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Abstract

The objective of this study was to examine associations of lifetime concussion history (CHx)

and an advanced metric of lifetime repetitive head impact exposure with resting-state func-

tional connectivity (rsFC) across the whole-brain and among large-scale functional networks

(Default Mode; Dorsal Attention; and Frontoparietal Control) in former collegiate football

players. Individuals who completed at least one year of varsity collegiate football were eligi-

ble to participate in this observational cohort study (n = 48; aged 36–41 years; 79.2% white/

Caucasian; 12.5±4.4 years of football played; all men). Individuals were excluded if they

reported history/suspicion of psychotic disorder with active symptoms, contraindications to

participation in study procedures (e.g., MRI safety concern), or inability to travel. Each par-

ticipant provided concussion and football playing histories. Self-reported concussion history

was analyzed in two different ways based on prior research: dichotomous “High” (�3 con-

cussions; n = 28) versus “Low” (<3 concussions; n = 20); and four ordinal categories (0–1

concussion [n = 19]; 2–4 concussions [n = 8]; 5–7 concussions [n = 9]; and�8 concussions

[n = 12]). The Head Impact Exposure Estimate (HIEE) was calculated from football playing

history captured via structured interview. Resting-state fMRI and T1-weighted MRI were

acquired and preprocessed using established pipelines. Next, rsFC was calculated using

the Seitzman et al., (2020) 300-ROI functional atlas. Whole-brain, within-network, and

between-network rsFC were calculated using all ROIs and network-specific ROIs, respec-

tively. Effects of CHx and HIEE on rsFC values were examined using separate multivariable

linear regression models, with a-priori α set to 0.05. We observed no statistically significant

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0273918 September 9, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Walton SR, Powell JR, Brett BL, Yin W,

Kerr ZY, Liu M, et al. (2022) Associations of

lifetime concussion history and repetitive head

impact exposure with resting-state functional

connectivity in former collegiate American football

players: An NCAA 15-year follow-up study. PLoS

ONE 17(9): e0273918. https://doi.org/10.1371/

journal.pone.0273918

Editor: Jacob Resch, University of Virginia, UNITED

STATES

Received: February 27, 2022

Accepted: August 17, 2022

Published: September 9, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0273918

Copyright: © 2022 Walton et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available in

an Open Science Framework repository, which

https://orcid.org/0000-0003-2647-5701
https://orcid.org/0000-0002-3899-9433
https://orcid.org/0000-0002-1235-4522
https://doi.org/10.1371/journal.pone.0273918
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0273918&domain=pdf&date_stamp=2022-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0273918&domain=pdf&date_stamp=2022-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0273918&domain=pdf&date_stamp=2022-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0273918&domain=pdf&date_stamp=2022-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0273918&domain=pdf&date_stamp=2022-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0273918&domain=pdf&date_stamp=2022-09-09
https://doi.org/10.1371/journal.pone.0273918
https://doi.org/10.1371/journal.pone.0273918
https://doi.org/10.1371/journal.pone.0273918
http://creativecommons.org/licenses/by/4.0/


associations between rsFC outcomes and either CHx or HIEE (ps� .12). Neither CHx nor

HIEE were associated with neural signatures that have been observed in studies of typical

and pathological aging. While CHx and repetitive head impacts have been associated with

changes in brain health in older former athletes, our preliminary results suggest that associ-

ations with rsFC may not be present in early midlife former football players.

Introduction

Several factors increase the risk for clinically significant cognitive decline in aging individuals

(e.g., mild cognitive impairment [MCI] and dementia) [1–3]. Among the most reported risk

factors for collision-sport athletes are exposures to repetitive head impacts and traumatic brain

injuries (TBIs) [4–8]. Sport-related concussions (SRCs), a form of mild TBI [9], occur com-

monly in American football players [10, 11]. Studies have suggested that former football play-

ers may have earlier onset of, and/or increased risk for, cognitive decline or neurodegenerative

disease diagnoses compared with the general population, purportedly due to their exposure to

repetitive head impacts—SRC or otherwise—during football play [4–6, 8]. It is vital, therefore,

to develop the scientific understanding of what constitutes normal versus abnormal changes in

brain function as these players age. To do so requires measuring the associations between

pathological changes and pertinent risk factors for neurodegenerative changes such as repeti-

tive head impact exposure and traumatic brain injuries (e.g., SRC) sustained throughout a

sporting career.

