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Resonance strength in 22Ne( p,γ )23Na from depth profiling in aluminum
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A novel method for extracting absolute resonance strengths has been investigated. By implanting 22Ne ions
into a thick aluminum backing and simultaneously measuring the 22Ne + p and 27Al + p reactions, the strength
of the Elab

r = 479 keV resonance in 22Ne(p,γ )23Na was determined to be ωγ = 0.524(51) eV. This result
has significantly reduced uncertainties compared to earlier work. Our results are important for the absolute
normalizations of resonance strengths in the 22Ne(p,γ )23Na hydrogen-burning reaction and in the 22Ne + α

s-process neutron-source reactions.
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I. INTRODUCTION

Nuclear reaction rates of many important stellar burning
processes are dominated by resonances in the reaction cross
section. To improve the accuracy in these rates, in recent
evaluations [1,2] resonance strengths have been determined
relative to a backbone of accurately measured “standard
strengths” [3]. Those strengths have been determined relative
to elastic scattering where many systematic effects cancel out,
such as those from detector efficiency, beam charge, and target
stoichiometry. Standard resonance strengths measured in this
way, consequently, depend only on measured count rates and
Rutherford scattering cross sections [4–6]. However, as is
apparent from Table 1 in Ref. [1], there are no proposed
standard resonance strengths for proton-induced reactions
involving noble gas targets. The 22Ne + p reaction is one
example, which is important for hydrogen burning, particularly
in the Ne-Na cycle.

Many resonance strengths for capture reactions involving
noble gases have been measured previously using implanted
targets, where in most cases the target backing material was
a thin (≈0.5 mm thick) tantalum sheet. In reactions such
as 22Ne + p, it is notoriously difficult to obtain absolute
strengths since the stoichiometry of the implanted region must
be known to extract a strength from a thick-target excitation
function. There is currently one measured absolute strength
in 22Ne(p, γ )23Na corresponding to the Elab

r = 1278 keV
resonance [7]. For this resonance, the stoichiometry of the
implanted 22Ne targets was obtained with Rutherford backscat-
tering but the measurement has never been independently
verified. In addition, this resonance is beyond the reach of most
low-energy accelerators, necessitating the need for a standard
resonance strength at low energy.

Here, we report on an absolute resonance strength measure-
ment of the Elab

r = 479 keV resonance in 22Ne(p,γ )23Na. The
experiment utilizes a target composed of 22Ne ions implanted
into an aluminum substrate. By measuring the well-known
Elab

r = 406 keV resonance in 27Al(p,γ )28Si and the Elab
r =

479 keV resonance in 22Ne(p,γ )23Na simultaneously, the

absolute strength of the latter resonance can be obtained
independently from the knowledge of absolute beam currents,
absolute detector efficiencies, or the stoichiometry of the
target. Obtaining a resonance strength independently of the
target stoichiometry is a significant advantage of this method.
Our new method is not specific to 22Ne(p,γ )23Na, but it could
also be useful for other reactions. Note that an accurately
measured 22Ne(p,γ )23Na resonance strength will also improve
estimates of the 22Ne + α rates, since the targets for the
latter case were previously characterized using 22Ne + p

resonances [8].
A theoretical outline of our new method is given in

Sec. II. The experimental equipment used to perform the depth
profiling of 22Ne in aluminum is described in Sec. III. The
procedure for measuring the target profile and a discussion
of specific analysis techniques used are given in Sec. IV.
The results are presented and discussed in Sec. V, and
conclusions are given in Sec. VI. Throughout this work,
kinematic quantities are given in the center-of-mass reference
frame, unless stated otherwise.

II. EXCITATION FUNCTIONS FROM NUCLEAR
RESONANCES

An excitation function for a nuclear reaction is obtained by
measuring the yield over a range of incident beam energies.
The measured yield is defined as

yield = number of reactions

number of incident particles
. (1)

For a capture reaction, the experimental yield (Y ) can be
calculated by measuring the intensity of γ rays with a
germanium detector:

Y = e

εpW (θ )B

I

Q
, (2)

where e is the fundamental electric charge, εp is the full-energy
peak efficiency for the measured γ ray, W (θ ) is the angular
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correlation function at detector angle θ with respect to the
beam direction, B is the cross-section fraction that is carried
by the observed γ ray (e.g., the branching ratio for a primary
transition), I is the number of counts observed in the full-
energy peak, and Q is the measured beam charge accumulated
on the target.

