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A B S T R A C T

Water surface elevation (WSE), slope and width measurements from the forthcoming Surface Water and Ocean
Topography (SWOT) mission will enable spaceborne estimates of global river discharge. WSE will be measured
by interferometric synthetic aperture radar (InSAR). InSAR measurements are vulnerable to contamination from
layover, a phenomenon wherein radar returns from multiple locations arrive at the sensor simultaneously,
rendering them indistinguishable. This study assesses whether layover will significantly impact the precision of
SWOT estimates of global river discharge. We present a theoretical river layover uncertainty model at the scale
of nodes and reaches, which constitute nominal 200 m and 10 km averages, respectively, along river centerlines.
The model is calibrated using high-resolution simulations of SWOT radar interaction with topography covering a
total of 41,233 node observations, across a wide range of near-river topographic features. We find that height
uncertainty increases to a maximum value at relatively low values of topographic standard deviation and varies
strongly with position in the swath. When applied at global scale, the calibrated model shows that layover causes
expected height uncertainty to increase by only a modest amount (from 9.4 to 10.4 cm at the 68th percentile).
The 68th percentile of the slope uncertainty increases more significantly, from 10 to 17 mm/km. Nonetheless,
the 68th percentile discharge uncertainty increases only marginally. We find that the impact of layover on SWOT
river discharge is expected to be small in most environments.

1. Introduction

The forthcoming Surface Water and Ocean Topography (SWOT)
satellite mission will provide new observations of global river processes
(Pavelsky et al., 2014), and of global lakes and oceans. The Ka-band
Radar Interferometer (KaRIn) instrument (Fjørtoft et al., 2014) aboard
SWOT will measure radar returns at near-nadir incidence angles
(0.7–4.3∘). Gridded radar imagery produced by KaRIn will be geolo-
cated, mapped onto river centerlines, and used to measure river height,
width and slope (Frasson et al., 2017). River data products will be
produced for rivers greater than 100 m in width, and perhaps as narrow
as 50 m (Esteban Fernandez, 2017). SWOT height, width and slope
measurements will be combined with flow resistance laws to estimate
river discharge (Biancamaria et al., 2016).

One potential source of error that is expected to affect SWOT
measurements is the so-called “layover” phenomenon; layover occurs
when radar returns from multiple spatial locations arrive at the sensor

simultaneously. For any radar system, layover will occur whenever
terrain slope is greater than the radar incidence angle. Thus, layover
problems tend to be most prevalent in areas of high topographic
variability (Rees, 2001; Bamler and Hartl, 1998), if one assumes spa-
tially uniform radar reflectivity across the scene.

While layover is thus expected to be ubiquitous at SWOT near-nadir
incidence angles, as illustrated graphically in Fig. 1, the effect of the
differing land and water radar reflectivities largely mitigates layover
impacts on SWOT measurements of water (Fjørtoft et al., 2014), as will
be shown in this paper. KaRIn radar waves incident on water surfaces
are likely to reflect back toward the KaRIn sensor, whereas radar waves
incident on land surfaces are more likely to scatter away from the KaRIn
sensor. Thus, for SWOT, water is generally far “brighter” than land. As a
result, layover from land near rivers is not expected to completely ob-
scure SWOT measurements of rivers, but rather to affect the precision of
SWOT measurements of river height and slope (Frasson et al., 2017),
thereby also affecting river discharge estimates. Layover effects on
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discharge have not previously been quantified, however.
In this paper we quantify the global impacts of layover on river

height, slope and discharge estimates. Specifically, we formulate a
theoretical model that predicts layover impact on river height and slope
uncertainty as a function of surface topography standard deviation (see
Fig. 1). We calibrate and validate the model on a set of first-principles
simulations of SWOT radar measurements of rivers and the surrounding
landscapes derived from high-resolution land cover and topographic
data. We then estimate accuracy and precision of global SWOT river
height and slope measurements by applying the layover model to a
global river database. We use first-order error propagation to compute
the uncertainty in river discharge as a function of the precision of
SWOT observations, and thereby provide a discussion of the expected
impacts of layover on SWOT river science.

2. Data

2.1. United States geologic survey Lidar point clouds

True surface topography datasets used in the first-principles radar
simulations are 3D elevation program (3DEP) Lidar Point Clouds (LPCs)
similar to those described by USGS (2017), but obtained from the USGS
Earth Resources Observations and Science Center in 2014 via personal
communication (note that the radar simulations themselves are de-
scribed in Section 3.2). A total of 40 LPC Digital Elevation Models
(DEMs) are used for this study, all from the coterminous United States
(CONUS); LPC domains are shown in Fig. 2. While LPCs are also
available from areas outside CONUS, we chose to use only the 3DEP
dataset as it is self-consistent, and representative of global river statis-
tics, as shown in Section 3.2. The LPC domains vary in size from 6000 to
16,500 km2. A majority of the LPCs are in fairly flat areas in the Eastern
United States (Fig. 2a), although there is one LPC from Western United
States, and several with higher topographic relief (e.g. Fig. 2b and
Fig. 2c). The domain median topographic roughness (defined in Section
3.1) for river nodes varies widely from 2.8 m to 56.5 m; the LPC do-
mains shown in Fig. 2b and Fig. 2c have topographic roughnesses of
19.8 m and 56.5 m, respectively. The LPCs include a wide variety of
river size and geomorphology: median river widths within LPC domains
range from 46.7 m to 849.1 m. The spatial posting of typical LPCs varies
but is typically less than one meter. The 3DEP data often include both

first return (representing vegetation canopy) and ground elevation.

2.2. Shuttle radar topography mission digital elevation model

SWOT processing requires a so-called “reference” DEM to process
the radar returns. The 30 m Shuttle Radar Topography (SRTM) mission
(Farr et al., 2007) DEM version 3 (NASA JPL, 2013b) is used as the
reference DEM for processing the first-principles radar simulations as
described in Section 3.2. Additionally, the 3 arcsec SRTM DEM version
4 (Jarvis et al., 2008) is used to compute the topographic roughness
(defined in Section 3.1), one of the inputs to the parameterized layover
model, which is independent of the SWOT processing that uses the
higher-resolution DEM. The lower-resolution DEM facilitates the
global-scale analysis because of its lower data volume; it is appropriate
for computing the topographic roughness because this quantity is
dominated by large-scale features (this is confirmed by our analysis but
not shown in this paper).

