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Introduction: Elevated left ventricular end diastolic pressure (LVEDP) is a

consequence of compromised left ventricular compliance and an important

measure of myocardial dysfunction. An algorithm was developed to predict

elevated LVEDP utilizing electro-mechanical (EM) waveform features. We

examined the hierarchical clustering of selected features developed from these

EMwaveforms in order to identify important patient subgroups and assess their

possible prognostic significance.

Materials and methods: Patients presenting with cardiovascular symptoms

(N = 396) underwent EM data collection and direct LVEDP measurement by

left heart catheterization. LVEDP was classified as non-elevated (≤12 mmHg)

or elevated (≥25 mmHg). The 30 most contributive features to the algorithm

output were extracted from EM data and input to an unsupervised hierarchical

clustering algorithm. The resultant dendrogram was divided into five clusters,

and patient metadata overlaid.

Results: The clusterwith highest LVEDP (cluster 1) wasmost dissimilar from the

lowest LVEDP cluster (cluster 5) in both clustering and with respect to clinical

characteristics. In contrast to the cluster demonstrating the highest percentage

of elevated LVEDP patients, the lowest was predominantly non-elevated

LVEDP, younger, lower BMI, and males with a higher rate of significant

coronary artery disease (CAD). The next adjacent cluster (cluster 2) to that of
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the highest LVEDP (cluster 1) had the second lowest LVEDP of all clusters.

Cluster 2 di�ered from Cluster 1 primarily based on features extracted from

the electrical data, and those that quantified predictability and variability of the

signal. There was a low predictability and high variability in the highest LVEDP

cluster 1, and the opposite in adjacent cluster 2.

Conclusion: This analysis identified subgroups of patients with varying

degrees of LVEDP elevation based on waveform features. An approach to

stratify movement between clusters and possible progression of myocardial

dysfunction may include changes in features that di�erentiate clusters;

specifically, reductions in electrical signal predictability and increases in

variability. Identification of phenotypes of myocardial dysfunction evidenced

by elevated LVEDP and knowledge of factors promoting transition to clusters

with higher levels of left ventricular filling pressures could permit early risk

stratification and improve patient selection for novel therapeutic interventions.

KEYWORDS

machine learning, risk stratification, left ventricular filling pressures, artificial

intelligence, digital health

Introduction

An elevated left ventricular end diastolic pressure (LVEDP),

indicative of increased left-sided filling pressures of the heart,

represents a critical and sensitive measurement used to aid

in the identification of impending as well as decompensated

heart failure (HF) (1–3). Cardiac performance, with regard

to ventricular contractility, is one critical determinant of

elevated LVEDP; however, ejection fraction (EF) alone rarely

elucidates the accurate clinical status of a heart failure patient

(4). Patients with diminished ventricular function are the

cohort most frequently encountered with elevated LVEDP,

but an increased filling pressure may be the manifestation of

multiple myocardial disease states including cardiomyopathies

of ischemic, constrictive, restrictive, or valvular origin (5). Thus,

higher filling pressures typically precede clinical deterioration

in heart failure with reduced ejection fraction (HFrEF) as well

as heart failure with preserved ejection fractions (HFpEF) (6).

An elevated LVEDP does not indicate a specific diagnosis but

provides important information that serves as a guide regarding

the need for further evaluations or testing and affords data

necessary for the development of an appropriate patient care

plan. In addition, elevated LVEDP is predictive of morbidity and

mortality (7–11).

Awareness of possible impending or new onset heart failure

(HF) as indicated by an elevation in LVEDPmay aid in diagnosis

and risk stratification of the patient and help inform optimal

clinical care pathways. The available therapeutic modalities for

HF have doubled in the last decade and new pharmacologic

agents for the treatment of hypertrophic cardiomyopathy

(HCM) and infiltrative diseases, such as amyloid, conditions

associated with elevated LVEDP, are rapidly emerging (12, 13).

However, there exists limited information regarding the risks

of transition from early asymptomatic or mildly symptomatic

stages (Stages A to B) to later overtly symptomatic stages (Stages

C-D), thus complicating initiation of drug interventions at the

times when such therapies might prove most beneficial (14).