One method for examining biologic changes in brain health is resting-state functional activ-

ity as measured with magnetic resonance imaging (MRI). Changes in functional connectivity

(correlated patterns of neural activity between brain regions) within large-scale functional

brain networks, such as the Default Mode (DMN) [12, 13], Dorsal Attention (DAN) [14], and

Frontoparietal Control (FPCN) [15] networks, have been characterized among aging individu-

als with age-related cognitive changes as well as those with clinically significant cognitive

declines (e.g., those with MCI and dementia-related disorders) [16–22]. Specifically, overall

resting-state functional connectivity (rsFC) may be decreased between regions within the

DMN and DAN and may be stronger between the FPCN and both the DMN and DAN in cog-

nitively normal older individuals (e.g., 60 years of age and over) compared with younger adults

[17–20]. Hyperconnectivity between networks may represent an altered ability of the FPCN to

serve as a “circuit breaker” [15] for activity within the DMN and DAN, which may partially

explain age-related cognitive and mood-related behavior declines [17, 20]. The similarity

between these characteristic network-based rsFC changes in those who experience age-related

cognitive changes and what has been reported in studies of individuals with clinically signifi-

cant cognitive declines (e.g., MCI and dementia) theoretically suggests that individuals with

clinically significant cognitive declines may be experiencing exacerbated or accelerated biolog-

ical aging processes [23].

Short-term and long-term changes to rsFC have been described in active adolescent and

young adult athletes following SRC, and these changes largely resemble the patterns of func-

tional reorganization (i.e., changes to within- and between-network rsFC in large-scale net-

works) observed in individuals experiencing typical aging and neurodegenerative disease

processes [7, 18, 19, 21, 22, 24, 25]. There is mixed evidence as to whether rsFC changes persist

beyond clinical recovery from SRC [7, 24, 26], and studies have reported neural recruitment

differences when performing a cognitive task in former football players aged between 50–75
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years with three or more lifetime SRCs as compared to those with fewer, despite no observed

differences in task performance [27, 28]. Further evidence suggests that rsFC changes also

occur in relation to repetitive head impacts, even without overt clinical signs or symptomsthat

are consistent with a concussion diagnosis [29]. Taken together, long-term alterations in func-

tional connectivity may result from greater exposure to SRC and repetitive head impacts, even

in relatively young individuals, and these changes may resemble those observed in individuals

experiencing cognitive decline. In this light, it is also reasonable to consider functional connec-

tivity changes as potential biomarkers for the advanced aging and the early onset of pathologi-

cal changes in former football players. In this preliminary study, we measured rsFC across the

whole brain, and among large-scale functional brain networks (DMN, DAN, and FPCN) in a

sample of early midlife former collegiate football players to examine whether rsFC was associ-

ated with lifetime concussion history or an advanced metric of lifetime repetitive head impact

exposure. We hypothesized that alterations in rsFC as the result of head impacts sustained

while playing football, if present, would manifest with network connectivity patterns similar to

those described above in healthy older adults, including: 1) lower whole-brain rsFC; 2) lower

within-network rsFC in the DMN and DAN; and, 3) higher between-network connectivity

between the FPCN and both the DMN and DAN.

Materials & methods

Participants

Participants included former collegiate football players who completed an online general

health survey in 2014 as part of a larger study of former collegiate athletes approximately

15-years after completion of their collegiate sport participation (the National Collegiate Ath-
letic Association [NCAA] 15-Year Follow-up Study) [30]. The general health survey used in this

study was adapted from previous studies of former football players with input from epidemiol-

ogists, athletic trainers, neuropsychologists, physicians, and former football players [4, 30].

Former collegiate football players who completed the survey were recruited to participate in a

comprehensive in-person evaluation (e.g., neuroimaging, neurocognitive testing, and patient-

reported outcome measures). Each player was contacted by a research coordinator, and those

who responded were screened for eligibility. Inclusion criteria for the in-person visit was par-

ticipation in at least one year of collegiate football. Exclusion criteria were a history of psy-

chotic disorder with active symptoms, any contraindications to participation in study

procedures (e.g., MRI safety concern), or inability to travel. This study was approved by the

Institutional Review Boards at the University of North Carolina at Chapel Hill and the Medical

College of Wisconsin, and all participants provided written informed consent prior to

participation.