The yield depends on the measured cross section as well
as on the nature of the target containing the reacting nuclei.
Understanding the effect of the target on the measured yield is
critical for extracting resonance strengths or cross sections
from excitation functions. For a target with a varying ion
concentration with depth, the yield will depend on the location
in the target where the reactions occur. For narrow resonances,
most of the reactions will occur at a depth determined by the
incident beam energy and the energy loss in the target. A finite
beam resolution and energy straggling in the target serve to
broaden the excitation function.

The excitation function resulting from a varying ion
concentration at different target depths can be described by
dividing the target into many thin depth slices. By using this
approximation, the yield from a nuclear reaction is obtained
from a sum over the contributions of each layer, i, of the
target [9]:

Y (E0) ≈
∑

i

NiFi(E0). (3)

Here, E0 is the mean beam energy, Ni is the target atom
concentration in each layer (in units of nuclei per square
centimeter), and Fi(E0) is the convolution function of the cross
section, σ (E), beam energy profile, and energy straggling in
the target [9]:

Fi(E0) =
∫ E0

E
′=0

gi(E0 − E′)dE
′
∫ ∞

E=−∞
σ (E)h(E′ − E)dE.

(4)

The beam spread function, h(E′ − E)dE, is expected to be
Gaussian in shape, and it describes the probability of a beam
particle having an energy between E and E + dE at a depth
corresponding to an energy of E′ = E0 − �E. The cross
section at negative energies is zero, permitting the integral over
negative energies, E. The straggling function, gi(E0 − E′)dE′
(defined at each layer i), describes the probability of a beam
particle losing energy to result in an energy between E′
and E′ + dE′ at a depth of xi . Straggling effects can be
computationally intensive to calculate [9,10]. However, beam
particles typically undergo many collisions with electrons,
losing several keV of energy in the thick stopping targets used
in nuclear astrophysics experiments. In these cases, the central
limit theorem of statistics states that energy straggling can also
be approximated by a Gaussian function [10]. Thus we assume

h(E′ − E) = 1√
2πσb

exp

[
− (E′ − E)2

2σ 2
b

]
, (5)

gi(E0 − E′) = 1√
2πxiσs

exp

[
− (E0 − E′ − �i)2

2σ 2
s xi

]
. (6)

The adjustable parameters σb and σs define the beam energy
width and straggling rate, respectively. The average energy

loss of the beam particles at depth xi is denoted by �i and is
given by the integral (sum) of the total linear stopping power,
dE/dx, up to that location:

�i =
i∑

j=1

(xj − xj−1)
dE

dxj

. (7)

In previous work a constant total linear stopping power was
frequently assumed [9]. This is only valid if (i) the beam does
not lose too much energy in the target so that the stopping
power for pure layers is nearly energy independent and
(ii) the ion concentrations do not vary significantly over
the depth of the target. For example, if a given species is
implanted in high doses, resulting in a strongly varying depth
concentration, then the second assumption is not valid, and the
total stopping power of the material cannot be assumed to be
constant, even if the energy lost in the target is relatively small.

For a sample produced by implanting species p into a
substrate of species q, the energy lost per unit path length
is given by

dE

dx
= NqSq + NpSp = NA

[
ρq

Mq

Sq + ρp

Mp

Sp

]
, (8)

where N is the number of atoms per cubic centimeter, S is
the stopping cross section (eV cm2/atom), NA is Avogadro’s
number, M is the atomic mass in amu, and the mass density
(in g/cm3) of atoms is given by ρ. In general, the stopping
cross sections depend on energy. To determine the densities
ρ, the nature of the implanted region must be known. Here,
we assume that the implanted atoms are located in interlattice
spacings, resulting in an overall material density increase:

ρq(xi) = ρq = constant, (9)

ρp(xi) = ξ (xi)
ρqMp

Mq

, (10)

where ξ (xi) is the stoichiometry (i.e., the number ratio of
implanted to substrate atoms, Np/Nq) at depth xi and ρq

is the mean density of the pure substrate material (without
species p).