2.3. Global river database

As part of SWOT processing, and as part of the radar simulations
described in Section 3.1, two-dimensional SWOT radar pixels are
mapped onto river centerlines, as described in Section 3.2. The cen-
terlines themselves are contained in a River Database derived from the
Global River Width from Landsat (GRWL) database produced by Allen
and Pavelsky (2018). The River Database delineates river centerlines
using point features located every 30 to 42.4 m. The database contains
pre-specified locations of river nodes (point features spaced approxi-
mately every 200 m along the river) and river reaches (nominally
10 km in length). Database width, water surface slope, and river dis-
charge are identical to those from Frasson et al. (2019), and are used in
the propagation of layover induced errors to SWOT discharge estimates,
as described in Section 3.4.

2.4. Additional datasets

The true water mask for the radar simulations was derived from a
combination of the National Hydrography Dataset (USGS, 2019), the
SRTM Water Body Dataset (NASA JPL, 2013a) and the global river
database described previously. Land types from the 2011 National Land

Fig. 1. Illustration of the relationship between the topographic roughness and the extent of layover contamination. In this graphic, scales and angles are exaggerated
greatly for illustration. The solid black range-resolution contours are those that intersect both the desired water surface and the undesired land surface, while the
dashed black range contours are those that intersect only the water surface, and the dotted black range contours are those that intersect only the land surface. Note
that the vertical arrows on the right side of the illustration do not necessarily correspond to the actual standard deviation of the land surface as drawn. These are
shown merely for illustrative purposes.



Cover Dataset (NLCD) (USGS, 2016) are used to specify the back-
scattering coefficient of land surfaces in the first principles radar si-
mulations. SWOT processing requires a so-called “reference” water
mask, in addition to the reference DEM described earlier. The reference
mask is used to flag so-called “dark water” pixels (further described in
Section 3.2). We use the global surface water inundation dataset of
Pekel et al. (2016) as the reference mask.

3. Methods

3.1. Layover model formulation

Layover is a well understood phenomenon in radar imaging (see, for
example, Curlander and McDonough, 1991), and its effects can be si-
mulated directly given precise knowledge of the surface topography
and the radar reflectivity. Existing global data sets of these surface
properties are not sufficiently precise for direct, large-scale assessments

of SWOT performance, however, as (in general) DEMs with resolution
of approximately 1 m are required for accurate simulations, and such
data are not available globally. We consequently develop a simplified
model that gives a statistical description of layover-induced measure-
ment errors for a scene rather than specific, high-fidelity realizations of
errors within the scene. We refer to statistical expectation of mea-
surement error as “uncertainty,” characterized by its 68th percentile
absolute error, in the remainder of the manuscript; this is consistent
with how uncertainty is usually defined in the context of the SWOT
mission (Esteban Fernandez, 2017). The theoretical derivation of the
model is given in this section.

In order to give a statistical estimate of the layover-induced height
error for a water body of interest, the model begins with the roughness
of the topography as a statistical measure of the geometric variation in
the surrounding land height that causes layover. Let the topographic
roughness σz be defined as the standard deviation of the topographic
height over a uniformly weighted 1 km ×1 km box centered on the

Fig. 2. The extents of the LPC domains (orange boxes) used in the first-principles radar simulations (described in Section 3.2) and the global river database
centerlines (described in Section 2.3) for (a) the Eastern United States; (b) a single scene in the Western United State, and (c) one particular LPC domain from the
Eastern United States (c). For purposes of visualization, 1 km topography (units of meters above mean sea level) from GTOPO30 (USGS, 1996) is shown; note that
GTOPO30 is not used for any analysis. Rivers with width greater than 250 m are plotted with heavy lines. Note that the colourbar for (a) and (c) are identical.
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= C .z T z (1)

where CT is a constant model parameter that scales the topographic
roughness σz. This parameter also helps account for the fact that water
in layover is generally at a lower elevation than the surrounding land,
so the variability of the topography that contributes to layover is
greater than the standard deviation of the elevations. (We assume that
CT = 2 globally based on the results of Section 4.2.) Note that CT is the
only model parameter whose value is derived empirically from direct
simulations.

Layover is a geometric distortion that generally preserves along-
track distances but projects coordinates in the cross-track direction.
Therefore, for a river node P under observation, we define along-track
and cross-track node widths as illustrated in Fig. 3. Assume that σz and

z are evaluated at P, and define an effective river cross-track width wy

given by
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where wa is the average river width (based on area in developing the
model) over node P and ψr is the river flow direction at P relative to the
cross-track direction for the viewing geometry of the observation. If the
river is flowing purely in the cross-track direction, then ψr is 0 or 180∘.
The parameter wmax is a maximum cross-track width that prevents wy

from going to infinity when ψr goes to zero. This is not a realistic case,
as the river banks would not be perfectly straight. We assume
wmax = 10 km.

Let the effective along-track or azimuth width wx of the river be

given by

=w L w
wx
n a

y (3)

where Ln is the along-stream node length, such that the effective cross-
track and along-track dimensions for layover modeling preserve the
true node area. This approach preserves the number of independent
radar samples, or looks, that observe the node, as the number of looks is
an important parameter in determining the level of random measure-
ment error.

The effective number Nx of along-track looks contributing to the
node average is

=N w
x

x

x (4)

where δx is the along-track resolution of the radar.
The effective number Nw of cross-track looks on the desired water

surface is given by the effective width wy divided by the ground-pro-
jected range resolution δy

=N
w
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Given the incidence angle θinc, which represents the angle between
the zenith at the node P and the vector pointing from P to the radar, the
effective number Nc of layover-contaminated cross-track looks, which
can be no larger than Nw, is given by
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where the factor of tanθinc projects the vertical topographic variations
into a horizontal water extent that is affected by layover, assuming
planar wavefronts. This is illustrated in Fig. 1.

If a layover-flagging algorithm discards samples that are believed to
be corrupted by layover, the number of remaining cross-track looks can
be denoted as NW, such that 0 ≤ NW ≤ Nw. Similarly, the number of
remaining layover-contaminated samples can be denoted as NC, such
that 0 ≤ NC ≤ Nc. All results shown assume that no samples are
flagged, so NW = Nw and NC = Nc. See Section 5.3 for a discussion of
layover flagging.

Let the water-to-land contrast Rwl be the ratio of the radar back-
scatter coefficients for water and land when each is considered in-
dividually, irrespective of layover. We assume that water is a factor of
10 brighter than land, consistent with Esteban Fernandez (2017), so
Rwl = 10.

