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ABSTRACT 

Hunter Carey Quintal: Modeling Future Hydrologic Extremes, Flood Hazards, and Exposure under a 
High-Emissions Scenario in the Neuse River Watershed 

(Under the direction of Antonia Sebastian) 

 

Flood prone communities often lack predictive hazard maps necessary to inform public policy 

and efforts aimed at reducing household risks. This study evaluated the independent and combined effects 

of future climate and land use change scenarios on hydrologic response. I modeled changes in peak flows, 

volume, and timing between 2020 and 2100 using a large-scale (16,148 km2) physics-based distributed 

hydrologic model of the Neuse River watershed and mapped the resulting flood depth and extent in 

Goldsboro, NC. I find that, in general, the effects of climate change on peak stream flow are greater than 

the effects of land use change; however, the role of land use change on discharge is spatially 

heterogeneous and dependent on localized patterns of land use change. In Goldsboro, the combined future 

climate and land use projections result in at least a five-fold increase in building exposure, with the 

greatest increases occurring for medium-sized storms. 
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Introduction 

In 2021, flooding was the most frequent, the deadliest, and, behind storms, the most financially 

damaging natural hazard globally, and scientists predict that they will pose exceedingly greater risks in 

the coming decades (CRED, 2022). Many drivers contribute to flood hazard propagation, including 

engineering, urbanization, urban sprawl, economic and social growth, and policy (Berndtsson et al., 

2019); antecedent conditions and extreme precipitation (Kiem & Verdon-Kidd, 2013); and rural land 

management, river morphology and vegetation, and human behavior (O’Donnell & Thorne, 2020). 

However, climate change (CC) and land use-land cover change (LULCC) are thought to be two principle 

processes, along with hydraulic interventions, that disrupt the terrestrial hydrologic cycle and lead to 

flooding (Blöschl, 2022). Flood are attributed to changes in the magnitude and frequency of river floods 

globally over the last century (Bruno et al., 2021; Dottori et al., 2021; Winsemius et al., 2016).  

Risk from flood hazards is traditionally communicated to the public using floodplain maps 

(Hagemeier-Klose & Wagner, 2009). In the United States, engineers and policymakers determine the 100-

year floodplain to be a regulatory tool for defining flood hazards that correspond to standardized 

insurance premiums, land use policy and zoning ordinances, and future infrastructure and capital 

improvements. The 100-year floodplain defines the flood hazard extent and depth produced by a 100-year 

or 1% annual exceedance probability (AEP) precipitation event across the current landscape, where the 

1% AEP precipitation event is an idealized hyetograph used to initiate a hydrologic and/or hydraulic 

model. In this case, the 1% AEP precipitation event is a storm that has a probabilistic magnitude 

calculated by the historic rainfall record. Floodplain map creation is also regulated, since the assumptions 

behind multiple hydrologic and hydraulic models can lead to diverging modeled flood hazards.  
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Contemporary floodplain maps can be powerful tools for limiting the exposure of vulnerable people 

and property to flood hazards. However, many maps are infrequently updated or may not exist for rivers 

in the United States, which ultimately can lead to their declining utility when they are not representative 

of current rainfall or land use inputs. Outdated maps do not only pose a risk of misinforming insurance, 

policy, and infrastructure planning efforts in the present day, but also further imperil community safety 

when used as the basis of future city and regional planning efforts. Unfortunately, this is a common 

reality (Hart & Halden, 2019). Therefore, short term planning goals fall short of addressing the risks 

posed by future climate and land cover on natural hazards (Ye et al., 2021). It is incumbent upon 

scientists to not only predict how flood hazard drivers such as CC and LULCC will influence the 

hydrologic cycle, but also determine how trends in river discharge exacerbate flood hazards over time.  

Climate change and LULCC represent the influences that many of the flood hazard drivers above 

have on hydrological processes. Climate change alters the frequency and magnitude of storm events, 

which redistributes rainfall and results in runoff occurring more often (Gardner, 2009). LULCC alters the 

capacity for a landscape to attenuate streamflow by decreasing infiltration rates, limiting overland water 

storage capacity (Butler & Davies, 2011; Rogger et al., 2017), increasing the routing efficiency of runoff 

and discharge (Caldwell et al., 2012; Gori et al., 2019a; Sebastian et al., 2019), as well as stormwater 

conveyance into channels (Kaushal et al., 2017). When these two processes act in combination, their 

effects can compound and result in further increased runoff and discharge (Huq & Abdul-Aziz, 2021; 

Martin et al., 2017; Pumo et al., 2017; Suttles et al., 2018). Scientists expect peak discharge and timing to 

be modified in the coming decades in response to these drivers (Martin et al., 2017; O’Gorman & 

Schneider, 2009). There is growing interest in modeling hydrologic drivers to define flood hazards since 

people and property are increasingly affected when rivers more frequently exceed their bank full depth 

and spill into the floodplain. 

Scientists expect the flood drivers of CC and LULCC to intensify at relatively faster rates across the 

U.S. Southeast. The 2017 National Climate Assessment suggests increases in the volume of the 20-year 
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return period storm by 9-13% in a less-likely, low emission scenario and by 12-21% in a more likely, 

high emission scenario by the late 21st century (Easterling et al., 2017; Reidmiller et al., 2018). 

Furthermore, Southeastern urban areas are expected to double by mid-century in response to population 

growth, and such urbanization and the resource requirements of a subsequently larger population will 

redefine land cover characteristics that alter the hydrologic cycle (Terando et al., 2014).  

While many researchers have explored the impact of climate and land use change on discharge, only 

a handful have considered how the combination of these flood drivers exacerbate emerging streamflow 

patterns (Suttles et al., 2018; R. Wang et al., 2014). For example, Huq & Abdul-Aziz (2021) found that 

concurrent changes in urbanization and precipitation across southern Florida led to “synergistic, non-

linear responses to runoff.” This finding is important to note because researchers often model single flood 

hazard drivers or consider the addition of two model outputs to be sufficient for predicting their combined 

influence. However, research considering their amplifying effect finds that previous efforts underestimate 

predicted discharge and subsequent flood hazards (Akter et al., 2018). Additionally, hydrologists often 

neglect to assess the impact of accelerated streamflow trends on flooding, which limits understanding of 

the scale of changing natural hazard and science communication efforts. In the U.S. Southeast, where 

wide floodplains and slowly draining streams dominate the landscape (Gori et al., 2019a), recent trends in 

CC and LULCC belie the importance of quantifying their impact on flood hazards. In this study, I 

examine a large (HUC-6) river watershed in eastern North Carolina, the Neuse River, that drains the 

Raleigh-Durham triangle region and several cities downstream. My goal is to identify streamflow peak 

and floodplain extent to inform land use planning over the 21st century. 

Background 

Globally, flooding is the costliest natural hazard, accounting for more than 40% (2.8 billion USD) of 

direct damages from 1900 to 2015 (Daniell et al., 2016; Pricope et al., 2022). While global flood risk is 

predicted to continue to increase overall, flood risk is highly variable and dependent on both the social 
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and physical processes that affect the natural and built environment (Winsemius et al., 2016). The drivers 

of changing flood risk include impervious surfaces, urbanization, land use change, and climate change 

(Berndtsson et al., 2019). Researchers note that infrastructure, policy, and individual behaviors can have 

large impacts on curtailing flood hazards in the long term. Previous work has considered the impacts of 

both land use change and climate change on flood hazards separately. When holding climate constant, 

urbanization by 2030 will result in 2.7 times more inhabited areas being exposed to current day flood 

hazards as coastal metropolitan regions continue to emerge globally (Güneralp et al., 2015). When 

holding land use constant, the current 1% AEP flood will occur at least twice as often across 40% of the 

global land surface by 2050 and result in an ~187% increase in global flood risk over the flood risk 

predicted in the absence of climate change (Arnell & Gosling, 2016). Such climate change would double 

the flood frequency for ~450 million people and 430,000 km2 of cropland.  

In the United States, flooding is the most common natural hazard, where flood damages increased 

from $1.76 to $4.4 billion in 1997 dollars over the 20th century (Birkland et al., 2003). Currently, FEMA 

predicts that 13 million people live within the 1% AEP floodplain in America; however, researchers 

suggest that this number could be as much as 41 million (Wing et al., 2018). Projecting into the future, the 

1% AEP precipitation event may further increase in both magnitude (~20%) and frequency (~200%), 

resulting in an increase in population exposure by 30-127% by the end of the 21st century (Swain et al., 

2020). Despite knowledge of these global and national trends, locally, reliable and detailed quantitative 

projections of flood hazards are difficult to obtain for the past and present and are virtually impossible to 

obtain for the future (Kundzewicz et al., 2019). As such, practitioners, elected officials, and the public can 

benefit from projections of trends in hydrology and flood hazards that consider the influence of climate 

change and land use/land cover change. 

Land cover is crucial for understanding streamflow and flood hazard projections because landscape 

surface features facilitate infiltration and runoff processes from storm events (Bedient et al., 2008). Land 

cover classifications are determined by anthropogenic land uses, which include cropland, pasture, forest, 
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range, and urban uses (Sohl et al., 2016). Generally, surface runoff and river discharge increase as a 

function of declining natural vegetation, where forest and high-density urban land cover define the 

endmembers of this negatively correlated relationship (Foley et al., 2005). Land covers that capture 

stormwater and slowly release runoff and shallow groundwater to stream channels are particularly adept 

at attenuating episodic stormwater. In the Southeast US, land use conversions to more impervious 

surfaces will impact flood hazards by increasing the duration and frequency of flooding events (Bradshaw 

et al., 2007). While changing land uses depend on the magnitude and context of human activity, spatially 

heterogeneous land use predictions remain uncertain since their underlying drivers are complex and are 

largely governed by spatiotemporal population growth trends (Sohl et al., 2016). 

Population growth not only changes regional resource demands that drive land use changes but also 

increases flood hazard exposure when new urban and suburban development encroaches on the 

floodplain. The Southeastern US has been characterized by swift population growth since the mid-20th 

century and experienced the largest net population growth nationally in the late-20th century (Conroy et 

al., 2003). The population in NC grew by more than 60% between 1980 and 2010 (Census, 2010; 

O’Driscoll et al., 2010) and an additional 10% (900,000 people) between 2010 and 2020 (Census, 2021). 

Moreover, the population of NC is projected to grow by an additional 32% by 2050 (NCOSBM, 2022). 

This population growth will fuel further urban land cover, which is projected to increase between 101-

192% by 2060 and produce a contiguous ‘megalopolis’ between Atlanta, GA and Charlotte, NC (Terando 

et al., 2014). Juan et al. (2020) and Gori et al. (2019a) model how LULCC in the rapidly urbanizing 

Houston, TX region has and may change probabilistic floodplain extent in the recent past and near future. 