Image acquisition

Participants completed study visits at one of two separate institutions, and all images were

acquired via 3T magnetic resonance scanner with a 32-channel head coil (Siemens MAGNE-

TOM Prisma at the University of North Carolina at Chapel Hill; GE Healthcare Signa Premier

at the Medical College of Wisconsin). During the course of data collection, there was a scanner

software update at the Medical College of Wisconsin, resulting in three closely-related sets of

acquisition parameters for each of the structural and functional MRI series (Table 1).

T1-weighted Magnetic Prepared Rapid Gradient Echo (MPRAGE) and resting-state functional

MRI (rsfMRI) blood oxygen level-dependent (BOLD) scans were collected for each

participant.
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Data processing

Structural and functional MRI images were processed following a typically used pipeline [31,

32]. Specifically, T1 MPRAGE images were pre-processed for each participant using Freesur-

fer. The brain structural images were segmented into grey matter, white matter, and cerebro-

spinal fluid (CSF), and each resultant image was visually inspected by two of the study team

members (SRW & JRP) for reconstruction errors. Functional data (rsfMRI) were preprocessed

using FSL [33–35]. The preprocessing steps included discarding the first 10 volumes for mag-

netization equilibrium before processing, motion correction, and bandpass filtering (0.01–0.08

Hz). Mean signal from white matter, CSF, whole brain, and 24 motion parameters were

removed using a linear regression model. In order to further reduce the motion effect,

FD-DVARS “scrubbing” approach was applied [36]. Subsequently, rsfMRI images were

aligned to the corresponding T1-weighted images by using linear alignment. And the align-

ment between T1-weighed images and Montreal Neurological Institute (MNI) template was

performed by using the advanced normalization tools (ANTs) [37]. To improve the accuracy

of registration, brain tissue segmentation images were employed to calculate the deformation

field to the MNI template, as well as the reverse deformation field from MNI template to each

individual subject.

Using the brain atlas provided by Seitzman et al. [38], deformation back to the individual

space was performed to extract the mean time-series BOLD signal for each of 300 regions of

interest (ROIs). This atlas was selected as it contains multiple ROIs in subcortical grey matter

structures and pre-defines large-scale resting-state networks by uniquely assigning specific

ROIs to a single network (or otherwise “unassigned” designation). Pearson’s correlation coeffi-

cients (r) were calculated between all pairs of ROIs for each subject.

Outcome measures (rsFC values)

Whole-brain rsFC was calculated as the average Pearson r correlation value across the BOLD

signal time-series between each of the 300 individual functional ROIs. To test our hypotheses,

within-network and between-network average Pearson r correlation values were calculated

using the pre-defined DMN (65 ROIs), DAN (16 ROIs), and FPCN (36 ROIs) network nodes

[38]. Within-network average rsFC was calculated as the average between ROI Pearson r

Table 1. Magnetic resonance imaging (MRI) acquisition parameters across study sites.

University of North Carolina at Chapel

Hill Siemens Magnetom Prisma

Medical College of Wisconsin GE Premier

(pre-software update)

Medical College of Wisconsin GE Premier

(post-software update)

n = 38 n = 4 n = 6

Label T1w rsfMRI T1w rs-fMRI T1w rsfMRI

Acquisition time 4m:54s 7m:00s 4m:07s 6m:51s 5m:21s 6m:50s

Plane Sagittal Axial Sagittal Sagittal Sagittal Axial

Slices 176 72 160 72 184 72

Matrix 256x208 104x104 256x204 104x104 256x256 104x104

TE (ms) 2.03 33 7.592 33.1 2.016 21.8

TR (ms) 2540 802 3.008 802 4.672 800

FOV (cm) 256x208 210x210 256x256 210x210 256x256 208x208

Thickness (mm) 1.0 2.0 1.0 2.0 1.0 1.5

Volumes 1 512 1 512 1 512

All series were acquired using a 32-channel head coil and a 3T magnet at each study site. T1w = T1-weighted images (3D Magnetization Prepared Rapid Gradient Echo

[MPRAGE]); rsfMRI = resting-state functional MRI (Blood-Oxygen-Level-Dependent [BOLD] signal).

https://doi.org/10.1371/journal.pone.0273918.t001
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correlation value between all pairs of ROIs dwelling within a given network (e.g., DMN).

