The economics of electricity generation from Gulf Stream currents
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ABSTRACT

Hydrokinetic turbines harnessing energy from ocean currents represent a potential low carbon electricity
source. This study provides a detailed techno-economic assessment of ocean turbines operating in the
Gulf Stream off the North Carolina coast. Using hindcast data from a high-resolution ocean circulation
model in conjunction with the US Department of Energy's reference model 4 (RM4) for ocean turbines,
we examine resource quality and apply portfolio optimization to identify the best candidate sites for
ocean turbine deployment. We find that the lowest average levelized cost of electricity (LCOE) from a
single site can reach 400 $/MWh. By optimally selecting geographically dispersed sites and taking
advantage of economies of scale, the variations in total energy output can be reduced by an order of
magnitude while keeping the LCOE below 300 $/MWh. Power take-off and transmission infrastructure
are the largest cost drivers, and variation in resource quality can have a significant influence on the
project LCOE. While this study focuses on a limited spatial domain, it provides a framework to assess the
techno-economic feasibility of ocean current energy in other western boundary currents.

1. Introduction

Marine energy resources, which include ocean waves, tides,
open ocean currents as well as gradients in ocean temperature [1]
and salinity [2], could serve as an important low carbon renewable
energy source. Previous research has shown great potential for
marine electricity generation worldwide [3—9]. The available ki-
netic energy in US coastal waters associated with wave, tidal, and
ocean current energy resources is estimated to be 1170 TWh/yr [8],
222—-334 TWh/yr [9] and 45—163 TWhyr [7], respectively.

Ocean currents (i.e., non-tidal marine currents) are seawater
circulations driven by a combination of wind, density, and pressure
differences in the ocean [1]. Ocean currents mostly flow horizon-
tally and typically have their highest flow velocities near the sur-
face. On average, they will have a prevailing direction, but temporal
variability can at times be strong. Ocean currents have been studied
over the past several decades as a potential energy source for
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electricity generation, especially the Gulf Stream [5—7,10—12], the
Kuroshio Current [13,14], and the Agulhas Current [15—17]. These
are all jet-like oceanic western boundary currents, which are
among the swiftest large-scale marine currents. Their current
speeds are fast enough to be considered excellent energy resources
[11,18]. These western boundary currents typically are thousands of
km in length, about 100 km wide, extend to at least 1000 m depth,
and have the strongest current speed at the surface near the center
of the current [11].

As the most intensely studied ocean current, the Gulf Stream
begins in the Caribbean and terminates in the North Atlantic Ocean.
This fast moving ocean current brings a significant amount of heat
and salt to the European continent, and also provides an opportu-
nity for energy capture. In the US, the most plausible locations to
harness Gulf Stream energy are in the Florida Straits and off the
North Carolina coast, the two locations where the current makes its
closest approach to shore. The estimated extractable energy from
the Florida Current (i.e., the portion of the Gulf Stream within the
Florida Straits) ranges from 1 GW to 10 GW [5—7], and the portion
of the Gulf Stream within 200 miles of the US coastline between
Florida and North Carolina can yield approximately 9 GW or
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80 TWh per year of electrical power [7].

Most ocean currents exhibit some degree of path meandering
[19—25] as well as periods of acceleration and deceleration. As a
consequence, the ocean current velocity at a specific location is
subject to temporal variability [26]. Previous studies [19,23,24,27]
have shown that the lateral movements of the Gulf Stream from
the Florida Straits to Cape Hatteras, NC can be significant due to
wind forcing, flow instabilities, and bathymetric effects. Along the
southeastern US coast, the standard deviation of the lateral Gulf
Stream position displacement increases from 5 to 10 km within the
Florida Straits to an approximate 40 km local maximum down-
stream of a bottom topographic feature off Charleston, SC known as
the "Charleston Bump" (31°—32° N latitude). The standard devia-
tion in the Stream's lateral displacement decreases moving north-
eastward (downstream) from the Bump, to approximately
10—20 km at Cape Hatteras, NC. These path variations will influence
the cost-effectiveness of Gulf Stream energy extraction.

