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MEMORANDUM

To: Prof. Mehran Aminian, Project Sponsor/Team Advisor

From: Remote Heart Diagnosis Team: Emma Miller, Edward Armitage, Gerald Daniels,
Michael Marquez

Subject: Final Project Report

Date: May 6, 2022

CC: Dr. Keith Bartels, Technical Advisor
Dr. Darin George, Senior Design Administrator

For those in impoverished communities or remote regions, obtaining adequate healthcare can be a burden.
Furthermore, limited access to specialists like cardiologists can make curable conditions a death sentence by leading
them to be identified too late. An essential factor in the identification of heart conditions is the use of an
electrocardiograph to measure the signal of the heart. In this project, the Remote Heart Diagnosis Team endeavored
to design and build a prototype capable of remotely collecting and analyzing an electrocardiogram and displaying
the results to a cardiologist in any location for review.

The prototype is composed of five main components. The first component is a printed circuit board
designed to record the electrocardiogram. The second is a Raspberry Pi and touchscreen programmed to guide the
user through the collection process, compile patient data and read the output of the circuit, run an artificial
intelligence algorithm, and store all the information in the third component, a remotely deployed database, using a
wireless connection. The fourth component is a website that accesses the database and allows doctors to view and
interact with the device data. The final component is a three dimensional printed casing that houses the circuit,
microcomputer, and touchscreen.

In early stages of testing, the team identified the need to transfer the circuit from a breadboard to a printed
circuit board as the circuit often failed after being moved due to loosened wires. The team also discovered that the
noise in the circuit was dependent on the wall outlet being used, leading to the addition of a filter in the circuit. As
shown in the success of all but one final test, the prototype meets all expected qualifications, allowing for the
changes in the potential diagnoses with the approval of the project sponsor. The only design requirement not
achieved was in regards to the ability of the website to replicate a commercial electrocardiogram in form with 90%
accuracy; however, as there were limitations with the commercial electrocardiogram used in terms of details in the
data, measurement methods, and accuracy, the visuals were deemed reasonable due to their similarity to a traditional
electrocardiogram.

Overall, the prototype is a fully functional proof of concept, as it is able to measure a clean
electrocardiogram signal from a patient and collect their biographical data, analyze the electrocardiogram using a
deployed artificial intelligence network, and store the results in a manner that can be remotely accessed on a website.
This prototype is only a proof of concept, however, as, while the developed artificial intelligence network proved
that the deployment and use of this type of network is possible, the network is unable to achieve functional accuracy
due to a limited dataset. Before commercialization of the prototype, the neural network would need to be retrained
using a large dataset of electrocardiograms collected using the device and labeled by a trained cardiologist.
Furthermore, the neural network architecture and its ramifications in terms of classification should be reviewed with
a professional cardiologist to ensure that image classification has the potential for functional accuracy. In addition,
while outside the scope of this project, security code would need to be added to protect the website and
transmissions before the prototype could be commercialized to comply with patient privacy laws and medical
information regulations. Therefore, while the prototype was successful in achieving the desired functionality and in
meeting the requirements, additional improvements will need to be made prior to the expansion of use.



I. Introduction
Despite extensive modern advancements in healthcare, heart conditions continue to

plague our world, with heart disease being the primary cause of death in the United States for
most demographic groups [1]. Furthermore, it is estimated by the Centers for Disease Control
and Prevention that 12.1 million people will have atrial fibrillation in the United States by 2030
[2]. Many heart conditions or risk factors can be alleviated if identified in the early stages,
preventing life-threatening consequences. However, due to cost, availability, and distance
constraints on healthcare access for many individuals, these conditions go unnoticed until they
become fatal. For example, between 2016 and 2017, the United States lost approximately $363
billion dollars per year towards heart disease in the form of medical services, medication, and
lost labor hours [1]. While a significant strain on the US, impoverished nations and people
without healthcare or stable employment cannot afford these costs, leading to a lack of proper
medical care for these life-threatening conditions. By reducing the travel and time expenses for
cardiologists and patients through semi-automated remote care, this device seeks to increase the
accessibility of specialized cardiac healthcare for hard to access and impoverished populations.

The objective of this project was to develop a proof of concept prototype to demonstrate
that this problem could be mitigated through the use of artificial intelligence and networking
technology. The prototype was expected to remotely collect and analyze an electrocardiogram
(ECG) and then transfer the collected data to a cardiologist in a different location for final
confirmation of diagnosis. To demonstrate that the prototype’s artificial intelligence could
reliably inform a cardiologist’s diagnosis, the algorithm was required to be able to diagnose the
patient for normal sinus rhythm, atrial flutter, atrial fibrillation, myocardial infarction, and
congestive heart failure with at least a 90% accuracy rate in validation testing. As a part of this
requirement, the device must also record an ECG signal with minimal noise and at least 5 full
cardiac propagations to avoid undermining the accuracy of the artificial intelligence algorithms.
Furthermore, the networking for the device was required to operate between the device, database,
and website with loading times under 5 minutes, a 90% accuracy rate in connection, and no loss
of data. To allow cardiologists to confirm the diagnoses made by the prototype, the website was
also expected to replicate signals of commercial ECGs in form with a 90% accuracy rate. Finally,
to allow the device to function in remote regions, the device must be both portable and durable
for transport, fitting within a carry-on suitcase matching Transportation Security Administration
dimensions and surviving a drop test of 4 feet.

The primary constraints on the prototype were that it must follow Institutional Review
Board policies to allow for human testing, and that the project must adhere to the two-semester
timeframe and remain within the $1200 budget. Since the intended use of the prototype is
medical, a variety of relevant codes and standards apply, including Food and Drug
Administration regulation 21 CFR 820. Another key standard of note was that airlines provide
limitations with regards to the maximum size of a carry-on, which is on average 22 inches by 14
inches by 9 inches. This standard is relevant because the device must remain in a carry-on to
follow US Transportation and Security Administration requirements relating to the transport of



batteries and electronic devices. In addition, codes including IEC 60601-2-25:2011, ISO
13485:2016, and IEEE 11073-10102-2012, provided guidance on key standardization and safety
requirements for electrocardiograph devices.

To achieve the project objectives and requirements, the prototype was developed with
five main subsystems, namely data collection, signal analysis, information transfer, display, and
casing. The use of a convolutional neural network for electrocardiogram image classification,
described in Section II.B., was chosen to achieve the requirements for results and accuracy of the
analytic algorithm. To record the ECG signal and reduce noise, a circuit consisting of a signal
monitor and power filter, along with an analog to digital converter to read the signal was
employed. A relational cloud database accessed over Wi-Fi was selected to ensure short loading
times, data preservation, and constantly accessible connections. Finally, the dimensions of the
casing and the use of 3D materials were determined to ensure the portability and durability of the
device. The full design will be described in the next section.

II. Overview of the Final Design
The final prototype is composed of five subsystems, namely data collection, signal

analysis, information transfer, display, and casing. By combining these subsystems, the prototype
directs the nurse to enter the patient’s information such as birth date and phone number, attach
the three leads to the patient, and then trigger an electrocardiogram reading. The
electrocardiogram reading is then displayed on the device to allow the nurse to either save the
reading or retake it if an error occurred. If saved, the electrocardiogram is analyzed using a deep
learning algorithm to predict possible heart conditions, and then the signal and predictions are
stored in a remote database using Wi-Fi. A doctor, once registered by the website administrator,
can then search for patients by name and view their electrocardiogram signal and either confirm
or dispute the diagnosis.

Figure 1. Photograph of electrocardiogram reading taken and displayed on prototype



II.A. Data Collection
To achieve its intended purpose, the prototype must collect two types of data, namely the

patient’s electrocardiogram signal and their biographical data to relate the signal back to them
once it has been diagnosed. To facilitate this process, a touchscreen interface was designed to
step the user through each aspect of the data collection procedure. The user interface was written
in Python using the Tkinter graphical user interface library on a Raspberry Pi with a Raspberry
Pi 7 inch touchscreen attached. A Raspberry Pi was selected as the device microcomputer due to
its large quantities of open-source code and its versatility, and it serves as the brain of the device,
reading in the electrocardiogram, analyzing it, and storing it in the database. A simplified flow
representing this process is shown in Fig. 2, with a detailed software flow including data
acquisition and analysis and database interactions included in Appendix Section V.B.

