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The Ec.m.
r = 458 keV resonance in 22Ne(p,γ ) 23Na is an ideal reference resonance for measurements of cross

sections and resonance strengths in noble gas targets. We report on a new measurement of the strength of this
resonance. Data analysis employed the TFractionFitter class of ROOT combined with GEANT simulations of
potential decay cascades from this resonance. This approach allowed us to extract precise primary branching
ratios for decays from the resonant state, including a new primary branch to the 7082-keV state in 23Na. Our new
resonance strength of ωγ (458 keV) = 0.583(43) eV is more than 1σ higher than a recent high-precision result
that relied on literature branching ratios.
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I. INTRODUCTION

Measurements of weak resonant or direct-capture reactions
often use the strengths of well-known resonances as a standard
from which the absolute cross-sectional scale can be deter-
mined. The Ec.m.

r = 458 keV resonance in the 22Ne(p,γ ) 23Na
reaction (Ex = 9252.1 keV, Sp = 8794.11(2) keV [1]) is an
ideal standard resonance for noble gas targets. Such a reference
is important because of interest in the reactions that produce
and destroy sodium in massive asymptotic giant branch stars.
The sodium abundance is governed by the 20Ne(p,γ ) 21Na,
22Ne(p,γ ) 23Na, and 23Na(p,γ ) 24Mg reactions, all of which
have significant uncertainties at the energies of interest [2]. An
improved determination of ωγ (458 keV) will thus facilitate
more accurate measurements of the first two reactions.

The strength of this resonance has been reported multiple
times in the literature [3–5], including the recent, high-
precision measurement in Ref. [6]. This measurement relied
on literature branching ratios, sources for which are limited
to the results of Refs. [3,4], which were reported without
uncertainties. In particular, Ref. [6] adopted a ground-state
branching ratio of B(R → 0) = 0.465(23), deduced from a
weighted average of the values reported in Refs. [3,4], and their
resulting resonance strength was inversely proportional to this
branching ratio. In this work we report on a new measurement
of branching ratios for the decay of the 458-keV resonance
and use this information to determine a revised resonance
strength. Changes from the previously accepted values include
a newly discovered branch to the 7082-keV state in 23Na as
well as a decrease of approximately 10% in the ground-state
branching ratio used in Ref. [6]. These results were obtained
using GEANT version 4.9.6 [7] simulations of potential decay
cascades from the 9252-keV resonant state in 23Na combined
with a fit to the measured γ -ray spectrum determined using
the TFractionFitter [8] class of ROOT [9]. The overall impact
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of these new branching ratios is an increase in the resonance
strength of Ref. [6] by 11.3% (or about 1.2 σ ). This increase
extends to all higher-lying resonances in the 22Ne(p,γ ) 23Na
reaction.

II. EXPERIMENTAL PROCEDURE

Data for this work were taken with the 1-MV JN van de
Graaff accelerator at the Laboratory for Experimental Nuclear
Astrophysics (LENA) [10], located at the Triangle Universities
Nuclear Laboratory (TUNL). The JN accelerator can provide
proton beams in the energy range of ∼200 keV to 1 MeV, with
a maximum intensity of about 120 μA and a typical energy
spread of 1–3 keV. The energy calibration was established
to <1 keV by using well-known resonances of the reactions
18O(p,γ )19F, 26Mg(p,γ )27Al, and 27Al(p,γ )28Si[10].

A target of 22Ne implanted into a tantalum target backing
was fabricated using the Eaton Ion Implanter located at
the University of North Carolina at Chapel Hill. An ion-
implantation energy of 100 keV was used, yielding a target
thickness of approximately 20 keV at the resonance energy.
The 22Ne:Ta stoichiometry of the target used for this work
was measured to be approximately 1:4 using the 458-keV
resonance in 22Ne(p,γ ) 23Na. The proton beam entered the
target chamber through a copper tube, extending less than 1
cm from the surface of the target. The copper tube was cooled
by a LN2 reservoir to trap potential target contaminants. To
minimize target degradation from beam heating, the target
was cooled using chilled, deionized water and the beam was
rastered into a beam spot ∼12 mm in diameter. In order to
suppress the emission of secondary electrons from the target,
permanent magnets were positioned at the end of the tube along
with an electrode biased to −300 V. This formed a Faraday cup
for measuring beam current. Total beam charge accumulated
on target amounted to ∼0.01 C. The yield on the 458-keV
resonance in 22Ne(p,γ )23Na was measured before and after
data acquisition to ensure that the target did not degrade.