Previous work includes technical assessments of marine turbine
design and performance, mostly to address tidal energy applica-
tions [28—35]. In addition, a detailed cost analysis for a hypothetical
project in the Florida Straits has been performed [10,36]. However,
the Florida Current is confined within the Florida Straits, which is
approximately 100 km wide between the Florida peninsula and the
Bahama Banks. By contrast, significant meanders are observed for
the Gulf Stream off the North Carolina coast [11,19]. While resource
assessments conducted at several discrete locations near Cape
Hatteras, NC indicate potential for commercial development
[11,37], they do not tie ocean current resource estimates to the
economic performance of turbine arrays.

This paper represents a significant extension of existing work by
providing a comprehensive techno-economic assessment of ocean
current energy off the North Carolina coast. Our analysis is the first
to combine a multi-year resource assessment based on output from
a high-resolution ocean circulation model, a portfolio optimization
to identify optimal locations to install turbine arrays, and a lev-
elized cost analysis that considers the tradeoff between resource
quality and distance to shore. Furthermore, this paper represents
the first application of portfolio optimization in order to identify a
diverse set of generation sites that hedge against the risk of future
Gulf Stream meanders. The structure is as follows. Section 2 de-
scribes the model assumptions used for resource assessment and
the techno-economic study, and introduces the portfolio optimi-
zation model. The results are presented in Section 3, and Section 4
describes the insights and conclusions from this study.

2. Methods
2.1. Resource characterization

Gulf Stream resource data is obtained from a realistic high-
resolution regional ocean circulation model, which is used to
hindcast the circulation of the Middle Atlantic Bight (MAB), South
Atlantic Bight (SAB) and parts of Gulf Stream, Slope Sea, and Sar-
gasso Sea [38]. The MABSAB model is based on the Regional Ocean
Modeling System (ROMS), a free-surface, terrain-following, primi-
tive equations ocean model in widespread use for estuarine,
coastal, and regional ocean-wide applications [38]. The MABSAB
model covers the domain from 81.89° W to 69.80° W, 28.41° N to
41.84° N. The horizontal resolution is approximately 2 km. Depth is
represented by 36 terrain-following layers [38].

Model bathymetry was interpolated from National Geophysical
Data Center (NGDC) 2-Minute Gridded Global Relief Data. Mo-
mentum advection equations were solved using a third order up-
stream bias scheme for three-dimensional velocity and a fourth-
order centered scheme for two-dimensional transport, whereas

tracer (temperature and salinity) advections were solved with a
third-order upstream scheme in the horizontal direction and a
fourth-order centered scheme in the vertical direction. The hori-
zontal mixing for both the momentum and tracer utilized the
harmonic formulation with 100 and 20 m?/s as the momentum and
tracer mixing coefficient, respectively. Turbulent mixing for both
momentum and tracers was computed using the Mellor/Yamada
Level-2.5 closure scheme [39]. For open boundary conditions, the
model was nested inside the 1/12° global data assimilative HYCOM/
NCODA [40] output superimposed with the 6 major tidal constit-
uent forcing derived from an ADCIRC tidal model [41] simulation of
the western Atlantic.

The MABSAB sub-domain selected for analysis was 77° W to 74°
W, 33° N to 36° N, which includes the strongest, near-shore Gulf
Stream current off the North Carolina coast. While the fastest Gulf
Stream currents are closest to the surface, we assume the turbines
are installed at a depth of approximately 50 m below the sea sur-
face to accommodate the drafts of large ships and to keep turbine
hardware out of the surface wave zone. The study domain is shown
in Fig. 1: the 334 km x 280 km rectangle is discretized into a
2 km x 2 km mesh grid with 19,188 grid points. Daily average
current speeds for the years 2009—2014 are used in this study
[38,42,43].

The electricity output of the turbine at a given current velocity is
expressed by the following equation:

1
P(v) = 5 nCppAv? (M

where v is the current velocity, A is the swept rotor area, p is the
density of sea water, G, is the power coefficient that accounts for
the conversion of current power to mechanical power, and 7 is the
combined power chain conversion efficiency, which includes the
gearbox, generator, transformer and power inverter efficiencies
(see Supplementary Table F for values of the parameters). The
design and performance of the ocean current turbine is adopted
from Neary et al. [10]. The design represents a moored glider with
four axial flow marine turbines. The rated capacity of each turbine
is 1 MW, and the total capacity of each unit is 4 MW. The power
curve is adapted from Neary et al. [10] but adjusted for the lower
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Fig. 1. The study domain near the North Carolina coast, as represented by a dashed
box. The assumed grid tie-in point is located at Morehead City, NC, which is marked
with a circle. Isobaths are shown in meters.



average current velocity encountered off the North Carolina coast
(Supplementary Figure C). Similar to a wind turbine, the maximum
electricity production of each turbine is limited by the installed
generator capacity. We also assume that the space between
neighboring units is 1 km, and for simplicity, the wake from up-
stream units does not affect the performance of downstream units
[10]. Given this configuration, the average installed capacity in a
single 2 km x 2 km grid cell is 16 MW. See Supplementary Fig. B for
a detailed layout of generation units.