Figure 2. User Interface Software and Process Flow Diagram
The graphical user interface collects the clinic’s assigned identification number, and then

allows them to either look up an existing patient using name, date of birth, and phone number, or
record a new patient with name, gender, date of birth, phone number, and address. This data
allows the doctors to reach out to the patients with any diagnosis after the analysis and maintains
a record of previous electrocardiogram results for comparison. A key change from the
Preliminary Design Report is the inclusion of an existing patient look-up feature, to allow for
multiple electrocardiograms to be stored and compared for each patient, and to simplify the
collection procedure. The interface then triggers the collection of an electrocardiogram, and plots
the electrocardiogram for the nurse’s approval. The software then cycles to prepare for another
patient.

The electrocardiogram is collected via three leads connected to the patient in a standard
triangular configuration, specifically right chest, left chest, and right abdomen. The signal is
measured by attaching the three leads to a heart rate monitor integrated circuit (AD8232) and is
then converted into a digital signal using an analog to digital converter (MCP3008), which is
then passed into the Raspberry Pi, as the Raspberry Pi cannot accept analog inputs. The
schematic for this circuit is included as Fig. 3.



Figure 3. Schematic of the electrocardiogram circuit, simplified to display only used pins
A new change to this circuit is the inclusion of a filter in the form of two grounded

capacitors between the 3.3 V output of the Raspberry Pi and the power inputs for the rest of the
circuit, as it was discovered in testing that noise in the wall outlet used as a power source could
transfer through the circuit and lead to significant noise in the recorded electrocardiogram signal.
The capacitors were selected using the equation for the impedance of the capacitor, shown as Eq.
1, along with testing.

(1)𝑋
𝑐

= 1
𝑗ω𝐶

Another key change is the use of the Raspberry Pi 3.3 V output to power the other two
components, as it was identified to be a poor user experience to have to plug the device into the
wall and change a battery. Furthermore, the circuit was transitioned from a portable breadboard
into a printed circuit board (PCB), as testing indicated that the readings produced by the
prototype became highly irregular after being moved due to wires becoming loose.

A key requirement governing this subsystem is that the electrocardiogram circuit must
record a signal with at least 5 full cardiac propagations and enough detail to be analyzed by
artificial intelligence algorithms, which led the software to collect a full three minute signal and
encouraged the addition of a filter to ensure that excessive noise would not prevent an accurate
diagnosis. The circuit design was also restricted by the constraints on size in terms of the
components that could be used, as well as the safety requirements imposed by International
Electrotechnical Commission (IEC) 60601-2-25:2011 and by the Trinity University Institutional
Review Board for testing on human subjects. Due to the need for the device to be transportable,
Transportation Security Administration requirements for carry-on dimensions and battery types
were also relevant to the design.



Initially, the circuit was designed on a portable breadboard, and the signals were
frequently assessed using an oscilloscope. The PCB was etched using the Bantam Tools Desktop
PCB Milling Machine in the Makerspace based on a schematic created in Eagle, and all the
relevant components were soldered either directly into the PCB or attached via wires. For more
detailed reference, the Eagle schematic for the PCB is in the Appendix Section V.C.I.
II.B. Signal Analysis
II.B.I. Background on Deep Learning and Artificial Intelligence

Before describing the design for the artificial intelligence algorithm, there are a few key
concepts that must be addressed. Neural networks are a type of machine learning, and are
typically used for deep learning algorithms [3]. Neural networks are designed to allow a
computer to function like the brain, with nodes, representing neurons, providing either a value of
1 or 0 to indicate whether the input exceeded the activation threshold or not. These nodes are
interconnected to form a series of layers, branching from the input layer to varying amounts of
hidden layers to the final output layer [3]. For image classification such as that for
electrocardiograms, a specific type of neural network known as a convolutional neural network is
typically used, as it allows for the compression of data without the loss of feature information
[3].

A convolutional neural network accepts a structured data array, such as an image, as
input, performs feature extraction to identify key components of the image, and then classifies
that image based on the identified features and related weights and biases [3]. The weights and
biases are initially randomized and then developed through training prior to the deployment of
the network for classifications. In training, a series of input images are provided to the network,
and for each image, the output is predicted and then compared to the expected output from
human labeling, and the differences between the results and the intended prediction are then back
propagated through the algorithm to update the weights and biases using a user-selected learning
rate and a gradient descent function to minimize the loss, which in turn increases the accuracy.

Figure 4. Diagram of a convolutional neural network [4]
As displayed in Fig. 4, a convolutional neural network involves a series of layers in the

prediction process to convert a 3-dimensional input, a true color image, into a classification [3].
The first type of layer is the convolutional layer, in which a 2-dimensional matrix, known as a



kernel, with values chosen to extract important features such as edges, is stepped across the input
and a dot product is performed between the kernel and the overlapped subsection of the input,
until this procedure has been performed for the entirety of the input matrix [3]. This process
produces a feature map, which is often reduced in size compared to the input matrix. The final
step in this layer is the application of a Rectified Linear Unit (ReLU) transformation to the
feature map in order to provide non-linearity to the layers [3]. The ReLU function returns 0 if the
input is below zero, otherwise it returns the input.

The next key layer in a convolutional neural network is the pooling layer, which reduces
the dimensions of the matrix being passed through the network to improve efficiency and reduce
computational complexity [4]. To do so, a kernel is traversed through the input to this layer, but
instead of performing a dot product with weights in the kernel matrix, an aggregation function is
applied to the section of the input covered by the dimensions of the kernel [3]. Typically, the
pooling layer either computes the maximum or the average of the values in each region of the
input covered by the kernel as it traverses, producing a reduced-size output array [3]. The
convolutional and pooling layers can then both be repeated as many times as desired to refine the
feature extraction in the network.

Once the convolutional and pooling processes are fully completed, the output of these
layers is passed to the fully connected layer to perform the classification [3]. First, the input is
flattened to produce a column vector [4]. This vector is then passed to a neural network, which
consists of a series of hidden layers of nodes that activate, return 1, or do not activate, return 0,
based on the inputs from the previous layer, the trained weights and biases, and an activation
function, such as the ReLU function [4]. The neural network concludes with an output layer that
functions similarly to the hidden layers, but often employs a different activation function [4]. For
convolutional neural networks, the activation function typically used in the output layer is the
softmax function, Eq. 1, which converts the numerical inputs into probabilities to represent the
likelihood of the image matching each classification category [4]. In Eq. 2, represents theσ
softmax function, z represents the vector input, K is the number of classification options, the i
subscript denotes input, and the j subscript indicates output.
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𝑖

=  𝑒
𝑧

𝑖

𝑗=1

𝐾

∑ 𝑒
𝑧

𝑗

The output of the layer with the softmax activation function is the final result of the
convolutional neural network, and includes a probability for each potential classification that the
image matches that category.

A drawback of convolutional neural networks is that they require significant quantities of
labeled data in order to develop the weights and biases for the neural network layers in training.
To overcome this issue, a strategy known as transfer learning can be applied, in which a
pre-trained neural network for a similar task is retrained by changing only a few layers, such as
the output layer, to adjust for the new potential classification options. The model can then be
supplied with a smaller set of labeled training data to readjust the weights, but less adjustment of
the weights is necessary as they have been partially pretrained. However, a risk in this process is



that if too small a dataset is used, the model can become overfit, meaning that it is highly
accurate for the data it was trained on, but significantly less accurate in real world applications.

For this project, transfer learning was utilized to retrain GoogLeNet to classify
electrocardiograms for the selected five conditions. GoogLeNet is a convolutional neural
network designed for image classification, with a base architecture similar to that described
above, but with some additional features to improve accuracy and reduce the likelihood of
overfitting [5]. For more information related to convolutional neural networks, please see [3] and
[4], and for more information related to GoogLeNet, please see [5].
II.B.II. Design

When the user elects to save the electrocardiogram, the prototype performs signal
analysis, and then saves the results along with the full electrocardiogram in the database. The
signal analysis is performed on the prototype, and takes in the collected array of
electrocardiogram data, plots the data, converts the plot into a true color image, and passes this
image into the convolutional neural network for classification. The network then returns an array
containing the probability that the signal displays any of the five possible conditions.

