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Abstract 

We survey formulations of the conditional mode estimator for technical inefficiency in parametric 

stochastic frontier models with normal errors and introduce new formulations for models with Laplace 

errors. We prove the conditional mode estimator converges pointwise to the true inefficiency value as 

the noise variance goes to zero. We also prove that the conditional mode estimator in the normal-

exponential model achieves near-minimax optimality. Our minimax theorem implies that the worst-case 

risk occurs when many firms are nearly efficient, and the conditional mode estimator minimizes 

estimation risk in this case by estimating these small inefficiency firms as efficient. Unlike the conditional 

expectation estimator, the conditional mode estimator produces multiple firms with inefficiency 

estimates exactly equal to zero, suggesting a rule for selecting a subset of maximally efficient firms. Our 

simulation results show that this “zero-mode subset” has reasonably high probability of containing 

the most efficient firm, particularly when inefficiency is exponentially distributed. The rule is easy to 

apply and interpret for practitioners. We include an empirical example demonstrating the merits 

of the conditional mode estimator. 
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Abstract

We survey formulations of the conditional mode estimator for technical ineÿciency 

in parametric stochastic frontier models with normal errors and introduce new for-

mulations for models with Laplace errors. We prove the conditional mode estimator 

converges pointwise to the true ineÿciency value as the noise variance goes to zero. 

We also prove that the conditional mode estimator in the normal-exponential model 

achieves near-minimax optimality. Our minimax theorem implies that the worst-case 

risk occurs when many frms are nearly eÿcient, and the conditional mode estimator 

minimizes estimation risk in this case by estimating these small ineÿciency frms as 

eÿcient. Unlike the conditional expectation estimator, the conditional mode estimator 

produces multiple frms with ineÿciency estimates exactly equal to zero, suggesting a 

rule for selecting a subset of maximally eÿcient frms. Our simulation results show that 

this “zero-mode subset” has reasonably high probability of containing the most eÿcient 

frm, particularly when ineÿciency is exponentially distributed. The rule is easy to ap-

ply and interpret for practitioners. We include an empirical example demonstrating 

the merits of the conditional mode estimator. 
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�
0 

yi = Xi + " i, " i = vi − ui for i = 1, ..., n, (1) 

1 Introduction 

This paper studies estimation of technical ineÿciency in the canonical cross-sectional stochas-

tic frontier model (SFM) introduced by Aigner et al. (1977) and Meeusen and van den Broeck 

(1977): 

where yi is productive output and Xi is a vector of production inputs, with error components 

−1 < vi < 1 (statistical noise) and ui � 0. The nonnegative error ui represents technical

ineÿciency and captures the deviation of frm’s production from the eÿcient frontier.1 

An important feature of the parametric SFM is that it yields estimates of frm-level 

technical ineÿciency. Under the assumptions that ui and vi are i.i.d. over i, and ui, vi and 

Xi are mutually independent, consistent estimation of the vector � follows by maximum 

likelihood estimation (MLE) or corrected ordinary least squares estimation (COLS, Olson 

et al., 1980), producing a consistent estimate of the composed error, "̂i. Then, estimation of 

ineÿciency reduces to the problem of recovering it from 2"̂i.  

Jondrow et al. (1982) recommend the mean or mode of the conditional distribution 

f(ui|" i) as an estimator of ui. We denote them as the “conditional expectation” estima-

tor, û ei � E(ui|" i), and the “conditional mode” estimator, û mi � M(ui|" i). They derive 

closed-form formulae for the conditional expectation and mode under a normal-half normal 

assumption, i.e., vi ̆  i.i.d.N(0 2 , ˙ v ) and 2ui ̆  i.i.d.|N(0, ˙u )|, and a normal-exponential as-

sumption, i.e., (0 2) and Exp(1 ).3vi ̆  i.i.d.N , ˙v ui ̆  i.i.d. /˙  
u For notational simplicity, we 

will omit the subscript “i” unless necessary for exposition. 
1Here, we present the simplest model, but there are also panel data versions of the model and versions 

that include a third error component that captures frm heterogeneity (e.g., Greene, 2005). While we do not 
consider them directly, our results hold for these models provided that they rely on parametric assumptions 
for identifcation of model parameters. 

2To simplify discussion, we adopt the usual practice of ignoring estimation error in "̂i, treating it as " i, 
which is justifed for 

p
n-consistent estimators of �. 

3Exp(1/˙u) denotes the exponential density f(u) = exp(−u/˙u)/˙u. 
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In the SF literature, the conditional expectation estimator, û e, has become a common 

way to estimate frm-level ineÿciency, while the conditional mode estimator ûm has received 

less attention. In terms of its closed-form expression, û e has been derived under a wide 

range of distributional assumptions: the normal-truncated normal case by Kumbhakar and 

Lovell (2003); the normal-gamma case by Greene (1990); and the normal-uniform, Laplace-

exponential, Cauchy-half Cauchy, etc., cases by Nguyen (2010). Its statistical properties 

are also well known. Waldman (1984) compares û e with two other estimators (e.g., −") 

and shows that û e is superior to the others in terms of mean squared error when the model 

is correctly specifed. Wang and Schmidt (2009) derive the distribution of û e and show 

that û e convergences to the true ineÿciency value, u, as the variance of the statistical 

noise approaches zero. The conditional expectation estimator, û e, has been employed in a 

variety of empirical settings as well: school district ineÿciency (Chakraborty et al., 2001), 

banking eÿciency (Mokhtar et al., 2006) and fshing vessel eÿciency (Flores-Lagunes et al., 

2007), among others. By comparison, formulations of û m have only been extended to the 

normal-gamma and normal-truncated normal models (Kumbhakar and Lovell, 2003), and 

its application is relatively rare. 

This paper studies the statistical properties of the conditional mode estimator û m and 

advocates for its use for several reasons. First, building on the arguments of Wang and 

Schmidt (2009), we prove that û m converges pointwise to u as the variance of the statistical 

noise v approaches zero, while it converges to the mode of the distribution of u as the variance 

of v approaches infnity.4. 

Second, we prove that û m achieves near-minimax optimality in the commonly deployed 

normal-exponential model. That is, the normal-exponential specifcation of the conditional 

mode estimator minimizes the worst-case mean squared error. To show this, we reinterpret 

the conditional mode estimator as a LASSO-type estimator (i.e., an L1 shrinkage estima-
4This result is intuitive, but it is new to the literature to the best of our knowledge. 
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tor). Our minimax theorem implies that the worst-case risk occurs when many frms are 

nearly eÿcient, and the conditional mode estimator minimizes estimation risk in this case by 

estimating these small ineÿciency frms as eÿcient (as being “zero-mode” frms). Our simu-

lations suggest that this feature enables the mode estimator to be more robust to parametric 

misspecifcation than other ineÿciency estimators. Thus, the conditional mode estimator 

may be the preferred choice for estimating technical ineÿciency, particularly when misspec-

ifcation is a concern. 

Lastly, we consider a selection rule for an “eÿcient subset” of frms, and show that the 

subset has reasonably high probability of containing the most eÿcient frm in the sample. 

Our simulation results indicate that the cardinality of the subset increases as the uncertainty 

in the ranking of ineÿciencies across frms increases, allowing the probability of the subset 

containing the best frm to remain (by and large) constant as the sample size grows. This 

zero-mode selection rule may be useful for practitioners to identify a “credible” subset of 

eÿcient frms when multivariate selection rules (e.g., MCB, Horrace and Schmidt, 2000) are 

not available for practical reasons (e.g., computational burden). 

