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Cingulin binds to the ZU5 domain of scaffolding protein ZO-1
to promote its extended conformation, stabilization, and
tight junction accumulation
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Zonula occludens-1 (ZO-1), the major scaffolding protein of
tight junctions (TJs), recruits the cytoskeleton-associated pro-
teins cingulin (CGN) and paracingulin (CGNL1) to TJs by
binding to their N-terminal ZO-1 interaction motif. The
conformation of ZO-1 can be either folded or extended,
depending on cytoskeletal tension and intramolecular and
intermolecular interactions, and only ZO-1 in the extended
conformation recruits the transcription factor DbpA to TJs.
However, the sequences of ZO-1 that interact with CGN and
CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not
known. Here, we used glutathione-S-transferase pulldowns and
immunofluorescence microscopy to show that CGN and
CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that
this domain is required for CGN and CGNL1 recruitment to
TJs and to phase-separated ZO-1 condensates in cells. We
show that KO of CGN, but not CGNL1, results in decreased
accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the
ZU5 domain showed decreased accumulation at TJs, was
detectable along lateral contacts, had a higher mobile fraction
than full-length ZO-1 by fluorescence recovery after photo-
bleaching analysis, and had a folded conformation, as deter-
mined by structured illumination microscopy of its N-terminal
and C-terminal ends. The CGN–ZU5 interaction promotes the
extended conformation of ZO-1, since binding of the CGN–

ZO-1 interaction motif region to ZO-1 resulted in its interac-
tion with DbpA in cells and in vitro. Together, these results
show that binding of CGN to the ZU5 domain of ZO-1 pro-
motes ZO-1 stabilization and accumulation at TJs by promot-
ing its extended conformation.

Tight junctions (TJs) are essential to compartmentalize
tissues and maintain body homeostasis (1–3) and consist of
transmembrane proteins and a cytoplasmic plaque of scaf-
folding and adaptor proteins, including ZO proteins (ZO-1,
ZO-2, and ZO-3) (4–6), cingulin (CGN), and paracingulin
(CGNL1, JACOP [junction-associated-coiled-coil protein]),

which connect membrane proteins to the cytoskeleton
(reviewed in Refs. (7–9)).

CGN is exclusively localized at TJs (10), where it is recruited
by ZO-1 (11). CGNL1 is localized both at TJs and at cadherin-
based circumferential adherens junctions (AJs) (zonulae
adhaerentes [ZA]) (12), where it is recruited by ZO-1 and
pleckstrin homology domain–containing family A member 7
(PLEKHA7), respectively (13). CGN and CGNL1 are homo-
dimers that comprise globular head, coiled-coil rod, and
globular tail domains and interact with ZO proteins, guanine
nucleotide exchange factors (GEFs), and GTPase-activating
proteins, as well as cytoskeletal proteins, such as actin,
myosin, and microtubules (8, 10, 12, 14–19). Although binding
of CGN and CGNL1 to C-terminal ZO-1 sequences is sug-
gested by yeast-2-hybrid screens (20) and BioID experiments
(21), the precise sequences of ZO-1 that bind to CGN and
CGNL1 have not been mapped.

Despite being the first TJ protein discovered, themechanisms
by which ZO-1 assembles at TJs and interacts with other pro-
teins to regulate junctional structure remain poorly understood.
Studies using early Xenopus embryos have shown that fusion of
ZO-1-containing vesicles with basolateral membranes is fol-
lowed by sorting of ZO-1 to CGN-containing apical TJs (22).
Fluorescence recovery after photobleaching (FRAP) experi-
ments demonstrate that the TJ structure is highly dynamic and
that junction-associated ZO-1 exchanges with a mobile cyto-
plasmic ZO-1 pool (23). Within junctions, ZO-1 can be either
extended or folded, depending on actomyosin tension and
heterodimerization with ZO-2 (24). Cytoplasmic ZO-1 can as-
sume a liquid–liquid phase state, and ZO-1 extension triggers a
phase transition that drives TJ assembly (25). Separate work has
found that the C-terminal half of ZO-1 is required for junctional
mechanosensitivity (26) and for myosin light-chain kinase–
dependent regulation of ZO-1 FRAP behavior and barrier
function (27). As a whole, these data suggest that the C-terminal
region of ZO-1 mediates interactions that modulate ZO-1 dy-
namics, conformation, liquid–liquid phase separation and TJ
assembly, and barrier regulation (28).

Here, we show that CGN and CGNL1 bind to the C-terminal
ZU5 domain of ZO-1 and we test the hypothesis that this
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interaction induces ZO-1 extended conformation, and its as-
sembly and stabilization at TJs. Our results demonstrate that
ZU5 domain–mediated interaction with CGN promotes the
ZO-1 extended conformation and is required for stabilization
and efficient accumulation of ZO-1 and ZO-3, but not ZO-2, at
epithelial TJs.

Results

CGN and CGNL1 bind to the ZU5 domain of ZO-1

To map the region of ZO-1 that binds to CGN, we
expressed ZO-1 prey constructs comprised of different

C-terminal fragments of ZO-1 as GFP fusion proteins (scheme
of ZO-1 prey constructs in Fig. 1A, prey normalizations in
Fig. 1, B and C). We tested how these preys interact with a bait
consisting of glutathione-S-transferase (GST) fused to a small
N-terminal CGN fragment (CGN(1-70)) that contains the ZO-
1 interaction motif (ZIM), which mediates CGN binding to
ZO-1 (29) (bait scheme in Fig. 1A). Only ZO-1 preys that
contained the C-terminal ZU5 domain (ZU5 = 1634–1748)
interacted by GST pulldown with the ZIM-containing (GST–
CGN(1-70)) bait (Fig. 1D, GST negative control in Fig. 1E).
The binding of the ZIM-containing fragment to a 129-residue
ZO-1 C-terminal fragment (Cter = 1619–1748) that includes
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Figure 1. Cingulin (CGN) and paracingulin (CGNL1) bind to the ZU5 domain of ZO-1. A, schematic representation of ZO-1 (structural domains are
denoted by colors and annotated), GFP-tagged ZO-1 prey constructs, and GST-tagged CGN bait construct used for pulldowns (D–G). B–H, IB analysis, using
anti-GFP antibodies, of normalized preys (B and C), and of GST pulldowns using either GST-CGN (1–70 amino acids) (D and G) or GST (E and H) as baits, and
GFP-tagged fragments of ZO-1 as preys. F and I, densitometric quantification of binding of indicated preys to the GST-CGN (1–70 amino acids) fragment.
Preys in (B) refer to pulldowns shown in (C–F) (large ZO-1 fragments). Preys in (C) refer to pulldowns shown in (G–I) (Cter/ZU5 domain and its fragments).
Numbers indicate migration of prestained size markers. Baits are indicated in red, and preys are indicated in green text. Ponceau S-stained baits are shown
below the IB. GST alone is used as a negative control bait. J and K, scheme of CGN prey and ZO-1 bait constructs (J) used in pulldowns in (K). K, IB analysis,
using anti-GFP antibodies, of GST pulldowns using GST-hZO-1-CterLarge (CterL, 1523–1748) as a bait and either GFP or GFP-tagged CGN constructs as preys.
L, densitometric quantification of binding of CGN preys to the GST-hZO-1-CterL bait (IB in [K]). M–O, scheme of CGNL1 prey and ZO-1 bait constructs (M) and
IB analysis (N) and densitometric quantification (O) of IB using anti-CGNL1 antibodies, of GST pulldowns using GST-hZO-1CterL as a bait and hCGNL1
constructs as preys.
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the ZU5 sequence was greater than fourfold stronger than to
larger fragments (Fig. 1D and quantification in Fig. 1F). Frag-
menting the C-terminal ZU5-containing sequence decreased
the interaction with the CGN(1–70) bait (Fig. 1, G and H,
quantification in Fig. 1I), indicating that the integrity of the
ZU5 domain is required for high-affinity binding of ZO-1 to
CGN. Moreover, a bait comprising GST fused to the C-ter-
minal 225 residues of ZO-1 (ZO-1-CterLarge, 1523–1748),
which also contains the complete ZU5 sequence, interacted
strongly with a full-length (FL) CGN prey, but only very
weakly with a deletion of CGN lacking the first 70 residues,
which contain the ZIM region (scheme in Fig. 1J, pulldown
and quantification in Fig. 1, K and L). This indicates that the
ZU5 domain binds to the same region of CGN as FL ZO-1
(29), i.e. it only binds to the N terminus of CGN. Similarly,
FL CGNL1 interacted with the ZU5-containing ZO-1-
CterLarge bait, but CGNL1 lacking the ZIM region did not
(scheme in Fig. 1M, pulldown and quantification in Fig. 1, N
and O). These results demonstrate that both CGN and CGNL1
interact with the ZU5 domain of ZO-1 through their ZIM-
containing N-terminal sequences.