Since the Preliminary Design Report, the potential classifications for the model were
changed from arrhythmia, myocardial infarction, atrial fibrillation, cardiomegaly, and normal
sinus rhythm to atrial flutter, myocardial infarction, atrial fibrillation, congestive heart failure,
and normal sinus rhythm. Arrhythmia was replaced with atrial flutter as atrial fibrillation was
found to be a subset of arrhythmia in further research, and this overlap led to inaccurate
classifications. In addition, cardiomegaly was replaced with congestive heart failure due to the
availability of labeled data. The on-device signal analysis is performed using a C++ script and
executable, as the optimal training program for the neural network was MATLAB which cannot
be run directly on a Raspberry Pi.

Before the network could be used for classification, the convolutional neural network had
to be trained. The inspiration and base code for the training program was derived from the
MATLAB example, “Classify Time Series Using Wavelet Analysis and Deep Learning” [6]. As
the use case in this situation is image classification, a convolutional neural network was selected.
Furthermore, due to the limited labeled data available for training, the neural network was
created using transfer learning, by retraining the GoogLeNet convolutional neural network to
classify true color images of plotted electrocardiograms by changing the output layer along with
key training parameters. Initially, another image classification convolutional neural network,
SqueezeNet, was also retrained, but GoogLeNet was selected as it produced a higher validation
accuracy in all testing.

The design requirement impacting the signal analysis component was the requirement
that the algorithm be able to diagnose the patient for normal sinus rhythm, atrial flutter, atrial
fibrillation, myocardial infarction, and congestive heart failure with at least a 90% accuracy rate
in validation testing. This requirement was primarily relevant in the development of the network
architecture, the selection of potential classifications, and the selection of training parameters
such as learning rate and batch size, which impact the speed and accuracy of training.



All labeled electrocardiograms were downloaded from Physionet, an online repository of
free medical data, and the list of all datasets used can be found in the Appendix Section V.G.
These datasets were imported into MATLAB, and the program was trained using the
aforementioned MATLAB program run on the Trinity University High Performance Computing
System (HPC), known as Leviosa. The network was then extracted into a C++ executable file
and deployed directly on the Raspberry Pi using MATLAB toolboxes, where collected data could
be passed into the trained network for classification.
II.C. Information Transfer

To transfer the information from the prototype to the website, a database accessed over
Wi-Fi was selected. The database is a PostreSQL database, which is an open source relational
database, and is hosted on Heroku, a cloud platform as a service company that allows for limited
free deployment of databases and websites. By deploying on Heroku, both the device and
website are able to easily connect to and edit the database, and the use of Heroku and
PostgreSQL was selected due to the team’s familiarity with the set-up and the free access
capabilities. Both the device and the website access the database through a wireless connection
and Structured Query Language (SQL) commands. The database accesses on the device are
performed using the “psycopg2” library for PostgreSQL in Python, and the database is accessed
on the website using GET and POST requests.

The database stores a variety of relevant fields to record electrocardiograms and patient
data, as well as key verification and account information. The structure of the deployed database
can be viewed in Fig. 5 below, and the full relational schema is in the Appendix Section V.D.

Figure 5. Diagram of the database structure
There have been a few changes to the relational schema since the Preliminary Design

Report to accommodate newly identified needs during the website development, including the
incorporation of an admin table to store administrator credentials to allow for the approval of
new doctors and clinics, and the addition of an account status (acct_status) field for doctors and



clinics in their respective tables in order to allow doctors to apply and then be approved or
deactivated for additional security.

The key design requirements for the network are that it should be able to access and
transfer patient information to and from the device, website portal, and a complementary
database with a loading time under 5 minutes and no loss of data and reliably transmit patient
data wirelessly over a distance of at least 8 feet with a 90% accuracy rate in connection. By
performing all accesses over wireless internet connections and maintaining a structure that does
not require the transmission of large data sets, this design ensures that these requirements are
met.
II.D. Display

The website was constructed using two separate languages and a Heroku database,
described in the previous section. The front-end of the application was built in javascript using
the React.js markup language. For the coding done in the frontend, new techniques called Hooks
were used which were introduced in version16.8 of React. Hooks allow for the programmer to
have a more functionally oriented code, instead of the traditional, heavily object-oriented method
of programming a website in React. Using the basic react libraries, a framework for a single web
application was created. However, at this stage the website could not transfer data to/from a
database. In order to transfer data between the database, an Application Programming Interface
(API) was implemented using Microsoft’s .NET framework, written in C# (C sharp). The API is
able to make HTTP requests, meaning requests that take place over a wireless connection to the
database, which is deployed on heroku. In order to pull data in a meaningful fashion to the
front-end of the application, libraries were used. The most important of these libraries was the
react-chartjs-2 library. This allows the application to plot data collected as an array from the
database. The website was styled using CSS (Cascading Style Sheets).

The reason React.js was chosen as a front-end language was because it allows for an easy
transfer between single-page web applications and mobile application languages through the use
of a related language called react native. If the designers wanted to deploy the application on the
app store it would take less effort than if the program was written in a different language. The
reason C# was used with a .NET framework for the API is because the group member who was
working on the development of the website had the most familiarity with the language, and could
implement authentication with Microsoft’s services (Microsoft also developed the C# language).

The requirements of this design indicated that doctors using this software needed to be
able to see and diagnose ECG signals presented on the website, and the data needed to be
presented to them in a timely fashion, over varying WiFi connections.

In order to build this device, a windows machine was used in tandem with two separate
folders developed in the Visual Studio Code IDE (integrated development environment). These
folders were then run using commands corresponding to each language. However, since the
development was entirely on the computer, the construction was entirely based on typing code
into the IDE.



II.E. Casing
The casing for the device was designed in Autodesk Fusion360 and printed on a 3D

printer, due to its adaptability, cost, and ease of use. In addition, 3D printed materials are
relatively durable, and the flexibility of 3D printed design ensures that the circuit components are
securely housed. The design of the case had to be built large enough to not only firmly house the
screen, but also let the attached circuit comfortably rest beneath. The case was modeled and
printed as two different pieces: the case and the lid.

The case houses the screen and the circuit. The length of the screen is 192.96mm. Thus,
to provide easy insertion and removal of the screen, the L-shaped mounts were modeled to be an
extra 2.14mm long. There are only two mounts within the case, preventing the screen from
falling. There are no mounts above the screen, however, if the entire case were to be flipped
upside down, the lid would keep the device in place. There are also no mounts holding the screen
in place on the top and bottom, only just the two sides.

Once the screen rests on the mounts, the circuit dangles below. The case needed to be
deep enough to let the circuit rest comfortably at the point, but not squish the circuit to the
bottom of the screen. Thus the depth of the case was designed to be 75.419 mm. Because the
circuit is relatively small, and to avoid unnecessary printing, the case was designed at an angle
below where the mounts are. The sloped design of the base also allows the case to rest at an
angle, allowing for easy viewing for the patient. Two port-holes on one side of the case (the
sloped portion) were designed to allow the patient to plug in both the power and ECG pads.

The lid and case attach to each other by a snap-fit design. The length and width of the lid
is the same as the case, 230mm and 120mm, respectively. The lid was designed so that only the
touch portion of the screen was visible (the screen has a black border that does not need to be
visible). A slight downward curve along the inside borders helps the user reach the corners of the
touch screen, as well as provide a more aesthetically pleasing look. The model for the casing is
displayed in Fig. 6.

Figure 6. Three-dimensional computer-aided design model of casing



The material used for the casing is required to be relatively durable, as the project
assumes the patient would be traveling with the device. The device and casing were required to
be small enough to fit comfortably within a TSA compliant carry-on bag or backpack, and the
dimensions selected in the design will ensure that this is possible.

The bottom portion of the case was printed using a 3D-printer, specifically, the Original
Prusa i3 MK3. The material used was 1.75mm thick PLA. The lid on the other hand, was printed
using 1.75mm ABS Nylon Black on an Ultimaker S5. Both the lid and case were modeled using
Autodesk Fusion360. The lid was sliced with the Ultimaker’s respective software, while the case
was sliced with Prusa Slicer.

