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ABSTRACT

Manish Goyal: Behavioral validation in Cyber-physical systems: Safety violations and beyond
(Under the direction of Parasara Sridhar Duggirala)

The advances in software and hardware technologies in the last two decades have paved the way for

the development of complex systems we observe around us. Avionics, automotive, power grid, medical

devices, and robotics are a few examples of such systems which are usually termed as Cyber-physical

systems (CPS) as they often involve both physical and software components. Deployment of a CPS in a

safety critical application mandates that the system operates reliably even in adverse scenarios. While

effective in improving confidence in system functionality, testing can not ascertain the absence of failures;

whereas, formal verification can be exhaustive but it may not scale well as the system complexity grows.

Simulation driven analysis tends to bridge this gap by tapping key system properties from the simulations.

Despite their differences, all these analyses can be pivotal in providing system behaviors as the evidence

to the satisfaction or violation of a given performance specification. However, less attention has been

paid to algorithmically validating and characterizing different behaviors of a CPS.

The focus of this thesis is on behavioral validation of Cyber-physical systems, which can supplement

an existing CPS analysis framework. This thesis develops algorithmic tools for validating verification

artifacts by generating a variety of counterexamples for a safety violation in a linear hybrid system.

These counterexamples can serve as performance metrics to evaluate different controllers during design

and testing phases. This thesis introduces the notion of complete characterization of a safety violation

in a linear system with bounded inputs, and it proposes a sound technique to compute and efficiently

represent these characterizations. This thesis further presents neural network based frameworks to

perform systematic state space exploration guided by sensitivity or its gradient approximation in learning-

enabled control (LEC) systems. The presented technique is accompanied with convergence guarantees

and yields considerable performance gain over a widely used falsification platform for a class of signal

temporal logic (STL) specifications.
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“Experience has shown that counterexamples are the single most effective feature to convince system

engineers about the value of formal verification. A counterexample can take you almost directly to the

source of an error in a program or circuit. Some people use model checking primarily to find

counterexamples.”

An excerpt from the lecture on “Model Checking and the Curse of Dimensionality”
by

Edmund Melson Clarke, 2007 Turing Award Recipient,
@ 2013 Heidelberg Laureate Forum.
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CHAPTER 1: INTRODUCTION

Integration of software with embedded control systems has evolved as a field of Cyber-Physical

Systems (CPS). It involves interaction between the continuous physical environment modeled as an

ordinary differential equation (ODE) and discrete software systems. Designing a controller for these

(potentially infinite) state systems is generally an iterative process which demands sensing and controlling

physical quantities so that the system meets the desired behaviors such as stability, robustness, or at best

safety. For a given system model and specification, the control designer uses tools in their repertoire

to come up with a controller, generates a few test cases to check if the system satisfies the required

specification and iteratively refines the controller. However, these test cases often do not generalize to the

system behaviors at large. This is especially difficult if one has to consider all possible inter leavings of the

continuous and discrete (i.e., hybrid) behaviors encountered by a modern CPS. Due to different sequence

of mode changes, two neighboring states can potentially have divergent trajectories, thus extrapolating

the behavior from one state to another becomes challenging. The problem is further exacerbated by

sophisticated neural network based control algorithms. Since such neural network controllers are typically

learned from a finite number of samples, a designer needs to perform additional checks for controller’s

behavior outside the test suite. However, such manual validation is not practically feasible.

1.1 Safety analysis based counterexamples

Control design for linear systems typically involves techniques such as pole placement and computing

Lyapunov functions (Narendra & Balakrishnan 1994, Branicky 1998, Tanaka, Hori & Wang 2003, Lin &

Antsaklis 2009). While such stability analysis tool are capable of providing intuitive information to the

designer, similar tools for safety verification do not exist. Since most of the model checking approaches

for safety verification focus on computing over-approximation of reachable set and hence establish the

safety specification, they typically yield one counterexample as an evidence to safety violation. However,

current model checkers do not have the capability to generate a variety of counterexamples that can

give additional information to control designer. Such lack of information in artifacts from both stability
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Figure 1.1: Reachable sets computed in SpaceEx for ACC with different controllers

and safety analysis prevents the designer from comparing different possible refinements of an existing

controller across design iterations even for simple linear dynamical systems. These challenges are

exacerbated when the system is a hybrid system and has several modes of operation.

Consider a 3 dimensional continuous-time linear system with two cars where the distance between

two vehicles is s, the leading car is moving with a constant speed vf , the follower’s velocity is v and its

acceleration is a. The differential equations for the adaptive cruise control (ACC) system deployed at the

follower are as follows (Tiwari 2003):

ṡ = (vf − v)

v̇ = a

ȧ = g1 ∗ a+ g2(v − vf ) + g3(s− (v + 10))

Here, g1, g2 and g3 are gain variables generally derived via a feedback control law. Consider the value

of the gain variables as g1 = −3, g2 = −3 and g3 = 1 for Controller-I and g1 = −3, g2 = −3 and

g3 = 1 for Controller-II. The stable equilibrium of the system is at a = 0, v = vf , and s = vf + 10.

The collision avoidance (or, safety) specification is □(s ≥ 2) i.e., the follower should always maintain

at least 2 units of distance from leader car to avoid collision. Reachable sets for these control systems

computed in a reachability analysis tool, SpaceEx (Frehse, Le Guernic, Donzé, Cotton, Ray, Lebeltel,

Ripado, Girard, Dang & Maler 2011), are demonstrated in Figure 1.1, which shows that both these

control systems are stable and unsafe. As the evidence to the safety violation, a safety verification tool
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typically spits out an execution (called counterexample) that violates the safety specification. However,

such violations cease to provide any insights pertaining to the behavior of the controller(s) that can

potentially assist a designer during synthesis process. The techniques for measuring the quality of the

controller using counterexamples as the feature of a model checking tool would make the verification

artifacts more useful to system engineers.

1.2 Testing and State Space Exploration

In recent years, advances in hardware and software have made it easier to integrate sophisticated

(including neural network based-) control algorithms in embedded systems (Sutton & Barto 2018,

Levine, Pastor, Krizhevsky, Ibarz & Quillen 2018). The control designers now often integrate multiple

technologies and satisfy ever increasing behavioral specifications expected from complex CPS. However,

these advanced control systems for characteristics and behavior, further augmented with complex

specifications makes it difficult to predict the outcomes of perturbations in the state or the environment.

The analysis of such systems particularly becomes more challenging because standard analytical tools

for linear systems do not easily extend to them in the absence of closed form expression for non-linear

ODEs. Since such neural network controllers are typically learned from a finite number of samples, a

designer needs to perform additional checks for controller’s behavior outside the test suite.

Testing is a simple commonly used technique tasked to determine whether the system model

satisfies a given specification using a finite set of test cases. But it can not exhaustively evaluate an

infinite state system and may not accurately reflect the manner in which the system will be used after

deployment (Kapinski, Deshmukh, Jin, Ito & Butts 2016). Moreover, having tested a control algorithm

for the satisfaction of a given safety specification by generating a finite test suite, the designer might like

to generate test cases that are close to violating the specification. However, such manual validation is not

practically feasible.

State space exploration, on the other hand, is aimed at systematically generate trajectories to explore

desired (or undesired) outcomes. In some instances, the specification encoded as a temporal logic

formula is used by an off-the-shelf falsification tool such as S-TaLiRo (Annpureddy, Liu, Fainekos &

Sankaranarayanan 2011) for automatically generating a trajectory that violates (or close to violating) the

specification. But such an approach has a few drawbacks. The search for an execution that violates the
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Figure 1.2: ACC controller falsification in S-TaLiRo

specification is performed using stochastic optimization and hence, would not yield much intuition for

the control designer about the system behavior as shown in Figure 1.2. Second, if the control designer

changes the specification during the design exploration, the results from the previous falsification analyses

may no longer be useful. Third, existing falsification tools require the specification to be provided in a

temporal logic such as signal temporal logic or metric temporal logic (STL/MTL). The designer needs

to understand these specification language which despite being useful in the verification phase, may

case hindrance during the design and exploration phases. Next, falsification tools are typically geared

towards finding a violating trace for the given specification, not necessarily to help the control designer

in exploring the state space. Finally, falsification tools like most of the existing state space exploration

approaches lack any theoretical convergence guarantees.

1.3 Thesis Statement

The focus of this thesis is behavioral validation of Cyber-physical systems. Behavioral Validation

attempts to validate that the CPS exhibits the behavior for a given characteristic or specification and

possibly quantify these behaviors. It can be achieved by validating analytical procedures, evaluating

their correctness or judging the quality of their results using some metric. In our discussion, we bring

validation task under the purview of state space analysis. It includes exploring the utility of an existing

CPS analysis technique to more applications, characterize its results, performing qualitative evaluation
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using different validation measures, and, if possible, applying formal tools to argue about the performance

or correctness of the analysis.

The underlying motivation for this thesis is that system artifacts and simulations contain important

traits about system operations. In order to save computational resources, we should be able to extract as

much information as possible from this data. My presented work shows that verification artifacts are

useful for generating various counterexamples, and that a fixed number of available system traces can be

used to approximating sensitivity functions for effective state space exploration.

This leads to the following thesis statement: Simulation driven algorithmic tools can utilize knowl-

edge of fundamental system characteristics to enable systematic state space analysis of complex Cyber

physical systems.

1.4 Contributions

The thesis is supported by the following contributions.

1.4.1 Generating a variety of counterexamples

A controller that is originally stable and safe, can become unsafe if the safety specification is

tightened or the operating conditions are changed. While stability analysis tools of dynamical systems do

not guarantee safety, present model checkers for linear hybrid systems lack the capability of classifying

counterexamples in case of a safety violation. As not all counterexamples are equivalent to the control

designer, finding a right counterexample is crucial to the control design process. We first define the notion

of longest, deepest and robust counterexamples. We then discuss how such counterexamples can be used

to compare different unsafe controllers in Adaptive Cruise Control system. Finally, we present techniques

and frameworks to obtain these counterexamples and provide evaluation results on multiple benchmarks.

We develop such counterexample generation capabilities (Goyal, Bergman & Duggirala 2020, Goyal

& Duggirala 2018, Goyal & Duggirala 2020a) in an affine linear hybrid system verification platform,

HyLAA (Bak & Duggirala 2017a).
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1.4.2 Complete characterization of a safety violation

In spite of their application in evaluating different controllers, various types of counterexamples do

not capture all modalities of a safety violation. The problem of computing complete characterization

of counterexamples to a safety specification translates into efficiently representing all such modalities.

We define the problem of complete characterization and present a technique to obtain a sub-optimal

representation, in the form of Binary Decision Diagram (BDD), to represent complete characterization.

We then propose an approach which uses Farkas’ Lemma, to identify isomorphic nodes in order to reduce

the size of the original decision diagram. We model the problem of finding isomorphic nodes as a Mixed

Integer Linear Program (MILP) and perform rigorous evaluations on various linear systems without and

with inputs to underscore the promise of our technique.

1.4.3 State space exploration of closed loop control systems

Given a safety specification and a test suite, present falsification tools perform stochastic optimization

to find a violating trace. But existing state space exploration techniques would neither yield much intuition

about the course of exploration to the designer nor do they provide any theoretical convergence guarantees.

Our first work, NeuralExplorer, (Goyal & Duggirala 2020b, Goyal & Duggirala 2020c) is a state space

exploration framework that uses neural networks to learn sensitivity function(s) from a fixed number of

system trajectories. We demonstrate its utility in various applications such as falsification, predicting

system trajectories, and supplementing reachability analysis. However, the framework suffers from high

training time and lack of theoretical analysis.

The second work, NExG (Goyal, Dewaskar & Duggirala 2022), is an adaptation of NeuralExplorer,

which attempts to approximate sensitivity functions for small perturbation. The new framework not only

delivers better training performance but also achieves almost an order of magnitude gain over other state

space exploration techniques. We also present a theoretical study that guarantees the convergence of our

approach at a geometric rate, which is further supported by thorough evaluation on multiple closed loop

control systems with neural network feedback controllers.
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1.5 Organization

The remainder of this document is organized as follows. Chapter 2 presents terminology, notation,

and related work. Chapter 3 defines the notion of longest, deepest and robust counterexamples and

presents techniques to generate them in linear hybrid systems. Chapter 4 presents the study on complete

characterization of a safety violation in linear dynamical systems. Chapter 5 presents NeuralExplorer, a

state space exploration framework based on learning sensitivity functions. Chapter 6 proposes NExG

which approximates the gradient of sensitivity functions, showcases its performance and applications.

Chapter 7 summarizes the contributions and poses directions for future work.

1.6 Literature Review

CPS involves interaction between continuous nature of physical environment and the discrete nature

of software, which makes their analysis challenging. Our work lies at the intersection of symbolic and

analytical analyses, and its application spans various domains - verification, falsification, debugging, and

control synthesis. It has the potential to supplement existing analysis techniques by generating interesting

and desirable system behaviors (including specific counterexamples). While we review the literature for

topics most relevant to this thesis, a detailed study on simulation based verification of embedded control

systems (Kapinski et al. 2016) may serve as a good primer for the reader interested in further discussion

on some of these core areas.

1.6.1 CPS verification

Verification of hybrid systems is, in general, undecidable.(Alur, Courcoubetis, Halbwachs, Henzinger,

Ho, Nicollin, Olivero, Sifakis & Yovine 1995). Moreover, tractable verification techniques for certain

classes of systems such as timed automata or decidable rectangular hybrid automata are not suitable

for modeling realistic CPS with linear or nonlinear dynamics. A common approach for verifying such

systems is to compute numerical over-approximations up to a bounded time (Goyal 2012). Using such

numerical over-approximations, a reachable set computation tool computes an over-approximation of

the set of states reached by all the possible behaviors of the system (Dang & Maler 1998, Alur, Dang

& Ivančić 2003, Althoff 2015, Chen, Ábrahám & Sankaranarayanan 2013). If this reachable set does

not overlap with the unsafe set of states, then it is concluded that the system is safe. The efficiency
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of a reachability analysis technique generally depends on the data structure used for the symbolic

representation of the reachable set and associated operations.

PHAVer (Frehse 2005), SpaceEx (Frehse, Le Guernic, Donzé, Cotton, Ray, Lebeltel, Ripado,

Girard, Dang & Maler 2011, Frehse, Donzé, Cotton, Ray, Lebeltel, Goyal, Ripado, Dang, Maler,

Guernic & Girard 2011) and HyLAA (Bak & Duggirala 2017a) are some well-known platforms for

the reachability analysis of linear (hybrid) systems. In PHAVer, the reachable set is represented as

a convex polyhedron, support functions are used in SpaceEx, whereas HyLAA uses generalized star

representation for its reachable set. Systems with nonlinear ODEs might not have a closed form expression

for the solution, hence they may require different techniques and representations for their reachable

set. Some of the state of the art tools in this domain are CORA (Althoff 2015), Flow* (Chen, Ábrahám

& Sankaranarayanan 2013), and C2E2 (Duggirala, Potok, Mitra & Viswanathan 2015). Flow* uses

Taylor models, C2E2 uses Jacobian matrix and discrepancy functions, and CORA primarily makes use of

zonotopes for representing the reachable sets. Another recent work (Adimoolam & Saha 2022) uses a

non-convex set representation called IoU zonotope which is the intersection of unions of zonotopes to

approximate the reachable set.

A recent work (Roehm, Oehlerking, Heinz & Althoff 2016) on STL model checking of hybrid

systems considers an abstraction of the model to reduce the continuous time verification problem to

a discrete-time problem for which the decision procedure is shown to be sound and complete. This

method, however, does not rely on a specific representation of reachable sets and it can be used with

any reachability analysis tool. Simulation based state space exploration (Donzé & Maler 2007, Dang,

Donze, Maler & Shalev 2008) and verification (Huang & Mitra 2014, Fan & Mitra 2015) have also

shown some promise by tapping the advantages of symbolic and analytical techniques. For example,

DryVR (Fan & Mitra 2015) computes an upper bound on the sensitivity of the trajectories for computing

the over-approximation of the reachable set. The work in (Dang et al. 2008) needs analytical model

for guided random exploration of the state space together using sensitivity analysis to provide better

coverage. However, these techniques might suffer due to high system dimensionality and complexity.

That is, the number of required trajectories might increase exponentially with dimensions and complex

dynamics.

Learning enabled control systems analysis: Given the rich history of application of neural networks

in control (Miller, Sutton & Werbos 1991, Lewis, Yesildirak & Jagannathan 1998, Moore 2012) and
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the recent advances in software and hardware platforms, neural networks are also being deployed in

various control tasks. Consequently, many verification techniques are being developed for neural network

based control systems (Ivanov, Carpenter, Weimer, Alur, Pappas & Lee 2021, Tran, Cai, Diego, Musau,

Johnson & Koutsoukos 2019, Sun, Khedr & Shoukry 2019, Dutta, Chen, Jha, Sankaranarayanan &

Tiwari 2019, Xiang, Tran, Yang & Johnson 2021, Dutta, Chen & Sankaranarayanan 2019, Rober, Everett

& How 2022) and some other domains (Tjeng, Xiao & Tedrake 2019, Sun, Huang, Kroening, Sharp, Hill

& Ashmore 2019, Huang, Kwiatkowska, Wang & Wu 2017). Some of the the recent neural network

control analysis tools are Verisig (Ivanov et al. 2021), NNV (Tran et al. 2019), ReachNN (Huang, Fan,

Li, Chen & Zhu 2019), Reach-SDP (Hu, Fazlyab, Morari & Pappas 2020), SyReNN (Sotoudeh &

Thakur 2021), and Sherlock (Dutta et al. 2019).

1.6.2 Falsification

Falsification (Nghiem, Sankaranarayanan, Fainekos, Ivancić, Gupta & Pappas 2010, Abbas &

Fainekos 2011, Deshmukh, Fainekos, Kapinski, Sankaranarayanan, Zutshi & Jin 2015, Zutshi, Deshmukh,

Sankaranarayanan & Kapinski 2014) is geared towards finding an execution that violates a given

specification. Given a specification of Cyber-Physical System in Metric Temporal Logic (MTL) (Koymans

1990) or Signal Temporal Logic (STL) (Maler, Nickovic & Pnueli 2008), falsification tools are aimed at

discovering an execution that violates the given specification.

The authors in (Zutshi et al. 2014, Deshmukh et al. 2015) present falsification approaches that

performs scatter-and-search over segmented (or spliced) trajectories in an abstract graph to find a

likeliest counterexample by narrowing the gaps between adjacent segments. Similarly, the paper (Zutshi,

Sankaranarayanan, Deshmukh, Kapinski & Jin 2015) combines the symbolic execution of the controller

software with an approximation of the plant model, which is discovered on-the-fly using simulations,

to discover abstract counterexamples to the given safety property. Classification and Coverage-Based

Falsification for Embedded Control Systems (Adimoolam, Dang, Donzé, Kapinski & Jin 2017) presents

a falsification technique which uses a coverage measure and support vector machine based classification

to identify falsifying input traces. Another work (Bogomolov, Frehse, Gurung, Li, Martius & Ray 2019)

uses symbolic reachability supplemented by trajectory splicing to scale up hybrid system falsification.

Some falsification methods perform stochastic optimizations to obtain violating executions to a safety

specification based on robustness (Fainekos & Pappas 2009, Donzé & Maler 2010). S-Taliro (Annpureddy
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et al. 2011) and Breach (Donzé 2010) are two notable falsification tools. However, present falsification

techniques do not assist in state space exploration or may lack convergence guarantees due to their

heuristics driven behaviors.

More recently, techniques were also developed that inductively strengthen the given property by

focusing on some relevant aspects of the transition system or uncover deep bugs which would otherwise

take a long time to discover (Bradley 2011).

The counterexample generated by a model checking tool may be a false alarm as a consequence of the

over-approximation of the reachable set. For falsification of reach-avoid properties, the work (Goubault

& Putot 2019) computes an inner approximation based on the notion of minimal reachable set in order to

guarantee the existence of the safety violation.

The authors in (Singh & Saha 2020) argue that debugging a system requires precise information

about the internal structure of the model, which eludes standard falsification approaches. For the given

Simulink model and STL specification, their technique first obtains a falsifying execution, if any, and

then employs a run time monitoring algorithm based on matrix analysis to identify a small subset of the

signals (for debugging) that contribute to the falsification.

1.6.3 Counterexamples and their analysis

Counterexamples play an important role in model checking due to their practical relevance in

understanding system under test. They can potentially provide intuition to the system designer about

the reason why the system does not satisfy the specification. While control systems verification or

falsification tools are useful for proving safety specification or its violation, generating counterexamples

of interest in the domain of hybrid dynamical systems has hardly been explored. SpaceEx (Frehse,

Le Guernic, Donzé, Cotton, Ray, Lebeltel, Ripado, Girard, Dang & Maler 2011) and HyLAA (Bak &

Duggirala 2017a) spit out the counterexample that violates the safety specification at the earliest time

and at the latest time respectively.

