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Abstract
SAR86 is an abundant and ubiquitous heterotroph in the surface ocean that plays a central role in the function of marine 
ecosystems. We hypothesized that despite its ubiquity, different SAR86 subgroups may be endemic to specific ocean regions 
and functionally specialized for unique marine environments. However, the global biogeographical distributions of SAR86 
genes, and the manner in which these distributions correlate with marine environments, have not been investigated. We 
quantified SAR86 gene content across globally distributed metagenomic samples and modeled these gene distributions as a 
function of 51 environmental variables. We identified five distinct clusters of genes within the SAR86 pangenome, each with 
a unique geographic distribution associated with specific environmental characteristics. Gene clusters are characterized by 
the strong taxonomic enrichment of distinct SAR86 genomes and partial assemblies, as well as differential enrichment of 
certain functional groups, suggesting differing functional and ecological roles of SAR86 ecotypes. We then leveraged our 
models and high-resolution, remote sensing-derived environmental data to predict the distributions of SAR86 gene clusters 
across the world’s oceans, creating global maps of SAR86 ecotype distributions. Our results reveal that SAR86 exhibits 
previously unknown, complex biogeography, and provide a framework for exploring geographic distributions of genetic 
diversity from other microbial clades.

Introduction

Marine microbes are important drivers of biogeochemical
cycling and ecological function [1, 2]. Many studies have
demonstrated the link between microbial genetic diversity
and functional capacities (e.g., [3–7]), as well as the
dependence of microbial community structure and function
on environmental variables [5, 8, 9]. However, the com-
plexity of microbial communities and of their interactions
with their environment limits our ability to link microbial
genetic and functional variation across environments [10].
Furthermore, we have only limited understanding of the
geographic distributions of genetic diversity within key
taxa, the relationship of gene distributions to environmental
conditions, and the manner in which these distributions may
result in distinct ecotypes across different environments and
regions. Our limitations in mapping microbial genetic
diversity to geographic distributions restrict our ability to
predict microbial ecotypes across the environment. Accu-
rate models linking environmental and microbial variables
may improve our current ability to incorporate biological
inputs into ecosystem models, which often rely on simpli-
fied biological systems utilizing incomplete environmental
relationships or imprecise evaluations of the functional
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capabilities of microbial communities at different locations
[11, 12].

In microbial ecology, an ecotype [13] is often identified
in practice as a group of closely related lineages that
co-occur on the same spatial or temporal scale and are
associated with particular environmental conditions. This
contrasts with the classical ecological definition, which
additionally specifies that an ecotype must be genotypically
adapted to the environmental conditions it is associated with
[14]. In microbial ecology, where community members
often lack cultured representatives and experiments directly
measuring adaptive capacity to manipulated environmental
conditions are challenging to conduct, adaptation is often
difficult to demonstrate conclusively. In this study, we
define an ecotype to be a group of lineages within a clade
whose genomes contain a similar set of genes with a
common geographic distribution associated with distinct
environmental conditions. This definition is consistent with
previous studies of microbial ecotypes [15]. In addition, we
require an ecotype to be taxonomically and functionally
differentiated from other ecotypes, which may indicate an
adaptive strategy specific to that ecotype, although we do
not explicitly test for genetic signatures of adaptation.

The biogeography of marine microbes has been observed
at scales from single depth profiles [4] to global surveys
[16, 17], revealing spatial and temporal patterns in micro-
bial community structure [16, 18], function [8, 19], and
diversity [17]. Many marine microbial clades exhibit
population structure that correlates with their differential
geographic distributions [20]. Because most microbes have
large pangenomes and flexible gene content [20], there is
significant interest in elucidating the differential functional
capabilities of microbial ecotypes and mapping their bio-
geographical distributions. Associating geographic dis-
tributions of microbial ecotypes with environmental
conditions could illuminate the links between microbial
community structure, function, and ecosystem processes,
enabling the predictions of biological and chemical shifts in
the world’s oceans as environmental conditions change.
However, there have been very few efforts to predict bio-
geographic patterns of genetic and functional diversity of
key microbial taxa at large spatial scales in the ocean
[17, 21].