Between-network average rsFC was calculated as the average between ROI Pearson r correla-

tion value between each individual node of one specific network and each individual node of

another specific network. These operationalizations resulted in seven dependent variables: 1)

whole-brain average rsFC; 2) within-DMN average rsFC; 3) within-DAN average rsFC; 4)

within-FPCN average rsFC; 5) DMN-DAN average rsFC; 6) DMN-FPCN average rsFC; and 7)

DAN-FPCN average rsFC.

Concussion history & head impact exposure estimate

History of concussion was self-reported by each participant using a definition that has been

employed in previous research with current and former athletes [30, 39]. This operational defi-

nition described concussion as, “an injury occurring typically, but not necessarily, from a blow

to the head, followed by a variety of symptoms that may include any of the following: head-

ache, dizziness, loss of balance, blurred vision, ‘seeing stars,’ feeling in a fog or slowed down,

memory problems, poor concentration, nausea, throwing up, and loss of consciousness” [30,

39]. This method of self-reporting concussion history has shown moderate levels of consis-

tency (weighted Cohen κ = 0.48) over repeated administrations separated by many years [40].

After reading the operational definition of a concussion, participants then reported the total

number of lifetime concussions they had sustained through sport or other mechanisms (e.g.,

military service, motor vehicle accidents).

Lifetime exposure to repetitive head impacts without diagnosed injury (e.g., head impacts

that did not result in overt clinical signs or symptoms) were estimated using the adjusted Head

Impact Exposure Estimate (HIEE) [41, 42]. A 30-minute structured interview was used to

gather information regarding participation in contact football games and practices across each

individual year of football participation at the high school, collegiate, and professional levels

[41, 42]. For each year of play, participants detailed their primary and secondary playing posi-

tions, the average number and length (hours) of practices during each week of the pre-, regu-

lar, and post-season participation, the number of games played, and an estimate of the

percentage of time playing in each game that year (0%; 25%; 50%; 75%; or 100%). These data

were used to calculate a “number of contact hours” estimate for each participant. Those esti-

mates were then adjusted to account for the number of head contacts that might be sustained

for each individual by player position and level of play based on previous reports that utilized

helmet-mounted accelerometers to measure head impacts [41, 43, 44]. The resultant number

(HIEE) serves as a surrogate for the estimated number of head impacts to which that individ-

ual had been exposed during football participation in high school and beyond.

Analyses

Primary independent variables were lifetime self-reported concussion history and HIEE. Con-

cussion history was operationalized in two separate ways based on common standards in the

existing literature: A) dichotomous “High” (� 3 concussions; n = 28) versus “Low” (< 3 con-

cussions; n = 20) history groups; and B) four ordinal categories (0 or 1 concussion [n = 19]; 2

to 4 concussions [n = 8]; 5 to 7 concussions [n = 9]; and 8 or more concussions [n = 12]). The

dichotomous operationalization was selected to be similar to prior research examining the

long-term effects of concussions on fMRI outcomes and cognitive function, where outcomes

from participants three or more lifetime concussions were contrasted with those reporting

fewer [4, 27, 28]. Further, ordinal operationalization of concussion history in recent studies

has allowed for a more granular investigation of the effects of multiple concussions on long-

term brain health [8, 45, 46], and we opted to explore (i.e., as a sensitivity analysis) whether the
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same phenomenon would be observed in the present study by ascribing previously used con-

cussion history groupings from overlapping study samples [42, 45]. The HIEE measure was

included in each model as a continuous variable, regardless of the concussion history

operationalization.

Potential covariates were participant age, body mass index (BMI), and MRI acquisition site.

Analyses were performed to test univariable associations between each potential covariate and

all seven of the rsFC outcomes of interest (S1 File). Both BMI and MRI acquisition site were

related to one or more of the outcomes individually, and were therefore included as covariates

in the multivariable models.