III. Design Evaluation
The following section delineates the tests performed by the team to evaluate each

requirement or related grouping of requirements, as well as some testable constraints, and the
results of that testing as it relates to the success of the prototype for each requirement.
III.A. Budget
III.A.I. Constraint Description

The cost of the project is limited to a $1200 budget provided by Trinity University. This
constraint limited the scope, and restricted the processing power available for machine learning,
as well as the options of ECG sensors for integration due to limits on purchasing.
III.A.II. Evaluation

The project remained well under budget, spending only $385.64 out of the $1200 allotted
by the department. As such, this constraint was successfully fulfilled.
III.B. Wireless Transmission
III.B.I. Requirement Descriptions

The device must reliably transmit patient data wirelessly over a distance of at least 8 feet
with a 90% accuracy rate in connection. The network should be able to access and transfer
patient information to and from the device, website portal, and a complementary database with a
loading time under 5 minutes and no loss of data. Furthermore, doctors should be able to interact
with the machine and database with fewer than 5% errors in operation and loading times below 5
minutes.
III.B.II. Associated Tests

These requirements were assessed in the Database Storage and Retrieval Test, which
tested the ability of the patient device, website, and server-based database to exchange and store
information. This test was intended to evaluate the following requirements: the network should
be able to access and transfer patient information to and from the device, website portal, and a
complementary database with a loading time under 5 minutes and no loss of data, and the device
must reliably transmit patient data wirelessly over a distance of at least 8 feet with a 90%
accuracy rate in connection. The Database Storage and Retrieval Test assessed the functionality
of the information transfer feature of the prototype, testing the ability of the device to transfer
data between the physical device and the endpoint website and store the data over time.



This test gauged the prototype and the website’s ability to access the database both when
they are on the same wireless network and when they are operating on two different wireless
connections, in essence testing the ability of the device to transfer data over a distance, especially
distances exceeding 8 feet, where separate wireless connections would become necessary. Due to
limits on available WiFi networks, both connections were of high strength, and so this test did
not examine the impacts of a poor connection.

Testing the database required materials that are readily available for the team members,
including the Raspberry PI, a computer, access to the Heroku database via an access string, and a
software that can read database responses. From the website, the team executed a network
request that connected to the database and returned a value. For the Raspberry PI, the database
was accessed using the Python library “psycopg2” and MySQL commands, or directly using the
Heroku Command Line Interface (CLI). In this test, a series of database additions were
performed from the Raspberry PI, and then confirmed by direct database access, as well as by
attempting to retrieve the data on the website. Then, a series of database additions were
performed on the website, and then confirmed by direct database access, as well as by attempting
to retrieve the data to the Raspberry PI.

The assumption in this test was that the data the team sent to and received from the
database could be converted into a readable format, which was addressed in other tests. The team
also assumed that the testing data utilized was reasonably representative of the data that will be
entered during actual use of the device. The information collected from this test included the test
database entries composed of the following: patient data (name, date of birth, etc.),
electrocardiogram data, clinic data, and physician data. Each category contained multiple
different forms of computer data (strings, ints, etc.), and each component of the category was
collected for each set of test data inputted into the database and retrieved. For each iteration of
the testing, the team recorded the value added to the database and the values returned by each
retrieval method to ensure all returned the same result. This test was considered successful if all
data entered could be retrieved by the website or patient device as well as through direct access
to the database. In addition, all data was expected to be retrievable from the database within 5
minutes after the transfer process was initiated, and no data retrieval process should have
exceeded 5 minutes. In all attempts to connect to the database, over 90% of these attempts should
have been a success regardless of the relative positioning of the device and website host.
III.B.III. Test Results

All data transfer attempts were successful in both transmitting and receiving data of the
expected types with no lost data or delays in service. The distance in time and space between the
submission and retrieval of data proved to have no effect on the access capabilities. All data
transfer operations proceeded within milliseconds, with the longest database access for the
website completing in 733.65 ms. Furthermore, data submitted via the Raspberry Pi was
accessible in well under a minute on the website, and vice versa. Furthermore, all attempts to
access the database and the wireless connection were successful on both ends, indicating an
100% accuracy rate in connection on a stable wireless signal.



The following figure represents how the data was accessed without the use of the
front-end Graphical User Interface (GUI) using the Postman software.

Figure 9. API request titled “GetAllDoctorData” being called in the Postman application.
In the above figure, the values returned from the API call are listed in the bottom half of

the image. The time to complete this HTTP request is shown on the middle right, which also
indicates the size of the request and the status of the request. All of these values fall within the
acceptable ranges provided by the design team for successful tests. Similar results with varying
time and size components exist for each function. However, all of the API requests that are used
for this project are called in under 5 minutes, per the third design requirement assessed in this
section.
III.B.IV. Evaluation

In all testing performed, all data entered, even incomplete data, was stored in the database
in the same form as entered, and all accesses to the database to extract, add, or update data were
performed in under a minute regardless of distance or medium. As the prototype exceeded the
accuracy, time, and distance expectations set forth in this requirement, the design was considered
successful both in this test and in the fulfillment of the wireless transmission requirements
overall. This indicates that the wireless transmission process is fully capable of handling the data
transfer operations necessary to achieve the primary objective, a device capable of assisting with
remote automated healthcare for cardiology.
III.C. Transportation and Durability
III.C.I. Requirement Description

The device must be portable and durable for transport through a carry-on in an airport
setting following Transportation Security Administration standards on dimensions and survive a
drop test of 4 feet while enclosed within a carry-on suitcase. This requirement also overlaps with
the constraint that the patient device must be small and durable enough to be transportable in
remote conditions.



III.C.II. Associated Tests
The Size and Durability Test aimed to evaluate the suitability of the prototype for travel

and usage in remote conditions. This test assessed if the prototype met the design requirements
that the device be portable and durable for transport inside a carry-on in an airport setting
following Transportation Security Administration standards on dimensions, as well as that the
device must be able to function following a drop test of 4 feet while enclosed within a carry-on
suitcase. It was designed to evaluate the portability and durability features of the prototype and
its casing.

The Size and Durability Test was intended to ensure that the device met the durability
and portability requirements stated in the introduction. To validate that the prototype would
survive traditional forms of travel by air and land, the device was placed inside of a TSA
compliant carry-on suitcase along with some padding in the form of clothing. The suitcase was
then dropped from various heights reaching a maximum of 4 feet, kicked, and knocked over to
cause rotation, for a duration of two minutes. The device was then inspected and used in its
intended manner to evaluate the damage and assess the transport durability. This test was
considered a success if the device could fit within a standard carry-on suitcase and was still
functional without any substantial damage following the drop test.
III.C.III. Test Results

The prototype was easily able to fit within the carry-on bag, with room for additional
padding and other storage in the suitcase. After the two minutes of continuous jostling and
impacts on the device, no damage was identified in the casing, touchscreen, or the internal
circuit, and the device demonstrated no change in recording capabilities in subsequent testing of
the electrocardiogram reading procedures.
III.C.IV. Evaluation

As the prototype fits in a carry-on suitcase and can survive a period of impacts similar to
those expected in a travel situation, it achieves the acceptance criteria for the testing.
Furthermore, the prototype meets the requirement and constraint on the size and durability of the
device, as the team can reasonably expect the device to survive traditional travel conditions.
III.D. Data Collection
III.D.I. Requirement Description

The device must record an ECG signal with minimal noise and at least 5 full cardiac
signal propagations so that less than 10% of the recorded signals return “noisy recording” from
the artificial intelligence algorithms.
III.D.II. Associated Tests

The primary test of this requirement was the Data Acquisition Accuracy Test. The Data
Acquisition Accuracy Test assessed the ability of the prototype to measure an electrocardiogram
and transfer that data onto the microcomputer, as compared to a similar electrocardiography
device. This test was designed to confirm that the device meets the requirement that it record an
ECG signal with minimal noise and at least 5 full cardiac signal propagations. In addition, this
test ensured that the primary device functionality of measuring an electrocardiogram in a manner



that can be wirelessly transferred was achieved. Furthermore, the team intended to use this test to
confirm that the electrocardiograms measured by the device matched a commercial
electrocardiogram with relative accuracy, to ensure that the irregularities noticed in the
November testing have been resolved. This test evaluated the data collection process, including
the capabilities of the hardware circuit to measure an electrocardiogram from a human patient
using electrodes and the usability of the touchscreen interface for patient information acquisition.