SAR86 is a ubiquitous marine heterotroph frequently
found in surface waters, classified by their 16S rRNA
gene similarity as a clade within the Gammaproteobacteria
[22–24]. SAR86 is a very diverse clade with at least three
subgroups [23, 24]. Despite its ubiquity in marine systems,
SAR86 eludes cultivation, and therefore knowledge of the
ecological role of SAR86 in marine microbial communities
is limited to evidence from genomes curated from single-
cell sequencing or metagenomic assembly [25–27]. These
genomes suggest that SAR86 gene sets, and hence

functional capabilities, vary greatly across locations, even
though the clade is very commonly detected in marine
environments. However, little is known about the manner in
which the distribution of subgroups and the vast genetic
diversity within the SAR86 pangenome may vary across
large spatial extents, and what environmental factors may
affect the geographic distributions of different SAR86 gene
families.

In this study, we build a custom pangenome of SAR86
genes from metagenomic co-assemblies and five available
reference genomes. We then quantify the presence of each
gene in the pangenome across diverse marine epipelagic
waters using hundreds of publicly available, globally dis-
tributed shotgun metagenomes. We find that the geographic
distributions of SAR86 genes are strongly associated with
environmental variables, and we leverage these associations
to build machine learning models that accurately predict the
presence of SAR86 genes from environmental data. Using
global-scale environmental measurements from satellite and
shipboard sources, we use our models to predict the global
distribution of each geographically variable gene in the
SAR86 pangenome at a 9 km2 resolution. Our machine-
learning approach enables patterns in the environmental
variables that best predict the distributions of SAR86 genes
to emerge from the global metagenomic dataset without
explicitly assuming a priori relationships between inputs
and outputs. Analysis of the resultant models reveals five
clusters of genes with unique environmental and geographic
distributions, defining five ecotypes within the SAR86
clade. We conclude that the patterns of taxonomic and
functional enrichment across these ecotypes reveal pre-
viously underappreciated complexity in the geographic
distributions underlying the pangenome of this otherwise
ubiquitous marine heterotroph, with great potential to illu-
minate structure-function relationships across the marine
environment.

Materials and methods

Creation of the SAR86 pangenome and global
SAR86 gene presence/absence dataset

A custom pangenome of 51,711 nonredundant SAR86
genes was created with the MIDAS tool [20], clustering
SAR86 genes at 90% identity from a combination of
genomic sources [25, 26, 28] as well as a massive co-
assembly of metagenomic sequences (Supplementary
Text 1.1–1.2, Supplementary Table 1).

A global dataset of SAR86 gene presence/absence for
each gene in the SAR86 pangenome was then created.
Shotgun metagenomic sequencing reads from the TARA
project ([9], Supplementary Fig. 1) were mapped to the



SAR86 pangenome, using the best read alignment at >90%
DNA identity, and the resulting normalized read coverage
for each gene was used to determine SAR86 gene presence
or absence for all SAR86 genes at 198 TARA sites (Sup-
plementary Text 1.3, Supplementary Fig. 2).

Environmental data curation and processing

In order to build models predicting SAR86 gene presence
from environmental variables, environmental data available
at resolution between 9 km to 1-degree and at global
scale were curated from a combination of contemporary
satellite data and historical averages of satellite and inter-
polated in situ measurements. A total of 51 environmental
features were compiled (Supplementary Table 2, Supple-
mentary Text 1.4). Normalized environmental feature
values closest to each TARA site’s latitude, longitude, and,
where relevant, sampling depth and/or sampling date
(Supplementary Table 3) served as the input feature vectors
for each TARA site during model training.

