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ABSTRACT

Tamy Harumy Moraes Tsujimoto: Statistical Methods for Receiver Operating
Characteristic (ROC) Curves in Complex Sampling Surveys

(Under the direction of Dr. Jianwen Cai)

Sample surveys are critical in providing information in a broad range of areas, serving

as a valuable resource for guiding actions and policies. Classical methods in inferential

statistics assume that the observations were selected according to a simple random

sampling from a population of interest. However, in large-scale surveys, the final sample

usually does not represent a simple random sample of independent, identically distributed

observations from an infinite population. Instead, these studies use complex survey designs,

including stratification, multistage cluster sampling, and unequal selection probabilities

to obtain a representative sample more efficiently in terms of time and cost. Failure

to account for the complex survey design may result in biased parameter estimators,

underestimated standard errors, and possibly misleading conclusions.

The receiver operating characteristic (ROC) curve is the most popular tool used to

evaluate the accuracy of diagnostic tests measured on a continuous scale. Currently,

analyses based on the ROC curve have been performed on data arising from complex survey

samples ignoring the sampling scheme. For our first topic, we propose a nonparametric

estimator for the ROC curve that accounts for complex survey sampling and establish its

uniform convergence. The properties of the estimator are evaluated through simulation

studies and illustrated using the National Health and Nutrition Examination Survey

(NHANES).

Nonresponse is a common issue in surveys and can induce bias if not adequately

accounted for. For our second topic, we propose an IPW estimator for the ROC curve to
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accommodate the case where the diagnostic test is missing. The theoretical properties

of the estimator are developed and evaluated using simulation studies. The proposed

estimator is then applied to the NHANES data.

In many applications, it is desired to study the covariate effects on the accuracy of a

diagnostic test. In our third topic, we adapt a popular model referred to as ROC-GLM

to account for complex survey designs. Simulation studies show that our design-adjusted

ROC-GLM model performs well compared to the original model, which was developed

for simple random sampling. To illustrate our method, we study the effect of age on the

accuracy of a diabetes assessment calculator.

iv



To my past and future self, with love and compassion.

v



ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Jianwen Cai, for her support and guidance

during the dissertation process. Her constructive suggestions and kindness in moments

of doubt were crucial for the success of this work. I am also grateful to my committee

members, Dr. Feng-Chang Lin, Dr. Colin Orr, Dr. Bonnie Shook-Sa, and Dr. Donglin

Zeng, for their valuable feedback and suggestions for this research.

I would not have pursued this Ph.D. if it were not for great mentors that empowered me.

Thank you, Dr. Antonio Carlos Pedroso de Lima and Dr. Julio Singer, for encouraging me

to improve as a statistician. Thank you also to Dr. Pranab Sen for being my first contact

at UNC and being vital in securing the funding from the Coordenação de Aperfeiçoamento

de Pessoal de Nı́vel Superior (CAPES) (88881.128210/2016-01) that supported this work.

Thank you to my dear friends Andre Assumpcao, Ana Carolina Rios, and their

daughter Stella Assumpcao Rios for being my family here in Chapel Hill, sharing special

moments that will forever be in my heart. Thank you to my friends Hunyong Cho and

Jinyoung Park for all the fantastic moments we spent together. And thank you to my

dear Brazilian friends Damaris Regina and Tuany Castro for staying close, even from far

away, and for constantly reminding me to be kind to myself.

Thank you to my parents, Elaine Tsujimoto and Luiz Tsujimoto, and my siblings,

Thais Tsujimoto and Leonardo Tsujimoto, for all the love and for believing in me even

when I did not believe in myself. To my love and friend, Victor Ritter, for supporting me

in every way possible during this process. Thank you to my dog, Mochi, who patiently

stayed by my side, filling me with love and joy. Finally, thank you, Tamy, for not giving

up. You are more capable than you think, and this work is proof that you can do anything

you dream of.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1: INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Complex Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Modes of Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Nonresponse in survey sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2.1 Missing Data Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2.2 Weighting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2.3 Imputation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Receiver Operating Characteristic (ROC) Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Diagnostic medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Definition of ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 ROC curve estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3.1 Non-parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3.3 Semiparametric estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Covariate-specific ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4.1 Induced Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 ROC curve in the presence of incomplete data . . . . . . . . . . . . . . . . . . . . . 15

vii



2.2.5.1 Missing disease status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5.2 Missing diagnostic test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 ROC curve for complex survey sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3: RECEIVER OPERATING CHARACTERISTIC CURVE
FOR COMPLEX SURVEY DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Assumptions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 ROC curve for complex survey sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 4: RECEIVER OPERATING CHARACTERISTIC CURVE
FOR COMPLEX SURVEY DATA IN THE PRESENCE OF MISSING
BIOMARKER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Assumptions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 ROC curve for complex survey sampling in the presence of
missing biomarker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER 5: COVARIATE-SPECIFIC RECEIVER OPERATING CHAR-
ACTERISTIC CURVE FOR COMPLEX SURVEY DATA . . . . . . . . . . . . . . . . . . . . 63

viii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 ROC-GLM model for simple random samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 ROC-GLM model for complex survey data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Results for the model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Results for the ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

CHAPTER 6: DISCUSSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX 1: TECHNICAL DETAILS FOR CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . 91

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2 Supplemental Simulation Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

APPENDIX 2: TECHNICAL DETAILS FOR CHAPTER 4 . . . . . . . . . . . . . . . . . . . . . . 101

B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ix



LIST OF TABLES

4.6.1 Relative Bias (in %) of the IPW, CC, and UN estimators for the
super-population ROC curve under SSRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.2 Relative Bias (in %) of the IPW, CC, and UN estimators for the
super-population ROC curve under STSCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.3 Estimates of empirical (EMP) and asymptotic standard error of
the IPW, CC, and UN estimators for the super-population ROC
curve under SSRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.4 Estimates of empirical (EMP) and asymptotic standard error of
the IPW, CC, and UN estimators for the super-population ROC
curve under STSCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.5 Coverage Probability (in %) of the IPW, CC, and UN estimators
for the super-population ROC curve under SSRS. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.6 Coverage Probability (in %) of the IPW, CC, and UN estimators
for the super-population ROC curve under STSCS. . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.7 Descriptive Statistics of adults aged 20 years or more, excluding
pregnant women, that had FPG results in NHANES 1999-2006. . . . . . . . . . . . 61

5.7.1 Simulation results for design-adjusted (SVYW) and unadjusted
(UN) ROC-GLM model parameters for stratified simple random
sample (SSRS), and stratified two stage cluster sampling (STSCS).
λ: sampling fraction; p: disease proportion; RB: relative bias (in %);
EM: empirical standard error; SE: standard error; CP: empirical
coverage probability for nominal 95% confidence intervals (in %). . . . . . . . . . 83

5.7.2 Simulation results of relative bias (in %) for estimated covariate-
specific ROC curve using design-adjusted (SVYW) and unad-
justed (UN) ROC-GLM models for stratified simple random sam-
ple (SSRS), and stratified two stage cluster sampling (STSCS). W :
covariate value; λ: sampling fraction; p: disease proportion. . . . . . . . . . . . . . . . 84

5.7.3 Simulation results of empirical (EM) and boostrap standard errors
for the covariate-specific ROC curve using design-adjusted (SVY)
and unadjusted (UN) ROC-GLM models for stratified simple ran-
dom sample (SSRS). W : covariate value; λ: sampling fraction; p:
disease proportion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



5.7.4 Simulation results of empirical (EM) and boostrap standard er-
rors for the covariate-specific ROC curve using design-adjusted
(SVY) and unadjusted (UN) ROC-GLM models for stratified two
stage cluster sampling (STSCS). W : covariate value; λ: sampling
fraction; p: disease proportion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7.5 Simulation results of empirical coverage probability (in %) for nom-
inal 95% boostrap confidence intervals for the estimated covariate-
specific ROC curve using design-adjusted (SVYW) and unad-
justed (UN) ROC-GLM models for stratified simple random sam-
ple (SSRS), and stratified two stage cluster sampling (STSCS). W :
covariate value; λ: sampling fraction; p: disease proportion. . . . . . . . . . . . . . . . 87

5.7.6 Survey-weighted and weighted fitted ROC-GLM model with probit link. . . 88

A.2.1Relative Bias (in %) of the SVY, WT, and UN, estimators for the
super-population ROC curve with finite population size N , disease
proportion p, and sampling fraction λ under SSRS. . . . . . . . . . . . . . . . . . . . . . . . 95

A.2.2Relative Bias (in %) of the SVY, WT, and UN estimators for the
super-population ROC curve with finite population size N , disease
proportion p, and sampling fraction λ under STSCS. . . . . . . . . . . . . . . . . . . . . . 96

A.2.3Estimates of empirical (EMP) and asymptotic standard error of
the SVY, WT, and UN estimators for the super-population ROC
curve with finite population size N , disease proportion p, and
sampling fraction λ under SSRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2.4Estimates of empirical (EMP) and asymptotic standard error of
the SVY, WT, and UN estimators for the super-population ROC
curve with finite population size N , disease proportion p, and
sampling fraction λ under STSCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.2.5Coverage Probabilities (in %) for 95% confidence intervals of the
UN, WT, and SVY estimators for the super-population ROC curve
with finite population size N , disease proportion p, and sampling
fraction λ under SSRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.6Coverage Probabilities (in %) for 95% confidence intervals of the
UN, WT, and SVY estimators for the super-population ROC curve
with finite population size N , disease proportion p, and sampling
fraction λ under STSCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



LIST OF FIGURES

3.5.1 Relative Bias (in %) of the UN, WT, and SVY estimators for the
super-population ROC curve with finite population size N , disease
proportion p, and sampling fraction λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Empirical and Asymptotic Standard Error (in %) of the UN, WT,
and SVY estimators for the super-population ROC curve with finite
population size N , disease proportion p, and sampling fraction λ. . . . . . . . . . 34

3.5.3 Coverage Probabilities (in %) of the UN, WT, and SVY estimators
for the super-population ROC curve with finite population size N ,
disease proportion p, and sampling fraction λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.4 Unweighted (UN) and survey weighted (SVY) estimates ROC
curves and survey weighted 95% confidence interval for NHANES data. . . . 36

4.6.1 Relative Bias (in %) of the IPW, CC, and UN estimators for the
super population ROC curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.2 Empirical and Asymptotic Standard Errors of the IPW, CC, and
UN estimators for the super population ROC curve. . . . . . . . . . . . . . . . . . . . . . 54

4.6.3 Coverage Probabilities (in %) of the IPW, CC, and UN estimators
for the super-population ROC curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.4 Estimated ROC curves using IPW, complete-case and unweighted
method for the NHANES target population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7.1 Relative Bias (in %) for the design-adjusted and unadjusted esti-
mated parameters from the ROC-GLM model by sampling fraction,
disease proportion, and sampling design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7.2 Empirical and bootstrap standard error for the design-adjusted
and unadjusted estimated parameters from the ROC-GLM model
by sampling fraction, disease proportion, and sampling design. . . . . . . . . . . . . 78

5.7.3 Empirical coverage probability for nominal 95% confidence intervals
of the design-adjusted and unadjusted parameters from the ROC-
GLM model by sampling fraction, disease proportion, and sampling
design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.4 Relative Bias (in %) for the estimated covariate-specific ROC curve
from the design-adjusted and unadjusted ROC-GLM models by
sampling fraction, disease proportion, and sampling design. . . . . . . . . . . . . . . . 80

xii



5.7.5 Empirical and bootstrap standard error for the estimated covariate-
specific ROC curve from the design-adjusted and unadjusted ROC-
GLM models by sampling fraction, disease proportion, and sam-
pling design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7.6 Empirical coverage probability for nominal 95% confidence inter-
vals of the covariate-specific ROC curve from the design-adjusted
and unadjusted ROC-GLM models by sampling fraction, disease
proportion, and sampling design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7.7 Estimated ROC curves with 95% boostrap confidence interval
(shaded) from unweighted ROC-GLM model (dashed) and the
proposed design-adjusted ROC-GLM model (solid) according to
age group in the NHANES target population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiii



CHAPTER 1: INTRODUCTION

Sample surveys are critical in providing information in a broad range of areas, serving

as a valuable resource for guiding actions and policies. In the United States, the National

Center for Health Statistics (NCHS) is the principal health statistics agency under the

Center for Disease Control (CDC). It conducts several population surveys, such as the

National Health and Nutrition Examination Survey (NHANES), the National Health

Interview Survey (NHIS), and the National Survey of Family Growth (NSFG). These

large-scale surveys use complex sampling designs, including stratification, multistage

cluster sampling, and unequal selection probabilities to obtain a representative sample

more efficiently in terms of time and cost (Pfeffermann and Rao, 2009). Failure to account

for the complex survey design may result in biased parameter estimators, underestimated

standard errors, and possibly misleading conclusions (Heeringa et al., 2017).

A common use of large-scale surveys is to evaluate the accuracy of diagnostic tests.

For example, Olson et al. (2010) and Higgins et al. (2011) compared the accuracy of A1C

and oral glucose tolerance tests (OGTT) as diagnostic tests for diabetes and pre-diabetes

using NHANES data. Laurson et al. (2011) evaluated the accuracy of percent body fat in

identifying metabolic syndrome in adolescents, using data from NHANES.

The receiver operating characteristic (ROC) curve is the most popular tool used to

evaluate the accuracy of diagnostic tests measured on a continuous scale. This work

is motivated by the recent applications of ROC curves in large-scale surveys without

completely accounting for the complex survey design. Some applications use outputs

from design-adjusted regression models as inputs when constructing the (unweighted)

ROC curves (Gaziano et al. (2008), Zhang et al. (2014)), while others use ROC curves to

1



evaluate the discriminatory performance of biomarkers ignoring the complex sampling

design (Ferraro et al. (2010), DeBoer and Gurka (2014)).

Currently, there is little literature dealing with ROC curves in the context of complex

survey data. Bisoffi et al. (2000) used bootstrap and jackknife methods to approximate

standard error for the area under the ROC curve (AUC) for a two-phase sampling design.

More recently, Yao et al. (2015) proposed a nonparametric estimator for the AUC that

accounts for complex sampling, and employed jackknife method and balanced repeated

replication for the variance estimation. To the best of our knowledge, the theoretical

properties of a nonparametric estimator of the ROC curve accounting for complex survey

sampling have not been fully developed, and will be the main focus in the first topic of this

dissertation. We propose a nonparametric estimator for the ROC curve that accounts for

complex survey sampling, and establish the uniform convergence using results presented

in Han and Wellner (2021), combined with empirical processes arguments. Simulation

studies showed that our proposed estimator is approximately unbiased and its estimated

asymptotic variance is close to the empirical variance, with improved performance for larger

sample size and disease proportions. The proposed method was applied to the National

Health and Nutrition Examination Survey (NHANES) to evaluate the discriminatory

ability of a traditional risk calculator for undiagnosed diabetes.

A common issue in large-scale surveys is the presence of missing biomarker values due

to various reasons such as study drop-out or loss of information caused by uncontrollable

factors. Due to the limited availability of statistical methods, analyses using ROC curves

on complex survey data is currently done by ignoring the sampling scheme, and include

only participants without missing data on the variables of interest. Most methods for

handling nonresponse fall within inverse probability weighting (IPW) techniques and

imputation strategies. IPW methods rely on a model for the response probability given a

set of predictors (response model). In contrast, imputation approaches based on statistical

prediction rules rely on models for the partially observed variables given the fully observed
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variables (imputation models). A third class of methods combines IPW and imputation

methods, called augmented IPW (AIPW) estimators, and has the property of being

doubly robust to model misspecifications. For our second topic, we propose an IPW

estimator for the ROC curve to accommodate the case where the diagnostic test is

missing. The theoretical aspects of the estimator are developed following Han and Wellner

(2021), combined with empirical process arguments. Simulation studies showed that our

proposed estimator performs well, with a better performance than the estimators that do

not account for survey design or missingness, especially for higher missing proportions.

The proposed estimator was applied to the same data from Chapter 3 to evaluate the

discriminatory ability of the risk calculator for undiagnosed diabetes accounting for the

missing observations.

In many applications, it is desired to study the effects of covariates on the discrim-

inating capacity of a diagnostic test. For example, disease severity may impact the

marker accuracy, with less severe cases being more dificult to distinguish from controls.

Currently, there are three major existing approaches to evaluate the covariate effects on

the ROC curve (Pepe, 1998). In the first class of approaches, called induced methods,

the distributions of the diagnostic test in the diseased and non-diseased populations are

modeled separately, from which the ROC curve is computed. The second class considers

regression models for the area under the ROC curve (AUC). Lastly, in the third approach,

called direct methods, the covariate effects on the ROC curve are modeled directly. The

latter class is often referred to as parametric distribution-free (PDF) models, since a

parametric model is assumed for the ROC curve, but the distributions of the diagnostic

tests remaing unspecified. For our third topic, we adapt the PDF model referred to as

ROC-GLM model proposed by Pepe (2000a) and Alonzo and Pepe (2002) to account for

complex survey designs. Simulation studies show that our design-adjusted ROC-GLM

model performs well compared to the original model, which was developed for simple
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random sampling. To illustrate our method, we study the effect of age on the accuracy of

a diabetes assessment calculator.

This dissertation aims to fill the gaps by proposing methods for the ROC curve in

the context of complex survey designs, and it is organized as follows. Chapter 2 provides

the literature review comprising methods in complex survey data and the ROC curve.

Chapter 3 presents a design-adjusted nonparametric estimator for the ROC curve and uses

empirical process arguments to develop the estimator’s asymptotic properties. Chapter

4 proposes an IPW estimator for the ROC curve to handle the case where a portion of

the diagnostic test is missing in survey sampling. Finally, in Chapter 5 we adapt the

ROC-GLM model proposed by Pepe (2000a) and Alonzo and Pepe (2002) to account for

complex survey designs.
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CHAPTER 2: LITERATURE REVIEW

2.1 Complex Surveys

Sample surveys play a critical role in providing information in a broad range of areas,

serving as a valuable resource for guiding actions and policies. In the United States, the

National Center for Health Statistics (NCHS) is the principal health statistics agency

under the Center for Disease Control (CDC). It conducts several population surveys,

such as the National Health and Nutrition Examination Survey (NHANES), the National

Health Interview Survey (NHIS), and the National Survey of Family Growth (NSFG).

Classical methods in inferential statistics assume that the observations were selected

according to a simple random sampling from a population of interest. However, in

large-scale surveys the final sample usually does not represent a simple random sample

of independent, identically distributed observations from a population. Instead, these

studies generally use complex survey designs, including stratification, multistage cluster

sampling, and unequal selection probabilities to obtain the ultimate study sample. Failure

to account for the complex survey design may result in biased parameter estimators,

underestimated standard errors, and possibly misleading conclusions (Heeringa et al.,

2017).

For further elaborations, let UN be a finite population of size N with elements

indexed by i ∈ {1, · · · , N}. Each index i is associated with a unique vector (yi, xi, zi) ∈

Rp × Rk × Rq
+ representing the characteristics of interest, the auxiliary information,

and the sampling design information available at the time of the design of the survey

on all units, respectively. For a sample s drawn according to a sampling design p(.),

where p(s) = P (sample s is selected), define the sampling indicator ξi = I(i ∈ s), to
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specify whether the i-th unit is in the sample or not, and the inclusion probability

πi =
∑

s:i∈s p(s) = P (ξi = 1) of the unit i being in the sample, computed from all possible

samples that contain the unit i.

2.1.1 Modes of Inference

When analyzing complex survey data, one may formulate the question of interest

around finite-population quantities, such as population totals, means, and proportions,

or around the statistical model generating the finite population. We refer to the first as

descriptive studies and the latter as analytic studies.

When targeting finite-population quantities, the design-based (or randomization-

based) inference remains the dominant approach. In this framework, the yi’s are considered

fixed but unknown quantities, and the only source of randomness comes from the joint

distribution of the random variables {ξ1, · · · , ξN} (Pfeffermann (2000), Lohr (2019)). This

framework also requires that the selection probabilities πi’s are known for all units in the

population.

For studies where the questions of interest are around the parameters of the statistical

model generating the finite population, the model-based approach is often employed.

In this context, it is assumed that {(yi, xi, zi)}Ni=1 are realizations of random variables

(Y,X,Z) defined on the same probability space. The distribution of (Y,X,Z) is called a

super-population model, and supplies the link between units in the sample and units not

in the sample (Rubin-Bleuer et al. (2005), Lohr (2019)).

An alternative approach of inference for survey sampling combines design-based

and model-based inference, and it is known as joint inference. Under this framework,

the finite population is viewed as a realization of a statistical model (super-population

model), and a sample is drawn from this finite population according to a sampling design.

Inference under this approach requires explicitly accounting for two sources of randomness.

The first source is the model-based randomness arising from the difference between the
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finite-population quantity and the superpopulation parameter, and the second source

is the design-based randomness resulting from the difference between the sample-based

estimator and the finite-population quantity (Pfeffermann, 2000).

2.1.2 Nonresponse in survey sampling

A common issue in large-scale surveys is the presence of nonresponse. If the respon-

dents and nonrespondents have similar behavior, the nonresponse can be ignored in the

statistical analysis. However, ignoring the nonresponse may lead to biased results if the

characteristics of respondents and nonrespondents are considerably different.

Data can be missing for the entire unit observation (unit nonresponse), or partially

missing when at least one questionnaire item is missing (item nonresponse). To elaborate

on methods to handle nonresponse, define the random variable Ri that assumes 1 when

the i-th unit responds, and 0 otherwise. After the sampling, a value for yi is observed

if the realization ri of the random variable Ri is equal to 1. We will also consider the

partition Yi = (Y o
i , Y

m
i ) of the outcomes of interest, with Y o

i and Y m
i corresponding to

the responses that are observed and missing, respectively.

2.1.2.1 Missing Data Mechanisms

As described in Molenberghs et al. (2014) and Lohr (2019), the nonresponse is said to

be missing completely at random (MCAR) if R is independent of the outcome of interest

Y = (Y o, Y m), the auxiliary information X, and the survey design information Z. This is

the missing mechanism implicitly adopted when nonresponse is ignored.

When R is conditionally independent of Y m given Y o, X, and Z, we say the data

are missing at random (MAR). In this case, the nonresponse depends only on observed

variables, and it can be validly inferred if a model is correctly specified for R. This is

also known as an ignorable mechanism since the nonresponse can be ignored once its

mechanism is completely explained by the model (Lohr, 2019). However, completely
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ignoring this type of nonresponse without using a model for the nonresponse mechanism

would lead to biased results.

Finally, if the conditional distribution of R given Y o, X, and Z still depends on at

least some components of Y m, the data is said to be missing not at random (MNAR).

This mechanism is often referred to as non-ignorable since the nonresponse cannot be

fully explained by the observed data. Although standard methods to handle this type

of nonresponse lead to biased results, they are still used to reduce the bias since the

nonresponse may also depend on known variables (Lohr, 2019).

The main approaches for handling survey nonresponse are weighting and imputation.

Typically, a combination of weighting and imputation is used, where imputation is

employed for item nonresponse, and weighting is then applied to compensate for unit

response (Särndal and Lundström, 2005). Approaches strictly using weighting or strictly

using imputation are also possible.

2.1.2.2 Weighting Methods

In design-based inference, the sampling weights wi = π−1
i are used to estimate

population quantities for various sampling schemes. The weighting, in this case, can be

viewed as a means of compensating the nonsampled units in the population in the sampling

phase (Brick and Montaquila, 2009). In design-based theory, the inclusion probabilities

πi are assumed to be known for all units in the population. When nonresponse is present,

however, the unknown nature of the response probability model makes further assumptions

necessary. Most of the methods assume that data are MAR, with the response probabilities

estimated from information known for all units in the sample (Lohr, 2019).

One method of nonresponse weighting adjustment is to model the response propensities

φi = P (Ri = 1) directly for the sampled units and use the inverse of the estimated

propensities as the weight adjustment (Brick and Montaquila, 2009). This approach is

referred to as inverse probability weighting (IPW).