Gori et al. (2019a) found that the 1% AEP floodplain area may increase by 13% between 2011 and 2050 

and would result in an increase of 19% of exposed buildings to flood hazards solely in response to 

urbanization. Juan et al. (2020) found that by channelizing a river, the 1% AEP floodplain extent 

increases by 59% between 2011 and 2040 whereas a nearby non-channelized river’s floodplain extent 



6 

increases by 3% over the same period. Trends in population growth across the US Southeast will 

potentially exacerbate flood hazards in suburban and urbanizing regions (Shepherd, 2005).  

Urbanization modifies land surfaces by reducing vegetation, compacting soils, and decreasing their 

permeability. Urban landscapes impact runoff processes because smooth, impermeable surfaces across 

urban landscapes are more hydraulically efficient at transporting stormwater runoff (Berndtsson et al., 

2019; Chen et al., 2017; Walsh et al., 2005). Impervious surfaces contribute to increases in runoff volume 

and higher peak flow, lower baseflow, and a decoupling of overland and channel water routing processes 

across storms of varying intensity (Boggs & Sun, 2011; O’Driscoll et al., 2010; Suriya & Mudgal, 2012). 

Less water can infiltrate the soil when construction activities have compacted the surface. For example, 

Gregory et al. (2006) found that infiltration rate declined as soils became compacted across natural forests 

(377-634 mm/hr reduced to 8-175 mm/hr), planted forests (637-652 mm/hr reduced to 160-188 mm/hr), 

and pasture sites (225 mm/hr reduced to 23 mm/hr). The timing of a flood can also shift to earlier in a 

storm when rainfall is unable to infiltrate into soils because runoff reaches channels earlier (S. Brody et 

al., 2014). For example, Huang et al. (2008) found that as impervious surface increased from 5 to 13% of 

a Taiwanese watershed area, time to peak discharge declined from 11 to 6 hours and peak flow increased 

from 127 to 629 cms under varying storm events. Ogden et al. (2011) found that impervious surface 

becomes less important for determining runoff efficiency and volume as storm magnitude becomes more 

extreme (<1% recurrence interval).  

Knowledge of climate patterns is important for predicting streamflow and flood hazards, especially 

in urbanizing regions since rainfall is the leading driver of future urban flood risk (O’Donnell & Thorne, 

2020; Sun et al., 2002). Changes in precipitation from 1988 to 2017 have contributed to more than 1/3 

($73 billion) of cumulative flood damages across the US (Davenport et al., 2021). As flooding is already 

the costliest natural hazard, it is imperative to understand how future storm magnitudes and frequencies 

will affect watershed hydrology and flood hazards (Slater et al., 2021). Future precipitation is difficult to 

predict because of the complexity of climate drivers and feedbacks and non-stationarity in the climate 
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system, which further makes modeling efforts difficult because model variability responds to time horizon 

and projection scenario (Dottori et al., 2018; Gupta et al., 2013; Knutti & Sedláček, 2013; Liu et al., 2014; 

Milly et al., 2008; Steinschneider et al., 2015; C. Wang et al., 2014). However, researchers still explore 

how climate and socioeconomic scenarios will influence flood hazards. Swain et al. (2020) found that the 

1% AEP precipitation event under an RCP 8.5 scenario would result in a 20% increase in storm volume 

and a doubling in storm frequency across the US that would increase population exposure between 30-

127%. Mohanty & Simonovic (2021) furthered this research by modeling the effects of CC on floodplain 

extent. They found an increase in flood inundation extent by over 30% for the 1% AEP flood in the near- 

(2021-2060) and far- (2061-2100) periods solely by the influence of CC predicted by CMIP6. 

In recent years, researchers have reached a consensus that warming temperatures are leading to a 

global intensification of the hydrologic cycle and will result in more severe extreme flooding and 

droughts (Archfield et al., 2016; Carter et al., 2018; Easterling et al., 2017; Hirabayashi et al., 2013; 

Hodgkins et al., 2017; Kunkel et al., 2020; Reidmiller et al., 2018; Slater & Villarini, 2016; Wing et al., 

2022). While droughts occur over extensive regions and on seasonal to annual time periods, flooding can 

be a sporadic natural hazard with magnitudes that vary greatly across relatively fine spatial scales. This 

scientific consensus underscores the need for research to identify where flooding is predicted to occur, not 

only now, but also in the near future. The predicted increase in the magnitude and frequency for a given 

probabilistic precipitation event will result in a deeper and wider floodplain and thereby increase flood 

exposure for buildings near the current floodplain (Pricope et al., 2022). This information can be obtained 

through modeling efforts and distributed and disseminated to those who are and those who are likely to 

become at risk. Direct modeling of flood hazards and exposure has been explored under LULCC (Gori et 

al., 2019a; Juan et al., 2020) and CC (Mohanty & Simonovic, 2021) independently, but less often are their 

combined effects on flood hazards considered (Huq & Abdul-Aziz, 2021; Martin et al., 2017; Suttles et 

al., 2018). This research seeks to understand the relative contribution of each flood driver individually and 

combined on flood hazard outcomes.  



8 

Data and Methods 

Study Area 

The Neuse River watershed is located in eastern North Carolina USA (Figure 1). The Neuse 

watershed drains 6235 mi2 (16,148 km2) from the Piedmont through the Coastal Plain and into the 

Pamlico Sound. The upper portion of the watershed is characterized by a large area of urbanization that 

surrounds the larger metropolitan area of Raleigh, NC (Frey, 2012). Seven cities are located along the 

Neuse River and seventy incorporated municipalities are located within the watershed. Land use changes 

in the watershed from 1992 to 2001 predominantly increased medium- to low-density urbanization (11%), 

animal agriculture (14%), and grasslands (2%) and decreased crop agriculture (15%), forest (9%), and 

wetland (3%) (Rothenberger et al., 2009).  

The area is subject to frequent flooding, specifically extreme precipitation events and tropical 

cyclones. The watershed is also experiencing population growth, particularly around the state capitol of 

Raleigh, which is driving increases in urbanization, deforestation, and a transition from agricultural to 

industrial and commercial uses. These changes will influence the hydrologic processes of infiltration, 

floodplain storage, and routing efficiency, likely expanding floodplains in the future. High rates of change 

of these drivers in eastern North Carolina makes the Neuse River watershed an ideal location to study 

trends in watershed hydrology and flood hazards (Paerl et al., 2020; Terando et al., 2014).  

This study focuses on fluvial flooding that arises during extreme rainfall events in the Neuse River 

watershed. Eastern North Carolina is particularly flood prone due to its wide, shallow floodplains which 

enable rapid increases in inundated area for a given increase in precipitation. Recent studies suggest that 

the frequency of high discharge events in eastern North Carolina has doubled since 1950 (Dethier et al., 

2020). For example, Paerl et al. (2020) found aperiod of unprecedently high precipitation since the late 

1990s representing a regime shift in extreme precipitation associated with tropical cyclone activity. Falls 

Dam was authorized for creation downstream of the Raleigh area under the Flood Control Act of 1965 to 
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mitigate downstream flooding, particularly along Goldsboro, Kinston, and New Bern, and operates with 

respect to bank full stream depth at Clayton, NC (USACE, 2013). Despite dam operations since 1983, the 

river continues to exhibit increases in the 90th percentile of flows (Meitzen, 2016). Ercan et al. (2020) 

found that average monthly surface runoff will increase within the Upper Neuse watershed between 9.8% 

(RCP 4.5) and 91.2% (RCP 8.5) due to the combination of a decrease in evapotranspiration and an 

increase in precipitation volume. If these trends continue, communities along the Neuse River can expect 

greater flood hazards in the future. 

 

Figure 1. Map of Neuse River watershed. HUC 6 outline of the Neuse River watershed displaying the 

location of USGS stream gages, rating curves, cities within the watershed, and stream order as the Neuse 

flows southeast into the Neuse River Estuary and Pamlico Sound. Inset shows the location of the Neuse 

River watershed relative to the State of North Carolina USA and the paths of recent tropical cyclones that 

were used in model validation. 
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To demonstrate the influence of future changes in extreme discharge on floodplain extent, I 

examine the City of Goldsboro located along the Neuse River 45 miles (72 km) southeast of Raleigh, NC. 

Goldsboro experienced significant flooding during recent tropical storms including Hurricanes Fran 

(1996), Floyd (1999), Matthew (2016), and Florence (2018) (Doll et al., 2020). Three tributaries run 

through Goldsboro: Little River, Big Ditch (highly channelized and armored), and Stoney Creek. The 

United States Army Corps of Engineers (USACE) has developed detailed hydraulic models for these 

tributaries used to produce hazard maps for planning efforts as well as the National Floodplain Insurance 

Program (NFIP). Repeated flooding along the Neuse River has led the North Carolina Office of Recovery 

and Resiliency to identify three strategic buyout zones that aim to reduce current flood hazard exposure 

(Figure 1b). In addition, researchers are actively exploring adaptation and mitigation strategies within 

Goldsboro including flood control wetlands and water farming, which could reduce current and future 

flood exposure (Doll et al., 2020).  

Model Framework  

This study links projections of future land use and precipitation with hydrologic and hydraulic 

models to quantify changes in future flood hazards and building exposure. Figure 2 describes the model 

framework, which consists of the following components: 1) analysis of climate model output to produce 

future scenarios of extreme precipitation; 2) analysis of land use model output to produce future land use 

scenarios; 3) hydrologic modeling to quantify changes in watershed and tributary peak discharge, volume, 

and timing; and 4) hydraulic modeling to determine changes in water surface elevation and extent.  

I obtain future land uses at decadal time steps for the period from 2020 to 2100 under the RCP 8.5 and the 

SSP 5 scenario. The shared socioeconomic pathways predict patterns of land development in response to 

challenges for mitigation and adaptation to the RCP scenarios (Pörtner et al., 2022). An RCP 8.5 and SSP 

5 scenario represents a global economy that continues to emit greenhouse gases at greater rates (O’Neill 

et al., 2014). Statistically downscaled daily precipitation is obtained from Coupled Model Intercomparion 
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Project 5 (CMIP5) under the same RCP 8.5 scenario and processed to generate estimates of five AEP 

precipitation events: 20%, 10%, 2.0%, 1.0%, and 0.2%. I then use these future land use and climate 

scenarios to force a calibrated hydrologic model of the Neuse River Watershed, and evaluate their 

individual and combined influences on hydrologic response. To demonstrate the importance of these 

hydrologic changes on flood hazard and exposure at a city scale, the resulting discharge hydrographs are 

used as input to a 1D steady state hydraulic model to generate flood hazard maps for Goldsboro, NC. 

These maps are then compared against the predicted 2020 floodplain boundary for same AEP 

precipitation events described above (i.e., in ‘the 2020 floodplain’). 

 

Figure 2. Coupled model framework. (I) assess climate data from 20 Global Climate Models under the 

RCP 8.5 scenario; (II) assess land use data from one model under the combined RCP 8.5 and SSP 5 

scenario; (III) input these data into a hydrologic model to determine discharge hydrographs; and (IV) 

input hydrographs into a hydraulic model to define water depth and extent. 