Gene presence/absence models and predictions

Classification models predicting SAR86 gene presence or
absence as a function of the environmental feature vectors
across TARA sites were built for each of 24,317 geo-
graphically variable SAR86 genes, using logistic regression
with L1 regularization (Supplementary Text 1.5). Geo-
graphically variable genes were defined as genes present at
between 20 and 80% of TARA sites. 155 TARA sites for
which SAR86 was present and environmental data was
available were split into training, validation, and test sets of
111, 13, and 31 sites respectively. The final models trained
independently for each of the 24,317 geographically vari-
able genes can be reproduced with code available on the
associated Github repository [29].

Clustering, global maps of ecotypes, and
enrichment analysis

To identify the groups of SAR86 genes whose geographic
distributions are best predicted by similar environmental
variables, we clustered genes into five clusters on the
logistic regression model coefficients for each environ-
mental feature using a k-means algorithm (Supplementary
Text 1.6). Clustering on environmental features associated
with gene models enabled us to identify the environmental
variables underlying geographic distributions of genes, and
also enabled the projection of predicted cluster distributions
at global scales. To produce global projections (i.e., maps)
of each SAR86 gene cluster, we predicted the presence or
absence of each cluster at 9 km2 resolution and global scale
from the available satellite and historical environmental data

([29], Supplementary Text 1.6). A Jupyter notebook and a
python script for reproducing clusters and cluster projec-
tions are available [29].

The distribution and enrichment across clusters were
evaluated at the genome level for two SAR86 reference
genomes SAR86A and SAR86E, at the contig level for the
contigs of the SAR86 co-assembly, and at the functional
level for the functional annotations to Pfam [30] of the
SAR86 pangenome derived from the five genomes plus co-
assemblies (Supplementary Text 1.7). This produced a
vector of taxonomic/functional enrichment values asso-
ciated with each contig/annotation for each cluster, with
which the statistical significance of cluster enrichment could
be tested (Supplementary Text 1.7).

Results

This study first modeled the relationships between SAR86
gene distributions and environmental variables. We used a
regularized logistic regression approach to identify the
subset of environmental variables that are most important
for predicting the geographical distributions of each gene
and to estimate the strength of these gene-environmental
variable relationships. Using unsupervised clustering of
these association profiles, we then identified clusters of
genes with similar environmental distributions. Clustering
enabled us to identify the structure underlying the envir-
onmental gene distributions without expliciting the prior
knowledge of expected SAR86 ecotypes. By using envir-
onmental variables available at global scale, we leveraged
our gene models to predict the geographic distribution of
these emergent ecotypes in regions far beyond the sampling
locations specific to the TARA study.

Accurate prediction of SAR86 gene distributions
from environmental variables

SAR86 gene content in TARA Oceans metagenomes is
associated with environmental characteristics of the sam-
pling locations. We built a regularized logistic regression
model for each gene that accurately predicts the probability
of the gene being present at a given location as a function of
the most predictive subset of environmental variables
(Methods, Supplementary Text 1.5). The resulting 24,317
gene models predict SAR86 gene presence/absence with an
average of 79.4% accuracy in the test set, and a median test
accuracy of 80.6% (Supplementary Text 1.5, Supplemen-
tary Fig. 3).

As an additional test of the robustness of the models, the
accuracy of predictions at those TARA sites that were not
included in model development, where SAR86 was not
present or were in very low abundance, was also examined.



There were 20 such sites for which environmental data was
available for all features. These 20 sites were primarily
mesopelagic samples, distributed across all ocean basins
(Supplementary Text 1.5). Across these 20 sites, the aver-
age accuracy of the gene models is 68.5%, while the median
accuracy is 70.0%. While this performance is below that
achieved at sites where SAR86 was present, it suggests that
our models are able to make fairly accurate predictions even
when extrapolating outside of the distribution of gene pre-
sence used in training.

An average of 17 of 51 environmental features is sig-
nificantly associated with each gene’s distribution across
TARA Oceans sites. Across multiple gene models, the same
environmental feature was frequently selected during model
training (Supplementary Fig. 4). These frequently asso-
ciated variables include latitude, longitude, distance from
land, ocean depth, and other features that might describe the
general ocean basin or region of a sample; as well as pH,
sea surface temperature, pycnocline depth, nitrogen phos-
phorous ratio, cloud fraction, and other environmental fac-
tors that describe regions of the ocean that experience
particular environmental conditions.