The ZU5 domain of ZO-1 is required for CGN and CGNL1
recruitment to TJs and to ZO-1 condensates in cells

ZO-1 recruits CGN and CGNL1 to TJs (11, 13), and ZO-1-
KO cells completely lack junctional CGN (arrowhead in mixed
WT-KO culture, Fig. 2A) (11). To assess the physiological
relevance of the interaction of the ZU5 domain with CGN and
CGNL1, we rescued ZO-1-KO Eph4 cells with WT and
mutated constructs of ZO-1 and analyzed the junctional
recruitment of CGN and CGNL1. FL ZO-1 efficiently rescued
endogenous CGN signal at TJs (arrow, Fig. 2B). In contrast, a
construct of ZO-1 lacking the last 129 residues and thus the
ZU5 domain (ZO-1–ΔZU5, 1–1619) was targeted to TJs (ar-
row in red channel, Fig. 2C) but failed to rescue CGN junc-
tional labeling (arrowhead in green channel, Fig. 2C),
demonstrating that the ZU5–CGN interaction is required for
CGN recruitment to TJs in cells.

CGNL1 is localized both at TJs and at AJs (ZA) (12). In
agreement, cells KO for ZO-1 showed a decrease but not a
complete loss of CGNL1 junctional labeling (arrowhead in red
channel in Fig. 2D, quantification in Fig. 2G, left graph) (see
also Ref. (13)). Expression of FL ZO-1 in ZO-1-KO cells
rescued complete CGNL1 junctional labeling (arrow, in
Fig. 2E; quantification in Fig. 2G, right graph), whereas
expression of C-terminally truncated ZO-1, lacking the ZU5
domain (myc-ZO-1-ΔZU5), failed to rescue complete CGNL1
junctional labeling (arrowhead in Fig. 2F, quantification in
Fig. 2G, right graph).

Next, we examined the recruitment of CGN and CGNL1 in
ZO-1 phase-separated condensates, which are produced when
ZO-1 is overexpressed in cells (25). Labeling for both CGN or
CGNL1 was colocalized with ZO-1 in condensates generated
in Madin–Darby canine kidney (MDCK) cells by over-
expression of FL ZO-1 (arrows, top, and bottom, respectively,
for CGN and CGNL1; Fig. 2H). In contrast, CGN and CGNL1
were not detected in ZO-1 condensates in cells overexpressing

a mutant of ZO-1 lacking the ZU5 domain (arrowheads, top,
and bottom, respectively, for CGN and CGNL1; Fig. 2I).

Together, these results demonstrate that the ZU5 domain of
ZO-1 interacts with the ZIM-containing N-terminal regions of
both CGN and CGNL1 in vitro and in cells, and this interac-
tion is required for the recruitment of CGN and CGNL1 to
both TJs and ZO-1 condensates in cells.

CGN but not CGNL1 promotes the efficient accumulation of
ZO-1 at TJs

Since the ZU5 domain is involved in intramolecular in-
teractions that we proposed to occur in and stabilize the folded
conformation of ZO-1 (24), we wondered whether CGN and
CGNL1 could regulate ZO-1 conformation and TJ assembly.
To address this question, we generated clonal lines of mouse
mammary (Eph4), mouse cortical collecting duct epithelial cell
line (mCCD), and dog kidney (MDCK II) epithelial cells with
CRISPR–Cas9 KO of either CGN, or CGNL1, or both (Fig. S1,
A–Q). CGN levels were not altered in CGNL1-KO cells and
vice versa, indicating no compensatory upregulation (Fig. S1R).
Moreover, the levels of expression of several TJ and AJ protein
markers, including ZO-1, ZO-2, and ZO-3, E-cadherin, and
afadin (Fig. S1R), and the proliferation rates of the KO lines
(Fig. S1S) were similar in WT and KO lines, indicating that the
KO of either CGN, CGNL1, or both does not result in dra-
matic changes either in junctional protein expression or cell
growth. However, we noticed that ZO-1 junctional labeling
was decreased in all three independent CGN-KO MDCK
clonal lines, when compared with WT (arrowheads, Fig. S1G).

To further examine the role of CGN and CGNL1 in the
junctional accumulation of ZO-1, we compared ZO-1 immu-
nofluorescent labeling in cultures of WT cells mixed together
with either CGN-KO or CGNL1-KO cells, using either Eph4
(Figs. 3 and S2, A, B, H and I), mCCD (Fig. S2, C, D, J and K) or
MDCK (Figs. S2, E, F, L and M) cells, and either PLEKHA7 or
occludin as a junctional reference marker protein for quanti-
fication. ZO-1 immunofluorescent signal at junctions was
reduced in CGN-KO Eph4 (arrowheads, Figs. 3A and S2A,
quantifications in Fig. S2B), mCCD (arrowheads, Fig. S2C,
quantifications in Fig. S2D), and MDCK cells (arrowhead,
Fig. S2E, quantifications in Fig. S2F), when compared with
neighboring WT cells. In contrast, ZO-1 labeling was similar
in WT versus CGNL1-KO Eph4 (arrows, Figs. 3B and S2J,
quantifications in Fig. S2K), mCCD (arrows, Fig. S2H, quan-
tification in Fig. S2I), and MDCK cells (arrows, Figs. S1M and
S2L, quantifications in Fig. S2M).

The decrease in ZO-1 labeling in CGN-KO cells was
observed not only using different cell lines but also using three
distinct antibodies against ZO-1 (Fig. S2, A, C, H, and J).
Furthermore, immunoblot (IB) analysis with different anti-
ZO-1 antibodies showed that WT cells and different clonal
lines KO for either CGN or CGNL1 have similar levels of
expression of both α(+) and α(−) isoforms of ZO-1 (Fig. S2, G
and N). This indicates that decreased ZO-1 accumulation at
TJs of CGN-KO cells is not caused by either protein degra-
dation or a selective loss of a specific isoform, or to epitope
availability. Together, these observations indicate that the

Cingulin–ZU5 interaction regulates ZO-1
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phenotype of either reduced or normal ZO-1 accumulation at
junctions in CGN-KO and CGNL1-KO cells, respectively, is
not dependent either on cell type, or antibody reactivity, or
isoform expression.