Future Climate Projections 

Representative Concentration Pathway (RCP) scenarios are first described by the 

Intergovernmental Panel on Climate Change (IPCC) to predict the impact of future greenhouse gas 
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emissions on Earth system processes (IPCC, 2007). RCP 4.5 and RCP 8.5 are the two most commonly 

cited scenarios, representing increases in 4.5 W/m2 and 8.5 W/m2 of surface radiation. As such, RCP 4.5 

is analogous to a business-as-usual scenario where global emissions continue at their current rate, albeit 

with the caveat that substantial policy change must first occur; while this is still possible, it is growing 

increasingly unlikely. RCP 8.5 represents both a worst-case and a closer to business-as-usual scenario 

where the global economy continues to industrialize and emit greenhouse gases at similar rates to already 

industrialized economies; however, this scenario may still overpredict future climate globally (Schwalm 

et al., 2020). The climate science community uses RCP 8.5 to represent the global climate trajectory and 

RCP 4.5 to describe what could occur given substantial policy change (Hausfather & Peters, 2020). For 

this thesis, I evaluate the RCP 8.5 scenario in light of the climate community’s consensus and because of 

my interest in evaluating floodplain extent evolution under a worst-case future scenario (Allan & Soden, 

2008; Sridhar et al., 2019).  

CMIP5 is an effort to produce regional projections of multiple global climate models (GCMs) to 

determine variability in climate predictions. Three forms of uncertainty exist within GCMs and their 

byproducts (i.e. CMIP5): internal variability, model uncertainty, and scenario uncertainty (Hawkins & 

Sutton, 2009). Internal variability represents natural fluctuations of the global climate system, model 

uncertainty describes climate model responses to anthropogenic radiative forcing, and scenario 

uncertainty explains the scientific community’s ability to predict atmospheric warming globally. These 

three uncertainties introduce biases into climate variable projections. For example, single climate research 

groups have developed multiple GCMs, which can introduce model uncertainty biases within ‘model 

families’ towards specific atmospheric processes (Steinschneider et al., 2015). Steinschneider et al. (2015) 

found that model family bias influences both the volume and probability of precipitation projections by as 

much as 20% in the United States by mid-century. As such, research that uses ensemble climate models 

are further biased towards the assumptions that a few climate research groups make about complex and 

dynamic atmospheric physics.  
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GCMs can either be statistically downscaled or dynamically downscaled for regional analysis 

(Barsugli et al., 2013; Dixon et al., 2016). One statistical downscaling approach developed by Livneh et 

al. (2013) is often cited in climate hindcast analyses since it enables climate projections at a 1/16° 

resolution, which is an improvement over the 1/8° resolution of similar methods. CMIP5 projections 

broadly agree that temperatures will become noticeably warmer. So too will precipitation increase, albeit 

at a slower rate than rising temperatures (Steinschneider et al., 2015). In North Carolina, CMIP5 models 

suggest that total annual precipitation will increase, and so too will extreme precipitation intensity and 

frequency increase (Kunkel et al., 2020; Pokhrel et al., 2020). These projections are in line with recent 

regional trends in the increasing frequency of heavy rainfall (Kunkel et al., 2020).  

In this study, I consider climatic changes across the watershed using a 20 model CMIP5 ensemble 

provided by North Carolina State Climate Office (NCSCO). I predict daily total precipitation from 1950 

to 2099 at a 4 km spatial resolution produced by the Multivariate Adaptive Constructed Analogs (MACA) 

statistical downscaling method (Abatzoglou & Brown, 2012). The MACA method uses a training 

historical dataset, provided by Livneh et al. (2013) in this case, to remove GCM model uncertainty biases. 

Additionally, MACA uses an analog approach to geospatially map GCM outputs to the highly variable, 

fine scale domain. This allows for a continuous record of predictive climate data that links the record of 

hindcast predictions (1950-2005) to the record of forecast predictions (2006-2099) using congruent 

approaches, resolutions, and climate variables (Aliyari et al., 2021; Turner et al., 2015).  

I compile a continuous spatiotemporal record for each model of the watershed and conduct a spatial 

and statistical analysis of the data. This analysis first determines the annual maximum daily precipitation 

volume for each model and then calculates the volume of five AEP precipitation event storm using both a 

30- and 50-year moving window approach (Figures 14 & 15) similar to Fagnant et al., (2020). I then fit 

these to a Gumbel Generalized Extreme Value Distribution (GEVD) (Schulz & Bernhardt, 2016). The 

Gumbel is often used to predict the probability that a natural hazard of a given magnitude will occur if 

there exists a robust record of event frequencies and magnitudes from which to sample (Gumbel, 1941), 
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and is often cited as appropriate for fitting future streamflow (Yue et al., 1999) and precipitation 

predictions in hydrologic studies (Koutsoyiannis, 2003).  

Hydrologists consider a 30-year record to be sufficient for similar analyses because of data 

availability; however, a longer record will consequently improve confidence in the statistical probability 

of an events’ recurrence interval or AEP, while not incorporating scale dependencies that occur on 

timescales larger than 50 years (Markonis & Koutsoyiannis, 2016; Yuan et al., 2019). Therefore, in this 

assessment, I use the results from the 50-year moving window analysis in the model framework. I link the 

historical dataset with the CMIP5 dataset to produce a continuous precipitation record across all 20 

models from 1950 to 2100. This produced a continuous record of twenty 20%, 10%, 2.0%, 1.0%, and 

0.2% AEP volumes for every year from 2000 to 2100, or one prediction per year per model. Ultimately, I 

chose to spatially average precipitation over the entire watershed. I believe it is reasonable to assume that 

the median volume for each year is representative across the entire watershed due to the uncertainty 

associated with statistical downscaling discussed above.  
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Figure 3. Precipitation volume projections. I calculate projections for the AEP 20%, AEP 10%, AEP 2%, 

AEP 1% and AEP 0.2% precipitation events using a Gumbel distribution with a 50-year moving window. 

Thick lines represent the ensemble median of 20 CMIP5 model outputs. Shaded regions represent one 

standard deviation of the median. Straight lines of the same color represent the linear model of each AEP 

precipitation event’s projected rainfall volume. Under the assumption of linearity, the volume of the 20%, 

10%, 2%, 1%, and 0.2% AEP precipitation events increase respectively by 0.05, 0.08, 0.10, 0.13, and 

0.15 cm per year. 

Expected volumes for the 24-hour AEP precipitation event are shown in Figure 3 for five AEPs: 

the 20%, 10%, 2%, 1%, and 0.2% precipitation events, which are based off an annual maximum 

precipitation volume predicted by the 20 CMIP5 model ensemble that is found in Table 7. The volume 
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predicted for the 20% AEP precipitation event increases from 18.3 to 24.0 cm, from 21.3 to 28.5 cm for 

the 10% AEP, from 28.0 to 38.7 cm for the 2% AEP, from 30.7 to 43.0 cm for the 1% AEP, and from 

37.1 to 53.0 cm for the 0.2 AEP precipitation event in the Neuse River watershed over the 21st century. 

Additionally, the volume of the 20%, 10%, 2.0%, 1.0%, and 0.2% AEP precipitation events respectively 

increase by 0.05, 0.08, 0.1, 0.13, and 0.15 cm per year on average (Figure 3). Precipitation uncertainty 

increases for all storms over the 21st century. The relative increase in magnitude of the 0.2% AEP 

precipitation event exceeds more probable storms, suggesting that storm magnitude could increase 

inversely with a storm’s statistical probability under the assumption of a Gumbel distribution. For 

example, Hurricane Matthew released 38-46 cm of rain over the Neuse in 2016, which Figure 3 defines as 

a 0.2% AEP precipitation event. However, this same rainfall volume in 2070 would be classified as a 1% 

AEP event, further suggesting the possibility of more severe rainfall over the 21st century. While this 

analysis is not able to determine changes in storm frequency, I find that the magnitude of precipitation 

events with a given probability increases over the century.  

Land Use/Land Cover Projections 

Several datasets of future LULC projections exist (Table 3). Here, land use projections are obtained 

from the Environmental Protection Agency (EPA) the Integrated Climate and Land Use Scenarios 

(ICLUS) database. I chose to use the ICLUS model because despite a coarse temporal resolution (decadal 

from 1970 to 2100), ICLUS offers relatively fine spatial resolution (100 m) and a variety of land use 

classes (18) based on the combined SSP5-8.5 scenario among other available land use models (EPA, 

2017). The fine spatial resolution and number of land use classes available allow me to specify varying 

inputs of impervious surface and surface roughness values to the spatially distributed hydrologic model 

used in the coupled modeling framework for this research. ICLUS are based on modeled population 

growth and residential development following global Shared Socioeconomic Pathways (SSP) (i.e., 

socioeconomic projections) and the Representative Concentration Pathways (RCPs) (i.e., CC projections), 

allowing me to compliment the RCP projection determined in the climate change projections (U.S. EPA, 
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2017). First, I determined how each land use is predicted to change across the watershed using a chord 

diagram. This diagram explains the land use classification of a single 100 m by 100 m grid cell in 2020 

and 2100 to observe trends in the land use transitions across the entire study area as driven by climate and 

socio-economic factors. Then, each land use classification is assigned a percent imperviousness and 

Manning’s surface roughness value using the tables described in Appendix B (Exum et al., 2005; 

Kalyanapu et al., 2009; Zuellig et al., 2008). These datasets are input into a hydrologic model to represent 

spatial heterogeneities in overland storage, infiltration, and runoff routing processes.  

I evaluate the change in the distribution of land use/land cover classes in the ICLUS product from 

2020 to 2100 using a chord diagram (Figure 4). Chord diagrams can be used to visualize net transitions 

over time. In this research, such transitions represent conversion of one land use type to another. Land use 

is projected to vary across the watershed between 2020 and 2100 where cropland, timber, and low-density 

exurban are projected to transition to high-density exurban, suburban, and low-density urban uses. Most 

noticeably, areas classified as cropland, timber, wetland, and low-density exurban land uses are projected 

to decline by 845 km2, 810 km2, and 104 km2, respectively, while high-density exurban, suburban (668 

km2), and low-density urban (731 km2) land uses are projected to increase by 428 km2, 668 km2, and 731 

km2 (Figure 4). In contrast, there are only small increases in commercial (127 km2), industrial (39.3km2) 

and high-density urban (64.3 km2) land uses.  

The ICLUS product does not project any changes in barren land, open land, or natural waters. 

Wetlands are projected to decline due to increases in residential, commercial, and industrial lands. Areas 

classified as commercial or industrial land are projected to increase where land is currently classified as 

cropland, timber, or residential. While exurban growth is projected in areas currently classified as 

cropland and timber, exurban areas are also projected to densify into suburbs. Urban area is projected to 

more than double by 2100 (from 485 km2 to 1281 km2), mostly in exurban and suburban areas.  
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Figure 4. Chord diagram of-predicted land use change. This figure displays the magnitude of land use 

change in km2 from 2020 (bottom) to 2100 (top) based on the ICLUS dataset, produced with the 

OpenLand R package. The largest absolute change in any category is from exurban to suburban land 

(1194 km2); however, timber (669 km2) and agriculture lands (689 km2) will convert to exurban land at a 

similar rate, replacing this amount. This conversion represents an overall loss of timber and agricultural 

land use classes for the watershed. 