Data were collected with a 135% coaxial HPGe detector
placed 1.1 cm from the target. A laboratory energy of
Ep = 494 keV was used, which was slightly above the
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maximum yield of the resonance, and beam currents were
held to ≈4 μA. Both of these experimental parameters were
intended to keep the dead time to below 5%. The resonance
strength reported in this work depends only on the results
of Ref. [6] and the primary branching ratios reported in
Sec. III, which are independent of the beam energy offset
from the maximum resonance yield. The HPGe detector has
been thoroughly characterized through extensive simulation
studies using GEANT (version 4.9.6) and measurements of both
radioactive sources, such as 56Co, 22Na, 54Mn, 137Cs, and 60Co,
and of the 14N(p,γ )15O, 18O(p,γ )19F, 23Na(p,γ ) 24Mg, and
27Al(p,γ )28Si reactions [2,11–13]. The critical dimensions
used in the simulations were obtained from a computerized
tomography scan of the detector [14].

III. DATA ANALYSIS AND RESULTS

The traditional means of analyzing γ -ray spectra in-
volves integrating photopeaks corresponding to transitions
of interest. Along with external backgrounds, escape peaks
and Compton events associated with these transitions are
treated as backgrounds that could obscure weak transitions.
However, the majority of events detected reside in the Compton
continuum and could in principle be used to extract decay
strengths, provided that the response of the detector can be
accurately measured or simulated. This approach uses the
TFractionFitter [8] class of ROOT [9] and was recently applied
to HPGe spectra in Refs. [15,16]. A similar technique was
also applied to NaI spectra in Ref. [17]. The notation in the
following description varies slightly from Ref. [15] to improve
consistency with the original work [8]. A complete, detailed
description of this data analysis method will be provided in a
forthcoming publication [18], which shall serve as the primary
reference for this analysis method.

Individual GEANT [7] simulations were generated for each
possible nuclear decay cascade from the 9252-keV state in
23Na populated by the 458-keV resonance in 22Ne(p,γ ) 23Na.
Every GEANT simulation used in this work was calculated with
version 4.9.6. All secondary decays from lower lying excited
states in 23Na were included in each decay cascade template
using the branching ratios listed in Ref. [1]. Given that the
resonance spin is JR = 1/2, transitions to all lower lying
excited states with J = 1/2, 3/2, or 5/2 were considered here,
but only those with a nonzero contribution were kept for the
final fit to the data. In this manner, we could potentially identify
transitions that escaped prior detection. This resonance spin
also implies that all primary γ rays are emitted isotropically.
Angular distributions and direction-direction correlations for
all secondary γ rays were calculated according to Ref. [19]
using the level spin assignments of Ref. [1] and were included
in all simulations used here. A rigorous investigation of the
agreement between simulated and experimental spectra in
regards to the the shape, magnitude, and position of each γ -ray
peak was carried out in order to obtain an accurate simulation
of the experimental data.

Each simulation was then used as a template for a fit
to the experimental data spectrum. The fit also included
simulations of beam-induced backgrounds, such as those
arising from the 12C(p,γ )13N and 11B(p,γ )12C reactions, as

well as the measured room and cosmic-ray background. The
TFractionFitter [8] class of ROOT [9] was used to vary the
intensity of each template within each bin to obtain a maximum
likelihood fit to the data. In the following, we summarize the
discussion of this technique found in Ref. [8]. If we assume
that every spectrum has n bins, indexed by i, and that the
fit includes m templates, indexed by j , then the likelihood
function that was maximized is given by

ln (L ) =
[

n∑
i=1

di ln fi − fi

]
+

⎡
⎣ n∑

i=1

m∑
j=1

aji ln Aji − Aji

⎤
⎦,

(1)

where L is the likelihood, di and aji are the counts in bin
i from the data and from template j , respectively, and the
parameter Aji is the predicted number of counts in bin i from
template j . The parameter fi is the predicted number of counts
in bin i from the fit to the data, given by

fi =
m∑

j=1

pjAji . (2)

The parameters pj are defined by

pj = Adata
total

Asim
j

Fj , (3)

where Adata
total and Asim

j are the total area of the data spectrum
and of template j , respectively. The Fj are the fractions of
Adata

total accounted for by a particular template as determined by
the fitting procedure. Note that the Fj sum to 1. The goal is to
determine the Fj or, equivalently, the pj .