While the environmental features that best predict gene
presence/absence vary by the individual gene model, and
many of the 51 environmental variables covary with
one another, training logistic regression multiple times on
the same data with different random seeds resulted in the

same sets of environmental features being chosen as the
most predictive for each gene model (see Jupyter notebook
in [29]). This consistency suggests that the environmental
features selected in each model reflect a true difference in
predictive power between the selected features and those
that were not selected, rather than a random choice among
features that are roughly equally predictive.

Clustering of SAR86 genes into common
environmental distributions and global projections
of their biogeographic distributions

The environmental features that best predict individual
genes, and the strength of the coefficients associated with
any particular environmental feature, vary by the individual
gene model. However, there are apparent patterns among
genes, with some groups of genes appearing to be predicted
by similar environmental variables, as well as similar
magnitudes and signs of the coefficients associated with
those variables. These patterns suggest that genes that are
predicted by similar environmental features occupy similar
geographic distributions characterized by unique environ-
mental conditions.

K-means clustering of genes by their logistic regression
environmental feature coefficients identified five clusters
within the SAR86 pangenome characterized by similar
environmental distributions (Fig. 1). The average

Fig. 1 Heatmap of model coefficients for each environmental feature (rows) and gene (columns), ordered by cluster (x axis)



Fig. 2 Relative proportion of clusters at each TARA site (vertical bars). TARA sites are sorted by longitude (x axis; negative numbers correspond
to longitude west of the prime meridian). Blue, cluster 1; green, cluster 2; yellow, cluster 3; purple, cluster 4; pink, cluster 5

Fig. 3 Global predictions of SAR86 gene cluster distributions for each
cluster (rows) in January, April, July, and October of 2009 (columns).
Red indicates a high confidence of a gene cluster being present, blue a

high confidence of a gene cluster being absent, and white a low
confidence prediction

182 A. Hoarfrost et al.



environmental feature coefficient across all genes in each
cluster (the “centroid”) demonstrates the distinct pattern of
association with environmental features of each cluster
(Supplementary Table 4).

Each TARA site contains genes from a mixture of
clusters, but the dominant clusters and the evenness of the
proportion of each cluster is variable across sites (Fig. 2,
Supplementary Fig. 5, Supplementary Table 5). For exam-
ple, cluster 2 is strongly associated with longitudes in the
western hemisphere, and this is also reflected across TARA
samples, for which cluster 2 is present in the highest pro-
portions for those TARA sites sampled in the Pacific Ocean
(Fig. 2, Supplementary Fig. 5b). In contrast, cluster 3 genes
are found in higher proportions at TARA sites sampled in
the eastern hemisphere, reflecting their predicted geographic
distributions (Fig. 2, Supplementary Fig. 5c).

A Shannon diversity metric was used to measure the
relative evenness and proportion of the five clusters at each
TARA site (Supplementary Table 5, Supplementaupple-
mentary Text 1.7). The TARA sites with the lowest Shan-
non diversity include TARA station 93 at 34 °S and 73 °W
off the coast of Chile, which is dominated by cluster 5
genes, and TARA stations 38, 42, 45, and 36 in the Indian
Ocean, which are dominated by cluster 4 genes. The TARA
sites with the highest Shannon diversity include many of the
mesopelagic depth samples in the Pacific Ocean, as well as
station 70 in the South Atlantic basin at 20.4 °S and 3.2 °W.

We next used the cluster centroids and global-scale
environmental data to predict the geographic distribution of

each cluster beyond the TARA-sampling locations (Fig. 3).
These global projections reveal the differential distributions
of SAR86 gene clusters. These differential distributions are
reflected in variation across longitude (e.g., cluster 2 versus
clusters 3 and 4), latitude (e.g., clusters 1 and 5 versus
clusters 2, 3, and 4), and season (e.g., cluster 1, Fig. 3). In
each case, the highest magnitude coefficients for each
cluster are suggestive of their predicted geographic dis-
tributions (Supplementary Table 4, Supplementary
Text 2.1).