While model checking can find subtle errors, extracting the essence of an error may still require

a great deal of human effort. This debugging is shown to benefit from using more than one counter-

example (Groce & Visser 2003, Fey & Drechsler 2003) as well as by efficiently identifying crucial

sites leading to the failure (Zeller 1999, Beer, Ben-David, Chockler, Orni & Trefler 2009, Jin, Ravi

& Somenzi 2002, Groce & Visser 2003). To obtain a sub-optimal (minimal) set of candidate error
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sites for all counter-examples in an erroneous design, (Fey & Drechsler 2003) introduce two greedy

heuristics namely maximum pairwise distance and efficient selection of error sites. The work (Groce

& Visser 2003) denotes the multiple variations of a single counterexample as positive and negative

executions. It automates finding these executions and analyzing them to obtain a better summarized

description of the erroneous elements. CLEAR tools (Barbon, Leroy & Salaün 2018, Barbon, Leroy &

Salaün 2019) assist in debugging behavioral models of the concurrent systems. It attempts to improve the

comprehension of counterexamples w.r.t. liveness properties by identifying erroneous parts of the model

and highlighting such crucial decision points leading to the bug.

The notion of causality is used to visually explain failure sites on the counterexample trace in (Beer

et al. 2009). On the other hand, (Jin, Ravi & Somenzi 2002) focuses on inevitability towards the failure

to capture more of the error in the error trace. The trace is presented as an alternation of fated and free

segments: the fated segments show unavoidable progress towards the error while free segments show

choices that, if avoided, may have prevented the error. Another technique delta debugging (Zeller 1999)

conducts binary search to discover and minimize difference between failing and succeeding runs of a

program.

An alternating line of work (Kupferman & Vardi 2000, Beer, Ben-David, Eisner & Rodeh 1997)

focuses on identifying vacuous satisfaction of a formula and generating an interesting witness for the

same in ACTL and CTL* respectively. The motivation behind obtaining such witnesses is that a witness

provides some confidence that the formal specification accurately reflects the intent of the user, one of

the weak links in the practical application of formal verification to hardware design.

1.6.4 Application of counterexamples

The introduction of Counter-Example-Guided-Abstraction-Refinement (CEGAR) (Clarke, Grumberg,

Jha, Lu & Veith 2000) changed the role of counterexamples from a mere feature to an algorithmic

tool. In CEGAR, the counterexample acts as a primary guide to restricting the space of the possible

refinements. In the domain of hybrid systems, different CEGAR based approaches (Dierks, Kupferschmid

& Larsen 2007, Clarke, Fehnker, Han, Krogh, Stursberg & Theobald 2003, Prabhakar, Duggirala, Mitra &

Viswanathan 2013, Duggirala & Mitra 2011, Alur, Dang & Ivancic 2006, Ratschan & She 2005, Frehse,

Krogh & Rutenbar 2006) pursue various notions of counterexamples, but majority of them are restricted
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to the domain of timed and rectangular systems. But recently there have been efforts in conducting

CEGAR based falsification of hybrid systems (Zutshi et al. 2014, Zutshi et al. 2015).

In the automated control synthesis domain, some frameworks (Fan, Mathur, Mitra & Viswanathan

2018, Ding & Tomlin 2010, Huang, Wang, Mitra, Dullerud & Chaudhuri 2015, Solar-Lezama, Tancau,

Bodı́k, Seshia & Saraswat 2006) synthesize correct-by-construction controller for reach-avoid speci-

fication; whereas, counterexample Guided Inductive Synthesis (CEGIS) frameworks (Raman, Donzé,

Sadigh, Murray & Seshia 2015, Singh & Saha 2021), as the name suggests, leverage counterexamples

from verification for inductive synthesis. The verification condition that the system satisfies an STL spec-

ification is encoded as a mixed-integer linear program (MILP) in (Raman et al. 2015). If the specification

is violated, one can investigate the results of MILP to obtain counterexamples or try to gain an intuition

for the system (Ghosh, Sadigh, Nuzzo, Raman, Donzé, Sangiovanni-Vincentelli, Sastry & Seshia 2016)

failing to satisfy the specification. Another recent work (Singh & Saha 2021) proposes an algorithm for

synthesizing multi-parameter complex feedback controllers by rigorous analysis of control parameters.

The parameters are then selected based on their impact on the specification violation and tuned in an

iterative manner.

A theoretical analysis of CEGIS based on different types of counterexamples in the domain of

program synthesis is attempted in (Jha & Seshia 2014). It considers minimal and history bounded

counterexamples which are aimed at localizing the error. The authors use these traces to investigate

whether there are good mistakes that could increase synthesis power and conclude that none of the two

counterexamples are strictly good mistakes.

Finally, counterexamples are also shown to be useful in learning control Lyapunov-like function

which is used in synthesizing controllers for nonlinear dynamical systems (Ravanbakhsh & Sankaranarayanan

2019) or learning polyhedral Lyapunov functions for linear hybrid systems (Berger & Sankaranarayanan

2022).

1.6.5 Other related works

Binary Decision Diagrams: BDD’s have been successfully used in computer aided design of logic

circuits (Khatri, Narayan, Krishnan, McMillan, Brayton & Sangi 1996), formal verification (Bryant 1986,

Hu 1995) and in recent years, for techniques using optimization (Behle 2007, Wegener 2000). At worst,

the total number of nodes in a BDD can grow exponentially large in the number of decision variables.
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Decision variables ordering plays a crucial role in determining the BDD size thus it is imperative to find

an optimal ordering that minimizes the BDD size. However, the optimal ordering problem is shown to

be computationally hard (Bollig & Wegener 1996, Tani, Hamaguchi & Yajima 1993, Bollig 2014). In

practice, domain specific heuristics (Butler, Ross, Kapur & Mercer 1991, Chung, Hajj & Patel 1993,

Lindenbaum, Markovitch & Rusakov 1999, Grumberg, Livne & Markovitch 2003) are proposed for an

efficient ordering. We apply a different heuristic which is based on our observation specifically about the

overlap of the reachable set with unsafe set.

Neural network based analysis: Multiple neural network based frameworks for learning the

dynamics or their properties are also being proposed (Long, Lu, Ma & Dong 2018, Raissi, Perdikaris &

Karniadakis 2018, Chen, Rubanova, Bettencourt & Duvenaud 2018), which further underlines the need

of an efficient and structured state space exploration mechanism. In the model checking domain, neural

networks have been used for state classification (Phan, Paoletti, Zhang, Grosu, Smolka & Stoller 2018) as

well as reachability analysis by synthesizing barrier certificates (Zhao, Zeng, Chen & Liu 2020), learning

state density distribution (Meng, Sun, Qiu, Waez & Fan 2021) or reachability function in NeuReach (Sun

& Mitra 2022). In contrast, we exploit neural networks to learn sensitivity functions which we use to

perform guided state space exploration.
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CHAPTER 2: TECHNICAL PRELIMINARIES

We denote the set of Boolean values as B. States and vectors are elements in Rn are denoted as x

and v. The Inner product of two vectors v1, v2 ∈ Rn is denoted as vT1 v2. For v ∈ Rn, ∥v∥ denotes the

standard Euclidean norm of the vector v. |·| operator denotes the cardinality of a given set. A linear

constraint ϕ denotes a half-space in Rn is a mathematical expression aTx ≤ b, where a ∈ Rn is vector

of coefficients and b ∈ R is a constant. Negation of a linear constraint ϕ ∆
= aTx ≤ b is another linear

constraint ¬ϕ ∆
= (−a)Tx ≤ −(b + δ), where 0 < δ ≪ 1. Given a sequence seq = s1, s2, . . ., the ith

element in the sequence is denoted as seq[i]. Decision variables are elements in a set B of binary values 0

and 1. For δ ≥ 0, Bδ(x)
∆
= {x′ ∈ Rn | ∥x− x′∥ ≤ δ} is the closed neighborhood around x of radius δ.

2.1 Affine Linear Hybrid System with Constant Inputs

Definition 1 An n-dimensional time-invariant affine linear system with constant inputs F(X)
∆
=

⟨A,B⟩ is denoted as ẋ(t) = Ax(t) + B where:

X ⊆ Rn is the state space of the behaviors,

A ∈ Rn×n is the time-invariant dynamics matrix,

B ∈ Rn×1 is the time-invariant constant affine matrix.

The closed form expression for its trajectory is given as ξ(t) = eAtξ(0) +
∫ t
0 e

A(t−µ)Bdµ, where

ξ(0)
.
= x0 ∈ X is called the initial state. the system ẋ(t) = Ax(t) with no inputs is called as the

autonomous system.

Definition 2 An n-dimensional affine linear hybrid system H modelled as a hybrid automaton is

defined to be a tuple ⟨L,X,F, I, T,G⟩ where:

L is a finite set of locations (also called modes),

X ⊆ Rn is the state space of the behaviors,
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Figure 2.1: Hybrid automaton of a tank system.

F : L→ F(X) assign a differential equation ẋ(t) = Alx(t) + Bl for location l,

I : L→ 2R
n

assigns an invariant set for each location of the hybrid system,

E ⊆ L× L is the set of discrete transitions,

G : E → 2R
n

defines the set of states where a discrete transition is enabled.

For a linear hybrid system, the invariants and guards are given as the conjunction of linear con-

straints.

The initial set of states Θ is a subset of L× 2R
n

, where second element in the pair is a conjunction

of linear constraints. An initial state q0 is a pair (L0, x0), such that x0 ∈ X , and (L0, x0) ∈ Θ.

Example 1 The hybrid automaton for a tank system is described in Fig. 2.1. y is the water level in

the tank, λ is the pump-on inflow, and µ is the outflow. The goal is to prevent the tank from emptying

or filling up beyond some thresholds. The model has two discrete modes - On and Off for pump- on

and off respectively. The continuous variable y is driven by different differential equations in different

modes. There are two discrete transitions e and e′, and their respective guards are y ≥ ymax and

y ≤ ymin. Finally, the reset function for both transitions is y′ = y where y is the state of the system

before transition and y′ is the state after taking the transition.

Definition 3 Given a hybrid systemH and an initial set of states Θ, an execution ofH is a sequence

of trajectories and transitions ξ0e1ξ1e2 . . . such that (i) the first state of ξ0 denoted as q0 is in the

initial set, i.e., q0 = (L0, x0) ∈ Θ, (ii) each ξi is the solution of the differential equation of the

corresponding location Li, (iii) all the states in the trajectory ξi respect the invariant of the location

Li, and (iv) the state of the trajectory before each transition ei satisfies guard G(ei).
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The set of states encountered by all executions that conform to the above semantics is called the reachable

set denoted as ReachH(Θ) (or Reach(Θ) when it is clear from the context). A linear dynamical system

can be considered as a hybrid system with one mode. We use the simulation engine that is described

in (Bak & Duggirala 2017b) to generate system executions. This simulation engine also accounts for

non-determinism induced due to discrete transitions. The closed form expression of a linear dynamical

system execution involves matrix exponential; thus, we are better off using simulation engine that

generates simulation as a proxy for an execution. For a unit time (also called the step), the hybrid system

simulation starting from state q0 is denoted as ξH(q0).

Definition 4 A sequence ξH(q0)
.
= q0, q1, q2, . . ., where each qi = (Li, xi), is a (q0)-simulation of

the hybrid system H with initial set Θ if and only if q0 ∈ Θ and each pair (qi, qi+1) corresponds

to either: (i) a continuous trajectory in location Li with Li = Li+1 such that a trajectory starting

from xi would reach xi+1 after exactly unit time with xi ∈ I(Li), or (ii) a discrete transition from

Li to Li+1 (with Li−1 = Li) where ∃e ∈ E such that xi = xi+1, xi ∈ G(e) and xi+1 ∈ I(Li+1).

Bounded-time variants of these simulations, with time bound T, are called (q0,T)-simulations.

If the pair (qi, qi+1) corresponds to a continuous trajectory, qi+1 is called the continuous

successor of qi, otherwise qi+1 is the discrete successor of qi.

While talking about the continuous or discrete behaviors of simulations, we abuse notation and use xi,

the continuous component of the state instead of qi.

Observations On Simulation Algorithm: We would like to make a few observations regarding the

simulation algorithm that we have presented. First, the simulation engine allows the execution to make a

discrete transition even when the invariant is violated. That is, if xi and xi+1 are two successive states in

the simulation, xi+1 can make a discrete transition to the new mode even when xi+1 /∈ I(Li) as long

as xi+1 ∈ G(e). This is necessary to handle the common case where a guard is the complement of an

invariant, and a sampled simulation jumps over the guard boundary during a single step. If these types of

behaviors are not desired, the guard can be explicitly strengthened with the invariant of the originating

mode.

If a guard is enabled and the invariant is still true, or if multiple guards are enabled, the simulation

engine can make a non-deterministic choice. Consider that a one-dimensional system has two locations

l1 and l2 such that F (l1) : ẋ = 1, I(l1) : x ∈ [0, 50], transition e = (l1, l2), and G(e) : x ≥ 45. The
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initial set is Θ ∆
= (l1, x ∈ [0, 5]). After the guard is enabled in l1 i.e., x ≥ 45, the simulation engine, in a

non-deterministic manner, can either take a discrete transition to l2 or continue evolving in l1 as long as

its invariant is true. At x = 50, the trajectory can no longer continue to stay in l1 as the invariant will be

violated. Hence, at x = 50, the engine is forced to take the transition to l2.

Second, the simulation engine given in Definition 4 does not check if the invariant is violated for the

entire time interval, but only at a discrete time instance. Computationally, it is very hard to give certainty

about whether a predicate was satisfied during an entire time interval, and hence we consider this to a

valid assumption. Readers familiar with industrial simulation engines can relate this to a feature of not

detecting zero crossings.

Third, the discrete jumps are only enabled at time instances that are multiples of the unit time.

For discrete transitions that are a result of change in controller input that is driven by software, such

an assumption is valid as one can consider the control system providing actuation values at discrete

instances of time. This notion might not accurately represent the discrete transitions that are a result of

environmental impact such as impulse responses. However, we still argue that such a notion of execution

is useful because of two reasons. First, it is impossible (except for some very specific cases) to finitely

represent the execution trace when the discrete transition is a result of the environment. The closest we

can get to such representation is to consider executions that are defined in Definition 4. Second, by

reducing the time step, one can get arbitrarily close to the execution that is a result of impulse response.

Finally, in order to avoid Zeno executions, the simulation engine forces the system should spend at

least unit time in each mode.

2.2 Metric Temporal Logic

Metric Temporal Logic (MTL) is defined over a finite set P of atomic propositions. Each proposition

p ∈ P at discrete time t ∈ N takes a value from the boolean set {⊤,⊥}. A timed word is defined as

ω : N→ 2P , where ω[t] ∈ 2P is the set of propositions that are true at time t (Sadraddini & Belta 2016).

The syntax of MTL formulas is recursively defined as:

φ ::= ⊤ | p | ¬φ | φ1 ∧ φ2 | φ1Uτφ2 (2.1)
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where ¬ and ∧ are boolean negation and conjunction operators, respectively, and U is the timed until

operator with a time interval τ ⊆ [t1, t2] where 0 ≤ t1 ≤ t2 ≤ T and T ∈ N+ is the time bound. Other

temporal operators are constructed using the syntax above. The temporal finally (eventually) is defined

as ♢τφ := ⊤Uτφ and temporal globally (always): □τφ := ¬♢τ¬φ. Word ω satisfies MTL formula φ,

denoted by ω |= φ, if σ0 |= φ, where σ0 is a timed sequence “ω[0], ω[1], . . . ” starting at time 0. The

language of φ is the set of all words satisfying φ. The semantics for MTL are inductively defined and

can be referred in (Thati & Roşu 2005).

We consider specifications described using MTL with each of its atomic propositions is over a set of

linear constraints

p := Apx ≤ bp

where Ap ∈ R|p|×n, bp ∈ R|p|, and |p| is the number of constraints in proposition p.

2.3 Safety and Counterexamples

We next define the safety property for simulations and for a set of initial states (from (Bak &

Duggirala 2017b)).

Definition 5 A given simulation ξH(q0) is said to be safe with respect to an unsafe set Ψ ⊆ Rn

if and only if ∀qi
.
= (Li, xi) ∈ ξH(q0), xi /∈ Ψ. An unsafe simulation is called a counterexample.

Safety for bounded time simulations are defined similarly.

Definition 6 A hybrid systemH with initial set Θ, time bound T, and unsafe set Ψ ⊆ Rn is said to

be safe with respect to its simulations if all simulations starting from Θ for bounded time T are safe.

For computing system simulations of interest, we use the simulation equivalent reachable set approach

that is presented in (Duggirala & Viswanathan 2016, Bak & Duggirala 2017b).

We drop the subscriptH from ξH as the work in this paper refers to the hybrid setting.

Remark 1 Although we focus on safety specification in our counterexample generation because we

are dealing with safety critical systems, Ψ can denote the violation of a general performance specifi-

cation, such as an overshoot in the regulation control, an undesirable maneuver in an autonomous

car, or a failure site in hardware design etc.
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Figure 2.2: Illustration of the Superposition principle.

2.4 Reachable Set Computation

We now present some of the building blocks in computation of the reachable set (from (Bak

& Duggirala 2017b)). There are three main aspects of the reachable set computation. First is the

superposition principle, second is the generalized star representation that is used for representing the set

of reachable states and finally, the reachable set algorithm for a single mode and the simulation-equivalent

reachable set that is returned by Algorithm in (Bak & Duggirala 2017b).

Definition 7 Given any initial state x0, vectors v1, . . . , vm where vi ∈ Rn, scalars α1, . . . ,αm,

the trajectories of linear differential equations in a given location l always satisfy

ξ(x0 +Σm
i=1αivi, t) = ξ(x0, t) + Σm

i=1αi(ξ(x0 + vi, t)− ξ(x0, t))

An illustration of the superposition principle for two vectors is shown in Figure 2.2. We exploit the

superposition property of linear systems in order to compute the simulation-equivalent reachable set of

states for a linear hybrid system. Before describing the algorithm for computing the reachable set, we

introduce the data structure called a generalized star that is used to represent the reachable set of states.

Definition 8 A generalized star (or simply star) S is a tuple ⟨c, V, P ⟩ where c ∈ Rn is called the

center, V = {v1, v2, . . . , vm} is a set of m (≤ n) vectors in Rn called the basis vectors, and

P : Rn → {⊤,⊥} is a predicate.
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A generalized star S defines a subset of Rn as follows.

[[S]]
∆
= {x | ∃ᾱ = [α1, . . . ,αm]T such that x = c+Σm

i=1αivi and P (ᾱ) = ⊤}

Sometimes we will refer to both S and [[S]] as S. Additionally, we refer to the variables in ᾱ as basis

variables and the variables x as orthonormal variables. Given a valuation ᾱ of the basis variables,

the corresponding orthonormal variables are denoted as x = c+ V × ᾱ.

Similar to (Bak & Duggirala 2017b), we consider predicates P which are conjunctions of linear con-

straints. This is primarily because linear programming is very efficient when compared to nonlinear

arithmetic. We therefore harness the power of these linear programming algorithms to improve the

scalability of our approach.

Example 2 Consider a set Θ ⊂ R2 given as Θ1 ∆
= {(x1, x2) |x1 ∈ [4, 6], x2 ∈ [4, 6]}. The given set

Θ can be represented as a generalized star in multiple ways. One way of representing the set is given

as ⟨c0, V0, P0⟩ where c0
.
= (5, 5), V0

.
= {[0, 1]T , [1, 0]T } and P0

.
= −1 ≤ α1 ≤ 1 ∧ −1 ≤ α2 ≤ 1.

That is, the set Θ is represented as a star with center (5, 5) with vectors as the orthonormal vectors

in the Cartesian plane and predicate where the components along the basis vectors are restricted by

the set [−1, 1]× [−1, 1].

Simulation-Equivalent Reachable Set for Linear Dynamical Systems: We briefly describe the

algorithm for computing simulation-equivalent reachable set for a linear dynamical system (or, a hybrid

system with one mode). This is primarily done to present some crucial observations which will later

be used in the algorithms for generating specific counterexamples. Longer explanation and proofs for

these observations and algorithms is available in prior work (Duggirala & Viswanathan 2016, Bak &

Duggirala 2017b).

At its crux, the algorithm exploits the superposition principle of linear systems and computes the

reachable states using a generalized star representation. For an n-dimensional system, this algorithm

requires at most n+1 simulations. Given an initial set Θ ∆
= ⟨c0, V0, P0⟩with V = {v1, v2, . . . , vm}(m ≤

n), the algorithm performs a simulation starting from c0 (denoted as ξ(c0, 0)), and ∀1 ≤ j ≤ m, performs

a simulation from each c0 + vj (denoted as ξ(c0 + vj , 0)). For a given time instance i ≥ 0, the reachable

1We abuse the notation Θ to denote the initial set as well as its star representation.
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Figure 2.3: Reachable set computation using simulations and generalized star

set is defined as ⟨ci, Vi, P0⟩ where ci = ξ(c0, i) and Vi = ⟨vi1, vi2, . . . , vim⟩ where ∀1 ≤ j ≤ m, vij =

ξ(c0 + vj , i) − ξ(c0, i). Notice that the predicate does not change for the reachable set, but only the

center and the basis vectors are changed.