Next, to confirm that the reduction in ZO-1 labeling in
CGN-KO cells was specifically caused by the loss of CGN, and
not to clone-dependent variations, we rescued the localization
of ZO-1 through exogenous CGN expression. FL myc-tagged
CGN rescued ZO-1 junctional accumulation (arrows in
Fig. 3C, CGN FL-myc, and quantification in Fig. 3E), whereas a
mutant of CGN lacking the first 70 amino acid residues, which
contain the ZIM, did not localize at junctions and did not
rescue ZO-1 junctional labeling (arrowheads, Fig. 3C, mCGN-
Δ1-70-myc, quantification in Fig. 3E).

We also asked whether CGN overexpression in the
background of WT cells would affect ZO-1 accumulation.
Neither the overexpression of FL CGN nor the N-termi-
nally truncated mutant that fails either to bind to ZO-1 or
target to TJs resulted in significant changes in ZO-1
junctional labeling (Fig. 3D, quantification in Fig. 3E),
suggesting that in WT cells, ZO-1 junctional pools are
already saturated.

The ZU5 domain promotes the stabilization of ZO-1, its
accumulation at apical junctions, and its less dynamic FRAP
behavior

We next evaluated the contribution of the ZU5 domain to
ZO-1 localization at TJs. Exogenous enhanced GFP (eGFP)-
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Figure 2. Cingulin (CGN) and paracingulin (CGNL1) are recruited to TJs and to ZO-1 condensates by the ZU5 domain of ZO-1. A–F, immunofluo-
rescence (IF) microscopy analysis of the localization of endogenous CGN (A–C), CGNL1 (D–F), and PLEKHA7 (used as an apical junction marker), and of either
endogenous ZO-1 (A and D) or exogenous myc-tagged ZO-1 rescue constructs (B–F) either in mixed WT-ZO-1-KO Eph4 cells (A and D) or in Eph4 ZO-1-KO
cells rescued with either with FL-ZO-1 (B and E) or with a C-terminal truncation of ZO-1 lacking the ZU5 domain (1–1619) (C and F) (red). Arrows and
arrowheads indicate normal and reduced/undetectable staining, respectively. The scale bars represent 10 μm. G, quantification of junctional CGNL1 in mixes
of WT-KO cells (D) (left graph) and in ZO-1-KO cells rescued with either FL or C-terminally truncated ZO-1 (E and F) (right graph). Dots show replicates (n =
23), and bars represent mean ± SD. One-way ANOVA with post hoc Dunnett’s test (****p < 0.0001, ns). H and I, IF microscopy analysis of ZO-1 condensates
generated by overexpression of either FL myc-ZO-1-HA (H) or myc-ZO-1-ΔZU5-HA (I) in WT MDCK cells using antibodies against HA (green, to detect
exogenous ZO-1) and against either endogenous CGN (red, top panels) or CGNL1 (red, bottom panels). The scale bars represent 10 μm.
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tagged human ZO-1, either FL (eGFP-hZO-1) or lacking the
ZU5 domain (eGFP-hZO-1-ΔZU5), was expressed in MDCK
cells, and junctional signal intensity was evaluated by confocal
immunofluorescence (IF) microscopy (Fig. 4, A–C). FL ZO-1
was present at junctional sites and restricted to the apical
junctional complex (white arrow, Fig. 4A), since it was not
detectable at lateral contacts (red arrowhead, Fig. 4A,
orthogonal xz section). In contrast, exogenous eGFP-hZO-1-
ΔZU5 was detectable both at apical junctions (white arrow,
Fig. 4B) and along lateral contacts (red arrow, Fig. 4B).
Moreover, eGFP-hZO-1-ΔZU5 intensity at apical junctional
complexes, relative to E-cadherin, was significantly reduced
when compared with FL ZO-1 (Fig. 4B, quantification in
Fig. 4C). These observations suggest that the ZU5 domain is
required for efficient ZO-1 recruitment and retention at TJs.

ZO-1 exhibits dynamic behavior, and FRAP studies show
that ZO-1 exists in nonexchangeable and exchangeable

junction-associated and cytoplasmic pools (23). To study the
impact of the ZU5 domain on ZO-1 dynamic behavior, we
compared FRAP behavior of FL eGFP-hZO-1 with that of
eGFP-hZO-1-ΔZU5. ZU5 deletion significantly accelerated
FRAP recovery (Fig. 4, D and F, representative kymographs in
Fig. 4G, live imaging in Supporting Movies M1 and M2) and
increased mobile fraction (Fig. 4E). Together, these results
indicate that the ZU5 domain enhances ZO-1 anchoring at the
TJs.

Neither CGN nor CGNL1 control ZO-2 TJ assembly, but CGN
promotes the accumulation of ZO-3 at TJs

CGN binds not only to ZO-1 but also to ZO-2 and ZO-3
(14). Thus, we asked whether either CGN or CGNL1 KO or
double CGN/CGNL1 KO affects the junctional accumulation
of ZO-2 and ZO-3, in addition to ZO-1 (Figs. S3, S4, and 5).IF
microscopy analysis showed that in the background of either
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Figure 3. The cingulin (CGN)–ZU5 interaction is required for the efficient accumulation of ZO-1 at TJs. A–D, IF microscopy analysis of junctional ZO-1
labeling either in mixed cultures of Eph4 WT cells and cells KO for either CGN (A) or paracingulin (CGNL1) (B) or in Eph4 CGN-KO cells rescued either with
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(CGN-FL-myc) or CGN-Δ1-70-myc, or GFP (negative control) (D). PLEKHA7 (cyan) was used as a reference junctional marker for quantifications (E). Arrows and
arrowheads indicate normal and reduced/undetected junctional staining, respectively. The scale bars represent 10 μm. E, quantification of ZO-1 junctional IF
signal in either WT or CGN-KO cells after rescue with either GFP-myc or FL or N-terminally truncated CGN constructs. Data are represented as mean ± SD
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Eph4, or mCCD, or MDCK cells, junctional ZO-2 labeling was
not affected by KO of either CGN (Fig. S3A) or CGNL1
(Fig. S3B). IB analysis further indicated that expression of
ZO-2 was not significantly affected by the KO of either CGN
(Fig. S3C) or CGNL1 (Fig. S3D). In contrast, ZO-3 junctional
labeling was significantly decreased in CGN-KO mCCD and
MDCK cells (arrowheads in Fig. S4A, quantification in
Fig. S4B) and in double-KO MDCK cells (arrowhead, Fig. 5B)
but not in CGNL1-KO mCCD and MDCK cells (arrow in
Fig. S4C, quantification in Fig. S4D). The expression levels of
ZO-3 were not affected in either CGN-KO or CGNL1-KO
cells (Fig. S4, E and F). Since ZO-1 forms heterodimers with
ZO-3 (30), we asked whether the reduced junctional levels of
ZO-3 could be due to reduced ZO-1. To address this question,
we overexpressed either FL CGN or FL ZO-1 in the back-
ground of CGN-KO cells. Only the expression of CGN

resulted in increased accumulation of ZO-3 labeling at junc-
tions (double arrows, Fig. S4G, quantification in Fig. S4H),
indicating that reduced junctional ZO-3 in CGN-KO cells
depends on CGN and not on ZO-1 levels.

CGN interacts with ZO-3 (14), but the region of ZO-3 that
interacts with CGN is not known. By GST pull-down assay,
both the C-terminal regions of ZO-1 and ZO-3 interacted with
FL CGN, but the >10-fold weaker IB signal indicated that
ZO-3 binds to CGN with significantly lower apparent affinity
with respect to the ZU5 domain of ZO-1 (Fig. S5A). The
C-terminal 382 residues of ZO-3 bound to both CGN and
CGNL1 (Fig. S5, B and C), and the ZU5 domain of ZO-1
bound to FL CGN with much higher apparent affinity than
FL CGNL1, based on >10-fold stronger IB signal (Fig. S5C).