The rest of the article is organized as follows: Section 2 summarizes closed-form expres-

sions of û m under various distributional assumptions with some being new to the literature, 

and studies the distribution of ûm; Section 3 reinterprets ûm as a LASSO-type estimator and 

proves its minimax optimality; Section 4 considers the zero-mode selection rule to identify a 

subset of maximally eÿcient frms and examines its statistical properties; Section 5 analyzes 

the ineÿciency of U.S. electric utility frms; and Section 6 concludes. All proofs are included 

in an Appendix. 
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2 Formulations and the Distribution of û m

2.1 Closed-Form Expressions of û m

Most formulations of û m in the literature are derived under the assumption that the two-

sided error v is normally distributed (e.g., Jondrow et al., 1982; Kumbhakar and Lovell, 2003; 

Nguyen, 2010, among others). Under this assumption, the conditional distribution f(u|") 

often follows a normal distribution truncated below 0, and the conditional mode in this case 

is simply either the pre-truncated mean or zero, whichever is larger. We now summarize 

formulations of the conditional mode estimator for several parametric specifcations of the 

model, which may be a useful resource for practitioners. 

The upper panel of Table 1 summarizes closed-form expressions of ûm when v is normally 

distributed. First, we observe that û m is weakly monotonic in the composed error ", while 

the conditional expectation estimator ûe is strictly monotonic, which precludes ties. In other 

words, the eÿciency rankings based on û e do not change from the rankings of ", while those 

based on ûm can be weakly di˙erent from the rankings of " due to possible ties in ineÿciency 

estimates. Ondrich and Ruggiero (2001) show that the rank correlation between " and û e in 

SFMs is unity when the distribution of v is strictly log-concave. The normal distribution is 

strictly log-concave, so their result applies. 

We also observe that, as opposed to û e (which only generates positive estimates), û m

may produce zero-ineÿciency estimates, which may correspond to maximally eÿcient frms. 

This feature may be useful when analyzing highly eÿcient markets, and the percentage 

of the zero-mode frms may be a naive estimate of overall market eÿciency. Selection of 

eÿcient frms in this manner and near-minimax optimality related to zero-mode estimates 

are discussed in the next sections. 

[=== Table 1 here ===] 
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Some papers consider a Laplace distribution for v. Recently, Horrace and Parmeter 

(2018)5 analyze SFMs under Laplace-exponential and Laplace-truncated Laplace distribu-

tions, and their simulation results show that the Laplace-exponential model often outper-

forms the normal-exponential model when the distribution of v is misspecifed. The lower 

panel of Table 1 includes closed-form expressions of û m under Laplace-uniform, Laplace-half 

normal, Laplace-exponential and Laplace-truncated Laplace distributions, which are new 

to the literature. The formulas show that û m under a Laplace assumption is determined 

jointly by " and the scale parameters of the distribution. This complication comes from the 

absolute value sign in the Laplace distribution function. Another distinct feature is that in 

certain cases, û m is not a point estimate, but an interval. For instance, in case of Laplace-

truncated Laplace model, when ̇ u = ˙v, where ̇ u and ̇ v are the scale parameters of the 

Laplace distributions for v and u (respectively), û m can be any point between 0 and µ, if " 

is non-negative, where µ is the location parameter of the Laplace distribution for u. 

2.2 The Distribution of û m

In this section, we derive the distribution of û m under two most commonly employed speci-

fcations of the composed error: normal-half normal and normal-exponential. In particular, 

we investigate how the distribution changes as the variance of v, 2 ˙v , approaches zero or 

infnity. Wang and Schmidt (2009) show that û e converges to u when 2 ˙v approaches zero, 

while it converges to E(u) when 2 ˙v approaches infnity. This section examines the limiting 

behavior of û m under similar situations.6 

5Corrections to some typos in the math formulas of the paper are included in the Appendix. 
6As Wang and Schmidt (2009) mention, studying the distributions of û e or û m is not for inference about 

u. For such inference, the conditional distribution f(u|") is used as in Horrace and Schmidt (1996). The goal 
of the analysis here is to understand the distribution of û m that is expected in practice when û m is used. 
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= 1" h− (u ˆm) = g(u ˆm), (3) � ���@g(ûmm m ) �
fûm (u ˆ ) = )) �

f"(g(û � � . (4)� @ûm �

 ! � �
˙ mfNHN (û m) = F NHN (0)�(û m) + 2˙° ûm � ˙

ûm I{û > 0}, (5)ûm ûm ˙u 
2 ˙u 

2 ˙u˙v 

 ( ) ! 
m m1 û ˙2 û 

fNE(û m) = FNE (0) �(û m) + exp − − v � I{ûm > 0}, (6)um ûm ˙u ˙u 2˙u 2 ˙v 

>>
>>
8 � � > u<−" ˙

˙ 

2
2 , if " � 0 

m û = h(") = (2) >:0, otherwise 

As Jondrow et al. (1982) show, under normal-half normal assumption, û m is 

where 2 ˙ = 2 ˙ + 2˙ . When " is non-positive, û mu v decreases with ", which allows for a change 

of variable such that 

When v and u are distributed as normal and half normal (NHN), respectively, Aigner et al. � �
(1977) prove that 2 f ( ) = 2 

" ° " [1 − � ("�˙−1)], where � = ˙ /˙ . Since g(ûm) = −˙ um" u v 2˙ ˙ ˙
ˆ , 

u 

the probability density function of û m is given by 

where �(.) is a Dirac’s delta function and FNHN 
u − ˆ m (0) = 1 FNHN (0). um" We can see that ˆ 

is a mixed random variable whose distribution is truncated below 0 and continuous over 

the positive support. Similarly, the density function of û m of the normal-exponential (NE) 

model is 

where 1 − F NE(
2

FNE −˙v 
û m (0) = " ˙u 

). Then, the following theorem summarizes the limiting 

behaviors of ûm. 

Theorem 1 
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(1) As ̇ v − um ! u.! 0, ̂  −p 

1 −d! N(0, 1).(2) As ̇ v −! 0, ˙v (û
m − u) 

(3) As ̇ v 
2 m− u !p 0 = Mode(u).!1, ̂  − 

2 −!1, ˙v 
˙2 
u 
ûm !d z, f(z) =− 1

2(4) As ̇ v �(z) + ° (z) I{z > 0}, when the model is NHN. 

2 

2 

The proof is in the Appendix. Result (1) indicates that as 2 ˙v approaches 0, û m converges to 

the true ineÿciency value, which is intuitive from the fact that we can observe u directly from 

" when 2˙v ! 0. Note that this also implies that the (unconditional) distribution of ûm should

be identical to the true distribution of u in the limit. Result (2) implies that, for a given 

u, the distribution of û m, when appropriately normalized, is approximately normal when 2 ˙v 

is small. On the other hand, as 2 ˙v approaches infnity, statistical noise dominates ", so " is 

no longer informative about u. Then, û m simply uses the mode of its true distribution as 

an estimate, which is zero when the distribution of u is half-normal or exponential. Result 

(4) shows that, in the case of û m of the normal-half normal model, when 2 ˙v −! 1, its 

limiting distribution for û m > 0 is approximately a half-normal, and the rest of the density 

is concentrated at zero.7 

We plot the distributions of ûm in Figure (1) and (2) for signal-to-noise ratios (i.e., ̇ u/˙v) 

ranging from 0.1 to 100. The value of ̇ u is fxed at 1, so that the results are comparable 

in scale. The graphs essentially corroborate Theorem (1). One can see that the density 

function of û m is clearly di˙erent from the distribution of u when ̇ v = 10, but converges to 

the distribution of u as ̇ v decreases. This is true for both normal-half normal and normal-

exponential cases. 