An illustration of this reachable set computation is shown in Figure 2.3. Here, as the system is

2-dimensional, a total number of three simulations are performed - one from center c0, and one from

each c0 + v1 and c0 + v2. The reachable set after time i is given as the star with center ci = ξ(c0, i),

basis vectors vi1 = ξ(c0 + v1, i)− ξ(c0, i) and vi2 = ξ(c0 + v2, i)− ξ(c0, i), and the same predicate P as

given in the initial set.

The reachable set Reach(Θ) for a given linear dynamical system computed in this manner is a

sequence (with its first element Θ) of generalized stars such that Reachi(Θ)
.
= Si

∆
= ⟨ci, Vi, P0⟩ is the

set of states visited at a discrete time step i (Duggirala & Viswanathan 2016). Each subsequent element

is the successor that corresponds to the system evolution after unit time step.

Simulation-Equivalent Reachable Set for Hybrid Systems with Linear Dynamics: The Algorithm

presented in (Duggirala & Viswanathan 2016) has been extended in (Bak & Duggirala 2017b) as

computeSimEquivReach, to compute the simulation equivalent reachable set for hybrid systems that

accommodates for the invariants in each mode and the guard transitions for discrete mode jumps.

This is achieved by introducing a new technique called invariant constraint propagation and dynamic

aggregation and de-aggregation. Owing to our focus on generating interesting counterexamples, we

apply fully-deaggregated version of the reachable set computation algorithm where each element in the

reachable set is given as a generalized star.
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Figure 2.4: Illustration of ReachTree construction.

Remark 2 (Propagation) For a discrete transition ei
.
= Li → Li+1, a set of constraints P̄ are

propagated from a star Si ∈ Li to Si+1 ∈ Li+1 via guard G(ei) iff

P̄
.
= Si ∩G(ei) ̸= ∅, and P̄ ⊆ Si+1

As a consequence of this propagation, the initial set for location Li+1 after the discrete transition

ei is the intersection of the set Si with G(ei).

The algorithm computeSimEquivReach returns the reachable set in the form of a tree. The root node

of the tree is the initial set Θ. Each node in this tree is a generalized star Si of the form Si
∆
= ⟨ci, Vi, Pi⟩

corresponding to the set of states visited at a discrete step i. Notice that the predicate in Si might be

different from the predicate of the initial set Θ so as to accommodate the mode invariants and discrete

transitions induced due to hybrid behavior. Each node in reach tree can have at most one continuous

successor that corresponds to the evolution for unit time in the same mode, and have multiple discrete

successors each corresponding to the reachable set after a discrete transition. We denote this tree form of

the reachable set as ReachTree.

The construction of ReachTree is illustrated in Figure 2.4. The part of the system shown has

6 modes (or locations) - L1, L2, L3, L4, L5, and L6. The invariants for the modes L1, L2, L3 are

I(L1), I(L2), I(L3) respectively. There are 4 nodes corresponding to mode L1 where Li+1
1 is the
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Figure 2.5: Representation of a ReachTree.

continuous successor of Li
1, 1 ≤ i ≤ 3. L1

1 itself can be the root node or a successor - continuous or

discrete - to some another node. A discrete transition (Li → Lj) from mode Li to mode Lj is active

when its associated guard (GLi→Lj ) becomes enabled, and constraints Li ∩ GLi→Lj are propagated

(Remark 2). Hence, during the transition from L2
1 to L1

2, predicates denoting the set L2
1 ∩GL1→L2 are

propagated. It means that the initial set L1
2 is the intersection of the set L2

1 and the associated guard

GL1→L2 .

As our reachable set construction algorithm explores all possible transitions, a node has as many

discrete successors as the number of active discrete transitions, in addition to having at most one

continuous successor. This behavior translates into 3 scenarios: 1) only continuous-, 2) only discrete-, 3)

continuous- as well as discrete- successors. For instance, L2
3 has one continuous and 2 discrete successors

as it satisfies the invariant I(L3), and it has active transitions to both L5 and L6. L1
3 does not have any

discrete successor because there is no active discrete transition from L1
3. In a similar fashion, L4

1 has

just one successor which is discrete because L4
1 violates I(L1) but GL1→L6 is enabled. The ReachTree

constructed in this manner is shown in Figure 2.5. The dashed transitions denote that there may or may

not be a transition.

Definition 9 Consider an initial set Θ, bound T, and the simulation equivalent reachable set

represented as ReachTree. Given a star Si ∈ ReachTree, we call a sequence of stars σ =
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R1, R2, . . . , Rm a chain starting from Si if and only if R1 = Si and ∀2 ≤ j ≤ m,Rj is (either

continuous or discrete) successor of Rj−1.

Remark 3 Given a star Si
∆
= ⟨ci, Vi, Pi⟩ in ReachTree and its successor (either discrete or

continuous) Si+1
∆
= ⟨ci+1, Vi+1, Pi+1⟩, observe that one has to either perform intersection with

the invariant or with the guards for obtaining the predicate Pi+1. Hence Pi+1 ⊆ Pi. Thus, given

a valuation of ᾱ such that Pi+1(ᾱ) = ⊤, it is true that all the stars that are the parents of Pi+1,

the valuation of ᾱ is contained in the predicate. Additionally, one can use this valuation of basis

variables to generate the trace starting from the initial set Θ to Pi+1. We call the procedure that

generates this execution as getExecution(ᾱ, Si+1, ReachTree).

A side effect of the above observation is that all the trajectories that reach the star Si+1
∆
=

⟨ci+1, Vi+1, Pi+1⟩ would originate from the subset Θ′ of the initial set, where Θ′ ∆
= ⟨c0, V0, Pi+1⟩.

Assumptions: Similar to the assumptions in earlier work (Bak & Duggirala 2017b), we assume

that ODE solvers give the exact result. While theoretically unsound, such an assumption is adopted due

to its practicality. Second, we use floating-point arithmetic in our computations and do not track the

errors by floating point arithmetic. A user concerned about the inaccuracy of numerical simulation can

either use validated simulations (e.g., Computer Assisted Proofs in Dynamic Groups (CAPD) library2)

or compute the linear ODE solution as a matrix exponential to an arbitrary degree of precision. The

algorithms presented are oblivious to the simulation engine used. We assume the initial set and unsafe

region to be convex polytopes. However, generalized star provides flexibility to compute the reachable

set even when the initial set is non-convex (Duggirala & Viswanathan 2016).

2.5 Constraint Propagation for Counterexamples

We briefly discuss how we can make use of constraint propagation to obtain desired executions. In

particular, we focus on system executions that reach an unsafe set Ψ ⊆ Rn at time step i. That is, for a set

Ψ specified as an STL/MTL formula, we need to find the valuations of basis variables ᾱ such that P (ᾱ) =

⊤ and (ci + Vi × ᾱ) ∈ Ψ. We begin with computing the reachable set Reach(Θ) as a sequence of stars

S0, S1, . . . , ST where S0
.
= Θ, Reachj(Θ)

.
= Sj

∆
= ⟨cj , Vj , P0⟩. Now, given star Si, we represent Ψ

2http://capd.ii.uj.edu.pl/index.php
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as another star ⟨ci, Vi, P
Ψ
i ⟩ by converting each constraint (aTx ≤ b) ∈ Ψ as aT (ci + Viᾱ) ≤ b. This

gives us PΨ
i

.
= AT (ci + Viᾱ) ≤ b where A ∈ Rn×m, b ∈ Rm, and m is the number of constraints in

PΨ
i . We next check feasibility of the predicate P0 ∧ PΨ

i . There is no simulation reaching Ψ at time i

if
(
P0 ∧ PΨ

i

)
(ᾱ) = ⊥. Otherwise, we make use of the previous observation to propagate constraints

so that all the executions that reach the unsafe region Si ∩ U
∆
= ⟨ci, Vi, P0 ∧ PΨ

i ⟩ at time step i would

originate from the set Θi
∆
= ⟨c0, V0, P0 ∧ PΨ

i ⟩ ⊆ Θ. In other words, the predicate P0 ∧ PΨ
i denotes the

set of α valuations for the counterexamples reaching Ψ at time step i. Considering P0
.
= (HTx ≤ g), we

solve a system of constraints
(
AT (c0 + V0ᾱ) ≤ b ∧ HT (c0 + V0ᾱ) ≤ g

)
to find a satisfiable valuation

ᾱ. Then we generate a desired counterexample as a simulation c0 + V0 × ᾱ, c1 + V1 × ᾱ, . . . where

(ci + Vi × ᾱ) ∈ Ψ.

The extension of this approach to multiple time steps is straightforward. The executions that reach U

at two different time steps i and i′ would originate from (Θi ∩Θi′)
∆
= ⟨c, V, P ∧ PΨ

i ∧ PΨ
i′ ⟩ ⊆ Θ. We

can solve the corresponding system of constraints to obtain a valuation ᾱ and generate a counterexample

that overlaps with Ψ at both time steps i and i′.

2.6 Linear Affine Systems with Bounded Inputs

Most of the discussion in this section is adapted from (Bak & Duggirala 2017c) as it is. The reader

interested in more details is referred to the original paper.

Definition 10 An n-dimensional time-invariant affine linear system with bounded inputs F(X)
∆
=

⟨A,B, U⟩ is denoted as ẋ(t) = Ax(t) + Bu(t);u(t) ∈ U where:

X ⊆ Rn is the state space of the behaviors,

A ∈ Rn×n is the time-invariant dynamics matrix,

B ∈ Rn×m is the time-invariant affine matrix,

U ⊆ Rm×1 is the set of possible inputs.

Assuming that the system has m inputs, the input function u(t) is given as u : R≥0 → Rm. If u(t)

is an integrable function, the closed form expression for the trajectory of the above system is given as

ξ(u, t) = eAtξ(u, 0) +
∫ t
0 e

A(t−µ)Bu(µ)dµ, where ξ(u, 0) .
= x0 ∈ X is called the initial state. If u(t) is
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a constant function set to the value of u0, then the system can be represented as ⟨A,B0⟩ where B0
.
= Bu0

and is an affine linear system with constant inputs (Section 2.1).

We restrict our attention to inputs that are piece-wise constant. That is, the value of inputs are

updated periodically with every unit time (also called step size h) and the inputs stay constant for the

time duration [k × h, (k + 1)× h].

Definition 11 Given an initial state x0, a sequence of input vectors u, and a time period h, the

sequence ξ(x0, u)
.
= x0

u0−→ x1
u1−→ . . ., is a (x0, u)-simulation of above system if and only if all

ui ∈ U , and for each xi+1 we have that xi+1 is the state of the trajectory starting from xi when

provided with constant input ui for unit time, xi+1
.
= ξ(xi, ui). Bounded-time variants are called

(x0, u,T)-simulations where T is called time bound. For simulations, the unit time is given as the

step size h.

The set of states encountered by a (x0, u)-simulation is the set of states in Rn at the multiples of the

time step h, {x0, x1, . . .}. The relationship between xi and xi+1 can be obtained, using the closed form

expression of the trajectory, as the following

xi+1 = eAhxi +G(A, h)Bui (2.2)

where G(A, h) =
∑∞

i=0
1

(i+1)!A
ihi+1.

Definition 12 Given an initial set Θ, the simulation-equivalent reachable set for such system is the

set of all states that can be encountered by any (x0, u)-simulation starting from any x0 ∈ Θ, for any

valid sequence of input vectors u. Time-bounded version of the reachable set is defined for a time

bound T.

As mentioned earlier, the simulation-equivalent reachable set is represented as the sequence of stars

⟨S0, S1, S2, . . . , Sk⟩ where the sets of states that all the simulations starting from S0
.
= Θ can encounter

at time instances i× h is given as Si. Using Equation 2.2, the relationship between Si+1 and Si for the

system with inputs can be expressed as Θi+1
.
= eAhΘi ⊕G(A, h)BU . Representing U = G(A, h)BU

and expanding the above equation, we have

Si+1 = eA(i+1)×hS0 ⊕ eA(i)×hU ⊕ eA(i−1)×hU ⊕ . . .⊕ eA×hU ⊕ U . (2.3)
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where eA(i+1)×hS0 is the reachable set of the autonomous system and the remainder of the terms

characterize the effect of inputs. Consider the jth term in the remainder, namely, eA(j)×hU . This term

is exactly same as the reachable set of states starting from an initial set U after j × h time units, and

evolving according to the autonomous dynamics ẋ = Ax.

Furthermore, the set U = G(A, h)BU can be represented as a star ⟨c, V, P ⟩ with m basis vectors,

for an n-dimensional system with m inputs. This is done by taking the origin as the center c, the set

G(A, h)B as the star’s n ×m basis matrix V , and using the linear constraints U as the predicate P ,

replacing each input ui with αi. Now, the effect of the inputs after i× h time units is computed as the

Minkowski sum of stars denoted as Ui ⊕ Ui−1 ⊕ Ui−2 ⊕ . . .⊕ U0 where Ui is the effect of inputs at ith

time step and U0
.
= U .

Definition 13 (Minkowski Sum with Stars) Given two stars S = ⟨c, V, P ⟩ with m basis vectors

and S′ = ⟨c′, V ′, P ′⟩ with m′ basis vectors, their Minkowski sum is a new star S̄ = ⟨c̄, V̄ , P̄ ⟩ with

m +m′ basis vectors and (i) c̄ = c + c′, (ii) V̄ is the list of m +m′ vectors produced by joining

the list of basis vectors of S and S′, (iii) P̄ (ᾱ) = P (ᾱm) ∧ P ′(ᾱm′). Here ᾱm ∈ Rm denotes the

variables in S, ᾱm′ ∈ Rm′
denotes the variables for S′, and ᾱ ∈ Rm+m′

denotes the variables for

S̄ (with appropriate variable renaming).

Notice that both the number of variables in the star and the number of constraints grow with each

Minkowski sum operation. Since we focus on bounded piece-wise constant inputs, for m inputs, the

number of variables (or basis vectors) grow by m and the number of constraints grow by 2m after every

unit time step to incorporate the effect of inputs. For instance, the set of states reachable exactly after i

time steps is denoted as Si which would have n+ (i×m) basis vectors and |P0|+ (i× 2m) constraints

where |P0| is the number of constraints in the initial star S0.

2.7 Feedback Control Systems

We denote the dynamics of the plant as

ẋ = f(x, u) (2.4)
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where x is the state of the system which takes values in Rn, and u is the input which takes values in Rm.

We will assume that the system with the controller u = g(x) has unique trajectories starting from any

initial state. This existence and uniqueness of trajectories is guaranteed if both f and g are functions with

bounded Lipschitz constants.

Definition 14 (Unique Trajectory Feedback Functions) A feedback function u = g(x) is said to

be a unique trajectory feedback function if the the initial value problem for the closed loop system

ẋ = f(x, g(x)) is guaranteed to have a unique solution for all initial points x0 ∈ Rn.

Definition 15 (Trajectories of Closed Loop System) Given a unique trajectory feedback function

u = g(x), a trajectory of closed loop system ẋ = f(x, g(x)), denoted as ξg(x0, t) (t ≥ 0), is the

solution of the initial value problem of the differential equation ẋ = f(x, g(x)) with initial condition

x0. We often drop the feedback function g when it is clear from the context.

We extend the notion of trajectory to include backward time trajectories as well. Given t > 0,

the backward time trajectory ξg(xt,−t) = x0 such that ξg(x0, t) = xt. We denote backward time

trajectory as ξ−1(xt, t).

Given x0, xt ∈ Rn and t > 0 such that ξ(x0, t) = xt, then ξ−1(xt, t) = x0. It is trivial to observe

that ξ−1(ξ(x0, t), t) = x0.

Definition 16 (Sensitivity Functions) Given an initial state x0, vector v, and time t, the sensitivity

Φ(x0, v, t) of the trajectory, is defined as.

Φ(x0, v, t) = ξ(x0 + v, t)− ξ(x0, t). (2.5)

We extend the definition of sensitivity to backward time trajectories, denoted as inverse sensitivity,

as

Φ−1(xt, v, t) = ξ−1(xt + v, t)− ξ−1(xt, t). (2.6)

The sensitivity functions are visually demonstrated in Figure 2.6. The sensitivity Φ(x0, v, t) is the

displacement between the respective states that the system reaches at time t > 0, when starting from

states x0 + v and x0 at time t = 0. The inverse-sensitivity Φ−1(x0, v, t) is the displacement between the

states at t = 0 that will reach x0 + v and x0, respectively, at time t > 0. In this work, we will primarily
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Figure 2.6: Visual description of the sensitivity functions Φ and Φ−1. The blue and red curves, respec-
tively, denote the unique trajectories that pass through the state of interest x0 and its displaced state
x0 + v.

focus on using the inverse sensitivity function Φ−1 for performing systematic state space exploration, but

an analogous analysis can also be conducted with the sensitivity function Φ.

For general nonlinear differential equations, analytic representation of the trajectories of the ODEs

need not exist. If the closed loop system is a smooth function, the analytic representation of its inverse

sensitivity function (2.6) can be given by its Taylor expansion

Φ−1(x0, v, t) = Φ−1(x0, 0, t) +∇vΦ
−1(x0, 0, t)v +

1

2!
vt∇2

vΦ
−1(x0, 0, t)v + · · · (2.7)

where∇vΦ
−1 denote its Jacobian matrix when considered a function only of its second argument v.

When the closed loop dynamics is linear, i.e., ẋ = Ax, it is easy to observe that Φ(x0, v, t) = eAtv,

Φ−1(x0, v, t) = e−Atv where eAt (e−At) is the matrix exponential of the matrixAt (−At). Observe that

for linear systems, the inverse sensitivity function is independent of the state x0.

For nonlinear dynamical systems, one can truncate the infinite series up to a specific order and obtain

an approximation. However, for hybrid systems that have state based mode switches, or for feedback

functions where the closed loop dynamics is not smooth or is discontinuous, such an infinite series

expansion is hard to compute. The central idea for this line of work is to approximate Φ and Φ−1 using a

neural network and perform state space exploration using such neural networks.
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CHAPTER 3: VARIETY OF COUNTEREXAMPLES

In this chapter, we describe the techniques for generating three types of counterexamples namely

the deepest, the longest contiguous, absolute longest, and the robust counterexamples. 1 The reader is

referred to (Goyal & Duggirala 2018, Goyal & Duggirala 2020a) for more details about these evaluations.

We give the definitions of these executions as follows.

Definition 17 Given a hybrid system H with an initial set Θ, time bound T, unsafe set Ψ ⊆ Rn,

and direction d ∈ Rn, the depth of a counterexample ξ in direction d is denoted as depth(ξ, d) ∆
=

dT · argmaxxi
{dTxi | xi ∈ ξ ∧ xi ∈ Ψ}.

The counterexample ξ with the maximum value of depth is called the deepest counterexample.

Definition 18 Given a hybrid systemH with an initial set Θ, time bound T, and unsafe set Ψ ⊆ Rn,

a counterexample ξ is said to be of length l if and only if ∃ consecutive states xi, xi+1, . . . , xi+l−1 in

ξ such that ∀i ≤ j ≤ i+ l − 1, xj ∈ Ψ.

The counterexample of the maximum length is called the longest contiguous counterexample.

Definition 19 Given a hybrid systemH with initial set Θ, time bound T, and unsafe set Ψ ⊆ Rn, a

counterexample ξ starting from xr is said to be robust with robustness δ if and only if ∀x ∈ Bδ(xr)
∆
=

{x̄ | ∥x̄− xr∥ ≤ δ}, there exists at least one unsafe execution starting from x.

Above definition states that any initial state within δ distance from xr has at least one unsafe

execution starting from it. The existential quantifier is introduced because of multiple active discrete

transitions originating from same mode. Two executions starting from same initial state can be different

1Contents of this chapter previously appeared in preliminary form in the following papers:

Goyal, Manish and Parasara Sridhar Duggirala. 2018. On Generating a Variety of Unsafe Counterexamples for
Linear Dynamical Systems. In Proceedings of 6th IFAC Conference on Analysis and Design of Hybrid Systems.

Goyal, Manish and Parasara Sridhar Duggirala. 2020. Extracting counterexamples induced by safety violation in
linear hybrid systems. Automatica.

Goyal, Manish, David Bergman and Parasara Sridhar Duggirala. 2020. Generating Longest Counterexample: On
the Cross-roads of Mixed Integer Linear Programming and SMT. In American Control Conference.
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Figure 3.1: Illustration of the deepest counterexample in the direction of v.

if they correspond to different discrete transitions. That is, one execution can be safe while another is

unsafe, where only the unsafe execution is used for computing the robust counterexample. If δ1 < δ2,

then the robustness δ2 of a counterexample trivially implies the robustness δ1. Note that the robust

counterexample may not be unique and is dependent on how δ is defined.

3.1 Deepest Counterexample

We now present the algorithm that would return the deepest counterexample for a safety specification

and a direction. We illustrate the way to obtain the deepest counterexample using Figure 3.1.