The observation that the KO of CGNL1 has no detectable
effect on either ZO-1 or ZO-3 accumulation at TJs (Figs. 3B
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Figure 4. The ZU5 domain of ZO-1 regulates the dynamics and TJ stabilization of ZO-1. A and B, IF microscopy analysis of exogenous eGFP-tagged ZO-
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indicates undetectable signal of FL ZO-1 along lateral regions. C, quantification of apical junctional eGFP-hZO-1 signal relative to E-Cad in either FL eGFP-
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eGFP-ZO-1ΔZU5 (bottom). Related Movies S1 and S2 show live imaging of FRAP of cells expressing either eGFP-ZO-1-FL or eGFP-ZO-1ΔZU5.
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and S4, C and D) could reflect either the low CGNL1
expression in epithelial cells (31), or the partial localization
of CGNL1 at TJs (12, 13), or to the relatively weak binding of
CGNL1 to ZO-1 ZU5 domain (Fig. S5C), or a combination
of these mechanisms. To determine if low levels of expression
of CGNL1 are involved, we exogenously overexpressed either
CGN or CGNL1 in CGN/CGNL1-double-KO cells. IF mi-
croscopy showed a reduced junctional accumulation of both
ZO-1 (arrowhead in magnified inset, Fig. 5A) and ZO-3
(arrowhead in magnified inset, Fig. 5B) in double-KO cells.
Importantly, while CGN re-expression in double-KO cells
resulted in increased labeling for both ZO-1 (arrow in
magnified inset, Fig. 5C) and ZO-3 (arrow in magnified inset,
Fig. 5D), no rescue of either ZO-1 or ZO-3 labeling was
observed in cells over-expressing either FL CGNL1 (arrow-
heads in magnified insets, Fig. 5, E and F) or GFP alone (ar-
rowheads in magnified insets, Fig. 5, G and H). These results
indicate that CGNL1, even when overexpressed, does not
promote TJ accumulation of ZO-1 and suggest that low affinity
of interaction of CGNL1 with ZO-1, and CGNL1 dual locali-
zation at the TJ and ZA, are responsible for the lack of effect of
CGNL1 KO on ZO-1 accumulation at TJs.

CGN promotes the extended conformation of ZO-1 in cells

ZO-1 undergoes heterodimerization and tension-dependent
folding and stretching/extension (24). In stretched/extended
ZO-1, the N and C terminus of ZO-1 are detected as spatially

separated by structured illumination microscopy (SIM),
whereas in folded ZO-1, their signals spatially overlap (24).
Under normal conditions in confluent epithelial cells,
junction-associated ZO-1 is extended and sequesters the
transcription factor DbpA at TJs (24). ZO-2 binding to ZO-1
at TJs promotes the extended state even when actomyosin
contractility is reduced. However, when cells are depleted of
ZO-2 and the integrity and contractility of the actomyosin
cytoskeleton is disrupted, for example, by treatment with the
myosin inhibitor blebbistatin, junctional ZO-1 becomes folded
and does not recruit DbpA to junctions (24). Thus, junctional
DbpA is an indicator of extended ZO-1 in cultured cells. We
have proposed that the ZU5 domain contributes to intra-
molecular interactions that stabilize the folded conformation
(24), and therefore we hypothesized that CGN binding to ZU5
could block ZU5-dependent intramolecular interactions and
promote the ZO-1 extended conformation. To test this hy-
pothesis, we overexpressed a small N-terminal fragment of
CGN, that contains the ZIM motif (GFP-CGN(1-70)), in Eph4
cells and assessed junctional DbpA pools. As we have shown
previously (24), ZO-1 retained DbpA at junctions in ZO-2-
depleted cells (arrows in Fig. 6A, cyan panels). In addition,
when expressed in these cells, the CGN ZIM-containing
construct was localized junctionally, consistent with its bind-
ing to ZO-1 (arrow, Fig. 6A, bottom green panel), and its
expression did not affect DbpA labeling. In contrast, as shown
previously, DbpA junctional localization was undetectable in
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Figure 5. Cingulin (CGN) but not paracingulin (CGNL1) promotes the efficient accumulation of ZO-1 and ZO-3 at tight junctions. A–H, IF microscopy
analysis and quantification of junctional labeling for endogenous ZO-1 (A, C, E, and G) and ZO-3 (B, D, F, and H) either in mixes of WT cells and CGN/CGNL1
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cells depleted of ZO-2 and treated with blebbistatin (arrow-
head, Fig. 6B, upper cyan panel) (24). Importantly, over-
expression of the CGN ZIM construct (GFP-CGN(1-70)) in
these cells rescued the junctional localization of DbpA (arrow
in Fig. 6B, bottom cyan panel), consistent with the extended
conformation of ZO-1. To further confirm the role of CGN in
the extended conformation of ZO-1, we used CGN-KO Eph4
cells. Depletion of ZO-2 in these cells resulted in decreased
labeling for DbpA at junctions (arrowhead in Fig. 6C, bottom
green panel), indicating that loss of CGN phenocopies treat-
ment of ZO-2-depleted cells with blebbistatin.

Next, we used SIM to evaluate the role of the ZU5 domain,
and hence ZO-1 interaction with CGN, in the conformation of
ZO-1. ZO-1 tagged with N-terminal myc and C-terminal
hemagglutinin (HA) tags was expressed in the background of
Eph4 ZO-1-KO cells, and cells were labeled with anti-myc and
anti-HA antibodies, to detect the N and C termini of ZO-1
(24), and were depleted of ZO-2 with or without blebbistatin
(IB analysis in Fig. 6D). As shown previously, the tags were
detected as spatially separated when FL ZO-1 was expressed in
cells treated either with si-Control or with depletion of ZO-2
without blebbistatin (green/red arrows in Fig. 6, E and F,
alignment of beads in Fig. 6J, signal/distance profile in Fig. 6K).
In contrast, the tags were overlapped when cells were depleted
of ZO-2 and simultaneously treated with blebbistatin, indi-
cating the folded conformation (yellow arrow in Fig. 6G,
signal/distance profile in Fig. 6K) (24). When a construct of
ZO-1 lacking the ZU5 domain was expressed (myc-ZO-1-
ΔZU5-HA), the ends of ZO-1 were overlapped in both the
presence (yellow arrow, Fig. 6H, signal/distance profile in
Fig. 6K) and the absence (yellow arrow, Fig. 6I, signal/distance
profile in Fig. 6K) of ZO-2, without treatment with blebbis-
tatin. Thus, the lack of the ZU5 domain promotes the folded
conformation of ZO-1.

CGN promotes the extended conformation of ZO-1 in vitro

GST-DbpA interacts with the isolated ZPSG region of ZO-1
by pull-down assay, but not with FL ZO-1 (32), suggesting that
purified recombinant FL ZO-1 in solution is in a folded
conformation (24). Heterodimerization with ZO-2 promotes
the interaction of ZO-1 with DbpA in vitro, suggesting that
this heterodimerization promotes the extended ZO-1 confor-
mation by interfering with intramolecular ZO-1 interactions
(24). In summary, in cells and in vitro, DbpA only binds to
extended ZO-1, thus interaction with DbpA in vitro can be
used as an assay for the conformational state of ZO-1. To test
whether CGN unfolds ZO-1 in vitro, we used the previously
established pull-down assay of binding of FL ZO-1 to GST-
DbpA, in the presence of increasing amounts of either GFP
or GFP-CGN(1–70) (Fig. 7, A–C). IB analysis showed that
addition of sufficient amounts of GFP-CGN(1–70) resulted in
detectable ZO-1 in GST-DbpA pulldowns, whereas addition of
the same volumes of GFP-containing human embryonic kid-
ney (HEK) lysate did not result in any detectable ZO-1 (Fig. 7,
A and B, prey normalization in Fig. 7C). Moreover, the GST-
DbpA-ZO-1 interaction was not an artifact because of bind-
ing of CGN(1–70) to DbpA, since the GFP-CGN(1–70) prey

did not interact with GST-DbpA, which could instead still
bind to its known interactor GEF-H1 (33), used as a positive
control (Fig. 7D). Thus, since CGN(1–70) does not bind to
DbpA, the rescue of junctional DbpA by CGN(1–70) (Fig. 6B)
is not caused by its potential binding to DbpA but by the
extended conformation of ZO-1.