The first term in the likelihood function described by Eq. (1)
takes into account the random, statistical nature of experi-
mental data. This term alone is used in the common binned
maximum likelihood fit. The second term takes into account
the fact that Monte Carlo–generated template histograms also
display similar random, statistical fluctuations and is essential
when determining a maximum likelihood fit using Monte Carlo
input.

By defining the parameters ti such that

ti = 1 − di

fi

and Aji = aji

1 + pj ti
, (4)

Eqs. (2) and (4) can be used to derive the relation

fi = di

1 − ti
=

m∑
j=1

pjaji

1 + pjaji

, (5)

which can be rewritten as
m∑

j=1

pjaji

1 + pjaji

− di

1 − ti
= 0. (6)

Assuming a set of pj values, Eq. (6) was used to iteratively
solve for the n parameters, ti , via the Newton-Raphson method.
Once a set of ti values was established, the MINUIT package [20]
was used to determine new values for each pj value in this
iterative calculation for a maximum of Eq. (1). Iterations
of Eqs. (1) and (6) continued until a satisfactory numerical
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FIG. 1. (Color online) The result of the best fit, shown in green, to experimental data on the 458-keV resonance in the 22Ne(p,γ ) 23Na
reaction, shown in black, as derived using the TFractionFitter [8] class of ROOT [9] and the methodology detailed in the text and in Ref. [15].
Note that the data and fit result are nearly identical. Resonance primary peaks are indicated by blue arrows. The fit was derived considering
GEANT [7] simulations of each potential decay cascade from the JR = 1/2 9252-keV resonant state in 23Na excited by this resonance to all lower
lying states with J = 1/2, 3/2, or 5/2. Only those with nonzero contributions were kept for the fit shown here. The two highest branching
ratio templates and the room background template (blue and red, respectively) are shown as well. Note that these spectra have a lower number
of counts. A total of eight other decay cascade templates were used for the fit shown here. Branching ratios were derived using the relative
contributions of these simulations and are shown in Table I.

precision was reached for the final set of pj values, thereby
yielding the desired quantities, Fj .

The branching ratios were determined not by Fj , but by the
ratio

B(R → Ej ) = Ndata
j /Ndata

R , (7)

where the primary decay transition described by template j
is initiated via a primary decay from R, the resonant state,
to the state in 23Na with energy Ej . The quantity Ndata

j is
the number of resonant excitations produced in the target that
decay through cascade j (or equivalently, the partial number
of reactions corresponding to a particular decay cascade) and
Ndata

R is the total number of resonant excitations observed in
the data. The quantity Ndata

j can be obtained from N sim
j , the

number of simulated excitations for cascade j , and Fj via
Ref. [15], Eq. (3),

Ndata
j = Adata

total

Asim
j

FjN
sim
j , (8)

where Asim
j is the total number of counts in simulated spectrum

of cascade j and Adata
total is the same quantity for the measured

spectrum. Finally, Ndata
R can be obtained from

Ndata
R =

m∑
j=1

Ndata
j . (9)

There is no need to subtract background since the Fj take
the background template into account. Also, coincidence
summing is automatically included in the GEANT simulations,
obviating the need for summing corrections. In general, Ndata

R

can then be used to derive the resonance strength (in the case
of a resonant reaction) or the cross section (in the case of
a nonresonant reaction). By analyzing data in this manner,
the statistics of the entire spectrum were considered. This
is a significant advantage as, for example, the simulated
458-keV 22Ne(p,γ )23Na resonance ground-state photopeak is
only ∼5% of the whole simulated spectrum.

The 22Ne(p,γ ) 23Na data spectrum used in this work is
shown in Fig. 1 along with the final fit to the data and
selected templates from which the fit was determined. The
data and the fit, shown in black and green, are nearly identical.
The room background template (red) and the two strongest
resonant decay templates (blue) are also shown in each panel
of Fig. 1 and have a lower number of counts compared to

035805-3



KELLY, CHAMPAGNE, LONGLAND, AND BUCKNER PHYSICAL REVIEW C 92, 035805 (2015)

TABLE I. Branching ratios for primary transitions (in %) from
the 458-keV resonance in the 22Ne(p,γ )23Na reaction. Note that the
R → 3848 transition was not observed in the present work. See the
text for details.