Suppose that in the ReachTree computation, there are three stars S1, S2, and S3 that overlap with

the unsafe set Ψ. Given a direction d ∈ Rn, the procedure to compute the deepest counterexample

would be the following. 1. For each of the stars Si, compute the maximum depth depthi of star Si as

maxx (dTx) such that x ∈ (Si ∩ Ψ). 2. Select the star Sj with maximum value of depthj . 3. Extract

the corresponding value of basis variables ᾱ which achieves the maximum depth and generate the

corresponding execution. The correctness of the algorithm trivially follows from Definition 17 and

the correctness of the simulation-equivalent reachable set. The algorithm is presented formally in

Algorithm 1.

The main loop in lines 2-12 iterates through all the stars in the reachable set given as ReachTree

and selects the stars that overlap with the unsafe set Ψ. The optimization problem for maximizing the

value of the cost function dTx for the overlap with the unsafe set is formulated and solved in line 4. If

the depth computed in line 4 is greater than the current maximum value (lines 6- 10), then the maximum

value is updated and the value of basis variables corresponding to the optimal solution as well as the

current star are stored. In line 14, the execution corresponding to the maximum depth is extracted using

the value of ᾱmax.
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input :Simulation equivalent reachable tree ReachTree, direction d and unsafe set Ψ
output :Counterexample ce with maximum depth in direction d in the unsafe set Ψ

1 depthmax ← −∞; depthStar ← ⊥; ce← ⊥;
2 for each star Si in ReachTree do
3 if Si ∩Ψ ̸= ∅ then
4 x̄← argmaxx d

Tx given x ∈ (Si ∩Ψ);
5 depthi ← dT x̄;
6 if depthi > depthmax then
7 depthmax ← depthi;
8 ᾱmax ← getBasisV ariables(x̄);
9 depthStar ← Si;

10 end if
11 end if
12 end for
13 if depthmax ̸= −∞ then
14 ce← getExecution(ᾱmax, ReachTree);
15 end if
16 return ce;
Algorithm 1: Algorithm which computes the deepest counterexample for a given direction d.

Figure 3.2: Illustration of the longest counterexample.

Analysis: If m is the number of stars overlapping with the unsafe set, we perform linear program

optimization for each of these stars to obtain respective depth. Hence, the run time complexity for

computing the deepest counterexample is O(m).

3.2 Longest Contiguous Counterexample

We now describe the algorithm for obtaining the counterexample that spends the longest contiguous

time in the unsafe set. For this purpose, we make use the observation provided in Section 2.5.

We illustrate the problem of finding the longest contiguous counterexample through Figure 3.2.

Consider three consecutive stars S1, S2, and S3 in the reachable set having overlap with the unsafe set as

shown. If one picks the state e1 ∈ S1, then the post states of e1, denoted as e2 and e3, do not lie in the

unsafe set. However, if one picks l1 ∈ S1, then its post states, l2 and l3, lie in the unsafe set.
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The key insight behind the generation of longest contiguous counterexample is that one has to select

the appropriate state which visits the maximum number of contiguous overlaps between the unsafe set

and the reachable set. In this instance, any state x1 ∈ S1 where x1 ∈ S1 ∩Ψ, with its successors x2, x3

such that x2 ∈ S2 ∩Ψ and x3 ∈ S3 ∩Ψ is the appropriate choice.

For finding such a state, we perform constraint propagation as explained in Section 2.5. Denote

the sequence of stars as σ
.
= S1, S2, S3. The objective is to identify a set of constraints, Pσ, so that

∀ᾱ such that Pσ(ᾱ) = ⊤, we have, x1 = c1 + V1 × ᾱ ∈ (S1 ∩ Ψ), x2 = c2 + V2 × ᾱ ∈ (S2 ∩ Ψ),

and x3 = c3 + V3 × ᾱ ∈ (S3 ∩ Ψ). We first convert the unsafe set U into the center and basis

vectors of each of the stars S1, S2, and S3. Thus, Si ∩ Ψ
∆
= ⟨ci, Vi, Pi ∧ Qi⟩, 1 ≤ i ≤ 3. From

Remark 3, we know that the set of states that reach ⟨ci, Vi, Pi ∧ Qi⟩ originate from ⟨c0, V0, Pi ∧ Qi⟩.

Hence, the set of states that would visit all the intersections of the unsafe set should originate from

⟨c0, V0, P1∧Q1∧P2∧Q2∧P3∧Q3⟩. It follows that if the set of constraints P1∧Q1∧P2∧Q2∧P3∧Q3

is satisfiable, then the trajectory corresponding to the basis variables that satisfy these constraints visits

the unsafe set at all three consecutive time instances.

Building on the above discussion, the algorithm to compute the longest contiguous counterex-

ample would iterate as follows. In each iterations, we consider the contiguous sequences of stars

σ
.
= S1, S2, . . . , Sm that overlap with the unsafe set Ψ. We compute the set Pσ such that if Pσ is

satisfiable, then there exists a trajectory that stays in the unsafe set for at least m duration. The satisfiable

constraints set Pσ for the longest contiguous sequence of stars provides the desired counterexample trace.

This procedure is formally defined in Algorithm 2.

The algorithm proceeds as follows: the main loop (lines 2-14) iterates over all stars having non-empty

overlap with the unsafe set Ψ. The inner loop (lines 4-12) enumerates all the contiguous sequences σ

starting with Si and computes the set of constraints Pσ for the sequence. If the constraints are feasible,

then the valuation of the basis variables that satisfies these constraints and the star Si are stored. The

length of the longest counterexample is also updated. In line 16, the execution corresponding to the

longest contiguous counterexample is obtained using the valuation ᾱlen.

Theorem 1 The execution returned by Algorithm 2 returns the longest counterexample.

Proof 1 We prove this by contradiction. Suppose that for the given initial set Θ ∆
= ⟨c0, V0, P0⟩, the

longest counterexample ξ(x0)
.
= x0, x1, . . . , xk spends duration m in the unsafe set Ψ. Consider
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input :Simulation equivalent reachable tree ReachTree and unsafe set Ψ
output :Counterexample ce that spends longest contiguous time in Ψ

1 lengthmax ← −∞; lengthStar ← ⊥; ce← ⊥;
2 for each star Si in ReachTree do
3 if Si ∩Ψ ̸= ∅ then
4 for each chain σ starting with Si do
5 Transform Ψ into ⟨ci, Vi, Qi⟩ where σ[i]

∆
= ⟨ci, Vi, Pi⟩;

6 Pσ ←
∧|σ|

i=1Qi ∧ Pi;
7 if Pσ(ᾱ) = ⊤ and |σ| > lengthmax then
8 lengthmax ← |σ|;
9 ᾱmax ← ᾱ;

10 lengthStar ← Si;
11 end if
12 end for
13 end if
14 end for
15 if lengthmax ̸= −∞ then
16 ce← getExecution(ᾱmax, ReachTree);
17 end if
18 return ce;

Algorithm 2: Algorithm which computes the longest contiguous counterexample.

that the states xj , xj+1, . . . , xj+m−1 in the execution ξ lie in the unsafe set. Additionally, suppose

that the execution returned by Algorithm 2 returns a counterexample of length strictly less than m.

From the soundness and completeness result of simulation equivalent reachability (Bak &

Duggirala 2017b), we have that ∃ stars Sj , Sj+1, . . . , Sj+m−1 in ReachTree such that ∀j ≤

k ≤ j + m − 1, xk ∈ Sk. Therefore, it should be the case that ∀k, j ≤ k ≤ j + m − 1,

Ψ ∩ Sk ̸= ∅. Additionally, since the trajectory ξ passes through Ψ ∩ Sk, it should be the case that

ξ ∈ ⟨c0, V0, Pk ∧ Qk⟩ where Sk
∆
= ⟨ck, Vk, Pk⟩ and Ψ

∆
= ⟨ck, Vk, Qk⟩. Therefore, the constraint

Pσ that is computed for the sequence σ
.
= Sj , Sj+1, . . . , Sj+m−1 should be feasible and would be

updated as the longest counterexample in lines 7- 11. Which is a contradiction.

Analysis and Optimizations: In the ReachTree, a star can have at most one continuous successor

and d discrete successors where d is the highest number of discrete transitions from any mode. If we

consider the full tree with at least one step executed in each mode, the worst case possible number of

sequences σ of length m would be O((d+ 1)m). Hence, the worst case time for computing the length

would be to perform O(m2 · (d+ 1)m) linear program optimizations. However, in practice, such worst

case bounds are not observed. In almost all of our experiments, the duration for overlap is not the order
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Figure 3.3: Illustration of the robust counterexample.

of m, each star has at most one active transition, and the number of sequences to be handled is at most

one or two sequences of the maximum length.

One of the optimizations that can be performed for eliminating certain counterexamples is to conduct

something similar to a binary search. That is, given a sequence Si, Si+1, . . . , Si+m−1 starting from star

Si that overlaps with Ψ, we can check if Si+⌊m
2
⌋ overlaps with Ψ. If there is no overlap, we can assert

that the length of the longest unsafe sequence is less than m/2. However, this is a heuristic which may

help in saving run time in some cases but not all.

3.3 Robust Counterexample

We now present the algorithm to obtain the robust counterexample. Recall that a counterexample

starting from an initial state xr is said to be δ-robust if and only if for all states x ∈ Bδ(xr), there exists

an unsafe execution starting from x. Informally, if we perturb the execution starting from xr by less than

δ, it remains unsafe. For obtaining this counterexample, we leverage the convexity property of reachable

set.

For an unsafe star, the ideal robust counterexample is the center of the maximum ball inscribed inside

the intersection of the star with the unsafe set. Since computing the maximum ball inscribed in a convex

polytope is computationally hard (Xie, Snoeyink & Xu 2006, Allen Zhu, Liao & Orecchia 2014), we,

therefore, compute a proxy as some internal state of the polytope. In our case, this is the centroid of

extreme points in each orthonormal direction. We illustrate the approach using Figure 3.3 where x̄ is the

center of the maximum ball inscribed and xr is its proxy. The generalization to the case of multiple stars

intersecting with the unsafe set for the given sequence is trivial.

Consider a star S1 having non-empty overlap with the unsafe set. After obtaining the set S1 ∩Ψ, we

compute states on the extreme ends in each direction by optimizing (maximizing and minimizing) the
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cost function. Suppose these states are xlow, xhigh, ylow and yhigh, respectively. Then the robust unsafe

state is the centroid of these states.

xr = (xlow + xhigh + ylow + yhigh)/4

Remark 4 For each state x in a convex set X , there exists m ≥ n+ 1 states x1, . . . xm ∈ X such

that the state x ∈ X is represented as their convex combination. That is, ∃ scalars β1, . . . ,βm ≥ 0

with
∑m

i=1 βi = 1 such that

x = β1x1 + β2x2 + . . .+ βmxm.

Theorem 2 If the intersection of the star S with the unsafe set Ψ is a non-empty convex set SΨ
.
=

(S ∩Ψ) ̸= ∅, then the robust unsafe state xr ∈ SΨ.

Proof 2 For n orthonormal directions, we obtain 2n vertices of the convex set by maximizing and

minimizing the cost function in each direction. The centroid, xr, of these vertices can be represented

as their convex combination with scalars bmβi =
1
2n ≥ 0 such that

∑2n
i=1 βi = 1. This entails

xr ∈ SU as a consequence of Remark 4.

The user can pick non-orthonormal directions as well to define cost function.

Remark 5 There exists a set Bδ(xr) ⊆ SΨ, δr ≥ 0 where

δr = argmax
δ

Bδ(xr).

This follows from Theorem 2. The robust unsafe state xr ∈ SΨ is either on one of the hyper-planes

defining SΨ or a state not on the edge. In the first case, δ = 0, otherwise δ is the euclidean distance

from xr to its nearest vertex, which is positive.

We use the longest contiguous sequence of unsafe stars from Section 3.2 to find the robust counterexample.

In Algorithm 3, σ is the chain starting from lengthStar and has the length of the longest counterex-

ample. Pσ represents the intersection of unsafe set Ψ with stars in σ. In main loop (lines 7- 12), we

formulate optimization problems to find the centroid ᾱd in each orthonormal direction d. In line 13, the

robust counterexample ce is obtained by using the centroid of all ᾱd computed in the main loop. The user
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input :Simulation equivalent reachable tree ReachTree, unsafe set Ψ, lengthStar and
lengthmax as computed in Algorithm 2

output :Robust counterexample ce
1 ce← ⊥;
2 if lengthStar ̸= ⊥ then
3 S1 ← lengthStar;
4 σ ← S1, S2, . . . , Sm where m = lengthmax ;
5 Transform Ψ into ⟨ci, Vi, Qi⟩ where σ[i]

∆
= ⟨ci, Vi, Pi⟩;

6 Sσ ← ⟨c0, V0, Pσ⟩ where Pσ
.
=

∧m
i=1Qi ∧ Pi;

7 for each orthonormal direction d ∈ Rn do
8 x̄← argmaxx d

Tx given x ∈ Sσ;
9 ᾱd

max ← getBasisV ariables(x̄);
10 Similarly, ᾱd

min is obtained by minimizing dTx;
11 ᾱd ← (ᾱd

max + ᾱd
min)/2;

12 end for
13 ᾱ← (

∑
d ᾱ

d)/n;
14 ce← getExecution(ᾱ, ReachTree);
15 end if
16 return ce;
Algorithm 3: Algorithm which computes the robust counterexample such that a small perturbation
yields a new counterexample.

Figure 3.4: Unsafe execution profiles from 3 different controllers in Adaptive Cruise Control.

can provide additional directions for finding extreme points, which, in turn, may result into a different

robust counterexample.

Runtime Analysis: Since the robust counterexample is obtained with respect to the longest unsafe

sequence, the worst case complexity is proportional to computing the longest counterexample, that is

O(m2 · 2m) as explained in Section 3.2. The heuristic approach based on conducting binary search

applies here as well.
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Figure 3.5: Illustration-I of controllers’ performance in adaptive cruise control. Controller I gives longer
unsafe and undesirable executions in comparison to controller II.
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3.4 Analysis of Adaptive Cruise Controllers Using Counterexamples

In an adaptive cruise control system, the cars operate in autonomous manner. The leading car moves

at a constant velocity; the following car slows down or speeds up automatically by sensing its velocity

and the distance from the leading car. A control designer focuses on developing feedback controller for

stabilizing this system. But a stable controller may not be safe for all initial states, where safety is defined

as some minimum distance between these two vehicles or reasonable speed of the follower. As stated

earlier, the objective is to evaluate the performance of controllers which violate the safety specification.

We provide an illustration of multiple adaptive cruise control algorithms in Figure 3.4 using their

execution profiles2. The distance between the follower and the leader is shown in green, and the unsafe

region is highlighted in red. Consider the execution profiles after applying 3 different stable controllers

are given. Since all 3 controllers are unsafe as shown, these executions can be used in evaluating their

performance. For instance, controller 2 execution ventures the most in the unsafe region in the direction

of vehicles’ movement. Although controller 1 execution is not the farthest in the unsafe region but it

stays there for the longest time interval. Similarly, controller 3 execution is the most robust among all.

Consider the adaptive cruise control (ACC) system which was introduced in Section 1. This system

is adopted from (Tiwari 2003).3 However, given such a black-box scenario, our approach can be used

to compare two controllers based on the safety specification. For convenience, we describe the system

once again. It is 3 dimensional continuous time linear system with two cars where the distance between

vehicles is s, the leading car’s speed is vf , the follower’s velocity is v, and its acceleration is a. The

differential equations deployed at the follower ACC system are as follows:

ṡ = (vf − v)

v̇ = a

ȧ = g1 ∗ a+ g2(v − vf ) + g3(s− (v + 10))

Here, g1, g2 and g3 are gain variables. The values of gain variables for Controller-I are g1 = −3,

g2 = −3, g3 = 1 whereas, the gain variables for Controller-II are g1 = −1, g2 = −3, and g3 = 1. The

2The image source is https://my.cadillac.com/learnAbout/adaptive-cruise-control
3This controller is not related to the execution profiles depicted in Figure 3.4 which is presented for only illustration
purpose.
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Figure 3.6: Illustration-II of controllers’ performance in adaptive cruise control. Although the system
with controller II gets more close to the leading car, it tries to stabilize faster once it is at the desirable
distance.
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Figure 3.7: Illustration-III of controllers’ performance in adaptive cruise control. Although the system
with controller II slows down to an undesirable speed 10.145, it eventually achieves the desirable speed
faster.
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stable equilibrium of the system is at a = 0, v = vf , and s = vf + 10. The designer can use standard

tools like SOSTOOLS (Papachristodoulou, Anderson, Valmorbida, Prajna, Seiler & Parrilo 2013) to find

Lyapunov functions for proving controller stability. The original goal of adaptive cruise control is to keep

the follower at a safe distance from the leader. Because not every stable controller is essentially safe,

conducting a quantitative analysis of controllers would be of interest to the designer.

Given the initial set as s ∈ [2, 5], v ∈ [18, 22], vf = 20, and a ∈ [−1, 1], the reachable sets computed

by HyLAA for above mentioned two adaptive cruise controllers (ACC) are shown in Figure 3.5. Although

both systems eventually stabilize to v = vf = 20 or s = vf + 10 = 30, they are unsafe with respect to

the safety specification □(s ≥ 2). Notice that a more strict safety specification can be □(s ≥ 0), but,

during the design phase, one would want to work with specification that is conservative. As shown in

Figure 3.5, the longest counterexample after applying controller I is of length 8 whereas its counterpart

obtained from controller II has length 7. This means that controller II helps the system to recover faster

from the unsafe region.

As an important side effect, our approach can also measure the extent to which a specification is

satisfied. For instance, although s ≤ 2 is certainly unsafe, the specification 2 ≤ s ≤ 5 is undesirable as it

can possibly render the system unsafe if the follower speeds up or the leader slows down. The longest

undesirable execution obtained from controller I is of length 13 while controller 2 gives the longest

undesirable execution to be of length 11. This re-emphasize that controller II makes the follower to get to

the safe distance quicker as compared to controller I (Ref. Figure 3.5).

Building on above discussion, one might change the specification level to be desirable (27 ≤ s ≤ 30)

because the system is required to be eventually stable i.e., s = 30. We plot distance s against time

t in Figure 3.6. The longest desirable execution obtained from controller I is longer than the longest

desirable execution generated from controller II. This would mean that the system with controller II tries

to stabilize faster once it is at a desirable distance. Similarly, if we look at the maximum depth in the

unsafe region, controller II is better.

To highlight that specifications over two different system variables may semantically differ, Figure 3.7

shows multiple specifications defined over v. As the given system stabilizes when v = vf = 20, the

specification 19 ≤ v ≤ 20 is regarded as desirable and v > 20 as unsafe. Having the follower slowed

down beyond a reasonable speed is also bad, therefore, the condition v ≤ 15 is considered undesirable.

The lengths of longest desirable executions indicate that the system with controller II obtains the desirable
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speed faster than that with controller I. However, looking at the deepest undesirable executions reveals

that controller II slows down the system to a speed 10.145 while controller I helps maintaining it above

13.

This exercise underlines the need for a software tool that can assist the designer in not only evaluating

different controllers but also understanding their merits when the specification changes. The analysis will

enable them to take action(s) to improve respective controllers.

3.5 Experimentation

The proposed algorithms have been implemented in a Python based verification tool, HyLAA;

although, some of the computational libraries used may be written in other languages. Simulations for

reachable sets are performed using scipy’s odeint function, which can handle stiff and non-stiff

differential equations using the FORTRAN library odepack’s lsoda solver. Linear programming is

performed using the GLPK library, and matrix operations are performed using numpy. The measurements

were performed on a system running Ubuntu 18.04 with a 3.00GHz Intel Xeon E3-1505M CPU with 8

cores and 32 GB RAM.

HyLAA has a provision to perform verification in aggregation mode for better performance. We run

HyLAA in de-aggregation mode for our experiments. HyLAA, by default, concludes its run as soon as it

finds a counterexample. But, we let the tool run for the entire duration because we require to perform our

analysis on all reachable stars intersecting with the unsafe set.

3.5.1 Benchmarks

The benchmarks for our study are taken from a standard benchmarks suite for continuous and hybrid

systems 4 and (Beg, Davoudi & Johnson 2017). Most of these benchmarks are originally safe, however,

in order to highlight counterexamples, we choose unsafe set such that the reachable set intersects with

the unsafe set at multiple time instances. We further adjust the size of the unsafe set and observe that

the intersection window of reachable set with the unsafe set differs proportionally. The variations in the

unsafe set size are denoted as SU, MU, LU for Small, Medium and Large unsafe set respectively.