We asked whether the ability of CGN to extend ZO-1 was
due to a greater affinity of binding of CGN to the ZU5 domain,
compared with the ZPSG1. To address this question, we
measured the dissociation equilibrium constant (Kd) for the
interaction of the CGN(1–70) sequence with ZU5, which was
40.4 nM (Fig. 7, E–G), whereas the calculated Kd for the
ZPSG–ZU5 interaction is 66 nM (24). This suggests that CGN
can promote the ZO-1 extended conformation by competi-
tively binding to the ZU5 domain. Collectively, these
experiments indicate that the interaction between the ZIM-
containing region of CGN to the ZU5 domain of ZO-1 is
required for CGN recruitment to junctions and promotes the
extended conformation of ZO-1 and its binding to DbpA
(Fig. 7H).

Discussion

Here, we investigated how CGN and CGNL1 regulate the TJ
accumulation, dynamics, and conformation of ZO-1, a major
protein involved in scaffolding of TJ transmembrane proteins,
organization of the apical actomyosin cytoskeleton, and early
embryo survival (34–38).

The ZU5 domain, a 110-residue domain at the C terminus
of ZO-1 (39), was previously reported to promote efficient
accumulation of ZO-1 at cell boundaries (40) and to interact
with the Cdc42 effector kinase myotonic dystrophy kinase-
related Cdc42-binding kinase β and with the Rho GEF ARH-
GEF11 (41–43). However, a role of these proteins in regulating
ZO-1 accumulation at TJs was not described. Our results show
that both CGN and CGNL1 bind to the ZU5 domain, albeit
probably with quite different binding affinities, and that CGN
is required to promote the efficient TJ accumulation not only
of ZO-1, consistent with previous observations (44), but also of
ZO-3. In contrast, CGNL1 does not affect the TJ assembly of
either ZO-1 or ZO-3, and overexpression of CGNL1 does not
rescue either ZO-1 or ZO-3 at junctions of double-KO cells,
suggesting that CGNL1 binds too weakly to the ZU5 domain
of ZO-1 to regulate its TJ assembly. A construct of ZO-1
lacking the ZU5 domain shows reduced accumulation at TJs,
suggesting that CGN plays a key role in regulating TJ assembly
of ZO-1. The mechanisms that regulate the TJ assembly of
ZO-3 are poorly understood. Although ZO-3 can hetero-
dimerize with ZO-1 (45), the observation that overexpression
of ZO-1 did not rescue the decreased junctional accumulation
of ZO-3 in CGN-KO cells suggests that CGN does not control
ZO-3 accumulation at TJs through ZO-1. In addition,
although we identified an interaction of the C-terminal region
of ZO-3 with CGN, the role of this region in ZO-3 dynamics
and conformation is not known. Thus, future studies should
investigate the basis for ZO-3 assembly at TJs, its potential
mechanoregulation, and the mechanisms through which CGN
regulates ZO-3 accumulation at TJs.
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We provide evidence that CGN binding to the ZU5 domain
promotes the extended conformation of ZO-1. Junctional
DbpA labeling is an established assay to detect the extended

conformation of ZO-1, and we showed previously that both
depletion of ZO-2 and simultaneous disruption of the acto-
myosin cytoskeleton, for example by treatment with
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blebbistatin, are required to promote ZO-1 extended confor-
mation in WT cells (24). Here we show, first, that over-
expression of the ZO-1-binding fragment of CGN rescued
junctional DbpA in ZO-2-depleted cells treated with blebbis-
tatin. Second, KO of CGN was sufficient to abolish junctional
DbpA localization in cells depleted of ZO-2, without blebbis-
tatin treatment. Third, the ZO-1-binding N-terminal fragment

of CGN was sufficient to promote the ZO-1-extended
conformation in vitro, based on its interaction with DbpA in
GST pulldowns. Fourth, SIM of exogenous ZO-1 with N-ter-
minal and C-terminal tags showed that ZO-1 lacking the ZU5
domain is in a folded conformation under conditions in which
FL ZO-1 is extended. Since the ZO-1 construct lacking the
ZU5 domain is detectable laterally when exogenously

A G-CGN 1-70

no
 ly

sa
te

co
ntr

ol

250 IB:ZO-1
5 10 50 100μl

Ba
it

G
ST

-D
bp

A
(P

on
ce

au
S)

inp
ut 

(ZO-1)

75

GFP

no
 ly

sa
te

co
ntr

ol

250 IB:ZO-1
5 10 50 100μlinp

ut 
(ZO-1)

75 Ba
it

G
ST

-D
bp

A
(P

on
ce

au
S)

GFP
G-C

GN 1-
70

IB:
GFP

INPUT 3rd protein

inp
ut 

(H
A-D

bp
A)

GST

G-C
GN 1-

70

G-G
EFH1-C

1

50

50

37

IB:HA

Ba
its

C

D

H
ZO-1 FOLDED

ZO-1 EXTENDED
DbpA

ZU5 domain
ZIM

CINGULIN

ZPSG domain

no
 be

ad
s

GFP-ZO-1-Cter (1619-1748)
13 26 66 132 165 198 231 2640

IB: GFP

13 26 165 231

beads

50

beads

50 IB:
GFP

GST-CGN 1-70
beadsE

F

300

0.75

1

0.5

0.25

0
50 100 150 200 250

GST-CGN 1-70 (nM)

control (beads only)

FR
AC

TI
O

N 
BO

UN
D

GFP-ZO-1-Cter

Kd= 40.4 nM

G

B

ZU5 domain

37

25

50

50

Figure 7. Cingulin (CGN) binding to the ZU5 domain extends ZO-1. A and B, IB analysis, using anti-ZO-1 antibodies, of full-length ZO-1 prey (from
baculovirus-infected insect cells) in GST pulldowns using GST-DbpA as a bait and increasing amounts of either GFP-CGN(1–70) (A) or GFP (B, negative
control) as third protein. Note that HEK cell lysates contain undetectable amounts of endogenous ZO-1 (”control” lane). C, IB analysis of normalization of
third added protein (either GFP or GFP-CGN(1–70), with anti-GFP antibodies). D, IB analysis of HA-DbpA prey in GST pulldowns using GST-CGN(1–70) and
GST-GEF-H1 as baits. E–G, measurement of the affinity of interaction between CGN(1–70) and Cter/ZU5. E, IB analysis of supernatant depletion assay.
Depletion is achieved by adding increasing amounts of GST-CGN(1–70)-coated beads to the supernatant containing prey protein. Supernatant depletion by
beads alone (control) is shown in (F). Numbers below each lane (K–I) indicate concentration (nanomolar) of recombinant bait protein used to deplete
supernatant. G, plots of equilibrium binding isotherms, where fraction of prey protein bound (total minus remaining) is plotted against the concentration of
the GST-CGN(1–70) used for depletion (24). H, scheme showing conformational change of ZO-1 from folded to extended, and consequent interaction of
DbpA with the ZPSG domain of ZO-1, following binding of CGN to the ZU5 domain.