Transition Present work Ref. [4] Ref. [3]

R → 0 41.77(67) 46.0 48.0
R → 2391 4.05(12) 3.7 5.0
R → 2640 8.27(18) 8.5 6.0
R → 2982 31.73(52) 32.0 39.0
R → 3678 4.85(16) 4.1
R → 3848 2.0
R → 3914 0.37(9) 0.7
R → 4430 1.69(9) 1.8
R → 5766 2.78(9) 2.4
R → 6921 2.43(9) 0.8
R → 7082 2.06(9)

the data and fit. All resonance primary peaks are indicated
with arrows. A total of 15 templates were used during the final
minimization process, translating to 15 total simultaneously fit
pj values. These correspond to the room background template,
4 beam-induced background templates, and 10 resonant decay
templates. Although the R → 3848 transition is allowed on
the basis of spin considerations, there was no evidence in the
data for this transition and since the fit would not converge
with this template included, this transition was not considered
during the fitting procedure.

The resulting branching ratios are shown in Table I along
with those reported previously in Refs. [3,4]. By not limiting
our analysis to only the decays already known in the literature,
it was possible to detect a new decay branch to the 7082-keV
state in 23Na. The existence of this transition is verified in
Fig. 2 through a comparison of the measured yield across the
458-keV resonance of the 2170-keV primary γ -ray emitted
during the R → 7082 transition to that of the well-known
6270-keV γ -ray emitted during the R → 2982 transition.
Black circles and red diamonds show the 6270 and 2170-keV
γ -ray yields, respectively. The yield scale for red or black data
points is indicated by the y-axis of the same color. The shape
and position of the 6270-keV γ -ray yield curve is reproduced
by that of the 2170-keV γ ray. All other γ rays analyzed in
this work have been reported previously in Refs. [3,4] and
correspond to known decays from the resonant state.

Beyond this, the most notable difference between the
present results and those of Refs. [3,4] is the decrease in the
R → 0 branching ratio by approximately 10–13%. This is the
strongest of transition from the 9252-keV state and is also the
branch used in the high-precision ωγ (458 keV) measurement
of Ref. [6]. In that work, their calculated ωγ (458 keV)
was inversely proportional to B(R → 0); a 10% decrease
in B(R → 0) induces an approximately 11.3% change in
their ωγ (458 keV). Additionally, the technique used by
Longland et al. [6] was independent of systematic effects
associated with target stoichiometry, charge integration, or
absolute detector efficiency. For this reason, we have chosen
to correct their result by replacing their assumed ground-state
transition branching ratio with our present measurement. Thus,
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FIG. 2. (Color online) The experimental yield from the Ec.m.
r =

458 keV resonance from the 6270- and 2170-keV γ rays observed
in this work, shown as black circles and red (gray) diamonds,
respectively. The yield scale for data points of either color is given by
the y axis of the same color. The 2170-keV γ ray corresponds to a new
primary transition, first identified in this work, to the 7082-keV state
in 23Na while the 6270-keV γ ray corresponds to the well-known
R → 2982 transition. Definitive identification of the 2170-keV γ ray
as a resonant state decay in 23Na is provided by the similarity between
the measured yield of these two γ rays.

we recommend ωγ (458 keV) = 0.583(43) eV. The percent
uncertainty in this resonance strength has also been reduced
from 9.7% in Longland et al. [6] to 7.3% uncertainty reported
here. It should be noted that this resonance strength is indeed
consistent with our measured yield and assumed stoichiometry.

IV. VALIDATION OF THE TECHNIQUE AND
COMPARISON WITH PREVIOUS RESULTS

A. Experimental yield calculations

Our technique can be tested by extracting experimental
yields in the traditional fashion of integrating photopeaks
corresponding to the individual primary transitions. The total
yield of the reaction as determined from the strength of a
particular primary transition, j , assuming a certain set of
branching ratios, k, can be written as [19]