The test used 10 test subjects under desirable conditions, with all data entered correctly
and a seated and still patient. In most cases, the electrocardiogram was administered in the
proper locations; however, due to the lack of a medical professional present, in some cases the
electrode placement impacted the signal output. Three of the previous subjects were brought
back to assess the existing patient data entry format. The Data Acquisition Accuracy Test utilized
an oscilloscope attached using a probe between the signal monitor, AD8232, and the analog to
digital converter, MCP3008, in the hardware circuit, three electrodes attached to a human
subject, a monitor attached to the Raspberry PI unit to read any collected data, and an Apple
Watch to use as a sample commercial electrocardiogram attached to the same patient. Each test
subject was attached to the electrodes of the prototype, asked to complete the data entry on the
touchscreen using provided fake patient information, and then asked to remain still for 3 minutes
while an electrocardiogram was recorded. An Apple Watch, selected due to the ease of access,
was then attached to their wrist, and they followed the instructions on the screen to measure their
electrocardiogram in that manner. To conduct this test, the team had to use various tools and
settings on the oscilloscope as well as the principles of electronics in relation to the comparison
of the three different signals recorded.

For the scope of this test, the team assumed that the use of the oscilloscope did not alter
the signal read by the prototype, and that the data recorded on the device would be the same data
transferred into the database. In addition, the team assumed that the electrocardiogram measured
by the Apple Watch was accurate and a reasonable indicator of similar commercially available
products. This test collected two sets of electrocardiograms from each of 10 test subjects, with
one being measured using the prototype and the other being measured using the Apple Watch.
The prototype electrocardiogram readings were stored in two formats, namely the oscilloscope
reading and the Raspberry PI data array. In addition, each test subject entered fake patient data
provided by the team to test the data entry system, and this data was collected by the Raspberry
PI and confirmed against the team’s dataset of fake information. The use of fake patient
information allowed the team to validate the full data collection process without violating the
Institutional Review Board expectations that the data not be stored in a manner where it can be
traced back to the test subject.

The test was considered successful if the noise visible in the electrocardiograms
measured under reasonable conditions on the device microcomputer matched within a 10%
margin of error the electrocardiogram produced by the commercial device and included 5 full
cardiac propagations. In addition, no data from the patient data entry testing should have been
lost.



While the Data Acquisition and Accuracy Test focused on the data collection capabilities
of the prototype, this requirement was also reviewed in the Full Process Test in terms of the
functionality of the circuit in the entire intended cycle of use. The Full Process Test evaluated the
prototype for the full cycle of functionality expected, beginning with the collection of the patient
electrocardiogram and information and completing with the presentation of the data and
diagnosis to the doctor in a different location. This test intended to confirm that all of the
subsystems of the prototype can successfully function in tandem to produce the desired process
and results requested by the sponsor in the definition of the project, and it evaluated all the key
features in terms of their ability to produce the output necessary to continue towards the end
goal, including data collection, signal analysis, information transfer, and display.

As edge cases have been evaluated for each subsystem individually, the Full Process Test
included 5 iterations of the full process from data entry to confirmation of final results on the
website with 5 different test subjects. This test required a computer to run the website, a WiFi
connection, an oscilloscope to measure the electrocardiogram signal from the patients, and fake
patient data to be entered into the system. The oscilloscope was attached between the heart rate
monitoring board and the analog to digital converter, in order to allow the team to view the input
signal for comparison with the output. The fake patient data was used similarly, to ensure that the
information inputted matches the output and that no test subject personal information can be
linked to their biomedical data. Each test subject was attached to the electrodes and asked to
enter the data they have been provided. After the electrocardiogram had been recorded and
stored, the website was accessed from another room and the results visible on the website were
compared to the oscilloscope reading and patient dataset. The Full Process Test required signal
comparison knowledge in terms of key aspects of the signal such as peak-to-peak voltage to
ensure that the presented and recorded signals match.

For the scope of this test, the team assumed that any error handling present in the
individual subsystem testing also functioned for the full system, with minimal full scale
confirmation of these capabilities. In addition, the team again operated under the assumption that
the integration of the oscilloscope with the hardware circuit did not influence the signal recorded
by the device. In order to use the oscilloscope, the device was also not fully enclosed in its
casing, and it was assumed that the closing of the case would not impede the device’s
functionality. In this test, the initial signal for each patient was recorded as was the results
produced by the website. By comparing the final website output and the expected signal, the
team was able to assess the base functionality of the device towards the primary goal of the
project, the remote collection and analysis of a patient electrocardiogram. This test was
considered successful if the website displayed an accurate rendition of the recorded
electrocardiogram and a reasonable diagnosis for all trials.
III.D.III. Test Results

In November, the team assessed the basic hardware circuit composed of the leads to
connect to the patient and a circuit board designed to extract the signal, along with all needed
power subcircuits. This test indicated a need for cleaner and increasingly reproducible signals for



the hardware circuit. In addition, the circuit design needed to be changed in order to account for
power coming from a different device than the protoboards provided at Trinity University.

During testing, the prototype recorded reasonable electrocardiogram signals for each of
the 10 test subjects in the Data Acquisition Test based on visual analysis, with limited noise. The
oscilloscope reading and the recording on the Raspberry Pi also matched closely throughout the
process. Furthermore, each three minute signal included significantly more than 5 full cardiac
propagations. However, the team discovered that the circuit was highly susceptible to motion,
and when the device was transported it often had to be recalibrated to obtain a proper signal.

To assess the accuracy of the circuit relative to current available options, the team
compared the signal recordings to those performed by the Apple Watch. While the noise
appeared to decrease as compared to the results from testing last semester, a more detailed
comparison than visual estimation, the technique used in November, was performed to ensure
accuracy. Four key peaks relevant to electrocardiogram analysis were examined, namely the P,
Q, R, and S peaks. An average value for each peak from throughout both recordings was
estimated, and the two values were compared to compute a voltage correction coefficient and a
percent difference, the values for which are included in Table 1.

Table 1. Approximate Percent Difference Between the Adjusted Peak Voltages Measured
By the Apple Watch and the Prototype

P (% diff.) T (% diff.) R (% diff.) S (% diff.)

10.6 6.7 29.3 5.9

13.6 14.6 43.9 1.2

46.3 23.3 39.3 18.6

5.3 16.4 12.6 12.2

15.5 14.8 35.7 14.7

22.9 52.8 12.0 7.2

0.3 23.7 40.5 11.1

10.7 5.9 11.3 1.1

18.6 24.7 1.5 8.3

22.1 31.0 19.7 3.9

10.2 21.3 9.0 18.5

On average, there was a 17.5% difference between the peak readings, with the S peaks
displaying the most similarity with an average difference of 9.3%, followed by the P peaks with
16.0%, the T peaks with 21.4%, and finally the R peaks with 23.2%. Despite some identified
improvements for user experience in the graphical user interface, the patient data entry
functioned as designed, with all fake data collected and stored in the database accurately with no



losses. This indicates that the procedure for the collection of patient profile data achieves all
objectives.

In the Full Process Test, the majority of electrocardiograms were collected as intended;
however, it was discovered that the noise in the signal was heavily dependent on the power
coming from the wall outlet, as the signal changed depending on the outlet used. This indicated
that some additional measures needed to be added to reduce noise. During user experience
testing, it was also discovered, along with a few minor glitches in the graphical interface
functionality that were resolved, that a waiting screen is needed while the electrocardiogram is
being recorded to indicate that the device is functioning.
III.D.IV. Evaluation

While the differences in key metrics between the Apple Watch and prototype recordings
were higher for many signals than the 10% metric set in the acceptance criteria, the error is
reasonable considering that 5 out of 10 signals were analyzed by the Apple Watch to be
“Inconclusive” rather than “Sinus Rhythm”, indicating that the signals may not have been
cleanly collected and invalidating the assumption that the Apple Watch represents an accurate
electrocardiogram. In addition, each recording is highly dependent on motion, and as they were
taken at different times, the effects of motion may not be equally displayed on both recordings.
There is also no clear pattern in terms of which peaks differed the most, indicating that
differences between the two readings were irregular in terms of interval and placement, and all
peak voltages are estimates due to the limitations of reading from the Apple Watch PDF results
and due to the use of an analog-to-digital converter, so that the prototype readings are sampled at
128 Hz. As such, considering that visual analysis of each pair of recordings displayed distinct
similarities, the team concluded that the prototype passed this test and resolved the issues
identified in November.