4https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
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Model Longest Counter- Actual Intersection LCE Deepest Counter- Direction, Verification LCE, DCE
(Dims) -example(LCE) Duration Duration -example(DCE) Depth Time(sec) Gen. Times(sec)

Harmonic
Oscillator (2)

SU [-5.373 0.0] [5 10] [6 10] [-5.459 0.188] x1 = 1, 2.0 0.17 0.01, 0.00
MU [-5.0 0.3968] [4 10][33 44][66,74] [33 44] [-6 0.8829] x2 = 1, 5.0 0.22 0.03, 0.00
LU [-5 0.296] [3 10][29 49][59,100] [59 100] [-6 1] x2 = 1, 5.288 0.28 0.17, 0.01

Vehicle
Platoon 1 (15)

SU x8 = 1.0475 [27 41] [29 41] x1 = 1.071 x2 = 1, -0.1825 1.82 0.18, 0.11
x2,5 = 1.1 x2 = 0.993
xi = 0.9 xi ∈ {0.9, 1.1}

MU x6,9 = 1.1, xi = 0.9 [27 73] [27 73] xi ∈ {0.9, 1.1} x2 = 1, 0.0170 2.90 1.40, 0.39
x12 = 1.0761

LU Same as above [27 100] [27 100] xi ∈ {0.9, 1.1} x2 = 1, 0.0170 3.51 3.78, 0.40
Vehicle

Platoon 2 (30)
SU x9 = 0.9223 [42 48] [44 48] x5 = 0.9005 x5 = 1, -0.26347 4.86 0.23, 0.12

x5 = 1.0204 x23 = 1.0473
xi ∈ {0.9, 1.1} xi ∈ {0.9, 1.1}

MU x19 = 1.0501 [42, 53] [45 53] x2 = 0.91327 x5 = 1, -0.2217 5.20 0.43, 0.27
xi ∈ {0.9, 1.1} x4 = 0.9389

x5 = 1.1, xi = 0.9
LU xi = 0.9 [36 100] [36 100] xi ∈ {0.9, 1.1} x5 = 1, 0.01745 10.73 9.81, 1.87

Table 3.1: Longest contiguous and Deepest counterexamples in Linear Dynamical Systems for different
sizes of the unsafe set

The linear continuous systems benchmarks - Harmonic Oscillator, Vehicle Platoon 1 and Vehicle

Platoon 2 are simulated for maximum 100 time steps with step size 0.2 sec. The simulations for Ball

string and Two tanks benchmarks are performed for maximum 200 time steps with step size 0.01 sec.

The simulation for Filtered oscillator is carried out for maximum 100 time steps with step size 0.02 sec,

and for Forward converter with step size 1× 10−6. The values of input variables in Two tanks benchmark

are fixed to 0 which belongs to the actual interval [-0.1, 0.1]; whereas in Forward converter, the input

(Vin) is fixed to 100 from the interval [98 102].

3.5.2 Evaluation Results and Analysis

The evaluation results for linear dynamical systems are provided in Table 3.1 and the results for

linear hybrid systems are given in Tables 3.2 and 3.3.

Dims is the no. of dimensions, SU, MU, LU are variations of the unsafe set - Small, Medium and

Large. Modes, in Table 3.2 is the number of system locations. Longest Counterexample (LCE) is a

state in the initial set, simulation from which stays for the longest contiguous time in the unsafe set. In

Table 3.1, xi represents all the variables whose values are not explicitly given and xi ∈ {0.9, 1.1} denotes

that the value is either 0.9 or 1.1. Actual Intersection Duration is the mode-wise ordered sequence of

discrete time step intervals when reachable set intersects with the unsafe set. LCE Duration is the interval

for the longest counterexample. Verification Time is the time HyLAA takes for verification, LCE Gen.

Time is the time it takes to generate the longest counterexample and
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Model Dims, Unsafe Set Longest Actual Inter. LCE Verification LCE Gen
Modes Size Counterexample Duration Duration Time (sec) Time (sec)

Ball 2, 2 (ext, freefall) (ext, freefall)
String SU [-0.9507 -0.15] [18 20][21 23] [18 20][21 23] 0.25 0.01

MU [-1.0191 -0.15] [12 20][21 29] [13 20][21 29] 0.33 0.07
LU [-0.9618 -0.15] [7 20] [21 37] [7 20][21 37] 0.38 0.22

Two 2, 4 (loc3, loc1) (loc3, loc1)
Tanks SU [1.763 1.1] [21 26][27 40] [24 26][27 40] 15.24 0.40

MU [2.407 1.077] [16 28][33 78] [-][34 77] 17.78 5.25
LU [2.497 1.1] [7 30][31 81] [15 30][31 81] 20.55 11.46

Filtered 6, 4 (loc3, loc4) (loc3, loc4)
Oscillator SU [0.294 0.0998 0...] [39 64][65] [39 64][65] 6.37 1.76

MU 0.2938 0.1 0...] [18 64][65 67] [18 64][65 67] 6.96 7.14
LU [0.2938 0.1 0...] [8 64][65 69] [8 64][65 69] 7.10 12.70

Forward 5, 5 (loc1, loc2, loc5) (loc1, loc2, loc5)
Converter SU [0 0.399 0.223 0 0] [8 11][12 16][17 18] [8 11][12 16][17 18] 7.40 0.39

MU [0 0.4 0.2928 0 0] [6 11][12 16][17 22] [7 11][12 16][17 22] 7.79 0.83
LU [0 0.4 0.355 0 0] [5 11][12 16][17 25] [6 11][12 16][17 25] 8.84 1.32

Table 3.2: Longest contiguous counterexample in Linear Hybrid Systems.

Model Deepest Direction Depth Verification DCE Gen Robust RCE Gen
Counterexample Time (sec) Time (sec) Counterexample Time (sec)

Ball String [-1.05 0.0691] x2 = 1 6.0 0.25 0.00 [-0.956, 0.0] 0.01
[-1.045 -0.15] x2 = 1 7.0 0.33 0.00 [-1.019, -0.146] 0.08
[-1.035 -0.15] x1 = 1 0.8 0.38 0.01 [-0.956, 0.0] 0.24

Two Tanks [1.8995 1.0646] x2 = 1 0.1 15.24 0.02 [1.677, 1.016] 0.40
[2.406 1.0282] x2 = 1 0.3 17.78 0.10 [1.731, 1.003] 5.27

[2.225 1] x1 = 1 1.9 20.55 0.12 [2.326, 1.002] 11.50
Filtered [0.3 0.1 0...] x6 = 1 0.496 6.37 0.03 [0.2972 0.0993 0...] 1.77

Oscillator [0.3 0.0988 0...] x6 = 1 0.51 6.96 0.10 [0.2969 0.0994 0...] 7.16
[0.3 0.1 0...] x1 = 1 0.67 7.10 0.10 0.2969 0.0994 0...] 12.73

Forward [0 0.4 0.4 0 0] x3 = 1 2.9056 7.40 0.01 [0.2 0.399 0.231 0 0] 0.40
Converter [0 0.4 0.2928 0 0] x2 = 1 0.3003 7.79 0.02 [0.2 0.396 0.346 0 0] 0.85

[0 0.4 0.4 0 0] x3 = 1 2.9056 8.84 0.02 [0.2 0.397 0.378 0 0] 1.36

Table 3.3: Deepest and Robust counterexamples in Linear Hybrid Systems.

Direction is the direction in which the depth of the counterexample is obtained. For instance, in a 2-

dimensional system (x, v), the direction x2 = 1 represents a vector [0, 1] ∈ R2. Deepest Counterexample

(DCE) is an initial state from which the simulation goes the deepest in given direction in the unsafe set.

DCE Gen. Time is the time it takes to generate the deepest counterexample. RCE Gen. Time is the time

taken for generating the robust counterpart. As we first obtain the predicates for LCE to compute the

robust counterexample, it’s generation time is inclusive of the longest counterexample generation time

from Table 3.2.

The longest counterexample generation can be slower than the overall verification. As explained in

Section 3.2, the combined number of constraints to be solved can become fairly large, which increases

the counterexample generation time. Observe that the longest counterexample length is not necessarily
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Figure 3.8: The longest contiguous and deepest counterexamples in Ball string benchmark. The actual
intersection duration is [12 20][21 29] whereas that of the longest counterexample is [13 20][21 29].

Figure 3.9: The longest contiguous and robust counterexamples in Forward converter benchmark. The
longest counterexample duration is [8 11][12 16][17 18] which, in this case, is the actual intersection
duration.
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same as the actual duration of the overlap between the reachable and the unsafe set. This is a direct

consequence of our approach: if a system of constraints during certain time interval is not feasible, we

prune the list and again check for its feasibility until we find a solution.

We illustrate the longest contiguous and deepest counterexamples for MU configuration of the unsafe

set in Ball string benchmark. This is a 2-dimensional system (x, v) having two modes - extension and

freefall. The transition from extension to freefall occurs when x = 0. The unsafe set is [-0.5 0.5][5 7].

As shown, the actual intersection duration (in discrete time steps) is [12 20][21 29] whereas that of the

longest counterexample is [13 20][21 29]. The deepest counterexample has depth 7.0 in V direction

(x2 = 1).

Another illustration is provided for Forward converter benchmark. This is a 5-dimensional system

(ilm, il, vc, u, t) with 5 modes. Each color in the reachable set corresponds to a different mode. The

longest counterexample duration is [8 11][12 16][17 18] which, in this case, is the actual intersection

duration.

Our evaluations exhibit that varying the unsafe set size not only add to the counterexample generation

time but also may yield different counterexamples. The increase in the unsafe set size results in the

increase in the number of stars overlapping with it. This, in turn, may lead to longer counterexamples,

and higher counterexample generation time because every new star adds to the analysis time. We also

notice that the variations in the depth direction can provide different deepest counterexamples. Finally,

the time taken for generating deepest counterexample is relatively much less as compared to the longest

and robust counterexamples. The reason being we need to scan through the list of unsafe stars only once

to obtain the star with maximum depth.

3.6 Absolute Longest Counterexample

The reader is referred to (Goyal, Bergman & Duggirala 2020) for more details about these evaluations.

We illustrate the problem of finding the longest counterexample through an illustration in Fig. 3.10.

Consider five consecutive stars, S1, S2, S3, S4 and S5 in the reachable set have overlap with the unsafe

set as shown. If one picks the state e1 ∈ S1, then some of the post states of e1, denoted as e2 and e5 do

not lie in the unsafe set, while e3 and e4 lie in the unsafe set. Similarly, if one picks the state l1 ∈ S1 as
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shown, then the post states l2, l4 and l5 lie in the unsafe set but l3 does not. Thus, the execution starting

from l1 provides a longer counterexample than the execution starting from e1.

Figure 3.10: Illustration of the longest counterexample.

We formally state the absolute longest counterexample problem and describe the underlying technique

used for obtaining these counterexamples.

3.6.1 Problem Statement

Definition 20 For a set Ψ ⊆ Rn, an indicator function

1Ψ : Loc× Rn → {0, 1}

is defined as

1Ψ(q) =
∆
=


1, if x ∈ Ψ

0, otherwise

where q
.
= (Lq, x) and Lq ∈ L.

Problem Definition Given the set of initial states Θ, the set of unsafe states Ψ and its indicator

function 1Ψ, compute

argmax
q0∈Θ

T−1∑
t=0

1Ψ(ξ(q0)[t])

where ξ is the system simulation from Definition 4. For a simulation, the optimization problem aims to

maximize the number of time steps where the simulation overlaps with the unsafe set.

As with the longest contiguous counterexample, the key insight behind the generation of absolute

longest counterexample is that one has to select the appropriate state such that its corresponding execution

has the maximum number of overlaps (not necessarily contiguous) with the unsafe set. In this instance,
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any state x1 ∈ S1 ∩ Ψ, with its successors x2, x4, x5 such that x2 ∈ S2 ∩ Ψ, x4 ∈ S4 ∩ Ψ and

x5 ∈ S5 ∩Ψ may be an appropriate choice. We, therefore, perform constraint propagation to identify

a set of constraints, P , so that ∀ᾱ such that P (ᾱ) = ⊤, we have, x1 = c1 + V × ᾱ ∈ (S1 ∩ Ψ),

x2 = c2 + V2 × ᾱ ∈ (S2 ∩Ψ), x4 = c4 + V4 × ᾱ ∈ (S4 ∩Ψ), and x5 = c5 + V5 × ᾱ ∈ (S5 ∩Ψ).

We now present two computational frameworks to compute absolute longest counterexample.

3.6.2 MILP-based Framework

We formulate an MILP model for finding the longest counterexample as follows. For a given path

Γ in the ReachTree, let Π be the set of stars Si overlapping with the unsafe set Ψ, and α ∈ Rn be our

basis variables such that i = 1, . . . , |Π| index the elements in Π. Additionally, consider Qi ∧ Pi be the

set of linear constraints that need to be satisfied in order for Si to be overlapping with the unsafe set. We

can write each of these constraints as
(
ai,k

)T
ᾱ ≤ b, for i = 1, . . . , |Π|, and k = 1, . . . , |Qi ∧ Pi|. We

therefore have:

max

|Π|∑
i=1

zi

s.t.
(
ai,k

)T
ᾱ ≤ b+M (1− zi) , i = 1, . . . , |Π|,

k = 1, . . . , |Qi ∧ Pi|,

zi ∈ {0, 1}, i = 1, . . . , |Π|.

The zi variable indicates whether all constraints in Ci are satisfied. Since this is a maximization problem

on these decision variables, zi will be 1 if it can, otherwise 0 if any one of constraints in Ci is not satisfied.

Also note that this model requires the definition of an appropriate M , which in this instance can be set to

max
i=1,...,|Π|

max
k=1,...,|Qi∧Pi|


n∑

j=1

∣∣∣ai,kj ∣∣∣
 ,

noting that this can be refined if needed for each specific i and k. The formal procedure to find the longest

counterexample using above MILP framework is provided in Algorithm 4.

3.6.3 SMT-based Framework

An SMT solver primarily answers the decision problem of whether a given logical formula is

satisfiable i.e., if there exists some assignment to variables included in the formula such that this
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input :Initial Set Θ, the simulation equivalent reachable tree ReachTree and unsafe set Ψ
output :Trace ce that spends longest time in Ψ

1 lengthmax ← −∞; ce← ⊥;
2 for each path Γ in ReachTree do
3 Π

∆
= {Si|Si ∈ Γ, Si ∩Ψ ̸= ∅};

4 Introduce |Π| decision variables z1, z2 . . . z|Π|;
5 CΠ ← ∅;
6 Transform Ψ into ⟨ci, Vi, Qi⟩ where Π[i]

∆
= ⟨ci, Vi, Pi⟩;

7 CΠ ←
∧|Π|

i=1(
∧

p∈Qi∧Pi
p+M(1− zi));

8 lengthΠ ← max
∑

i zi while CΠ(ᾱ) = ⊤;
9 if lengthΠ > lengthmax then

10 lengthmax ← lengthΠ;
11 ᾱmax ← ᾱ;
12 end if
13 end for
14 if lengthmax ̸= −∞ then
15 ce← getExecution(ᾱmax, ReachTree);
16 end if
17 return ce;

Algorithm 4: MILP-based algorithm for the absolute longest counterexample.

assignment makes the logical formula evaluate to true. It either provides a satisfying assignment or

declares that the formula is unsatisfiable. Certain SMT solvers also allow to encode linear optimization

problems where the objective is to optimize a cost function while satisfying a given set of constraints.

For this purpose, the solver provides the flexibility to specify constraints to be either soft or hard. A

hard constraint is required to be asserted, whereas a soft constraint can be either satisfied or violated.

Since a penalty is associated with the violation of soft constraint, the optimizer targets to minimize or

maximize the overall penalty depending on the objective function. The approach to compute the longest

counterexample using SMT is explained in Algorithm 5 where△ designates soft constraints.

3.6.4 Evaluation and Discussion

For ReachTree computation, we use a Python-based verification tool HyLAA (in de-aggregation

mode) which uses scipy’s odeint for simulating the differential equations, GLPK for linear pro-

gramming, and numpy for matrix operations. The measurements were performed on a system running

Ubuntu 18.04 with an 2.20GHz Intel Core i7-8750H CPU with 12 cores and 32 GB RAM. We use
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input :Initial Set Θ, the simulation equivalent reachable tree ReachTree and unsafe set Ψ
output :Trace ce that spends longest time in Ψ

1 lengthmax ← −∞; ce← ⊥;
2 for each path Γ in ReachTree do
3 Π

∆
= {Si|Si ∈ Γ, Si ∩Ψ ̸= ∅};

4 Introduce |Π| binary variables b1, b2 . . . b|Π|;

5 CΠ ←△|Π|
i=1bi;

6 Transform Ψ into ⟨ci, Vi, Qi⟩ where Π[i]
∆
= ⟨ci, Vi, Pi⟩;

7 CΠ ← CΠ
∧|Π|

i=1(bi == (Qi ∧ Pi));
8 lengthΠ ← OptimizeSMT (CΠ) while CΠ(ᾱ) = ⊤ ;
9 if lengthΠ > lengthmax then

10 lengthmax ← lengthΠ;
11 ᾱmax ← ᾱ;
12 end if
13 end for
14 if lengthmax ̸= −∞ then
15 ce← getExecution(ᾱmax, ReachTree);
16 end if
17 return ce;

Algorithm 5: SMT-based algorithm for the absolute longest counterexample.

Z3Py (de Moura & Bjørner 2008) as an SMT solver, and Gurobi Optimizer (called from C++) for solving

MILPs (Gurobi Optimization 2018).

The benchmarks for this study are taken from a standard benchmarks suite for continuous and hybrid

systems 5, and (Nguyen & Johnson 2015) and (Sloth & Wisniewski 2011). As stated earlier, one can

characterize various regions in the state space using specifications. We label that subspace as unsafe

for our experiments. The designer can specify a region of interest in the same manner, and the longest

execution obtained can be used to evaluate controllers with respect to that particular region/specification.

Fig. 3.11 illustrates the experimental result for Buck Converter. The original benchmark has 2 locations

but our model has 6 locations so as to incorporate transition resets. The figure shows the reachable set

computed for locations - closed1, open1, and closed2.

The evaluations on various benchmarks are provided in Table 3.6.4. Dims is the number of system

variables and Modes is the number of locations. The ReachTree computed for a linear hybrid system

can have multiple paths due to discrete transitions. Furthermore, each path may have multiple nodes

overlapping with the unsafe set. Longest Counterexample is the valuation of basis variables such that

5https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
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the corresponding execution has the maximum number of overlaps with the unsafe set. xi represents

all the variables whose values are not explicitly given. Actual Intersection Duration is the mode-wise

ordered sequence of discrete time step intervals when the reachable set intersects with the unsafe set. LCE

Duration is the interval for the absolute longest counterexample. Verification Time is the time HyLAA

takes for verification which is exclusive of the counterexample generation time, LCE Gen Time is the

time (in seconds) each framework takes to generate the longest counterexample.

As shown in the table, counterexample generation using SMT takes significantly more time than

the time taken by MILP-based framework. Verification time of some benchmarks such as Damped

Oscillator and Ball String is comparable to the SMT-based longest counterexample generation time.

Figure 3.11: The absolute longest counterexample in Buck Converter.

Discussion: As MILP turns out to be the better alternative for generating the longest counterexample,

an obvious question arises whether this framework is suitable in all cases. An issue with an MILP-based

approach is numerical stability. The model requires the definition of M , which is larger than any value.

Initial testing, even with a state-of-the-art commercial solver, led to a numerically unstable solution,

returning a trajectory that isn’t really a counterexample. Through iterating with Z3 we were able to
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Table 3.4: Evaluation results for absolute longest counterexample. Longest Counterexample (LCE) is the
valuation of basis variables for an initial state from which the execution overlaps with the unsafe set at
maximum time steps.
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identify a suitable choice of M , but this can lead to an incorrect solution if sufficient care is not taken.

On the other hand, Z3 is slow but it doesn’t suffer with the problem of numerical instability.

We also notice that the MILP-based approach and SMT-based approach return different counterex-

amples. This is compatible with our definition as longest counterexample need not be unique. In fact,

the overlap with the unsafe set in the counterexamples returned by these two approaches can differ

(as shown in the Table 3.6.4). Further, although the length of the longest counterexample is fixed, the

counterexamples as well as their intersection intervals may differ across both frameworks. For instance,

the longest counterexample length for Ball String is 11, and its respective duration generated with MILP

and SMT is [18 20][21 28] and [12 13][16 20][21 24], respectively.

3.6.5 Counterexample for a Regular Expression

Consider a regular expression r over alphabet {0, 1}, which can be converted into a Determinis-

tic Finite Automaton Ar whose language L(Ar) is the set of all words expressed by r. For a given

word ω ∈ L(Ar), one may be interested in finding an execution such that its overlapping pattern

with the unsafe set conforms to ω where ω[i] ∈ {0, 1} is the character at index i. Here, |ω| is

the number of times the reachable set overlaps with the unsafe set Ψ. For instance, given the over-

lap interval [6, 10] and a word “11010”, the objective is to compute q0 ∈ Θ, if it exists, such that

q6 ∈ Ψ ∧ q7 ∈ Ψ ∧ q8 /∈ Ψ ∧ q9 ∈ Ψ ∧ q10 /∈ Ψ, where qi
∆
= (xi, Li) = ξ(q0)[i].

SMT Formulation The problem can be encoded in SMT by introducing |ω| decision variables bi.

If ω[i] is 1, assign bi to be true; otherwise assign it to be false. Thus the problem is reduced to the

satisfiability check of below constraints

Cω
∆
=

l∧
j=1

m∧
k=1

bj ∧ b̄k where l +m = |ω|.

