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Abstract 
This paper considers the design of interpolative sigma delta 
modulators (SDMs). The design problem is formulated as two 
different optimization problems. The first optimization 
problem is to determine the denominator coefficients. The 
objective of the optimization problem is to minimize the 
energy of the error function in the passband of the loop filter 
in which the error function reflects the noise output transfer 
function and the ripple of the input output transfer function. 
The constraint of the optimization problem refers to the 
specification of the error function defined in the frequency 
domain. The second optimization problem is to determine the 
numerator coefficients in which the cost function is to 
minimize the stopband ripple energy of the loop filter subject 
to the stability condition of the noise output and input output 
transfer functions. These two optimization problems are 
actually quadratic semi-infinite programming (SIP) problems. 
By employing our recently proposed dual parameterization 
method for solving the problems, global optimal solutions 
that satisfy the corresponding continuous constraint are 
guaranteed if the solutions exist. The advantages of this 
formulation are the guarantee of the stability of the noise 
output and input output transfer functions, applicability to 
design rational IIR filters without imposing specific filter 
structures such as Laguerre filter and Butterworth filter 
structures, and the avoidance of the iterative design of 
numerator and the denominator coefficients because the 
convergence of the iterative design is not guaranteed. Our 
simulation results show that this proposed design yields a 
significant improvement in the signal-to-noise ratio (SNR) 
compared to the existing designs. 

1 Introduction 

The basic operation of SDMs is to sample the input signal at 
much higher rate than the Nyquist frequency and then 
quantize via a quantizer, typically with one bit quantization 
[1]. Sigma delta modulation is an increasingly popular form 
of analog-to-digital (A/D) conversion, and found in many real 
engineering systems, such as in amplitude modulation 
communication systems [2] and cardiac acquisition systems 
[3]. The popularity of SDMs is mainly due to their simple, 
inexpensive and robust circuit implementations, as well as 
achieving very high SNR because of their ability to perform 
noise shaping [4]. 
SDMs are typically designed using Butterworth filter design 
rules [5], and optimal designs have been performed via 
HSpice [6], Matlab [7] and Fortran [8]. Although these 
designs have considered many practical issues, the solutions 
obtained are not the global optimal one. This is because the 
optimization problems involved are not convex. Genetic 
algorithms have also been applied to perform the optimization 
[9]. However, the convergence of the genetic algorithms is 
not guaranteed and the computational complexity of this 
method is very high. 
Recently, optimal SDM designs based on comb filter [10] and 
Laguerre filter [11] structures were proposed. However, the 
solutions obtained are still sub-optimal one because structural 
constraints (such as all the poles of the Laguerre filters are 
constrained to be the same) are imposed on the design. 
Besides, the design based on the finite horizon method [12] 
was proposed. However, this method is only an 
approximation of an infinite horizon method. Although the 
approximation is improved as the length of window increases, 
the computation complexity increases. Other existing optimal 
designs, such as reported in [13]-[15], are obtained mainly 
based on the simulation framework and lack of the theoretical 
support. 
The objective of this paper is to formulate an SDM design 
problem as optimization problems based on the noise shaping 
characteristics of SDMs, the stopband characteristics of loop 
filters and the stability conditions of the noise output and 
input output transfer functions. The optimization problems are 
actually quadratic SIP problems. By applying our recently 
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proposed dual parameterization method for solving the 
problems [16], global optimal solutions that satisfy the 
corresponding continuous constraint are guaranteed. 
According to the simulations, the SDM produces a higher 
SNR compared to the existing designs. 
The outline of this paper is as follows. The problem 
formulation is presented in Section II. The simulation results 
are shown in Section III. Finally, a conclusion is summarized 
in Section IV. 

2 Problem formulation 
Since the phase information of the loop filters is usually not 
important for some applications, such as audio applications 
[17], an IIR loop filter is preferred compared to the FIR one. 
For practical reasons, it is easier to realize the SDMs if all the 
filter coefficients are real and the transfer function of loop 
filters is rational, causal, and with a unit sample delay in the 
numerator [17], so only real, rational and causal IIR loop 
filters with unit sample delay are considered in this paper. 
Moreover, since SDMs are usually implemented via 
integrators [17], there are at least one DC poles in the transfer 
function of the loop filters. Hence, the frequency response of 
the loop filters is assumed to be as follows: 
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where 1j , M  and N  are the numbers of roots of the 
polynomial of je  in the numerator and denominator of the 
transfer function of the loop filter excluding the DC poles and 
pure delay elements, respectively, r  is the number of DC 
poles, mn ba ,  for Nn ,,2,1   and Mm ,,1,0   are the filter 
coefficients. In our consideration, mn ba ,  for Nn ,,2,1   
and Mm ,,1,0   where   denotes the set of all real 
numbers and 1 MrN . The design problem is equivalent 
to find an appropriate set of filter coefficients na  and mb . 
By grouping the filter coefficients in the numerator and 
denominator as 

 TMb bb ,,0 x  and  TNa aa ,,1 x , (2) 
respectively, where the superscript T  denotes the transpose, 
and defining 
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The input output and noise output transfer functions of the 
SDM can be expressed as 
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respectively. Denote the passband of the loop filter as PB . For 
SDMs having a good SNR, the magnitude of the input output 

transfer function should be approximately equal to 1 and that 
of the noise output transfer function should be approximately 
equal to 0 for all frequencies in the passband of the loop filter, 
that is, 1)( GT  and 0)( NT  PB . It is worth noting 

that if   0)(1  a
T

D xη   PB , then 1)( GT  and 

0)( NT  PB . Hence, we can define the cost function 
as follows: 
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Denote  Re  and  Im  as the real and the imaginary part of 
the vector inside the bracket, respectively, and define the 
superscript   as the conjugate operator. Although 
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Hence, it can be shown that 
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where 
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and aQ  is a positive definite matrix. 
Although the cost function minimizes the energy of the 
function   a