[=== Figure (1) and (2) here ===] 

7In case of û m of the normal-exponential model, when 2˙  
v − ! 1, the limiting distribution for û m > 0 is

approximately a half-normal centered at 
2˙ − v

˙u 
and the rest of density is concentrated at zero, which implies 

the limiting distribution becomes degenerate quickly as 2˙  
v −!1. Thus, we omit the result here. 
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3 Minimax Optimality of the Mode Estimator 

This section proves that û m attains near-minimax optimality in the normal-exponential 

model. To show this, we frst discuss its connection to the Least Absolute Shrinkage and 

Selection Operator (LASSO; Tibshirani, 1996). It is well known that, in a Bayesian context, 

the LASSO can be viewed as the posterior mode estimator when independent Laplace priors 

are imposed on the coeÿcients in regression models (Tibshirani, 1996; Park and Casella, 

2008). Since exponential (half-Laplace) ineÿciency may be seen as a prior and the condi-

tional ineÿciency distribution may be seen as a posterior distribution, û m may be regarded 

as a posterior mode estimator under an exponential prior. Then, the Bayesian interpretation 

of the LASSO suggests û m may also be seen as a LASSO-type estimator.8 Its closed-form 

expression clearly shows the connection: 

m ûi (�) = [−" i − �]+, (7) 

where [z]+ returns z if z > 0 and 0 otherwise, and � = 
2 ˙ v � 
˙u 
. The parameter serves as a tuning 

parameter, which shrinks ineÿciency estimates toward zero as the noise ̇ v grows relative to 

the ineÿciency signal, 9˙u. . One notable di˙erence between (7) and the usual LASSO-type 

estimator (i.e., L1 shrinkage) is that the shrinkage e˙ect in the LASSO is symmetric around 

the zero, but it is asymmetric in (7) due to the non-negativity constraint on ineÿciency. 

Donoho and Johnstone (1994) show that L1 shrinkage achieves near-minimax risk when 

estimating nonparametric regression functions. In the following subsection, we show that 

the same optimality is attained by (7). 
8Similarly, the ridge estimator may be viewed as the posterior mode estimator when independent normal 

priors imposed on the coeÿcients, and then a similar connection can be established between the ridge and 
û m of normal-half normal model. 

9The conditional expectation estimator can also be viewed as a shrinkage estimator as it shrinks ineÿ-
ciency toward its mean (Wang and Schmidt, 2009). 
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R(�̂)inf sup P ) ˘ 2 log n (9)n 
�̂  �2Rn ̇ v 

2 + i=1 min(�i 2, ˙v 2 

 
Theorem 2 Let � = ˙v(2 log n)1/2 in (7). Then, 

� � n3 X 2 
! 

R(ûm(�)) � 2 log n + min(ui , ˙v 2) + �n(log n)−3/2 for all ui � 0, (8)2 i=1 

n 2where �n = 5ˇ−1/2(P i /n + ̇ 2).i=1 u v 

3.1 Near-Minimax Optimality 

To show near-minimax optimality in the normal-exponential model, we consider the mul-

tivariate normal estimation problem discussed in Donoho and Johnstone (1994) with some 

modifcations: we are given n independent observations " = (" i)ni=1 where " i = vi − ui 

with ui � 0 and vi ˘ i.i.d.N(0 2, ˙v),10 and the objective is to estimate u = (ui)n i=1 by 

some estimator, û = (ûi)ni=1. The quality of the estimator is measured by L2 risk, i.e., P 
R(û) = E[ n

i=1(ûi − ui)2]. We frst derive the following risk bound of the conditional mode 

estimator (7): 

The proof is in the Appendix. Theorem 2 indicates that the mean squared loss of the P conditional mode estimator (7) can be no worse than a factor of 2 log n of n 2 2
i=1 min(ui , ˙v ) 

as n !1 for “any” possible value/distribution of 11ui � 0.  

Donoho and Johnstone (1994) show that, as n !1, 

in the usual multivariate normal estimation problem such that " i = �i + vi with vi ˘ 
2i.i.d.N(0, ˙v ) and where the objective is to estimate � = (�i)ni=1 using some estimator, 

�̂ = (�̂  
i)ni=1. P The result (9) shows the asymptotic minimax risk expressed in terms of 2 ˙v + n

i=1 min( 2 2�i , ˙v ), 
10Note that no distributional assumption is imposed on ineÿciency in this problem. P 11More precisely, this statement requires n 2

i  u i /n < 1 as n !1 (so that �=1 n is fnite). This is satisfed 
if a fnite second moment is assumed for ui, which is standard in the literature. 
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which, combined with (8), implies the conditional mode estimator (7) achieves near-minimax 

risk. In other words, it is an estimator that minimizes the worst-case estimation error. The 

proof of (9) in Donoho and Johnstone (1994) implies that the worst-case risk occurs when 

most true parameter values (true ineÿciency values in our case) are near zero. The condi-

tional mode estimator in this case minimizes estimation risk by estimating small ineÿciencies 

as zero. Note that the risk bound is derived over all possible values/distributions of ui � 0, 

so minimax optimality can be seen as robustness of û m to misspecifcation of distribution of 

ineÿciency. Thus, the conditional mode estimator may be the preferred choice for estimating 

technical ineÿciency, particularly when misspecifcation is a concern. 

Minimax optimality requires � = ˙v(2 log n)1/2. Since 2 � in (7) is calculated based on ̇̂ v 

and ̇̂ u estimates in practice, this means that (7) achieves optimality when ˙ v (2 log )1/2 ˇ n
˙u

(i.e., signal-to-noise ratio goes to zero as n !1). This is a reasonable scenario since many 

frms will attain full eÿciency, and departures from eÿcient performance may become rare 

or negligible as markets get larger and more competitive. Nonetheless, the simulation results 

in the next section show that û m exhibits mean squared errors comparable to those of û e

even when the signal-to-noise ratio is high, while achieving notable risk savings when the 

signal-to-noise ratio is low. 

3.2 Simulation Results 

To demonstrate minimax optimality of the normal-exponential conditional mode estimator, 

we simulate a data generating process (DGP) that is misspecifed in the ineÿciency distribu-

tion. Let " i = vi −ui, i = 1, ..., n, with vi ̆  i.i.d.N(0, 1). We consider a mixture distribution 

for ineÿciency where ui ̆  p,k = p�0 + (1 2 i.i.d.F − p)˜k; �0 is a Dirac mass at 0; and p 2 [0, 1] 

regulates sparsity in the continuous portion of the distribution, given by 2 ˜k, a chi-square 

distribution with k degrees of freedom. For k we randomly select integers from 1 to 10. 