Furthermore, while initial testing indicated that the circuit was easily disrupted when
moved and power outlets could insert significant noise into the signal, these issues were
mitigated through the conversion of the circuit to a PCB and the addition of a filter element. The
identified issues in user experience testing were also resolved in the software. As such, the
prototype met this requirement, producing signals with more than 5 full cardiac propagations and
limited noise in the final testing, and producing no discernable errors in the readability for the
artificial intelligence, as the recorded signals matched commercially recorded ones in form.
III.E. Diagnostic Accuracy
III.E.I. Requirement Description

The AI must be able to diagnose the patient from the ECG for atrial flutter, atrial
fibrillation, myocardial infarction, and congestive heart failure with a 90% accuracy.
III.E.II. Associated Tests

The diagnostic accuracy of the artificial intelligence was addressed in the Proper
Diagnosis Test. The Proper Diagnosis Test employed a wide variety of sample electrocardiogram
signals that have been diagnosed by a cardiologist to evaluate the accuracy of the artificial
intelligence algorithm. This test was designed to evaluate the previous requirement that the



artificial intelligence be able to diagnose the patient using an electrocardiogram for arrhythmia,
atrial fibrillation, myocardial infarction, and congestive heart failure with a 90% accuracy rate on
all accounts, but also covered the accuracy rate with atrial flutter instead of arrhythmia. The
Proper Diagnosis Test assessed the signal analysis feature of the prototype, determining the
accuracy of the diagnoses produced by the device.

The tests included over 100 sample electrocardiograms diagnosed by a cardiologist to
have normal sinus rhythm, arrhythmia, atrial flutter, congestive heart failure, myocardial
infarction, or atrial fibrillation, along with some samples with combinations of these conditions.
The accuracy of the artificial intelligence was measured primarily using validation testing during
the training process, which employed sample validated and labeled electrocardiograms. As the
team was limited in the test subjects that would be available for these testing procedures, and so
many of the heart problems would not be present in the dataset, for the scope of this project, it
was assumed that the device would be able to diagnose similarly between the provided samples
and those collected from physical test subjects. In addition, while measures were taken to ensure
the validity of the data, the accuracy of the cardiologist’s diagnoses of the samples was assumed.
Due to the limited availability of training and testing samples, it was also assumed that the
accuracy of the model in validation and testing would be similar. Other reputable sources such as
Mathworks have used a similar assumption in situations with limited data, indicating that this is a
valid assumption for the scope of this project. The test was considered successful if each model
diagnosed at a minimum 90% of the inputted signals with the correct heart condition.

However, artificial intelligence results were also collected during the Full Process Test,
which evaluated the prototype for the full cycle of functionality expected, beginning with the
collection of the patient electrocardiogram and information and completing with the presentation
of the data and diagnosis to the doctor in a different location. As previously described, the Full
Process Test involved repeatedly stepping through the entire use case for the prototype,
beginning with data collection and completing with the display of the electrocardiogram signal
and artificial intelligence results on the website. For the artificial intelligence aspect, the network
was deployed onto the Raspberry Pi, and a prediction was generated for each signal prior to it
being stored in the database. Each signal in this process is assumed to be normal sinus rhythm, as
all test subjects were healthy college students in their twenties with no known conditions. In
terms of the artificial intelligence, the test was considered successful if the artificial intelligence
was able to perform a classification of the electrocardiogram signal while deployed on the
device, and have a reasonable basis for each diagnosis.
III.E.III. Test Results

Initial testing led to the realization that there is overlap between the conditions selected
for diagnosis, making a singular classification algorithm for these conditions impossible.
Furthermore, since the data can overlap, the accuracy of sequential algorithms cannot be
reasonably extrapolated. For example, atrial fibrillation is a type of arrhythmia, and so confusion
between the two can be expected when running a direct classification procedure. As such, a new
classification model was developed through extensive research on electrocardiogram analysis



and by testing a variety of conditions to identify those that are clearly distinguishable from one
another, as concurrent or related conditions will exceed the scope of this project without the
assistance of a cardiologist. In this process, the team determined that arrhythmia should be
replaced with atrial flutter as a diagnosable condition, as mentioned in the design portion of the
report.

The highest accuracy model produced had an overall accuracy in validation testing of
96.9% for the conditions atrial fibrillation, atrial flutter, congestive heart failure, normal sinus
rhythm, and myocardial infarction with 128 diagnosed electrocardiogram signals used as
validation data. The confusion chart for this model is included in Fig. 7, and displays that each
condition was properly identified in over 90% of validation attempts.

Figure 7. Confusion matrix of validation testing for artificial intelligence heart diagnostic
algorithm

The assumption that the accuracy of the model based on validation procedures is
equivalent to that for a separate testing dataset likely led to an overestimate of the accuracy.
However, this assumption cannot be overcome without a significant quantity of
electrocardiograms recorded by the prototype and classified by an experienced cardiologist, and
thus exceeds the scope of this proof-of-concept prototype.

To further test the ability of this network to classify signals not included in the training,
an electrocardiogram signal diagnosed with arrhythmia was sent to the deployment of the model
on the Raspberry Pi. The model diagnosed the signal as having a 61% chance of being atrial
fibrillation and 38% chance of myocardial infarction, with all other categories reporting
negligible values. As atrial fibrillation is a subcategory of arrhythmia and myocardial infarction



is known to be commonly concurrent with arrhythmias, this estimation is logical, indicating that
the artificial intelligence handles unknown cases with reasonable accuracy.

For the Full Process Test, the team identified that, despite a validation accuracy of near
97%, the artificial intelligence diagnosed poorly all test subjects based on the collected data. As
shown in the results denoted in the Appendix Section V.F.I, the algorithm returned atrial
fibrillation for 11 subjects and myocardial infarction for 6 subjects, despite all 15 subjects, 10
from the Proper Diagnosis Test and 5 from this test, being expected to display a normal sinus
rhythm. These results, along with the team’s exposure to electrocardiogram signals during
testing, highlighted the variation in normal sinus rhythm signals, as each collected signal
displayed significant visual differences from the others collected, both in terms of the prototype
and commercial electrocardiogram recordings. Therefore, as previously denoted, the creation of
a functionally accurate artificial intelligence for heart diagnosis requires a significant increase in
the quantity and variety of training data as compared to what the team currently has access to, as
well as the assistance of a cardiologist to better understand electrocardiogram elements and
variations.

Furthermore, the accuracy of the artificial intelligence was potentially limited due to the
decision to employ an image classification algorithm and the use of only ten second signals for
analysis due to the maximum length of available data. While image classification was used in
many algorithms used for inspiration, such as [6], the conditions selected for analysis may not
present in a manner that can be evaluated using feature extraction. This concern was highlighted
in the comparison of the recorded signals to samples of the training data for the model. For
example, a signal that should be normal sinus rhythm was classified as having a 99% chance of
being positive for myocardial infarction; however, as shown in Fig. 8, this visually appears to be
a logical result based on the matching T peaks, boxed in the diagrams, that do not appear in any
of the other condition samples. While the plot only includes one sample of each training set, the
small size of the training set enhances the effect of each sample, indicating that this could
represent the issue in the functional accuracy of the model.

Figure 8. Comparison of training sample electrocardiogram data for each condition (left) to the
recorded electrocardiogram from the prototype (top right) and Apple Watch (bottom right), with

key attributes boxed in black



This phenomenon indicates that a more accurate model would require further input from
an experienced cardiologist in order to refine the feature extraction to ensure that the relevant
aspects in diagnosing a condition are used. Furthermore, a much larger training dataset is
required to overcome the problems caused by variations.
III.E.IV. Evaluation

The neural network meets the design requirement acceptance criteria for both tests, as it
achieved over 90% accuracy in validation testing for all five desired conditions and was
successfully deployed on the Raspberry Pi, achieving the intent of the proof-of-concept project.
Prior to commercialization, the functional accuracy of the model needs to be improved through
the retraining of the model with a significant amount of training data collected on the prototype
and labeled by a professional cardiologist. In addition, the choice of network, potential
conditions for diagnosis, and the feature extraction methods should be reviewed by a cardiologist
to ensure that the model would be capable of identifying the characteristics of each diagnosis in a
real world scenario.
III.F. Data Presentation
III.F.I. Requirement Description

The website should replicate signals of commercial ECGs in form based on the machine
readings with 90% accuracy.
III.F.II. Associated Tests

In order to examine the ability for the website to display ECG data, the visual stimuli
presented on the screen were inspected. This test was designed to determine if the application
programming interface (API) calls return the correct ECG data. Furthermore, this test assessed if
the single-page-application rendered the correct objects in the window of the website. The
features evaluated in this test were the website functionality including data posting and retrieval
and the rendering of components such as an electrocardiogram plot. For this test, the website had
to successfully execute at least one Get and one Post request to the database to acquire data
necessary for the cardiologist to review the patient’s electrocardiogram. The ability of the
website to produce graphical representations of the ECG was also examined by pulling at least
one array from the database and presenting it on the screen.