The site-specific annual electricity production (E;) at grid (i, j) is
obtained by integrating the product of the turbine's output at a
specific current velocity, P(v), with the velocity probability density,
Pr(v);, over the entire velocity interval:

Umax
Ejj = AF-nq.-8760 / P(v)APr(v)ijdv (2)
0

where, AF is the annual availability factor and 7y is the trans-
mission line efficiency. A discretized probability distribution was
obtained by binning the daily average velocities from the MABSAB
model over the entire 6-year period into a set of velocity ranges.
The velocity probability distribution is provided in Supplementary
Fig. C, along with the assumed power curve.

The estimated annual electricity production is used to calculate
the corresponding site-specific capacity factors. The capacity factor
(CF) at each site is defined as the ratio of its estimated annual
electricity production to its maximum annual electricity produc-
tion, if it operated continuously at its full capacity. A higher site-
specific capacity factor implies higher electricity production given
the same amount of installed capacity.

2.2. Portfolio optimization procedure

In order to optimize the locations for marine current turbine
deployment, we apply mean-variance portfolio (MVP) theory to
create a portfolio consisting of multiple geographically diversified
sites. MVP theory was developed by Markowitz [44] as a way to
devise an efficient financial portfolio consisting of different assets.
An efficient portfolio is the one with the least portfolio risk (typi-
cally modeled as total variance [45,46], or coefficient of variation
[47]) at a specified level of expected returns, such that one cannot
decrease the portfolio risk while increasing the expected return
level.

MVP has been used to optimally site energy technologies, most
notably wind farms. Spreading wind farms over a wide geographic
area can decrease fluctuations in aggregate output and improve
overall economic viability [45,46]. For example, Roques et al. [46]
used historical wind production data from several European
countries and applied MVP to optimally allocate wind farm capacity
in order to minimize the total variance associated with specific
electricity generation targets.

MVP has also been applied to the repowering of existing wind
farms in Spain [48]. Santos-Alamillos et al. [48] find that portfolio
optimization can increase electricity production by 16—55% while
reducing the hourly fluctuations in output by 12—31%. In Nova-
check and Johnson [49], different optimal wind portfolios were
tested in a unit-commitment and dispatch model representing the
US Midwest power system in order to evaluate the value of reduced
variability to the system. Wind power generation smoothing was
also investigated with MVP considering turbine failures and cor-
relation between aggregated wind power output and electricity
demand [50]. Other works focus on using MVP to achieve an
optimal investment plan involving multiple energy resources [51]
and to identify the best combined heat and power generation

technologies based on the net present value of different portfolios
[52]. To our knowledge, our work is the first attempt to apply MVP
to identify optimal allocation of hydrokinetic turbines.

In our study, the installed turbine capacity is optimally distrib-
uted across sites (i.e., grid cells) within the study domain to form a
portfolio. We wish to achieve a pre-determined system target ca-
pacity factor — analogous to the expected return — while mini-
mizing total variance in aggregate output, which serves as a
measure of system risk. In addition, we add the following con-
straints: (1) the number of turbine units installed in a single grid
cell must be an integer and cannot exceed a maximum of four units
per cell or 16 MW, (2) the investor may limit the number of selected
grid cells within an appropriate range, and (3) the investor may fix
the total installed capacity of the project. In addition, the anchoring
system limits the seabed depth [53], so we assume that the turbines
can only be installed where the seabed depth is between 100 m and
2500 m.

With all the information above, we construct a 2-stage optimi-
zation model (see Supplementary Notes 1 for the model formula-
tion). We assume that a marine current installation with a total
capacity of 80 MW will be deployed across a maximum of 5 sites,
with the installed capacity within each site less than or equal to
16 MW. This scenario represents a plausible utility scale deploy-
ment of generating units. The implementation of the 2-stage model
is developed using MATLAB and CPLEX on a workstation with 24
cores and 256 GB of memory.