8



An alternative method of nonresponse weighting adjustment is calibration. In general,

calibration techniques use an auxiliary set of variables to adjust the sampling weights to

improve estimation for the variables of interest. The idea is to scale the sampling weights

so that the population totals for the auxiliary variables match the known population

totals, resulting in a more representative sample of the population.

2.1.2.3 Imputation Methods

Imputation is the procedure used to replace missing values with substitutes based on

a specific rule. According to Särndal and Lundström (2005), these imputed values can

be constructed in various ways, and the imputation by statistical rules can be classified

into two major categories. The first category is based on a statistical prediction rule,

where a parametric model m(X; γ) for E(Y |X) (imputation model) is specified, and the

parameter γ is estimated from the complete cases. The second category, also described as

the donor-based method, is based on values observed for responding units, but not for

the nonresponding units (donor-based method). In this category, the imputed value for a

given nonrespondent unit is borrowed from an observed unit (donor) that is considered

very similar in a statistical sense.

Examples of donor-based methods are nearest neighbor imputation and hot-deck

imputation. The former is a deterministic procedure, where the donor for a nonresponding

unit is identified using distance minimization. The latter is a random procedure, where

the imputed value for a nonresponding unit is randomly selected from a group of all

potential (respondent) donor units.

2.2 Receiver Operating Characteristic (ROC) Curve

2.2.1 Diagnostic medicine

Diagnostic medicine is the process of identifying the disease or condition that a patient

has, and ruling out conditions that the patient does not have, through assessment of the
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patient’s signs, symptoms, and results of various diagnostic tests (Zhou et al., 2009). It

has evolved over the years as the advances in technology allowed the development of new

diagnostic tests for detecting diseases. Examples of diagnostic tests include biochemical

serum markers, such as prostate specific antigen (PSA) for prostate cancer, CA-125 for

ovarian cancer, creatinine for kidney dysfunction, and cholesterol and blood pressure for

cardiovascular disease (Pepe, 2000b). Given the importance of diagnostic medicine to

population’s overall health, and understanding of disease mechanism, statistical methods

that assess the accuracy of diagnostic tests in a reliable way are crucial.

2.2.2 Definition of ROC curve

The receiver operating characteristic (ROC) curve is the most popular method to

assess the performance of a continuous diagnostic test. The curve is defined as the plot of

the false positive rate (1-specificity) versus the true-positive rate (sensitivity) across all

possible cutoffs of the diagnostic test. The false-positive rate (FPR) is the proportion

of non-diseased individuals that test positive for the disease based on the diagnostic

test, and the true-positive rate (TPR) is the proportion of diseased individuals that test

positive for the disease. The curve is especially useful to compare the performance of

different diagnostic tests and obtain optimal cutoffs for the diagnostic test to minimize

the misclassification of diseased and non-diseased individuals. (Pepe (2000b), Inácio et al.

(2021)).

To introduce the ROC curve more formally, consider a binary indicator of disease

status D, with D = 1 indicating diseased subjects, and a continuous diagnostic test Y ,

which larger values are more indicative of disease. We denote the cumulative distribution

function (cdf) of Y conditioned on D = 0 as G, and similarly, the cdf of Y conditioned
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on D = 1 as F . The corresponding FPR and TPR at the cutoff c ∈ R are given by:

FPR(c) = P (Y ≥ c|D = 0) = P (YD̄ ≥ c) = 1−G(c)

TPR(c) = P (Y ≥ c|D = 1) = P (YD ≥ c) = 1− F (c)

The ROC curve is defined as the plot {(FPR(c),TPR(c)) : c ∈ R}, or equivalently, as

the plot {(t, R(t)) : t ∈ [0, 1]}, where R(t) = 1− F ◦G−1(1− t), with G−1(s) = inf{x ∈

R : G(x) ≥ s}, and F ◦G−1(.) ≡ F (G−1(.)).

2.2.3 ROC curve estimation

Let {YDi}
nD
i=1 and {YD̄i}

nD̄
i=1 be two independent random samples of sizes nD and nD̄,

respectively, of continuous diagnostic tests for the diseased and nondiseased populations.

2.2.3.1 Non-parametric estimation

The ROC curve can be non-parametrically estimated by plugging in the corresponding

empirical distributions for diseased and nondiseased, as described in Hsieh et al. (1996):

Ĝ(c) =
1

nD̄

nD̄∑
i=1

I(YD̄i ≤ c) F̂ (c) =
1

nD

nD∑
i=1

I(YDi ≤ c).

Hsieh et al. (1996) also provides a formal derivation including uniform consistency

and weak convergence for the empirical ROC estimator.

Note that the empirical ROC estimator is an increasing discrete function, whereas

the true ROC curve is a continuous function. To overcome the lack of smoothness of

the empirical estimator, kernel-based methods for estimating ROC curve have also been

developed. Zou et al. (1997) proposed using kernel density estimation to estimate the

density function for each population, and Zou et al. (1998) proposed estimating the

distribution functions using normal kernel.
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2.2.3.2 Parametric estimation

Fully parametric estimation for the ROC curve is also possible. In this approach,

the distribution functions are parametrically estimated for the diseased and nondiseased

populations, and then used to compute the ROC curve. Typically, it is assumed that

Y D̄ ∼ N(µD̄, σ
2
D̄

) and Y D ∼ N(µD, σ
2
D), leading to the binormal model for the ROC curve:

R(t) = Φ(a+ bΦ−1(t)), (2.1)

where a = (µD − µD̄)/σD and b = σD̄/σD. In this case, the estimation is perfomed using

maximum likelihood. In general, if YD̄ and YD have probability distribution functions

with survival functions S(y−µD/σD) and S(y−µD̄/σD̄) respectively, then the associated

ROC curve has the form S(−a+ bS−1(t)) where a = (µD−µD̄)/σD and b = σD̄/σD (Pepe

et al., 2000).

2.2.3.3 Semiparametric estimation

Semiparametric approaches to ROC curve estimation have been proposed recently.

In this framework, the strategies can be classified into two major categories. The first

category aims to estimate semiparametrically the diagnostic test results, and obtain

the induced estimate for the ROC curve. In the second category, a parametric form is

assumed for the ROC curve, but no assumptions are made about the distribution from

the diagnostic tests.

The first class of semiparametric approaches is the location-scale models, where a

semiparametric location-scale model is proposed for the diagnostic test results:

YD̄i = µD̄ + σD̄εi

YDi = µD + σDεi,
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where ε are independent random variables with mean zero and variance one with survival

function S. The location-scale model for the ROC curve is given by

R(t) = S((µD̄ − µD)/σD + (σD̄/σD)S−1(t)).

The estimation for the location-scale model is done by computing sample means

and variances, and estimating S nonparametrically from the standardized residuals

(YD̄i − µ̂D̄)/σ̂D̄ and (YDi − µ̂D)/σ̂D. Inferences for this estimator is based on resampling

methods (Pepe, 2000b).

The second class of semiparametric approaches is referred to as parametric distribution-

free methods. The binormal model remains the most popular approach, which assumes

the existence of some unspecified strictly increasing transformation H, such that H(YD)

and H(YD̄) follow a normal distribution, and then the ROC model is the binormal model

written as in (2.1). The estimation is then carried for the parameters a and b in the

binormal model. Metz et al. (1998) proposed the LABROC procedure, which uses ordinal

regression methods applied to continuous data with a separate ordinal category defined

for each non-diseased observation. Pepe (2000a) and Alonzo and Pepe (2002) suggested

methods based on estimating equations. Zou and Hall (2000) proposed using maximum

likelihood estimation based on the ranks of the diagnostic tests. These procedures share

the attractive feature of providing a smooth estimate of the ROC curve. However, the

statistical properties of these procedures have not yet been well characterized (Pepe et al.,

2000).

2.2.4 Covariate-specific ROC curve

In many applications, the discriminatory capacity of a diagnostic test may be affected

by a variety of factors. Currently, there are two approaches to evaluate the covariate

effects on the ROC curve (Pepe, 1998). In the first approach, called the induced method,

the distributions of the diagnostic test in diseased and non-diseased populations are
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modeled separately, and the induced ROC curve is calculated. In the second approach,

called the direct method, the covariate effects on the ROC curve are modeled directly.

2.2.4.1 Induced Methods

Similarly as described in sections 2.2.3.2 and 2.2.3.3, the induced methods assume

that the distribution for the diagnostic test Y follows a location-scale model, conditional

on the disease status D and covariates X:

Y = µ(D,X) + σ(D,X)ε,

where µ(D,X) = E(Y |D,X), σ2(D,X) = Var(Y |D,X), and ε are independent random

variables with mean zero and variance one with survival function S. The corresponding

covariate-specific ROC curve is given by

R(t) = S(−a(X) + b(X)S−1(t)),

with a(X) = (µ(1, X)− µ(0, X))/σ(1, X) and b(X) = σ(0, X)/σ(1, X). The estimation

can be performed using parametric, semiparametric, or nonparametric approaches. Faraggi

(2003) proposed a fully parametric approach, assuming a linear model with homoscedastic

normal distribution for each population. In a semiparametric context, Pepe (1998)

proposed estimating the distribution function of the errors in each population by the

corresponding empirical distribution function of the standardized residuals. In the

nonparametric context, kernel-based approaches using continuous covariates were proposed

by Yao et al. (2010), González-Manteiga et al. (2011), and Rodŕıguez-Álvarez et al. (2011).

2.2.4.2 Direct Methods

In contrast with induced methodologies, the direct methods model the covariate

effects directly on the ROC curve. Pepe (1997) proposed a general regression modelling
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framework for ROC curves given by:

R(t|X) = g(α0(t), βX), (2.2)

where g is a specified function and α0(t) is a parametric function. Both g and α0 need to

be chosen so that R(t|X) is a monotone increasing function. Pepe (1997) proposed to

estimate (2.2) by combining quantile regression and estimating equations. A special case

of (2.2) is the class of ROC regression models of the generalized linear models (ROC-GLM)

form

g{R(t|X)} = h0(t) + µ(X), (2.3)

where µ(X) models the covariate effects on the ROC curve, h0(t) is an unknown monotonic

increasing function of the FPR related to the shape of the ROC curve, and g is the link

function. The estimation for the model (2.3) relies on the fact that

R(t) = 1− F ◦G−1(1− t) = P (YD ≥ G−1(1− t)) = E{I(YD ≥ G−1(1− t))},

and, therefore, the model (2.3) can be seen as a model for the binary variable I(YD ≥

G−1(1− t)). Different model proposals were made by varying g, h0 and µ. Pepe (2000a)

and Alonzo and Pepe (2002) assumed g(.) = Φ−1(.), µ(X) = X ′β and a parametric form

for h0(t). Cai and Pepe (2002) and Cai (2004) proposed a more flexible model with

g(.) = Φ−1(.), µ(X) = X ′β, and h0(t) completely unspecified.

2.2.5 ROC curve in the presence of incomplete data

The methods described so far rely on the assumption of complete data. However, in

diagnostic medicine, the presence of incomplete data is quite frequent. In the context of

the ROC curve, there are two problem setups concerning incomplete data. First, the case
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where the disease status D is missing, and second, the case where the diagnostic test Y is

missing.

2.2.5.1 Missing disease status

It is common to have subjects not undergoing the definitive assessment of disease in

practice due to the verification procedure being expensive or invasive. This results in

missing information on the disease status and can lead to biased estimates for the ROC

curve. This bias is referred to as verification bias.

As described in Fluss et al. (2009), the methods developed for correcting for verification

bias are usually based on the assumptions that the diagnostic test has an ordinal scale

(Begg and Greenes (1983), Gray et al. (1984), Toledano and Gatsonis (1996), Zhou (1996),

Zhou (1998), Rodenberg and Zhou (2000)). Alonzo and Pepe (2005) proposed to correct

verification bias for continuous diagnostic tests assuming that the missing disease status is

MAR. Rotnitzky et al. (2006) and Fluss et al. (2009) developed doubly-robust estimators

for the ROC curve under non-ignorable verification bias for continuous diagnostic tests.

Their approaches rely on specifying a value for the nonignorable parameter (the log

odds ratio of verification for diseased versus nondiseased individuals) to account for the

identifiability problem. Liu and Zhou (2010) proposed to estimate the nonignorable

parameter using likelihood approach.

2.2.5.2 Missing diagnostic test

In many applications, especially in observational studies, some subjects might have a

missing diagnostic test due to various reasons. The presence of missing the diagnostic

test may lead to biased estimates of the ROC curve. Many methods have been developed

to construct the ROC curve in the presence of missing diagnostic tests recently. The

first group of methods rely on inverse probability weighting (IPW) methods (Long et al.

(2011b), Li and Ning (2015), Li et al. (2021)), while the second group of methods rely on
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imputation methods (Long et al. (2011a), Liu and Zhao (2012), Qin and Wang (2012),

Yang and Zhao (2015), Karakaya et al. (2015)).

2.3 ROC curve for complex survey sampling

Many applications include analyses based on the ROC curve performed using complex

survey data. Some applications use outputs from regression models that account for

complex survey design as outcomes when constructing the (unweighted) ROC curves

(Gaziano et al. (2008), Zhang et al. (2014)), while others use ROC curves to evaluate

the discriminatory performance of biomarkers without accounting for the complex design

(Ferraro et al. (2010), DeBoer and Gurka (2014)). Bisoffi et al. (2000) used bootstrap

and jackknife methods to approximate standard deviations for the area under the ROC

curve (AUC) for a two-phase sampling design. Recently, Yao et al. (2015) proposed a

nonparametric estimator for the AUC that accounts for complex sampling. However, the

theoretical aspects of the ROC curve in the context of complex survey data still need to

be further developed.
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CHAPTER 3: RECEIVER OPERATING CHARACTERISTIC CURVE FOR
COMPLEX SURVEY DATA

3.1 Introduction

Diagnostic medicine is the process of identifying the disease or condition that a patient

has, and ruling out conditions that the patient does not have, through assessment of the

patient’s signs, symptoms, and results of various diagnostic tests (Zhou et al., 2009). It

has evolved over the years as the advances in technology allowed the development of new

diagnostic tests for detecting diseases. Examples of diagnostic tests include biochemical

serum markers, such as prostate specific antigen (PSA) for prostate cancer, CA-125 for

ovarian cancer, creatinine for kidney dysfunction, and cholesterol and blood pressure

for cardiovascular disease. Given the importance of diagnostic medicine to population’s

overall health, and understanding of disease mechanism, statistical methods that assess

the accuracy of diagnostic tests in a reliable way are crucial.

The receiver operating characteristic (ROC) curve is the most popular method to

assess the performance of a continuous diagnostic test. The curve is defined as the plot of

the false positive rate (1-specificity) versus the true-positive rate (sensitivity) across all

possible cutoffs of the diagnostic test. The false-positive rate (FPR) is the proportion

of non-diseased individuals that test positive for the disease based on the diagnostic

test, and the true-positive rate (TPR) is the proportion of diseased individuals that test

positive for the disease. The curve is especially useful to compare the performance of

different diagnostic tests and obtain optimal cutoffs for the diagnostic test to minimize

the misclassification of diseased and non-diseased individuals. Although we focus on

medical diagnosis, the ROC curve is widely used in many binary classification problems.
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A comprehensive discussion on ROC curves can be found in Pepe (2000b) and Inácio

et al. (2021), for example.

The ROC curve has been widely used in the analysis of data arising from complex

surveys. Sample surveys play a critical role in providing essential information in a broad

range of areas, serving as an essential resource to guide actions and policies. In the United

States, the National Center for Health Statistics (NCHS) is the principal health statistics

agency under the Center of Disease Control (CDC), and conducts several population

surveys, such as the National Health and Nutrition Examination Survey (NHANES), the

National Health Interview Survey (NHIS), and the National Survey of Family Growth

(NSFG).

In large scale surveys, the final sample usually does not represent a simple random

sample of independent, identically distributed observations from an infinite population.

Instead, these studies generally use complex survey designs, including stratification,

multistage cluster sampling and unequal selection probabilities to obtain a representative

sample in the most effective manner from a finite population. Failure to account for

complex survey design may result in biased and inconsistent parameter estimators,

underestimated standard errors, and possibly misleading conclusions.

Due to the limited availability of statistical methods, analyses using ROC curves on

complex survey data is currently done by ignoring the sampling scheme, even in papers

that correctly account for the survey design in other aspects of the analysis. For example,

Pandya et al. (2011) assessed the discrimination of traditional cardiovascular disease

risk scores in the Third National Health and Nutrition Examination Survey (NHANES

III) using unweighted ROC curves. Similarly, DeBoer and Gurka (2014) used an ROC

curve to assess the ability of metabolic syndrome Z-score to discriminate impaired glucose

tolerance in adolescents, without accounting for the survey design.

Currently, there is little previous literature dealing with ROC curves in the context

of complex survey data. Bisoffi et al. (2000) used bootstrap and jackknife methods to
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approximate standard error for the area under the ROC curve (AUC) for a two-phase

sampling design. More recently, Yao et al. (2015) proposed a nonparametric estimator

for the AUC that accounts for complex sampling, and employed jackknife method and

balanced repeated replication for the variance estimation. To the best of our knowledge,

the asymptotic properties of a nonparametric estimator of the ROC curve accounting for

complex survey data have not been fully developed.

In this paper, we propose a nonparametric estimator for the ROC curve for complex

survey data. The proposed estimator’s asymptotic properties are developed and evaluated

through simulation studies, and the method is applied to the National Health and Nutrition

Examination Survey (NHANES).

3.2 Methods

3.2.1 Setup

Classical sampling theory concerns the inference for finite population quantities (pa-

rameters). In this context, the design-based (also called randomization-based) inference

is often employed, where the characteristics of interest are considered fixed quantities

associated with the finite population. The source of randomness is resulting from the sam-

pling scheme, with random variables indicating whether the population unit is contained

in the sample. When the questions of interest are based on parameters of a statistical

model, the model-based (also called prediction-based) inference is often preferred. In this

framework, the characteristics of interest are considered to be random variables generated

from a statistical model.

In this paper, we handle the model-based and design-based inference jointly, using

the super-population framework described in Rubin-Bleuer et al. (2005), and followed

by Boistard et al. (2017) and Han and Wellner (2021). Under this approach, the finite

population is viewed as a realization from a statistical model (superpopulation model),

and a sample is drawn from this finite population according to the sampling design.
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Inference under this approach requires to explicitly account for two sources of randomness:

the model-based randomness, accounting for the difference between the finite population

parameter and the superpopulation model parameter, and the design-based randomness,

accounting for the difference between the sample estimator and the finite population

parameter (Pfeffermann, 2000).

Consider a sequence of finite populations UN of size N = 1, 2, · · · , with corresponding

set of indices UN = {1, · · · , N}. Each index i ∈ UN is associated with a unique vector

(yi, zi) ∈ Rp × Rq
+ representing, respectively, the characteristics of interest, and the

sampling design information available at the time of the design of the survey on all units.

We assume that {(yi, zi)}Ni=1 are realizations of random variables (Y, Z), Y : Ω 7→ Rp,

Z : Ω 7→ R
q
+, defined on a common probability space (Ω,F,Pm), and denote yN =

(y1, · · · , yN), Y N = (Y1, · · · , YN), zN = (z1, · · · , zN), and ZN = (Z1, · · · , ZN).

Let SN = {s : s ⊂ UN} be the collection of subsets of UN selected under a given

sampling scheme and let σ(SN) be the σ-algebra generated by SN . A sampling design

associated with a sampling scheme is a function p : σ(SN)×Rq×N
+ 7→ [0, 1] such that

(i) for all s in SN , zN 7→ p(s, zN) is Borel-measurable on Rq×N
+ ;

(ii) for zN ∈ Rq×N
+ , A 7→ p(A, zN) is a probability measure on σ(SN).

Note that since p does not depend on yN , only non-informative sampling designs are

considered. Similarly to Boistard et al. (2017), for each ω ∈ Ω we define a probability

measure A 7→ Pd(A, ω) =
∑

s∈A p(s,Z
N(ω)), and we say that (SN , σ(SN),Pd) is the

design probability space. We will work on a product probability space (SN ×Ω, σ(SN )×

F,Pd,m) that includes both the super-population and the design space with probability

measure Pd,m defined as Pd,m(s × E) =
∫
E
Pd(s, ω) dPm(ω), with (s, E) ∈ σ(SN) × F.

We adopt Ed, Em and Ed,m to denote the expectation with respect to the probability

space (SN , σ(SN),Pd), (Ω,F,Pm) and (SN × Ω, σ(SN)× F,Pd,m), respectively. For a

sample s drawn according to a sampling design p, the sampling indicators ξi = I(i ∈ s)

are random variables defined on (SN × Ω, σ(SN) × F,Pd,m), with first-order inclusion
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probabilities defined as πi(ω) = Ed,m[ξi|ZN(ω)], and second-order inclusion probabilities

defined as πij(ω) = Ed,m[ξiξj|ZN(ω)].

3.2.2 Assumptions and Notations

Following Han and Wellner (2021), we impose the following assumptions for the

asymptotic convergence:

(A1.1) min1≤i≤N πi ≥ π0 > 0

(A1.2) 1√
N

∑N
i=1

(
ξi
πi
− 1
)

= OPd,m(1)

(A1.3) There exist constant K > 0 such that

sup
N∈N

sup
1≤i 6=j≤N

N |πij − πiπj| ≤ K

(A1.4) The sample size n increases as the population size N increases, with

lim
N→∞

n

N
= λ, 0 < λ < 1

Let {Vi} be a sequence of bounded i.i.d random variables defined on (Ω,F,Pm). Let

S2
N be the design-based variance of the Horvitz-Thompson estimator of the population

mean, that is,

S2
N =

1

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ViVj

(A2.1) Suppose that for N sufficiently large

1

SN

(
1

N

N∑
i=1

ξi
πi
Vi −

1

N

N∑
i=1

Vi

)
→ N(0, 1), ω-a.s

in distribution under Pd
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(A2.2) There exist constants µπ1, µπ2 ∈ R such that

1

N

N∑
i=1

πii − π2
i

π2
i

→ µπ1 in Pm

1

N

N∑
i 6=j

πij − πiπj
πiπj

→ µπ2 in Pm

Following Han and Wellner (2021), for {πi}Ni=1, {ξi}Ni=1, {Yi}Ni=1, and a class F of real

functions f we define the Horvitz-Thompson empirical measure as

PπN(f) =
1

N

N∑
i=1

ξi
πi
f(Yi), f ∈ F , (3.4)

and the associated Horvitz-Thompson empirical process as

Gπ
N(f) =

√
N(PπN − P )(f), f ∈ F . (3.5)

The usual empirical measure and empirical process (ξi/πi = 1 for all i = 1, · · · , N)

will be denoted as PN and GN .

3.2.3 ROC curve for complex survey sampling

Let {(Yi, Zi) = (Xi, Di, Zi) ∈ R×{0, 1}×Rq
+}Ni=1 be i.i.d realizations of the diagnostic

test measure X, the disease indicator D, and the sampling design information Z. We

denote the cumulative distribution function (cdf) of X conditioned on D = 0 as G, and

similarly, the cdf of X conditioned on D = 1 as F . We assume that F and G have

continuous probability density functions (pdf) f and g, respectively. The ROC curve

is defined as the plot of {(1 − G(c), 1 − F (c)) : c ∈ R}, or equivalently, as the plot

of {(s, R(s)) : s ∈ [0, 1]}, where R(s) = 1 − F ◦ G−1(1 − s), with G−1(s) = inf{x ∈

R : G(x) ≥ s}, and F ◦ G−1(.) ≡ F (G−1(.)). The area under the ROC curve (AUC-

ROC) is A =
∫ 1

0
R(s) ds. The corresponding finite-population quantities are RN(s) =

23



1− FN ◦G−1
N (1− s) and AN =

∫ 1

0
RN (s)ds, where GN (x) = N−1

0

∑N
i=1 I(Xi ≤ x,Di = 0),

FN(x) = N−1
1

∑N
i=1 I(Xi ≤ x,Di = 1), and Nd =

∑N
i=1 I(Di = d), d = 0, 1.