Here, bi = Qi ∧ Pi and b̄i = Qi ∧ Pi. If satisfiable, these constraints give a valid counterexample.

Whereas unsatisfiability of Cω implies that the given assignment to decision variables is not feasible and

thus, there is no counterexample conforming to the pattern expressed by ω.
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MILP Formulation We introduce |ω| binary variables zi. Assign zi = 1 if ω[i] = 1, and zi = 0

otherwise. Additional |Ci| binary variables zki are introduced for every set of constraints Ci = Qi ∧ Pi.

Each zki value is tied to a constraint in Ci in such a way that any zki = 0 makes the entire set Ci to be

unsatisfiable. Now the model, for i = 1, . . . , |ω| and k = 1, . . . , |Ci|, becomes

max

|ω|∑
i=1

zi

s.t.
(
ai,k

)T
ᾱ ≤ b+M

(
1− zki

)
,(

ai,k
)T

ᾱ ≥ b+ ϵ−M
(
zki

)
,where 0 < ϵ≪ 1∑

k

zki ≤ zi + |Ci| − 1,

zi = ω[i], and zi ≤ zki ,

zi ∈ {0, 1}, zki ∈ {0, 1}.

The problem is then reduced to an optimization problem over zi’s But this formulation does not

guarantee a strict solution. That is, in a constraint cTx ≤ b+M(1− z), by construction, assigning z to

be 0 makes the original constraint (cT ≤ b) relaxed and the solution may still satisfy it. Whereas, 0 ∈ ω

explicitly requires the corresponding constraint to be excluded6.

3.7 Chapter Summary

This chapter has presented the notion of longest, deepest and robust counterexamples to a given

safety specification in linear hybrid systems. The presented work builds on the prior work of computing

a reachable set (Bak & Duggirala 2017b), which includes the set of states encountered by a simulation

algorithm for systems with linear hybrid dynamics. The reachable set computation leverages the super-

position principle and the generalized star representation. The counterexample generation mechanisms

reuse the artifacts generated during the model checking process and employs constraint propagation. The

chapter has also introduced two different frameworks for computing absolute longest counterexample and

analyzes their performances. It has highlighted how these types counterexamples can provide some useful

6Excluding a constraint cT ≤ b is equivalent to satisfying cT ≥ b
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insights into the system behavior, thus assisting the control designer in comparing different controllers

during control synthesis.

Acknowledgement. Muqsit Azeem (Technical University of Munich, Germany) and Aditya A.

Shrotri (Rice University, Houston, TX) had provided valuable inputs regarding SMT formulation of the

absolute longest counterexample.
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CHAPTER 4: COMPLETE CHARACTERIZATION OF COUNTEREXAMPLES

Despite their utility in controllers’ evaluation, the counterexamples introduced in the previous chapter

cease to capture all modalities of a safety violation. Consider multiple executions of a system shown

in Fig. 4.1. All executions cross the threshold where this overlap with the threshold could denote an

overshoot in the regulation control, an undesirable maneuver in an autonomous car, a failure site in

hardware design, or similar specification violation in a given system. Although it is important to observe

that the system can go above the threshold, the control designer might be interested in executions crossing

it multiple (possibly non-contiguous) time steps or more precisely how many times it was crossed or

how many different ways (or characterizations) in which these executions can cross the threshold for a

given system. The motivation to obtain these characterizations of a safety violation in control systems

is inspired by failure identification in computer aided design, where extracting the essence of an error

may still require a great deal of human effort. Yet debugging a design is shown to be greatly benefited

from using more than one counterexample as well as by efficiently identifying crucial sites leading to

the failure. This chapter attempts to compute all modalities of a safety violation in linear dynamical

systems 1.

Figure 4.1: Different profiles of the system overshooting the threshold. The dots indicate executions
states at certain discrete time steps.

1This work is currently under review.
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We begin with a simple example that helps us in building the set up towards problem definition,

proposed solution and related discussion.

Example 3 Oscillating Particle (Sloth & Wisniewski 2011) is a 3-dimensional autonomous (without

inputs) continuous time-invariant linear system, F ∆
= ⟨A,B⟩, where:

A =


−0.05 −1.0 0

1.5 −0.1 0

0 0 −0.12

 ,B =


0

0

0

 (4.1)

The initial set is Θ .
= ([−0.1, 0.1], [−0.8,−0.4], [−1.07,−1]) .

Remark 6 As per the definition of simulation-equivalent reachable set (Section 2.4), each gener-

alized star in the reachable set for this example would have 3 basis vectors (or variables) and 6

constraints in its predicate such that, after each step, only the center and basis vectors change while

the predicate remains the same. Initial star S0 is denoted as ⟨c0, V0, P0⟩ where c0 = [0, 0, 0]T ,

V0 =


1 0 0

0 1 0

0 0 1

 , P0
∆
= −0.1 ≤ α1 ≤ 0.1 ∧ −0.8 ≤ α2 ≤ 0.4 ∧ −1.07 ≤ α3 ≤ −1.0.

We consider h = 0.6 to be the unit time step. The set of states reachable exactly after one unit time

step is denoted as a star S1
∆
= ⟨c1, V1, P1⟩ where c1 = [0, 0, 0]T ,

V1 =


0.72 −0.52 0

0.78 0.69 0

0 0 0.91

 , P1
∆
= −0.1 ≤ α1 ≤ 0.1 ∧ −0.8 ≤ α2 ≤ 0.4 ∧ −1.07 ≤ α3 ≤ −1.0.

Similarly, the set of states reachable after exactly two unit time steps is a star S2
∆
= ⟨c2, V2, P2⟩

where c2 = [0, 0, 0]T ,

V2 =


0.11 −0.74 0

1.11 0.07 0

0 0 0.86

 , P2
∆
= −0.1 ≤ α1 ≤ 0.1 ∧ −0.8 ≤ α2 ≤ 0.4 ∧ −1.07 ≤ α3 ≤ −1.0.
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and so on.

The reachable set Reach(Θ) computed using generalized stars in this manner by the linear hybrid

system reachability analysis tool, HyLAA (Duggirala & Viswanathan 2016), for T = 9.0 is shown in

Fig. 4.2. The safety specification is ϕ ∆
= □[0,9.0]¬p, where p

∆
= y ≥ 0.4 is an atomic proposition in P .

The system violates ϕ because Reach(Θ) has non-empty intersection with the unsafe set Ψ .
= p. Fig. 4.1

highlighted that different system executions can overshoot the threshold at multiple (possibly different)

time instances. The reachable set illustration would give a much easier idea of the modalities of these

executions instead of explicitly identifying individual overshoot profiles in a likely infinite state system.

Remark 7 In this work, we focus on safety specification defined over one system variable. The

extension to broader class of safety specifications is a part of future research.

4.1 Introducing Characterization

For a given linear dynamical system and safety specification ϕ (a temporal logic formula over a

set Ψ), consider that the reachable set violates the specification at k (not necessarily contiguous) time

steps. The characterization of an execution ξ(x0) is defined as a function CΨ : (Rn)T →
(
2P

)k, which

is a projection of ξ(x0) into the space of propositions defining the unsafe set Ψ. Thus the complete

characterization is the set of all unique characterizations of a safety violation.

[[CΨ]] = {CΨ(ξ(x0)) | ξ(x0) ∈ Reach(Θ)}.

That is, [[CΨ]] is set of all system executions mapped into the space
(
2P

)k for the unsafe set. Some-

times we refer to both CΨ and [[CΨ]] as CΨ.

Problem Statement I: Given a linear dynamical system F , initial set Θ, a safety specification

defined over a set Ψ, and time bound T, a complete characterization of counterexamples CΨ is computing

the set of unique strings that correspond to a violation of the specification ϕ.

Fig. 4.2 exhibits that the reachable set violates ϕ (i.e., satisfies proposition p) or has a non-empty

overlap with Ψ during the time interval [0, 9.0]. The overlap specifically occurs at the following time

steps: 3rd, 4th, 5th, 12th and 13th. In the figure, a characterization of this safety violation, denoted as

11111, represents system executions that reach unsafe set Ψ at all i.e., 3rd, 4th, 5th, 12th and 13th time
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Figure 4.2: Simulation equivalent reachable set computed in HyLAA for oscillating article system with no inputs
as described in 4.1.

steps. Whereas a characterization 01000 represents executions that violate the safety specification at only

4th step. After having obtained these characterization, a question may arise whether there are executions

that violate safety at any 2 of above time steps. The brute force way of obtaining these characterizations is

to compute all binary strings of length 5, and check for the existence of a counterexample corresponding

to each string. However, computing these exponential number of strings is not desirable by any practical

means. Thus we would present an approach to efficiently compute the complete characterization of these

counterexamples.

Before we introduce the approach to obtain complete characterization of a safety violation, we

demonstrate the intuition behind characterizations of safety violation using constraint propagation.

4.2 Constraint propagation demonstration

Similar to the longest contiguous or absolute longest counterexample, we first require to perform

constraint propagation. However, in contrast to only one set Π, we now maintain an additional set ¬Π as

explained next on our running example.

We define an ordered set Π ∆
= {Si ∩ Ψ | Si ∈ Reach(Θ), Si ∩ Ψ ̸= ∅}. So, we have Π = {S3 ∩

Ψ, S4∩Ψ, S5∩Ψ, S12∩Ψ, S13∩Ψ}. Or, we simply write Π = {S3, S4, S5, S12, S13}where Si
.
= Si∩Ψ.

We define ¬Π in a similar manner to obtain another ordered set ¬Π = {¬S3,¬S4,¬S5,¬S12,¬S13}
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where ¬Si
.
= Si ∩ ¬Ψ. These stars and their predicates denote valuations of the proposition in given

temporal logic formula ϕ. Further, we only need to propagate constraints of the stars that are unsafe as

explained in Section 2.5.

By using the technique described in Section 2.5, we propagate the constraints for elements in Π and

¬Π to the initial set Θ; this results into sets ΘΠ and Θ¬Π respectively. Any execution that originates

from ΘΠ[j]
∆
= ⟨c0, V0, P

j⟩ ⊆ Θ would reach Π[j] (i.e., Si) at ith time step, where P j .
= P ∧ PU

i . Note

that superscript j indexes an element in the ordered set ΘΠ while subscript i is the time step at which

any execution starting from this jth element reaches the unsafe set. Similarly, an execution starting from

Θ¬Π[j]
∆
= ⟨c0, V0,¬P j⟩ ⊆ Θ would reach ¬Π[j] (i.e., ¬Si) at ith time step, where ¬P j .

= P ∧ ¬PΨ
i . It

easily follows that ∀j,ΘΠ[j]∩Θ¬Π[j]
.
= ∅ and ΘΠ[j]∪Θ¬Π[j]

.
= Θ. The elements in ΘΠ and Θ¬Π are

specified in the space of same center c0 and basis vectors V0 of Θ. Therefore, for the ease of exposition,

we can refer to the star ΘΠ[j] by its predicate P j and star Θ¬Π[j] by ¬P j . The resultant of constraint

propagation step is shown in Fig. 4.3.

Figure 4.3: Initial set Θ after constraint propagation.

Now a system execution that visits the unsafe set Ψ at just 3rd, 4th, 5th time steps can be obtained by

finding a satisfiable valuation ᾱ for the predicate
(
P 1 ∧ P 2 ∧ P 3 ∧ ¬P 4 ∧ ¬P 5

)
(ᾱ). The characteri-

zation of such counterexample is {{p}, {p}, {p}, {¬p}, {¬p}} or {p, p, p,¬p,¬p} or {⊤,⊤,⊤,⊥,⊥}

or {1, 1, 1, 0, 0}. Similarly, the characterization of a counterexample that reaches U at only 4th time

instance is {0, 1, 0, 0, 0}, and the characterization of a longest counterexample is {1, 1, 1, 1, 1}. A few

other characterizations of this safety violation are {1, 1, 0, 0, 0}, {0, 1, 1, 0, 1}, and {1, 0, 0, 1, 0} etc.

A characterization is valid if associated system of predicates is feasible. For example, the characteri-
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zation {1, 1, 0, 1, 0} is valid because
(
P 1 ∧ P 2 ∧ ¬P 3 ∧ P 4 ∧ ¬P 5

)
(ᾱ) = ⊤. But a characterization

{1, 0, ?, ?, ?} is not valid because
(
P 1 ∧ ¬P 2

)
(ᾱ) = ⊥.

These multiple characterizations can provide some insights behind a safety violation thus assisting a

control designer in state space exploration. Nonetheless, the main challenge remains is the combinatorial

nature of the problem. The strings can be exponential in the number of times the reachable set enters

the unsafe set. In a general case, there are (2m)k binary strings for a violation of the specification

with m propositions. But computing and checking validity of exponential number of strings is both

computationally inefficient and practically undesirable. A binary decision diagram (BDD) yields a

tractable and efficient representation of binary functions and strings. Therefore we use a decision diagram

for generating complete characterization of counterexamples.

4.3 Binary Decision Diagram

A Binary Decision Diagram (BDD) (Akers 1978) is a graphical data structure for representing a

boolean function. It compactly represents a set of satisfiable assignments (solutions) to decision variables

zi for a given boolean function f : Bn → B i.e.,

f(z1, z2, . . . , zn)→ {0, 1}, zi ∈ {0, 1}.

It is typically represented as a rooted, directed and acyclic graph which consists of several (variable)

nodes and two terminal (valued) nodes namely False(0) and True(1). Each variable node is labeled

by a decision variable zi and has two children - low and high. The directed edge from variable node zi to

low represents an assignment 0 to zi and the edge to high denotes the assignment 1.

Definition 21 A BDD is said to be ordered (OBDD) if the variables have fixed order along all paths

from root to a terminal node in the graph.

Definition 22 A BDD is called reduced (RBDD) if following two rules have been applied to the

graph.

Isomorphism: If two variable nodes are labeled by the same decision variable and have the same

set of paths starting from them (to the terminal nodes), then these nodes are called isomorphic.

62



One of them is removed and the incoming edges to the removed node are redirected to its

isomorphic node.

Elimination: If a variable node u has isomorphic children, then remove v and redirect its incoming

edges to either of its children.

A BDD which is both ordered and reduced is called Reduced Ordered Binary Decision Diagram

(ROBDD). We only apply isomorphism rule to our OBDD. The term BDD refers to OBDD (not necessarily

reduced) in this paper. In an ordered BDD, each non-terminal level is associated with only one decision

variable. The size of a diagram is measured in its total number of nodes (N ) and its width (W) which is

defined as the maximum number of nodes at any level.

The ordering O for some k ∈ N+ is one of the permutations k! of numbers 1, 2, . . . , k. Applying an

ordering to a set of cardinality k results into its elements arranged in that order. We call this operation

enumerate. Decision variable ordering plays a key role in determining the size of a decision diagram,

which is observed in our evaluation results as well.

4.4 Computing complete characterization

In this section, we demonstrate how all modalities of a safety violation in linear dynamical systems

can be represented using a binary decision diagram.

4.4.1 BDD construction

We first describe the basic idea. At each level (from root to terminal), a predicate (say P ′) is selected

based on the the order that is pre-determined by O. It is then assessed whether P ′ renders the predicate

(say Pu) of every individual node u at that level (in-)feasible. If the predicate (Pu ∧ P ′) is evaluated to

be feasible, it is added as the high child of u; otherwise terminal 0 is assigned as its high child. The

same process is repeated with predicate ¬P ′ for determining low child of u. Selection of predicate P ′ is

analogous to assigning 1 to corresponding decision variable at that level while ¬P ′ reflects the valuation

0 of the decision variable. We maintain two sets Π and ¬Π for predicates and their negative counterparts.

The union of all these (non-terminal) children computed at a particular level constitute the set of nodes

for next iteration. The procedure terminates after k iterations where k is the number of decision variables.
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input :Initial set: Θ, reachable set: Reach(Θ), unsafe set: Ψ, ordering: O
output :bdd: G, its node count N and widthW , set of feasible paths: CΨ

1 Π
∆
= {Si ∩Ψ | Si ∈ Reach(Θ), Si ∩Ψ ̸= ∅};

2 ¬Π ∆
= {Si ∩ ¬Ψ | Si ∈ Reach(Θ)};

3 Π,← enumerate(Π, O);
4 ¬Π← enumerate(¬Π, O);
5 ΘΠ ← propagate constraints(Π,Θ);
6 Θ¬Π ← propagate constraints(¬Π,Θ);
7 G ← init bdd(Θ); // creates root, terminals

8 N ← 1; // for root node

9 V ← [G.root]; // root is at level 0

10 N ← N + 2,W ← 2; // for terminal nodes t0, t1
11 k ← |ΘΠ|; // # of decision variables

12 for 1 ≤ j ≤ k do
13 V ′ ← ∅; // set of nodes at level j

14 for u ∈ V do
15 V ′ ← G.process node(u, j,V ′,ΘΠ,Θ¬Π);
16 end for
17 N ← N + |V ′|; // update nodes count

18 if V ′ >W then
19 W ← |V ′| ; // update width

20 end if
21 V ← V ′; // progress to next level

22 end for
23 CΨ ← traverse(G.root);
24 return (G,N ,W, CΨ);

Algorithm 6: construct bdd algorithm.
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Once bdd construction is completed, it enumerates the paths (from the beginning) in the diagram for

generating all characterizations of the safety violation.

The algorithm for computing characterization of a safety violation can be divided into 2 main

routines.

1. construct bdd: Algorithm 6 computes the sets Π and ¬Π, enumerates their elements as per the

given ordering O, and propagates constraints (lines 3-6). As a consequence of constraint propagation,

the predicates of the elements in ΘΠ and ¬ΘΠ are now specified in center c0 and basis vectors V0. So

a reference to a star or its predicate in this section implicitly considers c0 as the center and V0 as basis

vectors. Further, we use the terms node and star interchangeably because each bdd node denotes a star.

The initialization step of bdd G (line 7) creates its root node (i.e., star ⟨c0, V0, P ⟩) in addition to the

terminal nodes t0 (i.e., star ⟨c0, V0,⊥⟩) and t1 (i.e., star ⟨c0, V0,⊤⟩). The diagram is constructed in the

breadth-first manner where root is the only node at level 0. V denotes the set of nodes at the current level

(starting from 0), and V ′ maintains nodes at the next level. In each iteration of the outer loop (lines 12

- 22), the children of every node u ∈ V are computed via process node, and added to the set V ′. After

processing all of the nodes in V , nodes countN and widthW are updated (lines 17 and 19). Additionally,

V is replaced with V ′ (line 21) for the next iteration.

2. process node: Algorithm 7 computes high and low children of a node u at level (j − 1) where

j ∈ [1, k]. We now discuss the technique for computing the high child. Initially a node ū is created that

represents a star with predicate Pū
.
= Pu ∧ P j . Informally, this step corresponds to assigning valuation

1 to the decision variable zj . There are 4 scenarios that are evaluated. (i) If predicate Pū is infeasible,

terminal t0 is assigned as u’s high child (line 4). (ii) If ū is at the terminal level (k) and Pū is feasible,

t1 is assigned as the high child of u (line 7). The corresponding path (beginning from root) indicates a

valid characterization. Otherwise, (iii) either an isomorphic node is identified in V ′ and assigned as u’s

high child (lines 12- 15), or (iv) ū is assigned as u’s high child and added to the set V ′ (lines 19 and 20).

Same steps are performed for computing the low child of node u by creating a node ¬ū which denotes a

star with predicate P¬ū
.
= Pu ∧ ¬P j . The isomorphs algorithm is discussed in the next section on bdd

reduction.

Theorem 3 (Correctness) The set CΨ returned by construct bdd algorithm (without reduction) is

the complete characterization of counterexamples of length k ∈ N to a given safety specification.
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Proof 3 We note that CΨ is the set of all binary strings of length k accepted by the BDD. We denote

CjΨ to be the set of length j ≤ k prefixes of the elements in CΨ, so we have CΨ = CkΨ. We next define

R which is a set of all feasible binary strings of length k.

R
∆
= {(b1, b2, . . . bk) |

k∧
i=1

Qi(bi)(ᾱ) = ⊤, bi ∈ B}, where

Qi(bi) =


P i, if bi = 1

¬P i, if bi = 0.

It suffices to prove that CΨ = R in order to show that all strings accepted by the BDD are indeed

feasible and all strings that are not accepted are not valid counterexamples.

We first show that R ⊆ CΨ. Consider an element b .
= (bi, b2, . . . , bk) ∈ R. Assuming that

b /∈ CΨ, there exists a prefix (b1, . . . , bj) ∈ CjΨ of b, where j = min{j′ ∈ [1, k] | (b1, . . . , bj′) ∈

Cj
′

Ψ and (b1, . . . , bj′+1) /∈ Cj
′+1

Ψ }. Informally, (b1, . . . , bj′+1) denotes the minimal infeasible prefix

of b. It also follows from the BDD construction that (b1, . . . , bj′+1) /∈ Cj
′+1

Ψ iff
∧j′+1

i=1 Qi(bi)(ᾱ) = ⊥.