Risk stratification in heart failure remains a significant

challenge despite the development of multiple scoring models,

many of which are designed to predict survival with a few

attempting to predict future morbidity (15–19). These scoring

models were primarily derived from highly selected cohorts

of patients, with an established diagnosis of heart failure,

recruited for randomized clinical trials occurring over the

last several decades (20). Most have required input data that

includes echocardiographic determination of EF, multiple blood

analyses (recently biomarkers), and a significant number of

clinical parameters (15–21). Predicting outcomes in those with

known moderate to severe disease allows modification and

testing of current therapies but provides little information that

might permit interventions at early stages of heart failure to

prevent progression. Machine learning affords the opportunity

with a single rapid test to detected features of similarities

between groups with early stage LVEDP elevation and those

not yet manifesting hemodynamic changes (22). ML clustering

techniques that identify such features facilitate the development

and future validation of new risk models.

The clinical diagnosis of HF encompasses a broad

and heterogeneous population of patients with complex

pathophysiology, various etiologic mechanisms, and diverse

genetic triggers. Unsupervised clustering analysis has permitted

phenotyping in cardiomyopathies identifying subgroups which
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may have similar mechanisms and outcomes (23, 24). Clustering

is a useful approach to detect patterns in variables that aid in

decrypting the heterogeneity present in datasets (24, 25). To

date, the evaluation of cardiomyopathies based on clustering

has focused on patient with diagnosed HF and those recently

or in the past hospitalized for the HF, clearly in later stages

of the disease (23, 24). In this trial, we recruited a cohort

with new onset symptoms and no previously known HF. The

goal was to detect changes in the features that differentiate

between clusters, which might indicate the risk of transition

from one cluster to an adjacent cluster with a higher prevalence

of elevated LVEDP. Identification of distinct subtypes of

myocardial dysfunction evidenced by elevated LVEDP and

knowledge of factors that promote transition to clusters with

higher levels of left ventricular filling pressures could permit

early risk stratification and improve patient selection for novel

therapeutic interventions, thus facilitating precision medicine.

Methods

Features for clustering

An algorithm was previously developed to predict LVEDP

elevation status based on manually engineered features

calculated from CorVista Capture signals (22). The signal

acquisition modality was previously described (26), but

briefly, is the simultaneous acquisition of orthogonal voltage

gradient (OVG) data via electrodes placed on the torso,

and photoplethysmogram using transmission of red and

infrared light via a clip placed on the finger. The acquisition

configuration is shown in Figure 1. The OVG signal is related

to the electrocardiogram (ECG) signal in that both measure

the voltage changes within the myocardium that occur

during the cardiac cycle, but OVG differs from ECG in its

three-dimensional perspective of the heart, as well as its high

frequency bandwidth (Figure 2).

The contribution of these features to the LVEDP algorithm

were assessed using a permutation analysis, enabling the

ranking of the features from most to least contributive. The

permutation analysis was a generalization of the methodology

first proposed by Breiman for use in Random Forests (27). The

top 30 most contributive features were selected for use in this

clustering exploration.

Population

The clinical population analyzed in the present work were

subjects with symptoms suggestive of cardiovascular disease

who were referred to cardiac catheterization for the assessment

of coronary artery disease using angiography. Specifically, the

cohort was patients in whom the treating physician chose

FIGURE 1

Signal acquisition using the CorVista Capture, with the

electrodes placed on the torso (electrode on the back not

visible), and the PPG clip placed on the finger.

to measure the LVEDP during the catheterization. LVEDP

measurement was performed using standard catheterization

laboratory procedures. Subjects with mid-range LVEDPs were

removed, preserving subjects with definitive LVEDP non-

elevation of ≤12 mmHg and subjects with definitive LVEDP

elevation of ≥25 mmHg. The subjects were enrolled within

the CADLAD and IDENTIFY (Group 2) studies, the records

for which are available on clinicaltrials.gov (NCT02784197

and NCT03864081, respectively). Both studies have identical

inclusion and exclusion criteria and are multi-center in nature.

CADLAD is closed, and IDENTIFY enrollment is ongoing.

Finally, subjects without a signal passing a series of automated

signal quality assessment tests (11%) were excluded. Signal

quality assessment was previously described (26), but included

quantification of powerline interference and excessive high-

frequency content in the OVG signal, and the presence of jumps,

dropouts, and railing in the PPG signal.