Consider a sample s, consisting of 0 ≤ n ≤ N units drawn from the finite population

using a sampling design p. A survey-weighted estimator for the ROC curve can be

obtained by substituting F and G by their Hájek type estimators:

Rn(s) = 1− Fn ◦G−1
n (1− s), (3.6)

where

Gn(x) =
1

N̂0

N∑
i=1

ξi
πi
I(Xi ≤ x,Di = 0) and Fn(x) =

1

N̂1

N∑
i=1

ξi
πi
I(Xi ≤ x,Di = 1),

(3.7)

with N̂d =
∑N

i=1 ξiπ
−1
i I(Di = d), d = 0, 1.

The correspondent estimator for the area A under R(s) is

An =

∫ 1

0

Rn(s) ds. (3.8)

The estimators Fn(.) and Gn(.) can be seen as ratios of Horvitz-Thompson empirical

measures (4.11) with respect to the class of function F = {fs,l(y) ≡ fs,l(x, d) = I(x ≤

s, d = l) : s ∈ R, l ∈ {0, 1}}. Note that this class of functions is P-Donsker (Kosorok,

2008). The finite-dimensional convergence of Gπ
N(fs,l) can be shown similarly as done

in Boistard et al. (2017) using Crámer-Wold device. By Corollary 3.13 from Han and

Wellner (2021),
√
n(PπN − PN)  Gπ in `∞(F), where Gπ is a tight Gaussian process

with covariance function

Cov(Gπ(fs,d),Gπ(fu,d′)) = λ (µπ1P (fs,dfu,d′) + µπ2(Pfs,d)(Pfu,d′)) fs,d, fu,d′ ∈ F ,
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with P (fs,l) =
∫
Y fs,l(y)P (dy) = P (X ≤ s,D = l) and P (fs,dfu,d′) =

∫
Y fs,d(y)fu,d′(y)P (dy) =

P (X ≤ s ∧ u,D = d) for d′ = d, and zero if d′ 6= d.

The proposed estimator Rn for the ROC curve depends on the pair (Gn, Fn) through

the map ψ(A,B) = B(A−1), where A−1 is the inverse map of A. Combining the results

from Han and Wellner (2021) and Functional Delta Method (Vaart and Wellner, 1996)

arguments presented in the Appendix, the following result will follow:

Theorem 3.2.1 (FINITE POPULATION INFERENCE). Consider the estimators Fn,

Gn, Rn and An as defined in (3.6), (3.7) and (3.8). Suppose that conditions (A1.1)-(A2.2)

hold.

(a) (Survey-weighted empirical distributions).

√
N

Gn −GN

Fn − FN

 
Gπ

0

Gπ
1

 =

{(1− p)−1µπ1}1/2B1(G)

{p−1µπ1}1/2B2(F )

 ,
where B1(.) and B2(.) denote two independent Brownian bridges and p = P (D = 1).

(b) (Survey-weighted ROC curve). Suppose that F and G have continuous positive

densities f and g, respectively, on [G−1(a)− ε, G−1(b) + ε] and that f(G−1)/g(G−1)

is bounded on any subinterval (a, b), 0 < a < b < 1. Then, for 0 < s < 1

√
n
(
Fn ◦G−1

n (s)− FN ◦G−1
N (s)

)
 
√
λµπ1

{
p−1/2B2(F ◦G−1(s))+

+ (1− p)−1/2f(G−1(s))

g(G−1(s))
B1(s)

}

where B1(.) and B2(.) denote two independent Brownian bridges. This result implies

that
√
n(Rn(s)−RN (s)) W(G−1(1− s)), where W(u) is a Gaussian process with
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mean zero and covariance function Ed,m{W(u)W(t)} = σ2(u, t) given by

σ2(u, t) = λµπ1

{
p−1(F (u ∧ t)− F (u)F (t))+

+ (1− p)−1f(u)f(t)

g(u)g(t)
(G(u ∧ t)−G(u)G(t))

}
(3.9)

(c) (Survey-weighted AUC)

√
n (An − AN)→ N(0, δ2)

in distribution, where

δ2 =

∫ 1

0

∫ 1

0

σ2{G−1(1− s), G−1(1− t)} ds dt =

∫ ∞
−∞

∫ ∞
−∞

σ2(s, t) dG(s) dG(t)

The proof for Theorem 3.2.1 are presented in Appendix A of the Supplementary

Material.

The results for the super-population inference can be obtained from the decomposition

√
n
(
Fn ◦G−1

n − F ◦G−1
)

=
√
n
(
Fn ◦G−1

n − FN ◦G−1
N

)
+
√
n
(
FN ◦G−1

N − F ◦G
−1
)
.

From the results presented in Theorem 3.2.1, we have that the first component

converges to a zero mean Gaussian process under Pd,m (and Pd). Using similar arguments,

combined with classical empirical processes results, we have that the second component

also converges to a zero mean Gaussian process under Pm. Theorem 5.1(iii) from Rubin-

Bleuer et al. (2005) imply that the two components are asymptotically independent,

leading in the following result:

Theorem 3.2.2 (SUPER POPULATION INFERENCE). Consider the estimators Fn,

Gn, Rn and An as defined in (3.6), (3.7) and (3.8). Suppose that conditions (A1.1)-(A2.2)

hold.
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(a) (Survey-weighted ROC curve). Suppose that F and G have continuous positive

densities f and g, respectively, on [G−1(a)− ε, G−1(b) + ε] and that f(G−1)/g(G−1)

is bounded on any subinterval (a, b), 0 < a < b < 1. Then, for 0 < s < 1

√
n
(
Fn ◦G−1

n (s)− F ◦G−1(s)
)
 
√
λ(1 + µπ1)

{
p−1/2B2(F ◦G−1(s))+

+ (1− p)−1/2f(G−1(s))

g(G−1(s))
B1(s)

}

where B1(.) and B2(.) denote two independent Brownian bridges. This result implies

that
√
n(Rn(s)−R(s)) W(G−1(1− s)), where W(u) is a Gaussian process with

mean zero and covariance function Ed,m{W(u)W(t)} = σ2(u, t) given by

σ2(u, t) = λ(1 + µπ1)

{
p−1(F (u ∧ t)− F (u)F (t))+

+ (1− p)−1f(u)f(t)

g(u)g(t)
(G(u ∧ t)−G(u)G(t))

}

(b) (Survey-weighted AUC).

√
n (An − A)→ N(0, δ2)

in distribution, where

δ2 =

∫ 1

0

∫ 1

0

σ2{G−1(1− s), G−1(1− t)} ds dt =

∫ ∞
−∞

∫ ∞
−∞

σ2(s, t) dG(s) dG(t)

Theorem 3.2.2 implies that
√
n(Rn(s)−R(s)) converges in distribution to N(0, σ2(s)),

with σ2(s) given by

σ2(s) = λ(1 + µπ1)

{
p−1R(s)(1−R(s)) + (1− p)−1f(G−1(1− s))2

g(G−1(1− s))2
s(1− s)

}
(3.10)
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Let σ̂2(s) be the survey-weighted empirical version of σ2(s) with (R, p, F,G, f, g)

replaced by their survey-weighted estimates. An approximate level 1 − α pointwise

confidence interval for R(s) is given by Rn(s)± z1−α/2[σ̂(s)2/n]1/2, where zα is such that

P (Z ≤ zα) = α with Z ∼ N(0, 1).

3.3 Simulation studies

In the simulation studies, we investigate the performance of the proposed estimator

for the ROC curve under stratified simple random sampling (SSRS) and stratified two-

stage cluster sampling (STSCS). For each sampling scheme, a total of 8 scenarios were

considered according to different finite population sizes N = 50,000 and 100,000, disease

proportions p = 5%, 25% and sampling fractions λ = 5%, 10%.

We generated populations subdivided in five strata containing 5%, 10%, 25%, 30%

and 30% of the observations. We set the AUC for the strata to 0.95, 0.9, 0.8, 0.7, 0.6

respectively, and for each stratum h = 1, · · · , 5, we generated Xh = αhD + ε, where

D ∼ Ber(p) and ε ∼ N(0, 1). The ROC curve in each stratum is given by the binormal

model R(s) = Φ(αh+Φ−1(s)), where Φ(.) is the standard normal cdf and αh is determined

from the corresponding AUC specified for the h-th stratum. For STSCS, M = 5,000 and

10,000 clusters of sizes 5, 10 and 15 were generated using quantiles of Xh + τ , τ ∼ N(0, 1),

in addition to the steps already described.

Samples with size determined by the sampling fraction were drawn assuming uniform

allocation. For the first stage of STSCS, m = 310 and 625 clusters were selected from

the population of size N = 50,000, and m = 625 and 1250 clusters were sampled from

the population of size N = 100,000 . At the second stage, 80% of the observations were

sampled from each cluster.

We evaluated the performance at s ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} in terms of

Relative Bias (RB), Empirical Standard Error (ESE), Asymptotic Standard Error (ASE),

and Coverage Probability (CP) for 95% confidence intervals. We compare our method
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(SVY) to the unweighted ROC curve (UN), where the sampling weights are ignored, and

the asymptotic variance is computed following Hsieh et al. (1996). We also include the

case (WT) where the sampling weights are used to compute weighted estimates for the

ROC curve and the asymptotic variance from Hsieh et al. (1996). Results are obtained

by generating 2,000 finite populations and selecting one sample from each of the finite

populations.

The results for the relative biases under SSRS and STSCS are reported in Figure

3.5.1 and Tables S1 and S2 in the Supplementary Materials. As expected, the relative

bias for the UN estimator is quite large, especially at the beginning of the ROC curve,

with relative biases close to 30%. In contrast, the values for the SVY and WT estimators

never exceed 0.5%.

The estimates for the empirical and asymptotic standard errors under SSRS and

STSCS are presented in Figure 3.5.2 and Tables S3 and S4 Supplementary Materials. For

the SWY estimator, the values were obtained by plugging survey-weighted estimates of p,

F , G, f , and g into the expression (3.10). For the UN and WT estimators, unweighted

and survey-weighted estimates of p, F , G, f , and g were plugged into the asymptotic

variance expression presented in Hsieh et al. (1996). In general, our method estimates are

close to the ESE, with better performance for larger sample sizes and disease proportions.

The variance estimator that ignores the complex-survey design leads to underestimated

standard errors, even when the sampling weights are used.

Figure 3.5.3 and Tables S5 and S6 in the Supplementary Materials give the coverage

probabilities of the 95% confidence interval for the ROC curve. In general, the coverage

probabilities based on our method are closer to 95% at the beginning of the ROC curve

and decrease as we increase the FPR, except for FPR = 0.9 in the case of the smallest finite

population, sample size, and disease proportion. The WT estimator presents coverage

probabilities close to 92% at most, and the UN estimator performs poorly due to the

significant bias and underestimated variances.
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3.4 Application

Diabetes and its complications are major causes of morbidity and mortality worldwide.

Currently, clinical practice guidelines recommend screening for pre-diabetes and type

2 diabetes with an informal assessment of risk factors or validated risk calculator in

asymptomatic adults to guide providers on whether performing a definitive diagnostic

test is necessary (Draznin et al., 2022). The current risk assessment tool used by the

American Diabetes Association (ADA) to screen for pre-diabetes and type 2 diabetes

is adapted from the algorithm developed in Bang et al. (2009) to estimate the risk of

undiagnosed diabetes.

In this application, we wish to evaluate the discrimination of the algorithm developed

by Bang et al. (2009) using the National Health and Nutrition Examination Survey

(NHANES) between 1999-2006. NHANES is an annual survey conducted by the Centers

for Disease Control and Prevention’s (CDC) National Center for Health Statistics (NCHS)

that utilizes a complex, multistage probability sampling design to select a representative

sample of the non-institutionalized resident population of the United States.

Similarly as presented in Bang et al. (2009), we consider participants aged 20 years

or more, excluding pregnant women, that had fasting plasma glucose (FPG) results. The

participants are classified into four groups of diabetes status: known diabetes (if answered

“yes” to the question “Other than during pregnancy, have you ever been told by a doctor or

health professional that you have diabetes or sugar diabetes?”), normal glucose metabolism

(FPG < 100 mg/dL), pre-diabetes (FPG 100-125 mg/dL), and undiagnosed diabetes

(FPG > 125 mg/dL). The participants classified as “known diabetes” are not included in

the analysis, and the undiagnosed diabetes was used as the binary outcome. The risk

score was computed using age (< 40, 40-49, 50-59, > 59), sex (female, male), family

history of diabetes (yes, no), history of hypertension (yes, no), obesity (not overweight,

overweight, obese, extremely obese), physically active (yes, no).
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In the 1999-2006 NHANES, 20,159 non-pregnant adults aged 20 years or more

were enrolled. Out of this sample, 17,696 observations were classified as either normal

glucose metabolism, pre-diabetes, and undiagnosed diabetes, and 7,348 observations had

information for all variables needed to compute the risk score. In this final analytic

sample, the proportion of undiagnosed diabetes is 3.1% (95% CI: 2.6, 3.5).

Figure 3.5.4 shows both survey-weighted and unweighted estimates of the ROC curve,

as well as its corresponding AUC. The most considerable discrepancies between unweighted

and survey-weighted estimates are observed between FPR 0.1-0.5, with the unweighted

ROC curve being lower than the survey-weighted ROC curve. As a result, the AUC

(survey-weighted = 0.83, unweighted = 0.80) is smaller when the survey weights are not

considered.

3.5 Discussion

In this paper, we studied a nonparametric estimator for the ROC curve in the

context of complex survey data. We examined the asymptotic properties of the proposed

estimator and evaluated its performance in finite samples through simulation studies. The

asymptotic properties of the proposed estimator were developed using empirical process

arguments in the super-population framework described in Rubin-Bleuer et al. (2005),

where the sources of randomness from both model-based and design-based inference are

jointly taken into account.

The uniform convergence for the ROC curve in the finite population and super-

population levels were established using key results presented in Han and Wellner (2021),

combined with empirical processes arguments. The asymptotic distribution for the

finite population and the super-population level AUC was also presented. Simulation

studies showed that our proposed estimator performed well in the practical situations

considered. The estimator was then applied to a national-level health survey to evaluate

the discriminatory ability of a traditional risk calculator of undiagnosed diabetes.
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The methods presented in this paper serve as a basis for nonparametric estimation of

the ROC curve in the context of complex survey data. The weakly convergence results

make it possible to further compute confidence bands for the ROC curve in both super-

population and finite population levels. The proposed estimator may serve as an option

when using data arising from complex survey data, preventing from biased results and

possibly misleading conclusions by ignoring the sampling design.

The proposed estimator is a discrete function, whereas the true ROC curve for

continuous data is a continuous function. To have a smooth estimate, the study of

semiparametric and parametric models for ROC curve estimation in the context of

complex survey data deserves attention. In addition to smoothness, if the models are

correctly specified, these alternative approaches might be more efficient in estimating

the ROC curve in the context of complex survey data. Our method also assumes that

the sampling is noninformative, and further investigation for informative sampling will

be worthwhile. There is also little literature exploring the accuracy of a diagnostic test

that varies according to a set of characteristics in the context of complex survey data.

To address this issue, the estimation of covariate-specific ROC curve for complex survey

data is currently under investigation.
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Figure 3.5.1: Relative Bias (in %) of the UN, WT, and SVY estimators for the super-
population ROC curve with finite population size N , disease proportion p, and sampling
fraction λ.
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Figure 3.5.2: Empirical and Asymptotic Standard Error (in %) of the UN, WT, and SVY
estimators for the super-population ROC curve with finite population size N , disease
proportion p, and sampling fraction λ.
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N = 50,000; p = 5% N = 50,000; p = 25% N = 100,000; p = 5% N = 100,000; p = 25%
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Figure 3.5.3: Coverage Probabilities (in %) of the UN, WT, and SVY estimators for the
super-population ROC curve with finite population size N , disease proportion p, and
sampling fraction λ.
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Figure 3.5.4: Unweighted (UN) and survey weighted (SVY) estimates ROC curves and
survey weighted 95% confidence interval for NHANES data.
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CHAPTER 4: RECEIVER OPERATING CHARACTERISTIC CURVE
FOR COMPLEX SURVEY DATA IN THE PRESENCE OF MISSING

BIOMARKER

4.1 Introduction

The receiver operating characteristic (ROC) curve is the most popular method to

assess the performance of a continuous diagnostic test. The curve is defined as the plot of

the false positive rate (1-specificity) versus the true-positive rate (sensitivity) across all

possible cutpoints of the diagnostic test. The false-positive rate (FPR) is the proportion

of non-diseased individuals that test positive for the disease based on the diagnostic

test, and the true-positive rate (TPR) is the proportion of diseased individuals that test

positive for the disease. The curve is especially useful to compare the performance of

different diagnostic tests and obtain optimal cutpoints for the diagnostic test to minimize

the misclassification of diseased and non-diseased individuals. Although we focus on

medical diagnosis, the ROC curve is widely used in many binary classification problems.

A comprehensive discussion on ROC curves can be found in Pepe (2000b) and Inácio

et al. (2021), for example.

The ROC curve has been widely used in the analysis of data arising from complex

survey designs. Sample surveys play a critical role in providing essential information

in a broad range of areas, serving as an essential resource to guide actions and policies.

In the United States, the National Center for Health Statistics (NCHS) is the principal

health statistics agency under the Center of Disease Control (CDC), and conducts several

population surveys, such as the National Health and Nutrition Examination Survey

(NHANES), the National Health Interview Survey (NHIS), and the National Survey of

Family Growth (NSFG).

37



A common issue in large-scale surveys is the presence of missing biomarker values due

to various reasons such as study drop-out or loss of information caused by uncontrollable

factors. Due to the limited availability of statistical methods, analyses using ROC curves

on complex survey data is currently done by ignoring the sampling scheme, and include

only participants without missing data on the variables of interest.

Most methods for handling nonresponse fall within inverse probability weighting

(IPW) techniques and imputation strategies. IPW methods rely on a model for the

response probability given a set of predictors (response model). In contrast, imputation

approaches based on statistical prediction rules rely on models for the partially observed

variables given the fully observed variables (imputation models). A third class of methods

combines IPW and imputation methods, called augmented IPW (AIPW) estimators, and

has the property of being doubly robust to model misspecifications.

In this paper, we propose a IPW estimator for the ROC curve for complex survey data

with the biomarker being subject to missing at random (MAR). The proposed estimator’s

asymptotic properties are developed and evaluated through simulation studies, and the

method is applied to the National Health and Nutrition Examination Survey (NHANES).

4.2 Methods

4.2.1 Setup

Classical sampling theory concerns the inference for finite population quantities (pa-

rameters). In this context, the design-based (also called randomization-based) inference

is often employed, where the characteristics of interest are considered fixed quantities

associated with the finite population. The source of randomness is resulting from the sam-

pling scheme, with random variables indicating whether the population unit is contained

in the sample. When the questions of interest are based on parameters of a statistical

model, the model-based (also called prediction-based) inference is often preferred. In this
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framework, the characteristics of interest are considered to be random variables generated

from a statistical model.

In this paper, we handle the model-based and design-based inference jointly, using

the super-population framework described in Rubin-Bleuer et al. (2005), and followed

by Boistard et al. (2017) and Han and Wellner (2021). Under this approach, the finite

population is viewed as a realization from a statistical model (superpopulation model),

and a sample is drawn from this finite population according to the sampling design.

Inference under this approach requires to explicitly account for two sources of randomness:

the model-based randomness, accounting for the difference between the finite population

parameter and the superpopulation model parameter, and the design-based randomness,

accounting for the difference between the sample estimator and the finite population

parameter (Pfeffermann, 2000).

Consider a finite population UN of size N , with corresponding set of indices U =

{1, · · · , N}. Each index i ∈ U is associated with a unique vector (yi, xi, zi) ∈ Rp ×

Rk ×Rq
+ representing, respectively, the characteristics of interest, the complete auxiliary

information, and the sampling design information available at the time of the design of the

survey on all units. We assume that {(yi, xi, zi)}Ni=1 are realizations of random variables

(Y,X,Z) defined according to a superpopulation model. We denote yN = (y1, · · · , yN),

Y N = (Y1, · · · , YN), xN = (x1, · · · , xN), and XN = (X1, · · · , XN), zN = (z1, · · · , zN),

and ZN = (Z1, · · · , ZN).

We further assume that Y is subject to missing, and let R be the response indicator

variable that assumes the value one if Y is observed and zero otherwise. We assume that

{ri}Ni=1 are realizations of the random variable R defined in the same probability space

as (Y,X,Z). We assume that P (R = 1|Y,X,Z) = P (R = 1|X) = p(X;φ), that is, the

response mechanism does not depend on Y , and thus, the data are missing at random

(MAR). Note that the MAR condition is assumed in the population level as done in Kim
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and Riddles (2012), because an individual’s decision on wether or not to respond to a

survey is at his or her own discretion.

Let SN = {s : s ⊂ UN} be the collection of subsets of UN selected under a given

sampling scheme and let σ(SN) be the σ-algebra generated by SN . A sampling design

associated with a sampling scheme is a function p : σ(SN)×Rq×N
+ 7→ [0, 1] such that

(i) for all s in SN , zN 7→ p(s, zN) is Borel-measurable on Rq×N
+ ;

(ii) for zN ∈ Rq×N
+ , A 7→ p(A, zN) is a probability measure on σ(SN).

Note that since p does not depend on yN , only non-informative sampling designs are

considered. Similarly to Boistard et al. (2017), for each ω ∈ Ω we define a probability

measure A 7→ Pd(A, ω) =
∑

s∈A p(s,Z
N(ω)), and we say that (SN , σ(SN),Pd) is the

design probability space. We will work on a product probability space (SN ×Ω, σ(SN )×

F,Pd,m) that includes both the super-population and the design space with probability

measure Pd,m defined as Pd,m(s × E) =
∫
E
Pd(s, ω) dPm(ω), with (s, E) ∈ σ(SN) × F.

We adopt Ed, Em and Ed,m to denote the expectation with respect to the probability

space (SN , σ(SN),Pd), (Ω,F,Pm) and (SN × Ω, σ(SN)× F,Pd,m), respectively. For a

sample s drawn according to a sampling design p, the sampling indicators ξi = I(i ∈ s)

are random variables defined on (SN × Ω, σ(SN) × F,Pd,m), with first-order inclusion

probabilities defined as πi(ω) = Ed,m[ξi|ZN(ω)], and second-order inclusion probabilities

defined as πij(ω) = Ed,m[ξiξj|ZN(ω)].

4.2.2 Assumptions and Notations

Following Han and Wellner (2021), we impose the following assumptions for the

asymptotic convergence:

(A1.1) min1≤i≤N πi ≥ π0 > 0

(A1.2) 1√
N

∑N
i=1

(
ξi
πi
− 1
)

= OPd,m(1)
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(A1.3) There exist constant K > 0 such that

sup
N∈N

sup
1≤i 6=j≤N

N |πij − πiπj| ≤ K

(A1.4) The sample size n increases as the population size N increases, with

lim
N→∞

n

N
= λ, 0 < λ < 1

Let {Vi} be a sequence of bounded i.i.d random variables defined on (Ω,F,Pm). Let

S2
N be the design-based variance of the Horvitz-Thompson estimator of the population

mean, that is,

S2
N =

1

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ViVj

(A2.1) Suppose that for N sufficiently large

1

SN

(
1

N

N∑
i=1

ξi
πi
Vi −

1

N

N∑
i=1

Vi

)
→ N(0, 1), ω-a.s

in distribution under Pd

(A2.2) The first and second-order inclusion probabilities satisfy

1

N

N∑
i=1

πii − π2
i

π2
i

→ µπ1 in Pm

1

N

N∑
i 6=j

πij − πiπj
πiπj

→ µπ2 in Pm

where µπ1, µπ2 ∈ R are nonrandom quantities.