The resulting height estimate for node P is formed by averaging all
node samples that contain water echoes, though some of the samples
also contain undesired land echoes due to layover. Let RWL be the ef-
fective ratio of desired water echo power to undesired land echo power
due to layover after averaging:

=R R N
N

.WL wl
W

C (7)

Because the number of layover-contaminated samples cannot ex-
ceed the total number of water samples (0 ≤ NC ≤ NW), the effective
water-to-land ratio in the measurement is no lower than the water-to-
land contrast (RWL ≥ Rwl), although it can be much higher if there is
little or no layover. When the land topography is random, the area of
competing land that lays over into a given patch of a water surface can
be very high for land surfaces that are sloped toward the radar at angles
near θinc. However, nearby water patches that are affected by the op-
posing land slopes would likely be corrupted by correspondingly less
land area as discussed in Section 5.2. The term RWL describes the
average contrast over the water body and over local variations in to-
pography (recall that this model describes only statistical performance,

Fig. 3. Illustration of the assumed node geometry relative to the along-track
and cross-track dimensions. In the figure, wa is the river width, wy represents
the effective river cross-track width, Ln is the node spacing, wx represents the
effective river along-track width, and ψr is the river flow direction with respect
to the cross-track direction.

water body under consideration. The box size was chosen to be small 
enough to include the land topography closest to the river, but large 
enough to be effective for the range of river widths in the first-princi-
ples simulations. While some global rivers are wider than 1 km, we note 
that for these very large rivers, layover errors will be minimal, because 
layover-contaminated pixels will be a smaller fraction of the total 
number of pixels and because the layover contributions will be more 
random, as described below. We compute σz over both land and water 
pixels within each scene.

We choose the topographic roughness as a key model parameter 
because it can be readily evaluated from existing global DEMs, and it is 
robust to DEM resolution and accuracy, as confirmed by a comparison 
(not shown) between values of σz estimated from the lidar and SRTM 
DEMs described in Sections 2.1 and 2.2.

A single, statistical measure of the topographic roughness over a 
1 km box is of course not sufficient to fully predict the specific effects of 
layover for a given realization of a scene geometry. In general, the er-
rors for a given scene can be affected by topography that is farther than 
1 km from the river and has larger height variations than described by 
σz. Therefore, define an effective topographic ro ughness as



The SNR in decibels is assumed to be
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so the SNR as a linear ratio is

=R 10 .snr
R( /10)snr
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(9)

Here, y is the cross-track distance of P from nadir, M0snr = 8.5 dB,
y0snr = 40 km, W0snr = 40 km, and C0snr = − 2.5 dB for the nominal
case. This model gives a reasonable approximation of expected SWOT
random-error performance in the absence of layover.

Finally, let the ambiguity height ha be the height change that cor-
responds to one cycle (2π rad) of interferometric phase change. The
ambiguity height varies with cross-track position and is given by

=h
B

tan .a look (10)

Here, λ is the radar wavelength, ρ is the slant range, B is the in-
terferometric baseline length, and θlook is the angle of the vector from
the radar to the target with respect to nadir at the radar (note that θlook
is slightly less than θinc due to the variation in the local vertical di-
rection with Earth curvature, which is significant for spaceborne InSAR
observations). With the conventions of this model, ha should always be
positive. For SWOT, λ = 8.3858 mm, ρ ≈ 900 km, and B = 10 m.

Now, following the derivations of the complex interferometric co-
herence γ that are well known in the context of volume scattering [see,
for example, Eqs. (31, 62, 63) of Rosen et al., 2000 and the associated
references therein], define the complex interferometric coherence γL
due to layover and finite SNR as

= +
+ +

h j h R
R R

1 sinc( / ) exp( / )/
1 1/ 1/L

z a z a WL

WL snr (11)

where
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and

=j 1 . (13)

Here, the scattering contribution from layover is assumed to be
uniformly distributed statistically in height between 0 and z above the
height of node P. This gives rise to the second additive term in the
numerator of Eq. (11), since

=j
h

z z h j h1 exp 2 d sinc( / ) exp( / ).
z a

z a z a0

z

(14)

The form of Eq. (14) is common in modeling signal penetration into
scattering volumes such as vegetation in interferometric SAR contexts.
It is applicable here even where signal penetration into the surface is
not assumed, however, as the heights can still be distributed between 0
and over a node simply due to topographic variations across the hor-
izontal extent of the node.

Note that actual penetration into the surface (as from vegetation)
would tend to alter the model only to the extent that the penetration
affects the topographic roughness of the scattering centers captured by

z. If the topographic roughness of the surface height dominates var-
iation in the scattering centers due to penetration, penetration will have
little additional impact.

A layover-induced bias hL over the node arises from the nonzero
phase of the coherence (the phase of γL is referenced to the true water
height of the node):

=h h
2L

a
L (15)

where the phase ∠γL is in radians.
Using the Cramer-Rao bound for the phase variance as described by

Rosen et al. (2000), the phase standard deviation σϕ, again in radians, is
approximated by
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so that the height standard deviation σh is given by

= h
2

.h
a

(17)

Define the random height uncertainty EhnR of a node as the expected
error in the node-level height estimate, accounting for both node-scale
bias and random variations in the estimated height over multiple, hy-
pothetical realizations of the node with randomized wavelength-scale
scattering variations. This uncertainty is taken to be

= +E h .hnR L h (18)

Here, we assume, for conservatism, a direct sum of the bias and
random terms rather than a root sum of squares.

For a given observation, the bias term hL is assumed to be a constant
(in time) bias for the node, but a varying bias from node to node such
that EhnR can be treated nominally as a measure of the uncorrelated
random error from node to node. The random term σh will generally be
uncorrelated from node to node due to the randomness of speckle in the
radar echoes. In reality, the bias term hL may be somewhat correlated
from node to node, but this effect will be relatively unimportant if the
topography is rough compared to the ambiguity height such that the
bias itself is small, if the node-to-node variation in roughness is big
enough that the node-to-node correlation of the bias is low, and/or if
the water-land contrast is high such that the overall impact of layover is
small. Indeed, the small node-level biases from the first principles si-
mulations shown in Section 4.2 suggest that this effect is indeed rela-
tively small compared to the overall magnitude of reach-scale SWOT
errors. A detailed investigation of the node-to-node correlation of
height errors is outside the scope of this paper, however, as there are
mechanisms other than layover for introducing such correlations.
Below, we adopt a modification to the uncertainty expressions one
would obtain for independent node height errors to approximately
capture the effect of spatial correlation while still generally following
the simplistic formulation that treats height errors as either un-
correlated from node to node or common over all nodes in a reach. This
approach is consistent with the error framework of Esteban Fernandez
(2017). A quantitative assessment of the sensitivity of the discharge
results to node-to-node correlation is given in Section 4.5.