Yj,k = 1

NB

{
Nγ

ηpW

[
fSC

B

]
k

}
j

, (10)

where NB is the total number of bombarding particles and
Nγ is the peak intensity of a primary γ ray of interest. The
parameters B and ηp are the branching ratio and full-energy
peak efficiency, respectively, while W describes the angular
distribution of the γ ray being analyzed. The quantity fSC

is a γ -ray intensity correction factor that takes coincidence-
summing effects into account. This factor includes the effects
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of direction-direction correlations between γ rays and is
expanded upon in Sec. IV B. With the exception of NB , all of
these quantities are specific to the particular transition, j , and
only fSC and B are specific to the chosen branching ratio set, k.
However, Yj,k should be independent of the primary transition
photopeak being analyzed. In other words, if the relative
branching ratios of the set k are correct, then the experimental
photopeak analysis of each primary transition j should result
in the same Yj,k and be mutually consistent. Therefore, we
chose to probe the accuracy of the present branching ratios as
well as those of of Piiparinen et al. [3] and Meyer et al. [4]
by analyzing the consistency of Yj,k as calculated for every
observed primary transition. Changes in the calculated Yj,k

are almost entirely the result of changes between the present
branching ratios and those of Refs. [3] and [4].

The angular distribution factor, W , was equal to 1 for
every primary transition because the 9252-keV resonant state
in 23Na excited by this Ecm

r = 458 keV resonance has spin
JR = 1/2. The quantity NB was equal to ∼0.01 C for every
Yj,k calculation. The photopeak intensity, Nγ , was different
for each primary γ ray, but remained constant with respect to
the branching ratio set being analyzed. GEANT simulations
of the Ge detector used in this work have been shown to
reproduce experimental full-energy peak efficiencies to within
3–5% [2,11–13]. Therefore, simulated ηp values at the primary
γ -ray energies using monoenergetic GEANT simulations of the
detector geometry were used in Eq. (10).

B. Coincidence-summing corrections

Experimental γ -ray spectra can be significantly altered by
coincidence-summing effects when a close source-detector
geometry is used. This is a common problem in measurements
of small cross sections relevant to nuclear astrophysics. The
coincidence-summing correction factor, fSC , was used to
correct for this effect. To be clear, fSC is not used to correct
photopeak intensities for random pulse pileup summing which
occurs when γ rays from different decay cascades are incident
upon the detector within a narrow time window [21]. Instead,
fSC is used to correct data for events when two or more
γ rays from the same decay cascade are incident upon the
detector. This can result in a signal corresponding to the
sum of the energy deposited by each individual γ ray. If,
for example, all incident γ rays deposit all of their energy
within the detector, an effect referred to as summing in occurs
in which a signal corresponding to the ground-state transition
energy is produced and the net photopeak intensities of the
incident γ rays are reduced by one count each. If, on the
other hand, a full energy deposition of one γ ray is coincident
with a partial energy deposition of another, then summing
out occurs in which the net photopeak intensity of the first
γ ray is reduced by one count. Note that direction-direction
correlations between γ rays influence coincidence summing.

In this work a newly developed method of correcting
experimental data for coincidence-summing effects was used.
Other methods exist and are summarized in Ref. [22]. These
can be categorized as follows: dedicated computer codes,
most of which require input of full-energy peak and total
efficiency data [23–30], recursive algorithms coupled to Monte

Carlo simulations for efficiencies [31], recursive matrix-based
calculations with practical approaches for efficiencies [32],
and full Monte Carlo simulations with MCNP, GEANT3.21,
and GEANT4 [7,33,34]. In nuclear astrophysics the methods
of Ref. [35] have been used to correct data for coincidence-
summing effects [11,12,36]. Additionally, expressions from
Ref. [21] describing detector efficiency as a function of γ -ray
energy and of the distance from the source to the detector com-
bined with the GEANT4 routine have been applied to nuclear
astrophysics data in previous reaction measurements [37,38].

GEANT simulations naturally include coincidence summing.
However, the method used here deconstructs the GEANT output
into contributions to the simulated spectrum from each indi-
vidual photon incident upon a sensitive detector region. This
is accomplished by filtering the GEANT output according to the
information about each hit in a sensitive detector provided by
the GEANT framework. In particular, the parent, particle, and
process ID numbers; the time, energy deposition, and position
associated with each hit; and the creation and momentum
direction of particles involved in each hit are required for
this sum correction method. When these parameters are used
to filter GEANT simulation data in the proper manner, the
energy deposition attributed to each individual photon can be
determined and recorded in a secondary simulation spectrum.
This spectrum is free of coincidence-summing effects. The
fSC factors can then be calculated according to

fSC = Nγ,SC/Nγ,NSC, (11)

where Nγ,SC and Nγ,NSC are the simulated photopeak inten-
sities from the spectrum that is sum corrected (SC) and from
the spectrum that is not sum corrected (NSC), respectively.