Following Han and Wellner (2021), for {πi}Ni=1, {ξi}Ni=1, {Yi}Ni=1, and a class F of real

functions f we define the Horvitz-Thompson empirical measure as

PπN(f) =
1

N

N∑
i=1

ξi
πi
f(Yi), f ∈ F , (4.11)
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Similarly, we define the IPW Horvitz-Thompson empirical measure:

PπN,φ(f) =
1

N

N∑
i=1

ξi
πi

Ri

p(Xi;φ)
f(Yi), (4.12)

where p(Xi;φ) = P (Ri = 1|Xi). The corresponding finite-population empirical measures

are defined as

PN(f) =
1

N

N∑
i=1

f(Yi) (4.13)

PN,φ(f) =
1

N

N∑
i=1

Ri

p(Xi;φ)
f(Yi). (4.14)

4.2.3 ROC curve for complex survey sampling in the presence of missing
biomarker

Let {(Yi, Xi, Zi) = (Yi, Di,Wi, Zi) ∈ R× {0, 1} ×Rk ×Rq
+}Ni=1 be i.i.d realizations of

the diagnostic test measure Y , the disease indicator D, the auxiliary variables W , and

the sampling design information Z. In this paper, we focus on the case where the disease

status D is always confirmed, but the diagnostic test values Y might be missing for some

units. The auxiliary variables W are also assumed to be complete.

We denote the cumulative distribution function (cdf) of Y conditioned on D = 0

as G, and similarly, the cdf of Y conditioned on D = 1 as F . We assume that F and

G have continuous probability density functions (pdf) f and g, respectively. The ROC

curve is defined as the plot of {(1−G(c), 1− F (c)) : c ∈ R}, or equivalently, as the plot

of {(s, R(s)) : s ∈ [0, 1]}, where R(s) = 1 − F ◦ G−1(1 − s), with G−1(s) = inf{x ∈ R :

G(x) ≥ s}, and F ◦G−1(.) ≡ F (G−1(.)). The area under the ROC curve (AUC-ROC) is

A =
∫ 1

0
R(s) ds.
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The finite-population quantities are defined as:

ROCIPW(s) = 1− FIPW ◦ (GIPW)−1(1− s),

GIPW(s) =

[
N∑
i=1

Ri

p(Xi;φN)
I(Di = 0)

]−1 N∑
i=1

Ri

p(Xi;φN)
I(Yi ≤ s,Di = 0)

FIPW(s) =

[
N∑
i=1

Ri

p(Xi;φN)
I(Di = 1)

]−1 N∑
i=1

Ri

p(Xi;φN)
I(Yi ≤ s,Di = 1),

with φN being the solution of

UN(φ) =
N∑
i=1

{Ri − p(Xi;φ)}hi(φ) =
N∑
i=1

ui(φ) = 0,

where hi(φ) = ∂logit(p(Xi;φ))/∂φ = {p(Xi;φ)(1− p(Xi;φ))}−1(∂p(Xi;φ)/∂φ), which are

unbiased estimating equations for the true parameter φ∗.

Consider a sample s, consisting of 0 ≤ n ≤ N units drawn from the finite population

using a sampling design p. The proposed survey-weighted IPW estimator for the ROC

curve is:

ROCπ
IPW(s) = 1− F π

IPW ◦ (Gπ
IPW)−1(1− s), (4.15)

where

Gπ
IPW(s) =

[
N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Di = 0)

]−1 N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Yi ≤ s,Di = 0) (4.16)

F π
IPW(s) =

[
N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Di = 1)

]−1 N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Yi ≤ s,Di = 1), (4.17)

with φπN being the solution of

Uπ
N(φ) =

N∑
i=1

ξi
πi
{Ri − p(Xi;φ)}hi(φ) =

N∑
i=1

ξi
πi
ui(φ) = 0.
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The estimators F π
IPW and Gπ

IPW can be seen as ratios of the IPW Horvitz-Thompson

empirical measures (4.12) with respect to the class of function F = {fs,l(y, d) = I(y ≤

s, d = l) : s ∈ R, l ∈ {0, 1}}. The proposed IPW estimator for the ROC curve depends on

the pair (Gπ
IPW, F

π
IPW) through the map ψ(A,B) = B(A−1), where A−1 is the inverse map

of A. Combining the results from Han and Wellner (2021) and Functional Delta Method

(Vaart and Wellner, 1996) arguments presented in the Appendix, the following result will

follow:

Theorem 4.2.1 (FINITE POPULATION INFERENCE). Consider the estimators F π
IPW,

Gπ
IPW, and ROCπ

IPW as defined in (4.15), (4.16), and (4.17), and let φ∗ be the superpopu-

lation parameter. Suppose that conditions (A1.1)-(A2.2) hold.

(a) (Survey-weighted propensity score parameter).

√
N(φπN − φN)→ I−1(φ∗)N(0, V (φ∗))

where I and V are such that

I(φ0) = lim
N→∞

N−1∂UN(φ)

∂φ

∣∣∣
φ=φ0

V (φ0) = lim
N→∞

N−1

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ui(φ0)uj(φ0)

(a) (Survey-weighted IPW empirical distributions).

√
N

Gπ
IPW −GIPW

F π
IPW − FIPW

 
Gπ

0

Gπ
1

 =


{
µπ1(1− δ)−1p(φ∗)−1

}1/2

B1(G){
µπ1δ

−1p(φ∗)−1
}1/2

B2(F )

 ,
where B1(.) and B2(.) denote two independent Brownian bridges and δ = P (D = 1).

(b) (Survey-weighted IPW ROC curve). Suppose that F and G have continuous positive

densities f and g, respectively, on [G−1(a)− ε, G−1(b) + ε] and that f(G−1)/g(G−1)
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is bounded on any subinterval (a, b), 0 < a < b < 1. Then, for 0 < s < 1

√
n
(
F π

IPW ◦ (Gπ
IPW)−1(s)− FIPW ◦ (GIPW)−1(s)

)
 

 

√
λµπ1

p(φ∗)

{
δ−1/2B2(F ◦G−1(s)) + (1− δ)−1/2f(G−1(s))

g(G−1(s))
B1(s)

}

where B1(.) and B2(.) denote two independent Brownian bridges. This result implies

that
√
n(Rπ

IPW(s)−RIPW(s)) W(G−1(1− s)), where W(u) is a Gaussian process

with mean zero and covariance function Ed,m{W(u)W(t)} = σ2(u, t) given by

σ2(u, t) = λµπ1p(φ
∗)−1

{
δ−1(F (u ∧ t)− F (u)F (t))+

+ (1− δ)−1f(u)f(t)

g(u)g(t)
(G(u ∧ t)−G(u)G(t))

}
(4.18)

The super-population inference of φπN in the product space follows from Theorem 6.1

from Rubin-Bleuer et al. (2005). For the ROC curve, the super-population inference can

be obtained from the decomposition

√
n
(
F π

IPW ◦ (Gπ
IPW)−1(s)− F ◦G−1(s)

)
=

√
n
(
F π

IPW ◦ (Gπ
IPW)−1(s)− FIPW ◦ (GIPW)−1(s)

)
+
√
n
(
FIPW ◦ (GIPW)−1(s)− F ◦G−1(s)

)
From the results presented in Theorem 4.2.1, we have that the first component

converges to a zero mean Gaussian process under Pd,m (and Pd). Using similar arguments,

combined with classical empirical processes results, we have that the second component

also converges to a zero mean Gaussian process under Pm. Theorem 5.1(iii) from Rubin-

Bleuer et al. (2005) imply that the two components are asymptotically independent,

leading to the following result:
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Theorem 4.2.2 (SUPER POPULATION INFERENCE). Consider the estimators F π
IPW,

Gπ
IPW, and ROCπ

IPW as defined in (4.15), (4.16), and (4.17), and let φ∗ be the superpopu-

lation parameter. Suppose that conditions (A1.1)-(A2.2) hold.

(a) (Survey-weighted propensity score parameter).

√
n(φπN − φ∗)→ N(0,Γ)

where

Γ = I−1(φ∗) [V (φN) + λI(φ∗)] I−1(φ∗)

I(φ∗) = lim
N→∞

N−1∂UN(φ)

∂φ

∣∣∣
φ=φ0

V (φN) = lim
N→∞

N−1

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ui(φN)uj(φN)

(a) (Survey-weighted IPW empirical distributions).

√
N

Gπ
IPW −G

F π
IPW − F

 
Gπ

0

Gπ
1

 =


{

(1 + µπ1)(1− δ)−1p(φ∗)−1
}1/2

B1(G){
(1 + µπ1)δ−1p(φ∗)−1

}1/2

B2(F )

 ,
where B1(.) and B2(.) denote two independent Brownian bridges and δ = P (D = 1).

(b) (Survey-weighted IPW ROC curve). Suppose that F and G have continuous positive

densities f and g, respectively, on [G−1(a)− ε, G−1(b) + ε] and that f(G−1)/g(G−1)

is bounded on any subinterval (a, b), 0 < a < b < 1. Then, for 0 < s < 1

√
n
(
F π

IPW ◦ (Gπ
IPW)−1(s)− F ◦G−1(s)

)
 

 

√
λ(1 + µπ1)

p(φ∗)

{
δ−1/2B2(F ◦G−1(s)) + (1− δ)−1/2f(G−1(s))

g(G−1(s))
B1(s)

}
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where B1(.) and B2(.) denote two independent Brownian bridges. This result implies

that
√
n(Rπ

IPW(s) − R(s))  W(G−1(1 − s)), where W(u) is a Gaussian process

with mean zero and covariance function Ed,m{W(u)W(t)} = σ2(u, t) given by

σ2(u, t) = λ(1 + µπ1)p(φ∗)−1

{
δ−1(F (u ∧ t)− F (u)F (t))+

+ (1− δ)−1f(u)f(t)

g(u)g(t)
(G(u ∧ t)−G(u)G(t))

}
(4.19)

4.3 Simulation Studies

In this simulation study, we investigate the performance of the proposed IPW estimator

for the ROC curve under stratified simple random sampling (SSRS) and stratified two-

stage cluster sampling (STSCS). For each sampling scheme, a total of 18 scenarios were

considered according to different missing proportions (10%, 25%, 50%), propensity score

model specification (M1: correctly specified, M2: overspecified, M3: underspecified), and

sampling fractions (5%, 10%).

For each scenario, we generated populations of size N = 100, 000 subdivided in

five strata containing 5%, 10%, 25%, 30% and 30% of the observations. For each

stratum h = 1, · · · , 5, we generated the auxiliary variables W = (W1,W2,W3,W4)
>

from a multivariate normal distribution with mean 04 and covariance matrix Σ = I4.

Then, we generated the diagnostic test Xh = αh0D + α>1W0 + ε, where D ∼ Ber(0.25),

W0 = (W1,W2)
>, and ε ∼ N(0, 1). We set α1

0 = 2.33, α2
0 = 1.81, α3

0 = 1.19, α4
0 = 0.74,

α5
0 = 0.54, α1 = 12, such that the corresponding AUC for each strata were 0.84, 0.78,

0.69, 0.63, 0.59. For STSCS, M =10,000 clusters of sizes 5, 10 and 15 were generated

using quantiles of Xh + τ , τ ∼ N(0, 1). Finally, the missing indicators R were generated

from the Bernoulli distribution with probability p such that logit(p) = β0 + β1D+β>2 W0,
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with β0 = (2.31, 1.10,−0.12) for the missing proportions of (10%, 25%, 50%), β1 = 0.5,

and β2 = −0.5× 12.

Samples with size determined by the sampling fraction were drawn assuming uniform

allocation. For the first stage of STSCS, m = 125 and 250 clusters were sampled from

each stratum, and 80% of the observations were sampled from each cluster at the second

stage.

We evaluated the performance at s ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} in terms of

Relative Bias (RB), Empirical Standard Error (ESE), Asymptotic Standard Error (ASE),

and Coverage Probability for 95% confidence intervals (CP). We compare our method

(IPW) to the survey-weighted complete-case ROC curve (SCC), using estimator proposed

in Chapter 2.3. We also include unweighted ROC curve (UN), where the sampling weights

are ignored, and the asymptotic variance is computed following Hsieh et al. (1996). For

the IPW estimator, we use a design-adjusted logistic regression model with covariates D

and Z to estimate the propensity scores. The performance of the proposed IPW estimator

is evaluated under the following model specifications: (M1) correctly specified model using

the correct set of covariates, i.e. Z = W0; (M2) overspecified model using all the auxiliary

variables, i.e. Z = W ; (M3) underspecified model using only one of the covariates, i.e.

Z = W1. The simulation results are compared with a population of size N = 1, 000, 000

with no missing observations as a approximation of the super-population quantities.

The results for the RB under SSRS and STSCS are reported in Figure 4.6.1, and

Tables 4.6.1 and 4.6.2. Overall, the IPW estimator performs well when using the correctly

specified (IPW-M1) and over-specified (IPW-M2) model for the propensity score, with

RB never exceeding 1.2%. When the propensity score is under-specified (IPW-M3), we

have slightly biased results that worsen as the missing proportion increases. However,

the IPW-M3 estimator has less bias than the SCC estimator in all scenarios. Finally, the

UN estimator that does not account for the sampling weights and missingness performs

poorly, with RB as large as 41% when the missing proportion is 50% in SSRS.
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The ESE and ASE under SSRS and STSCS are presented in Figure 4.6.2, and Tables

4.6.3 and 4.6.4. The ESE was obtained by computing the empirical standard deviation of

all repetitions of the IPW estimator in each simulation scenario. The ASE was obtained

for the IPW and SCC estimators by plugging survey-weighted estimates of p, F , G, f ,

and g into the expression developed in (3.10) and Chapter 2.3. For the UN estimator,

unweighted estimates of p, F , G, f , and g were plugged into the asymptotic variance

expression presented in Hsieh et al. (1996). In general, the ASE for the IPW estimator is

closer to the ESE, with higher departures for higher missing proportions. The variance

estimators for the SCC and UN estimators underestimate the standard errors as the

missing proportion increases.

Figure 4.6.3 and Tables 4.6.5 and 4.6.6 give the CP for the ROC curve. The coverage

probabilities based on the IPW estimator are closer to 95%, with higher departures with

higher missing proportions and an under-specified model (IPW-M3). The SCC estimator

presents coverage probabilities close to 92% at most, with a decrease as the missing

proportion increases. Finally, the UN estimator performs poorly due to the large biases

and underestimated variances.

4.4 Application

Diabetes and its complications are major causes of morbidity and mortality worldwide.

Currently, clinical practice guidelines recommend screening for pre-diabetes and type

2 diabetes with an informal assessment of risk factors or validated risk calculator in

asymptomatic adults to guide providers on whether performing a definitive diagnostic

test is necessary (Draznin et al., 2022). The current risk assessment tool used by the

American Diabetes Association (ADA) to screen for pre-diabetes and type 2 diabetes

is adapted from the algorithm developed in Bang et al. (2009) to estimate the risk of

undiagnosed diabetes.
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In this application, we wish to evaluate the discrimination of the algorithm developed

by Bang et al. (2009) using the National Health and Nutrition Examination Survey

(NHANES) between 1999-2006. NHANES is an annual survey conducted by the Centers

for Disease Control and Prevention’s (CDC) National Center for Health Statistics (NCHS)

that utilizes a complex, multistage probability sampling design to select a representative

sample of the non-institutionalized resident population of the United States.

Similarly as presented in Bang et al. (2009), we consider participants aged 20 years

or more, excluding pregnant women, that had fasting plasma glucose (FPG) results.

The participants are classified into four groups of diabetes status: known diabetes (if

answered “yes” to the question “Other than during pregnancy, have you ever been told by

a doctor or health professional that you have diabetes or sugar diabetes?”), normal glucose

metabolism (FPG < 100 mg/dL), pre-diabetes (FPG 100-125 mg/dL), and undiagnosed

diabetes (FPG > 125 mg/dL). The participants classified as “known diabetes” are not

considered in the analysis, and the undiagnosed diabetes was used as the endpoint. The

risk score was computed using age (< 40, 40-49, 50-59, > 59), sex (female, male), family

history of diabetes (yes, no), history of hypertension (yes, no), obesity (not overweight,

overweight, obese, extremely obese), physically active (yes, no) according to the model

presented in Bang et al. (2009).

In the 1999-2006 NHANES, 20,159 non-pregnant adults aged 20 years or more were

enrolled. Out of this sample, 17,696 observations had FPG results and were classified as

either normal glucose metabolism, pre-diabetes, and undiagnosed diabetes. The proportion

of undiagnosed diabetes was 2.3% (95% CI: 1.9, 2.7), and 10,511 (59%) observations had

missing value for the risk of undiagnosed diabetes (Table 4.6.7).

Figure 4.6.4 shows the estimated ROC curves and their corresponding AUC according

to three methods. The first method is the unweighted estimate, where the design

weights are ignored. The second method is the survey-weighted ROC curve proposed

in Chapter 2.3 that accounts for the design weights, but uses only the complete-cases
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for the estimation. Finally, the third method is the IPW estimator proposed in this

Chapter, with the propensity score modelled using survey-weighted logistic regression

model including gender, race, age, obesity, weekly minutes of physical activity and level

of adherence to the 2008 Physical Activity Guidelines for Americans (U.S. Department

of Health and Human Services, 2008). From the plot, we see that the unweighted ROC

curve provides the smallest estimates, followed by the complete-case estimate and IPW

estimate, with the most considerable discrepancies between FPR 0.1-0.5.

4.5 Discussion

In this paper, we proposed a design-adjusted IPW estimator for the ROC curve

to accommodate the case where the diagnostic test Y is missing. We developed the

asymptotic properties of the estimator using the super-population framework described

in Rubin-Bleuer et al. (2005), combined with the general results for Horwitz-Thompson

empirical measure from Boistard et al. (2017) and Han and Wellner (2021). Our proposed

estimator presented a better performance in the simulation studies compared to methods

that do not account for the complex survey design and missingness. Our approach was

then applied to NHANES to evaluate the discriminatory ability of a traditional risk

calculator for undiagnosed diabetes.

The proposed estimator serves as a first step toward accounting for the common issue

of nonresponse in large-scale surveys when computing ROC curves. A natural extension

of our proposed estimator is the Augmented IPW (AIPW) estimator, where a model is

assumed for the diagnostic test, in addition to the model for the missing mechanism. In

this context, one can obtain an estimator that is doubly robust to model specification.

Alternative methods using imputation for complex survey data might also be a possibility.

In the context of ROC curves, there is also the issue concerning the missingness of

the disease status D, also referred to as verification bias. The development of estimators
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to accommodate this second possibility of incomplete data for ROC curves may deserve

attention.
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Figure 4.6.1: Relative Bias (in %) of the IPW, CC, and UN estimators for the super
population ROC curve.
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Figure 4.6.2: Empirical and Asymptotic Standard Errors of the IPW, CC, and UN
estimators for the super population ROC curve.
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Figure 4.6.3: Coverage Probabilities (in %) of the IPW, CC, and UN estimators for the
super-population ROC curve.
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Table 4.6.1: Relative Bias (in %) of the IPW, CC, and UN estimators for the super-
population ROC curve under SSRS.

Missing FPR
Sampling fraction: 5% Sampling fraction: 10%

IPW-M1 IPW-M2 IPW-M3 CC UN IPW-M1 IPW-M2 IPW-M3 CC UN

10%

0.1 0.0 0.0 2.6 4.1 33.2 -0.2 -0.2 2.3 3.9 32.8
0.2 -0.4 -0.4 1.3 2.5 22.0 -0.3 -0.3 1.4 2.5 21.9
0.3 -0.4 -0.4 0.9 1.7 15.9 -0.1 -0.1 1.1 2.0 16.1
0.4 -0.3 -0.3 0.5 1.2 11.7 -0.2 -0.2 0.7 1.4 11.9
0.5 -0.1 -0.1 0.6 1.1 8.8 -0.1 -0.1 0.6 1.1 8.8
0.6 0.2 0.2 0.6 1.0 6.5 0.1 0.1 0.6 0.9 6.5
0.7 0.0 0.0 0.3 0.6 4.3 0.0 0.0 0.3 0.5 4.2
0.8 0.1 0.1 0.2 0.4 2.6 0.1 0.1 0.3 0.4 2.6
0.9 0.0 0.0 0.1 0.2 1.1 0.0 0.0 0.1 0.2 1.1

25%

0.1 0.1 0.1 4.9 8.1 37.8 -0.2 -0.2 4.8 8.2 37.7
0.2 -0.4 -0.4 3.0 5.4 25.0 -0.2 -0.2 3.2 5.4 25.1
0.3 -0.3 -0.3 2.2 4.0 18.1 -0.1 -0.1 2.4 4.2 18.3
0.4 -0.3 -0.3 1.6 3.0 13.4 -0.1 -0.1 1.7 3.1 13.5
0.5 -0.1 0.0 1.4 2.5 10.0 -0.1 -0.1 1.3 2.4 10.0
0.6 0.2 0.2 1.2 2.0 7.4 0.1 0.1 1.1 1.9 7.3
0.7 0.1 0.1 0.8 1.3 4.9 0.0 0.0 0.7 1.2 4.8
0.8 0.1 0.1 0.5 0.8 3.0 0.1 0.1 0.5 0.8 2.9
0.9 0.0 0.0 0.2 0.4 1.3 0.0 0.0 0.2 0.4 1.3

50%

0.1 0.6 0.6 6.3 10.7 40.7 -0.2 -0.1 6.1 10.4 40.6
0.2 -0.4 -0.5 4.1 7.3 27.0 -0.3 -0.3 4.3 7.5 27.3
0.3 -0.3 -0.3 3.1 5.5 19.7 -0.1 -0.1 3.4 5.8 20.0
0.4 -0.5 -0.5 2.4 4.5 14.8 -0.1 -0.1 2.6 4.5 14.8
0.5 -0.2 -0.2 2.1 3.6 11.1 -0.1 -0.1 2.1 3.5 11.0
0.6 0.2 0.2 1.8 2.9 8.1 0.1 0.1 1.7 2.8 8.0
0.7 0.0 0.0 1.1 1.9 5.4 0.0 0.0 1.1 1.8 5.3
0.8 0.1 0.1 0.7 1.2 3.3 0.1 0.1 0.7 1.2 3.3
0.9 0.0 0.0 0.4 0.6 1.4 0.0 0.0 0.3 0.5 1.4
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Table 4.6.2: Relative Bias (in %) of the IPW, CC, and UN estimators for the super-
population ROC curve under STSCS.

Missing FPR
Sampling fraction: 5% Sampling fraction: 10%

IPW-M1 IPW-M2 IPW-M3 CC UN IPW-M1 IPW-M2 IPW-M3 CC UN

10%

0.1 0.5 0.5 2.5 4.0 30.3 0.2 0.2 2.4 3.7 30.2
0.2 0.1 0.1 1.5 2.5 20.7 0.0 0.0 1.4 2.5 20.6
0.3 -0.2 -0.2 0.8 1.5 15.0 -0.2 -0.2 0.8 1.6 15.0
0.4 -0.2 -0.2 0.6 1.2 11.3 -0.1 -0.1 0.7 1.3 11.3
0.5 0.1 0.1 0.6 1.1 8.7 0.0 0.0 0.6 1.1 8.6
0.6 0.1 0.1 0.5 0.8 6.3 0.0 0.0 0.4 0.8 6.3
0.7 0.0 0.0 0.3 0.5 4.3 0.0 0.0 0.3 0.5 4.2
0.8 0.0 0.0 0.1 0.3 2.6 -0.1 -0.1 0.1 0.2 2.5
0.9 0.0 0.0 0.0 0.1 1.1 0.0 0.0 0.0 0.1 1.1

25%

0.1 0.6 0.7 4.6 7.2 34.3 0.4 0.4 4.3 7.1 34.1
0.2 0.1 0.1 2.9 5.0 23.4 0.0 0.0 3.0 5.0 23.3
0.3 -0.2 -0.2 1.8 3.4 17.0 -0.2 -0.2 2.0 3.5 16.9
0.4 -0.2 -0.2 1.4 2.6 12.8 -0.1 -0.1 1.6 2.8 12.7
0.5 0.0 0.0 1.3 2.2 9.7 0.1 0.1 1.3 2.2 9.6
0.6 0.1 0.1 1.0 1.7 7.1 0.0 0.0 0.9 1.6 7.0
0.7 0.0 0.0 0.6 1.2 4.8 0.0 0.0 0.6 1.1 4.8
0.8 -0.1 -0.1 0.3 0.6 2.9 -0.1 -0.1 0.3 0.6 2.8
0.9 0.0 0.0 0.1 0.3 1.3 0.0 0.0 0.1 0.3 1.3

50%

0.1 1.2 1.2 6.2 9.8 37.0 0.6 0.7 5.4 9.0 36.4
0.2 0.5 0.5 4.2 6.8 25.3 -0.1 -0.1 3.7 6.5 25.0
0.3 -0.1 0.0 2.9 5.0 18.5 -0.3 -0.3 2.7 4.9 18.4
0.4 0.0 0.0 2.3 4.1 14.1 -0.1 -0.1 2.3 3.9 13.9
0.5 0.2 0.2 1.9 3.3 10.7 0.0 0.0 1.8 3.1 10.5
0.6 0.1 0.1 1.5 2.5 7.8 0.0 0.0 1.4 2.4 7.7
0.7 0.0 0.0 1.1 1.7 5.3 0.0 0.0 1.0 1.7 5.3
0.8 0.0 0.0 0.6 1.0 3.2 -0.1 -0.1 0.5 1.0 3.1
0.9 0.0 0.0 0.2 0.5 1.4 -0.1 -0.1 0.2 0.4 1.4
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Table 4.6.3: Estimates of empirical (EMP) and asymptotic standard error of the IPW,
CC, and UN estimators for the super-population ROC curve under SSRS.

