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Extracellular enzyme activity is a well-established parameter for evaluating microbial
biogeochemical roles in marine ecosystems. The presence and activity of extracellular
enzymes in seawater provide insights into the quality and quantity of organic
matter being processed by the present microorganisms. A key challenge in our
understanding of these processes is to decode the extracellular enzyme repertoire
and activities of natural communities at the single-cell level. Current measurements
are carried out on bulk or size-fractionated samples capturing activities of mixed
populations. This approach – even with size-fractionation – cannot be used to trace
enzymes back to their producers, nor distinguish the active microbial members,
leading to a disconnect between measured activities and the producer cells. By
targeting extracellular enzymes and resolving their activities at the single-cell level, we
can investigate underlying phenotypic heterogeneity among clonal or closely related
organisms, characterize enzyme kinetics under varying environmental conditions, and
resolve spatio-temporal distribution of individual enzyme producers within natural
communities. In this perspective piece, we discuss state-of-the-art technologies in the
fields of microfluidic droplets and functional screening of prokaryotic cells for measuring
enzyme activity in marine seawater samples, one cell at a time. We further elaborate on
how this single-cell approach can be used to address research questions that cannot be
answered with current methods, as pertinent to the enzymatic degradation of organic
matter by marine microorganisms.

Keywords: extracellular enzymes, single-cell, microfluidic droplet, carbon cycle, microbial ecology

INTRODUCTION

Through their heterotrophic activities, marine microorganisms play key roles in regulating the
balance between the ∼700 Pg of organic carbon stored in the oceanic dissolved organic matter
(DOM) pool and the roughly equivalent amount of carbon stored as carbon dioxide (CO2) in the
atmosphere. Microbial control of organic matter remineralization ranges from the initial enzymatic
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breakdown of polymers to their final respiration to inorganic
carbon. To catalyze the initial degradation of high molecular
weight organic compounds, microorganisms produce
extracellular enzymes (EE), which may be localized on the
cell surface or detached and released into the extracellular
matrix. The activities of EEs are generally substrate-
specific and produce molecules of sufficiently small sizes
(ca. <600 Da) to be imported into the cell (Weiss et al.,
1991), transformed, and used for biomass production or
respiration. Thus, microbial enzymatic capabilities act
as a gatekeeper for early diagenesis by regulating the
bioavailability of organic molecules from its production
in surface waters and ultimately down to the fraction
of organic matter that escapes degradation, which can
potentially be sequestered over longer timescales within
marine sediments.

Extracellular enzyme activities in marine systems are
most commonly measured using commercially available
substrate proxies labeled with fluorogenic molecules that
have changed little in terms of structure and complexity
since their first usage almost four decades ago (Hoppe, 1983).
EEs hydrolyze the fluorophore-substrate bond, and activity
is inferred from measuring the increase in fluorescence in
a sample over time. A different method uses fluorescently
labeled versions of naturally occurring polysaccharides
to better estimate EE activities on complex substrates;
however, as these labeled substrates constantly fluoresce,
their hydrolysis is measured through changes in substrate
molecular weight using gel permeation chromatography
(Arnosti, 2003). Similarly, another method makes use of
fluorescent lucifer yellow derivatives to measure peptidase
activities in natural samples (Pantoja et al., 1997). The use
of these methods across numerous marine habitats (e.g.,
water column, particles, sediments, sea-ice) has yielded
significant information on the diverse enzymatic capabilities
of bacterial isolates (Bong et al., 2013) and natural microbial
communities (Arnosti et al., 2005; Mahmoudi et al., 2020;
Balmonte et al., 2021). However, since measured rates
reflect the activities of complex communities when used
with environmental samples, they only provide correlation-
based answers to questions about functional diversity,
enzymatic regulation or identifying producer cells and
relevant genes for this process. Addressing such questions
requires direct measurements at the single-cell level in order
to better link genotype to phenotype, a key goal for the
field of microbial ecology and coined as “next-generation
physiology” (Hatzenpichler et al., 2020). The importance
of this approach is emphasized by recent work (Reintjes
et al., 2017), which discovered a selfish uptake and hydrolysis
mechanism in specific bacterial taxa by using fluorescently
labeled polysaccharides. This uptake mechanism, however,
was only used by a subset of the microbial community;
developing a method that can link enzyme activities to
a wider range of cells at the population and community
levels of biological organization therefore remains a high
priority.