Taxonomic enrichment with functional
differentiation across clusters define SAR86
ecotypes

The cluster assignments of genes from the SAR86 reference
genomes SAR86A and SAR86E show clear partitioning on
taxonomic lines. Genes from each genome are assigned
primarily to two clusters, and each cluster is dominated by
one genome. SAR86A genes are partitioned primarily into
clusters 4 and 3, with 493 and 118 out of the 622 SAR86A
genes assigned to cluster 4 and 3, respectively, while only 4
and 7 genes were assigned to clusters 2 and 5, and 0 genes
to cluster 1. The 157 SAR86E genes were partitioned into
clusters 1 and 5, with 76 and 78 genes, respectively, while
only 2 and 1 genes were assigned to clusters 2 and 4,
respectively, and 0 genes to cluster 3.

Clusters also show clear taxonomic differentiation at the
contig level. Those genes that do not originate from one of

Fig. 4 Contig enrichment in clusters. a Heatmap of enrichment (red) or
depletion (blue) of each contig (columns) across each cluster (rows).
b Pie chart of the number of clusters in which SAR86 contigs are

enriched. c Mean positive enrichment value, standard deviation of
positive enrichment values, and the Mann–Whitney P value for sig-
nificance of cluster enrichment, for each cluster



the five SAR86 genomes constitute a total length of 22Mbp
originating from 732 contigs from the SAR86 co-assembly.
All clusters are significantly enriched in specific contigs
(p < 0.001, Fig. 4c), with a unique set of contigs enriched on
each cluster. Genes from the same contig are generally
assigned to the same cluster, such that gene assignments of
almost all contigs, 540 out of 732 contigs, are enriched on
only one cluster, 183 contigs are enriched on only two
clusters, and the remaining nine contigs are enriched on
three clusters (Fig. 4). Where a contig is enriched, the
enrichment is strong, with an average enrichment of 3.03
and a standard deviation of 0.43, and ranging from 1.41 in
cluster 4 to 5.25 in cluster 2.

The taxonomic partitioning of clusters is also evident in
their distribution across TARA sites. First, the cluster pro-
portions and the relative abundances of SAR86 genomes at
TARA sites reflect the taxonomic differentiation of gen-
omes across clusters. The clusters associated with SAR86A
(clusters 3 and 4) are in higher proportions relative to the
clusters associated with SAR86E (clusters 1 and 5) at
TARA sites where SAR86A abundances are higher relative
to SAR86E (Supplementary Fig. 6, Pearson R2= 0.70, P=
1.56 × 10–26). In addition to this genomic evidence, the
normalized read coverage across TARA sites for genes from
the same cluster are more highly correlated with one another
than genes from different clusters (Supplementary Fig. 7),
as would be expected if genes belonging to the same cluster
share a common taxonomic origin. This indicates that genes
from the same genome are assigned to the same cluster,

although a single cluster may be made up of genes from
multiple genomes. Indeed, the 22Mbp of genomic material
in the SAR86 co-assembly is enough for at least 11 gen-
omes of size similar to that of known SAR86 reference
genomes, so multiple genomes are expected to be contained
within the five identified clusters. These clusters are thus
composed of genes that co-occur with one another across
similar environmental contexts, and are taxonomically dif-
ferentiated, but do not necessarily represent individual
SAR86 genomes.

In addition to taxonomic enrichment across clusters,
there is also significant partitioning of genes at the func-
tional level, with differential enrichment of Pfam annotated
genes across clusters (Fig. 5). Pfams are enriched by an
average value of 0.25 and a standard deviation of 0.10,
ranging from 0.13 in cluster 4 to 0.32 in cluster 2. This
enrichment is significant (p < 0.01) for most of the clusters
(Fig. 5c). This result suggests that clusters 1, 2, and 4 have
significant functional enrichment, while functional enrich-
ment on cluster 3 is marginally significant. Genes from a
particular Pfam are most often assigned to only two or three
clusters (Fig. 5b). While functional enrichment in general is
less strong than taxonomic enrichment, this may be due to
the relative coarseness of functional annotation compared
with taxonomic assignments, and our inability to annotate
many genes with confidence.