FPR Method

Sampling proportion: 5% Sampling proportion: 10%

Missing: 10% Missing: 25% Missing: 50% Missing: 10% Missing: 25% Missing: 50%

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

0.1

EMP 0.017 0.017 0.017 0.020 0.020 0.019 0.028 0.028 0.026 0.013 0.013 0.013 0.014 0.014 0.014 0.020 0.020 0.018
IPW 0.018 0.018 0.018 0.020 0.020 0.020 0.026 0.026 0.025 0.013 0.013 0.013 0.014 0.014 0.014 0.018 0.018 0.018
CC 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
UN 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012

0.2

EMP 0.019 0.019 0.019 0.022 0.022 0.021 0.028 0.028 0.026 0.014 0.014 0.014 0.015 0.015 0.015 0.020 0.020 0.019
IPW 0.019 0.019 0.019 0.022 0.022 0.021 0.027 0.027 0.027 0.014 0.014 0.014 0.015 0.015 0.015 0.020 0.020 0.019
CC 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
UN 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

0.3

EMP 0.019 0.019 0.019 0.021 0.021 0.021 0.026 0.026 0.025 0.014 0.014 0.014 0.015 0.015 0.015 0.019 0.019 0.019
IPW 0.020 0.020 0.019 0.022 0.022 0.021 0.027 0.027 0.026 0.014 0.014 0.014 0.015 0.015 0.015 0.019 0.019 0.019
CC 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
UN 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

0.4

EMP 0.019 0.019 0.019 0.020 0.020 0.020 0.025 0.025 0.024 0.013 0.013 0.013 0.015 0.015 0.015 0.018 0.018 0.018
IPW 0.019 0.019 0.019 0.021 0.021 0.020 0.026 0.026 0.025 0.013 0.013 0.013 0.015 0.015 0.014 0.018 0.018 0.018
CC 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017 0.017 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
UN 0.015 0.015 0.015 0.015 0.015 0.015 0.014 0.014 0.014 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.5

EMP 0.018 0.018 0.017 0.018 0.018 0.018 0.022 0.022 0.022 0.012 0.012 0.012 0.013 0.013 0.013 0.016 0.016 0.015
IPW 0.017 0.017 0.017 0.019 0.019 0.019 0.024 0.024 0.023 0.012 0.012 0.012 0.014 0.014 0.013 0.017 0.017 0.016
CC 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.012 0.012 0.012 0.011 0.011 0.011 0.011 0.011 0.011
UN 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009

0.6

EMP 0.016 0.016 0.016 0.016 0.016 0.017 0.019 0.019 0.020 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.014
IPW 0.016 0.016 0.015 0.017 0.017 0.017 0.021 0.021 0.020 0.011 0.011 0.011 0.012 0.012 0.012 0.015 0.015 0.014
CC 0.015 0.015 0.015 0.014 0.014 0.014 0.014 0.014 0.014 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
UN 0.012 0.012 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

0.7

EMP 0.013 0.013 0.013 0.014 0.014 0.014 0.016 0.016 0.016 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.011
IPW 0.013 0.013 0.013 0.015 0.015 0.014 0.018 0.018 0.017 0.009 0.009 0.009 0.010 0.010 0.010 0.013 0.013 0.012
CC 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008
UN 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

0.8

EMP 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.007 0.007 0.008 0.008 0.008 0.008 0.009 0.009 0.009
IPW 0.010 0.010 0.010 0.011 0.011 0.011 0.014 0.014 0.014 0.007 0.007 0.007 0.008 0.008 0.008 0.010 0.010 0.010
CC 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
UN 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

0.9

EMP 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006
IPW 0.007 0.007 0.007 0.008 0.008 0.007 0.009 0.009 0.009 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.006
CC 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004
UN 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
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Table 4.6.4: Estimates of empirical (EMP) and asymptotic standard error of the IPW,
CC, and UN estimators for the super-population ROC curve under STSCS.

FPR Method

Sampling proportion: 5% Sampling proportion: 10%

Missing: 10% Missing: 25% Missing: 50% Missing: 10% Missing: 25% Missing: 50%

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

0.1

EMP 0.017 0.017 0.017 0.020 0.020 0.019 0.026 0.026 0.023 0.012 0.012 0.012 0.014 0.014 0.014 0.019 0.019 0.017
IPW 0.017 0.017 0.017 0.019 0.019 0.019 0.024 0.024 0.024 0.012 0.012 0.012 0.014 0.014 0.013 0.017 0.017 0.017
CC 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012
UN 0.015 0.015 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

0.2

EMP 0.019 0.019 0.019 0.022 0.022 0.022 0.027 0.027 0.025 0.013 0.013 0.013 0.015 0.015 0.015 0.020 0.020 0.018
IPW 0.019 0.019 0.019 0.021 0.021 0.021 0.027 0.027 0.026 0.014 0.014 0.014 0.015 0.015 0.015 0.019 0.019 0.019
CC 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
UN 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

0.3

EMP 0.020 0.020 0.020 0.023 0.022 0.022 0.026 0.026 0.025 0.013 0.013 0.014 0.015 0.015 0.015 0.019 0.019 0.018
IPW 0.020 0.020 0.019 0.022 0.022 0.021 0.027 0.027 0.026 0.014 0.014 0.014 0.015 0.015 0.015 0.019 0.019 0.019
CC 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
UN 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

0.4

EMP 0.018 0.018 0.018 0.021 0.021 0.021 0.023 0.023 0.023 0.013 0.013 0.013 0.014 0.014 0.014 0.018 0.018 0.017
IPW 0.019 0.019 0.019 0.021 0.021 0.021 0.026 0.026 0.026 0.013 0.013 0.013 0.015 0.015 0.015 0.018 0.018 0.018
CC 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
UN 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

0.5

EMP 0.017 0.017 0.017 0.019 0.019 0.019 0.022 0.022 0.022 0.012 0.012 0.012 0.013 0.013 0.013 0.016 0.016 0.016
IPW 0.018 0.018 0.018 0.020 0.020 0.019 0.024 0.024 0.024 0.013 0.013 0.013 0.014 0.014 0.014 0.017 0.017 0.017
CC 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
UN 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.6

EMP 0.016 0.016 0.016 0.017 0.017 0.017 0.020 0.020 0.020 0.011 0.011 0.011 0.012 0.012 0.012 0.014 0.014 0.014
IPW 0.016 0.016 0.016 0.018 0.018 0.017 0.022 0.022 0.021 0.011 0.011 0.011 0.013 0.013 0.012 0.015 0.015 0.015
CC 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010
UN 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008

0.7

EMP 0.014 0.014 0.014 0.014 0.014 0.014 0.017 0.017 0.017 0.010 0.010 0.010 0.010 0.010 0.010 0.012 0.012 0.012
IPW 0.014 0.014 0.014 0.015 0.015 0.015 0.019 0.019 0.018 0.010 0.010 0.010 0.011 0.011 0.011 0.013 0.013 0.013
CC 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
UN 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

0.8

EMP 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.014 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009
IPW 0.011 0.011 0.011 0.012 0.012 0.012 0.015 0.015 0.014 0.008 0.008 0.008 0.009 0.009 0.008 0.011 0.011 0.010
CC 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
UN 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005

0.9

EMP 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006
IPW 0.007 0.007 0.007 0.008 0.008 0.008 0.010 0.010 0.010 0.005 0.005 0.005 0.006 0.006 0.006 0.007 0.007 0.007
CC 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
UN 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
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Table 4.6.5: Coverage Probability (in %) of the IPW, CC, and UN estimators for the
super-population ROC curve under SSRS.

Missing FPR
Sampling fraction: 5% Sampling fraction: 10%

IPW-M1 IPW-M2 IPW-M3 CC UN IPW-M1 IPW-M2 IPW-M3 CC UN

10%

0.1 95.8 95.9 94.6 90.7 0.1 94.4 94.5 92.6 85.9 0.0
0.2 95.2 95.2 94.6 90.0 0.0 94.8 94.8 93.5 86.5 0.0
0.3 95.1 95.1 94.8 91.3 0.1 93.9 93.9 93.3 86.1 0.0
0.4 94.3 94.2 93.9 89.8 0.4 94.8 94.8 92.5 86.9 0.0
0.5 95.3 95.2 94.3 90.9 0.6 95.9 95.9 94.4 88.3 0.0
0.6 94.9 94.9 93.0 87.7 0.9 95.6 95.7 93.5 88.4 0.0
0.7 95.6 95.5 94.9 91.2 5.9 95.2 95.2 93.5 89.1 0.3
0.8 93.7 93.7 94.3 90.7 16.0 94.1 94.2 92.4 87.2 1.5
0.9 93.9 93.9 93.4 90.6 40.8 95.1 95.1 93.7 90.1 13.4

25%

0.1 95.8 95.7 92.1 75.4 0.0 93.1 92.9 88.3 60.7 0.0
0.2 94.8 94.8 91.1 77.4 0.0 95.0 95.1 87.6 61.3 0.0
0.3 96.3 96.4 91.8 76.7 0.1 94.9 95.0 87.2 60.2 0.0
0.4 95.6 95.5 91.7 76.2 0.1 95.3 95.4 88.3 64.7 0.0
0.5 95.6 95.6 92.3 77.0 0.1 95.2 95.2 89.0 65.9 0.0
0.6 95.3 95.4 90.8 74.9 0.5 95.2 95.2 89.1 65.3 0.0
0.7 96.2 96.2 93.0 77.9 2.6 95.4 95.5 91.5 73.4 0.1
0.8 95.7 95.9 92.1 79.4 8.4 94.1 94.1 90.2 73.5 0.6
0.9 96.0 95.9 93.5 83.2 30.2 96.4 96.4 92.3 81.8 8.4

50%

0.1 91.6 91.5 90.7 62.1 0.2 93.1 93.2 85.2 46.7 0.0
0.2 95.8 95.5 91.8 61.4 0.1 93.6 93.9 86.4 40.5 0.0
0.3 95.2 95.3 92.1 61.6 0.2 94.4 94.2 85.3 41.9 0.0
0.4 95.8 95.8 91.8 60.4 0.1 95.2 95.1 84.4 41.6 0.0
0.5 96.9 96.8 91.1 59.2 0.5 97.0 96.9 87.7 44.6 0.0
0.6 96.4 96.5 89.7 59.4 0.7 96.3 96.2 85.6 43.7 0.0
0.7 97.3 97.3 91.8 64.3 1.7 97.0 96.8 89.3 52.4 0.1
0.8 97.8 97.8 92.8 68.4 6.1 96.7 96.8 90.0 57.0 0.1
0.9 98.0 98.2 93.4 72.7 25.5 98.6 98.6 92.4 68.4 5.5
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Table 4.6.6: Coverage Probability (in %) of the IPW, CC, and UN estimators for the
super-population ROC curve under STSCS.

Missing FPR
Sampling fraction: 5% Sampling fraction: 10%

IPW-M1 IPW-M2 IPW-M3 CC UN IPW-M1 IPW-M2 IPW-M3 CC UN

10%

0.1 95.0 95.1 94.4 91.9 1.3 95.1 95.0 93.3 88.7 0.0
0.2 94.3 94.3 94.7 91.3 0.3 95.7 95.8 93.4 88.3 0.0
0.3 93.5 93.7 94.4 92.2 0.6 95.0 95.1 93.8 88.8 0.0
0.4 95.2 95.2 95.0 92.2 1.2 94.9 94.8 94.3 88.8 0.0
0.5 95.1 95.3 95.4 91.8 2.3 95.3 95.3 94.0 88.7 0.0
0.6 95.6 95.6 94.9 91.2 3.3 94.6 94.6 93.2 89.1 0.0
0.7 94.8 94.8 93.6 91.5 9.1 94.8 94.9 94.3 90.7 0.6
0.8 94.6 94.6 93.6 91.4 21.0 94.9 94.9 95.0 91.6 4.2
0.9 93.9 94.0 92.7 89.5 44.9 94.7 94.7 93.5 91.7 21.6

25%

0.1 93.5 93.7 92.6 82.2 0.4 93.6 93.7 89.3 72.2 0.0
0.2 94.2 94.2 91.3 78.9 0.4 95.7 95.7 89.8 69.9 0.0
0.3 93.4 93.6 92.4 81.7 0.4 96.1 96.1 90.5 72.5 0.0
0.4 95.1 95.5 93.5 81.7 0.9 96.0 96.0 91.4 71.4 0.0
0.5 95.2 95.2 92.8 80.9 0.8 96.7 96.7 90.7 71.1 0.0
0.6 95.6 95.4 92.2 81.5 1.6 95.9 95.9 90.7 73.5 0.0
0.7 96.1 96.1 93.1 83.7 5.1 96.0 95.9 91.6 76.9 0.0
0.8 96.0 96.0 93.3 85.6 13.8 96.2 96.1 93.2 81.7 1.7
0.9 95.7 95.6 92.6 85.9 36.2 96.1 96.1 94.7 83.9 15.4

50%

0.1 93.6 93.8 93.0 68.4 0.6 92.8 92.8 89.4 58.5 0.0
0.2 94.7 94.3 91.6 67.8 0.0 93.5 93.6 89.4 53.6 0.0
0.3 95.9 95.8 92.9 67.0 0.2 94.9 95.2 90.9 52.5 0.0
0.4 96.8 97.0 92.9 67.8 0.6 95.6 95.6 90.4 52.8 0.0
0.5 96.8 96.9 92.7 66.6 0.8 96.7 96.5 89.5 53.1 0.0
0.6 96.7 96.6 91.5 67.1 2.4 96.6 96.5 89.4 53.6 0.0
0.7 96.6 96.5 92.4 70.2 4.9 98.0 98.0 89.9 59.6 0.1
0.8 96.8 96.8 93.3 73.0 13.3 98.1 98.1 93.8 66.6 1.8
0.9 95.5 95.4 92.3 76.6 31.5 97.6 97.7 93.2 73.8 11.9

Table 4.6.7: Descriptive Statistics of adults aged 20 years or more, excluding pregnant
women, that had FPG results in NHANES 1999-2006.

Overall Normal Pre-diabetes Undiagnosed diabetes
Characteristic Missing (%) N = 17,696 N = 11,798 N = 5,328 N = 570

Age 0 (0%)
< 40 3,359 (19%) 2,205 (19%) 1,072 (20%) 82 (14%)
40-49 2,327 (13%) 1,306 (11%) 926 (17%) 95 (17%)
50-59 4,637 (26%) 2,242 (19%) 2,045 (38%) 350 (61%)
≥ 60 9,317 (53%) 5,573 (47%) 3,392 (64%) 352 (62%)
FHX of diabetes 389 (2.2%) 8,006 (46%) 5,176 (45%) 2,499 (48%) 331 (60%)
HX of hypertension 9 (< 0.1%) 5,960 (34%) 3,174 (27%) 2,398 (45%) 388 (68%)
Obesity 0 (0%)
Extremely Obese 861 (4.9%) 382 (3.2%) 396 (7.4%) 83 (15%)
Obese 7,123 (40%) 4,238 (36%) 2,532 (48%) 353 (62%)
Overweight 5,030 (28%) 3,443 (29%) 1,500 (28%) 87 (15%)
Not overwight or obese 4,489 (25%) 3,604 (31%) 848 (16%) 37 (6.5%)
Physical Activity 10,348 (58%) 2,852 (39%) 1,798 (38%) 947 (40%) 107 (34%)
Risk of undiagnosed diabetes (%) 10,511 (59%)
Mean (SD) 88 (13) 85 (14) 93 (8) 97 (5)
Median (IQR) 94 (83, 98) 90 (77, 97) 97 (92, 98) 98 (97, 99)
Range 42, 100 42, 100 42, 100 42, 100
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IPW−AUC: 0.86
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Figure 4.6.4: Estimated ROC curves using IPW, complete-case and unweighted method
for the NHANES target population.
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CHAPTER 5: COVARIATE-SPECIFIC RECEIVER OPERATING CHAR-
ACTERISTIC CURVE FOR COMPLEX SURVEY DATA

5.1 Introduction

The receiver operating characteristic (ROC) curve is the most popular method to

assess the performance of a continuous diagnostic test. The curve is defined as the plot of

the false positive rate (1-specificity) versus the true-positive rate (sensitivity) across all

possible cutoffs of the diagnostic test. The false-positive rate (FPR) is the proportion of

non-diseased individuals that test positive for the disease based on the diagnostic test, and

the true-positive rate (TPR) is the proportion of diseased individuals that test positive

for the disease.

In many applications, however, the discriminating capacity of a diagnostic test may be

affected by various factors. For example, disease severity may impact the marker accuracy,

with less severe cases being more dificult to distinguish from controls. Currently, there

are three major existing approaches to evaluate the covariate effects on the ROC curve

(Pepe, 1998). In the first class of approaches, called induced methods, the distributions of

the diagnostic test in the diseased and non-diseased populations are modeled separately,

from which the ROC curve is computed. The second class considers regression models

for the area under the ROC curve (AUC). Lastly, in the third approach, called direct

methods, the covariate effects on the ROC curve are modeled directly. The latter class

is often referred to as parametric distribution-free (PDF) models, since a parametric

model is assumed for the ROC curve, but the distributions of the diagnostic tests remaing

unspecified.
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The PDF approach was originally proposed by Pepe (1997), and various estimation

proposals have been made over the years, including Pepe (2000a); Alonzo and Pepe (2002);

Cai and Pepe (2002); Cai (2004). Due to the similarities with the generalized linear

models, this class of models is also referred to as ROC-GLM models. In our third project,

we adapt the ROC-GLM model presented in Pepe (2000a) and Alonzo and Pepe (2002)

to account for complex survey designs. The properties of the adapted model is evaluated

using simulation studies, and the model is then applied to the National Health and

Nutrition Examination Survey (NHANES) to evaluate the effect of age on the accuracy

of a diabetes assessment tool.

5.2 ROC-GLM model for simple random samples

Let {(Yi, Di,Xi)}ni=1 be i.i.d realizations of the diagnostic test measure Y , the disease

indicator D, and the set of covariates X. We denote the cumulative distribution function

(cdf) of Y conditioned on D = 0 as G, and similarly, the cdf of Y conditioned on D = 1 as

F . We assume that F and G have continuous probability density functions (pdf) f and

g, respectively. The ROC curve is defined as the plot of {(1−G(c), 1− F (c)) : c ∈ R},

or equivalently, as the plot of {(s, R(s)) : s ∈ [0, 1]}, where R(s) = 1− F ◦ G−1(1− s),

with G−1(s) = inf{x ∈ R : G(x) ≥ s}, and F ◦G−1(.) ≡ F (G−1(.)). The area under the

ROC curve (AUC-ROC) is A =
∫ 1

0
R(s) ds. One natural extension for the ROC curve to

accommodate covariates is defined as

R(s|x) = 1− F{G−1(1− s|x)|x}, 0 ≤ s ≤ 1,

with G(c|x) = P (Y ≤ c|D = 0,X = x) ≡ P (YD̄ ≤ c|X = x) and F (c|x) = P (Y ≤

c|D = 1,X = x) ≡ P (YD ≤ c|X = x). The corresponding covariate-specific AUC-ROC

is given by

A(x) =

∫ 1

0

R(s|x) ds.
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The general form for the ROC-GLM regression model has the following expression:

g{R(t|X)} = h(t) + µ(X), t ∈ (0, 1) (5.20)

where µ(X) models the effects of covariate X on the ROC curve, h(t) is an unknown

monotonic increasing function of the FPR related to the shape of the ROC curve, and g

is the link function. Model (5.20) is also referred to as parametric distribution-free (PDF),

which assumes a parametric model for the ROC curve, but it is distribution-free for the

diagnostic test results.

Different model proposals were made by varying g, h and µ. Let X = (X,XD), with

X representing the covariates that are common to diseased and nondiseased subjects, and

XD representing the covariates specific to the diseased subjects. Pepe (2000a) and Alonzo

and Pepe (2002) assumed the following general model:

g {R(t|X)} =
K∑
k=1

γkhk(t) +X ′β +X ′DβD, (5.21)

with the common model specifications given by the binormal model

Φ−1 {R(t|X)} = γ1 + γ2Φ−1(t) +X ′β +X ′DβD,

and the bilogit model:

logit{R(t|X)} = γ1 + γ2logit(t) +X ′β +X ′DβD,

where logit(t) = log(t/(1 − t)). Pepe (2000a) noted that generalized linear methods

for binary data could be used for estimation for model (5.21). Alonzo and Pepe (2002)

simplified further the computational aspects for estimation for fitting the PDF model,
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based on the fact that

R(s|x) = 1− F{G−1(1− s|x)|x}

= P{YD ≥ G−1(1− s|x)|x}

= E
{
I(YD ≥ G−1(1− s|x))|x

}
= g−1

{
K∑
k=1

γkhk(t) +X ′β +X ′DβD

}
,

so that the procedure for fitting the model (5.21) is based on the (correlated) binary

variable {Uit, i = 1, · · · , nD; t ∈ T} where Uit = I(YDi ≥ G−1(1− t|xi)), nD is the number

of diseased subjects in the sample, and T ⊂ (0, 1) is a set of FPR. The algorithm to

estimate θ = (γ1, · · · , γk, β, βD) is as follows:

1. Specify a set T ⊂ (0, 1) of FPR;

2. For each t ∈ T estimate G−1(1 − t|x), the (1 − t)th quantile of the distribution

function for the nondiseased subjects, conditional on X = x;

3. Caculate Uit = I
[
YDi ≥ Ĝ−1(1− t|xi)

]
, i = 1, · · · , nD and t ∈ T ;

4. Fit the model g{E(Uit)} =
∑K

k=1 γkhk(t) + X ′β + X ′DβD by solving standard

estimating equations for fitting binary generalized linear model to Uit with link

function g and covariates {hk(t), Xi, XDi; k = 1, · · · , K}.

The estimators γ̂ = (γ̂1, · · · , γ̂K) and β̂ = (β̂, β̂D) are the solution of the following

estimating equations:

nD∑
i=1

∑
t∈T

Si(γ,β, t) = 0

with

Si(γ,β, t) = (h(t), Xi, XDi)
Tw(µγ,β(t)) {Uit − µγ,β(t)} ,
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and

w(s) = {g′(s)s(1− s)}−1

µγ,β(t) = g−1

{
K∑
k=1

γkhk(t) +XTβ +XT
DβD

}
.

The simplified framework and lower computational burden of the approach in Alonzo

and Pepe (2002) make this the preferred method in modern statistical software for directly

modeling covariate effects on ROC curves. Although inference based on asymptotic

distribution theory is desirable, the induced correlation amongst the estimating equation’s

components makes this task not completely straightforward (Pepe, 1997). Pepe (2000a)

developed the asymptotic distribution theory for the ROC-GLM models, but the estimation

based on nD × nD̄ observations makes this option not practical for larger datasets, as

pointed in Alonzo and Pepe (2002). Consequentially, bootstrap resampling method

remains the preferred method for inference on Pepe (1997) and Alonzo and Pepe (2002).