This further implies that
∧k

i=1Qi(bi)(ᾱ) = ⊥ (i.e., b /∈ R), which is a contradiction because b ∈ R.

Therefore, all feasible strings of length k are accepted by the BDD.

We next show that CΨ ⊆ R. Consider an element b .
= (bi, b2, . . . , bk) ∈ CΨ. Now, assuming

that b /∈ R, we have
∧k

i=1Qi(bi)(ᾱ) = ⊥ (by definition of R). This implies that ∃j ∈ [1, k] such

that
∧j

i=1Qi(bi)(ᾱ) = ⊥ and
∧j−1

i=1 Qi(bi)(ᾱ) = ⊤. It follows that (b1, . . . , bj) /∈ CjΨ. And since

(b1, . . . , bj) is a prefix of b, and is infeasible, we have b /∈ CΨ, which is a contradiction. Therefore,

all strings captured by the BDD are indeed feasible.

4.4.2 Feasibility Model

The feasibility of predicate Pū(ᾱ)
∆
= Aᾱ ≤ b in process node algorithm is examined by solving

following optimization problem.

max d

s.t. (am)T ᾱ ≤ bm, 1 ≤ m ≤ |Pū|,
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input :node: u, level: j, set of nodes at level j: V ′, ordered sets ΘΠ and Θ¬Π
output :updated set of nodes at level j: V ′

1 k ← |ΘΠ|; // # of decision variables

2 ū← create node(Su ∩ΘΠ[j]); // for zj = 1

3 if (Pū(ᾱ) == ⊥) then
4 u.high← G.t0; // u’s high child is t0
5 end if
6 else if (j == k) then
7 u.high← G.t1; // a valid characterization

8 end if
9 else

10 Q← ΘΠ[j + 1→ k];
11 ¬Q← Θ¬Π[j + 1→ k];
12 for u′ ∈ V ′ do
13 if isomorphs(ū, u′, Q,¬Q) == ⊤ then
14 u.high← u′; // u′, ū are isomorphic

15 end if
16 end for
17 if u.high == ⊥ then
18 G.add node(ū); // if no isomorphic node found

19 u.high← ū;
20 V ′ ← V ′ ∪ ū; // add ū to V ′

21 end if
22 end if
23 ¬ū← create node(Su ∩Θ¬Π[j]); // for zj = 0

24 repeat steps 3-22 with ¬ū for adding low child at u;
25 return V ′;

Algorithm 7: process node algorithm.
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where |Pū| is the number of constraints in predicate Pū. Here, d ∈ R is a constant as certain optimization

models require explicit specification of the objective function. This problem can be modeled as either an

Integer Linear Program (ILP) or an SMT query. A satisfiable valuation of basis variables ᾱ is an evidence

to Pū feasibility. The feasibility of predicate ¬Pū is examined in a similar manner. The satisfiable

valuation of ᾱ obtained at terminal t1 (line 7) gives a representative counterexample for corresponding

characterization.

Demonstration: The BDD constructed for Example 3 with ordering [1, 2, 3, 4, 5] is shown in

Fig. 4.4. At each variable node, the solid edge denotes high child while dashed edge is for the low child.

We omit terminal node t0 and all of its incoming edges (due to the in-feasibility of predicate Pū) for clarity.

For example, the low child of the left P 2 node, which is not shown, is t0 because (P 1 ∧ ¬P 2)(ᾱ) = ⊥.

These feasibility results can also be easily verified with the help of Fig. 4.3. The decision diagram has

total (N ) 19 nodes (including t0) and has width (W) 6. The number of unique paths from root to terminal

t1 is 9 which is also the number of characterizations (CΨ) of the safety violation under consideration.

Some of these paths are 11111, 11101, 11000, 01100, and 01000. The system executions generated from

respective valuations of α are illustrated in Fig. 4.5. For example, the counterexample labeled as 11111

signifies a characterization where the reachable set enters Ψ at all time steps; whereas the execution

00000 denotes the characterization for which the reachable set never enters the unsafe set Ψ.

The size of the bdd constructed in this way can still grow exponentially large in k in the worst

case. The size also provides an estimate on the number of times that one needs to solve feasibility of

a sub-characterization. Further, the number of feasibility instances is highly dependent on the order of

decision variables. For our small running example, a random ordering results into the diagram with 24

nodes and width 9. There can also be isomorphic nodes at each level and applying the isomorphism rule

can significantly reduce the number of feasibility instances to be solved as well as size of the diagram.

4.5 BDD Reduction

In this section, we discuss a technique to obtain a reduced bdd by applying isomorphism to the graph

nodes. The isomorphism can be applied in two different ways. In static approach, isomorphic nodes are

removed after constructing the decision diagram. Whereas, in dynamic technique, isomorphic nodes are

discovered while building the diagram in the top-down fashion. We implement dynamic isomorphism
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P 1

P 2 P 2

P 3 P 3 P 3

P 4 P 4 P 4 P 4 P 4

P 5 P 5 P 5 P 5 P 5 P 5

1

Figure 4.4: Decision diagram computed for default ordering of variables without isomorphism to represent
the characterizations of counterexamples System 4.1.

for our work. We use a mathematical tool called Farkas’ Lemma which is a theorem of alternatives for

a finite set of linear constraints, for finding isomorphic nodes. It has several variants among which we

adopt the one given below.

Lemma 1 (Farkas’ Lemma) Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following two

assertions holds (Matouek & Gärtner 2006):

1. ∃x ∈ Rn such that Ax ≤ b;

2. ∃y ∈ Rm such that AT y = 0, bT y < 0, and y ≥ 0.

Problem Statement II (Equivalence of predicates): Consider two predicates P̄ ∆
= A1ᾱ ≤ b1 and

P ′ ∆
= A′

1ᾱ ≤ b′1, and a set I of k predicates P j ∆
= Ajᾱ ≤ bj , 2 ≤ j ≤ k+1. Is there a non-empty subset

I ⊆ I such that the system of predicates P̄ ∩ I is feasible while the system with predicates P ′ ∩ I is

infeasible, or vice-versa? If there is no such subset in both cases, we call predicates P̄ and P ′ equivalent

with respect to I.
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Figure 4.5: Representative executions for various characterizations of counterexamples in System 4.1.

4.5.1 System for Equivalence

The idea for checking equivalence between two predicates is as follows. Firstly, two systems are

formed - one for the set of predicates P̄ ∩ I while other for the set P ′ ∩ I. Then both systems are linked

together with the help of decision variables such that feasible predicates in one of them are forced to

violate in the other using Farkas’ lemma. Finally, an optimization problem over those decision variables

is solved to find I ⊆ I. We now expand on this in a step-wise manner.

Step 1: The system of predicates P̄ ∩ I can be represented as follows



A1

A2

A3

...

Ak+1


(
ᾱ

)
≤



b1

b2

b3
...

bk+1


(4.2)

or,

Hᾱ ≤ g. (4.3)
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System 4.3 is feasible if it has a satisfiable valuation of ᾱ ∈ Rn. We denote (HI ᾱ ≤ gI)
.
=

P̄ (ᾱ) ∧
(∧

P j∈I P
j(ᾱ)

)
.

Similarly, the system with predicates P ′ ∩ I is given as



A′
1

A2

A3

...

Ak+1


(
ᾱ

)
≤



b′1

b2

b3
...

bk+1


(4.4)

or,

H ′ᾱ ≤ g′. (4.5)

System 4.5 is infeasible if ∃y′ ≥ 0 such that

H ′T y′ = 0, g′T y′ < 0 (4.6)

Step 2: Since number of variables in y′ is same as the number of constraints in system 4.5,

we have y′ = [y′1,1, y
′
1,2, . . . , y

′
2,1, y

′
2,2, . . . , y

′
k+1,|Pk+1|]

T . Further, we use y′I to denote y′ variables

that correspond to the set P ′ ∩ I . For example, y′I = [y′1,1, . . . , y
′
1,|P ′|, y

′
3,1, y

′
3,2, . . . , y

′
k,|Pk|]

T for

I = {P 3, . . . , P k}. This is equivalent to dropping the rest of y′ variables from system or assigning 0 to

them, i.e., y′I = [y′1,1, . . . , y
′
1,|P ′|, 0, . . . , 0, y

′
3,1, y

′
3,2, . . . , y

′
k,|Pk|, 0, . . . , 0]

T . This is essentially same as

dropping columns related to predicates P 2 and P k+1 from matrix H ′T in system 4.6. As we are only

interested in examining the feasibility w.r.t. the set I , this step ensures that the predicates in the set I\I

are dropped from both the systems.

Consequently, the problem of finding a set I in the first case is reduced to feasibility of the following

system.

(HI ᾱ ≤ gI), H ′T y′ = 0, g′T y′ < 0, y′I > 0. (4.7)
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Informally, a non-empty subset I indicates decision variables whose 1 valuations can make a path

between P̄ and terminal t1 distinguishable from any path between P ′ and t1. An empty I means the

non-existence of such distinguishable path. But in order to ensure that P̄ and P ′ are equivalent, we also

need to check the existence of another set I ′ ⊆ I . This set, if non-empty, indicates a distinguishable path

(by valuation 1 of the variables in I ′) originating at P ′ from any valid path starting at P̄ . Here, I and I ′

can be different. By switching P̄ and P ′ in equations (4.3)-(4.6), we can obtain a similar system as 4.7 to

find whether such a set I ′ exist. Predicates P̄ and P ′ are equivalent w.r.t. I if both these systems are

infeasible (i.e., I = I ′ = ∅).

Lemma 2 System 4.7 outputs I = I ′ = ∅ iff predicates P̄ and P ′ are equivalent w.r.t. the set of

predicates I.

Demonstration: Consider that P̄ .
= ¬P 1 ∧ P 2 ∧ ¬P 3, P ′ .

= ¬P 1 ∧ P 2 ∧ P 3, and I = {P 4, P 5}

in Example 3 (The variables ordering is [1, 2, 3, 4, 5]). The solution to system 4.7 with these parameters

would be I = ∅. However, the same system with P̄
.
= ¬P 1 ∧ P 2 ∧ P 3, P ′ .

= ¬P 1 ∧ P 2 ∧ ¬P 3 would

output I ′ = {P 5}; hence these predicates P̄ and P ′ are not equivalent w.r.t. the given I. It follows that

there is a valid path at node P̄ that differs from the outgoing paths at node P ′ by assignment 1 to the

decision variable for predicate P 5. This can also be verified using Fig. 4.4 that node P̄ .
= ¬P 1∧P 2∧P 3

has 2 valid paths - “00”, “01”; whereas node P ′ .
= ¬P 1 ∧ P 2 ∧ ¬P 3 has only “00” as its valid path.

4.5.2 Equivalence-based Isomorphism

Before we discuss MILP formulation for system 4.7, we demonstrate the notion of isomrophism of

two nodes centered on the equivalence of their predicates.

Suppose we are interested in checking the isomorphism between both children of the root node in

Fig. 4.6. The predicate for the high child is P and that for low child is ¬P . For I .
= {P̂}, it can be

verified by solving our equivalence system that predicates P and ¬P are equivalent w.r.t. I. But we

can also observe in the figure that both nodes are not isomorphs because the set of paths originating

at respective nodes are not exactly same. We next explain how we can achieve isomorphism using

equivalence.

Notice that the predicates in I correspond to 1 assignments to their related decision variables. And

the predicates that are excluded from the solution I of System 4.7 are simply dropped and not negated. So
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Figure 4.6: The predicates P and ¬P are equivalent w.r.t. P̂ but are not equivalent w.r.t. ¬P̂ . Thus both
P̂ nodes in the diagram are not isomorphs.

both predicates P and ¬P are only shown to be equivalent for assignments 1 to the variables. However,

we also need to probe whether they are equivalent for assignments 0 to the decision variables. In

other words, we need to find a path, if it exists, between node P̄ (or P ′) and terminal t1 that can be

distinguishable from any path originating at its counterpart by assignment 0.

For I .
= {¬P̂}, the equivalence check of predicates P and ¬P fails as we obtain I = ∅ and

I ′ = I by solving the equivalence system. This demonstrates that both children of the root node are not

isomorphs. That is why the routine isomorphs at line 14 in Algorithm 7 has 4 arguments: nodes ū, u′ and

sets Q,¬Q. It examines the isomorphism of input nodes by performing equivalence check of predicates

Pū and Pu′ for I .
= {Q} as well as I .

= {¬Q}.

Theorem 4 For two nodes ū, u′ at the same level, the isomorphs algorithm returns ⊤ iff ū and u′

are isomorphic to each other.

Proof 4 We consider a simple case where both nodes have two outgoing paths (of length 1) labeled

as 1 and 0 respectively. It means that we are interested in examining isomorphism between ū and u′

w.r.t. only one predicate (say Q) and its negation (¬Q). The proof is generalizable to the paths of

any finite length.

(⇐) Suppose isomorphs algorithm returns⊥ when ū and u′ are isomorphic. It follows from Lemma 2

that System 4.7 for examining equivalence between predicates Pū and Pu′ with I .
= Q would

output I = I ′ = ∅. The same system with I .
= ¬Q would give I = I ′ = ∅. Therefore, isomorphs
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P 1

P 2 P 2

P 3 P 3 P 3

P 4 P 4 P 4

P 5 P 5

1

Figure 4.7: The reduced diagram for default ordering obtained upon performing isomorphism to express
the modalities of the safety violation in System 4.1. The red-colored nodes are the ones identified as
isomorphs to some other node(s) during BDD construction.

(ū, u′, Q,¬Q) would return ⊤ which is a contradiction.

(⇒) Suppose isomorphs returns⊤ if ū and u′ are not isomorphic. However, isomorphs (ū, u′, Q,¬Q)

outputs ⊤ only when both predicates Pū and Pu′ are equivalent w.r.t. Q as well as ¬Q i.e., no

predicate in the set {Q,¬Q} can make one system feasible while making the other infeasible. This is

analogous to both nodes having same set of feasible paths originating at them, thus concluding both

nodes to be isomorphs which is a contradiction.

4.5.3 Linear Program for Equivalence

We model system 4.7 as a Mixed Integer Linear Program and feed it to an optimization solver. We

introduce k + 1 binary variables z1, z2, . . . , zk+1 for k + 1 predicates in system 4.3. Then the model
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(with sufficiently large M ), ∀i ∈ [1, k + 1], becomes

max
∑
i

zi

s.t. (ai,m)T ᾱ ≤ bi,m +M (1− zi) , (4.8)

zi ∈ {0, 1}, ᾱ ∈ Rn,m = 1, . . . , |Pi|.

Note: The variables zi that are assigned 1 by the optimization solver denote predicates in I . As we

are interested in finding any non-empty subset I ⊆ I, maximization over zi variables subsumes all such

cases. An alternative is a constant objective function with additional constraints explicitly specifying that

at least one of the zi variables is assigned 1 by the solver.

Next, the following set of constraints encodes system 4.6.

(
H ′)T y′ ≤ 0,

(
H ′)T y′ ≥ 0, g′T y′ ≤ ϵ (4.9)

s.t. y′i,m ≥ 0, 0 < ϵ≪ 1.

Observe that zi variables assigned 0 by the solver in model 4.8 are associated with the set I\I . The

corresponding y′i variables in model 4.9 are required to be assigned 0 as well. The next set of constraints

enforces this requirement and completes the encoding for system 4.7 by combining models 4.8 and 4.9.

y′i,m ≤M ∗ zi,

y′i,m ≥ ϵ ∗ zi. (4.10)

The reduced binary decision diagram for ordering [1, 2, 3, 4, 5] is shown in Fig. 4.7. As compared to

the original BDD, the total number of nodes N is reduced from 19 to 13 (including t0) and the widthW

is reduced from 6 to 3.

4.6 Extension to Systems with Bounded Inputs

Consider another version of our oscillating particle system that has one bounded input, denoted as

F ∆
= ⟨A′,B′, U⟩ where,
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A′ .
=


−0.05 −1.0 0

1.5 −0.1 0

0 0 −0.12

 ,B′ .
=


1

0

1

 , and U ⊆ [[−0.01, 0.01]]. (4.11)

The input effects in the reachable set for systems with bounded inputs is computed using the

Minkowski sum, and as a result, new basis variables and constraints are added to the star representation

at each step. Assume that the set of states reachable after i unit time steps for system 4.11 is denoted as a

generalized star S′
i

∆
= ⟨c′i, V ′

i , P
′
i ⟩. Recall from Remark 6 that every generalized star in the reachable set

of our running example (without inputs) had 3 basis vectors (or state variables) and 6 constraints in its

predicate (because initial set was given as a hyper-rectangle). Now from Definition 13 of Minkowski sum

with stars, it follows that S′
i would have 3+(i×m) basis vectors in its basis matrix and 6+(i× (2×m))

constraints in its predicate, where m is the number of bounded inputs (We have m = 1 in our case). The

components for Stars S′
1 and S′

2 are as below.

c′1 = [0, 0, 0, 0]T , c′2 = [0, 0, 0, 0, 0]T ,

V ′
1 =


0.72 −0.52 0 0.54

0.78 0.69 0 0.25

0 0 0.91 0.58

 , V ′
2 =


0.11 −0.74 0 0.26 0.54

1.11 0.07 0 0.60 0.25

0 0 0.86 0.54 0.58

 ,

P ′
1

∆
=− 0.1 ≤ α1 ≤ 0.1 ∧ −0.8 ≤ α2 ≤ 0.4 ∧ −1.07 ≤ α3 ≤ −1.0

∧ −0.01 ≤ u1 ≤ 0.01,

P ′
2

∆
=− 0.1 ≤ α1 ≤ 0.1 ∧ −0.8 ≤ α2 ≤ 0.4 ∧ −1.07 ≤ α3 ≤ −1.0

∧ −0.01 ≤ u1 ≤ 0.01 ∧ ∧ − 0.01 ≤ u2 ≤ 0.01,

where ui variable denotes the input applied at ith time step. The simulation equivalent reach-

able set for system 4.11 computed for h = 0.6 and T = 9.0 in HyLAA is illustrated in Figure 4.8.

The reachable set violates given safety specification ϕ
∆
= ¬□[0,9.0]y ≥ 4.0 at 5 discrete time steps:
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3rd, 4th, 5th, 12th, and 13th. The figure also illustrates executions which violate safety specification at

either all 5 time steps or none.

Figure 4.8: Simulation equivalent reachable set computed in HyLAA for oscillating particle system with
bounded inputs as described in 4.11.

4.6.1 Transforming unsafe set constraints into star basis.

In order to compute counterexamples or their characterization, the constraints of the unsafe set

Ψ need to be transformed into a star center and basis (Section 2.5 on constraint propagation). While

constraints in Ψ are defined over n state variables, a star S′
i reachable after exactly i time steps has

n + (i ×m) basis vectors (or variables), where n is the number of dimensions of the original system

and m is the number of bounded inputs. Therefore, every constraint in Ψ is first projected onto the

n+ (i×m) variables space by simply making the coefficients of all (i×m) variables 0.

We demonstrate this with an example. The unsafe set for the oscillating particle system is defined

as a constraint Ψ .
= p

∆
= y ≥ 0.4, which can be denoted as


0

−1

0


T 

x

y

z

 ≤ −0.4. If we were to find

the intersection of Ψ with star S′
2 which has 5 basis vectors (or variables), we would first project p
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into the 5 variables space (by introducing dummy variables u′ and u′′) as



0

−1

0

0

0



T 

x

y

z

u′

u′′


≤ −0.4, also

written as aTx ≤ b. Now this constraint can be transformed into the center and basis of the star S′
2 as

aT (c′2 + V ′
2ᾱ) ≤ b, where ᾱ = [α1,α2,α3,u

1,u2]T .

4.6.2 BDD construction and reduction

Once constraints of the unsafe set Ψ are transformed into the center and basis of the each star that has

an non-empty intersection with Ψ, an ordering O of these stars is chosen. Then Algorithm 6 is invoked

to construct a BDD for representing the characterizations of the given safety violation. The decision

diagram that demonstrates these characterization of the given safety violation (y ≥ 4.0) is shown in

Figure 4.9. The diagram has 23 nodes (including t0), width as 9, and 12 unique paths or characterizations.

The corresponding system executions for these 12 unique characterizations are illustrated in Figure 4.10.

However, performing BDD reduction with stars having different number of columns (or basis vectors

or variables) requires an additional transformation step. From Minkowski sum operation for computing

the effect of inputs (Definition 13, we know that the number of variables in the star grow at every step.

However, constraints in System 4.3 or System 4.5 for finding equivalence of nodes in the BDD should be

defined over same number of variables. That is, all A matrices in System 4.2 or System 4.4 should have

same number of columns (or basis variables).