Note that input of full-energy peak or total efficiencies or
Q solid angle attenuation coefficients [19] are not required for
this sum-correction method. The effects of these parameters
are taken into account during simulation runtime. This method
also provides the user with an entire sum-corrected spectrum
that could in principle be used, for example, to correct escape
peaks or other regions of the spectrum between photopeaks
for coincidence-summing effects. This sum-corrected spec-
trum differs from a simulation spectrum created from the
combination of multiple monoenergetic GEANT simulations
in that direction-direction correlations between γ rays can
be taken into account. Data validating this sum correction
method can be found in the Appendix. Full simulations of
the the 458-keV resonance in the 22Ne(p,γ ) 23Na reaction
were calculated using the present branching ratios as well as
those of Refs. [3] and [4] for this work. These simulations
were corrected for coincidence-summing effects according to
the method described above and used to extract fSC factors
according to Eq. (11) for all primary γ rays. This allowed each
calculated value of Yj,k to include a uniquely calculated fSC

value according to the primary γ -ray transition and branching
ratio set being analyzed.

C. Results

The parameters NB , ηp, and fSC were assumed to each
have a 3% uncertainty for all calculations. Branching ratios
were assumed to have a 5% uncertainty for calculations using
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FIG. 3. (Color online) A plot of Yj , the experimental yield from
the Ec.m.

r = 458 keV resonance in the 22Ne(p,γ ) 23Na reaction, for
all primary γ -ray transition peaks. The Yj values calculated using the
branching ratios of Piiparinen et al. [3] are shown as squares, those
using Meyer et al. [4] are shown as open circles, and those using the
present branching ratios are shown as diamonds. The dashed line at
Yj = 1 is shown to help guide the eye, while the dashed lines above
and below Yj = 1 represent a factor of 2 and 3 deviation from Yj = 1.
The geometric standard deviation, σ geo, of each data set is shown as
well. See text for a discussion of the data shown here.

the results of Refs. [3] and [4]. Uncertainties in the present
branching ratios are listed in Table I. Uncertainties in Nγ values
were calculated from the experimental spectrum, taking the
nearby background into account, and were statistical in nature.

The results of these experimental yield calculations are
shown in Fig. 3. The dashed line at Yj,k = 1 is shown to
help guide the eye. The two dashed lines above and below
Yj,k = 1 represent a factor of 2 and 3 deviation from Yj,k = 1.
Yields as calculated using the present branching ratios are
shown as diamonds while the results using the branching ratios
of Piiparinen et al. [3] and Meyer et al. [4] are shown as
squares and open circles, respectively. Note that the R → 3848
transition reported in Ref. [3] was not observed in this work.
As such, the Nγ used for that experimental yield calculation
at the 5404-keV γ -ray energy corresponding to this transition
is consistent with the observed background level in that region
of our data spectrum.

The geometric standard deviation of the set of experimental
yields calculated using the branching ratio set k, σ geo

k , is given
by

σ
geo
k = exp

⎧⎪⎨
⎪⎩

⎡
⎣ 1

N

N∑
j

ln

(
Yj,k

μ
geo
k

)2
⎤
⎦

1
2

⎫⎪⎬
⎪⎭, (12)

where the μ
geo
k is the geometric mean and N is the total number

of transitions considered in a particular data set. This quantity
was calculated with each set of Yj,k values to characterize the
consistency of each data set. The geometric standard deviations
of the Yj,k calculated using the branching ratios of Piiparinen
et al. [3] and Meyer et al. [4], σ

geo
Piiparinen(1971) = 1.93 and

σ
geo
Meyer(1973) = 1.46, are 77% and 34% higher than that of the Yj,k

calculated using the present branching ratios, σ
geo
present = 1.09.

Additionally, the new branch to the 7082-keV state in 23Na
reported in the present branching ratio set, corresponding to
a primary γ -ray energy of 2170 keV, is internally consistent
with the other transitions that we have detected and which
were were seen previously.