Cingulin–ZU5 interaction regulates ZO-1

10 J. Biol. Chem. (2022) 298(4) 101797



expressed, we speculate that this lateral pool of ZO-1 is imaged
by SIM as folded in cells containing ZO-2. Concerning the
mechanisms through which CGN promotes the extended
conformation of ZO-1, we proposed that the folded confor-
mation of ZO-1 is stabilized by the ZPSG–ZU5 interaction
(24), and we show here that CGN binds to the ZU5 domain.
Thus, our results suggest that CGN could promote the
extended conformation of ZO-1 by competitively disrupting
the ZU5–ZPSG1 interaction. Moreover, since the KO of CGN
phenocopies treatment with blebbistatin in ZO-2-depleted
cells, an additional mechanism through which CGN could
extend ZO-1 is by linking ZO-1 to the actomyosin cytoskel-
eton through an interaction with myosin (14, 46). This hy-
pothesis is currently being tested. In summary, our studies
indicate the existence of a positive feedback loop, whereby
CGN requires ZO-1 to be recruited to TJs, and in turn it
promotes the ZO-1-extended conformation and stabilization
at TJs.

The conformation of ZO-1 is mechanistically important for
TJ assembly, since the ZO-1-extended conformation is
required for its liquid–liquid phase separation and subsequent
TJ assembly (25). However, the extended conformation of ZO-
1 occurs in cytoplasmic condensates independently of junc-
tional localization, and DbpA is found within condensates of
purified ZO-1 in vitro (25), suggesting that multivalent in-
teractions can promote ZO-1-extended conformation inde-
pendently of junction-associated actomyosin-dependent
stretching. Thus, the observation that the KO of CGN did not
result in a complete loss of junctional ZO-1 suggests that
redundant CGN-independent mechanisms, which likely
include heterodimerization with other ZO proteins (24),
interaction with actomyosin-binding AJ-associated proteins,
such as α-catenin and vinculin (47), increased mechanical
tension at AJ (28), and regulation by phosphorylation (25)
contribute to the extended conformation and TJ assembly of
ZO-1. Importantly, we show that ZO-1 lacking the ZU5
domain (ZO-1-ΔZU5) has markedly higher mobility and
decreased junctional accumulation compared with FL ZO-1,
increased localization along lateral contacts, and a folded
conformation when expressed in the context of ZO-1-KO
cells, as determined by SIM. Interestingly, endogenous
Venus-tagged ZO-1 is detectable along lateral contacts of live
cells, at concentrations below those required for liquid–liquid
phase separation (25), but endogenous ZO-1 cannot be
detected laterally by IF on fixed cells. Together, these obser-
vations suggest that lateral ZO-1 is in a folded conformation,
and ZU5-mediated interactions contribute to triggering the
extended conformation of ZO-1 at junctions. Thus, we pro-
pose that the dynamic equilibrium between cytoplasmic,
junction-associated (phase-separated), and lateral contact–
associated (non–phase-separated) ZO-1 is fine-tuned, among
other mechanisms, by the ZU5-mediated interaction with
CGN. Since CGN is localized apically during the biogenesis of
TJs in Xenopus embryos (22, 48), our results also suggest that
CGN contributes to the apical recruitment and stabilization of
the TJ-associated pool of ZO-1 through its binding to the ZU5
domain.

In conclusion, our results show that the ZU5 domain of
ZO-1 interacts with the ZIM sequences of CGN and CGNL1
and that CGN promotes the accumulation of ZO-1 and ZO-3
at TJs, and the stabilization, slower dynamics, and extended
conformation of ZO-1. These results advance our knowledge
on the molecular mechanisms underlying the regulation of
ZO-1 and of the architecture and dynamic assembly of TJs.

Experimental procedures

Experimental model and subject details

Eph4 (mouse mammary epithelial cell line) WT and ZO-1-
KO (a gift from the Tsukita laboratory, Osaka University) cells,
MDCK II (a gift from A. Fanning, Anderson laboratory, Uni-
versity of North Carolina), mCCD (a gift from the Feraille
laboratory, University of Geneva), and HEK293T cells were
cultured at 37 �C, 5% CO2 in Dulbecco’s Modified Eagle’s
Medium (DMEM) containing 10% or 20% fetal bovine serum
(FBS) (for mCCD). For Eph4, MDCK and mCCD culture
media were supplemented with 1% nonessential amino acids,
100 units/ml penicillin, and 100 μg/ml streptomycin (24, 31,
49). MDCK lines stably transfected with eGFP-hZO-1 con-
structs (for IF and FRAP microscopy) were maintained in
DMEM 1 g/l glucose supplemented with 10% FBS, 15 mM
Hepes, and 50 ng/ml doxycycline.

Cell lines KO for either CGN or CGNL1 or both were
generated using CRISPR–Cas9 gene editing technology,
designing guide RNA using the Zhang Lab CRISPR design
tool, targeting exons that are present in all major transcripts
of CGN and CGNL1. For mouse CGN and CGNL1 (mCGN,
mCGNL1), to generate Eph4 and mCCD KO lines, the target
sequences for the CRISPR–Cas9 were selected in exon 2
(Table S1). For canine CGN and CGNL1 (cCGN, cCGNL1), to
generate MDCK KO lines, the target sequences were selected
in exon 1 (Table S1). The guide RNAs were subcloned into the
BbsI site of pSpCas9(BB)-2A-GFP (PX458) CRISPR plasmid.
Cells were transfected using Lipofectamine 2000. At 48 h
post-transfection, single cells were sorted (using a Beckman
Coulter MoFlo Astrios sorter; Flow Cytometry Service, Uni-
versity of Geneva Medical School) into 96-well tissue culture
plates. Single clones were further amplified and screened for
the KO using IB and IF microscopy analyses, based on which
two to three CGN-KO and CGNL1-KO clones (one CGNL1-
KO clone for Eph4) were selected and verified by sequencing.
For sequencing, genomic DNA was extracted using DNeasy
Blood & Tissue kit, the genomic loci of CGN and CGNL1
(around 500 bp upstream and 600 downstream of target
sequence) were amplified by PCR using specific primers
(Table S1), and subcloned into pBluescript II KS(+) using
restriction enzymes SacII and XhoI for mCGN, XbaI, and
EcoRI for mCGNL1 and cCGN and BamHI and SalI for
cCGNL1. The T7 primer was used for sequencing inserts for
genotyping.

To generate CGN/CGNL1 double-KO MDCK clones,
CGN-KO (to generate clone 21D3) or CGNL1-KO (to
generate clone 11C9) clones were transfected with aforemen-
tioned CGNL1-KO or CGN-KO CRISPR–Cas9 constructs,
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respectively, sorted by FACS, and screened as described pre-
viously for single KO.