Depth profiling is usually performed with narrow nuclear
resonances, whose peaked shapes provide sufficient depth
resolution. In the present work, the measured resonances have
total widths on the order of tens of electron volts [11,12].
Narrow-resonance cross sections, for which the partial widths
can be assumed to be energy independent over the total
resonance width, can be described by the Breit-Wigner formula

σ (E) = λ2

4π
ω

�a�b

(E − Er )2 + �2/4
(11)

= λ2

4π
ωγ�

1

(E − Er )2 + �2/4
, (12)

with

ω = (2j + 1)

(2jp + 1)(2jt + 1)
, (13)

where �a , �b, and � are the entrance particle partial width,
exit photon partial width, and the total width, respectively;
Er is the resonance energy; j , jp, and jt are the spin of the
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resonance, projectile, and target nucleus, respectively; and ωγ,

the resonance strength, is

ωγ = ω
�a�b

�
. (14)

If the resonance used for depth profiling is sufficiently narrow
with respect to the beam energy spread (i.e., � � σb), the
convolution of cross section and beam spread functions in
Eq. (4) can be simplified to∫ ∞

E=−∞
dEσ (E)h(E′ − E)

= λ2

4π
ωγ�

∫ ∞

E=−∞
dE

h(E′ − E)

(E − Er )2 + �2/4

= λ2

2
ωγh(E′ − Er ). (15)

For the assumption of a narrow resonance, the yield in Eqs. (3)
and (4) can then be written as

Y (E0) = λ2

2
ωγ

∑
i

Ni

1

2πσbσs

√
xi

∫ E0

E
′=0

dE
′

× exp

[
− (E′ − Er )2

2σ 2
b

]
exp

[
− (E0 − E′ − �i)2

2σ 2
s xi

]
.

(16)

In the present work, we implanted 22Ne ions into a thick
aluminum sheet and measured the yields of the narrow
resonances at Elab

r = 406 keV in 27Al(p,γ )28Si and at Elab
r =

479 keV resonance in 22Ne(p,γ )23Na simultaneously. For both
resonances, the yield is given by Eq. (16). In the following,
we will denote the implanted species (p = 22Ne) by the
subscript 22 and the substrate species (q = 27Al) by the
subscript 27.

Since the implanted 22Ne ions are concentrated near the
surface of the aluminum sheet, we expect a well-defined
peak shape for the 22Ne + p yield curve. In contrast, the
27Al + p yield curve will reveal an interesting structure.
In the pure aluminum region, beyond the implanted 22Ne
depth, the 27Al + p yield will be at a maximum [ρ22 = 0
in Eq. (8)]. However, in the 22Ne implanted region we have
ρ22 �= 0 and thus the energy loss, �i , in Eq. (16) increases,
resulting in a smaller yield. Therefore, we expect a step in the
excitation function caused by the implanted region near the
surface of the target. The situation is shown schematically in
Fig. 1.

The general strategy was the following: (i) Fit Eq. (16)
to the measured 27Al + p yield curve, including the step on
the front edge; this allowed us to extract the stoichiometry,
ξ (x) = N22/N27 [which enters through Eqs. (7)–(10)] together
with the absolute normalization of the yield. (ii) With the
stoichiometry ξ (x) and the absolute yield normalization factor
determined from the previous step, Eq. (16) was fit to the
measured 22Ne + p yield curve. The resonance strength in
22Ne + p is left as a free parameter to be extracted from
the fit.

Ea

Eb

Eb

EEr

Ea

FIG. 1. (Color online) Schematic showing the effect of implant-
ing neon atoms into an aluminum substrate. Incident protons with
energies Ea are captured by 27Al nuclei in the implanted region,
which is close to the surface of the target. The increased total stopping
cross section in this region leads to a decreased yield [Eq. (16)].
Beams with energies of Eb react deeper inside the target in a region
of pure aluminum. The yield at these energies is higher compared
to the implanted region. Note, however, that for a given incident
energy the depth of a reaction occurring in a region of pure aluminum
will be affected by the energy loss (or total stopping power) in the
implanted region.