2.3. Economic assumptions

Costs associated with Gulf Stream project development draw
heavily on the RM4 marine turbine design detailed in Neary et al.
[10]. The design of the RM4 marine turbine involved rigorous
analysis, including the specification of individual parts associated
with subcomponents and validation through scaled model exper-
iments. Emphasis was placed on simple designs using conventional
materials, and to the extent possible, commercial off-the-shelf
(COTS) components. Thus the cost and performance assumptions
embedded in the RM4 design are deliberately conservative.
Future innovations (e.g., advanced control strategies or advanced
materials) could improve the assumed techno-economic
performance.

The capital cost consists of pre-installation development,
structural device components, power take-off, infrastructure, and
project deployment costs, as shown in Supplementary Table G.
Annual recurring costs include project operation and maintenance
costs and recurring environment monitoring costs, as shown in
Supplementary Table H. Given the lack of commercial experience
with this technology, we emphasize that substantial cost uncer-
tainty exists, particularly given the need to operate in a harsh
marine environment.

All capital costs incurred at the beginning of the project are
multiplied by the capital charge rate (CCR) to calculate the annual
payments required to pay off that investment over the assumed
project lifetime. The lifetime of the project is assumed to be 30
years, based on the typical assumed lifetimes for marine energy
projects. A discount rate of 10% is used to represent the cost of
capital to an investor or utility.

Due to limited commercially available data for marine hydro-
kinetic turbines, the capital costs for the structural device compo-
nents and power take-off are based on Neary et al. [10]. We
subsequently compared the assumed capital cost with Verdant
Power's estimate for the Roosevelt Island Tidal Energy (RITE)
project [54] and found that the percentage difference between the
two estimates is only 0.2%.

The cost of infrastructure consists of two major parts: the cost of



the dedicated operations and maintenance (0O&M) vessel and the
cost of the transmission system. The cost for the required electricity
transmission is drawn from a similar project with undersea cables
tied to the North Carolina grid [55]. We assume the transmission
system can be divided into two subsystems: a collection subsystem,
which transmits electricity from the turbines to the collection
point, rated at a medium voltage of 33 kV; and a transmission
subsystem, which steps up the voltage to 132 kV and transmits the
power received at the collection point to the onshore grid tie-in
point [56]. The collection point is the hub that aggregates elec-
tricity from all the spur lines. To calculate transmission cable dis-
tances, the model assumes that the connection to the grid is located
in Morehead City, NC, where existing transmission and distribution
infrastructure exists [57]. Therefore, the total transmission cost is a
function of the total collection cable length, total transmission cable
distance, and number of installed units. See Supplementary Fig. D
and E for details on the transmission configuration. More details
on the infrastructure cost calculations can be found in
Supplementary Note 3.

In this study, we calculate the LCOE using both single and
multiple site configurations. In the single site configuration, we
calculate the LCOE associated with each individual grid cell and
assume a dedicated transmission line to shore at Morehead City. In
this layout, the total transmission distance equals the direct dis-
tance between Morehead City and the grid cell, and for the gen-
eration units installed in a single site, the total collection line
consists of the spur lines for each separate 4 MW unit, which is an
average 1 km given the spacing distance between turbines. In the
multisite configuration, grid cells are selected using portfolio
optimization and electricity output from each site is aggregated. In
this layout, we optimize the collection point location using a
Newton-Raphson iterative method such that the total cabling cost
is minimized.

The mooring design includes mooring cables, anchors, and
buoyancy tanks, which are used to provide undersea support.
Therefore, the total mooring costs are affected by both the number
of units installed and the sea floor depth (h) at each installed site.
We followed Neary et al. [ 10] to calculate the total mooring cost, but
modified the RM4 mooring design. In the RM4 design, the two-
point mooring system consists of tension and thrust lines that are
secured to the seafloor. However, the mooring lines are attached to
only one point on the turbine unit, which does not prevent the unit
from rotating about its vertical axis. Therefore, we include two
additional tension lines and two additional thrust lines to balance
the turbine from lateral current forces [58]. As a result, our cost
coefficient for mooring material is three times as expensive as the
estimate by Neary et al. [10].

The costs associated with deployment include the cable shore
landing, mooring and foundation system, cable installation, and
device installation. Again, estimates drawn from Neary et al. [10]
are used. We linearly scaled these cost estimates for project sizes
ranging from 4 MW to 400 MW to obtain deployment cost per unit
of installed capacity.