The height uncertainty over a reach is computed by first accounting
for the reduction in random (but potentially spatially correlated) error
from averaging multiple node height estimates, then applying an

not the effects for any given fine-scale realization of the geometry).
While the layover model assumes a static value of RWL, the first-

principles simulations do capture fine-scale variations in the land-water 
contrast as a function of land cover and topography. Successful cali-
bration of the layover model (see below) demonstrates that the layover 
model is fairly robust to the assumption of static RWL.

Note that this model considers only layover that maps land into 
water. It is also possible for layover to cause two different water fea-
tures to contaminate each other, though this scenario is much less 
common.

Let Rsnr be an effective signal-to-noise ratio (SNR) that accounts for 
thermal noise, geometric decorrelation, and other sources of random 
error, excluding layover. The SNR including layover could also be de-
rived, but it is not needed in our formulation of the height bias due to 
layover. We use a heuristic model for Rsnr to approximate the behavior 
of the random error curve vs. cross track position described in Esteban 
Fernandez (2017) rather than replicate the full SWOT performance 
calculations, as the complexity of the full calculation is unnecessary in 
this analysis.
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where EhnRk is the height uncertainty EhnR for node k, Lc is the effective
length over which random errors are correlated due to layover or other
effects, and the summation is over all nodes in the reach. We note that
while we have treated the layover bias hL as a random effect in Eq. (18)
as described above, spatial correlation of both layover bias and other
height errors may lead to correlation among the random part of the
node-level height errors EhnR. This is captured by Lc. For the quantita-
tive results in Section 4.5, we take the nominal case for this study to be
Lc = Ln, or uncorrelated random errors at the node scale. We also assess
a conservative case with Lc = 800 m, which doubles the random part of
the reach-scale height errors, since Ln is defined to be 200 m. Note that
this doubling of random errors conservatively applies to random errors
from all sources, not just random errors due to layover. We will con-
sider both the nominal and conservative cases in the discharge analysis
shown below.

The total height uncertainty EhrT for the reach is then found by
taking the root sum of the squares of the random uncertainty EhrR over
the reach and the systematic uncertainty EhS:

= +E E E .hrT hrR hS
2 2 (20)

Based on Esteban Fernandez (2017), we assume that EhS = 8.9577
cm.

The slope uncertainty over a reach of length Lr is computed analy-
tically from the model for the height uncertainty over each node, fol-
lowing the model of Section 6.3.2 of Esteban Fernandez (2017). The
error-budget model assumes that the layover-induced height errors of
the nodes are random and independent. In order to approximate the
effects of node-to-node correlation on the random height errors, let the
model slope random uncertainty EsrR be given for an effective node
height random error EhnR (defined below) by

=E E
N L
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12 ,srR hnR
r r

c

n
2 (21)

where the L L/c n term scales the reach-level slope error just as it scaled
the reach-level height error in Eq. (19) by the effective number of nodes
over which the node-scale random height errors are correlated.

The node random height uncertainty EhnR here assumes that the
node errors are identically distributed. This, of course, may not strictly
be the case. Eventually, if the distributions of random height errors for
individual nodes are known, the slope estimator could weight the node
heights according to the uncertainty on each node (this complexity is
not captured above). For now, however, we keep the assumption of
identically distributed node height errors over a reach, and, conse-
quently, uniform weights in the slope estimator. There are several
reasons for this assumption. First, the assumption simplifies the slope
uncertainty model and facilitates a more intuitive understanding of the
results and the associated sensitivities. Second, the assumption allows
the model to mirror the analysis of the SWOT error budget (Esteban
Fernandez, 2017). Third, the assumption provides a useful bounding
case for the slope uncertainty.

Given the above discussion, define the effective node random height
uncertainty EhnR as the root mean square over the reach of the in-
dividual node height uncertainties from the model as
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E1 .hnR
r k
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hnRk
2

r
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The total slope uncertainty EsrT for the reach, including both random
slope uncertainty EsrR and systematic slope uncertainty EsS, is then
given by

= +E E E .srT srR sS
2 2 (23)

We assume that EsS = 3.3599 × 10−6 rad based on the SWOT error
budget (Esteban Fernandez, 2017).

3.2. Layover model calibration

In order to calibrate and to validate the model for layover-induced
height and slope errors described in Section 3.1, we compare model-
predicted errors to the errors obtained from direct, first-principles si-
mulations. The simulator software is the same as that used for some of
the analyses in Esteban Fernandez (2017), as well as that used, for
example, by Frasson et al. (2017), Domeneghetti et al. (2018), Grippa
et al. (2019), and Langhorst et al. (2019).

Lidar DEMs were generated from the LPC data by keeping the first
lidar returns where available, thereby simulating the effects of vege-
tation canopy-top scattering to the extent possible, as penetration of the
Ka-band SWOT radar signals into vegetation is expected to be minimal
(Bamler and Hartl, 1998). The DEMs were also processed to fill voids in
water areas and to smooth artifacts that would give physically un-
realistic height variations over water surfaces. The smoothing algorithm
involves image segmentation, histogram filtering, and moving-average
filtering to allow different water features to be smoothed separately,
thereby avoiding unrealistic artifacts when nearby water features are at
different elevations. Note that the smoothing operation results in water
heights that might differ somewhat from the true water heights. In fact,
in some cases, the water surface might even be higher than the sur-
rounding land. However, this occurs only in areas with significant to-
pographic variations such that the water height errors of the DEMs
would not be expected to affect the conclusions of this analysis. Note
that while layover is often visualized with land that is higher and far-
ther from nadir than water, the effect is geometrically symmetric such
that errors would also arise for water that is higher than land. Indeed,
the DEMs for this analysis need only be generally representative of
realistic water features. It is not important for the DEMs to match
reality exactly. The water mask for the simulations were constructed
from a combination of the National Hydrography Dataset, the SRTM
Water Body Dataset, and the River Database, as described in Section
2.4.

The simulations assumed realistic water reflectivities, including a
model for specular (“dark”) water and representative land reflectivities
based on NLCD land cover types. The Ka-band brightness as a function
of incidence angle for each non-water NLCD type is modeled as a look-
up table that was derived from Global Precipitation Mission data over
NLCD classes (Esteban Fernandez, 2017). The water scattering bright-
ness is modeled as a function of wind speed and incidence angle using a
custom geophysical model function (GMF) derived from a combination
of geometric optics and AirSWOT data. The wind speed for each scene
was randomly generated using a k−2 spatial wavenumber spectrum
with a mean wind speed value over the whole scene derived from ca-
lendar year 2005 National Centers for Environmental Prediction - Na-
tional Center for Atmospheric Research Reanalysis version 1 numerical
weather prediction simulations.

