Distinguishing Death from Disenrollment: Applying a Predictive Algorithm to Reduce Bias in Estimating the Risk of Rehospitalization

Jessica C. Young ^{1,2}, Nabarun Dasgupta¹, Kenneth Pack³, Bethany Diprete¹, Virginia Pate¹, Toska Cooper¹, Sarah Bloemers³, Til Stürmer¹, Jennifer L. Lund¹, Debra E. Irwin³, Teresa Gibson³, Michele Jonsson Funk¹ ¹University of North Carolina at Chapel Hill, ²Karolinska Institutet, ³Merative Poster 287

Publication Number 961

Presented at the 38th International Conference on Pharmacoepidemiology & Therapeutic Risk Management August 27, 2022 Copenhagen, Denmark

BACKGROUND

- The inability to identify death dates in several insurance claims data sources results in biased estimates when death is a competing event.
- Deaths result in disenrollment from health plans. When dates of death are not available, death is typically treated as non-informative censoring.
- ORACL (Observational Research Algorithm for Claims) was built using machine learning methods to predict when plan disenrollment is due to death.
- ORACL was developed and validated using MarketScan insurance claims data

OBJECTIVES

We illustrate how ORACL can be used to identify deaths in insurance claims data, and how treating predicted deaths as competing risks can reduce bias in study estimates. The ORACL model can predict death in insurance claims, enabling competing

METHODS

Data Source:

• 20% sample of Medicare claims, 2007-2017

Study Population:

- 66+ years of age with an inpatient admission for AMI
- At least 1 year of prior continuous enrollment with an employer-sponsored supplemental insurance plan

Outcome: Rehospitalization within 90-days of discharge from hospitalization for AMI

We Compare Three Methods of Estimating the Risk of 90-day Readmission

L. Using true death data, account for death as a competing risk. Cumulative Incidence Functions

risk analyses to reduce bias

2. Mimicking scenarios where death data are unavailable, treat death as non-informative censoring at the time of disenrollment

3. Use ORACL to predict when disenrollment is death, and treat predicted deaths (predicted probability >0.99) as a competing risk

RESULTS

Table 1. Risk of 90-day rehospitalization using 3 different methods of accounting for death.

Analysis Version	Death Data	Death treated as	Risk (95% Confidence Interval)
Benchmark	Validated CMS Death Data	A competing risk	21.6% (20.8%, 22.3%)
Obscured Death	Obscured Death	Non-informative censoring (equivalent to disenrollment)	24.8% (23.9%, 25.6%)
ORACL	ORACL Predicted Death	ORACL predicted death treated as a competing risk	21.7% (21.0%, 22.5%)

Table 2. ORACL performance in the Medicare hospitalized AMI population.

Predicted Probability Threshold	% of disenrollments above the threshold	Sensitivity	Specificity	ROC
0.10	100.0%	1.000	0.000	
0.20	99.9%	1.000	0.002	
0.30	99.6%	1.000	0.012	
0.40	98.8%	1.000	0.033	
0.50	97.9%	1.000	0.063	
0.60	96.4%	1.000	0.105	
0.70	94.5%	0.999	0.162	0.04
0.80	91.4%	0.998	0.248	0.94
0.90	86.8%	0.996	0.380	
0.950	82.1%	0.992	0.502	
0.975	77.1%	0.983	0.623	
0.990	71.0%	0.967	0.754	
0.995	65.9%	0.937	0.837	
0.999	53.8%	0.811	0.948	

CONCLUSIONS

- Failure to account for death as a competing risk results in an estimate that is biased upwards.
- Using ORACL to predict death produced estimates of risk that closely mirrored estimates using validated death data
- In situations where death data are unavailable, ORACL can help alleviate biases related to competing risks

 In this example, when using ORACL, we were able to eliminate a 15% overestimation

DISCLOSURES

JY was supported by a National Research Service Award Pre-Doctoral/Post-Doctoral Traineeship from the Agency for Healthcare Research and Quality sponsored by The Cecil G. Sheps Center for Health Services Research, The University of North Carolina at Chapel Hill, Grant No. T32-HS000032. JY is currently supported by the Karolinska Institutet.

The database infrastructure used for this project was funded by the Department of Epidemiology, UNC Gillings School of Global Public Health; the Cecil G. Sheps Center for Health Services Research, UNC; the CER Strategic Initiative of UNC's Clinical & Translational Science Award (UL1TR001111); and the UNC School of Medicine.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