Clustering

The features were pre-processed prior to clustering

by applying the box-cox transformation to each feature

individually, which is a monotonic power transform intended to

approximate a normal distribution across the data (28). While

deviations from normality occur frequently in realistic data,

many statistical approaches rely on an assumption of normality,

and therefore benefit from distribution transformations such

as box-cox. For instance, nearest neighbor classification has
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FIGURE 2

(A) Example OVG data in phase space, with coordinates from each bipolar channel (ORTH1, ORTH2, ORTH3) represented as a

three-dimensional coordinate in that space, and (B) example PPG data in the time domain, containing both red and infrared time series.

been shown to improve considerably when the features are

pre-processed using box-cox, as compared to classification using

the raw feature values (29). While the intent of the present work

is not nearest neighbor classification (or classification by any

methodology), clustering similarly necessitates pairwise distance

measurements across the dataset, and can therefore realize a

similar benefit from box-cox. After box-cox transformation, the

features were normalized using the z-score transformation to

set the mean and standard deviation of each feature to zero and

one, respectively.

Next, hierarchical clustering was applied to the processed

data. While there exist a variety of clustering algorithms,

hierarchical clustering was chosen to facilitate visual discovery

of the appropriate numbers of clusters from the clustering

result, rather than requiring pre-specification of the number

of clusters, or quantitative evaluation of the optimal number

of clusters. Hierarchical cluster is agglomerative, meaning that

initially each subject is initially its own cluster, then clusters

are merged in an agglomerative manner, until the end state

is reached where all the subjects belong to the same cluster.

Therefore, a cluster merger strategy, also known as linkage,

must be selected. Possibilities include “single” (smallest pairwise

distance between the subjects in one cluster and the subjects

in another), “complete” (the largest pairwise difference between

the subjects in one cluster and the subjects in another), and

“average” (the average pairwise difference between the subjects

in one cluster and the subjects in another). Note that the linkages

are equivalent when considering clusters containing only one

subject. Given that average considers all subjects in both clusters,

it was chosen for the present work. However, as described for

all linkage methods, average linkage requires the definition of a

distance metric between subjects, which are represented herein

by the values of 30 features. A distance metric increases in

magnitude as subjects become more dissimilar, and must meet

specific mathematical criteria to quality as a proper metric (30).

Correlation distance (more precisely, 1-Pearson correlation) was

shown to generally perform well across a variety of datasets and

clustering algorithms, and so was chosen herein (31).

The output of hierarchical clustering is a dendrogram, which

is a visual representation of subjects beginning in their own

clusters, and iterative merging of clusters until all the subjects

belong to a single cluster. The dendrogram was inspected, and

an appropriate number of clusters chosen based on both the

structure of the dendrogram and the appropriate amount of data

in each cluster.

Results

A total of 396 subjects were included in the clustering,

composed of 92 (23%) subjects with LVEDP≥25 mmHg and 304

(77%) subjects with LVEDP≤12 mmHg. Of the top 30 features

from the LVEDP algorithm included in the clustering, 22 were

derived from the OVG signal and had an average rank in the

contribution of 17, and eight were derived from the PPG signal

with an average rank of 10.

Figure 3 shows the dendrogram, with five clusters (labeled

1–5) chosen to segment the dataset, which for simplicity and

recognition are colored (Purple=cluster 1, Green=cluster 2,

Red=cluster 3, Yellow=cluster 4, Blue=cluster 5). In Figure 3A,

the dendrogram is associated to a heatmap visualizing the

magnitude of the feature values for each subject, with vertical

lines delineating the boundary between adjacent clusters, and

subjects aligning between the dendrogram and the heatmap.
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FIGURE 3

(A) Dendrogram colored to identify each cluster, associated to a heatmap visualizing the magnitude of the feature values for each subject, and

(B) colored dendrogram associated with the pairwise distance matrix across the dataset, with bold boxes defining each cluster, and dotted lines

delineating between adjacent clusters.

TABLE 1 Clusters demographics and measured parameters.

Property Purple Green Red Yellow Blue

N 69 86 110 56 75

LVEDP>25 36.2% 22.1% 22.7% 26.8% 10.7%

LVEDP (mmHg) 17.8± 10.8 13.5± 8.5 13.9± 8.4 15.0± 9.9 14.2± 9.0

Age(years) 65.3± 9.6 62.9± 10.4 63.4± 9.2 63.7± 10.4 61.6± 11.6

BMI(kg/m2) 34.5± 7.6 31.0± 6.4 30.8± 7.2 32.0± 7.5 30.0± 6.0

Female 49.3% 40.7% 40.0% 42.9% 25.3%

Significant CAD* 40.6% 33.7% 38.9% 35.7% 44.0%

Diabetes 36.2% 32.6% 39.3% 34.9% 21.3%

Hypertension 78.3% 69.8% 76.8% 70.6% 68.0%

Hyperlipidemia 78.3% 75.6% 73.2% 72.5% 62.7%

*Significant CAD was defined as the presence of a >70% lesion or an FFR < 0.80, assessed during the same left heart catheterization procedure in which the LVEDP measurement

was acquired.