These land use conversions affect the distribution of impervious surface cover and roughness, 

primarily seen in and around the cities of Raleigh, Wilson, Kinston, and New Bern. While these increases 

largely correspond to urban, suburban, and exurban growth along existing urban corridors, the ICLUS 

model also predicts the nucleation of dozens of new low-density urban centers in former Raleigh suburbs 
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as far southeast as Clayton, as far north as Durham, and as far northeast as Wake Forest, resulting in the 

formation of a highly impervious contiguous landscape across much of the upstream watershed. These 

developments reflect the recent expansion of the Research Triangle region of North Carolina, comprising 

the cities of Raleigh-Durham-Chapel Hill and their greater metropolitan area.  

Hydrologic Model  

I use Vflo® version 6.1 as the hydrologic model for this study. Vflo® is a physically based, fully 

distributed hydrologic model that solves the kinematic wave approximation of the shallow water 

equations. This simplification has been shown to describe flood wave behavior in riverine channels 

(Lighthill & Whitham, 1950), especially if all other terms in the full shallow water equations are 

insignificant (Chow et al., 1988). Vflo® solves channel and overland flow resulting from excess rainfall 

using a simplification of the momentum and continuity equations where 𝑅𝑅 is the rainfall rate, 𝐼𝐼 is the 

infiltration rate, ℎ is the flow depth, and 𝑢𝑢 is the overland flow velocity (Eq. 1). Here,  𝜕𝜕ℎ / 𝜕𝜕𝜕𝜕  is the 

change in flow depth over the change in time and 𝜕𝜕(𝑢𝑢ℎ) / 𝜕𝜕𝜕𝜕 is the change in cross-sectional area over a 

change in space.  

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+  
𝜕𝜕(𝑢𝑢ℎ)
𝜕𝜕𝜕𝜕

= 𝑅𝑅 − 𝐼𝐼 

Vflo® infiltrates initial precipitation using Green and Ampt parameters, which allows the model 

to simulate spatially distributed time-varying infiltration rates based on soils data and surface 

imperviousness (Rawls et al., 1983). This approach considers infiltration capacity as a function of the 

conservation of mass equation and shallow surficial flow that changes with time during a storm event. 

Excess runoff is then routed through the flow direction network using the Kinematic Wave approximation 

(KWA). Vflo®’s ability to accurately represent spatial heterogeneities in soil, topography, and land cover 

data make it a practical modeling approach for evaluating the effect of landscape and climate changes on 

hydrologic processes through time. Excess precipitation is then routed as overland runoff using the KWA 

into channel cells and subsequent discharge is represented using hydrographs. In addition to the KWA 
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routing method, Vflo® offers Modified Puls and Jones channel routing options to improve model 

calibration dependent on a variety of factors including channel storage requirements, slope, and geometry. 

Reservoirs also can be represented in the model using stage-storage and stage-discharge rating curves in 

any channel cell, enabling the inclusion of dams within the modeling framework. I refer interested parties 

to Vieux et al. (2004), which offers further background information and a more in-depth explanation of 

the model and its solver. 

Vflo® takes as input digital elevation data (DEM), soil profile data, and LULCC data (Figure 5). 

Spatial variability in each of the input parameters is represented within the model as gridded cells across 

the watershed, where each cell is defined by values representing slope, hydraulic roughness, infiltration, 

and rainfall elevation, impervious surface fraction, hydraulic roughness, soil depth, hydraulic 

conductivity, wetted front, total porosity, and effective porosity (Vieux et al., 2004). I chose Vflo® 

because it has been widely implemented in previous hydrologic studies (Doubleday et al., 2013; Gori et 

al., 2019b; Juan et al., 2020; Sebastian et al., 2019) and because it efficiently solves for overland and 

channel flow over large domains. Additionally, Vflo®’s unique capabilities of allowing spatially 

distributed inputs, solving time-varying Hortonian infiltration, and enabling channel cells to be 

represented as reservoirs are ideal for the physical representation of LULCC, three qualities that are 

necessary for the success of this research.  
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Figure 5. Distributed hydrologic model, Vflo® parameterization. A flow direction network is derived 

from a digital elevation model, percent imperviousness and surface roughness are derived from land 

use/land cover data, and infiltration parameters, including wetted front, hydraulic conductivity, depth, 

effective porosity, and total porosity, are derived from soils data. 

Model Setup 

 

To build the baseline model, I used Vflo® to develop a flow direction network using a 10 m 

digital elevation model (DEM) from the US Geological Survey (USGS) 3D Elevation Program (3DEP) 

National Elevation Dataset (NED). I then cut cross sections from the DEM to represent channel geometry 

and bathymetry to ensure that mass is conserved during flow routing. Where channel cross section data 

are unavailable or cannot be established, the model enforces upstream cross sections. Vflo® also allows 

the modeler to input stage-discharge relationships at dams and reservoir locations at downstream 

locations in the model to improve representation of physical processes in the model. I adjust these curves 

during the model calibration step, which are included in Appendix D. Rating curves were included in 



22 

Vflo® immediately upstream of all USGS stream gages in the study as well as in tributaries on the main 

rivers upstream of Goldsboro. The resulting model contains 123,093 cells at a 600 by 600 m resolution.  

Infiltration parameters are derived using the US Department of Agriculture (USDA) Gridded Soil 

Survey (gSSURGO) and variable infiltration rates were predicted using the Green & Ampt equation 

(Rawls et al., 1983). I joined spatially distributed map unit symbols of each soil type with an associated 

wetted front, soil depth, effective porosity, total porosity, and hydraulic conductivity using the gSSURGO 

dataset in GIS to obtain distributed soils data to determine time-varying infiltration rates.  

To build a baseline model representative of 2020 conditions, gridded land use/land cover data 

was obtained from the Multi-Resolution Land Characteristics (MLRC) National Land Cover Database 

(NLCD) for 2016 at a 30-m resolution. LULC was reclassified in terms of its percent imperviousness and 

Manning’s roughness based on values provided by Exum et al. (2005) and Zuellig et al. (2008) 

(imperviousness) and Kalyanapu et al. (2009) (roughness). These attributions enable Vflo® to represent 

the physical effect that different land cover classifications have on hydrologic processes including 

infiltration and overland flow. I determine channel roughness to be 0.035 across the domain, since this 

value consistent with a clean, straight, full stage natural stream with a flood stage width of 33 m and a 

floodplain consisting of high grass or mature row crops as defined by Chow (1988).   

Finally, the model assumes that precipitation predicted by the ensemble of CMIP5 climate models 

is distributed in time using an SCS Type II intensity-duration-frequency (IDF) curve (USDA, 1986). An 

IDF curve relates a given rainfall intensity with an associated duration and frequency. The SCS Type I 

curve represents the wet winters and dry summers of the US Pacific Coast, the SCS Type II curve 

characterizes the climate of the interior US, and the SCS Type III curve embodies the heavy rainfall 

produced by tropical storms and hurricanes along the US Atlantic and Gulf Coasts (Feldman, 2000). I 

chose the SCS Type II curve for this research since the Neuse is primarily inland and is only coastal along 

at the watershed’s downstream end.  
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Model Calibration/Validation  

 

I obtain gauge-adjusted radar rainfall data from NOAA’s National Severe Storm Laboratory 

(NSSL) Multi-Radar/Multi-Sensor System (MRMS) stored in the Iowa State Repository to calibrate the 

baseline model. When assessing relevant storms for calibration, I favor precipitation events exceeding a 

1% annual exceedance probability (AEP) and that occurred temporally after the modeled surface 

characteristics are reported (i.e. after 2016). These selection criteria are important since the model is built 

to represent large storm magnitudes well across a landscape that reflects current land uses. These storms 

include Hurricanes Matthew (2016), Florence (2018), and Dorian (2019). I calibrate the model against 

Hurricane Matthew due to the storm’s relatively symmetrical hyetograph and large magnitude. I then 

validate the model against six additional storms to ensure a robust hydrologic model.  

Table 1. Calibration event details. 

Event Formed Dissipated Damages 

(2016 USD) 

Deaths Maximum 

Wind (km/h) 

Total Rain near 

Goldsboro (cm) 

Bonnie 2016-05-27 2016-06-09 640,000 2 75 NA 

Unnamed 2017-04-23 2017-04-25 NA NA NA NA 

Unnamed 2017-05-04 2017-05-05 NA NA NA NA 

Matthew 2016-09-28 2016-10-10 16,470,000,000  603 270 39.31 

Florence 2018-08-31 2018-09-18 24,230,000,000 54 240 36.62 

Michael 2018-10-07 2018-10-16 25,500,000,000 74 260 0.63 

Unnamed 2018-11-12 2018-11-13 NA NA NA NA 

Dorian 2019-08-24 2019-09-10 5,100,000,000 329 295 11.84 

Isaias 2020-07-30 2020-08-05 4,730,000,000 17 150 8.65 

1Stewart (2017); 2Stewart & Berg (2019); 3Beven et al. (2019); 4NWS (2019); 5Latto et al. (2021) 
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I use the dataRetrieval tool developed by the USGS in R (DeCicco, 2021) to access discharge and 

stage observations at nine USGS stream gages. I evaluate model performance using the Nash-Sutcliffe 

Efficiency (NSE), Root Mean Squared Error (RMSE), and Pearson Correlation Coefficient. NSE reports 

the variance between a modeled hydrograph and an observed time-series, where a perfect model has an 

NSE of 1 (Mccuen et al., 2006). RMSE is the standard deviation of the residuals, which predicts how 

concentrated modeled data is around a line of best fit for the observed data (Chai & Draxler, 2014). Since 

RSME reports the variance of measured and modeled data, values of RSME can be large, and so smaller 

RSME values represent a better model. The Pearson Correlation Coefficient is a measure of linear 

correlation between two sets of data. Thus, it is a normalized measurement of the covariance where a 

perfect model has a value of 1 while a perfectly incorrect model has a value of -1.  Peak discharge, 

volume, and timing can be exported for determination of differences between simulated and observed 

values (Table 2).  

Table 2. Model calibration and validation statistics. 