Separate multivariable linear regression models were fit for each of the seven rsFC out-

comes including our primary exposures of interest (concussion history and HIEE) as well as

covariates (BMI, and MRI acquisition site) as independent variables. Altogether, there were a

total of 14 models fit (seven for each operationalization of lifetime concussion history). As this

was a preliminary study, we set a-priori α at 0.05, and we’ve interpreted results based on these

values as well as measures of effect size (standardized beta values [β]). All analyses were per-

formed with SPSS version 28.0 (Armonk, NY). Post hoc observed power for each regression

was calculated in G�Power v3.1.9.7.

Results

Participants

Participants were recruited from a sample of former collegiate athletes who previously com-

pleted a general health survey [30]. Initially, 123 former collegiate football players were able to

be reached for in-person visit screening. Among these former players, 65 opted not to partici-

pate, met exclusion criteria (e.g., for MRI safety reasons), or did not respond to the study team.

As a result, 58 former players completed in-person visits. Generally speaking, the cohort fell

within the average range across indices of neurobehavioral function as described previously by

Brett et al. [42]. Three of these participants did not participate in the MRI portion of the study

due to claustrophobia (n = 2) or an acquisition protocol deviation (n = 1). A total of 55 male

former collegiate football players participated in the MRI study. Among these participants, 7

(12.7%) had missing (n = 1) or unusable rsfMRI data (n = 6) due to poor functional image res-

olution precluding measurement of BOLD signal in one or more ROI. The resulting sample

size was 48 participants across both research sites (Table 2).

Resting state functional connectivity

After adjusting for BMI and MRI acquisition site, there were no statistically significant differ-

ences (ps� 0.30) for any of the rsFC outcomes between those with “High” (three or more) ver-

sus “Low” (less than three) lifetime concussion history (Table 3; Figs 1 and 2). Similarly, when

concussion history was operationalized into 4 ordinal categories, no statistically significant

associations were observed (ps� 0.12) between concussion history and any of the rsFC out-

comes (Table 3; Figs 3 and 4). Finally, HIEE was not significantly associated with rsFC out-

comes in any of the multivariable models (ps� 0.14). We also computed standardized effect

sizes for both concussion history and HIEE (i.e., β-values). The largest β-values were observed

for HIEE in models for within-FPCN rsFC and between-network rsFC for DMN-DAN

(Table 3). Specifically, larger HIEE was associated with lower within-FPCN and higher

DMN-DAN rsFC values, regardless of the operationalization variable used for concussion his-

tory. Plots of bivariate associations between HIEE and each of the seven rsFC outcomes are in

Fig 5. Observed power estimates for each model ranged from 25–91% and are presented in S1

File.
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Discussion

Our findings suggest that lifetime concussion history and accumulated head impact exposure

among younger former collegiate football players were not significantly associated with func-

tional connectivity of large-scale brain networks associated with aging during early midlife.

However, there were notable effect sizes suggesting a relationship between repetitive head

impacts (HIEE) and functional connectivity profiles that have been associated with the aging

process (lower within-network connectivity and higher between-network connectivity). Previ-

ously reported findings related to age-related cognitive decline, MCI, and dementia in older

former football players suggest that these players may be at increased risk of developing

dementia-related disorders or accelerated cognitive aging [4, 5, 8]; however evidence for causal

relationships between concussion history, repetitive head impacts, and these clinical outcomes

have not been established. The present study provides evidence that broad changes to neural

activity in the brain in relation to accumulated head trauma from football participation may

not be readily detectable (i.e., too subtle to measure) or absent in individuals approximately

15-years after their collegiate sport participation. Continued follow-up with these participants

and further evidence from prospective, longitudinal monitoring of brain health in former ath-

letes is imperative to develop an understanding of change over time and associations of long-

term brain health with head trauma.

In addition to our primary categorization of concussion history into “High” (three or

more) and “Low” (less than three) lifetime injury groups, we sought to explore whether a more

granular, ordinal categorization scheme might identify patterns with increasing exposure to

injury that could be hidden in the traditional dichotomous operationalization, as has been

seen in recent research [8, 45, 46]. Neither of the operationalizations of concussion history

(dichotomous or ordinal categories) used in our study were associated with intra- or inter-net-

work rsFC of the DMN, DAN, and FPCN networks or whole-brain rsFC. There are limitations

inherent to retrospective recall of lifetime concussion history that warrant consideration when

Table 2. Participant characteristics.