Beyond the identification of active cells, linking measured
activities to their encoding genes remains a challenge,
especially when the information is obtained from natural
communities. This challenge is due in part to the high
abundance of marine pelagic microbes, on the order of
103 to 106 cells mL−1 (Wigington et al., 2016), as well
as to their little understood genomic diversity and their
limited representation in experimentally validated reference
databases. Progress in single-cell technology – from cell
capture, to sorting, to genome sequencing (e.g., Woyke et al.,
2009; Martinez-Garcia et al., 2012; Doud et al., 2020) –
has provided new insights into the phylogenetic diversity
and functionality of individual taxa that comprise complex
bacterial communities in surface seawater (Pachiadaki
et al., 2019) without relying on culture-dependent methods.
Furthermore, single-cell analyses can be cost-effective
and efficient by taking a targeted approach that relies on
identifying characteristic features (e.g., physiological or
functional) on which to sort cells of interest. For example,
the coupled use of fluorescent substrates and single-cell capture,
sorting, and sequencing successfully identified microbial
taxa that likely participate in polysaccharide degradation in
seawater (Martinez-Garcia et al., 2012); the combination of
fluorescently labeled polysaccharides and flow cytometric
sorting is currently being used to identify “selfish” bacteria
(see below) that hydrolyze specific polysaccharides (Giljan
et al., in review). Another, related approach is activity-based
protein profiling, which uses a three component probe: a
reactive group designed to covalently bind to the active site
on the targeted protein, a spacer group guiding the probe
toward the protein, and a tag for detection (Sadler and Wright,
2015; Whidbey and Wright, 2019). This method has been
used to identify bacterial cells with various glycoside hydrolase
activities among pure cultures (Chauvigné-Hines et al., 2012),
but has yet to be used to detect enzymatic capabilities of
marine microbial communities. Work applying a single cell
perspective brings to light the underlying cell-cell variability
that is fundamental to understanding the manner in which
microorganisms function at different levels of biological
organization.

By leveraging state of the art methods in single-cell
technology and microfluidics, process rate measurements
at the individual cell level are within reach, particularly
those necessary for our understanding of enzymatic
hydrolysis of organic matter. We contend that microfluidic
droplets offer a tractable platform for developing and
standardizing a single-cell enzyme activity assay specifically
adapted to handle the high diversity and heterogeneity of
marine microbial communities (Figure 1). Single-cell level
investigations of microbial enzyme-catalyzed degradation of
organic matter, in turn, can provide new insights into the
identities of EE producers in nature and the regulation of EE
synthesis and secretion, and the range of cell-specific rates
comprising measured bulk rates. This information will help
parameterize trait-based models for predicting ecosystem
process shifts with changing environmental conditions.
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Thus, developing single-cell enzyme assays paves the way
for new research avenues that help resolve fundamental
questions about the ecology, biogeochemistry, and evolution of
microbial communities.

AN EMERGING TECHNOLOGY FOR
SINGLE-CELL ENZYME ASSAYS

Droplet-based microfluidics is an emerging technology with
successful applications in enzymology, chemical engineering
(Colin et al., 2015; Ma et al., 2016), molecular evolution (Tawfik
and Griffiths, 1998), and cell cultivation (see also Joensson and
Svahn, 2012 and references therein). Nakamura et al. (2016)
has demonstrated the utility of droplets in screening marine
microorganisms for specific enzyme activities with industrial
potential, and developing this method to measure single-cell
process rates offers substantial promise.

The basic premise of the method is that single cells can be
encapsulated in picolitre to nanolitre sized water-oil droplets,
along with any necessary reagents or substrate. Each droplet can
be considered a separate screening “experiment,” with typically
105–107 droplets per sample. Considering the vast diversity and
abundance of microorganisms, high throughput offered by the
droplets approach is necessary if a microbial community is to
be adequately represented within a screen. The small volume of
each droplet dramatically reduces reagent use and is critical for
assay sensitivity to enable detection at low enzyme concentration
(Köster et al., 2008). After cell encapsulation, EEs stay in droplets,
remaining associated with their producing cells (Agresti et al.,
2010; Kintses et al., 2012).