USGS ID Name 
Hurricane Matthew 

(Calibration) 

Hurricane Florence 

(Validation) 

  RMSE NSE Pearson RMSE NSE Pearson 

02088000 
Middle Creek nr 

Clayton 
1805.35 0.96 0.98 390.91 -0.41 0.77 

02087275 
Crabtree Creek at 

HWY 70 
664.31 0.67 0.90 406.18 0.45 0.93 

02087500 
Neuse River nr 

Clayton 
1470.96 0.92 0.96 2681.61 -1.42 0.40 

02089000 
Neuse River nr 

Goldsboro 
11868.76 0.41 0.69 4131.87 0.78 0.90 
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02089500 
Neuse River nr 

Kinston 
10356.35 0.15 0.62 4581.29 0.73 0.89 

02091500 
Contentnea Creek at 

Hookerton 
6125.21 0.44 0.78 1600.63 0.76 0.89 

0208758850 
Swift Creek nr 

McCullars Crossroads 
200.11 0.96 0.98 198.06 -0.69 0.92 

 

The uncalibrated model routes water too efficiently through the watershed, on the order of 3-4 

days. This is likely due either to the watershed’s relatively low gradient and wide floodplain, which 

enables greater storage capacity and slower conveyance during large storm events, or a problem with the 

Kinematic Wave approximation, which does not conserve momentum during hydrologic routing. I first 

reduce this error by increasing surface and overland Manning’s n (roughness) values to improve the 

routing in the model. This approach leads to greater errors and physically misrepresents the effect of 

current land cover. I then attempt to reduce error by increasing the storage capacity of the channel at 

select locations by determining stage-storage and stage-discharge relationships for USGS gages and the 

actively managed Falls Dam reservoir east of Raleigh (USACE, 2013). I include additional rating curves 

for locations along the main channel and tributaries from a USACE preliminary HEC-HMS model that 

were developed for a hindcast analysis of Hurricane Florence to further improve calibration (Yi, 2021). 

I validate the model against hydrographs representing Hurricane Florence (Table 2). High RMSE 

values for the Hurricane Matthew calibration are likely due to the complexity of releases from the actively 

managed Falls Dam reservoir, which was closed during Matthew’s initial precipitation but opened as 

downstream hydrographs continued to peak. Conversely, downstream river stages during Hurricane 

Florence required a prolonged dam closure, thus resulting in a multipeak hydrograph behavior with a 

dominant first peak (USACE, 2018). The calibrated model resulted in high Pearson values for Hurricane 

Florence despite poor NSE values at gages 02088000, 02087500, and 0208758850. The active 
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management of an upstream reservoir limits the effectiveness of the passive hydrologic model relying on 

single rating curves at locations across the domain. As such, my analysis assumes there is a predetermined 

dam operation procedure represented by the stage-discharge relationships. This approach is an 

improvement for calibration and validation; however, it fails to represent small deviations from operation 

by predictably releases water as a function of reservoir level as opposed to downstream flooding.  

Figure 6 shows that the calibrated model performance improves upon the uncalibrated model in 

predicting measured discharge peaks for nine storms at seven USGS gage locations. I first compute a non-

parametric paired-sample Wilcoxon test to determine whether the calibrated and uncalibrated model 

results are statistically different from each other. From this test, I conclude that the median discharge of 

the uncalibrated model is significantly different from the median discharge after calibration because the p-

value = 6.5e-09 is less than the significance level alpha = 0.05. Since the datasets are statistically 

different, I can now consider how the modeled and measured data compare to a 1:1 line. The Wald test 

tests if a slope differs significantly from a line with a slope of 1.  

𝑊𝑊 =
(�̂�𝛽 − 𝛽𝛽0)
𝑠𝑠𝑠𝑠(�̂�𝛽)

 ≈ 𝑁𝑁(0,1) 

Where 𝛽𝛽0 = 1 to test whether the slope is different than 1. Note also that a p-value approaching 0 is 

evidence that the slope is different than 1. The Wald test finds that the uncalibrated model has a p-value 

of 0.003 and the calibrated model has a p-value of 0.065. This provides the first evidence suggesting that 

the uncalibrated model slope is less like 1 than the calibrated model. I calculate the confidence interval for 

the coefficient of a linear model between measured and modeled discharge peaks. If the 95% confidence 

interval doesn’t include 1, then the slope is significantly different from 1. At a 95% confidence interval, 

the uncalibrated model slope is 2.68 and the calibrated model slope is 1.01. Therefore, I reach the same 

conclusion as the Wald test that the slope of the uncalibrated model is statistically different than 1 but the 

slope of the calibrated model is not statistically different than 1 at a 95% confidence interval.  



27 

 

Figure 6. Hydrologic model calibration and validation. Figures 6a and 6b describe hydrographs of 

discharge after calibration for Hurricanes Matthew and Florence at USGS 02087500. Figures 6c and 6d 

represent model performance before and after hydrologic calibration for 9 storm events at 7 USGS gages. 

The calibrated model performs significantly better than the uncalibrated model at predicting measured 

discharge peak from 2016 to 2020. At a 95% confidence interval, the uncalibrated model overpredicts 

peak discharge by 2.68 times whereas the calibrated model overpredicts peaks by 1.01 times. 
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Hydraulic Model 

The Hydrologic Engineering Center – River Analysis System (HEC-RAS) is a system of software 

designed to model water surface profiles (USACE, 2016). HEC-RAS enables a river’s physical 

representation as geometric approximations of reaches, tributaries, banks, and cross-sections. While some 

data can be manually input such as cross-sectional data at river stations, terrain data derived from a DEM 

can further assist model development. Then, at a subset of river stations, the user can enter either 

continuous hydrographs or peak discharge rates for unsteady flow and steady flow simulations 

respectively. HEC-RAS outputs include a raster of inundation depths as well as a vector of inundation 

extent across the domain. For this assessment, a steady flow simulation is run to generate a conservative 

estimate of future floodplain depth and extent under each future scenario.  

Results 

I report how spatial and temporal trends in LULCC and climate-induced changes in precipitation 

intensity for five events with varying statistical return periods (pertaining to annual exceedance 

probabilities (AEP) ranging from 20% to 0.2%) may influence future peak discharges across the 

watershed. Then, I determine how projected changes in peak discharge would affect flood hazard and 

exposure across three tributaries for a case study in Goldsboro, NC.  

Hydrologic Modeling in Neuse River Watershed 

The percent increase in peak discharge relative to a 2020 baseline scenario are shown in Figure 7 at 

the downstream outlet of each HUC 10 sub-watershed (n = 39). In 2020, the 1% AEP precipitation event 

is predicted to be 30.7 cm/24 hr (Table 7), generating a peak discharge of 1,076 cms in Goldsboro and 

821 cms in Kinston. When isolating the effects of climate in the LULCC scenario, I find that peak 

discharge remains within 20% of baseline conditions by 2100, ranging between a small decrease of 1.5% 

to an increase of 17.7% (Figure 7a). Only one HUC 10 is projected to have a decline in peak discharge, 

despite the sub-watershed experiencing an increase in exurban low- and high-density areas. When 
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controlling for the effects of LULCC, I find that the same 1% AEP precipitation event in 2100 is 

predicted to release 43.0 cm of water, a 29% volume increase over the 2020 value. The effect of this 

increase results in an increase in peak discharge between 36.9 and 79.4% across the watershed. 

Furthermore, the impact of both scenarios results in a peak discharge increase between 42.0 and 88.2%.   

Figure 7 also illustrates discharge trends across the Neuse River basin. In the LULCC scenario, the 

greatest relative increases in peak discharge occur immediately downstream of urbanizing regions around 

Wake Forest (17.7%), Kinston (16.0%), Wilson (13.5%), and New Bern (13.5%) as well as downstream 

of southeastern Raleigh through Clayton (Figure 7). This finding suggests that the role of LULCC on 

controlling increases in discharge peak becomes relatively more important as the upstream contributing 

area decreases. Outside of these regions, impervious surfaces are less concentrated, which correlates with 

marginal increases in peak discharge over the 21st century. The CC scenario predicts spatially uniform 

increases in rainfall, leading the greatest relative increases further downstream in Kinston (79.4%), 

Goldsboro (74.4%), and Smithfield (67.3%). Similarly, the combined scenario reflects both general 

downstream increases as well as greater peaks adjacent to projected urbanizing regions. This includes 

upstream of Goldsboro along the Little River (88.2%), Kinston (83.8%), and near New Bern (83.2%).   

The watershed does not respond linearly to the combined scenario that considers the joint impacts 

of climate change and land use/land cover changes. Instead, a positive, non-linear feedback, that exceeds 

the additive effect of each independent scenario on peak discharge trends is observed (Figure 8). I 

calculate this change by 2100 as the difference between the percent change in peak discharge predicted 

under the combined CC + LULCC scenario and the sum of the percent change predicted under each of the 

individual CC and LULCC scenarios. Figure 8 shows that peak discharge increases disproportionately 

more in the CC + LULCC scenario than in both the CC and LULCC scenarios when added together. A 

positive value line indicates that discharge predicted by the combined scenario exceeds the sum of the 

independent scenarios and a negative value suggests that the combined scenario is less than the sum of the 

independent scenarios. Furthermore, since the vertical distance from the horizontal line indicates the 
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magnitude of difference, smaller contributing areas demonstrate a stronger multiplier effect than larger 

areas. The majority of the 39 sub-watersheds are clustered in the positive graphical space, and are 

clumped among sub-watersheds with smaller contributing areas. This ‘washing out’ effect further 

suggests that this non-linear influence has proportionally more influence on amplifying discharge peaks 

locally where heterogeneous land use changes spatially connect more impervious and less rough land 

cover. While a few HUC 10’s plot along the zero line, and a few more indicate a weak negative non-

linear response to the combined scenario, the sub-watershed that coincides with Kinston, NC exhibits a 

strong negative non-linear response (-11.7%).  

When comparing hydrographs between 2020 and 2100 for the five AEP precipitation events, 

changes in time to peak are greatest for the AEP 10% and changes in peak discharge are greatest for the 

AEP 0.2% precipitation events relative to the other AEP precipitation events (Figure 9). While Figure 7 

only reports changes between 2020 and 2100 for the 1% AEP precipitation event and is intended to 

illustrate discharge trends that result from each scenario, Figure 9 describes changes for all five AEP 

precipitation events at a single location: USGS 02089000 near Goldsboro, NC. Both figures indicate that 

discharge increases more for lower probability events. Figure 9b further shows that the 2100 CC + 

LULCC scenario decreases time to peak by 1.6 hours (AEP 20%), 8.1 hours (AEP 10%), 6.7 hours (AEP 

2%), 4.6 hours (AEP 1%), and 3.2 hours (AEP 0.2%) relative to the 2020 baseline. The 2100 scenario 

also increases peak discharge by 329 cms AEP 20%), 577 cms (AEP 10%), 1,448 cms (AEP 2%), 1,713 

cms (AEP 1%), and 2,331 cms (AEP 0.2%) over 2020 projections. 
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Figure 7. Watershed peak discharge increases. Figure 7a represents the land use/land cover change 

scenario, Figure 7b indicates the climate change scenario, and Figure 7c illustrates the combined scenario. 

The climate change scenario reflects the increase peak discharge due to the 1% AEP precipitation event. 