Full sample “Low” lifetime concussion history group

(<3 concussions)

“High” lifetime concussion history group

(�3 concussions)

n = 48 n = 20 n = 28

Agea, mean (standard deviation) 37.9 (1.5) years 37.9 (1.3) years 37.9 (1.6) years

Body Mass Index (BMI), mean (standard deviation) 30.6 (4.3) kg�

(m2)-1
31.1 (4.6) kg�(m2)-1 30.2 (4.1) kg�(m2)-1

Race, n (%)

White or Caucasian 38 (79.2) 14 (70) 24 (85.7)

Black or African American 7 (14.6) 3 (15) 4 (14.3)

Multiracial 3 (6.3) 3 (15) 0 (0)

MRI acquisition site, n (%)

University of North Carolina at Chapel Hill 38 (79.2) 16 (80.0) 22 (78.6)

Medical College of Wisconsin 10 (20.8) 4 (20.0) 6 (21.4)

Lifetime concussion history, median (lowest, highest) 4 (0,24) 1 (0,2) 6.5 (3,24)

Played professional football after college, n (%) 7 (14.6) 2 (10) 5 (17.9)

Total years of football play, mean (standard deviation) 12.5 (4.4) 13.2 (3.2) 11.9 (5.0)

Adjusted Head Impact Exposure Estimate (HIEE),

mean (standard deviation)

1292.0 (448.3) 1262.4 (504.7) 1313.0 (411.8)

All participants were male.
a Ages ranged from 36 to 41 years old.

https://doi.org/10.1371/journal.pone.0273918.t002
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interpreting these findings, and previous work has described moderate consistency in recall

over time [40]. Despite this, self-reported concussion history has previously been associated

with increased rsFC within the DMN in current collegiate athletes [7], altered neural recruit-

ment patterns in former football players aged between 50–75 years when completing a cogni-

tive task [27, 28], and with self-reported cognitive dysfunction and atypical cognitive decline

[4, 8, 46]. However, there is little research with former football players under 50 years of age

related to the long-term effects of concussion history and repetitive head impacts on brain

health.

Our recent work with an overlapping sample of relatively young (36–41 years of age) for-

mer football players noted significant associations between greater lifetime HIEE and multiple

aspects of neurobehavioral functioning–including worse subjectively reported cognitive func-

tion, general psychological distress, and executive functioning alongside worse objectively

measured memory and processing speed task performances [42]. In that study, we also

observed that concussion history did not significantly alter the associations between neurobe-

havioral functioning and HIEE, despite these two measures of exposure to head trauma being

Table 3. Standardized β-values from multivariable linear regression models.

“High” vs. “Low” Concussion History 4-Category Concussion History

Self-Reported Concussion History

Outcome Standardized β p-value Standardized β p-value

Whole-brain .115 .41 .061 .66

Within-network

DMN .010 .95 .089 .54

DAN .021 .88 .137 .33

FPCN .071 .62 -.024 .87

Between-network

DMN-DAN .001 .99 -.169 .24

DMN-FPCN .152 .30 .009 .95

DAN-FPCN .054 .70 .122 .37

Adjusted Head Impact Exposure Estimate

Outcome Standardized β p-value Standardized β p-value

Whole-brain -.045 .75 -.037 .80

Within-network

DMN .011 .94 .008 .96

DAN -.159 .29 -.163 .27

FPCN -.231 .12 -.224 .14

Between-network

DMN-DAN .181 .24 .188 .21

DMN-FPCN -.041 .72 .067 .66

DAN-FPCN .027 .85 .026 .85

Multivariable models included self-reported concussion history and adjusted Head Impact Exposure Estimates (HIEE) as predictors for each resting-state functional

connectivity outcome. Two sets of models were fit with concussion history operationalized as either binary (“High” vs. “Low”) or the 4-category operationalization (0 or