Development costs mainly consist of siting and scoping, project
design, engineering and management costs, and environmental
compliance costs, such as permitting costs, National Environmental
Policy Act (NEPA) compliance, and administrative costs. Logarith-
mic regression is applied to fit the development cost estimates as a
function of capacity from Neary et al. [10].

O&M costs are associated with energy production and trans-
mission on an ongoing basis. Annual fixed O&M costs are drawn
from Neary et al. [10]. It includes O&M for marine operations,
shore-based operations, replacement parts, and consumables. As
with deployment and development, a linear scaling is applied to
O&M costs.

3. Results
3.1. Gulf Stream resource assessment

As described in Section 2.1, we estimated annual capacity factors
associated with marine turbines for all grid points within the study
domain (77° W to 74° W, 33° N to 36° N). Fig. 2a—f shows the
annual capacity factors and illustrate the significant spatiotemporal
variability associated with hypothetical annual electricity produc-
tion. The sites with the highest capacity factors from 2009 to 2011
are located in the southwestern quadrant whereas from 2012 to
2014 the highest capacity factors are found in the northeastern
quadrant. Furthermore, the highest capacity factor in 2014 is over
80%, but the same site has a capacity factor of only 50% in 2011.

The average site-specific capacity factor over the six-year span
(2009—2014) is depicted in Fig. 2g. Note that the site with the
highest average six-year capacity factor is over 160 km away from
Morehead City, the assumed grid tie-in point, and 230 km away
from Cape Hatteras. The strongest currents with a capacity factor
greater than 40% are concentrated between the isobaths of 100 m
and 3000 m, since the stream flows over the upper continental
slope before it traverses the Atlantic towards Northern Europe.

3.2. Correlation of current velocity and distance between sites

The significant inter-annual variability in capacity factor at a
given location presents a serious economic challenge to potential
investors who may experience years with little or no electricity
production. One possible solution is to aggregate electricity gen-
eration from multiple sites.

To explore the possibility of turbine site diversification, we
calculate the correlation in monthly electricity production from
2009 to 2014 between all grid cell pairs in the study domain. Since
land is included in the study domain, the number of site pairs as a
function of distance is not uniform (Supplementary Fig. A). Fig. 3
bins the correlation estimates by the nearest kilometer distance
between grid cell pairs. The upper and lower edges indicate the
maximum and minimum correlation, respectively, at the same
integer distance; all other samples at the same distance fall within
the shaded region.

The average coefficients in Fig. 3 indicate that as the distance
between two sites increases, the average coefficient of correlation
approaches zero. In addition, the lowest coefficients of correlation
occur at distances between 50 and 150 km, which corresponds to
the approximate width of the Gulf Stream within the studied
domain. If two sites are situated such that one site is in the Gulf
Stream current and the other is not, their monthly energy outputs
will be more negatively correlated. Overall, the decreasing corre-
lation as a function of distance implies that diversification of tur-
bine sites over a wide geographic area could reduce the total
variation in electricity production.

3.3. Portfolio optimization of generation sites

Based on the US Department of Energy's (DOE) reference model
4 (RM4) marine turbine design detailed in Neary et al. [10], each
turbine unit has an installed capacity of 4 MW, and a single
2 km x 2 km grid cell can contain up to 16 MW of installed turbine
capacity (See Supplementary Fig. B for more details.). To explore the
optimal site locations associated with a larger installation, we
conduct a portfolio optimization that requires a small but
manageable 80 MW of total installed capacity across no more than
5 different locations.

As described in Section 2.2, the portfolio optimization model
distributes installed capacity across different sites in order to



a) 2009
7 (a)

(e) 2013 %

-73

(b) 2010

37

(M 2014 %

80

20

(h) Average LCOE: 2009-2014  $/MWh
37 1000

800

600

400

200

Fig. 2. Estimated capacity factor (a—g) and levelized cost of electricity (LCOE) (h) across the study domain. Crosses mark the locations with the highest annual capacity factors.
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and 3000 m bottom-depth contours (isobaths) are indicated by the black lines running southwest-to-northeast. The continental shelf is that portion of the ocean from the coastline

to 100 m, and the continental slope extends seaward from the 100 m isobath.