Four HUC 8’s are represented as varying shades of green, and 39 HUC 10’s are represented by black 
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borders. Peak discharge increases the most in HUC 0302020116 in the LULCC (17.7%) and CC + 

LULCC (88.2%) scenario. This HUC is on the Little River upstream of Goldsboro, which experiences a 

conversion of primarily cropland to primarily low and high density suburban and urban land use around a 

town within the HUC boundary. 

 

Figure 8. Non-linear differences in peak discharge between scenarios. Percent difference between the 

increase in peak discharge predicted by the combined scenario and by the linear addition of the peak 

discharge increases derived from the two independent scenarios at the outlet of each HUC 10 sub-

watershed in the Neuse River basin. Positive values indicate a positive, non-linear effect of the combined 

scenario; points along the zero line indicate that there is a near- linear relationship between the 
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independent scenarios and the combined scenario; negative values indicate a negative, non-linear effect 

on peak-discharge. The color of the point corresponds to the location of the sub-watershed as indicated on 

the map in the bottom right. Most locations display a non-linear trend. 

Figure 10 continues this assessment by quantifying decadal trends across scenarios and different 

probabilistic storms. The LULCC-only scenario predicts linear increases in peak discharge and increases 

by a median value of 4.2% per decade over the 21st century. This is likely due to a constant rate of land 

use conversion events from primarily timber and agricultural land uses to exurban, suburban, and urban 

land uses predicted by ICLUS, which reduces the watershed’s capacity for flood retention at an almost 

constant rate. Conversely, the CC-only scenario projects that peak discharge will increase non-linearly by 

2100. Disparities in the relative increase in peak discharge become apparent in this scenario: the frequent 

20% AEP precipitation event median peak discharge increases less by 2100 than for less frequent storms. 

The median storm volume of the 0.2% AEP increases the most by 2100 (54.6%) relative to the 20% AEP 

precipitation event (48.2%). However, the combined scenario yields the greatest increases across all 

storms relative to the independent scenarios, ranging from 55.4% for the 20% AEP precipitation event 

and 59.3% for the 0.2% AEP precipitation event in 2100 relative to 2020 peaks (Figure 10). The 

combined scenario reflects many of the trends observed in the individual climate change and land use 

land cover change only scenarios. Climate plays a more dominant role in controlling the trend in 

discharge peak across the entire watershed (as shown in Figures 8 and 10). Furthermore, it is possible to 

consider the role that contributing area plays on affecting discharge peak when assessing the non-linear 

effects of the combined scenario on hydrology over just the addition of the two independent scenarios.  
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Figure 9. Change in hydrograph peak discharge and timing relative to a 2020 baseline condition. Figure 

9a reports the hydrograph for each AEP precipitation event over a two-week model run while Figure 9b 

represents changes in the time to peak for each hydrograph plotted in Figure 9a. There is an exponential 

relationship between peak discharge and timing for the five AEP precipitation events across the two time 

periods plotted. 
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Figure 10. Change in boxplot peak discharge relative to a 2020 baseline condition. Figure 10a illustrates 

the land use/land cover change scenario, Figure 10b represents the climate change scenario, and Figure 

10c is the combined scenario. Each set of boxplots demonstrate relative increases for five probabilistic 
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storm events. The 0.2% AEP precipitation event under the CC + LULCC scenario has the greatest 

increase in peak discharge (54.6%) in 2100 relative to 2020. 

Floodplain Analysis for Goldsboro, NC 

Three tributaries to the Neuse River run through Goldsboro, NC. Floodplains are shown in Figure 

11 for five AEP precipitation events in 2020 (a) and 2100 (b). Changes in inundated area vary across 

three tributaries: Little River (west Goldsboro), Big Ditch (central Goldsboro), and Stoney Creek (east 

Goldsboro). While the Little River floodplain is by far the largest within city limits (373 km2), there are 

relatively few buildings located within Little River’s current or future floodplain extent. Changes in the 

Little River floodplain are primarily northwest of Goldsboro city limits, a largely rural, uninhabited area. 

In contrast, Big Ditch has a relatively small contributing area (12 km2 relative to Little River’s 816 km2 

and Stoney Creek’s 74 km2), yet the Big Ditch floodplain and floodplain fringe are particularly developed 

as they bisect the center of Goldsboro and flow for 5 km before exiting into the Neuse.  

Figure 11. Modeled floodplain extent in Goldsboro, NC. The city boundary is defined by the black 

outline and each probabilistic floodplain extent is shown using the blue-red color spectrum. The dark red 

color represents the 20% AEP floodplain, and the blue represents the 0.2% AEP floodplain. The 20% 

AEP floodplain increases by 6 km2 between 2020 and 2100 across the three tributaries. 
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Figures 11 and 12 illustrate the extent and depth of the floodplain for three Goldsboro tributaries. 

The increase in floodplain area is relatively large, with the 20% AEP flood extent increasing by 8 km2 

with respect to 2020 and the 0.2% AEP extent expanding by 9.2 km2 under the combined scenario (Figure 

11). The spatial variability in flood depth in 2020 (a) and 2100 (b), and the difference in depth (c) for five 

probabilistic storms is plotted in Figure 11. The results demonstrate that the greatest relative changes in 

water depth occur along Stoney Creek. These relative changes increase in the upper reaches of the Creek 

as AEP precipitation event volume increases. For example, water depth in the upstream tributaries to 

Stoney Creek increases by 3.6 m between 2020 and 2100 under the 20% AEP precipitation event, but by 

5.0 meters under the 0.2% AEP precipitation event.  

When flood hazard area is plotted against building locations, changes in exposure along the Stoney 

Creek tributary are disproportionately greater than in Little River or Big Ditch under all future scenarios 

(Figure 13). Focusing on the 0.2% AEP precipitation event (Figure 13, row 5), Stoney Creek hazard area 

increases by 72.4% (LULCC), 59.0% (CC) and 179% (CC + LULCC) which results in an increase in 

exposure by 331.8%, 271.0%, and 700% respectively. This appears primarily due to variability in the 

extent of Stoney Creek, which has a low-angle right bank that provides a greater channel capacity which 

encroaches on eastern Goldsboro. While each independent scenario had varying degrees of influence on 

discharge peaks at the watershed scale (Figure 7), it appears that future predicted LULCC plays as 

important a role in the relative increase in flood hazard extent and exposure as CC since each of the 

leftmost two columns report similar findings for all probabilistic storms. 

This finding would further support the interpretation of Figure 7, which showed that the LULCC-

only scenario poses greater control on hydrologic processes than the CC-only scenario where 

heterogeneous increases in impervious surface and decreases in surface roughness connect to form 

impervious patches across the watershed (Appendix C). The combined scenario (Figure 11c) 

demonstrates that LULCC and CC generate positive, non-linear effects on flood hazard extent. 
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Figure 12. Modeled water depth (m) in Goldsboro, NC. Flood hazards in 2020 and 2100 (blue), and the 

increase in flood depth between 2020 and 2100 (orange) for each AEP precipitation events. Water depths 

increase by: 3.64 m (20% AEP); 4.17 m (10% AEP); 4.28 m (2% AEP); 4.51 m (1.0% AEP); and 5.00 m 

(0.2% AEP). 
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Where the independent projections yield increases in flood hazard extent of 3, 9, and 80% 

(LULCC: Little River, Big Ditch, Stoney Creek) and 2, 6, and 70% (CC: Little River, Big Ditch, Stoney 

Creek), the combined scenario results in a 6, 13, and 117% (Little River, Big Ditch, Stoney Creek) 

increase for the 20% AEP precipitation event in 2100. This suggests that the combined scenario only 

exceeds the sum of the independent scenarios in the Little River tributary. These results contrast with the 

0.2% AEP precipitation event, which in 2100 predicts hazard extent increases of 0.6, 9.1, and 72.4% 

(LULCC: Little River, Big Ditch, Stoney Creek), 2, 9, and 59% (CC: Little River, Big Ditch, Stoney 

Creek), and 2, 16, and 179% (CC + LULCC: Little River, Big Ditch, Stoney Creek). In this event, the 

combined scenario exceeds the sum of the independent scenarios in the Stoney Creek tributary. This 

suggests that each scenario exerts control of a similar magnitude on hydrologic processes for this low-

gradient, Piedmont to Coastal Plain watershed setting, both at the watershed scale and locally in a manner 

proportional to the degree of heterogeneous land use changes.     

The exposure to the current building stock for each flood hazard scenario is also shown in Figure 

13. Exposure increases proportionally to hazard extent in Little River and Big Ditch when isolating either 

climate change or land use/land cover change. Flood exposure increases more along Big Ditch (520 to 

581 buildings) in response to LULCC than to CC (520 to 562) under the 0.2% AEP precipitation event. 

However, the opposite is true along Little River, which experiences an increase from 608 to 624 buildings 

when isolating LULCC and from 608 to 671 buildings when isolating CC. This provides further evidence 

that contributing area influences the magnitude of impact that LULCC has on peak discharge and 

subsequent flood hazards. Stoney Creek also displays this contribution area effect on LULCC influences 

(148 to 639 buildings) relative to CC influences (148 to 549 buildings). Under the combined scenario and 

a 0.2% AEP precipitation event, 2,421 buildings are predicted to be exposed. The amplifying effect of the 

combined scenario further exacerbates exposure in Stoney Creek; the number of exposed buildings in the 

combined scenario (1184) is more than then number of exposed buildings when isolating for CC (549) 

and LULCC (639) separately. 
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Figure 13. Flood hazard extent and exposure in Goldsboro, NC. Each tributary is represented by shape 

and years are represented by color. Results are stacked by scenario (columns) and probabilistic storm 

intensity (rows). In Stoney Creek, flood hazard extent increased by 2.8 times and flood exposure 

increased eightfold under the 0.2% AEP CC + LULCC scenario. 
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Discussion 

Key Results 

Since floodplains serve as the primary marker of risk in the US and influence policies concerning 

development, risk reduction, recovery, and mitigation, this thesis aims to understand the role of future 

LULC and CC on floodplain expansion. This is especially important coastal plain areas, where most of 

the world’s human population lives and where large increases in flood risk are apparent as represented by 

increasing flood losses. In this thesis, I use the Neuse River Watershed in Eastern North Carolina to 

explore how future projections will influence floodplain hydrology, focusing on the City of Goldsboro to 

analyze what impact these changes will have on floodplain extent. This study considers the role that an 

ensemble of twenty GCM’s (CMIP5) and one land use model (ICLUS) have in predicting increases in 

future discharge and flood hazards across a primarily rural, coastal, low-lying watershed.  

I found a predominant climatic control on future discharge. I also observe a spatial decoupling 

between increases in design storm volume in the upstream regions and increases in discharge peak 

downstream. Peak discharge increases by 5% under the land use scenario, 55% under the climate 

scenario, and 62% under the combined scenario. The combined effects of climate and land cover are 

propagative, producing non-linear increases in runoff that exceed the contribution of each driver’s runoff 

individually. This has been observed previously in SE US watersheds (Huq & Abdul-Aziz, 2021; 

Lafontaine et al., 2015; Suttles et al., 2018), further underscoring the importance for research to quantify 

the controlling factors of discharge propagation so that projected flood hazards incorporate relevant 

processes into hazard analyses.  