5.3 ROC-GLM model for complex survey data

Consider a finite population UN of size N , with corresponding set of indices U =

{1, · · · , N}. Each index i ∈ U is associated with a unique vector (yi, wi, zi) ∈ Rp ×

Rk ×Rq
+ representing, respectively, the characteristics of interest, the complete auxiliary

information, and the sampling design information available at the time of the design of the

survey on all units. We assume that {(yi, wi, zi)}Ni=1 are realizations of random variables

(Y,W,Z) defined according to a superpopulation model. We denote yN = (y1, · · · , yN),

Y N = (Y1, · · · , YN), wN = (w1, · · · , wN), and WN = (W1, · · · ,WN), zN = (z1, · · · , zN),

and ZN = (Z1, · · · , ZN).

For our purposes, let {(Yi,Wi, Zi) = (Yi, Di, Xi, XDi , Zi)}Ni=1 be i.i.d realizations of

the diagnostic test measure Y , the disease indicator D, the covariates that are common
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to diseased and nondiseased units X, the covariates specific to the diseased units XD,

and the sampling design information Z available for all units in the sampling stage.

Suppose a sample s of size n is drawn from the finite population according to a

probability sampling design p(s) = p(s, zN). Note that since p does not depend on yN ,

only non-informative sampling designs are being considered. Let ξi = I(i ∈ s) be the

sample indicators, πi = E[ξi|ZN ] the first-order inclusion probability, and πij = E[ξiξj|ZN ]

the second-order inclusion probability.

In this paper, we propose to adapt the ROC-GLM model from Alonzo and Pepe

(2002), to account for the complex-survey design:

g {R(t|X)} =
K∑
k=1

γπkhk(t) +X ′βπ +X ′Dβ
π
D (5.22)

The algorithm proposed by Alonzo and Pepe (2002) can be easily adapted for complex

survey data since quantile regression and generalized linear models accounting for complex

survey design are widely available in statistical software capable of handling survey data.

The adapted algorithm is as follows:

1. Specify a set T ⊂ (0, 1) of FPR;

2. For each t ∈ T estimate G−1(1 − t|x), the (1 − t)th quantile of the distribution

function for the nondiseased subjects, conditional on X = x, accounting for the

survey design;

3. Caculate Uπ
it = I

[
YDi ≥ Ĝ−1(1− t|xi)

]
, i = 1, · · · , nD and t ∈ T ;

4. Fit the model g {E(Uπ
it)} =

∑K
k=1 γ

π
khk(t)+X ′βπ+X ′Dβ

π
D by solving design-adjusted

estimating equations for fitting binary generalized linear model to Uπ
it with link

function g and covariates {hk(t), Xi, XDi; k = 1, · · · , K}
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The estimators γ̂π = (γ̂π1 , · · · , γ̂πK) and β̂π = (β̂π, β̂πD) are the solution of the design-

adjusted estimating equations (Binder, 1983):

N∑
i=1

∑
t∈T

DiS
π
i (γπ,βπ, t) = 0

with

Sπi (γπ,βπ, t) = ξiπ
−1
i (h(t), Xi, XDi)

Tw(µγπ ,βπ(t)) {Uπ
it − µγπ ,βπ(t)} . (5.23)

As commonly done for data arising from simple random sample, variance estimation

will be performed using resampling techniques suitable for complex designs. In survey

sampling, those methods are usually referred as replication weights methods. Commonly

implemented replicate weights methods in modern survey software are balanced repeated

replication (BRR), jackknife, and bootstrap. The later being the most flexible of the

methods, suitable for most sampling designs, it is the method of choice for this paper.

The bootstrap method, originally proposed by Efron (1992) for independent and

identically distributed (i.i.d) data, relies on recomputing the estimate θ̂ a large number

of times by resampling from the original sample. Since survey data are not necessarily

i.i.d., many bootstrap resampling methods have been proposed in the context of survey

data. Mashreghi et al. (2016) present a comprehensive review of bootstrap resampling

methods, classifying them into three groups. The first one is the class of pseudo-population

bootstrap methods in which a pseudo-population is first created by repeating the units of

the original sample and bootstrap samples are then selected from the pseudo-population

(Gross, 1980; Booth et al., 1994). The second one, called the direct bootstrap methods,

consists of directly selecting bootstrap samples from the original sample or a rescaled

version of it (Rao and Wu, 1984, 1988; Sitter, 1992; Canty and Davison, 1999). In the

third group, called the bootstrap weights methods, an appropriate adjustment is made on

the original survey weights to obtain a new set of weights called the bootstrap weights
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(Rao et al., 1992; Beaumont and Patak, 2012). This method is attractive to users to

public data files prepared by statistical agencies, which provide data sets consisting of

columns with the original observations, a column with the original survey weights and B

columns of bootstrap weights.

For this paper, we use the function as.svrepdesign from the survey package in

R, where the bootstrap method proposed in Canty and Davison (1999) is implemented

and described as follows. Suppose y1, · · · , yn is a sample of size n drawn from a finite

population of size N , and for simplicity, suppose that the inverse of the sampling fraction

1/λ is an integer. Let θ and θ̂ be the parameter of interest and the parameter estimate

based on the sample, respectively.

1. A bootstrap population of size N is constructed by concatenating 1/λ copies of

y1, · · · , yn;

2. A bootstrap sample of size n is selected without replacement. In the case of stratified

population, steps 1 and 2 are applied to each stratum separately;

3. The selected bootstrap sample is reweighted through calibration so that its marginal

totals match those of the original population;

4. The bootstrap parameter estimate θ̂∗ is computed from the bootstrap sample using

the reweighted inclusion probabilities π∗i , i = 1, · · · , n;

5. Steps 1-4 are repeated B times to obtain θ̂∗1, · · · , θ̂∗R, and these are used to estimate

the variance of θ̂ by

V̂ar(θ̂) =
1

B − 1

B∑
b=1

(θ̂∗b −
¯̂
θ∗)2,

with
¯̂
θ∗ = B−1

∑B
b=1 θ̂

∗
b .
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5.4 Simulation studies

In this simulation study, we investigate the performance of the proposed survey-

weighted ROC-GLM under stratified simple random sampling (SSRS) and stratified

two-stage cluster sampling (STSCS). For each sampling scheme, a total of 4 scenarios are

considered according to different disease proportions p = 5%, 15% and sampling fractions

λ = 5%, 10%.

We generated populations of size N = 100, 000 subdivided in five strata containing

5%, 10%, 25%, 30% and 30% of the observations. For each stratum h, we generated

Xh = α0 + αhD + βhD × W + ε, where W ∼ N(0, 1), D ∼ Ber(p) and ε ∼ N(0, 1).

The induced ROC curve in each stratum h is given by the binormal model R(s) =

Φ(αh + βhW + Φ−1(s)), where Φ(.) is the standard normal cdf. We set α0 = 1, α1 = 2,

α2 = 1.75, α3 = 1.5, α4 = 1.25, α5 = 1, β1 = 0.5, β2 = 1, β3 = 1.5, β4 = 2, and β5 = 2.5

such that the expected AUC for each strata were 0.9, 0.85, 0.75, 0.7, 0.6 respectively. For

STSCS, 10,000 clusters of sizes 5, 10 and 15 were generated using quantiles of Xh + τ ,

τ ∼ N(0, 1), in addition to the steps already described.

Samples with size determined by the sampling fraction were drawn assuming uniform

allocation. For the first stage of STSCS, m = 125 and 250 clusters were sampled from

each stratum, and 80% of the observations were sampled from each cluster at the second

stage. For each sample, we fitted the ROC-GLM model

RW (s) = Φ(α0 + α1Φ−1(s) + βW ),

using our proposed design-adjusted method and the unadjusted method proposed by

Alonzo and Pepe (2002).

We evaluated the performance of the proposed method in terms of the model param-

eters α0, α1 and β, and the estimated covariate-specific ROC curve with two scenarios

W = −0.67 and W = 0. The estimates are compared with the finite population pa-
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rameters, with the results presented in terms of relative bias (RB), empirical standard

error (ESE), bootstrap standard error (BSE), and coverage probability (CP) for the 95%

bootstrap confidence intervals. We compare our method (SVYW) to the unadjusted

method (UN), where the sampling weights are ignored. The results are based on 1,000

simulation samples, and 250 bootstrap replicates drawn from each simulation sample to

compute the bootstrap standard error.

5.4.1 Results for the model parameters

The simulation results for the model parameters are reported in Table 5.7.1, and

Figures 5.7.1, 5.7.2, and 5.7.3. As expected, the relative bias for the ROC-GLM model

without accounting for the sampling design leads to biased estimates, especially for the

covariate effect parameter β, with absolute relative biases reaching more than 20%. In

contrast, the relative bias from the adapted ROC-GLM model does not exceed 1.6%, with

higher biases for the case with a smaller sample size and disease proportion.

In terms of standard errors, we see that the standard errors obtained using bootstrap

are very close to the empirical standard error. As expected, the bootstrap standard

error that does not account for the sampling design is underestimated. Finally, in terms

of coverage probability, our design-adjusted method has coverage probabilities close to

95%. In contrast, the unadjusted model has poor coverage due to the significant bias and

underestimated variances observed previously.

5.4.2 Results for the ROC curve

The results for the relative biases are reported in Table 5.7.2 and Figure 5.7.4. As

expected, the relative bias for the ROC curve from the unadjusted method is quite large,

especially at the beginning of the curve, with relative biases close to 70% and a decreasing

trend along the curve. In contrast, the values for the SW and WT estimators never exceed

1%.
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In terms of standard errors of the ROC curve presented in Tables 5.7.3, 5.7.4, and

Figure 5.7.5, we see that the standard error obtained without accounting for the survey

design is far from the empirical standard error. When the survey design is considered,

the bootstrap standard error is very close to the empirical standard error, with mild

departures for smaller sample sizes and disease proportions.

Finally, Table 5.7.5 and Figure 5.7.6 report the coverage probability of the 95%

bootstrap confidence interval for both approaches. As expected, not taking the sampling

design into account leads to inferior performance, while our adapted ROC-GLM model

presents coverage probabilities close to 95%.

5.5 Application

Diabetes and its complications are major causes of morbidity and mortality worldwide.

Currently, clinical practice guidelines recommend screening for pre-diabetes and type

2 diabetes with an informal assessment of risk factors or validated risk calculator in

asymptomatic adults to guide providers on whether performing a definitive diagnostic

test is necessary (Draznin et al., 2022). The current risk assessment tool used by the

American Diabetes Association (ADA) to screen for pre-diabetes and type 2 diabetes

is adapted from the algorithm developed in Bang et al. (2009) to estimate the risk of

undiagnosed diabetes.

According to the Centers for Disease Control and Prevention’s (CDC) 2020 National Di-

abetes Statistics Report (https://www.cdc.gov/diabetes/data/statistics-report/index.html

- Accessed 2022-06-02), approximately 20% of the diabetes cases in adults aged 65 years

or more are undiagnosed. Older individuals with diabetes have higher rates of premature

death, functional disability, and coexisting illnesses such as hypertension, coronary heart

disease, and stroke than those without diabetes. Older adults with diabetes are also

at greater risk than other older adults for several common geriatric syndromes, such as
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polypharmacy, depression, cognitive impairment, urinary incontinence, injurious falls, and

persistent pain (American Diabetes Association, 2011).

According to the ADA, older adults are defined as those aged 65 years or more. In this

application, we compare the discrimination of the algorithm developed by Bang et al. (2009)

between working-age adults and older adults. We use data from the National Health and

Nutrition Examination Survey (NHANES), which is an annual survey conducted by the

CDC’s National Center for Health Statistics (NCHS) that utilizes a complex, multistage

probability sampling design to select a representative sample of the non-institutionalized

resident population of the United States, between 1999-2006.

Similarly as presented in Bang et al. (2009), we consider participants aged 20 years or

more, excluding pregnant women, that had available fasting plasma glucose (FPG) results.

The participants are classified into four groups of diabetes status: known diabetes (if

answered “yes” to the question “Other than during pregnancy, have you ever been told by

a doctor or health professional that you have diabetes or sugar diabetes?”), normal glucose

metabolism (FPG < 100 mg/dL), pre-diabetes (FPG 100-125 mg/dL), and undiagnosed

diabetes (FPG > 125 mg/dL). The participants classified as “known diabetes” were not

considered in the analysis, and the undiagnosed diabetes was used as the binary outcome.

The diabetes risk score was computed using age (< 40, 40-49, 50-59, > 59), sex (female,

male), family history of diabetes (yes, no), history of hypertension (yes, no), obesity (not

overweight, overweight, obese, extremely obese), physically active (yes, no), according to

Bang et al. (2009).

In the 1999-2006 NHANES, 20,159 non-pregnant adults aged 20 years or more

were enrolled. Out of this sample, 17,696 observations were classified as either normal

glucose metabolism, pre-diabetes, and undiagnosed diabetes, and 7,185 observations had

information for all variables needed to compute the risk score. In this final analytic

sample, 1,761 observations were classified as older adults, with 7.5% (95% CI: 5.7%, 9.4%)

of undiagnosed diabetes in this group.
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For this application, we consider a binary covariate X that assumes one when the

respondent is an older adult, and zero otherwise. We fit the following ROC-GLM model:

ROC(t) = Φ(α0 + α1Φ−1(t) + βX),

Table 5.7.6 presents the estimated parameters for the model above using the design-

adjusted and unadjusted ROC-GLM model. From Table 5.7.6, we see that the design-

adjusted point and interval estimates of β indicate that the risk assessment tool has a

lower accuracy in detecting undiagnosed diabetes among older adults. The estimate and

standard error for β̂ are smaller when the sampling design is not taken into account.

Figure 5.7.7 show both survey-weighted and unweighted estimates of the ROC curve and

their corresponding AUC.

From Figure 5.7.7 we see that the estimated area under the ROC curve from the

unweighted ROC-GLM model is smaller, with a greater departure among old adults

(design-adjusted: 0.715, unadjusted: 0.669). As discussed previously, the risk tool

performs worse among older adults, with a design-adjusted AUC of 0.715, compared to

the design-adjusted AUC of 0.824 among adults. This result seems to be more indirect

evidence for supporting the ADA recommendation of screening all adults aged 45 years

or more every 1-3 years using either FPG, A1C, or oral glucose test (American Diabetes

Association, 2022).

5.6 Discussion

In this paper, we adapted the ROC-GLM model proposed by Pepe (2000a) and

Alonzo and Pepe (2002) to account for complex survey designs. Similarly as done for

data arising from simple random sample, variance estimation was performed using the

bootstrap resampling technique in the context of complex survey data. The properties

of the proposed method were evaluated using simulation studies and compared to the
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original ROC-GLM model, which does not account for the complex survey sampling. As

expected, using ROC-GLM for i.i.d. data leads to poor performance in bias, variance

estimation, and coverage probabilities. Our adapted method performed well, especially

for larger sample sizes and disease proportions. Finally, the proposed method was applied

to a national-level health survey to evaluate the discriminatory ability of a traditional

risk calculator for undiagnosed diabetes.

The method presented in this paper serves as a basis for ROC regression in the context

of complex survey data. The simplicity of the algorithm proposed by Alonzo and Pepe

(2002), combined with widely available software for quantile regression and generalized

linear model for complex survey data, makes this method especially useful in practice.

This method is also attractive to be used with the bootstrap sampling weights provided

by the statistical agencies in large public surveys.

Our method relies on the bootstrap resampling method to obtain the variance of

the estimated parameters of the model. Although the original method also relies on

resampling methods, the development of theoretical properties of the proposed method

using theory for generalized estimating equations for correlated binary data will be worth

investigating.

76



5.7 Figures and Tables
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Figure 5.7.1: Relative Bias (in %) for the design-adjusted and unadjusted estimated
parameters from the ROC-GLM model by sampling fraction, disease proportion, and
sampling design.
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Figure 5.7.2: Empirical and bootstrap standard error for the design-adjusted and unad-
justed estimated parameters from the ROC-GLM model by sampling fraction, disease
proportion, and sampling design.

78



Sampling Fraction = 5%

Disease proportion = 5%

Sampling Fraction = 5%

Disease proportion = 15%

Sampling Fraction = 10%

Disease proportion = 5%

Sampling Fraction = 10%

Disease proportion = 15%

S
S

R
S

S
T

S
C

S

(Intercept) f W (Intercept) f W (Intercept) f W (Intercept) f W

0

25

50

75

100

0

25

50

75

100

Parameter

C
ov

er
ag

e 
P

ro
ba

bi
lit

y 
(%

)

Survey−weighted Unweighted

Figure 5.7.3: Empirical coverage probability for nominal 95% confidence intervals of
the design-adjusted and unadjusted parameters from the ROC-GLM model by sampling
fraction, disease proportion, and sampling design.
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Figure 5.7.4: Relative Bias (in %) for the estimated covariate-specific ROC curve from
the design-adjusted and unadjusted ROC-GLM models by sampling fraction, disease
proportion, and sampling design.
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Figure 5.7.5: Empirical and bootstrap standard error for the estimated covariate-specific
ROC curve from the design-adjusted and unadjusted ROC-GLM models by sampling
fraction, disease proportion, and sampling design.
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Figure 5.7.6: Empirical coverage probability for nominal 95% confidence intervals of the
covariate-specific ROC curve from the design-adjusted and unadjusted ROC-GLM models
by sampling fraction, disease proportion, and sampling design.
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Table 5.7.1: Simulation results for design-adjusted (SVYW) and unadjusted (UN) ROC-
GLM model parameters for stratified simple random sample (SSRS), and stratified two
stage cluster sampling (STSCS). λ: sampling fraction; p: disease proportion; RB: relative
bias (in %); EM: empirical standard error; SE: standard error; CP: empirical coverage
probability for nominal 95% confidence intervals (in %).

Design λ p Parameter
RB SE CP

SVYW UN EM SVYW UN SVYW UN

SSRS

5%

5%

α0 1.2 9.7 0.117 0.115 0.100 95.3 82.0
α1 1.4 -8.9 0.080 0.081 0.070 95.5 80.0
β 1.4 -21.6 0.142 0.141 0.133 94.8 30.6

15%

α0 0.6 8.9 0.065 0.066 0.057 95.1 55.4
α1 0.6 -9.0 0.047 0.047 0.041 95.4 56.2
β 0.5 -22.4 0.078 0.080 0.077 95.9 1.7

10%

5%

α0 0.7 8.7 0.076 0.079 0.067 96.1 69.5
α1 0.3 -9.0 0.058 0.056 0.048 95.0 69.0
β 0.5 -23.3 0.096 0.096 0.090 96.2 2.5

15%

α0 0.1 8.4 0.045 0.046 0.040 96.0 26.8
α1 0.5 -9.5 0.033 0.033 0.029 96.5 21.3
β 0.2 -23.3 0.057 0.055 0.053 96.9 0.0

STSCS

5%

5%

α0 1.2 10.6 0.094 0.096 0.085 94.9 80.3
α1 1.0 -4.2 0.074 0.077 0.067 95.3 91.7
β 1.6 -21.7 0.117 0.114 0.105 94.5 33.7

15%

α0 0.3 10.0 0.058 0.059 0.050 95.4 57.1
α1 0.5 -4.0 0.047 0.047 0.040 95.3 84.2
β 0.5 -21.9 0.070 0.068 0.060 95.2 1.6

10%

5%

α0 0.4 10.6 0.067 0.068 0.060 96.4 66.5
α1 0.7 -4.4 0.051 0.054 0.047 97.1 88.1
β 0.5 -21.6 0.078 0.080 0.074 96.2 7.0

15%

α0 0.1 10.0 0.041 0.041 0.035 96.5 26.5
α1 0.1 -4.4 0.033 0.033 0.028 95.6 67.3
β 0.1 -22.0 0.046 0.048 0.043 96.7 0.0
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Table 5.7.2: Simulation results of relative bias (in %) for estimated covariate-specific
ROC curve using design-adjusted (SVYW) and unadjusted (UN) ROC-GLM models
for stratified simple random sample (SSRS), and stratified two stage cluster sampling
(STSCS). W : covariate value; λ: sampling fraction; p: disease proportion.

Design FPR Method

W = -0.67 W = 0

λ = 5% λ = 10% λ = 5% λ = 10%

p = 5% p = 15% p = 5% p = 15% p = 5% p = 15% p = 5% p = 15%

SSRS

0.1
SVYW -0.9 -0.1 0.6 -0.6 -0.1 0.1 0.3 -0.3

UN 72.0 71.5 72.1 71.6 14.2 13.7 13.4 13.6

0.2
SVYW -0.7 0.0 0.3 -0.4 0.1 0.1 0.2 -0.1

UN 49.3 49.1 49.6 49.1 8.4 8.0 7.8 7.9

0.3
SVYW -0.4 0.1 0.2 -0.3 0.2 0.1 0.2 -0.1

UN 36.9 36.9 37.3 36.8 5.4 5.2 5.1 5.0

0.4
SVYW -0.2 0.1 0.2 -0.2 0.2 0.1 0.2 0.0

UN 28.5 28.5 28.9 28.3 3.5 3.4 3.3 3.3

0.5
SVYW 0.0 0.2 0.2 -0.1 0.2 0.1 0.1 0.0

UN 22.0 22.0 22.4 21.9 2.3 2.2 2.1 2.1

0.6
SVYW 0.1 0.2 0.1 0.0 0.1 0.1 0.1 0.0

UN 16.7 16.8 17.1 16.6 1.4 1.3 1.3 1.2

0.7
SVYW 0.1 0.2 0.1 0.0 0.1 0.1 0.0 0.0

UN 12.2 12.3 12.5 12.2 0.7 0.7 0.7 0.6

0.8
SVYW 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0

UN 8.1 8.2 8.4 8.1 0.3 0.3 0.2 0.2

0.9
SVYW 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

UN 4.3 4.4 4.5 4.3 0.0 0.0 0.0 0.0

STSCS

0.1
SVYW -0.7 -0.4 -0.7 0.1 0.1 -0.2 -0.3 0.0

UN 57.1 56.6 58.1 57.4 14.1 13.4 14.4 13.9

0.2
SVYW -0.7 -0.4 -0.5 0.1 0.2 -0.1 -0.1 0.0

UN 40.0 40.1 40.9 40.4 8.8 8.5 9.0 8.7

0.3
SVYW -0.5 -0.2 -0.3 0.1 0.2 0.0 0.0 0.0

UN 30.4 30.7 31.1 30.7 6.0 5.8 6.2 5.9

0.4
SVYW -0.3 -0.2 -0.2 0.1 0.2 0.0 0.0 0.0

UN 23.7 24.0 24.3 23.9 4.2 4.1 4.3 4.1

0.5
SVYW -0.1 -0.1 -0.1 0.1 0.2 0.0 0.0 0.0

UN 18.5 18.7 18.9 18.6 2.9 2.8 2.9 2.8

0.6
SVYW -0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0

UN 14.1 14.4 14.4 14.2 1.9 1.8 1.9 1.8

0.7
SVYW 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

UN 10.3 10.5 10.5 10.4 1.1 1.1 1.1 1.1

0.8
SVYW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

UN 6.9 7.1 7.0 6.9 0.5 0.6 0.6 0.5

0.9
SVYW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

UN 3.6 3.7 3.7 3.6 0.1 0.2 0.2 0.2
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Table 5.7.3: Simulation results of empirical (EM) and boostrap standard errors for the
covariate-specific ROC curve using design-adjusted (SVY) and unadjusted (UN) ROC-
GLM models for stratified simple random sample (SSRS). W : covariate value; λ: sampling
fraction; p: disease proportion.