Microfluidic chips reliably produce uniform water-oil droplets
by pressure driven injection of an aqueous phase into a
continuously flowing oil phase in a flow focusing (Figures 1,2)
or T-junction geometry, and generally reach droplet generation
frequencies between 0.1 and 10 kHz (Joensson and Svahn,
2012). Microfluidic chips are commonly manufactured in
polydimethylsiloxane (PDMS), a soft elastomeric material
(Joensson and Svahn, 2012). Polydimethylsiloxane chip designs
are inexpensive to produce and can be created quickly from
a master mold using soft lithography (Duffy et al., 1998).
Water-oil droplets are generally made with either mineral or
fluorinated oils, to which biocompatible surfactants are added
to improve emulsion stability after droplet generation; several
surfactants are biocompatible with different biological uses
(Joensson and Svahn, 2012). As a caveat, small hydrophobic
molecules from the aqueous phase can escape into the
oil and be exchanged between droplets, as they are not
impenetrable compartments.

Despite diverse applications of microfluidic droplets in
chemistry and biology (Joensson and Svahn, 2012), including
work illustrating viable uses for activity-based screening, droplet-
based enzyme assays are still in early stages of development (Guan
et al., 2014; Ma et al., 2016; Nakamura et al., 2016; Terekhov et al.,
2017). Adapting EE assays to a droplet-based platform can follow
the same broad principles of current methods for measuring
bulk activity: A seawater sample is mixed with a fluorescently

labeled substrate before each cell is encapsulated and screened.
The number of cells in each droplet is determined by the Poisson
distribution; hence, by controlling cell concentration, droplets
can be tuned to contain single cells. Droplets showing the
desired activity can be retrieved for later analysis by fluorescence
activated droplet sorting (Baret et al., 2009), allowing information
(i.e., activity) and material (e.g., cell, enzyme, DNA) to be
captured from the same sample. In the case of double emulsion,
water-oil-water droplets, sorting can be accomplished using
FACS. Otherwise, dedicated microfluidic droplet sorters can be
used (Sciambi and Abate, 2015). It is also possible to study the
kinetics of reactions by incubating the droplets in a storage chip,
such as the one described by Labanieh et al. (2015) and observing
fluorescence changes over time on a microscope. Droplets can
later be retrieved from storage chips and sorted as described
above.

The approach of capturing single cells in microfluidic droplets
comes with several caveats. First, compartmentalizing single
cells limits insights into multi-cell dependent interactions, such
as coordination of degradation induced by quorum sensing
(Hmelo et al., 2011; Krupke et al., 2016). Moreover, the
microdroplet assays proposed here are predisposed to some of
the same limitations as the methods that use microplates or
cuvettes, including questions about the extent to which activity
measurements under substrate saturation accurately represent EE
activities in nature.

DROPLET-BASED EXTRACELLULAR
ENZYME ASSAYS CAN ADDRESS
UNSOLVED QUESTIONS

The single-cell approach enables direct investigations of
the manner in which genes, physiology, and environment
act concertedly on individual cells, bypassing limitations
inherent to bulk community measurements, and advancing
our understanding of microbial control of organic matter
degradation at different levels of biological organization.
The resolution afforded by single-cell enzyme assays also
provides the opportunity to investigate cell-cell variability
within populations, including inherent cellular plasticity
among individual cells, due to genomic, transcriptomic, and
phenotypic heterogeneity even among clonal populations
(encompassed within the field of “quantal microbiology”;
Bridson and Gould, 2000). This multi-level heterogeneity
facilitates microbial adaptation to and survival under changing
conditions, but also challenges our current understanding of
the roles played by microbes in many biogeochemical processes,
including the enzymatic degradation of organic matter. Thus,
we identify and discuss several questions about microbial
enzymatic activities that have persisted due to challenges
related to microbial heterogeneity, but which may be resolved
using droplet-based screening. These questions include the
following: (i) How is the diversity in EE encoding genotypes
reflected in enzymatic activities? (ii) How many cells in a
microbial community actively express genes for EEs, and what
environmental conditions control EE production at the cellular
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FIGURE 1 | Schematic of a suggested workflow to screen single cells in (1) natural microbial communities using an extracellular enzyme assay in microfluidic
droplets. (2) Single cells are encapsulated in droplets together with a labeled substrate, and the presence of extracellular enzyme activity can be detected by the
release of fluorophores, which increases fluorescence in the droplet. Depending on the droplet type (oil-water as depicted in 3B,C or water-oil-water in 3A), various
screening and sorting platforms can be applied. (4) Microfluidic droplets are biocompatible with a range of downstream applications such as sequencing (4A) or
experiments requiring viable cells (4B,C).