minimize the variance in total monthly electricity output at an
exogenously specified capacity factor target. In order to make the
formulation computationally tractable, the portfolio optimization is
performed in two stages. Fig. 4 presents the tradeoff between ca-
pacity factor and variance. The Stage 1 results represent the

efficient frontier when there is no integer constraint on the number
of installed generating units. The Stage 2 results represent the
modified efficient frontier when the integer constraint on the
number of generating units is placed on the candidate sites chosen
in Stage 1.
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For comparison, the dots represent the minimum variance at a
given capacity factor target that can be obtained when only one
grid cell is selected. The cross at the top of Fig. 4 marks the
maximum 6-year average capacity factor among all the sites in the
domain. The results illustrate that it is possible to significantly
reduce the variance in energy output at a given capacity factor by
creating a portfolio of geographically dispersed sites rather than
relying on a single site. For example, among all individual sites with
capacity factor equal to 40%, the minimum variance is approxi-
mately 60,000 (MWh/month)?, while the best portfolio can reduce
the total variance approximately 20 times to 3000 (MWh/month)?.

The variance reductions through portfolio optimization, which
are represented by the horizontal distances between the efficient
frontier and the solid dots on Fig. 4, decrease as the required target
capacity factor increases. When the target capacity factor is equal to
the maximum capacity factor across all sites, there is only one grid
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Fig. 4. Results from the portfolio optimization. Stage 1 results represent the optimal
portfolio without an integer constraint on the number of turbine units, while Stage 2
results use the candidate sites selected from Stage 1 and include the integer constraint.
The scattered dots to the right indicate the minimum variance among individual grid
cells with the same capacity factor targets rounded to the nearest percent.

cell left in the portfolio; the inclusion of any other grid cells fails to
meet the target capacity factor. Thus, as the target capacity factor is
increased, the potential reduction in covariance through site
diversification is reduced. As expected, the gap between the Stage 1
and 2 frontiers in Fig. 4 implies that the addition of integer con-
straints slightly worsens the optimization results, since the port-
folio variance increases. Furthermore, the addition of integer
constraints in Stage 2 affect the achievable capacity factor, hence
the misalignment between the Stage 1 and 2 capacity factor targets.

Fig. 5 shows the optimal site locations from portfolios with
different target capacity factors. The selected sites range from the
100 m and 2500 m isobaths due to the bathymetry constraint based
on limits to anchoring depth. The number of selected sites in each
Stage 1 portfolio is less than 20, even though there are over 4000
candidate sites. In addition, most of the selected sites are clustered
around the site with the highest six-year average capacity factor,
represented by the cross. When the target capacity factor is low, the
selected sites tend to spread out over a larger geographic area to
take advantage of weaker correlations in output.

3.4. Levelized cost study

It is possible to formulate the portfolio optimization problem
with a constraint on LCOE rather than capacity factor. However,
such a formulation would lead to a more complex non-linear model
due to the interaction between the capacity allocated to a specific
site and the energy production from the turbines within the site,
which in turn depends on the allocated capacity. Thus, while the
portfolio study indicates the tradeoff between variability and total
output, it does not take cost into account.

Fig. 2h presents the LCOE from individual sites and indicates
that at the center of the Gulf Stream, the lowest LCOE is slightly
above 400 $/MWh. Sites with the lowest LCOEs are located near the
center of the Gulf Stream, which is consistent with Fig. 2g, since a
higher site-specific capacity factor implies a lower LCOE. Interest-
ingly, the site with the highest six-year average capacity factor is
not the same as that with the lowest six-year average LCOE, as
illustrated in Fig. 2h. The site with the lowest LCOE, indicated by a
triangle, is closer to Morehead City, the assumed grid tie-in point,
than the site with the highest six-year average capacity factor, as
marked with a cross. The distance between the two sites is
approximately 35 km. This represents the tradeoff between energy
quality and transmission cost: it is more cost-effective to select a
site with marginally lower resource quality but a shorter trans-
mission distance.