A larger value of p increases the number of eÿcient frms in the sample, creating greater 
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sparsity in the number of ineÿcient frms. Hence, p is a sparsity parameter. This DGP is 

taken from the fact that maximum risk occurs when most of ineÿciency values are at or 

near zero, as discussed in the previous section. Obviously, the sparsity parameter a˙ects the 

signal-to-noise ratio of the model as well. A large value of p decreases the signal variance. 

We set n = 1, 000. 

With all variables generated, we estimate 2˙u and 2˙v using the normal-half normal (NHN) 

and normal-exponential (NE) models of Aigner et al. (1977), from which conditional expec-

tation and conditional mode estimates are ultimately computed. Thus, the distribution of 

u is misspecifed in these simulations. Note that the conditional mode estimates from the 

NE model are (7) (hereafter the minimax estimator) and its performance is our primary

interest in this simulation experiment. We repeat this procedure 1, 000 times for each case

with p 2 {0.1, 0.5, 0.9}. 

We report two types of results in Table 2: average Root Mean Squared Error (RMSE) qP ( n 2 m e
i − =1(ûi ui) /n), and average rank correlation between û i (or û i ) and ui using Spear-

man’s rank correlation coeÿcient. 

[=== Table 2 here ===] 

When there is little ineÿciency sparsity, the RMSEs and rank correlations of the four 

di˙erent estimators are comparable. That is, when p = 0. 1, the performance of the minimax 

estimator (in columns 5 and 9) is worst, but performance gaps between the estimators are 

small. However, as p increases to 0.5 and 0.9, the performance of the minimax estimator 

signifcantly improves, while the performances of the other estimators deteriorate in terms of 

both RMSE and rank correlation, leading to a large disparity between the minimax estimator 

and the other estimators. As discussed above, the defning feature of the minimax estimator 

is that it estimates small ineÿciencies as exactly zero, allowing it to achieve a notable risk 

saving when most ineÿciencies are near zero. These simulation results clearly show that 
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the minimax estimator (7) minimizes the worst-case risk. This is a strong argument for the 

conditional mode estimator in the normal-exponential model, and also indicates that it may 

be preferred for analyzing eÿciency in highly competitive markets, where ineÿciency may 

be sparse. 

4 Ranking and Selection by the Condition Mode 

4.1 Selection of Eÿcient Firms based on Zero Conditional Mode 

Inference on ranked technical eÿciency estimates from SFMs has a recent but rich history. 

Using the conditional distribution of ineÿciency, Horrace and Schmidt (1996) and Wheat 

et al. (2014) develop univariate prediction intervals for inference on u. Simar and Wilson 

(2009) consider univariate bootstrap inference. Horrace and Schmidt (2000) propose multiple 

comparisons for the fxed-e˙ect version of the model, and Horrace (2005) and Flores-Lagunes 

et al. (2007) develop multivariate inference in the parametric SFM. 

In particular, Flores-Lagunes et al. (2007) detail selection procedures for identifying a 

minimal cardinality subset of frms which contains the maximally eÿcient frm at a pre-

specifed confdence level. Using the conditional ineÿciency density f(u|") and its cumulative 

distribution function, F (u|"), the method calculates the probability of each frm j being most 

eÿcient in the sample as 

Z 1 Y
P̂ 
j = Pr {uj � ui 8 i = j|"1, . . . , " n} = f(uj|" j) [1 − F (ui|" i)] du. (10)

0 i=j 
6

6

Note that the magnitude of this probability is independent of whether we chose to estimate 

ineÿciency using the conditional expectation estimator or the conditional mode estimator. 

It only uses the information in the conditional distribution of ineÿciency. In particular, the 

ranks of the P̂ m e
j may not correspond to the ranks of either ûj or ûj . 
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Then, the probability that any subset of frms contains the maximally eÿcient frm can be 

computed by summing the probabilities, P̂ 
j, for only those frms in the subset of interest.12 

Therefore, the technique can be used to calculate this probability sum for the zero-mode 

frms identifed by the conditional mode estimator. The goal of this section is to perform 

simulations on properly specifed normal-half normal and normal exponential models in (1) to 

examine the probabilities that the zero-mode subsets contain the maximally eÿcient (best) 

frm in the sample. 

The empirical relevance of the exercise is to understand when practitioners can simply use 

the zero-mode selection rule (without calculating the computationally intensive probabilities 

in (10)) and still feel confdent that this ad hoc selection criterion is credible (i.e., it has 

reasonably high probability of identifying a subset of frms that contains the “best” frm). 

We note that Horrace et al. (2022b) use this “zero-mode” selection rule for determining 

eÿcient schools in New York City, but their paper doesn’t explore the statistical properties 

of the zero-mode rule under various specifcations of the model.13 

4.2 Simulation Results 

We consider the following panel DGP with time invariant u: " it = vit − ui, i = 1, ..., n, 

t = 1 2, ..., T, where vit and ui are generated from either vit ˘ i.i.d.N(0, ˙v ), and ui ˘ 
2 2i.i.d.|N(0, ˙u)|, or vit ˘ i.i.d.N(0, ˙v ), and ui ˘ i.i.d.Exp(1/˙u). We always maintain 

2 2 ˙v + ˙u = 1, and � denotes signal-to-noise ratio (˙u/˙v). The total number of iterations 

for each case is M = 1, 000. Let N = {1, 2, ..., n} be the set of all frm indices in the sample, 
12Note that n ˆ

=1 Pj = 1. Flores-Lagunes et al. (2007) are actually concerned with pre-specifying the 
probability sum at 

j

a level like 0.95, and then populating the subset with frms with the largest values 
of P̂ 

j to achieve the pre-specifed probability, producing a minimal cardinality subset at the pre-specifed 
probability.

13For SFMs that explicitly allow for multiple eÿcient frms, see Kumbhakar et al. (2013) and Horrace 
et al. (2022a). 

P 
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X1 M

P̃e � 1k {[1] = (1)} ,
M k=1 

1 MX
P̃m � 1k {[1] 2 Nm} ,

M k=1 

and 

Nm m= {i : û = 0} � N (11)i 

be the subset of zero-mode frms. Let the ranked true ineÿciencies be u[1] � u[2] � ... � u[N ]. 

Then, the probability that the zero-mode subset contains the best frm is 

P̂
m 

= Pr{[1] 2 Nm|"1, . . . , " n} = 
X 

P̂ 
j . (12) 

j2Nm 

Then, the empirical question is, how large is P̂
m 

on average for our various simulation 

designs? Let the ranked ineÿciency estimates based on the conditional expectation be 

ûe � ûe � ... � ue(1) (2) ˆ(N). We also calculate the probability that the frm with the smallest 

conditional expectation estimate is the true best frm 

P̂e = Pr{[1] = (1)|"1, . . . , " n}. (13) 

Generally speaking, P̂e will be a decreasing function of the sample size, so we are also 

interested in understanding how P̂m responds to the sample size. 

We report the average P̂
e 
, the average P̂

m 
and the average cardinality of Nm, denoted 

|Nm|, over the M = 1, 000 iterations. To assess accuracy of average estimated probabilities 

P̂
e 
and P̂

m 
, we also calculate their empirical analogs, 

where 1k is an indicator function for the kth simulation sample. We expect average P̂
e 
and 

average P̂
m 

to be similar to P̃e and P̃m , respectively. 