In evaluating the model, σz was computed from the near-global
(between −60∘ and 60∘ latitude) SRTM DEM version 4 (Jarvis et al.,
2008) as the sample standard deviation of elevations within a 1 × 1 km
square kernel. The water-land contrast Rwl for evaluating the model was
assumed to be 10 dB (not the actual, spatially varying contrast used in
the direct simulations).

The height measurements from the direct simulation were ag-
gregated into node-height estimates with the RiverObs software
(Rodriguez et al., 2014). The node length Ln was assumed to be 200 m

estimate of the systematic errors that are assumed to be common over 
the reach.

Given a reach of length Lr, the number Nr of nodes of length Ln in the 
reach is given by Nr = Lr/Ln. The random height uncertainty EhrR at the 
reach level is given by



both when processing the direct simulations and evaluating the model.
However, the model captures the physical mechanisms relating the
height error to the node length (primarily the number of looks), so the
model is applicable to other node lengths as well. Reach-level quantities
from the direct simulation were not assessed, as the spatial distribution
of the nodes across scenes in the data set does not give enough reaches
for a useful statistical characterization, and the analytical propagation
of errors from the node level to the reach level is straightforward in any
event.

Nodes are defined according to the River Database described in
Section 2.3. In total, 21,414 unique nodes are covered by the set of
simulations. From the nominal SWOT orbit, these nodes are observed
from different viewing directions (from ascending or descending orbit
passes and to the left or to the right of nadir) across the simulations,
giving 39,714 unique combinations of viewing geometry and geo-
graphic location. The total number of node observations considered,
including overlapping coverage, is 41,233, over 148 simulated scenes.
Note that nodes with overlapping geometric coverage still have dif-
ferent realizations of water reflectivity, random surface fluctuations
(speckle), and instrument noise, so they still contribute to the statistical
characterization of height error.

Cumulative distribution functions (CDFs) of the incidence angle θinc,
the topographic roughness σz, and the river width wa over these nodes is
illustrated in Fig. 4. The nodes are well distributed over the useful range
of SWOT incidence angles (about 0.7–4.3∘) and over river widths from
approximately 20–1000 m. Fig. 4b shows that the global distribution of
σz is well-represented by the first-principles simulations, up to the 85th
percentile. Although the first-principles simulations somewhat under-
represent high values of σz, our results shown below indicate that the
worst layover effects are actually for low values of σz.

The node height errors between the direct simulation and the un-
certainty from the model were compared as follows. The nodes were
binned on the predicted node-level height uncertainty from the model.
For each bin, statistics of the realizations of the height error from the
direct simulation were computed over all nodes within the bin. The
statistics from the direct simulation for each bin were then compared to
the bin-center predicted uncertainty from the model.

An example image from one of the direct simulations is shown in
Fig. 5a. This image overlays the radar image power (indicated by the

grayscale brightness) and the wrapped phase of the interferogram (in-
dicated by the colour) after an initial stage of along-track averaging to
reduce noise. The image is represented in slant-plane radar coordinates,
with range increasing toward the right. Consequently, topographic
features over land “lay over” toward the left. The image corresponds to
a small segment of a larger simulated scene covering the Smoky Hill
River in Kansas. The center of the radar image is located at 38.957∘

latitude and −96.913∘ longitude and covers approximately 6.6 km
along-track and 5.2 km cross-track extent as projected onto the ground.
Because the image is in radar coordinates, it is flipped (and slightly
rotated) with respect to natural ground coordinates such that north is
approximately toward the top of the image, but west is approximately
toward the right. For comparison, a shaded-relief image from the lidar
DEM that was used as the input to the simulation is shown in Fig. 5b.
The shaded-relief image is represented in ground coordinates (not radar
coordinates), but it is shown flipped here such that west is to the right
in order to align it more closely with the radar image in Fig. 5a.

Some features of the simulated radar example of Fig. 5a are notable
in the context of layover. First, the water pixels are considerably more
reflective than the land pixels, which are near the noise floor, so land
echoes that lay over into water areas will have relatively little influence
on water measurements. Second, even with the lack of rugged terrain in
this area, layover is still evident in the darker land areas; layover of land
into other land in the lower half of the image makes the topographic
relief appear “fallen over” toward the left. However, the wrapped in-
terferogram phase of land areas is distributed between 0 and 2π radians
because of the small ambiguity height ha. Layover contamination of
water will therefore be more of a random error than a bias. Third, while
nearly all of the river is in fact in layover geometrically (this may not be
evident visually but can be confirmed in the data), there is no easily
discernible impact of layover on the phase of water pixels. Note that the
variation in phase over the river near the upper right corner of the
image (where the colour changes from magenta to lavender) is not due
to layover; it is associated with errors in the reference surface used to
flatten the phase.

3.3. Layover model global application

In order to apply the layover model globally, σz was computed from

Fig. 4. Characteristics of the nodes used in the model calibration and validation (red) and in the global river database (blue): (left) distribution of incidence angle
θinc; (center) distribution of topographic roughness σz, limited to 100 m; (right) distribution of river width wa, limited to 1000 m. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)



the SRTM DEM of all points falling inside a 1 km by 1 km window. We
associated the topographic roughness (σz) with river nodes in the river
database by searching for the closest σz to a river node. Subsequently,
we identified passes observing each node by computing the shortest
distance between the node and the SWOT passes. Nodes located farther
than 10 km and closer than 60 km to the pass groundtrack are assumed
to be observed by that pass. Finally, we computed the relative heading
of the river at each node with respect to passes observing that node.

Reaches and nodes that fall within lakes were excluded from ana-
lysis, as were all rivers narrower than 100 m. River reaches shorter than
9.5 km were also excluded from analysis, in order to focus on the im-
pact of layover, rather than reach length; see Frasson et al. (2017) for
an example of how reach length impacts height uncertainty for SWOT.
After these exclusions, a total of 6,843,139 nodes and 220,924 reaches
were analyzed. As this study focuses on reach-averaged discharge,
which is not computed at the node scale, we focus on reaches in sub-
sequent analysis. Fig. 6 shows a map of river slopes, which illustrates

the global extent of the analysis.

3.4. Discharge uncertainty model

During SWOT mission operations, river discharge will be computed
using simple flow laws (Durand et al., 2016). In this study, we assume
use of a modified version of Manning's equation:

= +Q
n

A A W S1 ( )0
5/3 2/3 1/2

(24)

where Q is the river discharge, n is the coefficient describing the force of
friction resisting river flow, A0 is the unobserved part of the river cross-
sectional area, δA is the temporal anomaly in cross-sectional area, W is
river width, and S is river slope. Here δA, W and S are SWOT ob-
servables, and n and A0 are flow law parameters computed using so-
called mass-conserved flow law inversion algorithms (Gleason et al.,
2017). For the purposes of this paper, we can assume δA≈WδH, where
H is the water surface elevation. In this study, we will assess the “direct”
effect of layover-controlled increase in uncertainty in river height and
slope on river discharge by applying first-order error propagation to Eq.
(24). Future work will consider effects of layover on discharge inver-
sions via the discharge parameters.