Finally, it is important to note that the Yj,k determined from
the ground-state transition γ -ray peak on the arbitrary yield
scale of Fig. 3 are approximately 0.910, 0.939, and 1.03 when
using the branching ratios of Ref. [3], Ref. [4], and the present
work, respectively. This represents yield increases of 13% and
9.8% from Refs. [3,4] to the present work. The changes in
the yield are not exactly the same as the changes in branching
ratios because of small (<1%) differences in fSC for the three
sets of branching ratios.

V. CONCLUSIONS

Data from the decay of the Ec.m.
r = 458 keV resonance

in the 22Ne(p,γ ) 23Na reaction were analyzed using the
TFractionFitter [8] class of ROOT [9]. New branching ratios
have been derived, including a newly discovered branch to
the 7082-keV state in 23Na and a decrease of 10–13% in the
ground-state branching ratio versus the results of Refs. [3]
and [4]. We recommend a resonance strength of ωγ (458 keV)
= 0.583(43) eV based on these results. This is different
from the high-precision measurement of Longland et al. [6]
by ∼1.2 σ and affects all higher-lying 22Ne(p,γ ) 23Na
resonances. The uncertainty in the resonance strength has also
been reduced from 9.7% [6] to 7.3%.
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APPENDIX: COINCIDENCE-SUMMING CORRECTION
METHOD VALIDATION

The sum-correction method described in Sec. IV B is unique
in that it provides a self-consistent method of coincidence-
summing corrections. In practice, detector total and full-energy
peak efficiencies and Q solid angle attenuation coefficients
are often required as external input in order to calculate the
necessary coincidence-summing corrections (see Sec. IV B).
With this method of sum correction all of these parameters
are accounted for within the simulation, thereby eliminating
the need for their external calculation. It is also interesting
that an entire sum-corrected simulation spectrum is produced
with this method. This spectrum could, in principle, be used to
correct escape peaks for coincidence effects as well. Analysis
of these peaks could provide further insight into characteristics
of the detector being used. As this sum-correction method has
never appeared in any published work to date, validation of
this method is in order.
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The effects of coincidence summing on experimental
spectra decrease as the distance from the source to the detector
is increased [19]. Thus, we chose to test the coincidence-
summing correction method described in Sec. IV B with
experimental data from the Ec.m.

r = 259 keV resonance in the
14N(p,γ )15O reaction at multiple source-to-detector distances.
We validate this sum-correction method by displaying its
ability to accurately sum correct data containing the varying
levels of coincidence summing seen at each source-to-detector
distance. The van de Graaff accelerator described in Sec. II
provided a proton beam of ∼30 μA at an energy of 282 ±
2 keV in the laboratory frame for this work. Data were collected
with the 135% relative efficiency Ge detector described in
Sec. II. A target of 14N implanted at an energy of 40 keV
into a tantalum target backing was used for data collection.
The target was approximately 12 keV thick at the resonance
energy.

The minimum possible source-to-detector distance is
1.1 cm for the experimental setup used here, as described
in Refs. [10–12,15]. Resonance decay spectra were collected
with 0, 5, 10, and 20 cm added to this minimum source-to-
detector distance and total beam charges of 0.064, 0.10, 0.26,
and 0.40 C were accumulated at each distance, respectively.
Simulations of each data set were calculated with GEANT,
version 4.9.6, using the resonant state branching ratios of
Marta et al. [39]. All γ -ray angular distributions and direction-
direction correlations were calculated using the level spin
assignments found in Ref. [40] according to the methods
described in Ref. [19] and were included in every simulation.
The agreement between experiment and simulation for data
accumulated at each source-to-detector distance was similar
to that of Fig. 1. Each simulation was fit to its respective
experimental data set to derive Ndata

R at each source-to-detector
distance according to the method described in Sec. III.