The results are reported in Table 3. The frst panel reports the results when the number 
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� � � �ln Qi = 0 + 1 ln Li + 2 ln Ki + 3 ln Fi + vi − ui. (14) 

of frms n increases from 5 to 100, for fxed T = 1 and � = 1. We can see that, as n increases, 

average P̂
e 
signifcantly decreases, while average P̂

m 
remains relatively constant in the range 

of 0.4 ˘ 0.5 under the normal-half normal distribution and 0.80 ˘ 0.85 under the normal-

exponential distribution. That is, the zero-mode subset has reasonably high probability of 

containing the best frm (0.80 ˘ 0.85) when the normal-exponential model is the true model. 

Note also that average cardinality, |Nm|, increases proportionally to n. 

[=== Table 3 here ===] 

Second panel shows the results when 2 � changes from 0.1 to 10 while fxing n = 50 

and 
e m 

T = 1. As � increases, i.e., signal increases, average P̂ increases, but average P̂

remains largely constant under normal-half normal distribution and decreases under normal-

exponential distribution. Even with the decrease, we still observe a signifcant gap between 

average P̂
e 
and P̂

m 
. The results in the last panel, where the number of time periods T 

increases from 1 to 100 while fxing n = 50 and � = 1, are overall similar to those in the 

second panel. This is because, under the time-invariant ineÿciency setting, an increase in 

T leads to an increase in signal-to-noise ratio. In all cases, average P̂
e 
and average P̂

m 
are 

reasonably close to P̃e and P̃m . 

5 Empirical Example 

We analyze the technical eÿciency of 123 U.S. electric utility frms using û m and the zero-

mode selection rule considered in Section 4. The dataset used in this section was previously 

analyzed by Greene (1990) and Nguyen (2010). We consider the following production func-

tion specifcation: 
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where Q is output, L is labor, K is capital and F is fuel. We estimated the parameters using 

the normal-exponential model: ( �̂0, �̂1, �̂2, �̂3) = (8.497, −0.127, 0.089, 1.103), (˙̂v, ˙̂u) = 

(0.088, 0.129). Hence, the estimated signal-to-noise ratio ̇̂ u/˙̂v in this data is 1.4659. 

Tables 4, 5 and 6 include conditional expectation (column 3) and conditional mode 

(column 4) estimates, and the probability of each frm being the most eÿcient frm calculated 

by (10) (column 5), where the frms are ranked by the conditional expectation estimates. 

Column 6 contains the cumulative version of the probabilities in column 4, which represents 

the probability that the subset of a given frm and all the higher ranked frms contains the 

most eÿcient frm in the sample. For instance, the value in the row 3 and column 6 of table 

4 indicates the probability that the most eÿcient frm is among S’westernP.S, NortheastUtil, 

Orange&Rockln is 0.104. 

There are forty frms with a zero conditional mode estimate. This subset of frms has 

59.4% probability of containing the most eÿcient frm, implying that if we naively selected 

these frms as candidates for the most eÿcient frm simply by inspecting their conditional 

mode estimates, we still have a nearly 60% chance to have included the best frm in the 

subset without calculating the probabilities in column 5. This reassures us that selection 

based on the zero conditional mode estimate may be a convenient and reliable way to identify 

a subset with high probability of containing the most eÿcient frm. The distributions of the 

conditional expectation and conditional mode estimates are plotted in Figure 3, where we 

can see a mass of zero estimates in the graphs of the conditional mode estimates. 

6 Conclusions 

One of the main purposes of stochastic frontier model is to measure frm-specifc technical 

ineÿciency, for which Jondrow et al. (1982) propose two estimators - the conditional ex-

pectation and conditional mode estimators. While there are numerous papers studying and 
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applying the conditional expectation estimator, the conditional mode estimator has been 

largely overlooked in the literature. 

This paper attempts to fll the gap of research on the conditional mode. We theoretically 

and empirically demonstrated the merits of the conditional mode estimator, two of which 

may be particularly important in practice. First, zero conditional mode estimates can be 

used as a simple selection rule that chooses eÿcient frms with a reasonably high probability 

of containing the most eÿcient frm in the sample, particularly when the model is normal-

exponential. Second, it exhibits near-minimax optimality when normal-exponential model is 

applied. Our theoretical and empirical results indicate that the conditional mode estimator 

is particularly suited for analyzing competitive markets, where most frms may be near the 

frontier and identifcation of multiple eÿcient frms is desirable. 
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Table 1: Closed-Form Formulas for the Conditional Mode 

When v ̆  N(0, ̇ 2)v

mf(u) u

1Uniform on [0, A] with f(u) = 0 " � 0 
A 

−" −A � " < 0 
A " < −A 

2 2 
u −˙ v "+µ˙Doubly truncated normal on [0, A] 0 < 0
˙2 2
v +˙u 

− µ )°(u 2 2 2 2
˙ u −˙ u v "+µ˙ u "+µ˙0 � −˙ v with f(u) = 

˙u(�(A−µ )−�(−µ < A
˙  2+˙2 ˙ 2 2)) v u v +˙u ˙u ˙u 2 2−˙ u "+µ˙v A � A

˙2 2
v +˙u � � 

Exponential with f(u) = exp − u /˙u 0 " > −˙2/˙u˙u v

−" − ̇2/˙u " � −˙2/˙uv v

� � 
− |v|When v ̆  Laplace with f(v) = exp /2˙v˙v 

mf(u) u

1Uniform on [0, A] with f(u) = 0 " > 0 
A 

−" −A < " � 0 
A " � −A 

� � 
uHalf normal with f(u) = 2° /˙u 0 " � 0 
˙u 

−" −˙2/˙v � " < 0u

˙2/˙v " < −˙2/˙vu u� � 
Exponential with f(u) = exp − u /˙u 0 " � 0 

˙u 

0 " < 0 and ̇ u < ̇ v 

[0, −"] " < 0 and ̇ u = ˙v 
−" " < 0 and ̇ u > ̇ v 

Truncated Laplace 0 " � 0 and ̇ u > ̇ v 
exp(−|u−µ|/˙u)with f(u) = 2˙u [0, µ] " � 0 and ̇ u = ˙v (1−0.5 exp(−µ/˙u)) , µ > 0 

µ ˙u < ̇ v 

[µ, −"] or [−", µ] " < 0 and ̇ u = ˙v 
−" " < 0 and ̇ u > ̇ v 

Truncated Laplace refers to Laplace distribution truncated below at 0 with a positive pre-
truncated mean. Truncated Laplace with a non-positive pre-truncated mean is an exponential 
distribution. 
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Table 2: Minimax Optimality of the Mode Estimator 
RMSE Rank Correlation 

Sparsity [1] [2] [3] [4] [1] [2] [3] [4] 

p = 0.1 0.973 0.947 0.980 1.003 0.90 0.90 0.90 0.90 
p = 0.5 1.526 1.172 1.078 0.894 0.83 0.84 0.83 0.86 
p = 0.9 1.738 1.646 0.774 0.555 0.45 0.47 0.45 0.69 

[1] ûe of normal-half normal model (NHN); [2] ûm of NHN; [3] ûe of normal-
exponential model (NE); [4] û m of NE. 
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Table 3: Selection of Eÿcient Firms by the Conditional Mode Estimator 