In order to compute the effect of SWOT observation uncertainty on
river discharge uncertainty, we follow the approach of Yoon et al.
(2016). We consider the effect of layover only on river height and slope,
as the effect on river width accuracy is expected to be minimal. Ignoring
uncertainty in flow law parameters, and in river width, the river dis-
charge relative uncertainty is:
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where the standard deviation of each term is denoted by σ. Under the
assumptions noted above, σδA is given by:

W 2 .A H (26)

We approximate the total river cross-sectional area (i.e. A0 + δA) as
the product of river width and depth. We estimate depth by combining
downstream hydraulic geometry relationships for width and depth, viz.
Eqs. 15 and 16 of Moody and Troutman (2002). This yields a prediction
of depth as a function of width. Substituting this and Eq. (26) into Eq.
(25) gives:
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where the downstream hydraulic geometry exponents and coefficients
a, b, c, and f are taken from Moody and Troutman (2002). Eq. (27)
expresses relative discharge uncertainty in terms of uncertainty in
height and slope, along with river width and slope, and downstream
hydraulic geometry coefficients. Essentially, this is similar to work
presented by Biancamaria et al. (2010), but with the independent
variable being the river width, which is measured to high accuracy by
Allen and Pavelsky (2018), with slope included explicitly, and links to
the detailed height and slope uncertainty models presented above.

4. Results

4.1. Example layover output

In order to illustrate how layover varies with cross-track distance
and topographic standard deviation, we first consider an example river
with the layover model of Section 3.1. Fig. 7 shows example output
from the layover model, using a value of CT = 2.0, as described in the
following section, for a 100 m wide river, with 200 m node spacing,
flowing perpendicular to the SWOT groundtrack (i.e. the relative

Fig. 5. Example simulated radar data (a) and the associated shaded-relief image
from the DEM (b). The simulated radar data are shown in the slant-plane co-
ordinates of the radar image, with range increasing toward the right and ima-
ging time or along-track coordinate increasing downward. The image bright-
ness depicts the radar image power, which is related to the surface reflectivity,
while the color represents the wrapped interferogram phase. The shaded-relief
image is flipped such that east is to the left in order to more closely align it with
the radar coordinates. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



heading ψr is π/2). Our results show that layover-induced error is
highest for rivers with relatively low topographic roughness measured
at high incidence angles. Layover-induced uncertainty in SWOT ob-
servations reach a maximum at relatively low values of σz, and vary
widely across the swath. Random uncertainties reach maxima between
2 and 8 m of σz, with larger maxima in the far swath. The peak value
ranges from 40 cm in the near swath to ~85 cm in the far swath.

4.2. Model calibration

Fig. 8 shows a comparison of the layover-induced node height un-
certainty predicted by the model of Section 3.1 and the statistics of the
errors computed through direct simulation following the methodology
of Section 3.2. Note that the bins on the horizontal axis of Fig. 8 are not
uniformly spaced. They are defined such that each bin contains ap-
proximately 400 nodes, giving 103 bins total.

The median error from the simulations (red curve) is relatively close
to zero, confirming that layover does not introduce a significant overall
height bias. This also suggests that the node-to-node correlation of the

layover-induced biases, which would usually be positive, is not a
dominant source of error.

The dark blue curve represents the 68th percentile of the absolute
value of the height error (over the nodes in each model bin) from the
simulations. This quantity is most directly comparable to the un-
certainty that is computed by the model. This quantity is shown rather
than the standard deviation or the RMS error because it is less sensitive
to outliers in the simulated data. This curve follows the 1:1 line rea-
sonably well, although the model conservatively overpredicts the errors
somewhat for errors greater than approximately 0.3 m. The correlation
coefficient is 0.912. The agreement indicates that the model of Section
3.1 usefully predicts the expected errors from layover.

Together, the curves for the 10th, 25th, 50th, 75th, and 90th per-
centiles in Fig. 8 show the distributions of the errors from the direct
simulation for each bin of the theoretical model in a manner similar to
that of a box plot. A traditional box plot is difficult to interpret given the
number and spacing of the bins on the horizontal axis, however. The
bin spacing was chosen so that the point density provides an indication
of the distribution of the data over the height uncertainty from the
theoretical model (i.e., over the horizontal axis). The global CDF of the
model-predicted uncertainty is also shown in Fig. 9.

4.3. Layover impacts on height

Fig. 10 shows example height uncertainty estimates at reach scale in
the vicinity of the upper Missouri River from the model of Section 3.1.
Height uncertainty decreases with increasing river width and thus the
lowest values of height uncertainty fall along the mainstem Missouri,
Yellowstone and South Saskatchewan rivers.

Fig. 11 shows a CDF of the global distribution of reach-scale height
uncertainty with and without layover included. The height uncertainty
distribution is highly skewed, with most values falling near approxi-
mately 10 cm, and a long tail. Globally, swath position has the largest
control on these low percentage outliers. The worst 1% of uncertainty
values occur for reaches near swath edges. The effect of layover is to
cause height errors to increase minimally: the 68th percentile increases
from 9.4 to 10.4 cm. This does cause a significant change in the total
number of reaches that fall below 10 cm, however, which is the nom-
inal science requirement. The fraction of reaches with height error <10
cm decreases from 95 pct to 60 pct due to layover. The conservative
analysis, doubling the random height error component as described in
Section 3.1, is also shown in Fig. 11. The 68th percentile further in-
creases to 13.9 cm. However, these modest increases in actual height

Fig. 6. Water surface slopes computed from SRTM as described in Frasson et al. (2019) used for the evaluation of discharge uncertainty.

Fig. 7. Node-scale random uncertainties as a function of topographic standard
deviation at different cross-track distances (in kilometers) calculated with Eq.
(18).



uncertainty are simply not enough of a change to substantially impact
the science that can be accomplished with SWOT observations; we il-
lustrate this point below by propagating this uncertainty to river dis-
charge.