III. EXPERIMENTAL EQUIPMENT

A. Implanted target

The backing used for the experiment was a 1-mm-thick
aluminum sheet (99% purity). The backing was cleaned
thoroughly with acetone and ethanol before implantation. An
Eaton ion implanter with a modified end station (located at the
University of North Carolina at Chapel Hill) was used to im-
plant 22Ne ions into this backing. The ion implanter accelerated
neon ions from a pressurized natural neon (9.25% ± 0.03%
molar fraction of 22Ne) gas bottle to an energy of 100 keV. A
90◦ analyzing magnet (with a quoted selectivity of 1/100) was
used to mass separate the 22Ne ions. The incident dose of 22Ne
was estimated by integrating the beam current on the backing,
assuming singly charged incident 22Ne ions. The beam current
on the backing amounted to about 20 µA on average. The total
accumulated charge was 0.26 C (corresponding to 1.6 × 1018

incident 22Ne ions) over a circular implantation region of
2.5 cm in diameter. A liquid-nitrogen-cooled trap reduced
contamination buildup (such as carbon and fluorine) on the
backing.

B. Setup

Depth profiling of the implanted aluminum backing was
conducted at the Laboratory for Experimental Nuclear Astro-
physics (LENA), located at the Triangle Universities Nuclear
Laboratory. A 1-MV Van de Graaff accelerator was used to
accelerate proton beams to energies in the range of Ep =
400–505 keV with a total integrated beam charge on target
of ≈0.13 C over a beam spot of about 1 cm in diameter.
Secondary-electron suppression was applied for the beam
current measurement. In addition, a liquid-nitrogen-cooled
trap reduced contaminant buildup on the target surface. The
beam current was kept to a minimum (≈5 µA) to ensure that
the target did not degrade.

C. Detector

Capture γ rays from the excited compound nuclei (28Si and
23Na) were detected using a 135% relative efficiency HPGe
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FIG. 2. (Color online) Sample γ -ray spectrum, obtained at a beam energy of 490 keV with an accumulated charge of 2 × 10−3 C on target.
The target consisted of 22Ne ions implanted into aluminum and thus resonances in the 27Al(p,γ )28Si and 22Ne(p,γ )23Na reactions were excited
simultaneously. Major peaks are labeled by the decaying nucleus (23Na in blue; 28Si in red); the label “B” denotes background. The inset shows
the peak corresponding to the ground-state transition (9253 → 0) for the 22Ne(p,γ )23Na reaction.

detector. The detector was located at 55◦ with respect to the
beam direction at a distance of 3.0 cm from the center of the
target. The target and detector were surrounded by at least
5 cm of lead in all directions to reduce background caused
by environmental sources and from x rays produced by the
accelerator.

The energy signals from the detector were amplified with an
Ortec 572 spectroscopy amplifier and recorded with a CAEN
785 ADC. Detector dead times were monitored with an Ortec
448 precision pulse generator throughout the experiment and
were kept below 3%.

The detector efficiencies, used both for peak intensity
normalization and for summing corrections, were obtained
by three methods: radioactive source measurements, reso-
nant (p,γ ) reactions, and Monte Carlo simulations using
GEANT4 [13]. First, the sum-peak method [14] was used
with 60Co to find the absolute full-energy peak and total
efficiencies at Eγ = 1173 and 1332 keV that do not depend
on knowledge of the absolute source activity. Subsequently,
other radioactive sources (56Co and 152Eu) were used to obtain
relative full-energy peak efficiencies up to Eγ = 3.5 MeV.
The Elab

r = 278 keV resonance in 14N(p,γ )15O was used to
extend the full-energy peak efficiency curve to Eγ = 7.5 MeV.
It is important to note that because of the close detector
geometry, all experimental full-energy peak efficiencies must
be corrected for coincidence summing effects. The corrections
were performed using the code LENASUM [15], which is based
on the formulation described in Ref. [16]. Following the
experimental determination of full-energy peak efficiencies,
the experimental data points were interpolated using GEANT4
simulations. These simulations have been shown to be accurate
to 1.6% between 4.4 and 11.7 MeV for relative efficiencies
[17]. Total detection efficiencies, which were needed for
coincidence summing corrections, were also obtained with
GEANT4 and normalized to the 60Co data.