Enrichment of specific Pfams corresponding to some
ecologically important functions indicate possible differ-
entiation in ecological function between clusters. For

Fig. 5 Functional enrichment in clusters. a Heatmap of enrichment
(red) or depletion (blue) of the 405 most abundant Pfam families
(columns) across each cluster (rows). Pfams are ordered left to right by
the number of genes annotated to it, from the most abundant Pfams to
the Pfams with as few as 20 genes annotated to it. b Pie chart of the

number of clusters in which Pfams are enriched. c Mean positive
enrichment value, standard deviation of positive enrichment values,
and the Mann–Whitney P value for significance of cluster enrichment,
for each cluster



example, glycosyl hydrolase family 3 (Pfams PF00933,
PF01915), which corresponds to exo-acting glucosidases, is
enriched across clusters 3, 4, and 5, and depleted in clusters
1 and 2, while glycosyl hydrolase family 16 (Pfam
PF00722), which corresponds to endo-acting glucanases, is
enriched strongly on cluster 3, depleted in clusters 1 and 2,
and near the null value for clusters 4 and 5 (Supplementary
Fig. 8). Proteorhodopsin, a photoactive transmembrane
proton pump first identified in bacteria in SAR86 [31] and
used by SAR86 for photoheterotrophic ATP generation, is
enriched in clusters 3 and 4, and depleted in clusters 1, 2,
and 5 (Supplementary Fig. 9).

Discussion

While SAR86 is generally considered to be a ubiquitous
heterotroph in the ocean, this study demonstrates that
SAR86 harbors immense within-species genetic diversity
that is strongly associated with environmental variables.
These distinct environmental distributions of gene clusters
define a deeper geographic variability within the SAR86
clade than previously appreciated. The three near-complete
and two partial genomes available for SAR86 [25, 26] show
high diversity within this clade; average nucleotide identity
between genomes is between 70 and 80% (Supplementary
Table 6). In light of this high diversity, it is perhaps not
surprising that the geographically variable genes in the
SAR86 pangenome can be decomposed into five distinct
clusters with different geographic distributions associated
with unique environmental variables. These clusters are
differentiated at the taxonomic and functional level, which
has implications for our understanding of the biogeography
of SAR86, as well as its ecological role within microbial
communities in the marine environment.

Using a data intensive approach to build machine
learning models of the relationship between SAR86 genes
and environmental variables at a global scale, we demon-
strate how such an approach can be used to better under-
stand the factors shaping the biogeography of microbial
clades. This approach can reveal patterns that would likely
be missed at the 16S OTU or community level, or using
data from a smaller scale. Particularly as metagenomics data
become increasingly available in the future, such an
approach holds promise for illuminating the relationship
between microbial community structure and ecological
function across broad taxonomic and spatial scales.

The results of this study identify clusters of genes that,
while their phylogenetic relatedness is unknown, are tax-
onomically and functionally differentiated and occupy dis-
tinct environmental distributions. While the functional traits
that confer niche restriction within these distributions is not
obvious from our results, functional differentiation across