Results suggest that peak discharge will increase at locations more immediately downstream of 

concentrated urbanizing regions in the land use land cover change scenario as well as proportionally more 

in the middle and lower Neuse watershed in the climate change scenario (Figure 10b). The 

disproportionate role that climate plays in the combined analysis underscores the watershed’s primarily 

agricultural characteristics, which reflect permeable surfaces and characteristically high surface 
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roughness. This result adds support to similar studies (Table C.5) that generally find that peak discharge 

is influenced more by climate change than by land use-land cover change. For example, discharge peaks 

increased under land use change by 54%, climate change by 20%, and the combined scenario by 84% in 

the highly urbanized Buffalo-San Jacinto watershed (2,531 km2) in the Houston, TX region (Sebastian et 

al., 2019). I found in the primarily rural Neuse watershed (16,148 km2) that discharge peaks on average 

increased under land use change by 5.3%, climate change by 54.7%, and the combined scenario by 61.7% 

under the 1% AEP precipitation event (Figure 10).  

Notable exceptions to the finding that climate is the primary driver of increasing discharge trends 

exist.  Specifically, Table C.5 suggests that land use change becomes the primary driver either where the 

watershed size is relatively small (<100 km2) that makes urbanization become disproportionately 

impactful or the watershed is already densely urbanized, like in the Atlanta, Houston, and San Antonio 

metropolitan areas (Aboelnour et al., 2019; Lafontaine et al., 2015; Sebastian et al., 2019; Zhao et al., 

2016). However, Table C.5 also finds that discharge trends in some urban metropolises, for example in 

watersheds near Las Vegas and Miami, are projected to be more influenced by climate change than land 

use change (Huq & Abdul-Aziz, 2021; Tong et al., 2016). The explanation for these exceptions could be 

attributed to the relative increases in urbanization and climate change expected in each watershed, and 

may require additional research to improve understanding of each drivers’ variable influence.   

The locations of change do not necessarily reflect floodplain extent, suggesting that hydrograph 

evaluation alone is not sufficient enough to provide insights into future hazards and hazard exposure. This 

finding also suggests that existing impervious surface has an important role in regulating the future 

influence of climate change and land use/land cover change on discharge trends. Climate change 

produced greater discharge responses than did land use/land cover at the HUC 6 to HUC 10 scale; 

however, this trend reversed locally within the City of Goldsboro by disproportionately increasing hazard 

extent and exposure. It is difficult to disentangle the principal component producing this effect since the 

City of Goldsboro is at a much smaller spatial scale than the City of Houston, the contributing area to 
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Goldsboro’s tributaries (Little River, Big Ditch, and Stoney Creek) is smaller than major tributaries near 

Houston, and because this contributing area is more rural than the degree of the city’s exurban sprawl. 

However, research conducted in the nearby Yadkin-Pee Dee Watershed of North Carolina reports 

discharge increasing at similar proportions to the findings of this research, which offers evidence that 

regional trends in climate and land use result in similar shifts to the hydrologic cycle (Suttles et al., 2018). 

Duque et al. (2022) offer an interesting theory that could physically explain the non-linear 

increases in peak discharge under the combined climate change and LULCC scenario. First, the 

translation of rainfall into runoff shifts as climate change increases the frequency of flash flood-inducing 

precipitation and expands the wet season to later in the winter, which results in longer soil moisture 

retention: a phenomenon described as “system memory”. Then, the translation of rainfall into runoff 

further shifts as LULCC limits infiltration and overland storage capacity via increased imperviousness 

and so too increases water routing efficiency via reduced surface roughness. The combination of these 

two shifts may be sufficient to shift the dynamic ratio of runoff to infiltration for all precipitation events, 

resulting in a non-linear amplification of peak discharge, timing, and volume. While the Vflo® model 

does not account for system memory during event-based simulations as in this research, this non-linear 

observation may be further exacerbated when running a continuous Vflo® model or another hydrologic 

model that specializes in soil moisture retention for balancing annual water budgets. I believe that the 

non-linear discharge increases that this research observes are the result of increasing extreme 

precipitation, which routinely exceeds the soil’s infiltration capacity, and also decreasing surface 

roughness, which limits surface water storage. Other studies underscore the critical role that forested 

lands play in retaining stormwater, which is also likely important in the Neuse.  

I also find that contributing area is an important predictor of discharge peak. As spatial changes 

occur heterogeneously across the watershed, variability in LULCC may be more important to understand 

how peak flows respond to concentrated development locally and may become more important for 

influencing peak discharge than climate change when less pervious landscapes are connected. I also 
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report predicted changes in floodplain extent in relation to the floodplain. Discharge peak increases 

projected under the RCP 8.5 and SSP 5 scenario result in an expansion of the 0.2% AEP floodplain in 

Little River by 0.5, 2, and 2.0%, in Big Ditch by 9.0%, 9.0%, and 16%, and in Stoney Creek by 72%, 

59%, and 179% under the LULCC, CC, and combined scenarios, respectively (Figure 13). I find that 

these results further increase building exposure to the floodplain across Goldsboro by 3.0%, 10%, and 

7.0% in Little River, 12%, 8.0%, and 13% in Big Ditch, and 332%, 271%, and 700% in Stoney Creek, 

respectively (Figure 13). These results are important for providing an upper estimate of floodplain area 

for the community, which signal that, depending on where people reside with respect to the floodplain, 

discharge trends are concerning for future flood exposure.    

Model Limitations 

There are several limitations to the model results. First, any model uncertainty in the ICLUS and 

CMIP5 datasets are propagative in the model framework. The ICLUS model projects land use changes as 

the result of predicted population growth, assumptions of land use zoning, and socio-economic drivers 

that may be inaccurate in the long term even if they are reasonably accurate in the near term (Prestele et 

al., 2016). The CMIP5 model ensemble predicts global climate variables daily through the end of the 

century, and the assumptions that predicate each model, inter-model variability, and overall accuracy are 

explored elsewhere (Knutti & Sedláček, 2013; Liu et al., 2014; C. Wang et al., 2014). However, it is 

important to note that deriving specific weather events from multi-decadal climatic trends is not 

representative of future variability. Here, my decision to consider the median of all 20 CMIP5 model 

outputs assumes that I weigh the predictive ability of each model equally, when I am uncertain whether 

any of the models will perform well over time. Future work can quantify these uncertainties by assessing 

which models have most consistently predicted extreme precipitation since 2005 and proportionally 

weigh their relative influence.  

Second, I chose to use a 50-year moving window approach and a Gumbel GEVD to predict the 

future AEP precipitation event volume. While the 30-year approach is common and is shown in Appendix 
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A, I opted for a longer moving window to reduce short-term variability in climate projections. I also 

recognize that future precipitation may not fit the Gumbel distribution as future precipitation extremes 

may become more tail dependent, which is not well represented by the Gumbel. Other research has 

considered the L-moment or the Weibull distribution for future extreme precipitation (Pokhrel et al., 

2020). My research also assumes an SCS Type II distribution for precipitation, which defines the sub-

daily distribution of rainfall for the inland United States (USDA, 1986). While this distribution is 

appropriate for small watersheds in the study region, it is unknown whether and how the sub-daily 

distribution of rainfall will change (Awadallah et al., 2016). Future work could determine model 

sensitivity to different rainfall intensities or consider the impact of different IDF curves.  

Third, there are also uncertainties that arise from the model framework. Decisions concerning 

reservoir releases are difficult to model in Vflo®, the use of rating curves for calibration and validation is 

limited to gaged locations, and the physical representation of hysteresis is not preserved in Vflo®, thus 

making it difficult to match the receding limb of the observed storm hydrograph. A single pair of rating 

curves defines the stage-storage and stage-discharge relationship at Falls Dam, which prevents the model 

from capturing variations determined by operating procedures that control dam releases by limiting 

flooding downstream. Vflo® routes water using the Kinematic Wave approximation of the shallow water 

equations by conserving mass but not momentum. As such, backwater effects are not captured and result 

in uncharacteristically efficient channel hydrologic routing. This limitation is difficult to resolve without 

using a different hydrologic model or measuring stage discharge and stage storage relationships in 

ungaged locations, which was outside of the project scope. This is particularly important for considering 

the appropriateness of reporting changes in peak discharge at locations that were not explicitly calibrated 

(ie. at USGS stations), and likely explains negative non-linear outliers in Figure 8. I chose to proceed with 

the Vflo® model because the model excels at defining distributed land cover and soil infiltration, despite 

these concerns.  
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Policy Recommendations 

Floods pose risks to individuals, communities, and critical infrastructure. This is particularly 

concerning for communities along large rivers, especially in coastal plain regions that are susceptible to 

heavy mesoscale convective systems and tropical cyclones events. The risk of these flood hazards is 

further amplified because of the population density and low-lying landscape of coastal regions. Cities 

along large rivers like Goldsboro must also contend with positive trends in discharge that yield increasing 

fluvial hazards (Archfield et al., 2016; Dethier et al., 2020). Consequently, these discharge trends are 

predicted to further intensify as climate change impacts storm magnitude and frequency.  

Policy recommendations consistent with these findings include the reassessment of land use zoning 

policy along the floodway and floodplain fringe, the incorporation of model frameworks like the one 

demonstrated in this research into Strategic Plans at the city or watershed scale, and the distribution and 

dissemination of projected flood hazard maps as a science communication and risk assessment tool. My 

research finds that LULCC has a disproportionate impact on regulating discharge where impervious 

surface increases are relatively large and physically connected, making land use zoning policy crucial for 

limiting the increase in hazard magnitude and frequency at a local level. Brody et al. (2017) found that 

large, contiguous, natural open spaces yield flood mitigation benefits, which leads me to recommend 

maintaining such lands across the watershed, especially forested and wetland areas in rural settings and 

passive agricultural lands in more urban environments as suggested by Brody et al. (2014). Floodplain 

maps frequently underestimate current flood hazards due to incomplete data and intermittent updates 

(Pricope et al., 2022). Municipalities concerned with future flooding can choose to enact modeling 

frameworks like this one to determine more stringent development regulations that target the reduction of 

flood exposure. Individuals informed of their property’s flood risk are additionally more likely to 

proactively engage in risk management, knowledge that is often communicated through engagement 

(Mojtahedi & Oo, 2017).  
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Conclusion 

This study evaluates the independent and combined effects of climatic and land cover changes on 

trends in watershed hydrology and flood hazards to understand the role that each driver poses in the near 

future. I model changes in stormwater peak flows, flood depth and extent and quantify the 20%, 10%, 

2.0%, 1.0%, and 0.2% annual exceedance probability 24-hour design storms for discharge over the 21st 

century. Near Goldsboro, future LULCC and CC result in an increase in peak discharge by 51.1%, 74.4%, 

87.6%, 79.3%, and 68.4% with respect to the 20%, 10%, 2.0%, 1.0%, and 0.2% annual exceedance 

probability 24-hour design storms. I find that the effects of climate change on peak streamflow are greater 

than the effects of land use/land cover change. The effect of combining both climate change and LULCC 

drivers on peak discharge is often greater than the sum of their independent effects and at sub-watershed 

outlets can result in up to a 7% peak discharge excess over the sum of each driver’s peak discharge.  