IV. PROCEDURE AND ANALYSIS

A. Yield curves

Yield curves were measured simultaneously for the
27Al(p,γ )28Si (Q = 11585.1 keV) and 22Ne(p,γ )23Na (Q =
8794.1 keV) reactions at incident proton energies of Elab

p =
400–505 keV. A sample γ -ray spectrum, obtained at an
incident beam energy of Elab

r = 490 keV, is shown in Fig. 2.
The observed in-beam γ rays arise from the narrow resonances
at Elab

r = 406 keV in 27Al + p and at Elab
r = 479 keV in

22Ne + p.
The 27Al + p resonance has a target spin of j = 5/2

and thus the angular correlation is expected to be approxi-
mately isotropic. Considering, in addition, that the detector
was located at θγ = 55◦, where the Legendre polynomial
P2(cos θ ) = 0, we can safely adopt an angular correlation
factor of W27(θ ) = 1 in Eq. (2). Additionally, the 22Ne + p

resonance at Elab
r = 479 keV has a spin of j = 1/2 and thus

W22(θ ) in Eq. (2) is unity.

1. 27Al( p,γ )28Si

The Elab
r = 405.5(3) keV resonance [ωγ = 8.63(52) ×

10−3 eV] [4] was used to measure the 27Al(p,γ )28Si yield
curve.1 Relatively small beam currents (≈5 µA) were required
to avoid damage to the target. The resulting low counting statis-
tics for the primary transitions were insufficient for reliable
depth profiling, so the much stronger secondary decay from
the first excited state (1779 keV→ 0), which carries 98% of the
decay strength, was used for this purpose. The disadvantage

1The 27Al + p resonance strengths used in the present work are
adopted from Ref. [18]. In that work, the measured strengths
(including those from Refs. [20] and [21]) were normalized to the
absolute strength standard in Ref. [4].
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of monitoring secondary decays in a measurement with an
infinitely thick target (i.e., all beam particles stop in the
aluminum) is that lower energy resonances in 27Al + p may
contaminate the measured yield. The Elab

r = 326 keV reso-
nance in 27Al + p resonance (ωγ = 1.8(1) × 10−3 eV [18]) is
of particular importance and had to be accounted for. This was
achieved by calculating the expected maximum yield for an
infinitely thick target using Eq. (2). The expected contribution
to the total 1779 keV→ 0 intensity was then estimated using
the branching ratios from Ref. [19] and amounted to about 16%
of the maximum yield. This contribution to the decay strength
was subtracted from the measured intensities. Note that the first
data point in the 27Al + p yield curve is consistent with zero,
validating this method of subtracting contamination from other
resonances. Another resonance in 27Al + p at Elab

r = 447 keV
(ωγ = 1.50(13) × 10−3 eV [18]) had to be considered as
well. The angular correlation factor in these corrections is
expected to be unity for the same reasons as described
previously. To avoid fitting the cumulative yield from two
27Al + p resonances (Elab

r = 406 keV and Elab
r = 447 keV)

simultaneously, data points near the higher energy resonance
from Elab

p = 445 to 475 keV were removed from the analysis.
The expected yield of the Elab

r = 447 keV resonance was
then subtracted from data points above Elab = 475 keV. The
resulting yield curve, after these corrections have been applied,
is shown in Fig. 3(a) and will be discussed later.

2. 22Ne( p,γ )23Na

The primary ground-state transition of the Elab
r =

479.3(8) keV resonance in 22Ne(p,γ )23Na [11] was used
to measure the yield curve shown in Fig. 3(b). The yield
was calculated with Eq. (2) and an absolute normalization
determined from the 27Al + p yield curve. For the branching
ratio of the ground-state transition (9253 keV→0) we adopted
the results of the literature [22,23], which are in mutual
agreement [B22 = 0.465(23)].