Normal-Half Normal Normal-Exponential 
n 

5 10 20 50 100 5 10 20 50 100 

P
m ˆ

Pm ˜
|Nm| 

Pe ˆ
Pe ˜

0.405 
0.393 
1.221 

0.363 
0.362 

0.475 
0.488 
6.168 

0.107 
0.116 

0.488 
0.483 
12.378 

0.061 
0.061 

0.496 
0.462 
25.063 

0.033 
0.026 

0.497 
0.504 
50.018 

0.018 
0.020 

0.882 
0.819 
2.720 

0.520 
0.403 

0.955 
0.820 
13.350 

0.208 
0.106 

0.964 
0.845 
26.992 

0.127 
0.045 

0.966 
0.839 
53.715 

0.076 
0.039 

0.968 
0.845 
107.509 

0.043 
0.022 

�2 

0.1 0.5 1 5 10 0.1 0.5 1 5 10 

P
m ˆ

Pm ˜
|Nm| 

P
e ˆ

Pe ˜

0.493 
0.491 
19.955 

0.032 
0.032 

0.491 
0.485 
15.080 

0.048 
0.046 

0.488 
0.483 
12.378 

0.061 
0.061 

0.476 
0.472 
6.590 

0.109 
0.098 

0.471 
0.463 
4.844 

0.141 
0.128 

1.000 
1.000 
49.788 

0.232 
0.023 

0.996 
0.923 
37.019 

0.137 
0.034 

0.964 
0.845 
26.992 

0.127 
0.045 

0.769 
0.644 
11.122 

0.142 
0.082 

0.685 
0.591 
7.571 

0.161 
0.107 

T 

1 5 10 50 100 1 5 10 50 100 

P
m ˆ

Pm ˜
|Nm| 

P
e ˆ

Pe ˜

0.488 
0.483 
12.378 

0.061 
0.061 

0.476 
0.476 
6.625 

0.108 
0.101 

0.467 
0.496 
4.887 

0.136 
0.149 

0.436 
0.438 
2.287 

0.247 
0.246 

0.400 
0.411 
1.530 

0.317 
0.329 

0.964 
0.845 
26.992 

0.127 
0.045 

0.761 
0.664 
10.979 

0.142 
0.099 

0.678 
0.588 
7.406 

0.163 
0.147 

0.536 
0.492 
3.054 

0.249 
0.231 

0.476 
0.469 
2.096 

0.300 
0.284 

Unless otherwise specifed, we fx n = 50, T = 1 and 2 � = 1. P̂m and P̃m are the average calculated 
and empirical probabilities that the zero-mode subset contains the best frm. P̂ e and P̃e are the average 
calculated and empirical probabilities that the frm with the smallest conditional expectation estimate 
is the best frm. |Nm| is the average cardinality of the zero-mode subset. 
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Rank Name ˆeu ˆmu Probability Cumulative Probability 
1 S’westernP.S. 0.017 0.000 0.048 0.048 
2 NortheastUtil. 0.023 0.000 0.035 0.083 
3 Orange&Rockln. 0.036 0.000 0.021 0.104 
4 DaytonPwr.&Lt. 0.037 0.000 0.021 0.125 
5 BostonEdison 0.038 0.000 0.020 0.144 
6 NewMex.Elec.Ser. 0.041 0.000 0.018 0.162 
7 MontanaPower 0.042 0.000 0.018 0.180 
8 WestTunasUtil. 0.043 0.000 0.017 0.198 
9 SierraPac.Pwr. 0.043 0.000 0.017 0.215 
10 ToledoEdison 0.043 0.000 0.017 0.232 
11 Ctrl.HudsonG.&E. 0.044 0.000 0.017 0.249 
12 PacicP&L 0.045 0.000 0.017 0.266 
13 HawaiianElec. 0.045 0.000 0.017 0.282 
14 LouisvilleG.&E. 0.048 0.000 0.015 0.298 
15 Ctrl.III.Pub.Ser. 0.049 0.000 0.015 0.312 
16 BaiigorHydro. 0.050 0.000 0.014 0.327 
17 Wisc.Pub.Ser. 0.052 0.000 0.014 0.340 
18 Wisc.Pwr.&Light 0.056 0.000 0.013 0.353 
19 NevadaPower 0.057 0.000 0.012 0.366 
20 Indy.Power&L. 0.057 0.000 0.012 0.378 
21 NewEnglandEl. 0.058 0.000 0.012 0.390 
22 Ctrl.Tel.&Util. 0.058 0.000 0.012 0.402 
23 So.Car.EI.&Gas 0.059 0.000 0.012 0.414 
24 ElPasoElec. 0.060 0.000 0.012 0.426 
25 Atl.CityElec. 0.061 0.000 0.011 0.437 
26 KentuckyUtils. 0.061 0.000 0.011 0.448 
27 UtahPower&Lt. 0.061 0.000 0.011 0.460 
28 DelmarvaP.&L. 0.062 0.000 0.011 0.471 
29 MauiElectric 0.062 0.000 0.011 0.482 
30 P.S.Co.ofN.H. 0.063 0.000 0.011 0.493 
31 Ark.Mo.Power 0.063 0.000 0.011 0.504 
32 FloridaPower 0.065 0.000 0.010 0.514 
33 CommunityP.S. 0.066 0.000 0.010 0.525 
34 CentralLa.Pwr. 0.066 0.000 0.010 0.535 
35 ClevelandEl.I. 0.066 0.000 0.010 0.545 
36 CentralKansas 0.067 0.000 0.010 0.555 
37 TucsonGas&E. 0.069 0.000 0.010 0.565 
38 SavannahE.&P. 0.070 0.000 0.010 0.575 
39 NiagaraMohawk 0.071 0.000 0.009 0.584 
40 DukePowerCo. 0.071 0.000 0.009 0.594 
41 KansasGas&El. 0.072 0.003 0.009 0.603 
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Table 4: Ineÿciency of U.S. Electric Utility Firms 