The results depicted in Fig. 2 provide a useful visualization of the
resource quality and LCOE over a continuous domain. To study the
LCOE as a function of the cumulative amount of electricity gener-
ation from the Gulf Stream, supply curves for the years 2009—2014
are shown in Fig. 6. These curves represent the marginal cost to
produce the next increment of electricity. As more electricity is
generated, the cost to extract it becomes more expensive as loca-
tions with declining resource quality must be utilized. For
simplicity, we assume that the addition of each new site requires
dedicated transmission lines to Morehead City. In addition, we
account for array losses by applying a scaling factor that reduces the
output at each site by approximately 53%.'While a more accurate
accounting of array losses would require modeling that accounts
for the incremental array losses as new capacity is deployed, Fig. 6
nonetheless illustrates how inter-annual variability in the Gulf
Stream resource affects LCOE. The LCOE at a given production level

1 This estimate is drawn from Yang et al. [7] by comparing scenarios with zero

drag coefficient (i.e., no array losses) and a uniform drag coefficient.
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can vary by more than 300 $/MWh from one year to the next. These
results suggest that inter-annual variability in Gulf Stream intensity
can have a significant impact on year-to-year costs and revenue.

While we did not directly constrain the LCOE in the portfolio
optimization, Fig. 7a shows the LCOE calculated ex post as a function
of the target capacity factor. Since we include project economies of
scale based on Neary et al. [10], the portfolio-based LCOE with
installed capacity of 80 MW is lower than that of a 16 MW single
site; the entire LCOE profile in the former case is below 400 $/MWh.
As expected, the LCOE is inversely correlated with capacity factor
since higher capacity factors represent higher annual electricity
production.
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Fig. 6. Annual supply curves from 2009 to 2014. Significant inter-annual variability in
LCOE at a given production level can be observed.

However, the LCOE is not monotonically decreasing with
increasing capacity factor: the LCOE increases when the capacity
factor increases from 46% to 47%, from 49% to 50% and from 52% to
53%. These variations are due to transmission cost, and to a lesser
extent, mooring cost. Among all cost components, the power take-
off and transmission infrastructure are the two principal cost
drivers. Each time the target capacity factor increases, the model
returns a new portfolio that includes a different set of sites with the
same total installed capacity. Given the fixed installed capacity, the
device structural components cost, power take-off cost, develop-
ment cost and deployment cost remain the same, but the infra-
structure cost will be affected by the transmission distance (see
Supplementary Note 3). In addition, changing the site selection
also affects the assumed depths, which in turn affect mooring cost.
In some cases, the incremental increase in infrastructure and
mooring cost outweighs the incremental increase in electricity
production, and the LCOE increases with the capacity factor. Thus,
while an increasing capacity factor target increases the energy
yield, it does not guarantee a lower LCOE.

Fig. 7b compares the cost breakdown of the turbine arrays in
both the single site and optimal portfolios by showing the per-
centage shares of each component contributing to the total annu-
alized cost. The sample set associated with the single site case
covers the whole sub-domain, while the optimal portfolio case only
contains 20 optimal portfolios, representing the 20 different ca-
pacity factor targets (from 0.40 to 0.59). The wider spread in the
single site layout indicates a broader range of transmission dis-
tances and mooring depths associated with the larger domain.

By contrast, the smaller ranges in Fig. 7b associated with the
optimal portfolios reflect the much smaller sample size as well as
the clustering of selected sites: most sites are grouped around the
location with the highest average capacity factor, therefore the
transmission distances are similar. The results indicate that power
take-off components and transmission infrastructure are the two
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leading cost drivers. In addition, when the installed capacity in-
creases from 16 MW in the single site to 80 MW in the portfolio, the
percentage shares of infrastructure, deployment and development
decrease due to the inclusion of project economies of scale for these
components, which in turn lead to the increase of the percentage
shares of device structural components and power take-off.

In the portfolio analysis, the estimated LCOE drops from 350
$/MWh to 230 $/MWh when the capacity factor increases from 40%
to 59%. For comparison, Jenne et al. [36] estimate an LCOE of
approximately 200 $/MWh for an 80 MW installation in the Florida
Straits. The reason for the higher LCOE in the North Carolina case is
twofold: capacity factors in the Florida Current are consistently
around 70%, which is higher than even the best site in this study;
and the transmission distances in North Carolina are significantly
greater than in the Florida Straits. The average transmission dis-
tance from the collection point to Morehead City is around
160—180 km, compared with 30 km in the Florida Straits.