Since this section of the project is entirely based in software development, the team only
required a Windows machine and a stable internet connection to run the website application,
along with the Postman application, a popular graphical HTTP client for API testing. First, the
team used Postman to assess the effectiveness of a basic API call, namely retrieving a patient’s
information based on their name and phone number. For the non-networked portion of the
testing, the team executed queries through the website process as a user would, ensuring that all
key components such as login, patient data retrieval, and ECG plot rendered properly and that all
interactive elements were functional. The test will be considered successful if the website fulfills
all needed functionality during a simulated user experience and if the database accesses all occur
with no data loss or delays while rendering the proper components.



III.F.III. Test Results
The website met all expectations for functionality, and the API calls were successful,

indicating that the test met the acceptance criteria. Bugs that were discussed in the prototype test
plan regarding authentication have since been resolved. Additionally, all components that needed
to be rendered were successfully created. While the ECG data was identical on the website to the
reading taken by the Raspberry Pi, the ECG displayed, on average, an 18.8% difference between
the readings displayed on the website created by the design team and the ECG generated by the
Apple Watch. An example ECG plot from a patient who used the device at the Trinity University
Campus is shown below.

Figure 10. Screen capture of the website created by the design team recording ECG data,
which was collected from a student at Trinity University

III.F.IV. Evaluation
All of the tests behaved as expected for rendering the visual components on the website.

The ECG data, when compared to the data collected by the Apple Watch has an 18.8% error,
which is higher than the design criteria states. However, the Apple Watch does not provide
significant detail in its readings, and as such may not be a valid calibration tool. Furthermore, the
measurement methods differed, and could lead to differences in the recorded signal, with the
prototype employing three leads in a triangle on the abdomen and the Apple Watch using the
wrist. When compared to the traditional ECG waveform, shown below, the team’s data, Fig. 10,
more clearly represents true ECG waveforms than the ECG data from the Apple Watch, in Fig.
12. Therefore, the percent difference between the two readings is sufficient for the prototype
since there are reasonable homologous regions between the two sets of data, and the differences
are not expected to impede the use of the electrocardiogram for diagnosis.



Figure 11. The characteristic, ideal waveform of each heartbeat presented on an ECG

Figure 12. ECG data collected from an Apple Watch

IV. Conclusions
Overall, the prototype meets all qualifications stated in the most recent Project Plan,

outside of changes made to the conditions diagnosed with the input and approval of the project
sponsor. Furthermore, all but one of the project objectives and design requirements were
achieved, with the prototype collecting all necessary data and performing in data transfer times
well under the required maximum durations. The prototype was unable to reproduce a
commercial electrocardiogram with 90% accuracy; however, due to the limitations on the details
within the commercial electrocardiogram data and the difference in data collection methods,
wrist versus three leads, the accuracy of the collected data was evaluated to be reasonably
accurate and admissible.

This proof-of-concept prototype is functional, capable of collecting a clean
electrocardiogram signal from a patient along with their biographical data, analyzing that
electrocardiogram using a deployed artificial intelligence network, and storing that data for
remote access via a website. However, as intended, the prototype is only functional as a proof of
concept, due to the limited quantity of training data. Prior to commercialization or further



deployment of the prototype, hundreds to thousands of electrocardiogram signals will need to be
collected using the device and classified by a qualified cardiologist, and the neural network will
need to be retrained using this data. In addition, for the scope of the project, it was assumed that
the security of the website and transmission could be assumed. However, due to the inclusion of
medical data in both aspects, additional security code would be necessary before
commercialization to comply with privacy laws. In conclusion, the prototype was successful in
its primary purpose, namely developing a method to automate the collection and analysis of an
electrocardiogram to allow for remote cardiac care.

V. Appendices
V.A. Prototype Manual
V.A.I. Device Set-up
V.A.I.1. Doctor Access

If this is your first time using the product, please navigate to the following url:
https://mydesign8herokuapp.herokuapp.com/. Click on “Apply for Doctor or Clinic Approval”,
then click on “Apply as New Doctor” and fill out the form you are directed to. Once you have
been approved by the administrator, you will then be able to login and view your patients’
results.
V.A.I.2. Clinic Device Use

If this is your first time using the product, please navigate to the following url:
https://mydesign8herokuapp.herokuapp.com/. Click on “Apply for Doctor or Clinic Approval”,
then click on “Apply as New Clinic” and fill out the form you are directed to. Once you have
been approved by the administrator, you will then receive an identification number, which will
allow you to begin taking electrocardiograms.

To set-up the device, plug the end of the black plug into a wall outlet, and place the
device on a table, with the wires facing towards the table. Ensure that the three sensor cables are
untangled and fully connected to the headphone jack within the device. Wait for the screen to

boot, and when it awakes, click on the terminal icon in the upper left of the screen. The
application will automatically boot, and you are now ready to take an electrocardiogram.
V.A.II. Device Operating Manual
V.A.I.1. Doctor Access

Upon accessing the website designed for the doctor/administrator you will be directed to
a login page where credentials need to be placed into the corresponding boxes for username and
password. After this is completed, a function located in the backend, C# application will verify if
these credentials match a defined user in the heroku database. If the credentials are a match in the
database for a doctor, who has been verified by an administrator, the user will be redirected to
doctor homepage, where there are a few options. On this page, denoted “Home” on the
navigation bar, there are a few buttons and two boxes which accept string entries. The first
button, noted “Find Patient” will return a series of repeating tables which include the information
for patients that match the data provided in each of the boxes. The second button titled “Find



Patient ID” will return the patient identification number of a patient whose credentials match
those inputs in the form boxes on the page. The third button is used to list all the information of
all the patients that are within an individual’s perview, when no data has been retrieved from the
database that region of the page will read “exception thrown.”

Moving to the add patient page, which is another page which a verified doctor is able to
access. On this page, there are a number of boxes with the required materials for each box. Once
all boxes on the page are filled in with the appropriate patient information the button, located to
the left of the patient information, can be pressed. If the information is correctly sent to the
database, then an alert dialog window will inform the user that the patient information was added
to the database. If the database did not properly add the information to the database, the user will
also be alerted that the information was not transferred.
V.A.I.2. Clinic Device Use

First, if you have not already, follow the set-up instructions in Section V.A.I.2 of the
manual. Once the application has loaded on screen, follow the instructions provided on the
screen to step through the process. You will be asked to click “Begin” and then provided with a
text entry box to input a clinic id. Here, please input the identification number you were provided
upon the registration of your clinic on the website, and click “Submit”. You will then be asked if
the patient is a new or existing patient. If the patient has not taken an electrocardiogram with this
program before, select “New Patient”, fill in all the fields provided on screen with the patient’s
information, and click “Submit. If the patient has previously used this system, select “Existing
Patient”, fill in the search fields, and click “Submit”. You will then be instructed to attach the
electrodes to the patient. If the patient is not already seated, please ask them to sit down. Attach
new disposable electrocardiogram electrode pads on the end of each sensor cable, and stick the
electrodes on the patient according to the diagram in Fig. 13, taking care to ensure that the color
of the cable being attached matches the color of the dot on the diagram at that position.

Figure 13. Electrode placement diagram [7]



When the electrodes have been placed, ask the patient to remain still and press “Start
ECG”. A plot of the electrocardiogram will appear on the screen when the collection is complete,
and you will be able to select either “Retake” if there is an issue in the signal and you would like
to try again, “Save” if you would like to store and analyze the signal, or “Discard” if you do not
want to save the signal and do not want to try to retake it. Once either “Save” or “Discard” have
been selected, you will be returned to the “New or Existing Patient” screen.