The simulations were used to derive sum-correction factors
for each primary and secondary photopeak observed in the
data as detailed in Sec. IV B. The full-energy peak efficiencies
for each primary and secondary γ ray at each distance were
then calculated with [19]

ηp = Nγ fSC

BWNdata
R

. (A1)

Peak efficiencies derived from the data obtained with 0, 5,
10, and 20 cm added source-to-detector distance are shown
from top to bottom in Fig. 4 using diamonds, squares,
circles, and crosses, respectively. Data points that have been
corrected for coincidence-summing effects are shown as the
solid data points while the uncorrected data are shown as
open data points. The expected full-energy peak efficiency
curve for each source-to-detector distance was calculated
using a series of monoenergetic γ -ray simulations, shown as
dashed lines in Fig. 4. These expected peak efficiency curves
have been scaled to include an independent, experimentally
measured peak efficiency at 1333 keV, calculated using the
sum-peak method [19] with 60Co data taken at each source-to-
detector distance. Although the resonant state transition to the
5241-keV state in 15O was included in all simulations, it was
not observed above background in every data set. Therefore,
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FIG. 4. (Color online) Full-energy peak efficiencies of the 135%
HPGe detector used in this work derived from data on the Ec.m.

r =
259 keV resonance in the 14N(p,γ )15O reaction. Data were taken
with 0, 5, 10, and 20 cm added to the minimum source-to-detector
distance of 1.1 cm, shown above as the diamond, square, circle, and
cross data points, respectively. Data that were sum corrected (SC)
and data that were not sum corrected (NSC) are shown as solid and
open data points, respectively. Dashed lines represent the expected
full-energy peak efficiency curve of the HPGe detector at each source-
to-detector distance, each of which have been scaled to include an
independent, experimental peak efficiency measurement at 1333 keV.
In general, agreement is achieved between the sum-corrected data and
the expected peak efficiency curve at each distance.

detector efficiencies were not calculated for γ -ray energies
corresponding to that transition.

The uncorrected data points show evidence of coincidence-
summing effects, especially with 0 cm added source-to-
detector distance. This is most clearly seen in the ground-state
transition data points at 7556 keV. However, the branching
ratio for the ground-state transition from this resonance is
<2% [38,39,41]. The weakness of this branch coupled with
the two-γ cascades that dominate the decay channels from this
resonance enhance the effect of coincidence summing for this
data point at 0 cm added distance such that up to ∼80% of the
ground-state transition photopeak is a result of summing in.

Another way to look at this situation is by considering the
relative probability of capturing the full energy of both γ -rays
of a two-γ cascade relative to that of capturing the full energy
of the ground-state transition γ ray. At 0 cm added source-to-
detector distance, the probability of detecting the sum energy
of the R → 6176 → 0 cascade is ∼5.2% of that for detecting
the full energy of the ground-state transition. In other words, if
there were an equal number of ground-state and R → 6176 →
0 decays with no other possibility for decay from the resonant
state, then ∼5.2% of the ground-state transition peak would
be be the result of summing in. This relative probability drops
to only ∼0.3% at 20 cm added distance. However, since the
R → 6176 → 0 cascade is actually about 40 times as likely
as the ground-state transition, summing in is significant even
at 20 cm.

It is important to note that coincidence summing was indeed
observed in the data taken with 20 cm added source-to-detector
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distance. This is of importance for the primary branching
ratios from this resonance in 14N(p,γ )15O reported in Runkle
et al. [41] and Imbriani et al. [38]. The same HPGe detector
used in this work was also used in Ref. [41]. A source-
to-detector distance of 23 cm was used for branching ratio
measurements in that work under the assumption that there
was no coincidence summing present in the accumulated data.
Given that we observe coincidence summing with the detector
at 21.1 cm, it is likely that coincidence summing was, in fact,
present in that data. A 126% relative efficiency HPGe detector
was used in Ref. [38] with source-to-detector distances ranging
from 1.5 to 20.5 cm. Their branching ratios were determined
from a fit to each of four data sets at varying source-to-detector

distances, leaving the branching ratios themselves as free
parameters of the fit. However, given that the ground-state
branching ratio reported in Ref. [38] is ∼15% greater than
that reported in Marta et al. [39], coincidence summing may
have had an effect on the results of Ref. [38]. Here we
assume the branching ratios of Marta et al. [39] are free of
coincidence-summing effects.

Agreement within uncertainty is, in general, achieved
between the expected efficiency curves at each distance and
the sum-corrected peak efficiency data points for the same
distance. This implies that these data were accurately corrected
for coincidence-summing effects, thereby validating this sum-
correction method.
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[22] M.-C. Lépy, T. Altzitzoglou, M. J. Anagnostakis, D. Arnold,
M. Capogni, and A. Ceccatelli, Appl. Radiat. Isotopes 68, 1407
(2010).
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