clusters of glycosyl hydrolases (Supplementary Fig. 8)—an
important class of enzymes for heterotrophic metabolism of
polysaccharides—and proteorhodopsin (Supplementary
Fig. 9)—a light-driven means of energy generation and
enhanced nutrient and organic carbon uptake—suggest that
genes associated with different clusters define distinct
functional roles filled by each cluster. Glycosyl hydrolase
families 3 and 16 target many of the same substrates—β-
linked glucans, including the abundant marine plankton
storage glucan laminarin—but using different enzymatic
mechanisms [32]. The strong enrichment in cluster 3, and
strong depletion in clusters 1 and 2, of both families,
compared with the enrichment of only family 16 in clusters
4 and 5, may indicate distinct ecological functions of
SAR86 across clusters that utilize differing metabolic stra-
tegies and have disparate impacts on carbon remineraliza-
tion. Proteorhodopsin genes are only enriched in clusters 3
and 4, the two clusters associated with lower latitudes and
more abundant sunlight, and are depleted in clusters 1 and
5, which are associated with temperate latitudes. This lati-
tudinal pattern may also indicate distinct energy generation
and metabolic strategies that correspond with the environ-
mental distributions of the clusters. Cluster 2 is also
depleted in proteorhodopsin genes, which may indicate
depth-associated functional differentiation, since the
majority of mesopelagic samples from the TARA expedi-
tion were taken in the Pacific basin (Supplementary Fig. 1)
where cluster 2 genes are also present in highest proportions
(Supplementary Fig. 5b). The SAR86 clade contains a high
diversity of proteorhodopsin genes [33] that likely reflect
depth-driven optimization to different absorbance spectra
[34], providing further evidence that the five SAR86 gene
clusters fill distinct functional roles in the environment.
Given the clear taxonomic and functional partitioning of the
SAR86 pangenome across clusters with distinct geographic
distributions associated with unique environmental condi-
tions, we conclude that the clusters described here define
previously unidentified ecotypes within the SAR86 clade.

The geographic distributions of SAR86 ecotypes are
consistent with previous studies. An investigation of tem-
poral and geographic patterns in SAR86 noted that while
the phylogenetic substructure of the SAR86 clade implies
that it may be made up of multiple ecotypes, these could not
be identified at the limited geographic resolution of the
study [24]. Early investigations of the phylogenetic dis-
tribution of SAR86 proteorhodopsin genes also indicated
functional differentiation of genes of bioenergetic impor-
tance across potential SAR86 ecotypes [33]. The potential
existence of SAR86 ecotypes was also noted in the apparent
geographic distributions of SAR86A, B, C, and D genomes
[25], which differed in their distributions across coastal
versus open ocean sampling sites and along temperature
gradients. This general observation is supported by the



predicted distributions of the clusters identified in our study,
for which three clusters (clusters 2, 3, and 4) are partially
defined by their warmer, open ocean distributions, and two
(clusters 1 and 5) are associated with cooler temperatures.
The difficulty of identifying ecotypes in SAR86 contrasts
with SAR11, for which distinct ecotypes have been iden-
tified within a constrained geographic sample because they
were strongly associated with differences in depth and
salinity distributions [15]. This study was able to identify
SAR86 ecotypes, despite their partially sympatric distribu-
tions that cause single sampling sites to be composed of
genes from multiple clusters, because of the larger data size
and geographic distribution of the TARA dataset, and our
unique approach to defining ecotypes based on quantitative
models of environmental associations with geographically
variable genes. Whereas ecotypes are typically identified by
building a phylogeny based on core genes and observing
whether environmental variables map over the phylogeny
(e.g., [23, 33]), our approach is quantitative, objective and
independent of a priori knowledge of phylogeny, and results
in sets of genes and functional features that define the
ecotype.

The taxonomic and functional differentiation of genes
across SAR86 ecotype clusters is significant in the context
of interactions between microbial community structure [35],
function, and ecology. Both community composition
[16–18, 36] and functional traits [3, 4, 8, 19] vary geo-
graphically and can be predicted to some extent by envir-
onmental variables [8, 17]. Taxonomic variation can lead to
functional differentiation of microbial communities
[4, 37, 38], which ultimately shapes biogeochemical cycling
and ecosystem function; conversely, functional redundancy
across microbial taxa can complicate the relationship
between structure and function [39], with taxonomically
variable communities playing similar functional roles [40].
Disentangling the relationship between environment, bio-
geography, structure, and function is therefore a significant
ongoing challenge in microbial ecology [5, 7, 8, 10]. By
focusing on patterns at the individual gene level within a
single clade, we are able to uncover patterns in environ-
mental distributions of genetic diversity at a scale that
would normally be obscured by the complexity inherent to
microbial communities. For example, previous studies have
found that functional classifications of taxa are better pre-
dicted by environmental parameters than taxonomic 16S-
based classifications [8]; however, these functional classi-
fications are broad—all of the SAR86 pangenome would be
classified as ‘aerobic chemoheterotroph’—in order to con-
trol for the vast genetic diversity of traits in mixed microbial
communities. It is likely that within the SAR86 pangenome
there is ecological differentiation within this category that,
for example, could lead closely related phylotypes of
SAR86 that belong to different ecotypes to utilize different