4.4. Layover impacts on slope

Fig. 12 shows example slope uncertainty estimates for the same
region shown in Fig. 10. Generally, the slope uncertainty spatial pattern

mirrors that of the height uncertainty. Note however that the number of
occurrences of reaches with double the nominal uncertainty (34 mm/
km slope or 20 cm height) is far greater for slope, as indicated by the
greater prevalence of reaches shaded red in Fig. 12 compared with
Fig. 10. The conservative case, doubling random height errors as de-
scribed in Section 3.1, causes a further increase in the 68th percentile of
error to 35 mm/km. The reason that reach-scale slope error increases
more than height error due to doubling the node-scale random height
error is simply that total slope errors are more dominated by random
error, whereas total reach-scale height errors are more dominated by
systematic error. As noted in Section 3.1, systematic height error is
approximately 9 cm, whereas systematic slope error is approximately
3 × 10−6 rad. Comparison of the systematic values with the CDFs in
Figs. 11 and 13 shows that systematic height errors are much larger
compared to the total.

Fig. 13 shows a global histogram of slope uncertainty estimates with
and without layover effects included. Slope errors increase moderately:
the 68th percentile increases from 1 cm/km to 1.7 cm/km due to lay-
over. This is a significant change: only 10% of global reaches have slope
errors > 1.7 cm/km in the no-layover case. Fig. 14 shows that slope
uncertainty increases somewhat as a function of river width. The widest
rivers (~1000 m) are not significantly affected by layover, but for the
narrower rivers (~100 m), both the median slope uncertainty and the
interquartile range are significantly larger in the case where layover
errors are included.

4.5. Layover impacts on discharge

Fig. 15 shows estimates of river discharge uncertainty for global
reaches with and without layover, showing the impact of layover on

0 0.2 0.4 0.6 0.8 1 1.2
Height Uncertainty from Theoretical Model (m)

-1.5

-1

-0.5

0

0.5

1

1.5

H
ei

gh
t E

rr
or

 fr
om

 D
ire

ct
 S

im
ul

at
io

n 
(m

)

|68 pct|
90 pct
75 pct
50 pct
25 pct
10 pct

Fig. 8. Statistics of layover-induced height error on nodes from direct simulation over bins of predicted layover-induced height uncertainty from the simplified
theoretical model of Section 3.1. The dark blue curve represents the 68th percentile of the absolute height error from the direct simulation. From bottom to top, the
other coloured curves represent the 10th, 25th, 50th, 75th, and 90th percentiles of the simulated errors, thereby characterizing the statistics of the errors from the
direct simulation for each bin on the horizontal axis in a manner similar to what might be represented in a box plot. The dashed black lines represent 1:1 lines for
visual reference. If the theoretical model were a perfect statistical representation of the direct simulation, the dark blue curve would follow the 1:1 line exactly. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Distribution of the model-predicted height uncertainty over the nodes
considered in the analysis.



height and slope presented in the previous two sub-sections. To un-
derstand the sensitivity of these results to the various assumptions made
throughout, we also present the global discharge uncertainty for a
conservative-case analysis where we have doubled the random height
and consequent slope uncertainty due to all sources including layover,

referred to as the “double random error” case.
Generally, layover causes discharge errors to increase minimally:

the 68th percentile increases from 12% to 13% for the expected level of
error due to layover. However, layover increases the number of reaches
for which slope errors will be too high to use Manning's equation
(nominally taken as a discharge uncertainty of 0.2). In the “no layover”
case, 12% of global reaches will have slope errors too large to use
Manning's equation. When layover is included, Manning's equation will
be inapplicable for 17% of reaches. These findings have implications for
methods used in SWOT river discharge products: height and width
alone will be used to estimate discharge for reaches where Manning's
equation is inapplicable. Note that methods to compute discharge di-
rectly from satellite measurements of river height and width have been
used for decades (e.g. Kouraev et al. (2004), Gleason et al. (2014),
Pavelsky (2014)), and will be adapted for use with SWOT measure-
ments. Doubling the random height error results in further degradation:
the 68th percentile of discharge uncertainty increases to approximately
20%, underscoring the need to develop methods for estimating dis-
charge that do not use SWOT slope measurements: such methods will be
critical if layover causes height and slope errors to be closer to the
“double random error” case.

5. Discussion

5.1. The Grand Canyon illustration

The relatively minor impact of layover on SWOT measurements may
be surprising to readers who are accustomed to topography measure-
ments of land derived from interferometric SAR (Bamler and Hartl,
1998). The schematic illustration in Fig. 16 may help give an intuitive
explanation for why layover does not pose a greater problem for SWOT.
In this cartoon, an imaged water feature lies at the bottom of a deep

Fig. 10. Example reach-scale height errors in the upper Missouri River basin are shown. Each reach shows the mean observation error across all passes.

Fig. 11. Layover impacts on global height errors at reach scale. The yellow and
red lines indicate the “nominal” and “conservative” layover cases, respectively,
as described in Section 3.1. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)



canyon with steep sides, as might be the case for the Colorado River
through the Grand Canyon. The diagonal black lines indicate contours
of constant slant range from the radar; parcels of land at the same slant
range as the water lay over into the water and give undesired radar
echoes that compete with the desired water echoes. Note, however, that

most of the land in the scene lays over into other land. Such layover of
land into other land is of no consequence for the primary SWOT mea-
surements of water. Moreover, observe that if the canyon were deeper,
the competing land echoes due to layover would come from different
locations (farther in cross track, or further to the right for the upper
parcel of competing land in the figure), but the area of the competing
land would not increase. At this geometric bound, in which the water
feature is fully covered in area by layover, the impact of the con-
tamination is still bounded (on average) by the relative contrast be-
tween the reflectivities of water and land. At SWOT incidence angles,
water is much more reflective than land, so the layover echoes from
land are relatively weak. Therefore, while the steep incidence angles of
the SWOT measurement give rise to the prevalence of layover in the
first place, they also imply scattering characteristics which make lay-
over less of a problem.

In fact, for the SWOT viewing geometry, very little surface relief is
required to make the cartoon shown in Fig. 16 applicable. With an
incidence angle of 2∘ near the middle of the SWOT swath, as little as 4 m
of surface height variation (including vegetation) near a water body
that is 100 m wide could cause the entire water body to be in layover
geometrically. The minor impact of layover on SWOT is thus not be-
cause layover can be avoided geometrically but because the con-
taminating echoes due to layover are significantly weaker than the
desired water echoes.

The layover echoes are also likely to be quite random in phase due
to the small SWOT ambiguity heights (10–60 m over the swath), al-
though this is not represented in the cartoon illustration of Fig. 16. In
fact, if the land contaminating the water were actually as flat as illu-
strated, it would cause a bias rather than a random error. Such a bias is
the mechanism for the peak in layover-induced error at low topographic
roughness in Fig. 7. Random errors, on the other hand, decrease with
spatial averaging. Therefore, perhaps counter-intuitively, rivers in

Fig. 12. Example reach-scale slope errors in the upper Missouri River basin are shown. Each reach shows the mean observation error across all passes.