level? (iii) What fraction of measurable enzymatic activities
comes from cell-free EEs, and what factors regulate the switch
to dissolved EE production? (iv) What is the distribution of

cell-specific rates of EE activities, and how do these vary along
environmental gradients or among different phylogenetic
groups?
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HOW IS THE DIVERSITY IN
EXTRACELLULAR ENZYME
GENOTYPES REFLECTED IN
ENZYMATIC ACTIVITIES?

While EEs may exhibit varying degrees of substrate
promiscuity (Khersonsky and Tawfik, 2010; Steen et al.,
2015; Srivastava et al., 2021), the ability to detect EE
activity in single cells enables direct coupling to a labeled
organismal reference genome and facilitates high-throughput
identification of the gene or gene cassette encoding the
activity of interest. Resulting data sets have the potential to
improve reference databases against which (meta)genomic
and (meta)transcriptomic data are annotated (Quince et al.,
2017; Forster et al., 2019). This effort is especially necessary
for marine microbial communities, as they harbor high
sequence complexity, and specifically with regards to EE
genes, which have high genotypic diversity within and
across microbial phylogenetic groups (Elifantz et al., 2008;
Martinez-Garcia et al., 2012; Zimmerman et al., 2013).
Investigating how EE gene diversity relates to different
ecosystems (Berlemont and Martiny, 2016), including the
quantity and quality of available organic matter, advances
our understanding of the functional biogeography of
microbial EEs. Integrating single-cell genomic to phenotypic
information also contributes to our understanding of
the manner in which different genotypes of functionally
similar EEs yield different enzyme kinetics, substrate
specificities (Steen et al., 2015; Srivastava et al., 2021),
and temperature optima (Huston et al., 2000). Finally,
by linking EE activities more closely to specific microbial
genotypes, a functional interpretation may be possible
for the massive amounts of publicly available amplicon
datasets covering a wide range of systems, experiments, and
spatiotemporal scales.

HOW MANY CELLS IN A MICROBIAL
COMMUNITY ACTIVELY EXPRESS
EXTRACELLULAR ENZYMES, AND
WHAT ENVIRONMENTAL CONDITIONS
CONTROL EXTRACELLULAR ENZYME
PRODUCTION AT THE CELLULAR
LEVEL?

Droplet-based screening can be used to quantify the proportion
of microbial cells that actively produce specific enzymes.
Information on the fraction of cells contributing to bulk
activity is of critical importance for understanding patterns
of activity (Arnosti, 2008; Arnosti et al., 2011) and to
provide data for biogeochemical models that incorporate
features of microbial communities (Zakem et al., 2021).
Delving into the underlying factors controlling expression,
additional insights into critical questions may be gained by
coupling single-cell activity detection with transcriptomic

sequencing. First, what is the link between gene transcription
and detectable phenotype? More specifically, does the expression
of genes for enzyme production directly result in measurable
rates of enzymatic activities, or do post-transcriptional or
translational modifications preclude a direct connection
and interpretation between transcription and measurable
activity? A weak relationship between the abundance of
genes that encode proteins and measurable rates suggests
that direct correlations between transcription and phenotype
interpretations may be problematic (Rocca et al., 2015) but the
extent to which this situation applies to EEs and their activities
remains unconstrained.

Applying this coupled approach to clonal populations
can provide insights into a second critical question: what
are the varying degrees of population-level heterogeneity
in gene transcription and measurable phenotypes for
diverse enzymatic processes? Studies indicate substantial
transcriptional heterogeneity that leads to differences in
microbial phenotype (Ackermann, 2015), and recent advances
in single-cell bacterial RNA sequencing for bacterial cells in
culture (Imdahl et al., 2020) can be leveraged to investigate
similar questions applicable to enzymatic degradation of
organic matter. As extracellular enzymes in many cases
can be considered as public goods, particularly when
released into the environment, studies on the evolution of
cooperation and cheating (Reintjes et al., 2019) can guide
investigations on whether similar dynamics are applicable to the
production of enzymes among clonal populations (Baty et al.,
2000a,b).