3. Yield curve analysis

The predicted step close to the front edge of the 27Al + p

yield curve [Fig. 3(a)], resulting from the 22Ne concentration
near the target surface, is clearly observed. The 22Ne + p

yield curve [Fig. 3(b)], in contrast, shows a smooth peak,
consistent with expectations (Sec. II). Deviation from the
expected step shape (Fig. 1) in Fig. 3(a) and the sharp front
edge at Elab = 479 keV in Fig. 3(b) are because the 22Ne was
not implanted in a uniform layer at the front of the target, but
rather in a varying concentration with depth as shown in Fig. 4.
It should be noted that an approximately 40-nm-thick layer of
aluminum oxide [24] will affect the shape of the yield curves.
A SRIM calculation reveals that the energy loss difference
between the oxide and pure aluminum is less that 0.5 keV, and
therefore outside the resolution of our experiment. The effect
of the oxide layer is lessened because of the low 22Ne density
close to the surface of the aluminum substrate (see Fig. 4).

A code was written to fit Eq. (16) to the measured yield
curves. The least-squares fitting method of McGlone and
Johnson [25] was used to determine the depth profile of 22Ne
implanted into Al. The concentration profile of implanted
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FIG. 3. (Color online) Best fits to the 27Al + p and 22Ne + p

yields. (a) Best fit to the Elab
r = 406 keV resonance in 27Al(p,γ )28Si.

The absolute yield height data (solid circles) have been corrected for
other contaminant resonances as discussed in Sec. IV A1 (uncorrected
points are identified with the symbol x). The yield normalization
A in Eq. (18) is extracted from the measured yield points above
Elab = 480 keV. (b) Best fit to the Elab

r = 479 keV resonance in
22Ne(p,γ )23Na. The absolute height of the yield curve is left as a free
parameter in the fit, which determines the resonance strength. Note
that there are more high-energy data points in the 22Ne + p yield
curve than in the 27Al + p yield curve. This is because the 27Al + p

points were removed by contamination from other resonances (see
Sec. IV A1). These contaminants do not affect the 22Ne + p yield.

atoms was constrained to a smoothly varying function by
adding corrections to the log-likelihood function. The log-
likelihood function for a profile grid of M slices, which are fit
to N data points, is given by

χ2 = χ2
data +

N+M+1−B∑
j=N+1

[
Wj−N

B∑
b=1

N22j−N+b−1Pb

]
, (17)

where

χ2
data =

∑
i

(xi − x)2

σ 2
i

.

Here, χ2
data is the log-likelihood function calculated from

the deviation of fitted points, x, to experimental points,
xi , assuming uncertainties of σi in the data; N22k

denotes
the 22Ne ion concentration at each grid point; B and Pk

are fixed parameters for controlling the smoothness of the
profile; and Wk are weights, which were adjusted manually
to control the smoothness of the profile. As in Ref. [25], we
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FIG. 4. (Color online) Stoichiometry profile, ξ (x), of implanted
22Ne ions in the aluminum backing as obtained from a fit to the
27Al + p yield curve in Fig. 3(a). The concentration profile simulated
with SRIM, which is normalized to the maximum height of the data
points, is shown as a dashed line.

choose B = 4 and Pb = −1, 3,−3, 1 to obtain a quadratic
smoothness between every four points with W = 20.2

The strength of the Elab
r = 479 keV resonance in

22Ne(p,γ )23Na was determined from the following procedure
(outlined already in Sec. II). We started with the yield for the
27Al + p reaction, which is given by Eqs. (2) and (16) as

Y27(E0) = A

(
1

ε
p

27Q27

)
rel

e

B27
I27(E0)

= ωγ27
λ2

r

2πσbσs

∑
i

N27i

1√
xi

∫ E0

E
′=0

dE
′

× exp

[
− (E′ − Er )2

2σ 2
b

]
exp

[
− (E0 − E′ − �i)2

2σ 2
s xi

]
,

(18)

where (εp

27Q27)rel is the product of the relative peak efficiency
and relative accumulated charge, and A denotes their combined
absolute normalization factor. The absolute strength of the
Elab

r = 406 keV resonance is labeled by ωγ27. From the mea-
sured 27Al + p yield curve [Fig. 3(a)], the fitting parameters
A, and ξ (x) (affecting the energy loss �i) were extracted.

