/SP.

2016.18.

[51] Misha Zitser, Richard Lippmann, and Tim Leek. “Testing static analysis tools using ex-

ploitable bu�er over�ows from open source code”. In: vol. 29. Nov. 2004, pp. 97–106. doi:

10.1145/1041685.1029911.

59

https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/3290607.3313040
https://doi.org/10.1145/3290607.3313040
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/MSP.2007.45
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1109/SP.2016.18
https://doi.org/10.1145/1041685.1029911

JEFFREY CHING

EDUCATION

Syracuse University August 2019 - Present
Master in Science
Department of Electrical Engineering and Computer Science
Advisor: Kristopher Micinski

RESEARCH EXPERIENCE

Syracuse University, NY March 2020-Present
Research

· The research is on surveying the reverse engineering, and working with the tool Ghidra.

· Integrating the results of binary analysis tools with ghidra for further analysis.

· Write Ghidra plugins using java and python for analyzing the binary files.

Syracuse University, NY March-August2020
Research(IOT)

· The project mainly focus on analyzing and prediction of walking data and walking speed collected with
accelerometer.

· Build up CNN models classifier to identify whether a participant is walking or not.

· Build up a CNN based prototypical neural network (few shot learning), to identify the participants
walking speed.

TECHNICAL STRENGTHS

Programming Languages C, C++, Python, Java
Software & Tools Matlab, Github, Docker

WORK AND CLASS PROJECTS

Athletics academic tutoring December 2019-Present
Syracuse athletics department

· I tutor D1 athletics student on mathematics(statistics, Calculus1,2,3), physics and chemistry.

AI Checkers game December 2019
Introduction to Artificial Intelligence Syracuse University

· A class project of Introduction to artificial intelligence, working on build a AI checker game with pytorch
using Monte Carlo tree search and CNN.

Obligatory Military Service,Taiwan May-August2018
Military Service

· Served four months obligated military service in army ROC.

	Enhancing Usability of Malware Analysis Pipelines With Reverse Engineering
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Motivation
	D3RE
	Assemblage
	Visualization for Program Analysis
	Overview
	Chapters Preview and Contributions

	Related work and Background
	Ergonomics of Decompilers and Reverse Engineering Tools
	Reverse Engineering for Software Understanding
	Open-Source data collection
	Visualization for program analysis
	Tools for reverse engineering and binary analysis
	Interactive Disassembler (IDA)
	Ghidra

	Binary Analysis Tools
	Binary Analysis Platform (BAP)
	GrammaTech Intermediate Representation for Binaries (GTIRB)
	CWE Checker
	OOAnalyzer

	D3RE
	Background: reverse engineering with Ghidra
	Loading Files and Starting Ghidra
	Writing Scripts and Extensions
	Scripts

	Eclipse
	Examples
	non-xor Ghidra
	Highlight and add Comments
	findcrypto
	OOanalyzer

	D3RE
	Introduction
	Overview of D3RE
	Experiments and Studies in D3RE
	Experiments and Results in D3RE

	Assemblage
	Methodologies and ideas
	Github API scraping
	Pipeline
	Methodology
	GH torrent
	Sqlite Schema
	Building Repositories

	Insights of Assemblage
	Combining D3RE and Assemblage

	Future and user studies
	Visualization vs Current
	Future Work and User Studies

	Conclusion
	Bibliography