Banding in the heatmap that differs between clusters is a visual

manifestation of the feature values differing across clusters. In

Figure 3B, the dendrogram is associated to the pairwise distance

matrix across the dataset, with the bold boxes along the diagonal

defining each cluster, and the dotted lines delineating between

adjacent clusters. Similar to Figure 3A, the subjects are aligned
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between the dendrogram and the distance matrix. As expected,

the pairwise distances within clusters (i.e., within bolded boxes,

occurring along the diagonal of the distance matrix) are low,

showing that the distance between subjects within the same

cluster is generally low. Therefore, subjects are cohesive within

the clusters. The off-diagonal boxes defined by dashed lines in

the distance matrix represent the distances between subjects

not belonging to the same cluster, and as expected, exhibit

larger distances on average than subjects belonging to the same

cluster. Further, the distance between the cluster 1 (Purple)

and cluster 2 (Green) is relatively low, as is supported by the

dendrogram, which indicates that the next level of linkage would

join these two clusters. Similarly, large distances in the heatmap

are concentrated in the region comparing cluster 2 (Green) to

cluster 3 (Red), which would not be joined together until the top

linkage level, where all subjects are joined in a single cluster.

After the clustering was complete, clinical metadata was

overlaid on the resultant clusters, as shown in Table 1. The

overlaid clinical metadata can then be considered in conjunction

with the observations from the feature clustering, as shown in

Figure 3.

Cluster 1, with the highest LVEDP of all clusters, is the

most dissimilar from the cluster 5 in both the clustering and

with respect to the clinical properties of the subjects in each

cluster. In contrast to cluster 1, cluster 5 is predominantly non-

elevated LVEDP, younger, lower BMI, male and has a higher

rate of significant coronary artery disease. The most substantial

feature differences between cluster 1 and cluster 5 are those

calculated from the PPG signal. Given the gender and age

differences between these clusters, a plausible explanation of the

PPG differentiation may be the vasculature changes that occur

in post-menopausal women.

Cluster 1 is closest in the clustering to cluster 2 (i.e., the

next cluster that would be joined to cluster 1 in the dendrogram

is cluster 2), with the second lowest LVEDP of all clusters.

To explore the mechanism underlying the difference between

these clusters, the feature values were normalized across the

full dataset using z-score (i.e., mean set to zero, and standard

deviation set to one), and the normalized values mapped on

to the clusters. The feature values were averaged within cluster

1 and cluster 2, then the averages differenced across these two

clusters. The largest differences between cluster 1 and cluster 2

were found in features extracted from the electrical data, and

specifically those that quantify predictability and variability of

the signal. There is low ability to predict the signal (occurring as

high feature values) and high signal variability (occurring as high

feature values) in the cluster 1, and the opposite in the cluster 2

(occurring with low feature values). The predictability functions

by fitting a model to a portion of the OVG data and evaluating

the performance of that model on the remaining data. Should

the ability of the model to predict on the withheld data be poor,

then the resultant error between the signal and the model will

be high, resulting in a high feature value. The variability feature

FIGURE 4

The variability and lack of predictability feature values for cluster

2 (Green) and cluster 1 (Purple), with the mean of each feature

for each cluster marked with dashed lines.

derives a representative cardiac cycle for the subject based on

the acquired data and compares that representative cardiac cycle

to each acquired cycle to calculate the disparity – should it be

high, then the representative cycle cannot sufficiently capture

the variability in the signal, which is then represented as a high

feature value.

The relationship between these features and clusters is

shown in Figure 4, which visualizes the feature values for clusters

1 and 2, with the mean of each feature for each cluster marked

with dashed lines. The mean predictability feature was −0.74

and 0.80, for cluster 2 and cluster 1, respectively. The mean

variability feature was −0.58 and 0.64, for cluster 2 and cluster

1 respectively.