The stoichiometry, ξ = N22/N27, as a function of depth
that was extracted by fitting the 27Al + p yield is shown in
Fig. 4. The stoichiometry profile is overlaid with the simulated
profile (dashed line) of 100-keV 22Ne ions implanted into
an aluminum substrate, as obtained from the Monte Carlo
ion transport code SRIM [28]. There is reasonable agreement
between measured and simulated 22Ne depth profiles. Note

2A two-step minimization was employed to find the best-fit depth
profile. The Broyden-Fletcher-Goldfarb–Shanno (BFGS) method
[26] was used for the initial parameter search, and the Nelder-
Mead gradient based search [27] was adopted to finely tune the
minimization. Finite-difference second derivatives were employed
to estimate uncertainties in the fit parameters.

that the maximum stoichiometry amounts to a Ne:Al ratio
of 1:2.

Once the stoichiometry profile, ξ , and constant, A, were
extracted from the 27Al + p yield curve, the 22Ne + p yield
curve was fit. The 22Ne + p yield is given by

Y22(E0) = A

(
1

ε
p

22Q22

)
rel

e

B22
I22(E0)

= ωγ22
λ2

r

2πσbσs

∑
i

N22i

1√
xi

∫ E0

E
′=0

dE
′

× exp

[
− (E′ − Er )2

2σ 2
b

]
exp

[
− (E0 − E′ − �i)2

2σ 2
s xi

]
.

(19)

At this stage, the only fitting parameter is the strength of the
22Ne + p resonance, ωγ22. There are several advantages of
using the method outlined here. First, only relative detector
efficiencies need to be known in Eq. (19). These relative
efficiencies have been shown in Ref. [17] to be accurate to
within a few percent. Second, only the relative accumulated
charge needs to be known. Note that above Elab = 480 keV
the same runs were used to analyze the 22Ne + p and 27Al + p

yields, and thus the beam charge, Q, cancels completely.
Fitting Eq. (19) to the measured yield shown in Fig. 3(b) gave
the strength of the Elab

r = 479 keV resonance in 22Ne + p, for
which we find a value of ωγ = 0.524(51) eV.

The uncertainty budget for the extracted strength of the
Elab

r = 479 keV resonance in 22Ne + p is presented in Table I.
The uncertainty in the reference resonance strength (Elab

r =
406 keV in 27Al + p) is 6% [4]. The GEANT4 simulations
used for relative detector efficiencies are shown to be accurate
to within a few percent for extrapolation in the energy
range Eγ = 4–11 MeV [17]. Relative uncertainties of 2%
were therefore assigned to detection efficiencies. Literature
values for the primary branching ratios in 22Ne + p contribute
5% to the resonance strength uncertainty. Stopping power
uncertainties in the energy regions of interest were estimated
from the data compiled on the SRIM Web site [28]. The stopping
power uncertainty for 27Al + p and 22Ne + p were estimated
to be 4% and 3%, respectively. The stopping powers affect
the yield of both 27Al + p and 22Ne + p yield curves through
Eq. (7). Since the energy loss enters in the exponential of
Eqs. (18) and (19), the importance of the stopping power
uncertainties is lessened, resulting in resonance strength
uncertainty contributions of just 2% and 1%, respectively.

TABLE I. Uncertainty budget for the extracted Elab
r = 479 keV

resonance strength in 22Ne + p.

Source Uncertainty in ωγ22 (%)

Reference 27Al + p strength 6
Relative efficiencies 2
Branching ratios 5
Stopping powers (Al) 2
Stopping powers (Ne) 1
Fitting 5

Total 10
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FIG. 5. Comparison of present result (shown in red) for the Elab
r =

479 keV resonance strength in 22Ne(p,γ )23Na to previously published
results. The labels Meyer, Piiparinen, and Endt refer to Refs. [22],
[23], and [11], respectively.