Rank Name ˆeu ˆmu Probability Cumulative Probability 
42 IowaPub.Ser. 0.072 0.005 0.009 0.612 
43 SanDiegoG.&E. 0.073 0.005 0.009 0.621 
44 Balt.Gas&El. 0.073 0.006 0.009 0.630 
45 IowaSouthern 0.075 0.012 0.009 0.639 
46 CarolinaP.&L. 0.077 0.016 0.008 0.647 
47 BlackHillsP&L 0.077 0.016 0.008 0.656 
48 Cinci.Gas&El. 0.078 0.018 0.008 0.664 
49 LongIs.Light 0.078 0.019 0.008 0.673 
50 Ariz.Pub.Ser. 0.078 0.020 0.008 0.681 
51 EmpireDist.El. 0.078 0.020 0.008 0.689 
52 Cent.MainePwr. 0.079 0.020 0.008 0.697 
53 So.Ind.G.&E. 0.079 0.022 0.008 0.705 
54 Ark.Power&Lt. 0.080 0.025 0.008 0.713 
55 No.Ind.Pub.Ser. 0.081 0.026 0.008 0.721 
56 MinnesotaP.&L. 0.081 0.027 0.008 0.729 
57 InterstatePwr. 0.083 0.030 0.008 0.737 
58 Pub.Ser.Colo. 0.083 0.030 0.008 0.745 
59 NewOrleansP.S. 0.084 0.033 0.007 0.752 
60 OhioEdisonCo. 0.085 0.035 0.007 0.759 
61 Mo.PublicSer. 0.087 0.040 0.007 0.767 
62 MadisonGas&E. 0.088 0.041 0.007 0.774 
63 S’westernEl.Pr. 0.089 0.043 0.007 0.781 
64 CentralPwr.&L. 0.090 0.046 0.007 0.787 
65 LouisianaP.&L. 0.093 0.051 0.007 0.794 
66 TampaElectric 0.093 0.052 0.006 0.800 
67 IllinoisPower 0.094 0.054 0.006 0.807 
68 Pub.Scr.NewMex. 0.096 0.057 0.006 0.813 
69 Penn.Pwr.&Lt. 0.096 0.058 0.006 0.819 
70 NYStateEl.&Gas 0.099 0.064 0.006 0.825 
71 Vir.Elec&Pwr. 0.100 0.064 0.006 0.831 
72 Nrth.Sts.Pwr. 0.100 0.064 0.006 0.837 
73 TexasPower&L. 0.101 0.066 0.006 0.843 
74 East.Utl.Ass. 0.101 0.067 0.006 0.848 
75 KansasPwr.&L. 0.104 0.072 0.006 0.854 
76 Okla.Gas&Elec. 0.105 0.074 0.005 0.859 
77 Miss.Power&L. 0.107 0.077 0.005 0.865 
78 ConsumersPwr. 0.107 0.078 0.005 0.870 
79 IowaPwr.&Light 0.108 0.079 0.005 0.875 
80 GeneralPub.U. 0.110 0.082 0.005 0.880 
81 PotomacEl.Pr. 0.111 0.084 0.005 0.885 
82 SouthernCo. 0.112 0.086 0.005 0.890 
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83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

Table 6: Ineÿciency of U.S. Electric Utility Firms 

Rank Name eû mû Probability Cumulative Probability 
DuquesneLight 
Pub.Ser.El.&G. 

0.113 
0.113 

0.087 
0.087 

0.005 
0.005 

0.895 
0.900 

DallasPwr.&L. 0.115 0.090 0.005 0.904 
UnionElec.Co. 0.115 0.090 0.005 0.909 
Pac.Gas&Elec. 0.117 0.094 0.005 0.914 
HoustonLt.&Pr. 0.117 0.094 0.005 0.918 
MontDak.Utils. 0.118 0.094 0.005 0.923 
RochesterG.&E. 0.119 0.096 0.004 0.927 
Pub.Ser.Okla. 0.119 0.096 0.004 0.932 
Kan.CityP.&L. 
UpperPen.Pwr. 
OtterTailPwr. 

0.119 
0.121 
0.121 

0.097 
0.099 
0.100 

0.004 
0.004 
0.004 

0.936 
0.940 
0.945 

AlleghenyPr. 
Amer.Elec.Pr. 

0.122 
0.131 

0.101 
0.113 

0.004 
0.004 

0.949 
0.953 

Pub.Ser.OfInd. 0.131 0.114 0.004 0.957 
Phila.Elect. 0.132 0.115 0.004 0.960 

LakeSup.Dist.Pr. 
UnitedIII.Co. 

0.136 
0.139 

0.121 
0.124 

0.004 
0.003 

0.964 
0.967 

Colms&So.Ohio 0.140 0.127 0.003 0.971 
GulfStatesUtl. 0.141 0.128 0.003 0.974 

NewEng.G.&E.Ass. 
TexasElec.Ser. 

0.145 
0.148 

0.132 
0.137 

0.003 
0.003 

0.977 
0.980 

Common.Edison 0.152 0.141 0.003 0.983 
FloridaPwr.&L. 0.154 0.144 0.003 0.986 
Wisc.Elec.Pwr. 0.162 0.154 0.002 0.988 
St.JosephL&P 
So.Cal.Edison 

0.168 
0.168 

0.161 
0.161 

0.002 
0.002 

0.990 
0.993 

IowaElec.L.&Pwr. 0.170 0.163 0.002 0.995 
DetroitEdison 0.170 0.163 0.002 0.997 
HiloElec.Light 
Consol.Edison 

0.205 
0.234 

0.202 
0.233 

0.001 
0.001 

0.999 
0.999 

NewportElec. 
MainePub.Ser. 

0.330 
0.355 

0.330 
0.355 

0.000 
0.000 

1.000 
1.000 

CitizensUtils. 0.362 0.362 0.000 1.000 
FitchburgG.&E. 
UnitedGas.I. 

0.373 
0.414 

0.373 
0.414 

0.000 
0.000 

1.000 
1.000 

Mt.CarmelPub. 0.493 0.493 0.000 1.000 
IowaIII.G.&E. 0.519 0.519 0.000 1.000 
N’westernP.S. 0.702 0.702 0.000 1.000 
Cal.Pac.Util 0.806 0.806 0.000 1.000 

Ctrl.Ver.Pub.Ser. 1.294 1.294 
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(a) ̇ v = 10, ̇ u = 1. (b) ̇ v = 1, ̇ u = 1. 
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(c) ̇ v = 0.1, ̇ u = 1. (d) ̇ v = 0.01, ̇ u = 1. 

mFigure 1: Distributions of û under Normal-Half Normal Distribution 
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(a) ̇ v = 10, ̇ u = 1. (b) ̇ v = 1, ̇ u = 1. 
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(c) ̇ v = 0.1, ̇ u = 1. (d) ̇ v = 0.01, ̇ u = 1. 

mFigure 2: Distributions of û under Normal-Exponential Distribution 
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(a) Conditional Mode 

(b) Conditional Expectation 

Figure 3: Histograms of Technical Ineÿciency Estimates of Electric Utility Firms 
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Appendix 

Some Results on Conditional Mode under Laplace-Half Normal 

Distribution 

When v is distributed Laplace with a mean of zero, fv(v) = 1 exp(− |v| ), and u 2˙v ˙v 
is distributedq 

half normal, fu(u) = 2 1 exp( 2 1 + 2− u p2 u, u
ˇ ˙u 2 ̇  ), we have fv,u(" + ) = 2ˇ˙u˙v

exp(− |" u| − u 2˙ v 2˙ ).
u u 

Integrating out u gives 

Since fu(u|") / fu(u)fv(" + u), fnding the conditional mode is equivalent to fnding the 

mode of fu(u)fv(" + u) when " is given. 

When u + " > 0, we can write 
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Proof of Theorem 1 

Case I: 2 ˙v −! 0 under normal-half normal 

As 2 ˙v −! 0, the distribution of v collapses into a Dirac Delta function at 0, which leads 

to p . Then, since 
2 ˙u 1 as 2 2 2 2" � v − u !− −u 2 ! − ˙
˙ v ! − 0, where ̇ = ˙v + ˙u, it follows that 

û 
2 

m � −˙ p
u
2˙  " ! − u. Furthermore, due to the non-negativity constraint u � 0, this implies that 

the probability to observe negative û m becomes zero as 2 ˙v ! 0. 

Also, note that p 
û m −! u implies that the unconditional distribution of û m should be 

identical to the distribution of u in the limit. 

Also, when u is fxed, it can be shown that (ûm − u)/˙ ! − vv − ˘ N(0 2 , ˙
˙v 

1) as v −! 0, �
since 

2 � 
˙ p
u − 1 u

2˙
0 2 

2 = −˙v 
  u ! −˙v ˙

as ̇ v ! − 0.