Discussion

Machine-learned algorithms now permeate many facets of

medical practice and the magnitude of these techniques’ utility

and their diverse applications are rapidly being adapted to

challenges in cardiology (32, 33). Cluster analysis of datasets

identifies patterns and trends by using the relationships between

variables to uncover hidden structure (34). In the past, the

heterogeneous nature of HF populations and the complexity

of the pathophysiologic mechanisms operative in specific HF

disease states have made identification of similar phenotypes

difficult. The utilization of clustering analysis allows detection

of small unique phenogroups by examining the similarities

and differences among quantitative variables (34). This type

of unsupervised ML has be applied to populations of HF

including HFpEF (23, 35), HFrEF (36), and acute HF (37). These

studies have elucidated phenotype clusters and demonstrated

subsequent clinical outcomes of patients previously diagnosed

with HF as well as those acutely admitted with that diagnosis.
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This approach is useful for risk stratification and prognostic

prediction in later stages of the disease but does little for

targeting early transition into pathophysiologic states at risk

for progression to significant disease or to facilitate precision

interventions at times when remodeling might be prevented.

In our trial, we identify novel phenotypes with varying

prevalences of elevated LVEDP within a population presenting

with new onset cardiovascular symptoms. Elevated LVEDP has

served as a direct measurement of myocardial dysfunction

as well as a marker indicative of pathophysiologic changes

ultimately resulting in the remodeling observed in later stages

of HF (38). The goal of this investigation was to analyze the

phenotypes and determine if features within the clusters varied

in a fashion that could be followed to predict transition to

adjacent clusters with increased risk of LVEDP elevation.

This trial demonstrates five clusters resulting from the

analysis of 396 subjects (Figure 3), composed of 92 (23%)

subjects with LVEDP≥25 mmHg and 304 (77%) subjects with

LVEDP≤12 mmHg. The heatmap of the magnitude of feature

values (Figure 3A) illustrates the similarity of cluster 1 and

cluster 2 (purple and green) phenogroups with regard to each

of the 30 features. The degree of similarity can be appreciated

visually, with the density of yellow and brown being closest

between cluster 1 and 2 (purple and green). When moving

from cluster 1 (shown in column 1) to cluster 5 (column 5),

the coloration representing feature values becomes progressively

more discrepant to cluster 1.

Correspondingly, the pairwise distance matrix (Figure 3B)

showing the distance between pairs of subjects yields a diagonal

line that elucidates the basis behind the formation of each

cluster. Each solid box on the diagonal line starting with

cluster 1 (top left, column 1) and progressing down the

diagonal to bottom right to arrive at cluster 5, indicates

very similar distancing between points in each cluster (high

intensity of blue coloring). The dotted rectangle boxes permit

comparison between the clusters with reference to the distance

between subjects. In addition, this provides confirmation of the

appropriateness and accuracy of the resultant clusters.

Cluster 1 and the adjacent cluster 2 demonstrate the closest

feature values, but interestingly, have the widest divergence of

prevalence of elevated LVEDP. Their proximity suggests that

modest changes in feature values could result in transition of a

subject in cluster 2 to cluster 1, and consequently may result in

increased risk of elevation in LVEDP.

Of the top 30 features from the LVEDP algorithm included

in the clustering, 22 were derived from the OVG signal, and

eight were derived from the PPG signal. We found that features

quantifying predictability and variability exhibited the most

substantial differences between the cluster with the highest

rate of LVEDP elevation (cluster 1) and the adjacent cluster

2, which presented with the second lowest rate of LVEDP

elevation across the clusters. This feature difference suggests

that it may be possible to follow subjects initially belonging

to the cluster 2 phenotype to determine whether the signal

properties shift over time to increased variability and decreased

predictability, indicating that they may be transitioning to the

adjacent cluster 1, with the associated higher prevalence, and

therefore risk of, LVEDP elevation. Validation of the described

phenotypes can be achieved through clinical follow-up to detect

outcomes. In addition, opportunities exist to further characterize

the phenotypes by inclusion of supplementary clinical data,

including biomarkers such as BNP.

Conclusion

An approach to stratify the likelihood of movement

between clusters and the possible progression of myocardial

dysfunction for an individual patient could include changes

in the features that differentiate these clusters; specifically,

reductions in electrical signal predictability and increases in

variability. Identification of distinct subtypes of myocardial

dysfunction evidenced by elevated LVEDP and knowledge of

factors that promote transition to clusters with higher levels

of left ventricular filling pressures may permit early risk

stratification and improve patient selection for novel therapeutic

interventions thereby facilitating precision medicine.
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