1 concussion; 2 to 4 concussions; 5 to 7 concussions; 8 or more concussions) based on previous studies with these participants. Both body mass index (BMI) and

acquisition site were observed to have significant univariable associations with one or more of the outcome variables of interest and were included in each multivariable

linear regression model as covariates. Adjusted R2 values for multivariable linear regression models with concussion history operationalized as “High” vs. “Low” were:

whole-brain (.120); within-DMN (.000); within-DAN (.066); within-FPCN (.078); DMN-DAN (.012); DMN-FPCN (.028); and DAN-FPCN (.137). Adjusted R2 values

for multivariable linear regression models with concussion history operationalized as 4 categories were: whole-brain (.110); within-DMN (.009); within-DAN (.087);

within-FPCN (.073); DMN-DAN (.043); DMN-FPCN (.003); and DAN-FPCN (.150).

https://doi.org/10.1371/journal.pone.0273918.t003
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distinct from one another [42]. The lack of statistically significant associations between HIEE

and rsFC outcomes in the present study suggests that alterations in rsFC within and between

large-scale networks may not be the underlying processes (i.e., neural correlates) for the rela-

tionship between HIEE and neurobehavioral functioning, or they may require more precise

measurement to detect. It is possible that the association between exposure to head trauma

and rsFC may be observed by using other approaches that describe functional organization in

the brain (e.g., graph theoretical measures like small world topology) [47, 48]. These

approaches warrant investigation in former football players as they may provide insight into

latent constructs of brain health such as communication efficiency and resilience [49, 50], and

some graph measures have even been associated with early recognition of neurodegenerative

changes [51, 52].

The functional connectivity data reported in this study are the first to be reported in rela-

tion to concussion and repetitive head impact history in participants of this age. Specifically,

objective markers of biological brain health in former athletes below 50 years of age are

Fig 1. Whole-brain and within-network resting-state functional connectivity (rsFC) in large-scale networks

separated by dichotomous concussion history group. Whole-brain rsFC (top-left) was calculated as the average

Pearson r correlation (y-axes) between each of the 300 regions of interest (ROIs) and all other ROIs across the time-

series. Within-network rsFC for the Dorsal Attention Network (DAN; top-right), the Default Mode Network (DMN;

bottom-left), and the Frontoparietal Control Network (FPCN; bottom-right) was calculated as the average Pearson r
correlation between each of the individual ROIs from the given network and all other ROIs within that same network

across the time-series. Individual points represent participant-level outcomes for each measure within each of the

concussion history groups (White = “Low” [fewer than 3 lifetime concussions]; Blue =“High” [3 or more lifetime

concussions]). Boxplots represent the median and interquartile range, and the whiskers extend to 1.5 times the

interquartile range. The violin plot is a depiction of the density of individual rsFC values for each measure.

https://doi.org/10.1371/journal.pone.0273918.g001
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relatively understudied compared to their older counterparts. It is notable that only a few

(n = 7) of the participants in this study played football after their collegiate careers while also

reporting 12.5 years of football play, on average. This sample is therefore mostly representative

of amateur athletes who began playing football at youth levels. Research with former athletes

in early midlife—especially longitudinal studies—are essential to understanding the relation-

ships between head trauma and the aging process across the lifespan. Participants in this study

with more self-reported lifetime concussions and greater HIEE did not exhibit functional con-

nectivity differences when compared to those with fewer concussions and/or lower HIEE;

however, these participants are purportedly at higher risk of developing early cognitive decline

and neuropathology associated with head trauma according to previous research findings [4,

5, 8]. Therefore, this timepoint is a key contribution to the literature in that longitudinal

Fig 2. Between-network resting-state functional connectivity (rsFC) in large-scale networks separated by

dichotomous concussion history group. Between-network rsFC was calculated as the average Pearson r correlation

(y-axes) between each of the individual ROIs from one specific network and all individual ROIs in another specific

network across the time-series: Dorsal Attention Network and Default Mode Network (top-left); Default Mode

Network and Frontoparietal Control Network (top-right); and Dorsal Attention Network and Frontoparietal Control

Network (bottom). Individual points represent participant-level outcomes for each measure within each of the

concussion history groups (White = “Low” [fewer than 3 lifetime concussions]; Blue =“High” [3 or more lifetime

concussions]). Boxplots represent the median and interquartile range, and the whiskers extend to 1.5 times the

interquartile range. The violin plot is a depiction of the density of individual rsFC values for each measure.

https://doi.org/10.1371/journal.pone.0273918.g002
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follow-up will allow us to investigate the interaction between head trauma and age, especially

over the next decade as these participants approach 50 years of age.