Case II: 2 ˙v ! − 1 under normal-half normal: 

Since v2 ˘ N(0, 1 2 2 4/˙ u ˘ 
˙ v) and 2 N(0, ˙ /˙

˙  u v ), it can be shown that û = 
2 

− ˙ p m u v−u !−1+ 2˙  2/˙  2˙  
v v 

2 � � u v v

0 as 2 ˙v !− 1 for a fxed 2 . p
˙ ˙ m v u v u
u Also, from the fact that v 

2 u ˆ = ˙ 
2 + 2 − ̇

v 
, −

˙ ˙ ˙  ˙v 
where ! 

˙v 
0 

u u v 

and 
2 ˙v 2 d ! ˙ u m ! − v2 !− 1 ˙v − ˘ N , um > 

˙u + 2 1 as 2˙  v , it follows that  ˆ (0 1) for ˆ 0 and half of 
v ˙u ˙v 

the probability mass is concentrated at û m = 0. 

Case III: 2 ˙v !− 0 under normal-exponential: 

Similarly as in Case I, as 2 ˙ , p

v 0
 
v 2 p −! " −! u and 
2

− ˙ − ! 0. Therefore, u − 
u 

ˆ m
˙

= −"−˙v/˙u ! u.

Also, for a given , as 2 u ˙v − ! 0, (û m − u)/˙v !− − v ˘ N(0, 1) since ˙v !− 
˙v ˙u 

0.

Case IV: 2 ˙v −!1 under normal-exponential: � � 
Note that û p m = ˙ u − v − ˙v , where u − v 2 O ˙v 

v ! 0, p !1 ˙ ! − 1
˙v ˙v ˙u ˙v ˙v 

= (1) and 
˙u 

as v ,

from which it immediately follows that û p m ! 0 as 2 − ˙v −!1. 
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E[(û m(�) − u)2] = E[(û m(�) + ")2] + E[(−" − u)2] − 2E[û m(�)(u + ")] − 2E["(u + ")] 

= E[(û m(�) + ")2] + ̇ v 
2 − 2E[û m(�)(u + ")] − 2˙v 2 " 

@ûm(�)
# 

= E[(û m(�) + ")2] − 2˙v 2E − ̇v 2 
@" 

>>
>>
8 > @ûm(�)<(ûm(�) + ")2 = "2 and 

@" 
= 0, if " � −� 

> @û(�):(ûm(�) + ")2 = �2 and 
@" 

= −1, if " < −� 

E["2 · I(" � −�)] = E["2 · I(−� � " < �)] + E["2 · I(� � ")] 

� �2P (−� � " < �) + p u
2 

+ 12˙
2 ,v2n ˇ log n 

Proof of Theorem 2 

We follow the proof of Theorem 3 in Zou (2006), but account for the positivity constraint 

on ineÿciency parameters. We prove for the univariate case here and the multivariate case 

follows by summation. 
p

Let " ̆  N( 2−u, ̇v ) where u � 0, and ûm(�) = [−" − �]+ with � = ˙v 2 log n. We frst 

expand the mean squared error of ûm(�) such that 

where we have used the Stein’s lemma (Stein, 1981) in the last equality, i.e., E[ûm(�)(u+")] = h i 
2 @ûm(�)˙v E @" 

. Note that 

Thus, we have 

E[(û m(�) − u)2] = E["2 · I(" � −�)] + E[(�2 + 2˙v 2) · I(" < −�)] − ̇v 2 . (15) 

Note that 
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E[(û m(�) − u)2] � �2P (−� � " � �) + (�2 + 2˙2)P (" < −�) + p u
2 

− 2
1 ̇ 2 

v v2n ˇ log n 

= �2P (" � �) + 2˙v 2P (" < −�) + p u
2 

− 2
1 ̇

v 
2 

2n ˇ log n 
u2 3 � �2 + p + 2˙v 

2 
2n !ˇ log n !

3 u = �2 
+ ˙2 + p 

2 
. (16)v˙v 

2 2 2n ˇ log n(�2/˙v 
2 + 3/2) 

E["2 · I(� � ")] = u 2P (v � u + �) − 2uE[v · I(v � u + �)] + E[v 2 · I(v � u + �)] 

� p u
2 

+ 2
1 ̇

v 
2 ,

2n ˇ log n 

since 

� p � R 
where we used the fact that 

p
− 2 log P (v � u + �) � � − 2 log n � n xp −1 − °(x)dx 2 log n = R p p1 − 2 log n 0 p 1 1

−1 ° (x)dx = p °(− n p E v · I v � u � > , 2 log n 2 log n 2 log ) = 2n ˇ log n , [ ( + )] 0 and

E[ 2 v · I( u + 1 2v � �)] � ̇2 v .

Then, it follows that 

From (15), we also have 

E[(û m(�) − u)2] = E["2] + E[(�2 + 2˙v 2 − "2) · I(" < −�)] − ̇v 2 

� u 2 + 2˙v 2P (" < −�), 

where the inequality is due to E[( 2 2� − " ) · I(" < −�)] < 0. Then, it can be verifed that 
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� �p 
+ °(0)P (" < −�) � 5� − 2 log n 2�˙v u

2 for any u � 0 and n � 2,14 from which it follows that 

!� q � 
°(0)

E[(û m(�) − u)2] � u 2 + 2˙v 2 5� − 2 log n + u 2 
2�˙v! ! (17)

�2 5˙2 
v� + 1 u 2 + p ,

˙v 
2 n ˇ log n(�2/˙v 

2 + 1) 

  
�2 3

! 
5(u2 + ̇ v 

2) 
! 

E[(û m(�) − u)2] � + min(u 2, ˙2) + p .v˙v 
2 2 n ˇ(log n)3/2 

where we used the fact 2°(0) � �4 for any n � 
�˙v ˙  2.

v 

Then, equations (16) and (17) imply 

Math Correction in Horrace and Parmeter (2018) 

• In equation(5), under , "(", µ � 0) = 1 " < 0 � = 
, f [(�+ − �−)e "/� + �−e"/
 2 
� ]. Under 

0 and 1 " < � = 
, f



)e "/�"(", µ � 0) = "2 (�+ − � 
. 

• In the equation below equation (8), 
|u−µ�|

f c(µ�) − − u 
� 


u(u|") = e 4 
�f"(0) . 

P • The log-likelihood function under section 3.3 is lnL(" i| �, 
, �) = const.− i:" i�0[ln( 
+ P 1 �) + " i
i/
 ] + " i/
 " /� 1 " i/�

i:" <0 ln[ e − 
i

e ) + e 

−� ( 
+� ].

6

� �� � 
14Let g(u) = � u−� = P (" < −�˙v 

) . Note that g(u) is monotonically increasing with u such that 
0 

� � 
g (u) = 1 ° u−� . Then, we consider a quadratic function z(u) = a + 1 2bu  

 that z u ˙ (u u˙v v 2 ) � g( ) for any � 0
and n � 2. Since the derivative of g(u) increases until u = � and then decreases whereas the derivative of 
z(u) is monotonically increasing, one suÿcient condition for such z(u) is that z(0) � g(0), z( and� � �) � g(�) 

0 p 1 z (�) � °˙v 
(0). It can be verifed that the condition is satisfed when a = 5� − 2 log n and b = °(0)

�˙v 
.
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