4. Discussion

The resource quality associated with Gulf Stream current energy
off the North Carolina coast is highly variable. Fig. 2 shows that
model-computed capacity factors exhibit significant spatiotem-
poral variability due to path meanders and speed variations in the
Gulf Stream. Around 35° North latitude, the average location of the
shoreward edge of the Gulf Stream moves from the 3000 m isobath
in 2010 to between the 2000 and 3000 m isobaths in 2012, while
the Gulf Stream position around 33° North remains fixed. This
observation is consistent with previous studies [25,27,59], where
the Gulf Stream's path is found to have similar inter-annual
variations.

The optimized portfolio of generation sites, which aggregates
electricity production from geographically diversified turbine units,
can significantly reduce the variability in electricity generation and
improve the economic prospects of the technology. Similar to wind
farms, site diversification can reduce the need for back-up reserves.
Fig. 5 indicates that as the target capacity factor increases, the
selected sites cluster around the southwestern quadrant of the
study domain where the site with the highest six-year
average capacity factor is located. Another advantage of deploying
turbine arrays in this region is that the lateral amplitude of the Gulf
Stream meander is near a minimum within the domain
[19,23—25,27,59—61]. For that portion of the Gulf Stream upstream
of Cape Hatteras, the standard deviation of the surface front

position increases northeastward from the “Charleston bump” and
then decreases on towards Cape Hatteras due to the steepening of
the continental slope approaching Cape Hatteras [19,23,24,27,62].
In addition, the envelope of the Gulf Stream meandering down-
stream of Cape Hatteras broadens to 200—300 km or more
[25,60,61], greater than its own width of about 100 km, compared
to the maximum lateral movement of around 40 km [19] from
Charleston to Cape Hatteras. In summary, both the oceanographic
study and the portfolio optimization indicate that the region con-
taining the Gulf Stream currents approximately 200 km southwest
of Cape Hatteras is the most cost-effective location to deploy tur-
bines along the North Carolina coastline.

Several caveats should be noted. First, there are significant un-
certainties associated with cost given the lack of commercial
experience with this technology. Second, while the 6-year MABSAB
ocean model hindcast dataset enables a critical examination of
inter-annual variability in Gulf Stream energy resources, a longer
record would help to better characterize the economic effects of
meanders. Third, in this study, the LCOE associated with the
optimal portfolios are calculated ex post. While Fig. 7a indicates that
capacity factor is a reasonable proxy for LCOE, changes in the
transmission and mooring costs can increase the LCOE at higher
capacity factor targets.

A revised optimization model that makes LCOE rather than ca-
pacity factor the driving constraint would be preferable, but would
result in a more complex non-linear model. The class of mixed-
integer nonlinear optimization problems is one of the hardest to
solve in the optimization literature [63], particularly when it is a
constrained non-convex optimization model. According to Mansini
et al. [63], there are no algorithms for the exact solution of non-
convex nonlinear programming problems in which the feasible
region is a mixed-integer set. This raises concerns about reaching a
local instead of a global optimal [64]| and requires exhaustive
computational time or the use of a metaheuristic technique [65] to
find an approximate solution when solving the model.

Gulf Stream energy off the North Carolina coast will not be a
viable option without significant cost reductions: our model shows
that the optimized portfolios have LCOEs ranging from 230 to 350
$/MWh. By comparison, Jenne et al. [36] estimated an LCOE of 200
$/MWh for ocean current energy in the Florida Straits, a tier-one
site located 30 km east of Fort Lauderdale. Both estimates are
still far higher than baseload sources such as coal, steam and nat-
ural gas combined cycle, which have LCOEs ranging from 70 to 100
$/MWh [66]. It is also not competitive with commercially mature



renewables such as solar photovoltaics and wind, which can be as
low as 70 $/MWh [66]. Nonetheless, a range of technologies must
be brought to bear on the global effort to mitigate climate change,
and it is worth exploring technologies in the earliest stages of
development, such as ocean current energy, which may become
cost-effective in select locations with further innovation and re-
ductions in manufacturing and deployment costs.

The ocean current turbine design drawn from DOE's RM4 uti-
lizes off-the-shelf components, and there is reason to expect sig-
nificant cost reductions with commercially optimized designs.
Understanding the role of variable resource quality in determining
levelized costs is critical to making ocean current energy part of a
low-GHG generation future. While this analysis focuses on Gulf
Stream resources off the North Carolina coast, the analysis provides
a framework to examine the plausibility of extracting energy from
other ocean currents characterized by temporal and geographical
variability. The portfolio analysis can simply be repeated with
resource data from other western boundary currents.
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