One limitation of this study is the potential for error in data relying on self-report. Specifi-

cally, participants self-reported the primary exposure measures used in this study (concussion

history & HIEE), and it is possible that self-reported exposure differs from the true incidence

of exposure. Further, data were collected at two research sites and under three separate image

acquisition protocols. To address this acquisition heterogeneity, we evaluated the association

between study site and the rsFC outcomes (S1 File), and ultimately controlled for site in the

analyses. Data from the present study may also not be representative of former collegiate foot-

ball players at large, and should be considered in this light. Namely, there were only 48

Fig 3. Whole-brain and within-network resting-state functional connectivity (rsFC) in large-scale networks

separated by four ordinal concussion history groups. Whole-brain rsFC (top-left) was calculated as the average

Pearson r correlation (y-axes) between each of the 300 regions of interest (ROIs) and all other ROIs across the time-

series. Within-network rsFC for the Dorsal Attention Network (DAN; top-right), the Default Mode Network (DMN;

bottom-left), and the Frontoparietal Control Network (FPCN; bottom-right) was calculated as the average Pearson r
correlation between each of the individual ROIs from the given network and all other ROIs within that same network

across the time-series. Individual points represent participant-level outcomes for each measure within each of the

concussion history groups (1 = 0 or 1 concussion [n = 19]; 2 = 2 to 4 concussions [n = 8]; 3 = 5 to 7 concussions

[n = 9]; and 4 = 8 or more concussions [n = 12]). Boxplots represent the median and interquartile range, and the

whiskers extend to 1.5 times the interquartile range. The violin plot is a depiction of the density of individual rsFC

values for each measure.

https://doi.org/10.1371/journal.pone.0273918.g003
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participants included in our analyses, and most of them identified as White/non-Hispanic.

Lack of racial and ethnic diversity, as well as other potential determinants of brain health, limit

the generalizability of our findings to the population. On the whole, our sample reports limited

health conditions and functional limitations [42, 45]; however, there are thousands of former

collegiate football players who may or may not be similar in their current health status. With

this cross-sectional data, we cannot yet determine whether trajectories of brain health-related

outcomes as players age are associated with accumulated concussion injuries or repetitive head

impact exposures, and whether changes in brain health are different for former football players

than non-football players. Future work should prospectively examine the time course of

changes in functional connectivity in aging former football players and evaluate potential

modifiers of these changes over time (i.e., expected brain health changes due to aging versus

accelerated decline resulting from acquired brain trauma).

Among former collegiate football players at early midlife, we did not observe associations

among concussion history or repetitive head impact exposure and neural signatures of altered

Fig 4. Between-network resting-state functional connectivity (rsFC) in large-scale networks separated by four

ordinal concussion history groups. Between-network rsFC was calculated as the average Pearson r correlation (y-

axes) between each of the individual ROIs from one specific network and all individual ROIs in another specific

network across the time-series: Dorsal Attention Network and Default Mode Network (top-left); Default Mode

Network and Frontoparietal Control Network (top-right); and Dorsal Attention Network and Frontoparietal Control

Network (bottom). Individual points represent participant-level outcomes for each measure within each of the

concussion history groups (1 = 0 or 1 concussion [n = 19]; 2 = 2 to 4 concussions [n = 8]; 3 = 5 to 7 concussions

[n = 9]; and 4 = 8 or more concussions [n = 12]). Boxplots represent the median and interquartile range, and the

whiskers extend to 1.5 times the interquartile range. The violin plot is a depiction of the density of individual rsFC

values for each measure.

https://doi.org/10.1371/journal.pone.0273918.g004
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large-scale functional network connectivity that have been observed in studies of age-related

or clinically significant cognitive declines, as well as acute SRC. While SRC history and repeti-

tive head impacts have been associated with changes in brain health and function in former

football players and other collision and contact sport athletes, our preliminary data suggest

that associations with functional network connectivity, if they exist, may not be detectable

prior to older ages. Continuing to study these former players prospectively will be useful in

identifying predispositions to potential accelerated aging processes, and the age at which they

are most likely to present.

Supporting information

S1 File. Supplemental results. Linear regressions for the effect of individual covariates on

each of the resting-state functional connectivity (rsFC) outcomes described in body of the

manuscript.
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