substrates [35, 41, 42]. This hypothesis is supported by the
functional enrichment across our clusters and the differ-
ential enrichment of carbohydrate utilizing enzymes (Sup-
plementary Fig. 8). Previous analyses of the genomic
context of SAR86 genomes also suggest that much of the
diversity among SAR86 genomes may be driven by fine
scale diversification of catabolic enzymes on loci associated
with TonB-dependent receptors [25], which are responsible
for transporting carbon compounds (as well as metals) into
the cell [43].

The accuracies of our gene models are better on average
than previous studies (0.79 vs 0.48 [8]), which may simi-
larly be due in part to our focus on modeling individual
genes rather than whole communities. This difference in
model accuracy may also be due to our consideration of
different, and a larger number, of input environmental fea-
tures. Here, the environmental features were chosen for
their availability at global resolution rather than their
human-predicted importance in regulating microbial func-
tion. These environmental features may be more predictive
of the distributions of SAR86 genes, even if they are less
relevant to biological function. The environmental factors
that influence whether an organism grows in a particular
location or community may be different from those that
drive their function within that community: for example, an
organism may only grow in fresh or saline waters, while the
maintenance of a nitrogen fixation pathway depends on
nutrients or other factors. It is important to note that those
environmental features that are selected as most predictive
for each gene model do not necessarily drive the growth of
SAR86 in a causal manner, but implies only that these
environmental features are good predictive proxies for the
presence of that gene. The interpretation of the most pre-
dictive environmental features may vary depending on the
feature; some features may be a proxy for biological phe-
nomena, while others simply define oceanographic regions,
or are proxies for other factors that cannot be measured that
are true causal drivers of variation. The features chosen by
the L1 regularization procedure are also likely biased by the
scope of the samples used as inputs to the model. For
example, the cluster associated with western hemisphere
longitudes is overrepresented in sites from the Pacific Ocean
in the TARA expedition dataset. However, there are long-
itudes both east and west of the antemeridian in the Pacific,
represented as negative and positive longitudes in the
models, and it is a limitation of the TARA dataset that only
samples from the eastern part of the basin, in the western
hemisphere, are represented. This limitation results in an
unnaturally sharp transition in cluster projections on the
antemeridian in the Pacific Ocean for those clusters for
which longitude is a strong predictor. In addition, most
TARA datasets sampled from mesopelagic depths origi-
nated from the Pacific basin (Supplementary Fig. 1), so the



cluster associated with the Pacific basin could also reflect
the geographic bias of any depth-driven pattern in SAR86
gene distributions. These observations also serve as a note
of caution for the interpretation of the global projections,
whose predicted distributions will likely break down most
in locations for which representation of samples is most
sparse, e.g., in polar regions or at deeper ocean depths.

We are able to make accurate predictions of geographic
distributions of SAR86 genes, identifying previously
unknown biogeographical complexity within an otherwise
ubiquitous heterotrophic clade and making global projec-
tions of the distributions of SAR86 ecotypes associated with
distinct environmental distributions. Our modeling
approach leverages a large dataset across broad geographic
regions, demonstrating the potential of machine learning
and the use of broader scale integrated datasets for marine
microbial ecology. The five global ecotypes underlying the
highly diverse SAR86 clade, the taxonomic and functional
differentiation across ecotypes, and the distinct environ-
mental distributions of SAR86 genetic diversity highlight
the importance of SAR86 within marine microbial com-
munities and broadens the context for interpreting their
ecological impact across the world’s oceans.
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