In addition to uncertainties affecting the resonance strength,
the effect of a different implantation model was investigated.
In this model, the implanted 22Ne atoms replaced aluminum
atoms during implantation, resulting in a constant number
density for the implanted material. Equations (9) and (10)
are then replaced by

ρ27(xi) = ρ27 [1 − ξ (x)] , (20)

ρ22(xi) = ξ (xi)
ρ27M22

M27
. (21)

This model was found to only affect the width of the extracted
profile, whereas the total number of implanted nuclei and
hence the resonance strength ωγ22 remain approximately
constant. All uncertainties were summed in quadrature. The
total uncertainty in the extracted Elab

r = 479 keV resonance
strength in 22Ne(p,γ )23Na amounted to 10%.

V. DISCUSSION

All previously measured strengths for the Elab
r = 479 keV

resonance in 22Ne + p were normalized relative to higher
lying resonances in the 22Ne + p reaction. In our work, we
have obtained the resonance strength independently of other
resonances in 22Ne + p, with no dependence on absolute
detector efficiencies or absolute beam charge integration. A
comparison of the new result with values derived from the
literature is shown in Fig. 5.

The value obtained by Meyer and Smit [22] was normalized
to the 22Ne + p Elab

r = 640 keV resonance strength from
Ref. [29]. The rather large uncertainty is dominated by the
uncertainty of that reference resonance. The value of ωγ =

0.45(10) eV (±20%) in Endt [11], however, was obtained
by normalizing the resonance strengths from Meyer to the
absolute strength of the 22Ne + p Elab

r = 1278 keV resonance
reported by Keinonen et al. [7]. Another relative measurement
was performed by Piiparinen et al. [23], but unfortunately,
no uncertainties are quoted for the relative yield of the
Elab

r = 479 keV resonance. For comparison, we assumed a
relative yield uncertainty of 30% (considering their statement
that relative yield uncertainties were between 10% and 50%),
and we normalized their strength to the result from Keinonen
et al. [7]. As is apparent from Fig. 5, we have significantly
improved the uncertainty of the Elab

r = 479 keV resonance
strength in 22Ne + p from a previous value near 30% to 10%.
Our new technique removes any systematic uncertainty from
the target stoichiometry, which is difficult to quantify using
traditional methods.

It was already mentioned in the introduction that our new
value for the Elab

r = 479 keV resonance strength in 22Ne + p

is important in two respects. First, it will reduce the rate
uncertainties of the 22Ne(p,γ )23Na reaction since the strengths
of the low-energy resonances can be renormalized relative to
our precisely measured strength for Elab

r = 479 keV and thus
will improve predictions of hydrogen-burning nucleosynthe-
sis. Second, our precise strength can be used to determine
more reliable stoichiometries for implanted 22Ne-Ta targets
that have been employed in measurements of the important
22Ne(α,γ )26Mg and 22Ne(α,n)25Mg s-process neutron source
reactions. New thermonuclear reaction rates for 22Ne + p and
22Ne + α will be published elsewhere.

VI. SUMMARY

A novel method for measuring reliable resonance strengths
has been employed. By implanting 22Ne ions into a thick
aluminum backing, and simultaneously measuring the 22Ne +
p and 27Al + p reactions, the strength of the Elab

r = 479 keV
resonance in 22Ne(p,γ )23Na was determined to be ωγ =
0.524(51) eV. Our formalism allows for finding the implan-
tation profile of 22Ne in a thick aluminum target backing.
This novel approach significantly reduced uncertainties in the
desired resonance strength owing to the cancellation of several
systematic experimental uncertainties. The well-known Elab

r =
406 keV resonance in 27Al(p,γ )28Si was used as a reference.
Our new precise value for the 22Ne + p resonance strength is
important for estimating reliable thermonuclear reaction rates
for the hydrogen burning of 22Ne and for the normalization of
the 22Ne + α s-process reactions.
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