Changes in environmental conditions, cell density, and
resource availability and complexity can have profound
consequences on transcription, and within the context of
the degradation of organic matter, can shift the predominant
form of enzymatic hydrolysis of different substrates (reviewed
in Arnosti et al., 2021). A “biphasic phenotype” – switching
transcription of genes for polysaccharide utilization loci and
enzyme production based on the availability of preferred
substrates – demonstrates that enzymatic strategies are finely
tuned to environmental stimuli (Koch et al., 2019). During a
phytoplankton bloom, microbial community and functional
succession (Teeling et al., 2012) co-occurs with a shift in
the primary mode of substrate hydrolysis, dominated by low
“selfish” activity in the early bloom phase, to increased “selfish”
uptake of substrates approaching the peak of the bloom, to
increased external hydrolysis of substrates in the late bloom
phase (Reintjes et al., 2019). Resolving these processes at
the single-cell level would reveal whether individual cells
possess the flexibility to shift from one dominant form of
substrate hydrolysis to another – and therefore can transcend
boundaries of “life strategies” of substrate use (e.g., selfish
bacteria, external hydrolyzers, and scavengers) (Arnosti et al.,
2021) – or whether a community change is necessary for
this process shift (Buchan et al., 2014). This information,
consequently, also reveals the range of metabolic plasticity
for organic matter degradation exhibited by individual
cells and the extent to which this plasticity varies across
phylogenetic groups.
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WHAT FRACTION OF MEASURABLE
ENZYMATIC ACTIVITIES COMES FROM
CELL-FREE EXTRACELLULAR
ENZYMES, AND WHAT FACTORS
REGULATE THE SWITCH TO DISSOLVED
EXTRACELLULAR ENZYME
PRODUCTION?

Secreted cell-free or dissolved enzymes can freely diffuse into
the environmental matrix, potentially becoming decoupled from
their producers, but they may nevertheless remain functional for
some time. In marine systems, these enzymes may have lifetimes
of days to weeks (Ziervogel et al., 2010; Steen and Arnosti, 2011),
and theoretical estimates suggest potentially extended lifetimes in
deep subsurface sediments (Schmidt et al., 2021). Bulk measures
of enzymatic activities therefore integrate the activity of dissolved
enzymes whose producer may not necessarily be present in the
sample of interest. In the deep ocean, dissolved enzymes may
account for the majority of measured enzymatic activity (Baltar
et al., 2010). The transition from producing cell-attached to
dissolved enzymes, or vice versa, may in part be determined
by substrate concentration and the environment. Low diffusion
environments and high concentrations of substrates, especially
particulate matter, which require hydrolytic enzymes prior to
microbial use, promote the production of dissolved enzymes
(Vetter et al., 1998; Traving et al., 2015).

Current methodologies to investigate the presence,
importance, and contribution of dissolved enzymes leave
open unanswered questions. Previous studies have used
size-fractionation facilitated by gentle vacuum filtration
to separate and operationally define dissolved enzymes
(<0.22 µm) from those that remain attached to cells
(Baltar et al., 2010). However, even at low pressures,
vacuum filtration may burst cells and release intracellular
enzymes into the extracellular matrix, artefactually increasing
dissolved enzyme contribution. Microdroplet encapsulation
of single cells as well as freely dissolved enzymes would
yield estimates of dissolved enzyme contributions unbiased
by either intracellular or cell-attached enzymes. Another
method of inferring dissolved enzyme production is through
detection of transcripts encoding secretory enzymes (Zhao
et al., 2020). But, as mentioned in the previous section, the
extent to which gene expression results in a measurable
phenotype may be complicated by post-transcriptional
or post-translational processing. Leveraging the ability to
capture and sequence single cell transcripts would help
confirm that transcription of genes for secretory enzymes
results in a measurable output. Expanding the analysis of
transcripts beyond those for secretory enzymes could also
provide insights into the extent to which other factors
may help contribute to a switch in the mode of substrate
hydrolysis. Investigating the dynamics and regulation of
dissolved enzymes on a single-cell level would help advance
our knowledge regarding this evolutionary conundrum of
producing energetically costly enzymes that may decouple
investment from returns.