If at any time you would like to turn off the device, click “Shutdown” in the menu bar at
the top of the screen. Once the screen turns black, unplug the device from the wall. If you would
like to start the process over from the beginning or change the clinic id, press “Start Over” in the
menu bar at the top of the screen. This will return you to the welcome screen.
V.A.III. Safety Notes

Please be sure to keep the device away from water. The casing is not watertight and the
circuitry will likely be damaged, and there is a high risk of electrocution. Avoid touching any
wires inside the device while it is plugged in, and avoid contact with the plug when it is entering
or exiting an outlet. While the device should not pose any harm to your health, please confirm
with a medical professional before use if you have any unusual implants that may interfere with
the signal collection.
V.A.IV. Troubleshooting
The signal being recorded is not the proper electrocardiogram

Try disconnecting and reconnecting the sensor probes to the headphone jack to ensure a
tight fit. In addition, be sure that the electrodes are connected directly to the patient’s skin in the
configuration shown in Fig. 13. If this does not work, try shutting down the device from the
application, then unplug the device and plug it back in.
The digital keyboard disappeared for data entry

The keyboard may have become hidden behind the foreground tabs on the screen. Try
minimizing the application window and confirming that the keyboard is no longer present. If it is
not, close the application using the “x” in the top right corner, and then click on the terminal
button again to reopen the application. The keyboard should reappear on the data entry screens.
The application is malfunctioning/frozen

Close the application using the “x” in the top right corner, and then click on the terminal
button again to reopen the application. The keyboard should reappear on the data entry screens.
If this does not work, try shutting down the device from the application, then unplug the device
and plug it back in.
The electrocardiogram is extremely noisy

First, shut down the device from the application, and try plugging it into a different wall
outlet. If the noise remains, try disconnecting and reconnecting the sensor probes to the
headphone jack to ensure a tight fit. In addition, be sure that the electrodes are connected directly
to the patient’s skin in the configuration shown in Fig. 13. If this does not work, try shutting
down the device from the application, then unplug the device and plug it back in.
Doctor’s diagnosis is not being recorded



Check the syntax of the input. If there are strange characters such as exclamation points,
question marks, or any other characters that would not be accepted in a query, then remove those
characters and the diagnosis should be recorded in the database.
Unable to access patient ECG

From the “Home” Menu, remember to click the patient ID column of the table after
making your query using the information inserted into the two boxes on this page. If you click on
a different region, the page will not progress to the patient’s ECG.
Doctor/Clinic was not removed from the to be approved list

Switch to a different page, return to the approval list. If the doctor/clinic is still there.
Press the button and repeat one more time. If the doctor/clinic remains after that contact us.
V.A.V. Assembly Instructions

To build another device, first collect all parts described in Appendix Section V.E. Then,
remove the microSD card from the prototype, and connect it into your computer. Duplicate the
contents of the microSD onto another microSD card, and place this card into the new Raspberry
Pi. Follow the instructions that come with the 7” touchscreen to connect the Raspberry Pi and
touchscreen using the ribbon cable and two jumper cables attached from the Raspberry Pi pins 3
and 4 to 5V and GND on the display respectively.

Next, use the Eagle files, displayed in Figure 15, to mill a PCB, and solder the AD8232
and MCP3008 into the board. Connect the Raspberry Pi to the PCB according to the diagram in
Figure 3 by soldering jumper cables into the PCB. Then, print the device casing using the CAD
model, shown in Appendix Section V.C.II. Place the circuit, Raspberry Pi, and touchscreen
inside the casing. Feed the power plug for the Raspberry Pi and the sensor cables headphone jack
through the holes in the casing, and connect the sensor cables to the mount on the AD8232, and
the USB-C power cable into the USB-C port on the Raspberry Pi. Now, close the lid firmly. The
device is now fully assembled and ready for use.

V.B. Raspberry Pi Software Flow

Figure 14. Flow diagram depicting the software flow on the Raspberry Pi including the
graphical user interface, database interactions, and data acquisition and analysis



V.C. Building Plans
V.C.I. Circuit Schematic

Figure 15. Schematic diagram of the electrocardiogram recording circuit in Eagle that was
printed on PCB

V.C.II. Computer-Aided Design (CAD) Casing Models



Figure 16. Various views of both the lid and bottom portion of the case

V.C.III. Doctor and Administrator Website

Figure 19. User Login Page as well as Clinic/Doctor Application Page



Figure 20. Website Patient Lookup Page

Figure 21. Patient ECG viewing, machine learning output, and doctoral diagnosis page



Figure 22. Patient addition screen with successful alert

Figure 23. Doctor application screen with successful alert



Figure 24. Administrator home

Figure 25. Doctor approval screen.

V.D. Database Relational Schema
CREATE TABLE ECG_Reading(

ecg_id SERIAL PRIMARY KEY,
reading integer[] NOT NULL,
ml_res integer[],
doctor_opinion VARCHAR(500),
date_time_taken TIMESTAMP WITH TIME ZONE NOT NULL)



CREATE TABLE Admin(
username VARCHAR(20) PRIMARY KEY NOT NULL,
password VARCHAR(20) NOT NULL,
name VARCHAR(40))

CREATE TABLE Doctor(
medgroupid INTEGER NOT NULL,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(30) NOT NULL,
username VARCHAR(20),
password VARCHAR(20),
phone CHAR(15) NOT NULL,
address CHAR(200),
acct_status VARCHAR(10),
PRIMARY KEY (username))

CREATE TABLE Clinic(
clinic_id SERIAL PRIMARY KEY,
clinic_name CHAR(50) NOT NULL,
phone CHAR(15) NOT NULL,
address CHAR(200) NOT NULL,
acct_status VARCHAR(10))

CREATE TABLE Patient(
patient_id SERIAL PRIMARY KEY,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(30) NOT NULL,
gender CHAR(1),
dob DATE NOT NULL,
phone CHAR(15),
address CHAR(200))

CREATE TABLE TakeMeasurement(
patient_id integer REFERENCES Patient(patient_id) ON DELETE CASCADE,
ecg_id integer PRIMARY KEY REFERENCES ECG_Reading(ecg_id) ON DELETE CASCADE,
clinic_id integer REFERENCES Clinic(clinic_id))

CREATE TABLE Analyzed(
ecg_id integer PRIMARY KEY REFERENCES ECG_Reading(ecg_id) ON DELETE CASCADE,
doc_username VARCHAR(20) REFERENCES Doctor(username) ON DELETE CASCADE)

CREATE TABLE Doctor_Patient(
patient_id integer REFERENCES Patient(patient_id) ON DELETE CASCADE,
doc_username VARCHAR(20) REFERENCES Doctor(username) ON DELETE CASCADE,
PRIMARY KEY (patient_id))



V.E. Bill of Materials
Table 2. Bill of All Purchased Materials Used in Final Prototype (Excludes 3D and PCB

Printing Materials Used in the Makerspace)

Part Name Manufacturer Source Part Description

Raspberry Pi 4 Model B Raspberry Pi CanaKit Raspberry Pi Microcomputer
with AI Capabilities

AD8232 SparkFun Digi-Key Single Lead Heart Rate Monitor

MCP3008 Microchip
Technology

Adafruit 8-Channel 10-Bit ADC with SPI

Sensor Cable - Electrode
Pads (3)

SparkFun SparkFun Tricolor Sensor Cables with
Disposable Electrodes

Raspberry Pi 7”
Touchscreen LCD

Raspberry Pi CanaKit 800 x 480 Touchscreen Display
with Adapter Board

V.F. Testing Data
V.F.I. Artificial Intelligence Findings for 15 Tested Individuals

Table 3. Percent Likelihoods Exceeding 10% of Heart Conditions as Diagnosed by the
Artificial Intelligence for Each Test

Test Subject AI Result

1 93% Atrial Fibrillation

2 96% Myocardial Infarction

3 100% Atrial Fibrillation

4 99% Atrial Fibrillation

5 35% Atrial Fibrillation
62% Myocardial Infarction

6 39% Atrial Flutter
61% Myocardial Infarction

7 74% Atrial Fibrillation
25% Normal Sinus Rhythm

8 51% Atrial Fibrillation
48% Congestive Heart Failure

9 85% Atrial Fibrillation



15% Normal Sinus Rhythm

10 93% Atrial Fibrillation

11 91% Myocardial Infarction

12 99% Myocardial Infarction

13 88% Atrial Fibrillation
10% Myocardial Infarction

14 67% Atrial Fibrillation
32% Normal Sinus Rhythm

15 100% Atrial Fibrillation

V.G. Artificial Intelligence Training Datasets
● MIT-BIH Normal Sinus Rhythm Database [8]: Normal Sinus Rhythm
● BIDMC Congestive Heart Failure Database [8][9]: Congestive Heart Failure
● MIT-BIH Atrial Fibrillation Database [8][10]: Atrial Fibrillation
● PTB-XL [8][11][12]: Myocardial Infarction, Atrial Flutter, Atrial Fibrillation, Normal

Sinus Rhythm
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