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ABSTRACT Microbes play a dominant role in the biogeochemistry of coastal wa-
ters, which receive organic matter from diverse sources. We present metagenomes
and 45 metagenome-assembled genomes (MAGs) from Sapelo Island, Georgia, to
further understand coastal microbial populations. Notably, four MAGs are archaea,
with two Thaumarchaeota and two marine group II Euryarchaeota.

Coastal oceans receive carbon and nutrients from rivers and marshes, driving high
productivity. The metabolism of coastal microbes largely determines how much of

the resulting organic matter (OM) is exported (1). Metagenomic data can provide
insights into how microbial diversity relates to metabolic potential and drives OM
processing (2). Coastal microbial biogeochemistry has been well studied at Sapelo
Island, Georgia (3–5). Furthermore, these waters host a summer “bloom” of Thaumar-
chaeota and have been studied extensively to understand thaumarchaeal ecology (e.g.,
references 6–9). The metagenomic data presented here will guide an understanding of
the microbial taxa in these waters and complement existing data for the same com-
munities.

Seawater was collected at Marsh Landing (31°25=4.08�N, 81°17=34.26�W) as part of
the Sapelo Island Microbial Carbon Observatory (http://www.simco.uga.edu/) by filter-
ing through a 3.0-�m-pore-size prefilter and a 0.2-�m-pore-size Supor filter (Pall),
which was frozen in liquid nitrogen (10). Duplicate filters were collected in August 2008
and 2009, 1 h before both day and night high tide on consecutive days (11). DNA
extraction was done using the PowerSoil kit (Mo Bio), as described previously (7). DNA
was sheared to �225 bp, and libraries were constructed with the TruSeq DNA kit
(Illumina) at the Georgia Genomics and Bioinformatics Core. Replicates from day and
night samples on consecutive days were pooled to make 4 libraries (08N, 08D, 09N, and
09D; see Table 1), which were sequenced on 25% of an Illumina HiSeq 2500 platform
rapid lane (paired-end, 150-bp reads) at the HudsonAlpha Institute for Biotechnology.

Default software parameters were used, unless otherwise stated. The reads had
adapters removed with Trim Galore (https://github.com/FelixKrueger/TrimGalore), were
trimmed with PRINSEQ v.0.20.4 (12), and were joined using PEAR v.0.9.10 (13), using
parameters described previously (14) (Table 1). Paired and high-quality orphaned/
singleton reads were coassembled using metaSPAdes (“--meta”) within SPAdes v.3.7.0
(15), producing 83,626 contigs of �1,000 bp (N50, 718 bp; L50, 152,728; calculated with
QUAST v.4.2 [16]).

Reads were mapped and indexed using Bowtie2 v.2.2.9 (17) and SAMtools v.1.3.1
(18), and contigs of �2.5 kbp (n � 18,714) were binned using anvi’o v.3 (19), following
published protocols (20) (http://merenlab.org/data/tara-oceans-mags/). An anvi’o con-
tig database was built to calculate k-mer frequencies, determine genes using Prodigal
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v.2.6.3 (21), and identify single-copy genes (22, 23) using HMMER v.3.1b2 (24). Bins
generated by CONCOCT v.1.0.0 (25) were refined using the anvi’o interactive interface
(26). Completeness and redundancy were assessed using anvi’o and CheckM v.1.0.12
(27); bins with �10% redundancy and �50% completeness were rerefined to minimize
redundancy. Their resulting completeness and redundancy were estimated using
anvi’o, CheckM, and the Microbial Genome Atlas (MiGA) Web server (28) (last accessed
18 August 2018). The resulting bins with completion of �50% were considered
metagenome-assembled genomes (MAGs; n � 45) and were taxonomically annotated
with MiGA. MAGs annotated below the order (genus) level included Thaumarchaeota
(Nitrosopumilus spp., n � 2), marine group II Euryarchaeota (n � 2), Synechococcaceae
(strain WH 8109, Cyanobium sp., n � 2), Rhodobacteraceae (Phaeobacter spp., n � 5),
Pelagibacteraceae (n � 2), Flavobacteriia (n � 3), Acidimicrobiaceae (Ilumatobacter spp.,
n � 2), and Halieaceae (n � 1) (see https://figshare.com/articles/SIMO_MAG_table_v2/
9791465/1).

Data availability. The reads, coassembly, and MAGs were deposited under
GenBank BioProject number PRJNA552566. The reads are under SRA accession numbers
SRX6421373 to SRX6421376. The coassembly and MAGs are under whole-genome
sequencing (WGS) project numbers VMBT00000000 to VMDM00000000.
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