FPR Method

W = -0.67 W = 0

λ = 5% λ = 10% λ = 5% λ = 10%

p = 5% p = 15% p = 5% p = 15% p = 5% p = 15% p = 5% p = 15%

0.1

EMP 0.036 0.022 0.027 0.016 0.047 0.027 0.034 0.019
SVY 0.037 0.022 0.026 0.015 0.047 0.028 0.033 0.020
UN 0.046 0.027 0.032 0.019 0.039 0.023 0.027 0.016

0.2

EMP 0.040 0.024 0.030 0.018 0.038 0.021 0.026 0.015
SVY 0.040 0.024 0.028 0.017 0.038 0.022 0.026 0.015
UN 0.043 0.026 0.030 0.018 0.030 0.017 0.021 0.012

0.3

EMP 0.040 0.024 0.029 0.018 0.032 0.018 0.021 0.013
SVY 0.041 0.024 0.029 0.017 0.031 0.018 0.021 0.013
UN 0.040 0.024 0.028 0.016 0.024 0.014 0.017 0.010

0.4

EMP 0.040 0.024 0.029 0.018 0.027 0.015 0.018 0.011
SVY 0.041 0.024 0.029 0.017 0.026 0.015 0.018 0.011
UN 0.037 0.022 0.026 0.015 0.020 0.012 0.014 0.008

0.5

EMP 0.040 0.024 0.028 0.017 0.023 0.013 0.015 0.009
SVY 0.041 0.024 0.029 0.017 0.022 0.013 0.015 0.009
UN 0.034 0.020 0.024 0.014 0.017 0.010 0.012 0.007

0.6

EMP 0.039 0.024 0.028 0.017 0.019 0.011 0.012 0.007
SVY 0.040 0.023 0.028 0.016 0.018 0.011 0.013 0.008
UN 0.031 0.018 0.022 0.013 0.014 0.008 0.010 0.006

0.7

EMP 0.038 0.023 0.027 0.016 0.015 0.008 0.010 0.006
SVY 0.039 0.023 0.027 0.016 0.014 0.008 0.010 0.006
UN 0.028 0.016 0.020 0.011 0.011 0.007 0.008 0.005

0.8

EMP 0.035 0.021 0.025 0.015 0.011 0.006 0.007 0.004
SVY 0.036 0.021 0.026 0.015 0.010 0.006 0.007 0.004
UN 0.025 0.014 0.017 0.010 0.008 0.005 0.006 0.004

0.9

EMP 0.029 0.017 0.020 0.012 0.006 0.003 0.004 0.002
SVY 0.029 0.017 0.021 0.012 0.006 0.003 0.004 0.002
UN 0.019 0.011 0.013 0.008 0.005 0.003 0.004 0.002
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Table 5.7.4: Simulation results of empirical (EM) and boostrap standard errors for the
covariate-specific ROC curve using design-adjusted (SVY) and unadjusted (UN) ROC-
GLM models for stratified two stage cluster sampling (STSCS). W : covariate value; λ:
sampling fraction; p: disease proportion.

FPR Method

W = -0.67 W = 0

λ = 5% λ = 10% λ = 5% λ = 10%

p = 5% p = 15% p = 5% p = 15% p = 5% p = 15% p = 5% p = 15%

0.1

EMP 0.029 0.018 0.020 0.012 0.041 0.025 0.029 0.018
SVY 0.030 0.018 0.021 0.013 0.042 0.026 0.030 0.019
UN 0.037 0.022 0.026 0.015 0.038 0.023 0.027 0.016

0.2

EMP 0.035 0.021 0.024 0.015 0.036 0.022 0.026 0.016
SVY 0.036 0.022 0.025 0.015 0.037 0.023 0.027 0.016
UN 0.039 0.023 0.027 0.016 0.032 0.019 0.023 0.014

0.3

EMP 0.037 0.023 0.025 0.016 0.032 0.020 0.023 0.014
SVY 0.038 0.023 0.027 0.016 0.033 0.020 0.023 0.014
UN 0.038 0.022 0.027 0.016 0.027 0.016 0.019 0.011

0.4

EMP 0.037 0.023 0.026 0.016 0.028 0.018 0.021 0.012
SVY 0.039 0.023 0.028 0.016 0.029 0.018 0.021 0.012
UN 0.036 0.021 0.025 0.015 0.024 0.014 0.017 0.010

0.5

EMP 0.037 0.023 0.026 0.016 0.025 0.016 0.018 0.011
SVY 0.039 0.023 0.028 0.016 0.026 0.016 0.018 0.011
UN 0.034 0.020 0.024 0.014 0.021 0.012 0.015 0.009

0.6

EMP 0.037 0.023 0.026 0.016 0.022 0.014 0.016 0.010
SVY 0.039 0.023 0.028 0.016 0.022 0.014 0.016 0.009
UN 0.032 0.019 0.022 0.013 0.018 0.011 0.013 0.007

0.7

EMP 0.035 0.022 0.025 0.016 0.018 0.011 0.013 0.008
SVY 0.037 0.022 0.027 0.016 0.018 0.011 0.013 0.008
UN 0.028 0.017 0.020 0.012 0.015 0.009 0.010 0.006

0.8

EMP 0.032 0.020 0.023 0.015 0.013 0.008 0.009 0.006
SVY 0.034 0.020 0.024 0.014 0.014 0.008 0.010 0.006
UN 0.024 0.014 0.017 0.010 0.011 0.006 0.008 0.004

0.9

EMP 0.025 0.016 0.018 0.011 0.008 0.005 0.005 0.003
SVY 0.026 0.016 0.019 0.011 0.008 0.005 0.006 0.003
UN 0.018 0.010 0.012 0.007 0.007 0.004 0.005 0.003
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Table 5.7.5: Simulation results of empirical coverage probability (in %) for nominal
95% boostrap confidence intervals for the estimated covariate-specific ROC curve using
design-adjusted (SVYW) and unadjusted (UN) ROC-GLM models for stratified simple
random sample (SSRS), and stratified two stage cluster sampling (STSCS). W : covariate
value; λ: sampling fraction; p: disease proportion.

Design FPR Method

W = -0.67 W = 0

λ = 5% λ = 10% λ = 5% λ = 10%

p = 5% p = 15% p = 5% p = 15% p = 5% p = 15% p = 5% p = 15%

SSRS

0.1
SVYW 93.3 94.7 93.4 93.3 94.3 95.7 93.9 94.9

UN 13.1 0.1 0.4 0.0 47.6 8.9 23.6 0.2

0.2
SVYW 95.0 94.7 94.8 92.9 94.3 95.9 95.3 94.6

UN 6.3 0.1 0.2 0.0 50.1 10.5 25.2 0.5

0.3
SVYW 95.3 94.9 94.6 93.4 94.2 95.2 95.8 95.7

UN 4.7 0.1 0.2 0.0 55.8 18.5 33.8 1.7

0.4
SVYW 95.4 95.1 95.0 93.1 94.1 95.2 95.5 95.5

UN 4.3 0.1 0.1 0.0 64.6 33.5 48.1 9.1

0.5
SVYW 95.9 94.5 95.0 93.8 93.7 94.9 95.0 95.5

UN 4.8 0.1 0.1 0.0 71.9 50.9 62.3 25.2

0.6
SVYW 96.0 93.7 95.8 94.3 92.8 94.4 94.5 95.3

UN 8.2 0.1 0.2 0.0 79.4 66.4 73.9 51.0

0.7
SVYW 95.1 94.1 95.9 95.1 92.7 94.4 93.9 95.5

UN 14.7 0.4 0.8 0.0 84.8 80.3 84.0 74.3

0.8
SVYW 93.9 93.9 95.5 95.2 91.8 93.8 94.1 95.3

UN 26.6 1.4 3.8 0.0 87.5 88.2 90.0 87.4

0.9
SVYW 93.2 93.8 95.1 94.6 89.7 93.1 93.0 95.5

UN 46.4 10.9 18.0 0.3 90.3 92.9 93.7 93.6

STSCS

0.1
SVYW 93.9 94.8 95.3 96.4 95.9 95.2 94.6 96.0

UN 35.9 2.2 5.8 0.1 68.6 36.1 43.6 9.2

0.2
SVYW 94.2 94.8 96.3 95.5 95.3 94.9 95.7 95.1

UN 23.2 0.7 2.3 0.1 66.9 33.0 40.4 6.7

0.3
SVYW 95.0 94.5 96.5 95.2 95.2 94.7 95.2 95.2

UN 18.1 0.3 1.4 0.0 68.2 35.9 43.2 8.3

0.4
SVYW 95.3 95.4 95.9 94.5 94.3 94.7 94.9 95.2

UN 16.1 0.2 1.8 0.0 72.4 43.6 50.7 14.6

0.5
SVYW 95.5 94.9 96.1 94.4 93.9 94.6 94.6 95.2

UN 17.3 0.3 2.5 0.0 76.5 53.3 62.0 25.6

0.6
SVYW 95.6 94.2 95.9 94.4 93.4 94.2 94.6 94.2

UN 20.8 0.5 3.8 0.0 79.8 63.2 70.2 43.1

0.7
SVYW 95.0 94.0 95.4 93.6 93.8 94.0 94.1 93.6

UN 28.0 1.4 6.7 0.0 84.3 73.7 79.4 60.2

0.8
SVYW 94.8 94.5 95.2 94.0 92.6 93.5 94.3 93.5

UN 38.5 4.5 11.7 0.2 88.3 80.7 86.3 74.4

0.9
SVYW 93.3 94.5 95.3 93.8 90.9 92.3 94.4 93.9

UN 52.2 16.2 26.8 2.3 89.8 87.2 89.9 86.3
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Weighted AUC: 0.82
Unweighted AUC: 0.80

Weighted AUC: 0.72
Unweighted AUC: 0.67

< 65 years >= 65 years
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Figure 5.7.7: Estimated ROC curves with 95% boostrap confidence interval (shaded) from
unweighted ROC-GLM model (dashed) and the proposed design-adjusted ROC-GLM
model (solid) according to age group in the NHANES target population.

Table 5.7.6: Survey-weighted and weighted fitted ROC-GLM model with probit link.

Survey-weighted Unweighted

Parameter Estimate Std. Error 95% CI Estimate Std. Error 95% CI

α0 1.41 0.19 (1.05, 1.78) 1.34 0.13 (1.08, 1.59)
α1 1.13 0.10 (0.93, 1.33) 1.20 0.08 (1.05, 1.35)
β -0.55 0.20 (-0.94, -0.16) -0.65 0.15 (-0.95, -0.35)
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CHAPTER 6: DISCUSSION AND FUTURE WORK

This dissertation focused on developing methods for the receiver operating character-

istic (ROC) curve in the context of complex survey data, motivated by many applications

using ROC curves in large-scale surveys, but ignoring their complex survey designs.

First, we proposed a non-parametric estimator for the ROC curve based on the Horwitz-

Thompson estimator. We used the general results developed in Han and Wellner (2021)

to study the theoretical properties of our proposed estimator using empirical process

arguments. The proposed estimator was developed for the complete-case scenario. Since

nonresponse is a common issue in large-scale surveys, we proposed an IPW estimator

for the ROC curve to accommodate the case where the diagnostic test is missing. We

developed the theoretical aspects of the estimator following Han and Wellner (2021) using

empirical process arguments. Finally, to address the common desire to study covariate

effects on the accuracy of a diagnostic test, we adapted the ROC-GLM model proposed

originally by Pepe (2000a) to account for the complex survey design. Our work contributes

toward the broader availability of methods and software for the ROC curve for complex

survey sampling.

Our proposed estimator in Chapter 3 is a discrete rather than a continuous function

as the true ROC curve. Thus, the study of semiparametric and parametric estimators for

the ROC curve in the context of complex survey data deserves attention. In addition to

smoothness, these alternative approaches might be more efficient in estimating the ROC

curve if the model is correctly specified.

A natural extension for the proposed IPW estimator in Chapter 4 is the Augmented

IPW (AIPW) estimator, where a model is proposed for the diagnostic test in addition
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to the model for the missing mechanism. In this context, one can obtain an estimator

that is doubly robust to model specification. Alternative methods using imputation for

complex survey data might also be a possibility.

Our adapted ROC-GLM model from Chapter 5 relies on bootstrap resampling for

variance estimation. Although the original method also relies on resampling methods for

variance estimation, the development of theoretical properties of the proposed method

using design-based theory for generalized estimation equations might be worth investigat-

ing.

To close the gap in the availability of software to handle the estimation of ROC curves

in the context of complex survey data, an R package with the methods presented in this

work is under development.
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APPENDIX 1: TECHNICAL DETAILS FOR CHAPTER 3

A.1 Proofs

Proof of Theorem 2.1 (a). Let F = {fs,l ≡ fs,l(x, d) = I(x ≤ s, d = l) : s ∈ R, l ∈

{0, 1}}, and fs,d, fu,d′ ∈ F , with s, u ∈ R, and d, d′ ∈ {0, 1}. From Corollary 3.13 in Han

and Wellner (2021), it follows that

√
n(PπN − PN) Gπ in `∞(F),

where Gπ is a tight Gaussian process with covariance function

Cov(Gπ(fs,d),Gπ(fu,d′)) = λ (µπ1P (fs,dfu,d′) + µπ2(Pfs,d)(Pfu,d′))

=



λ(1− p) [µπ1G(s ∧ u) + µπ2(1− p)G(s)G(u)] , d = d′ = 0

λp [µπ1F (s ∧ u) + µπ2pF (s)F (u)] , d = d′ = 1

λµπ2p(1− p)G(s)F (u), 0 = d 6= d′ = 1

λµπ2p(1− p)G(u)F (s), 1 = d 6= d′ = 0

For s ∈ R, the estimators for cdfs G(s) and F (s) are

Gn(s) =
PπN(fs,0)

PπN(f∞,0)
Fn(s) =

PπN(fs,1)

PπN(f∞,1)

The ratio map φ(A,B) = A/B is Hadamard-differentiable with derivative φ′(α, β) =

α/B − (Aβ)/B2. It follows from Functional Delta Method (Vaart and Wellner, 1996)

that

√
n

Gn(s)−GN(s)

Fn(s)− FN(s)

 
Gπ

0 (s)

Gπ
1 (s)

 =

(1− p)−1(Gπ(fs,0)−G(s)Gπ(f∞,0))

p−1(Gπ(fs,1)− F (s)Gπ(f∞,1))

 .
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The covariance structure of Gπ
0 and Gπ

1 can be computed as follows:

Cov(Gπ
0 (s),Gπ

0 (u)) =(1− p)−2
[
Cov(Gπfs,0,Gπfu,0) +G(s)G(u)Cov(Gπf∞,0,Gπf∞,0)

−G(u)Cov(Gπfs,0,Gπf∞,0)−G(s)Cov(Gπf∞,0,Gπfu,0)
]

=λ(1− p)−1
[
µπ1G(s ∧ u) + µπ2(1− p)G(s)G(u)+

+ µπ1G(s)G(u) + µπ2(1− p)G(s)G(u)

− µπ1G(u)G(s)− µπ2(1− p)G(u)G(s)−

− µπ1G(s)G(u)− µπ2(1− p)G(s)G(u)
]

=λ(1− p)−1µπ1

[
G(s ∧ u)−G(s)G(u)

]

Cov(Gπ
1 (s),Gπ

1 (u)) =p−2
[
Cov(Gπfs,1,Gπfu,1) + F (s)F (u)Cov(Gπf∞,1,Gπf∞,1)

− F (u)Cov(Gπfs,1,Gπf∞,1)− F (s)Cov(Gπf∞,1,Gπfu,1)
]

=λp−1
[
µπ1F (s ∧ u) + µπ2pF (s)F (u) + µπ1F (s)F (u) + µπ2pF (s)F (u)

− µπ1F (u)F (s)− µπ2pF (u)F (s)− µπ1F (s)F (u) + µπ2pF (s)F (u)
]

=λp−1µπ1

[
F (s ∧ u)− F (s)F (u)

]

Cov(Gπ
0 (s),Gπ

1 (u)) =p−1(1− p)−1
[
Cov(Gπfs,0,Gπfu,1) +G(s)F (u)Cov(Gπf∞,0,Gπf∞,1)

− F (u)Cov(Gπfs,0,Gπf∞,1)−G(s)Cov(Gπf∞,0,Gπfu,1)
]

=λµπ2G(s)F (u) + λµπ2G(s)F (u)

− λµπ2G(s)F (u)− λµπ2G(s)F (u) = 0

So, the covariance function is given by
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Cov(Gπ
d(s),Gπ

d′(u)) =


λ(1− p)−1µπ1(G(u ∧ s)−G(u)G(s)), d = d′ = 0

λp−1µπ1(F (u ∧ s)− F (u)F (s)), d = d′ = 1

0, d 6= d′

(7.24)

which implies that

√
n

Gn(s)−GN(s)

Fn(s)− FN(s)

 
Gπ

0 (s)

Gπ
1 (s)

 =

{λ(1− p)−1µπ1}1/2B1(G(s))

{λp−1µπ1}1/2B2(F (s))

 , (7.25)

where B1(.) and B2(.) denote two independent Brownian bridges and p = P (D = 1).

Proof of Theorem 2.1 (b). The ROC estimator depends on the pair (Gn, Fn) through

the map ψ(A,B) = B(A−1), where A−1 is the inverse map of A. The map ψ(G,F )

is Hadamard-differentiable (Lemma 12.2 and Lemma 12.7 from Kosorok (2008)) with

derivative

ψ′(α, β) = β(G−1)− f(G−1)

g(G−1)
α(G−1)

It follows from (7.25) and Functional Delta Method that

√
n(Fn ◦G−1

n (s)− FN ◦G−1
N (s))

 
√
λµπ1

{
p−1/2B1(F ◦G−1(s))− (1− p)−1/2f(G−1)

g(G−1)
B2(s)

}

where B1(.) and B2(.) denote two independent Brownian bridges and p = P (D = 1).

93



Proof of Theorem 2.1 (c). It follows from Theorem 2.1 (b) and Continuous Mapping

Theorem that

√
n(An − AN) =

∫ 1

0

√
n(Rn(s)−RN(s)) ds

 
∫ 1

0

W{G−1(1− s)}ds ∼ N(0, σ2)

where

σ2 =

∫ 1

0

∫ 1

0

σ2{G−1(1− s), G−1(1− t)} ds dt

=

∫ 1

0

∫ 1

0

σ2{G−1(s), G−1(t)} ds dt

=

∫ ∞
−∞

∫ ∞
−∞

σ2(s, t) dG(s) dG(t)
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A.2 Supplemental Simulation Tables

Table A.2.1: Relative Bias (in %) of the SVY, WT, and UN, estimators for the super-
population ROC curve with finite population size N , disease proportion p, and sampling
fraction λ under SSRS.

FPR Method

N = 50,000 N = 100,000

p = 5% p = 25% p = 5% p = 25%

λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10%

0.1

SVY 0.8 0.2 0.1 0.2 0.8 0.6 0.0 0.2
WT 0.8 0.2 0.1 0.2 0.8 0.6 0.0 0.2
UN 32.5 32.0 31.7 31.8 32.4 32.4 31.8 31.8

0.2

SVY 0.7 0.4 -0.2 -0.4 0.6 0.6 -0.4 -0.2
WT 0.7 0.4 -0.2 -0.4 0.6 0.6 -0.4 -0.2
UN 20.4 20.2 19.4 19.3 20.4 20.4 19.4 19.4

0.3

SVY 0.2 0.1 0.0 0.0 0.1 0.1 0.0 0.1
WT 0.2 0.1 0.0 0.0 0.1 0.1 0.0 0.1
UN 13.6 13.5 13.5 13.5 13.6 13.6 13.5 13.5

0.4

SVY 0.1 0.2 0.0 0.0 0.1 0.1 0.0 0.1
WT 0.1 0.2 0.0 0.0 0.1 0.1 0.0 0.1
UN 9.6 9.6 9.4 9.4 9.6 9.6 9.4 9.5

0.5

SVY 0.0 0.0 0.1 0.0 -0.1 0.0 0.0 0.1
WT 0.0 0.0 0.1 0.0 -0.1 0.0 0.0 0.1
UN 6.5 6.5 6.6 6.6 6.5 6.6 6.6 6.6

0.6

SVY 0.0 0.0 0.1 0.1 -0.1 0.0 0.0 0.1
WT 0.0 0.0 0.1 0.1 -0.1 0.0 0.0 0.1
UN 4.4 4.4 4.5 4.5 4.4 4.4 4.5 4.5

0.7

SVY -0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.1 0.0
WT -0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.1 0.0
UN 2.7 2.7 2.8 2.8 2.6 2.7 2.7 2.7

0.8

SVY -0.2 -0.1 0.0 0.0 -0.2 -0.1 0.0 0.0
WT -0.2 -0.1 0.0 0.0 -0.2 -0.1 0.0 0.0
UN 1.3 1.4 1.5 1.5 1.4 1.4 1.5 1.5

0.9

SVY -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WT -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
UN 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6
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Table A.2.2: Relative Bias (in %) of the SVY, WT, and UN estimators for the super-
population ROC curve with finite population size N , disease proportion p, and sampling
fraction λ under STSCS.

FPR Method

N = 50,000 N = 100,000

p = 5% p = 25% p = 5% p = 25%

λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10%

0.1

SVY -0.1 0.1 0.2 0.0 -0.2 -0.2 0.2 0.0
WT -0.1 0.1 0.2 0.0 -0.2 -0.2 0.2 0.0
UN 30.6 30.8 30.9 30.8 30.8 30.6 31.1 30.9

0.2

SVY 0.2 0.5 0.0 -0.1 0.3 0.0 0.1 -0.1
WT 0.2 0.5 0.0 -0.1 0.3 0.0 0.1 -0.1
UN 20.6 20.9 20.3 20.4 20.7 20.4 20.5 20.3

0.3

SVY 0.0 0.3 -0.4 -0.4 0.2 0.1 -0.2 -0.4
WT 0.0 0.3 -0.4 -0.4 0.2 0.1 -0.2 -0.4
UN 14.6 15.0 14.2 14.2 14.8 14.7 14.3 14.2

0.4

SVY -0.3 0.0 -0.3 -0.3 -0.4 -0.3 -0.3 -0.3
WT -0.3 0.0 -0.3 -0.3 -0.4 -0.3 -0.3 -0.3
UN 10.3 10.5 10.3 10.3 10.3 10.3 10.4 10.3

0.5

SVY -0.4 -0.2 -0.4 -0.3 -0.5 -0.4 -0.2 -0.3
WT -0.4 -0.2 -0.4 -0.3 -0.5 -0.4 -0.2 -0.3
UN 7.2 7.4 7.4 7.4 7.2 7.3 7.5 7.4

0.6

SVY -0.3 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
WT -0.3 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
UN 5.0 5.3 5.2 5.2 5.2 5.2 5.3 5.2

0.7

SVY -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 -0.1
WT -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 -0.1
UN 3.4 3.4 3.4 3.5 3.4 3.4 3.5 3.5

0.8

SVY -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0
WT -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0
UN 2.0 2.0 2.1 2.1 2.0 2.0 2.1 2.0

0.9

SVY 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0
WT 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0
UN 0.9 1.0 0.9 0.9 1.0 1.0 0.9 0.9
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Table A.2.3: Estimates of empirical (EMP) and asymptotic standard error of the SVY,
WT, and UN estimators for the super-population ROC curve with finite population size
N , disease proportion p, and sampling fraction λ under SSRS.