WHAT IS THE DISTRIBUTION OF
CELL-SPECIFIC RATES OF
EXTRACELLULAR ENZYME ACTIVITIES,
AND HOW DO THESE VARY ALONG
ENVIRONMENTAL GRADIENTS OR
DIFFERENT PHYLOGENETIC GROUPS?

Cell-specific activities provide insights into the range of
physiological states of individual cells in the environment. In
the case of cell-specific enzymatic activity rates, these values
are currently calculated by taking bulk enzymatic activities
and normalizing these rates to cell abundance. However, this
approach assumes that all cells produce extracellular enzymes
and in equal quantities. In reality, even closely-related EE-
producing cells can have distinct enzymatic capabilities (e.g.,
Xing et al., 2015). Moreover, the heterogeneity of physiological
states in microbial cells, as well as potential contributions of
dissolved enzymes from non-resident populations, can lead to
deviations of calculated cell-specific rates from true cell-specific
rates. The presence of dormant or metabolically inactive cells
in a community would lead to underestimations of calculated
cell-specific enzymatic activities. However, high contributions
of dissolved enzymes in a water sample – which may have
originated from non-resident taxa within a sample – may
lead to an overestimation of cell-specific enzymatic activities.
Inaccurate measures of cell-specific activities present a significant
problem, especially when relating these rates to other cell-
specific measures of heterotrophic activity, such as those for
bacterial production and respiration, because of differences in
the proportion of the community that carry out these distinct
processes.

Developing a microfluidics approach to enable measurements
of single cell enzymatic activities would provide more accurate
measurements and reduce the problems of uninvolved,
inactive, or dormant cells, and diffused dissolved enzymes.
Whereas calculating a cell-specific enzymatic activity based
on bulk measurements results in a single value, the true
range of cell-specific enzymatic activities may encompass
one or several orders of magnitude, typical of cell-specific
respiration or bacterial production rates (Del Giorgio and
Gasol, 2008). A feature that could emerge is a bimodal
distribution of cell-specific enzymatic activities (Baty et al.,
2000a,b), reflecting the broad categories of high nucleic
acid and low nucleic acid cells typically observed among
microbial communities (Bouvier et al., 2007; Del Giorgio
and Gasol, 2008). Resolving the distribution of cell-specific
enzymatic activities provides a better understanding of
how microbial physiological states and resource acquisition
strategies change in response to environmental shifts. For
example, a hypothetical bimodal distribution may have a
density peak of cell-specific activities in the lower range,
reflecting the dominance of low-activity microorganisms
that characterize much of the oceans. However, upon
an environmental shift resulting in resource abundance
for the community, changes in physiological states and
resource acquisition strategies may alter the density peak
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toward the high end of the distribution, characteristic of a
community succession driven by the dominance of fast-growing,
opportunistic taxa.

FUTURE AND BROADER IMPLICATIONS:
AN EXAMPLE WITH MICROBIAL
EXTRACELLULAR ENZYMES IN MARINE
CARBON CYCLE MODELS

As EEs are necessary catalysts for marine microorganisms
to access energy and nutrients derived from complex
organic matter, single-cell information related to substrate-
specific producers – including (de)coupling of genes
and phenotypes, factors controlling enzyme production,
contributions and lifetimes of dissolved enzymes, and cell-
specific rates – can be used to refine and constrain models
of processes within the marine carbon cycle. Additionally,
coupling cell-specific enzymatic activity rates with other
physiological data (e.g., cell size, volume, cell-specific
bacterial production and respiration, etc.) advances efforts
to parameterize trait-based models that may help project
how microorganisms respond to environmental shifts and
effect changes in carbon transformation and transport at
local, regional, and global scales (Follows et al., 2007;
Litchman et al., 2015). Interpreting and integrating the role
of EEs from single cells to ecosystems will help establish
a modeling framework applicable to other biogeochemical
processes and in the recovery of useful enzymes with
industrial applications.
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