Immunofluorescence labeling and microscopy

Antibodies for IF microscopy are described in Table S1.
Cells were cultured either on glass coverslips in 24-well

plates for 3 days seeded at a density of 1 to 2 × 105 cells/
well or on 6-well (24-mm) Transwell filters (pore size of
0.4 μm, polyester) for 5 days seeded at a density of 5 × 105 cells
(cells on Transwells shown in Figs. 5, S2, E and L, and S4, A
and C). For analysis of protein localization in cells expressing
exogenous constructs, cells were typically transfected 24 h
after seeding, using Lipofectamine2000 and 1 μg of DNA,
when applicable treated 48 h later with drugs (either DMSO or
blebbistatin 50 μM for 16 h), and fixed for IF 4 days after
seeding. IF for cells grown on coverslips was carried out by
washing cells 2× with cold PBS, fixing in methanol at −20� for
10 min, washing 3 × 5 min with PBS, incubating with primary
antibody (either at room temperature [RT] for 1 h or for 16 h
at 4 �C), followed by washing 3× with PBS, incubating with
secondary antibody (30 min at 37 �C in a humidified chamber),
washing 3× with PBS, and mounting either with Vectashield
with 40,6-diamidino-2-phenylindole or Fluoromount-G. For IF
localization of DbpA, we used the method previously described
(32). Briefly, cells were permeabilized with actin stabilization
buffer (100 mM KCl, 3 mM MgCl2, 1 mM CaCl2, 200 mM
sucrose, 10 mM Hepes, pH 7.1 containing 0.1% Triton X-100)
for 1 min at RT, fixed with ice-cold methanol for 7 min at −20
�C, followed by ice-cold acetone for 30 s at RT. Cells were then
blocked with blocking buffer (PBS containing 0.5% bovine
serum albumin [BSA] and either 10 mM glycine or 0.3%
gelatin) for 30 min at RT, before incubation with antibodies.
Slides were imaged either on a Zeiss LSM800 confocal mi-
croscope using a Plan-Apochromat 63×/1.40 oil objective at a
resolution of 1024 × 1024px or on an upright microscope
Leica DM4B using 63× oil objective at a resolution of 2048 ×
2048px (pixel size = 0.10 μm). Images were extracted from.-
lif,.lsm or.czi files using Fiji/ImageJ (NIH, Open Source,
https://fiji.sc), adjusted and cropped using Adobe Photoshop,
and placed into Adobe Illustrator documents for figure
preparation.

For Z-stack analysis (Fig. 4, A–C), MDCK II cells were stably
transfected with eGFP-hZO-1 or eGFP-hZO-1ΔZU5 and
grown on 6-well (24 mm) polyester Transwell inserts with a
pore size of 3.0 μm (Corning) for 7 days in DMEM 1 g/l
glucose supplemented with 10% FBS, 15 mM Hepes, and
40 ng/ml doxycycline. Transwells were washed in ice-cold
PBS, fixed in 2% paraformaldehyde for 20 min at RT, washed
with IMF buffer (0.1% Triton X-100, 0.15 M NaCl, 5 mM
EDTA, 20 mM Hepes, pH 7.5, and NaN3). Transwells were
blocked in 3% BSA in IMF buffer and stained overnight with 1/
1000 rat anti-E-cadherin (Thermo Fisher) followed by 1/2000
Rhodamine-RedX anti-rat (Jackson Laboratory) and mounted
with Prolong Diamond antifade. A Nikon A1Rsi laser scanning
confocal microscope was used to collect 512 × 512px z-stack
images in 0.2 μm steps with 4× line scanning in resonant mode

with a Plan Apo λ 60× oil objective. ZO-1 and E-cadherin
signal were imaged with the 488 (eGFP) and 561 laser lines,
respectively. Image acquisition parameters were constant for
each target across the cell lines. Z-stack images were post-
processed with the Nikon NIS Elements denoise algorithm,
and maximum intensity and xz orthogonal projections are
presented.

Structured illumination microscopy

SIM microscopy and image acquisition, reconstruction,
and processing were carried out as described (24), except that
Eph4 ZO-1-KO cells were transfected with either myc-ZO-1-
HA (FL) or with myc-ZO-1-ΔZU5-HA. Following treatment
either with DMSO or blebbistatin, cells were fixed with cold
methanol and double stained with antibodies against myc and
HA, followed by Cy-3 and Alexa488-labeled secondary anti-
bodies. The Plot-Profile plugin of ImageJ was used to plot
pixel intensities (y-axis) of red and green fluorophores as a
function of distance (x-axis) across the junction. The x-co-
ordinate of the maximum intensity peak was determined
using the Prism software (mean function of the Gaussian
curve).

Measurement of cell proliferation

To measure cell proliferation, cells were plated in 12-well
plate (75,000 cells/well) and trypsinized and counted in a he-
mocytometer each day, for 6 days.

Plasmids

Constructs of GFP-tagged fragments of ZO-1 in
pCDNA3.1(+) (24), ZO-1 for expression in insect cells (24),
HA-DbpA in pCDNA3.1(+) (32), GFP-myc-his in
pCDNA3.1(−) (50), cyan fluorescent protein-HA in
pCDNA3.1(+) (32), and GFP-myc in pTRE2Hyg (51) were
described previously.

The following new constructs (see also Table S1) were
generated by PCR amplification with appropriate oligonu-
cleotides and subcloned into the indicated cloning site (m =
mouse, h = human, c = canis). GFP-hZO-1 (1698–1748
amino acids) (S1874) and GFP-hZO-1 (1550–1650 amino
acids) (S1875) were cloned into NotI–KpnI sites of
pCDNA3.1(+). The FL myc-hZO-1-HA (1–1748) (S1947) and
the mutant lacking ZU5 domain myc-hZO-1-ΔZU5-HA
(1–1619 amino acids) (S2161) were cloned into BamH1–
XhoI sites of pCDNA3.1(+). The FL mCGN-myc-his (1–1192
amino acids) (S2407) and the mutant lacking ZIM domain
mCGN-ΔZIM-myc-his (71–1192 amino acids) (S2408) were
cloned into XhoI–KpnI sites of pcDNA3.1(−). GFP-hCGN
(1–1203 amino acids) (S2508) and the mutant lacking ZIM
domain (GFP-hCGN-ΔZIM) (71–1203 amino acids) (S2509)
were cloned into NotI-Acc65I of pCDNA3.1(−). hCGN-HA
(1–1203 amino acids) (S2411) was cloned into BamHI–XbaI
sites of pCDNA3.1(+). hCGNL1-HA (1–1302 amino acids)
(S2442) and mutant lacking ZIM domain (hCGNL1-HA-
ΔZIM) (81–1302 amino acids) (S2510) were cloned into
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BamHI–NotI sites of pCDNA3.1. To generate FL eGFP-
tagged human ZO-1 for FRAP analysis (eGFP-hZO-1), the
eGFP-hZO-1 gene (5.274 bp) was digested from pEF1-eGFP
ZO-1 (38) with Kpn1 and inserted into the Kpn1 site of
pPBH-TREtight-eGFP-C (Systems Biosciences). eGFP-hZO-
1-ΔZU5 was designed by PCR-based site-directed mutagen-
esis on EGFP-ZO-1, introducing a stop codon and MIuI re-
striction site at the beginning of the C-terminal ZU5 domain,
using the QuikChange Lightning site-directed mutagenesis
kit. The resulting eGFP-hZO-1ΔZU5 corresponds to residues
1 to 1620 of FL hZO-1.

GST-DbpA and GST-GEF-H1 were gifts from the Matter-
Balda laboratory. New GST-tagged constructs were gener-
ated by PCR and subcloning in the sites indicated sites in
parentheses. cCGN (1–70 amino acids) (S1851) (EcoRI–NotI)
comprises the ZIM region (29). GST-tagged hZO-1-Cter
(1523–1748, sequence corresponding to residues 1447–1692
of ZO-1 variant-4, isoform d) (S1789) (EcoRI–XhoI) comprises
the complete hZU5 domain (1634–1748). GST-tagged mZO-
1-CterLarge (1520–1745) (S2511) (BamHI–NotI) comprises
the complete mZU5 domain (1631–1745) and upstream
sequence, since fusion proteins comprising exclusively the
ZU5 domain (either human or mouse) were not stable. The
GST-cZO-3(Cter) (450–832) construct (S1986) (BamHI–
NotI) comprises the PDZ3, SH3, and GUK domains of ZO-3.
All new plasmids were verified by sequencing.