FPR Method

N = 50,000 N = 100,000

p = 5% p = 25% p = 5% p = 25%

λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10%

0.1

EMP 0.049 0.035 0.026 0.019 0.035 0.025 0.018 0.013
SVY 0.051 0.036 0.026 0.019 0.036 0.025 0.019 0.013
WT 0.045 0.032 0.023 0.016 0.032 0.023 0.016 0.012
UN 0.046 0.032 0.023 0.017 0.033 0.023 0.017 0.012

0.2

EMP 0.051 0.036 0.026 0.018 0.036 0.026 0.018 0.013
SVY 0.051 0.036 0.026 0.018 0.036 0.026 0.018 0.013
WT 0.046 0.032 0.023 0.016 0.032 0.023 0.016 0.012
UN 0.043 0.031 0.021 0.015 0.031 0.022 0.015 0.011

0.3

EMP 0.050 0.035 0.025 0.017 0.036 0.025 0.017 0.012
SVY 0.049 0.035 0.024 0.017 0.035 0.025 0.017 0.012
WT 0.043 0.031 0.022 0.015 0.031 0.022 0.015 0.011
UN 0.040 0.028 0.019 0.014 0.028 0.020 0.014 0.010

0.4

EMP 0.047 0.033 0.023 0.016 0.034 0.023 0.016 0.011
SVY 0.045 0.032 0.022 0.016 0.032 0.023 0.016 0.011
WT 0.040 0.028 0.020 0.014 0.028 0.020 0.014 0.010
UN 0.035 0.025 0.017 0.012 0.025 0.018 0.012 0.009

0.5

EMP 0.042 0.030 0.020 0.014 0.031 0.021 0.015 0.010
SVY 0.040 0.028 0.020 0.014 0.028 0.020 0.014 0.010
WT 0.035 0.025 0.017 0.012 0.025 0.018 0.012 0.009
UN 0.031 0.022 0.015 0.010 0.022 0.016 0.010 0.007

0.6

EMP 0.037 0.026 0.018 0.013 0.027 0.018 0.013 0.008
SVY 0.034 0.024 0.017 0.012 0.024 0.017 0.012 0.008
WT 0.031 0.022 0.015 0.010 0.022 0.015 0.010 0.007
UN 0.026 0.019 0.012 0.009 0.019 0.013 0.009 0.006

0.7

EMP 0.031 0.021 0.015 0.010 0.022 0.015 0.010 0.007
SVY 0.028 0.020 0.014 0.010 0.020 0.014 0.010 0.007
WT 0.025 0.018 0.012 0.009 0.018 0.013 0.009 0.006
UN 0.021 0.015 0.010 0.007 0.015 0.011 0.007 0.005

0.8

EMP 0.023 0.016 0.011 0.008 0.016 0.011 0.008 0.005
SVY 0.021 0.015 0.010 0.007 0.015 0.011 0.007 0.005
WT 0.019 0.013 0.009 0.006 0.013 0.010 0.006 0.005
UN 0.016 0.011 0.008 0.005 0.011 0.008 0.005 0.004

0.9

EMP 0.015 0.010 0.007 0.005 0.011 0.007 0.005 0.003
SVY 0.015 0.010 0.006 0.005 0.010 0.007 0.005 0.003
WT 0.013 0.008 0.006 0.004 0.009 0.006 0.004 0.003
UN 0.011 0.007 0.005 0.003 0.007 0.005 0.003 0.002
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Table A.2.4: Estimates of empirical (EMP) and asymptotic standard error of the SVY,
WT, and UN estimators for the super-population ROC curve with finite population size
N , disease proportion p, and sampling fraction λ under STSCS.

FPR Method

N = 50,000 N = 100,000

p = 5% p = 25% p = 5% p = 25%

λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10%

0.1

EMP 0.047 0.034 0.025 0.018 0.033 0.023 0.018 0.012
SVY 0.047 0.033 0.025 0.017 0.033 0.024 0.017 0.012
WT 0.042 0.030 0.022 0.015 0.030 0.021 0.015 0.011
UN 0.045 0.032 0.023 0.016 0.032 0.022 0.016 0.012

0.2

EMP 0.051 0.037 0.027 0.019 0.037 0.026 0.019 0.013
SVY 0.052 0.036 0.026 0.019 0.036 0.026 0.019 0.013
WT 0.046 0.032 0.023 0.016 0.032 0.023 0.016 0.012
UN 0.046 0.032 0.023 0.016 0.032 0.023 0.016 0.012

0.3

EMP 0.052 0.038 0.027 0.019 0.037 0.026 0.019 0.013
SVY 0.051 0.036 0.026 0.018 0.036 0.026 0.018 0.013
WT 0.046 0.032 0.023 0.016 0.032 0.023 0.016 0.011
UN 0.044 0.031 0.022 0.015 0.031 0.022 0.015 0.011

0.4

EMP 0.050 0.036 0.026 0.019 0.035 0.025 0.018 0.012
SVY 0.049 0.034 0.024 0.017 0.035 0.024 0.017 0.012
WT 0.043 0.031 0.022 0.015 0.031 0.022 0.015 0.011
UN 0.041 0.029 0.020 0.014 0.029 0.020 0.014 0.010

0.5

EMP 0.047 0.033 0.024 0.017 0.033 0.024 0.017 0.011
SVY 0.045 0.032 0.022 0.016 0.032 0.022 0.016 0.011
WT 0.040 0.028 0.020 0.014 0.028 0.020 0.014 0.010
UN 0.036 0.026 0.018 0.012 0.026 0.018 0.012 0.009

0.6

EMP 0.042 0.030 0.021 0.015 0.029 0.021 0.015 0.010
SVY 0.040 0.028 0.020 0.014 0.028 0.020 0.014 0.010
WT 0.035 0.025 0.017 0.012 0.025 0.018 0.012 0.009
UN 0.032 0.022 0.015 0.011 0.022 0.016 0.011 0.008

0.7

EMP 0.036 0.025 0.018 0.012 0.025 0.017 0.013 0.009
SVY 0.034 0.024 0.017 0.012 0.024 0.017 0.012 0.008
WT 0.030 0.021 0.015 0.010 0.021 0.015 0.010 0.007
UN 0.026 0.019 0.013 0.009 0.019 0.013 0.009 0.006

0.8

EMP 0.027 0.020 0.014 0.010 0.020 0.014 0.010 0.007
SVY 0.026 0.019 0.013 0.009 0.019 0.013 0.009 0.006
WT 0.023 0.016 0.011 0.008 0.016 0.012 0.008 0.006
UN 0.020 0.014 0.010 0.007 0.014 0.010 0.007 0.005

0.9

EMP 0.018 0.013 0.009 0.006 0.013 0.009 0.006 0.005
SVY 0.018 0.012 0.008 0.006 0.012 0.009 0.006 0.004
WT 0.016 0.011 0.007 0.005 0.011 0.008 0.005 0.004
UN 0.013 0.009 0.006 0.004 0.009 0.006 0.004 0.003
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Table A.2.5: Coverage Probabilities (in %) for 95% confidence intervals of the UN, WT,
and SVY estimators for the super-population ROC curve with finite population size N ,
disease proportion p, and sampling fraction λ under SSRS.

FPR Method

N = 50,000 N = 100,000

p = 5% p = 25% p = 5% p = 25%

λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10%

0.1

SVY 95.9 95.3 95.2 94.8 95.4 95.2 95.9 95.6
WT 92.5 92.1 92.1 91.8 92.6 92.3 92.4 92.6
UN 22.9 4.1 0.0 0.0 2.6 0.1 0.0 0.0

0.2

SVY 95.3 94.6 94.7 95.0 95.1 95.3 95.5 95.2
WT 92.2 91.7 92.1 91.2 91.3 91.8 91.9 92.1
UN 29.0 6.6 0.2 0.0 5.7 0.1 0.0 0.0

0.3

SVY 94.3 94.1 94.4 95.3 93.7 94.7 94.7 95.3
WT 90.9 90.7 91.1 92.1 90.8 90.8 91.4 92.3
UN 40.1 12.5 0.6 0.0 13.7 0.8 0.0 0.0

0.4

SVY 94.1 94.2 94.2 94.4 92.7 93.9 94.2 95.3
WT 90.4 90.6 90.7 91.4 89.4 90.5 91.0 91.7
UN 48.8 22.2 2.5 0.0 20.8 2.6 0.0 0.0

0.5

SVY 92.6 93.5 94.1 94.2 93.2 94.1 93.3 94.4
WT 89.1 89.7 91.2 90.8 88.4 91.1 89.3 91.4
UN 57.4 34.1 5.9 0.2 34.5 10.5 0.0 0.0

0.6

SVY 92.1 92.8 93.8 93.7 92.2 94.3 92.7 94.5
WT 88.9 89.5 90.3 90.6 88.9 91.0 89.6 91.1
UN 64.2 45.9 15.4 1.2 47.2 19.9 1.6 0.0

0.7

SVY 90.4 93.0 92.9 93.7 92.8 94.0 93.2 93.4
WT 86.9 89.7 88.6 90.1 88.5 90.5 89.6 89.9
UN 70.7 59.2 33.6 7.0 59.2 39.2 7.3 0.3

0.8

SVY 91.9 91.2 92.5 94.2 92.2 93.3 93.8 93.4
WT 89.3 87.9 89.0 90.9 88.5 89.6 89.8 89.6
UN 78.3 71.5 50.2 25.2 72.2 59.2 25.5 4.3

0.9

SVY 98.6 86.9 91.1 92.3 88.0 89.1 92.2 93.6
WT 97.8 84.0 87.1 88.1 84.5 85.1 88.2 89.7
UN 99.8 81.1 67.7 54.4 82.0 71.6 53.9 29.9
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Table A.2.6: Coverage Probabilities (in %) for 95% confidence intervals of the UN, WT,
and SVY estimators for the super-population ROC curve with finite population size N ,
disease proportion p, and sampling fraction λ under STSCS.

FPR Method

N = 50,000 N = 100,000

p = 5% p = 25% p = 5% p = 25%

λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10% λ = 5% λ = 10%

0.1

SVY 94.4 94.3 94.2 93.6 94.8 95.0 94.0 94.5
WT 91.3 90.8 91.6 89.7 91.9 92.2 91.2 91.1
UN 50.2 20.1 3.8 0.0 20.2 2.8 0.1 0.0

0.2

SVY 94.8 95.1 94.3 93.6 95.0 95.3 94.0 94.5
WT 91.4 91.3 91.1 90.1 91.4 92.0 90.6 90.5
UN 49.9 19.0 4.4 0.1 20.4 2.6 0.0 0.0

0.3

SVY 94.3 94.2 93.9 93.3 95.0 95.3 93.8 94.4
WT 90.8 90.1 90.5 89.0 90.9 91.6 90.3 90.8
UN 53.5 23.6 5.8 0.1 25.4 4.1 0.2 0.0

0.4

SVY 93.9 94.8 94.3 92.0 94.4 94.7 93.5 94.6
WT 90.8 91.0 90.3 88.7 90.6 91.2 89.9 91.1
UN 59.1 33.1 10.1 0.6 34.6 9.0 0.8 0.0

0.5

SVY 93.2 93.5 93.5 92.9 93.9 93.8 93.5 94.0
WT 89.4 89.7 90.0 88.7 90.6 89.4 90.0 90.5
UN 65.1 42.0 16.7 1.2 44.5 17.2 1.5 0.1

0.6

SVY 92.8 93.6 94.0 93.7 94.2 93.2 92.6 94.1
WT 89.6 90.5 90.6 90.2 90.7 89.5 88.6 90.1
UN 69.9 50.1 24.1 3.4 51.1 24.9 4.0 0.1

0.7

SVY 92.2 93.0 93.5 93.3 92.8 94.3 92.4 94.1
WT 88.8 89.0 89.7 90.2 89.0 90.4 88.8 90.0
UN 72.5 59.3 36.4 11.1 59.7 38.6 10.9 0.6

0.8

SVY 91.6 92.0 91.8 92.8 92.7 92.8 93.1 93.0
WT 88.5 88.7 87.5 89.4 89.0 89.7 89.2 88.6
UN 77.4 68.2 48.7 22.4 68.0 54.0 23.7 4.8

0.9

SVY 95.6 88.5 91.3 92.6 88.1 89.4 91.1 91.7
WT 91.5 85.8 87.7 88.4 85.9 86.5 87.3 87.6
UN 81.1 73.6 65.2 47.4 72.1 63.3 46.7 24.3
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APPENDIX 2: TECHNICAL DETAILS FOR CHAPTER 4

B.1 Proofs

Proof of Theorem 4.2.1 (a). By definition, UN(φN) = 0. Thus,

N−1/2Uπ
N(φN) = N−1/2(Uπ

N(φN)− UN(φN))

= N−1/2

N∑
i=1

(
ξi − πi
πi

)
{Ri − p(Xi;φN)}hi(φN)

= N−1/2

N∑
i=1

(
ξi − πi
πi

)
ui(φN).

From the central limit theorem for normalised Horvitz-Thompson estimator,

N−1/2Uπ
N(φN)→Pd N(0, V (φN)),

with

V (φ) = lim
N→∞

N−1

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ui(φ)u>j (φ).

By Taylor Expansion,

0 = Uπ
N(φπN) = Uπ

N(φN) +

(
∂Uπ

N(φ)

∂φ

∣∣∣
φ=φN

)
(φπN − φN)

⇒
√
N(φπN − φN) =

(
−N−1∂U

π
N(φ)

∂φ

∣∣∣
φ=φN

)−1

N−1/2Uπ
N(φN)

Similarly as argued in Lin (2000), we have that N−1Uπ
N (φ) is asymptotically equivalent

to N−1UN(φ), since πi = P (ξi = 1).

Thus,

√
N(φπN − φN)→Pd I(φN)−1N(0, V (φN)), (8.26)
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where I(φ0) = limN→∞−N−1∂UN(φ)/∂φ|φ=φ0 . Combining the consistency of φN from

classical results for generalized linear models and Theorem 5.1 (ii) from Rubin-Bleuer

et al. (2005), we have that

√
N(φπN − φN)→Pd,m I(φ∗)−1N(0, V (φ∗)), (8.27)

where φ∗ is the true value for φ in the model probability space.

Proof of Theorem 4.2.1 (b). For f ∈ F , with F = {fs,l ≡ fs,l(y, d) = I(y ≤ s, d = l) :

s ∈ R, l ∈ {0, 1}}, and PπN,φ(f) and PN,φ(f) as defined in (4.12) and (4.14) we have that

GIPW(s) =
PN,φN (fs,0)

PN,φN (f∞,0)
=

[
N∑
i=1

Ri

p(Xi;φN)
I(Di = 0)

]−1 N∑
i=1

Ri

p(Xi;φN)
I(Yi ≤ s,Di = 0)

FIPW(s) =
PN,φN (fs,1)

PN,φN (f∞,1)
=

[
N∑
i=1

Ri

p(Xi;φN)
I(Di = 1)

]−1 N∑
i=1

Ri

p(Xi;φN)
I(Yi ≤ s,Di = 1)

Gπ
IPW(s) =

PπN,φπN
(fs,0)

PπN,φπN
(f∞,0)

=

[
N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Di = 0)

]−1 N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Yi ≤ s,Di = 0)

F π
IPW(s) =

PπN,φπN
(fs,1)

PπN,φπN
(f∞,1)

=

[
N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Di = 1)

]−1 N∑
i=1

ξi
πi

Ri

p(Xi;φπN)
I(Yi ≤ s,Di = 1)

We are interested in the asymptotic distribution of

√
N

Gπ
IPW −GIPW

F π
IPW − FIPW

 =
√
N


Pπ
N,φπ

N
(fs,0)

Pπ
N,φπ

N
(f∞,0)

− PN,φN (fs,0)

PN,φN (f∞,0)

Pπ
N,φπ

N
(fs,1)

Pπ
N,φπ

N
(f∞,1)

− PN,φN (fs,1)

PN,φN (f∞,1)


First, note that

√
N(PπN,φπN − PN,φN )(f) =

√
N(PπN,φπN − P

π
N,φN

)(f) +
√
N(PπN,φN − PN,φN )(f) (8.28)
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Let pi(φ) = p(Xi;φ), wi(φ) = pi(φ)−1 and ∂φpi(φ0) = ∂pi(φ)/∂φ|φ=φ0 . For the first

term of the right hand side of (8.28), we have by Taylor expansion:

√
N(PπN,φπN − P

π
N,φN

)(fs,l) =

= N−1/2

N∑
i=1

ξi
πi

[wi(φ
π
N)− wi(φN)]Rifs,l(Yi, Di)

= N−1/2

N∑
i=1

ξi
πi

(
∂wi(φ)

∂φ

∣∣∣
φ=φN

)
(φπN − φN)Rifs,l(Yi, Di)

=

(
−N−1

N∑
i=1

ξi
πi

Ri

pi(φN)2
∂φpi(φN)fs,l(Yi, Di)

)
√
N(φπN − φN)

=

(
−N−1

N∑
i=1

ξi
πi

Ri

pi(φN)2
∂φpi(φN)fs,l(Yi, Di)

)(
−N−1∂U

π
N(φ)

∂φ

∣∣∣
φ=φN

)−1

N−1/2Uπ
N(φN)

(8.29)

Similarly as argued in Lin (2000), because πi = P (ξi = 1), we have that (8.29) is

asymptotically equivalent to

N−1/2

N∑
i=1

(
ξi − πi
πi

)
rs,l(φN)I(φN)−1ui(φN), (8.30)

where

rs,l(φN) = lim
N→∞

−N−1

N∑
i=1

Ri

pi(φN)2
∂φpi(φN)fs,l(Yi, Di)

For the second term of the right hand side of (8.28), we have:

√
N(PπN,φN − PN,φN ) = N−1/2

N∑
i=1

(
ξi − πi
πi

)
Ri

pi(φN)
fs,l(Yi, Di) (8.31)
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Combining (8.30) and (8.31), we have:

√
N(PπN,φπN − PN,φN )(fs,l) =

= N−1/2

N∑
i=1

(
ξi − πi
πi

){
Ri

pi(φN)
fs,l(Yi, Di) + rs,l(φN)I−1(φN)ui(φN)

}
+ oP (1)

Therefore,
√
N(PπN,φπN − PN,φN )(fs,l) converges weakly in the design probability space to

a zero-mean Gaussian process Gπ with covariance function

lim
N→∞

N−1

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

hi(s, d;φN)h>j (u, d′;φN),

with hi(s, l;φN) = Ripi(φN)−1fs,l(Yi, Di) + rs,l(φN)I−1(φN)ui(φN).

From Theorem 5.1 (ii) from Rubin-Bleuer et al. (2005), we have that
√
N(PπN,φπN −

PN,φN )(fs,l) converges in the product probability space to a zero mean gaussian process

Gπ with covariance function

Cov(Gπ(fs,d),Gπ(fu,d′)) = EmGπ(fs,d)Gπ(fu,d′)

= lim
N→∞

N−1

N∑
i=1

N∑
j=1

Em

[
πij − πiπj
πiπj

hi(s, d;φN)h>j (u, d′;φN)

]
.

(8.32)

Let hs,l = Rp(φ)−1fs,l(Y,D)+rs,l(φ)I−1(φ)u(φ), δ = P (D = 1), and ∂φp = ∂p(X,φ)/∂φ.

To further simplify the covariance function (8.32), we use similar steps as in Han and
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Wellner (2021), following the result from Lemma B.1 in Boistard et al. (2017).

Cov(Gπ(fs,d),Gπ(fu,d′)) = µπ1P (hs,dhu,d′) + µπ2(Phs,d)(Phu,d′)

=



µπ1(1− δ)
[
p(φ)−1G(s ∧ u) + (1− δ)G(s)G(u)∂φpI

−1(φ)∂φp
>]+

+µπ2(1− δ)2G(u)G(s), d = d′ = 0

µπ1δ
[
p(φ)−1F (s ∧ u) + δF (s)F (u)∂φpI

−1(φ)∂φp
>]+ µπ2δ

2F (u)F (s), d = d′ = 1

δ(1− δ)G(s)F (u)
[
µπ1∂φpI

−1(φ)∂φp
> + µπ2

]
, 0 = d 6= d′ = 1

δ(1− δ)G(u)F (s)
[
µπ1∂φpI

−1(φ)∂φp
> + µπ2

]
, 1 = d 6= d′ = 0

The ratio map ϕ(A,B) = A/B is Hadamard-differentiable with derivative ϕ′(α, β) =

α/B− (Aβ)/B2. It follows from Functional Delta Method (Vaart and Wellner, 1996) that

√
N

Gπ
IPW −GIPW

F π
IPW − FIPW

 
Gπ

0

Gπ
1

 =

(1− δ)−1 (Gπ(fs,0)−G(s)Gπ(f∞,0))

δ−1 (Gπ(fs,1)− F (s)Gπ(f∞,1))

 ,
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The covariance structure of Gπ
0 and Gπ

1 can be computed as follows:

Cov(Gπ
0 (s),Gπ

0 (u))

= (1− δ)−2[Cov(Gπfs,0,Gπfu,0)

+G(s)G(u)Cov(Gπf∞,0,Gπf∞,0)

−G(u)Cov(Gπfs,0,Gπf∞,0)

−G(s)Cov(Gπf∞,0,Gπfu,0)]

= (1− δ)−2

{
µπ1(1− δ)

[
G(s ∧ u)

p(φ)
+ (1− δ)G(s)G(u)∂φpI

−1(φ)∂φp
> + (1− δ)G(u)G(s)

]
+G(s)G(u)

[
µπ1(1− δ)

[
1

p(φ)
+ (1− δ)∂φpI−1(φ)∂φp

>
]

+ µπ2(1− δ)2

]
−G(u)

[
µπ1(1− δ)

[
G(s)

p(φ)
+ (1− δ)G(s)∂φpI

−1(φ)∂φp
>
]

+ µπ2(1− δ)2G(s)

]
−G(s)

[
µπ1(1− δ)

[
G(u)

p(φ)
+ (1− δ)G(u)∂φpI

−1(φ)∂φp
>
]

+ µπ2(1− δ)2G(u)

]}

=
µπ1

(1− δ)p(φ)
[G(s ∧ u)−G(u)G(s)]
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Cov(Gπ
1 (s),Gπ

1 (u)) = δ−2[Cov(Gπfs,1,Gπfu,1)

+ F (s)F (u)Cov(Gπf∞,1,Gπf∞,1)

− F (u)Cov(Gπfs,1,Gπf∞,1)

− F (s)Cov(Gπf∞,1,Gπfu,1)]

= δ−2

{
µπ1δ

[
F (s ∧ u)

p(φ)
+ δF (s)F (u)∂φpI

−1(φ)∂φp
>
]

+ µπ2δ
2F (u)F (s)

+ F (s)F (u)

[
µπ1δ

[
1

p(φ)
+ δ∂φpI

−1(φ)∂φp
>
]

+ µπ2δ
2

]
− F (u)

[
µπ1δ

[
F (s)

p(φ)
+ δF (s)∂φpI

−1(φ)∂φp
>
]

+ µπ2δ
2F (s)

]
− F (s)

[
µπ1δ

[
F (u)

p(φ)
+ δF (u)∂φpI

−1(φ)∂φp
>
]

+ µπ2δ
2F (u)

]}

=
µπ1

δp(φ)
[F (s ∧ u)− F (u)F (s)]

Cov(Gπ
0 (s),Gπ

1 (u)) = δ−1(1− δ)−1[Cov(Gπfs,0,Gπfu,1)

+G(s)F (u)Cov(Gπf∞,0,Gπf∞,1)

− F (u)Cov(Gπfs,0,Gπf∞,1)

−G(s)Cov(Gπf∞,0,Gπfu,1)]

= µπ1G(s)F (u)∂φpI
−1(φ)∂φp

> + µπ2G(s)F (u)

+G(s)F (u)
[
µπ1∂φpI

−1(φ)∂φp
> + µπ2

]
− F (u)

[
µπ1G(s)∂φpI

−1(φ)∂φp
> + µπ2G(s)

]
−G(s)

[
µπ1F (u)∂φpI

−1(φ)∂φp
> + µπ2F (u)

]
= 0
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So, the covariance function is given by

Cov(Gπ
d(s),Gπ

d′(u)) =

=


µπ1(1− δ)−1p(φ∗)−1 [G(s ∧ u)−G(u)G(s)] , d = d′ = 0

µπ1δ
−1p(φ∗)−1 [F (s ∧ u)− F (u)F (s)] , d = d′ = 1

0, d 6= d′

Proof of Theorem 4.2.1 (c). The ROC estimator depends on the pair (Gπ
IPW, F

π
IPW) through

the map ψ(A,B) = B(A−1), where A−1 is the inverse map of A. The map ψ(G,F ) is

Hadamard-differentiable (Lemma 12.2 and Lemma 12.7 from Kosorok (2008)) with deriva-

tive

ψ′(α, β) = β(G−1)− f(G−1)

g(G−1)
α(G−1)

It follows from Functional Delta Method that

√
n(F π

IPW ◦ (Gπ
IPW)−1 − FIPW ◦ (GIPW)−1)

 

√
λµπ1

p(φ∗)

{
δ−1/2B1(F ◦G−1)− (1− δ)−1/2f(G−1)

g(G−1)
B2

}

where B1 and B2 are two independent Brownian bridges.
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