Fig. 13. Layover impacts on global slope uncertainty. The yellow and red lines
indicate the “nominal” and “conservative” layover cases, respectively, as de-
scribed in Section 3.1: doubling the random part of the height error causes the
slope error to increase. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)



relatively flat areas may exhibit the largest height errors due to layover.

5.2. Spatially varying vs. flat topography

While flat topography, as illustrated beyond the canyon walls in
Fig. 16, affects the water in a spatially homogeneous manner, spatially
varying topography affects the water surface inhomogeneously.
Namely, where the land surface is sloped toward the radar at angles
near θinc, a large area of the land will map into a small area of the water
and could contaminate the measurement for that parcel of the water
surface quite significantly. However, where the land surface is sloped
away from the radar, a lesser area of land (relative to a flat surface)
maps into a given area of water. This is illustrated conceptually in
Fig. 17. The echo power from Land Surface 2 is considerably higher
than the echo power from Land Surface 1 where the slope of Land
Surface 2 is unfavorable (in the nearest slant-range cell to the radar for
this example). However, this water area is limited in extent, and the
echo power from Land Surface 2 is commensurately lower than for Land
Surface 1 for the other slant-range cells that intersect the backslope. To
first order, the total land contamination is similar between the different
cases once averaged over the water surface. A detailed discussion of the
actual land echo power, which also depends on the surface reflectivity,
is beyond the scope of this discussion, although it is captured by the
first-principles simulation used to validate the analytical model. Here, it
suffices to note qualitatively that the effects of spatially varying topo-
graphy are described statistically by the model even when extended
parts of the land surface have slopes near θinc.

5.3. Does flagging lessen the impact of layover?

An intuitive approach for attempting to mitigate errors due to lay-
over might be to identify and flag water samples that are in layover and
to exclude them when averaging to compute the node height. We in-
vestigated this flagging strategy, and while a lengthy discussion of this
topic extends beyond the scope of this paper, we give a brief summary
of the work here because the conclusion was somewhat surprising and
because it provides additional insights on the discussion above: flagging
layover pixels and discarding them in fact increases rather than de-
creases the overall error. This finding was borne out both in the direct
simulations and in a generalized version of the simple model that ac-
counts for the number of flagged samples in NC and NW in Eq. (7). We
found this to be true even under ideal conditions when layover samples
could be perfectly identified.

This effect can be explained qualitatively as follows. Water samples
in layover contain the sum of the complex interferometric signals from
both water and land. Therefore, while these layover samples contain
undesired, corrupting land echoes, they also contain useful information

Fig. 14. Layover impact on slope errors categorized by river width.

Fig. 15. CDFs of global discharge errors due to height and slope errors only.
The blue curve shows the effect of height and slope errors propagated through
the Manning's equation without layover effects. The yellow and red lines in-
dicate the “nominal” and “conservative” layover cases, respectively, as de-
scribed in Section 3.1. Note that doubling the random part of the height error
causes the slope error to increase as well; increases in both height and slope
uncertainty are propagated to discharge via Eq. (27). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 16. Illustration of layover for a case such as the Grand Canyon.



about the water height. In fact, given the generally high water-land
contrast (Rwl), the land signal tends to be considerably weaker than the
desired water signal. The land signal is also not significantly stronger
than the instrument noise floor. Moreover, the land signal, when
averaged at node scales, tends to appear random due to the phase
wrapping that occurs when the topographic roughness is greater than
the ambiguity height ( > hz a). Therefore, as the undesired signal due
to layover behaves effectively like a random noise source that is not
much stronger than the background instrument noise, it is better to
include the layover samples during averaging because it is better to
have more noisy samples than fewer noisy samples to average.

Framed in terms of the analytic model of Section 3.1, discarding
flagged samples reduces the number of contaminated samples NC only
at the expense of also reducing the total number of water samples NW.
Even in an ideal case where NC goes to zero and RWL goes to infinity, the
interferometric correlation γL is still limited by the finite SNR, as in-
dicated by Eq. (11). The phase variance then increases as NW decreases
in Eq. (16).

In short, flagging and discarding layover samples generally hurts
more than it helps because the errors due to layover tend to be random
and comparatively small in the first place, so the samples in layover are
better used for beating down the random variations from both layover
and noise.

6. Conclusion

Although layover contamination is expected to be ubiquitous in
SWOT measurements of river height and slope, it will not completely
obscure river measurements. Instead, the effect of layover will be to
increase uncertainty in measurements, for affected reaches. Our ana-
lysis shows that layover will only increase expected reach-scale height
errors by a marginal amount: the 68th percentile of reach errors is
expected to increase from 9.4 to 10.4 cm. The impact on the 68th
percentile of slope uncertainty will likely be greater, from 10 mm/km to
17 mm/km. When these errors are propagated to river discharge, we
find that layover will not significantly impact discharge for most
reaches: the 68th percentile uncertainty increases from 12% to 13%.
Instead, the larger impacts from layover affect the tails of the slope and
discharge uncertainty distributions. Thus, layover leads to a significant
increase in the number of reaches where slope uncertainty is large
compared to the average reach slope: (17% up from 12%). Thus, this
study has important implications in determining how to best compute
river discharge from SWOT measurements for low-slope reaches.

Another outcome of this investigation is the conclusion that layover
mitigation strategies that simply flag and exclude data tend to hurt

more than help the resulting height errors. Future investigations of
layover mitigation may involve estimating a layover impact quantity
that can be used to optimally aggregate to river nodes and reaches (e.g.,
appropriately weight laid-over pixels) to minimize the resulting un-
certainty.

We have focused the discussion in this paper on the ways in which
layover is expected to impact river discharge. Thus, our height error
model captures the impact of layover by assuming that node-scale
layover biases increase the reach-scale slope error and random height
error. As a result, we did not compute or present expected height biases
due to layover at the reach scale. Indeed, in areas impacted by layover,
layover-induced height biases at the reach scale may persist, especially
in relatively flat areas. Frasson et al. (2017) examine this effect in
context of a first-principles radar simulation. Future work should fur-
ther characterize the impact of layover on reach-scale height bias errors
for the SWOT mission.

Finally, additional effort will be needed to more thoroughly char-
acterize SWOT phenomenology in general, both an important research
objective in itself and in order to help validate or refine the assumptions
used in this layover analysis. These include assumptions on the surface
scattering, the statistics of topographic variations, node-to-node corre-
lation, and error contributions from sources other than layover.
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