Recombinant protein expression, GST pulldown, and
supernatant depletion assays

GST fusion proteins were expressed in BL21 bacteria and
purified by affinity chromatography on either Glutathione
Sepharose (32) or magnetic beads. Pulldowns were carried out
using lysates either from insect cells expressing FL ZO-1 or
from lysates of HEK293T cells expressing either GFP-tagged
ZO-1 fragments, GFP-tagged CGN constructs, or HA-tagged
DbpA and CGNL1 constructs (preys) as previously described
(49, 52), after normalization of preys and baits.

To determine the Kd of interaction between the ZU5
domain of ZO-1 (1619–1748 = Cter) and the CGN1-70
fusion protein, we used a quantitative GST-pulldown “Su-
pernatant Depletion Assay” (24). Increasing volumes (1, 2, 5,
10, 12.5, 15, 17.5, and 20 μl) of Glutathione Sepharose beads
preloaded with GST-CGN(1–70) bait (0.666 μM) were added
to prey protein (GFP-hZO-1-Cter), in a total volume of
0.5 ml co-IP buffer (150 mM NaCl, 20 mM Tris–HCl, pH 7.5,
1% Nonidet P-40, 1 mM EDTA, and complete protease in-
hibitor). As a negative control, beads preincubated with co-IP
buffer alone (1, 2, 5, and 10 μl) were added to the prey. After
16 h incubation at 4 �C, beads were pelleted at 16,000g, and
the prey proteins remaining in the supernatant were analyzed
by SDS-PAGE and immunoblotting. GST pull-down experi-
ments to assess the effect of CGN(1–70) on the interaction
between DbpA and FL ZO-1 were carried out by incubating
GST-DbpA (5 μg) with insect cell lysate containing FL ZO-1,
in the presence of increasing volumes of normalized
HEK293T cell lysates containing either GFP-CGN(1–70) or

GFP, this latter as a negative control. Although it is unlikely
that sufficient concentrations of additional interacting part-
ners of baits and preys are present in the GST pull-down
assays and might influence some of the results, this possi-
bility cannot be formally excluded. Concentration of re-
combinant proteins was determined by densitometric
analysis of Coomassie-stained SDS gels, compared with a
BSA standard curve.

Transfection, siRNA-mediated ZO-2 depletion, and exogenous
expression of proteins

For transfections for rescue experiments, cells plated on
glass round 12 mm coverslips in 24-well plate (100,000 cells/
well) were transfected the next day using Lipofectamine 2000
or jetOPTIMUS DNA transfection reagent and fixed for IF
72 h post-transfection.

For siRNA-mediated ZO-2 depletion (target sequence in
Table S1), cells were transfected with Lipofectamine RNAi-
MAX 24 h after plating, using siRNA negative control. For
siRNA and DNA cotransfections, Eph4 cells were transfected
1 day after plating with the mix of siRNA and DNA using
Lipofectamine 2000, 48 h post-transfection cells were treated
with 50 μM blebbistatin for 16 h and then fixed (24).

For FRAP experiments, MDCK II cells were cotransfected
with pPBH-TREtight-eGFP-hZO-1 constructs and pSPB-
transposase using Lipofectamine and selected in low-glucose
DMEM containing hygromycin B medium to produce sta-
bling expressing EGFP-hZO-1 or EGFP-hZO-1ΔZU5 cell
lines.

For prey production, HEK293T cells were plated in 10 cm
dishes (2 × 106 cells/dish), transfected the next day using
Lipofectamine 2000, and lysates were prepared 48 h post-
transfection.

Overexpression of ZO-1 for condensate analysis

To study recruitment of CGN and CGNL1 client proteins by
ZO-1 condensates, 1 × 105 MDCK II cells were seeded onto
glass coverslips placed in 24-well plates. About 24 h after
plating, cells were transfected with 1.5 μg of ZO-1 DNA
construct(s) per dish, using jetOPTIMUS. About 48 h post-
transfection, cells were fixed, labeled, and observed by IF
microscopy.

Fluorescence recovery after photobleaching

MDCK II cells stably expressing EGFP-hZO-1 or EGFP-
hZO-1ΔZU5 were seeded at confluence on collagen-coated
glass 35 mm dishes (MatTek) and induced with 40 ng/ml
doxycycline in low-glucose DMEM supplemented with 10%
FBS and 15 mM Hepes for 72 h prior to analysis. FRAP assays
were conducted in Hanks’ balanced salt solution in a
temperature-controlled stage on a Nikon A1R laser scanning
confocal microscope using a 60× objective. Cell junctions
were photobleached for 5 s at 30% 488 nm laser power, and
images were acquired at regular intervals for a recovery
period of 7 min. For kymographs (Fig. 4G), the time scale was
from pre-bleach (0) up to 420 s. The first 2 min post-bleach
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images were acquired every 2 s, and the last 5 min of
acquisition images were acquired every 5 s. Background
fluorescence was subtracted from raw data, and mobile
fraction and t1/2 were calculated by fitting to an exponential
curve (23).

For videos (125 frames), MP4 files were created from ND2
files using NIS elements software (Laboratory Imaging s.r.o for
Nikon Corporation). Each frame is 200 ms, and the
compression settings were H.264 high quality. The first five are
pre-bleach acquired at 2 s intervals, the next 60 are immedi-
ately following bleaching at 2 s intervals, and the remaining 60
frames were acquired at 5 s intervals.

Immunoblotting

Cell lysates were obtained using radioimmunoprecipitation
assay buffer (RIPA: NaCl 150 mM, Tris-HCl 40 mM, pH 7.5,
EDTA 2 mM, glycerol 10%, Triton X-100 1%, sodium deoxy-
cholate 0.5%, SDS 0.2%) containing either 1× cOmplete
(Roche) or Pierce protease inhibitor cocktails, and immuno-
blotting was performed as previously described (24, 31).
β-tubulin was used for protein loading normalization in im-
munoblots. Numbers on the left of immunoblots indicate
migration of molecular size markers (kilodalton).

Quantification and statistical analysis

Data processing and analysis were performed using
GraphPad Prism. All experiments were carried out at least
three times, when applicable on multiple clonal lines. Statis-
tical significance of quantitative data was determined by either
unpaired two-tailed Student’s t test (when comparing two sets
of data) or ordinary one-way or two-way ANOVA with
Tukey’s post hoc test (for multiple comparisons), (ns = not
significant difference p > 0.5, significant *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001, and **** p ≤ 0.0001). For statistical analysis of
FRAP data, outliers were identified using the ROUT method
(Q = 1%), and significance was determined using the unpaired
t test (****p ≤ 0.0001).

Analysis of immunofluorescence microscopy data

For the quantification of junctional immunofluorescent
microscopy signal, pixel intensity for each channel was
measured in the selected junctional area using the polyhedral
tool of Fiji/ImageJ, and the averaged background signal of the
image was subtracted. Relative intensity signal was expressed
as a ratio between the signal of protein of interest and an
internal junctional reference (either PLEKHA7, or occludin,
or PLEKHA6 or E-cadherin). Between 10 and 45 junctional
segments of each phenotype were analyzed for each
experiment.

Analysis of immunoblotting data

For the quantification of IB signals, densitometric analysis
was carried out on data from at least three separate experi-
ments. Each time the signal was normalized to tubulin, used as
reference for total protein loading, and expressed as percent-
age, taking the strongest signal as 100%.
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