Peak flows are input to three Hydrologic Engineering Center River Analysis System models for the 

City of Goldsboro to assess changes in flood extent and building exposure over the 21st century. The 

influence of hydrologic peak changes on floodplain extent varies considerably across the City of 

Goldsboro. In the Big Ditch tributary, future LULCC and CC result in an increase in hazard area by 

13.3%, 11.4%, 15.5%, 14.4%, and 15.5% with respect to the 20%, 10%, 2.0%, 1.0%, and 0.2% annual 

exceedance probability 24-hour design storms. These projections would result in an increase in building 

exposure by 13.6%, 10.3%, 13.4%, 13.1%, and 12.7%, respectively. In the Little River tributary, the 20%, 

10%, 2.0%, 1.0%, and 0.2% annual exceedance probability 24-hour design storms lead to hazard area 

increases of 6.0%, 4.1%, 2.0%, 1.7%, and 1.5% and result in building exposure increases of 22.8%, 9.6%, 

8.3%, 8.5%, and 7.1%. Finally, hazard area increases in the Stoney Creek tributary of 117%, 115%, 

123%, 134%, and 179% respectively result in building exposure increases of 729%, 757%, 607%, 598%, 

and 700%.  

My findings have important implications for informing city and regional planning efforts to constrain 

the potential hydrologic impacts of land use decisions as well as provide residents with spatiotemporal 
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hazard projections so that they may understand their property’s evolving flood risk. These changes in 

flood hazard have implications in the near term because they can inform individuals who reside outside of 

the effective floodplain, who do not have flood insurance, but are predicted to be exposed to this natural 

hazard.  
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APPENDIX A. CLIMATE MODEL WINDOWS 

Figure 14. Annual maximum precipitation using a 30-year moving window. 
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Figure 15. Annual maximum precipitation using a 50-year moving window.  
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APPENDIX B. ADDITIONAL TABLES 

Table 3. Model Comparison for LULCC Projections modified from Sohl et al. (2016). 

Model Name Temporal 

Coverage 

Time 

Step  

Spatial 

Resolution 

Thematic 

Resolution 

Geographic 

Coverage 

Scenarios 

FORE-SCEa 1992-2100 Annual 250 m 17 classes CONUS 4 

NRIb 2001-2051 Start, End 100 m 5 classes CONUS 5 

FS-RPAc 1997-2060 Decadal County 5 classes CONUS 3 

ICLUSd 1970-2100 Decadal 100 m  18 classes CONUS 4 

IMAGE SRESe 1970-2100 Decadal 0.5º 19 classes Global 4 

IMAGE OECDf 1970-2100 5 Years 0.5º 19 classes Global 5 

RCPg 2005-2100 Decadal 0.5º Variable Global 4 

GCAM CONUSh 2005-2095 Annual 0.05º 19 classes CONUS 3 

a Sohl et al. (2016); b Lawler et al. (2014); c Wear (2013); d Bierwagen et al. (2010); e Strengers et al. 

(2004); f Alkemade et al. (2012); g Hurtt et al. (2011); h West and Le Page (2014) 
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Table 4. Reclassification of ICLUS land uses into land cover percent imperviousness. 

Code Imperviousness ICLUS Description Reference Description 

0 0.00 natural water NA 

1 0.00 reservoir/canal NA 

2 0.01a wetland emergent herbaceous wetlanda 

3 0.09 a recreation/conservation other grasses 

4 0.05 a timber mixed forest 

5 0.05 a grazing hay/pasture 

6 0.05 a pasture hay/pasture 

7 0.08 a cropland row crops 

8 0.17 a mining/barren land transitional barren 

9 0.09 a parks/golf course other grasses 

10 0.12 b exurban/low density residential; 1/2-ac lot 

11 0.21 b exurban/high density residential; 1/4-ac lot 

12 0.28 b suburban residential; 1/8-ac lot 

13 0.42 a urban/low density low density residential 

14 0.77 a urban/high density high density residential 

15 0.57 a commercial commercial/industrial 

16 0.57 a industrial commercial/industrial 

17 0.35 b institutional industrial; office 

18 0.81 b transportation streets and easements 

a values obtained from Exum et al. (2005) 

b values obtained from Zuellig et al. (2008) 
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Table 5. Reclassification of ICLUS land uses into land cover Manning’s roughness.Source: Kalyanapu et 

al.(2009)). 

Code Roughness ICLUS Description Reference Description 

0 0.0010 natural water open water 

1 0.0010 reservoir/canal open water 

2 0.1825 wetland emergent herbaceous wetlands 

3 0.0404 recreation/conservation developed/open space 

4 0.4000 timber mixed forest 

5 0.3680 grazing grassland/herbaceous 

6 0.3250 pasture pasture/hay 

7 0.3250 cropland cultivated crops 

8 0.0113 mining/barren land barren land 

9 0.0404 parks/golf course developed/open space 

10 0.0678 exurban/low density developed/low intensity 

11 0.0678 exurban/high density developed/medium intensity 

12 0.0678 suburban developed/medium intensity 

13 0.0404 urban/low density developed/medium intensity 

14 0.0404 urban/high density developed/high intensity 

15 0.0404 commercial developed/high intensity 

16 0.0404 industrial developed/high intensity 

17 0.0404 institutional developed/high intensity 

18 0.0404 transportation developed/high intensity 
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Table 6. ICLUS-predicted land use change from 2020 to 2100. Net loss of land area is represented in red 

on the far-right column. 

Land Use Land Use Gains (km2) Land Use Losses (km2) Net Change (km2) 

Commercial 127 - 127 

Exurban High Density 1280 852 428 

Exurban Low Density 635 898 -263 

Industrial 39.4 - 39.3 

Suburban 1109 441 668 

Urban High Density 65.1 0.78 64.3 

Urban Low Density 835 104 731 

Cropland - 845 -845 

Grazing - 32 -32 

Pasture - 3.59 -3.59 

Timber - 810 -810 

Wetlands - 104 -104 
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Table 7. CMIP5-predicted rainfall volumes from 2000 to 2100. Projections are determined using an 

ensemble of 20 CMIP5 models with a gumbel distribution and a 50-year moving window. 

Year 20% AEP (cm) 10% AEP (cm) 2% AEP (cm) 1% AEP (cm) 0.2% AEP (cm) 

2000 18.2 21.3 27.9 30.7 37.1 

2010 18.6 21.7 28.6 31.5 38.0 

2020 19.4 22.7 30.2 33.4 40.8 

2030 20.7 24.6 33.1 36.7 45.0 

2040 20.7 24.6 33.2 36.9 45.4 

2050 21.0 24.8 33.5 37.3 45.8 

2060 21.5 25.6 34.7 38.6 47.5 

2070 22.1 26.2 35.2 39.0 47.8 

2080 22.0 26.4 35.6 39.5 48.4 

2090 23.7 28.3 38.4 42.7 52.3 

2100 24.2 28.6 38.8 43.1 53.1 
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Table 8. Literature review of trends in scenario-based discharge projections. The Neuse River watershed 

is predicted to respond to LULCC, CC, and their combined effects similarly to the Las Vegas Wash of 

Nevada and the Yadkin-Pee Dee of North Carolina. 

Watershed Drainage 

Area (km2) 

Temporal Range Discharge % Increase 

LULCC CC Combo 

1 Little Eagle, IN 75 1992 to 2011 27 23 46 

2 Hinkson, MO 231 2018 to 2050 2 12 14 

3 Conestoga, PA  1,217 1970-1999 to 2025-2034 0.4 10 - 

4 Buffalo-San Jacinto, TX 2,531 1900 to 2017 54 20 84 

5 Las Vegas Wash, NV 4,855 2010 to 2050 5 43 59 

6 Southeast Coasts, FL 7,117 2010 to 2080 26 87 118 

7 San Antonio, TX 10,826 2020-2049 to 2070-2099 47 - 58 

  Neuse, NC 16,149 2020 to 2100 5 55 62 

8 Yadkin-Pee Dee, NC 17,780 1992 to 2060 6-24 13-43 4-63 

9 Puget Sound, WA 31,000 1970-2000 to 2050 6 9 - 

10 Apalachicola-

Chattahoochee-Flint, GA 

50,700 2000 to 2090 - 20 83 

1 Aboelnour et al., (2019); 2 Sunde et al., (2018); 3 Chang et al., (2003); 4 Sebastian et al., (2019); 5 

Tong et al., (2016); 6 Huq & Abdul-Aziz, (2021); 7 Zhao et al., (2016); 8 Suttles et al., (2018); 9 Cuo et 

al., (2011); 10 Lafontaine et al., (2015) 
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APPENDIX C. ADDITIONAL FIGURES 

 

 

Figure 16. Impervious surface increases between 2020 and 2100 in the Neuse River watershed. The 

ICLUS model predicts the greatest relative increase in impervious surfaces to be along urban corridors, 

primarily between Raleigh and Smithfield in the NW, Wilson in the N, Kinston in the S, and New Bern in 

the SE of the watershed. Urban growth is predicted to primarily be urban sprawl as opposed to urban 

infilling, consistent with the SSP5 scenario. 
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Figure 17. CMIP5-predicted annual daily maximum precipitation. Thick horizontal lines represent the 

median, the grey box represents the first and third quartiles, and the whiskers represent the minimum and 

maximum of the data set. Empty circles represent outliers. Under a Mann-Kendall test, we find that there 

is a significant monotonic trend in the median annual daily maximum precipitation is at a 95% confidence 

interval because our p-value of 4.1e-10 is less than 0.05. We also find that this trend is increasing since 

our tau is positive (3.45e-01). The CMIP5 model ensemble agree that an overall increase in precipitation 

volume will occur by the end of the century, with an average annual increase of 0.35 cm per year.  
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APPENDIX D. RATING CURVES 

 

Figure 18. Rating Curves at USGS 02087183. 

 

Figure 19. Rating Curves at USGS 02087275. 
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Figure 20. Rating Curves at USGS 02087275. 

 

Figure 21. Rating Curves at USGS 02088000. 
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Figure 22. Rating Curves at USGS 02089000. 

 

Figure 23. Rating Curves at USGS 02089500. 
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Figure 24. Rating Curves at USGS 02091500. 

 

Figure 25. Rating Curves at USGS 0208758850. 
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Figure 26. Rating Curves at Lake Benson. 

 

Figure 27. Rating Curves at Town of Beulah. 
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Figure 28. Rating Curves at Lake Wheeler. 

 

Figure 29. Rating Curves at Town of Wilson Mills. 
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