T
D xη )(1   over the frequencies in the passband 

of the loop filter, which reflects the error energy of the noise 
output transfer function and the ripple energy of the input 
output transfer function over the corresponding frequency 
band, there may be a serious overshoot. If this is the case, 
then the SNR of the SDM will be poor and the SDM may 
suffer from limit cycle behavior. In order to avoid the 
occurrence of these drawbacks, the constraint based on the 

H  norm should be imposed in the design. Let 2
D  be the 

bound on   2
)(1 a

T
D xη   PB . Then the constraint can 

be represented as follows: 
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which can further be represented as 
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and 
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Clearly, the constraint function is convex in ax  and 
continuously differentiable with respect to both ax  and   
because )(aA  is a positive definite matrix PB . As a 



result, the design of the denominator filter coefficients can be 
formulated as the following SIP problem: 
Problem (P1) 
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Although problem P1 only consists of a quadratic constraint, 
the constraint is a continuous function and the solution is 
required to satisfy the constraint for all frequencies in the 
passband of the loop filter. This kind of optimization problem 
is actually a SIP problem. To tackle a SIP problem, one way 
is to approximate it as a finite dimensional problem through a 
discretization on the index set of the continuous constraint 
and converts the problem to a standard quadratic 
programming problem [18]. However, it is not guarantee that 
the continuous constraint is satisfied among the discretized 
points. Although the difference between the exact upper 
bound of a discretized constraint and that of the 
corresponding continuous constraint vanishes as the number 
of grid points increases, the computational complexity 
increases. To solve the problem, our recently developed dual 
parameterization method [16] is applied and this method 
guarantees to obtain a global optimal solution that satisfies 
the continuous constraint if the solution exists. 
Besides the characteristics of the noise output and input 
output transfer functions are captured in the design, the 
stability of these two transfer functions and the frequency 
characteristics of the loop filter should also be considered. 
Our objective is to minimize the ripple energy of the loop 
filter in the stopband subject to the stability condition of these 
two transfer functions. Let the desired magnitude response of 
the loop filter be  H~ . In order to have good frequency 
characteristics of the loop filter, we want to achieve 
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Since ax  is obtained from solving the problem P1, r  is known 
from the design specifications,  H~  is usually zero for 
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The stability condition of the noise output and input output 
transfer functions is [18] 
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Hence, the optimization problem can be represented as the 
following SIP problem: 
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It is worth noting that problem P1 does not depend on the 
numerator coefficients, so the global optimal solution of 
problem P1 can be obtained via our recently proposed dual 
parameterization method [16]. To solve problem P2, since the 
denominator coefficients are obtained from solving problem 
P1, the global optimal solution of problem P2 can then be 
obtained similarly. One of the advantages of this formulation 
is that the iterative design of the numerator and denominator 
coefficients is avoided because the convergence of the 
iterative design is not guaranteed [18]. 

3 Simulation results 
To compare our design with the most common one via the 
Matlab sigma-delta toolbox [19], a fifth order SDM with a 
DC pole, a pure delay in the numerator of the transfer 
function and an oversampling ratio of 64  is considered, that 
is, 5M  4N , 1r , 
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configuration of fifth order SDM is enough for most 
applications, such as audio applications [17]. By selecting 

7108315.9 D , the optimal SDM design problem can be 
formulated as SIP problems as discussed in Section II and 
these problems can be solved via our recently proposed dual 
parameterization method [16]. The magnitude responses of 

  2
)(1 a

T
D xη   of both our design and the one designed via 

Matlab sigma-delta toolbox [19] are plotted in Figure 1. For 
the design using Matlab sigma-delta toolbox [19], it can be 
seen from Figure 1 that the magnitude response does not 
satisfy the constraint, while our design satisfies the required 
specification. 
Figure 2 shows that the SNRs (calculated using the Matlab 
sigma-delta toolbox [19]) of both our design and that 
designed via the Matlab sigma-delta toolbox [19]. It can be 
seen from Figure 2 that our design achieves an average 

dB105  improvement compared to that of [19]. 
It can be verified that the magnitude of the poles of input 
output and noise output transfer functions of our design are 

9928.0 , 9928.0 , 8556.0 , 8556.0  and 6143.0 , respectively, 
which all are strictly inside the unit circle. Hence, the input 
output and noise output transfer functions are strictly stable. 
Figure 3 plots the response of the output of the loop filter via 
our proposed design, which shows that the SDM we designed 
is stable. 

4 Conclusion 



In this paper, we have formulated SDM design problems as 
SIP problems and solve the problems via our recently 
proposed dual parameterization approach. The advantages of 
this formulation are the guarantee of the stability of the noise 
output and input output transfer functions if the solutions 
exist, applicability to design rational IIR filters without 
imposing specific filter structures such as Laguerre filter and 
Butterworth filter structures, and the avoidance of the 
iterative design of numerator and the denominator 
coefficients because the convergence of the iterative design is 
not guaranteed. Our simulation results show that the proposed 
design yields a significant improvement in the SNR compared 
to the existing designs. 
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Figure 1. Magnitude responses of   2

)(1 a
T

D xη   of both our design and the one designed via the Matlab sigma-delta toolbox 

[19]. 



 
Figure 2. SNRs of both our design and the one designed via the Matlab sigma-delta toolbox [19]. 

 
Figure 3. Output response of loop filter designed via our proposed approach. 

 