To address this issue, we pick k
∆
= argmaxj<T{S′

j | S′
j ∩Ψ ̸= ∅} such that k denotes the largest

time step at which the reachable set has a non-empty overlap with the unsafe set Ψ. Now, from the

definitions of simulation-equivalent reachable set and Minkowski sum with stars, it follows that the star

S′
k has the maximum number of variables among all stars having non-empty overlap with Ψ. To be

precise, it has n + k ×m number of variables (basis vectors) where we have n = 3,m = 1 for our

example. For every S′
j such that j < k and S′

j ∩Ψ ̸= ∅, we add (k− j)×m many 0 columns to its set of

constraints and (k − j)×m vectors to its basis matrix. This step makes the dimensions of each of these

S′
j stars same as that of S′

k. In other words, all A matrices in System 4.2 or System 4.4 will now have

same number of columns, thus making them suitable for performing equivalence as well as isomorphism
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P 1

P 2 P 2

P 3 P 3 P 3

P 4 P 4 P 4 P 4 P 4 P 4

P 5P 5 P 5P 5 P 5 P 5 P 5 P 5 P 5

1

Figure 4.9: Decision diagram computed for default ordering of variables without isomorphism to represent
the characterizations of counterexamples System 4.11.

Figure 4.10: Executions for various characterizations of counterexamples in System 4.11.
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P 1

P 2 P 2

P 3 P 3

P 4 P 4 P 4

P 5 P 5

1

Figure 4.11: The reduced diagram for default ordering obtained upon performing isomorphism to express
the modalities of the safety violation in System 4.11. The red-colored nodes are the ones identified as
isomorphs to some other node(s) during BDD construction.

among BDD nodes. The final reduced bdd in Figure 4.11 has 12 nodes (including t0), width as 3, and

14 unique characterizations. These additional 2 characterizations (01110, 01010) are introduced due to

merging of non-isomorphic nodes as a consequence of numerical in-stability in MILP frameworks. We

discuss more on this issue in Section 4.8.

4.7 Evaluation

Implementation: The proposed algorithms have been implemented in a linear hybrid systems verifi-

cation tool, HyLAA. Simulations for reachable sets are performed using scipy’s odeint function,

which can handle stiff and non-stiff differential equations. Linear programming is performed using the

GLPK library, and matrix operations are performed using numpy. We use Gurobi (Gurobi Optimization

2018) as the optimization solver for MILP. The measurements are performed on a system running Ubuntu

18.04 with a 2.20GHz Intel Core i7-8750H CPU with 12 cores and 32 GB RAM.

Benchmarks: We evaluate our techniques on various examples. “Oscillator” and “V-Platoon”

are standard benchmarks from ARCH benchmark suite 2; the ones annotated as “RS” are adopted

2https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
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Verif. Decision OBDD ROBDD
S. No. System Dims Time variables |CΨ|

(n) (sec) |Π| N W Tc (sec) N W Tc (sec) |CΨ|

#1 RS-15 2 0.3 30 53
737 52 15 139 8 33

53713 13 127 9 31
685 51 13 265 13 105

#2 RS-16 2 0.2 26 63
694 62 13 151 11 46

63726 11 121 8 29
610 60 11 242 17 104

#3 Osc Particle 3 0.2 5 9
19 6 0.3

13 3 0.8
919 13 3 0.9

23 8 14 4 1.2

#4 RS-11 3 0.3 24 54
534

53
16 156 12 85

54603 16 117 8 45
499 14 219 16 140

#5 RS-14 3 0.5 16 19
146

18 3
66 7 12

19148 48 4 7
155 91 9 21

#6 RS-21 3 0.5 27 38
462

37
14 213 14 122

38492 14 163 12 79
481 15 207 12 114

#7 RS-1 2 0.3 21 66
539 64 8 144 12 45

66644 8 120 10 29
440 59 7 195 17 63

#8 RS-2 4 0.5 22 61
517

59
22 263 28 207

61622 24 227 27 154
474 20 205 18 182

#9 RS-4 4 0.4 25 29
361

28
17 112 8 55

29362 16 91 7 40
350 15 187 12 126

#10 RS-18 4 0.5 21 57
479 56 19 124 11 84 57
540 20 97 8 45 55
398 52 16 157 13 100 57

#11 ACC 5 0.5 18 63
460 62 24 118 11 80

63501 24 120 12 84
336 53 20 142 13 118

#12 Quadcopter 6 0.5 19 42
413 41 29 60 5 39 42
347 25 60 4 39 40
292 39 21 95 7 72 41

#13 RS-6 8 0.6 13 14
93

13 7
53 6 40

1493 43 5 26
93 54 7 43

#14 RS-8 8 0.6 16 25
174 24 18 77 8 98

25186 18 57 6 53
177 23 17 93 10 116

#15 V-Platoon I 9 0.7 14 34
162 31 20 69 8 98

34180 20 56 7 62
170 30 18 79 9 116

#16 RS-7 12 0.6 11 12
58

11 8
36 4 37

1254 28 4 24
56 31 5 31

#17 V-Platoon II 15 0.9 24 16
110

14
40 88 4 230

1674 35 52 4 116
138 61 82 6 246

#18 RS-9 16 1.0 15 33
205

32
68 74 9 320

33232 71 63 7 221
204 62 88 10 377

#19 RS-10 20 1.0 14 23
145 22 68 65 8 318

23162 71 51 6 218
140 21 66 65 7 364

#20 V-Platoon III 30 2.0 10 27
96 24 66 40 6 282 26

107 82 43 7 347 2791 22 62 52 8 425

Table 4.1: Evaluation results for counterexamples’ characterization in linear systems with no/constant
inputs. The results highlighted in red are under-approximations incurred due to numerical in-stability.
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Verif. Decision OBDD ROBDD
S. No. System Dims Inputs Time variables |CΨ|

(n) (m) (sec) |Π| N W Tc N W Tc |CΨ|
(sec) (sec)

#1 RS-1 2 1 5 18 63
447 62 334 103 10 1032 63
523 361 91 8 850 59
352 55 263 138 13 1620 63

#2 Osc Particle 2 1 1 5 12
23 9 2 12 3 5 14
24 2 13 3 6 13
26 10 2 13 3 7 12

#3 Osc Particle 2 2 1 6 17
39

16
12 17 4 30

1740 12 18 4 37
47 15 17 4 38

#4 Osc Particle 2 3 2 6 23
43

19
29 16 4 76

2344 32 18 4 89
52 39 19 4 133

#5 RS-14 3 1 15 16 23
171 22 85 73 7 400

23177 87 63 7 291
166 21 85 95 10 614

#6 RS-3 4 2 8 19 35
279 34 424 102 9 2228

35302 476 77 7 1294
249 32 481 119 11 2510

#7 RS-6 8 1 7 15 28
190

27
153 60 6 558

27204 158 50 5 385
182 138 73 8 720

#8 RS-6 8 2 24 15 32
211

31
472 65 8 1684 32229 459 52 5 1137

200 460 86 10 2815 31

#9 RS-8 8 1 4 18 33
246 31 371 98 9 1943

33269 440 73 7 1208
228 30 365 102 9 2052

#10 V-Platoon I 9 1 7 15 64
338

61
581 74 9 1612 64

399 588 70 7 1239 60
360 580 116 15 3389 62

#11 RS-7 12 1 9 12 26
137

25
117 48 7 459

26146 125 39 5 280
133 111 62 9 691

#12 RS-7 12 2 27 12 22
117

21
251 44 6 901

22120 260 38 4 719
119 247 62 9 1740

Table 4.2: Evaluation results for complete characterization of counterexamples in linear systems with
bounded inputs. The results highlighted in red are under-/over-approximations of complete characteriza-
tion incurred due to numerical in-stability.

82



from RealSyn (Fan et al. 2018). “Adaptive Cruise Control (ACC)” and “Quadcopter” are adopted

from (Tiwari 2003) and (Argentim, Rezende, Santos & Aguiar 2013), respectively. We take the dynamics

(A and B matrices) from the original benchmark for each system while modifying the safety specification

suitable for our work.

Variables ordering: We apply 3 different orderings of decision variables to construct 3 different

decision diagrams for performance evaluation. For a monotonically increasing sequence of numbers

[1, 2, 3, 4, 5], the variables in default ordering Od are arranged as per this sequence. Another ordering

Or is random where elements in a set are arranged in some random order. Additionally, we make an

observation about the reachable set overlap with the unsafe set which yields third ordering Om for our

experiments. In most of the cases, we observe that the star which goes the deepest in the unsafe set lies in

the middle of the sequence of the unsafe stars, thus it tends to have non-empty intersection with relatively

more number of stars in its neighborhood. We use this intuition to obtain another ordering [3, 2, 1, 4, 5]

that has only the first half of the given sequence reversed which, in turn, brings the middle element to the

front.

Performance: Table 4.1 demonstrates our evaluation results for system without (or constant) inputs.

The results for systems with bounded inputs are demonstrated in Table 4.2. Dims is the number of system

variables, Verification Time is the time HyLAA takes to compute the reachable set. Tc is the time taken

by construct bdd Algorithm. CΨ denotes the number of characterizations for a given safety violation in

each system. Further, in each benchmark, the first row is for default ordering Od, the second one is for

Om ordering, and the third row corresponds to the random ordering Or. We measure the performance of

our algorithms in terms of bdd creation time (Tc), total number of nodes (N ), and its width (W). The

verification time for computing the reachable set is significantly less as compared to Tc. Further, reduced

bdd construction3 takes much more time because we solve multiple optimization problems at each step

to find isomorphic nodes.

We now make a few key observations. (i) For OBDD runs in both tables, the random ordering Or

turns out to be slightly better than its counterparts in the BDD size (N andW). On the other hand, Om

fares better in ROBDD experiments in almost all cases, which supports our observation about the middle

element probably having non-empty intersection with multiple elements. Figures 4.12 and 4.13 plotted

3Currently our implementation of the bdd reduction algorithm supports only isomorphism reduction rule.
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Figure 4.12: Number of nodes in diagrams for systems with bounded inputs. Systems are ordered in
increasing number of BDD nodes. Dashed curves correspond to the diagrams without reduction, whereas
solid ones correspond to their reduced counterparts.

for systems with bounded inputs support this observation where the mid-order iso scenario yields the

most succinct representations. (ii) The figures also highlight that the reduced BDD size remains fairly

small; that is, its size does not grow in proportion to the size of the original diagram. (iii) In some cases,

the BDD size (N ) is reduced by upto 80% across OBDD and ROBDD runs, while in other cases, we

only see a reduction by 50%. If we take the summation of the total number of nodes in all benchmarks

across all orderings, we observe an overall reduction of 65− 67% in N across OBDD and ROBDD runs.

Similarly, we notice an overall reduction of 74− 76% in width (W) across all benchmarks and orderings.

4.8 Discussion

Numerical in-stability: Recall that we model node isomorphism as an optimization problem

encoded as an MILP. An issue with an MILP-based approach even with a state-of-the-art commercial

solver is numerical in-stability. The model requires the definition of M , which is larger than any value,

and an arbitrarily small ϵ > 0. An ϵ smaller than the solver’s tolerance may translate into y′ variables

becoming 0 in system 4.10. This results into isomorphs algorithm returning ⊥ even when two nodes

are actually isomorphs. Consequently, ROBDD may end up having same size as OBDD. On the other

hand, a higher ϵ value can sometimes lead to isomorphs returning ⊤ even when nodes are not isomorphic
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Figure 4.13: Width of the diagrams for systems with bounded inputs. Systems are ordered in the same
order as in Figure 4.12. Dashed curves correspond to the diagrams without reduction, whereas solid
ones correspond to their reduced counterparts. The curves for default and mid-order OBDDs completely
overlap hence only one is visible in the plot.

to each other. As a result, a few infeasible characterizations can get introduced (over-approximation)

and/or some feasible ones may get dropped (under-approximation) from the diagram. Our evaluations

highlight that such approximations occur only in a few cases, that too with a minor difference from the

complete solution. Another key point to observe is that there is no correlation between variables ordering

and numerical in-stability because it is reported in all 3 orderings for different systems.

Variations in the size: We report in Table 4.3 the %-variation σ in the BDD size (N ) for systems

with no/constant inputs. We define σ ∆
= ((Nmax−Nmin)÷Nmax)× 100, whereNmax (orNmin) is the

highest (or lowest) number of nodes among any of the orderings Od, Om and Or. The table underlines the

importance of the decision variables ordering. It demonstrates that the BDD size can vary significantly

across different orderings, and one can potentially achieve 25%− 50% reduction in the BDD size with

appropriate ordering.

Application to additional specifications: We have maintained so far that the diagrams 4.4 or 4.7

represent complete characterization of the violation of the safety specification ϕ
∆
= G[0,20]¬p. We

argue that the same diagrams also subsumes the characterization of the violation of some other safety

specifications such as ϕ′ ∆
= F[0,5]p→ G[6,15]¬p and ϕ′′ ∆

= G[0,10]¬p→ F[11,15]¬p. The specification ϕ′
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Table 4.3: %-variations (σ) in the number of BDD nodes (N ) due to different orderings in systems with
no/constant inputs

System σ System σ
OBDD ROBDD OBDD ROBDD

#1 7.1 52.1 #11 32.9 17.0
#2 16.0 50.0 #12 29.3 42.9
#3 16.7 0 #13 0 28.6
#4 17.2 46.6 #14 6.5 40.0
#5 5.8 47.2 #15 10.0 22.2
#6 6.1 23.5 #16 6.9 20.0
#7 31.7 38.5 #17 46.4 33.3
#8 23.8 22.1 #18 12.1 30.0
#9 3.3 51.3 #19 13.6 25.0

#10 26.3 38.2 #20 15.0 25.0

states that if something bad happens within first 5 time steps then nothing bad would happen between

time interval [6, 15]. On the other hand, ϕ′′ states that if nothing bad happens in first 10 time steps then

something good will eventually happen in the interval [11− 15]. This observation is important for 2 key

reasons - (i) existing verification artifacts can be reused for safety verification w.r.t. such specifications,

and (ii) it is not required to construct individual decision diagram for each such specification.

Extension to hybrid systems: A linear hybrid system has multiple modes (also called locations) of

operation and discrete transitions as switching function between modes. These transitions labelled by

guard condition induce non-determinism which can possibly lead to multiple paths in the reachable set.

Therefore, the reachable set in linear hybrid systems is denoted in the form of a tree (rooted at Θ) called

ReachTree. We can construct a bdd for each path in ReachTree for generating respective characteri-

zation of counterexamples. The detailed explanation on ReachTree computation and counterexample

generation in linear hybrid systems is present in (Goyal & Duggirala 2020a).

4.9 Chapter Summary

This chapter has introduced the notion of complete characterization of counterexamples to a given

safety specification in linear hybrid systems. The presented work reuses the artifacts generated during the

model checking process and employs constraint propagation to construct a a graphical structure called

binary decision diagram (BDD) for representing all modalities of a safety violation. It has introduced

an approach for examining node isomorphism leading to a much more succinct BDD representation.

It has provided a Mixed Integer Linear Program (MILP) formulation of the system that models node
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isomorphism and conducted an exhaustive evaluation on numerous benchmarks to exhibit the performance

of our approach.

Acknowledgement. David Bergman (Associate Professor, Business School, UConn) has been

involved throughout the project, and in particular, helped in encoding an MILP to perform node isomor-

phism in a BDD.
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CHAPTER 5: NEURALEXPLORER: STATE SPACE EXPLORATION OF CLOSED LOOP
CONTROL SYSTEMS USING SENSITIVITY APPROXIMATION

The analysis of non-linear and learning enabled control systems is particularly challenging because

standard analytical tools for linear systems do not easily extend to them in the absence of closed form

expression for non-linear ODEs. In this chapter, we propose a framework for performing state space

exploration of complex closed loop control systems. Our approach involves approximating sensitivity and

a newly introduced notion of inverse sensitivity by a neural network. We show how the approximation

of inverse sensitivity can be used for performing state space exploration by generating trajectories that

reach a neighborhood. We also discuss a sensitivity approximation based technique for estimating the

trajectories of the given system. 1

5.1 Learning the inverse sensitivity function using observed trajectories

For testing the system operation in a given domain D ⊆ Rn, one may wish to generate a finite set of

trajectories. Often, these trajectories are generated using numerical ODE solvers which return system

simulations sampled at a regular time step. The step size, time bound, and the number of trajectories are

specified by the user. Given a sampling of a trajectory with step size h, i.e., ξ(x0, 0), ξ(x0, h), ξ(x0, 2h),

. . ., ξ(x0, kh), we make a few observations. First, any prefix of this sequence is also a trajectory of

a shorter duration. Hence, from a given set of trajectories, one can truncate them to generate more

trajectories having shorter duration. Second, given two trajectories starting from states x0 and x′0,

1Contents of this chapter previously appeared in preliminary form in the following papers:

Goyal, Manish and Parasara Sridhar Duggirala. 2020. NeuralExplorer: State Space Exploration of Closed
Loop Control Systems Using Neural Networks. In Proceedings of the 2nd Annual Conference on Learning for
Dynamics and Control.

Goyal, Manish and Parasara Sridhar Duggirala. 2020. NeuralExplorer: State Space Exploration of Closed
Loop Control Systems Using Neural Networks. In Proceedings of the Automated Technology for Verification and
Analysis.
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(x0 ̸= x′0), we can compute the following values for the sensitivity functions:

Φ(x0, x
′
0 − x0, t) = ξ(x′0, t)− ξ(x0, t) = x′t − xt (5.1)

Φ−1(xt, x
′
t − xt, t) = x′0 − x0 (5.2)

Note that we can estimate values of Φ−1 based only on samples from a forward simulator ξ (rather than

requiring a simulation from ξ−1).

Let us explain how we generate values of the function Φ−1(xt, v, t) (or Φ(x0, v, t)) in order to learn

an approximator NΦ−1(xt, v, t) (or NΦ(x0, v, t)). First, start with a set of reference trajectories generated

from randomly sampled initial points, we generate prefixes of these reference trajectories. Then we

iterate over each pair of these prefixes and use Equations 5.1 and 5.2 for generating tuples ⟨x0, v, t, v+⟩

and ⟨xt, v, t, v−⟩ such that v+ = Φ(x0, v, t) and v− = Φ−1(xt, v, t). We use these tuples to train either

a forward sensitivity approximator denoted as NΦ or an inverse sensitivity approximator NΦ−1 .

The training performance for various benchmark systems and neural network architecture is detailed

in the following section.

5.2 Benchmarks and Training Performance

For approximating the sensitivity and inverse sensitivity functions, we pick a standard set of bench-

marks consisting of nonlinear dynamical systems, hybrid systems, and a few control systems with neural

network feedback functions. Most of the benchmarks are taken from a standard hybrid systems benchmark

suite2 and (Immler, Althoff, Chen, Fan, Frehse, Kochdumper, Li, Mitra, Tomar & Zamani 2018, Bak,

Beg, Bogomolov, Johnson, Nguyen & Schilling 2019). The benchmarks Brussellator, Lotka, Jetengine,

Buckling, Vanderpol, Lacoperon, Roesseler, Steam, Lorentz and Coupled vanderpol are continuous

nonlinear systems, where Lorentz and Roesseler are chaotic as well. SmoothHybrid-/Hybrid-oscillator

are nonlinear hybrid systems. The remaining 2 benchmarks Mountain Car and Quadrotor are selected

from (Ivanov, Weimer, Alur, Pappas & Lee 2019), where the state feedback controller is given in the from

of neural network. In Quadrotor benchmark, we induce determinism by fixing the control law based on 8

control actions generated by the controller.

2https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
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For each benchmark, we generate a given number (N is typically 30 or 50) of trajectories, where the

step size for ODE solvers (s) and the time bound are provided by the user. The data used for training the

neural network is collected as described in 5.1. We use 90% of the data for training and 10% for testing.

We use the Python Multilayer Perceptron implemented as Sequential model in Keras (Chollet et al. 2015)

library with Tensorflow as the backend. The network has 8 layers with each layer having 512 neurons.

The optimizer used is stochastic gradient descent. The network is trained using Levenberg-Marquardt

backpropagation algorithm optimizing the mean absolute error loss function, and the Nguyen-Widrow

initialization.

The activation function used to train the network is relu for all benchmarks except Mountain car for

which sigmoid performs better because the NN controller is trained with sigmoid activation. Note that

the choice of hyper-parameters such as number of layers and neurons, the loss and activation functions is

empirical, and is motivated by some prior work (Goyal & Duggirala 2019). We evaluate the network

performance using root mean square error (MSE) and mean relative error (MRE) metrics. The training

and evaluation are performed on a system running Ubuntu 18.04 with a 2.20GHz Intel Core i7-8750H

CPU with 12 cores and 32 GB RAM. The network training time, MSE and MRE are given in Tables 5.1

and 5.2 respectively. Time bound is number of steps for which the system simulation is computed.

Benchmark Dims Step size Total steps Training MSE MRE
(sec) Time (min)

Brussellator 2 0.01 500 40.0 0.14 0.34
Buckling 2 0.01 500 25.0 2.38 0.18

Lotka 2 0.01 500 27.0 0.38 0.31
Jetengine 2 0.02 300 35.0 0.086 0.63

Continuous Vanderpol 2 0.01 500 75.50 0.15 0.29
Nonlinear Lacoperon 2 0.1 500 66.0 0.12 0.33
Dynamics Roesseler 3 0.02 500 42.0 0.58 0.087

Lorentz 3 0.01 500 22.0 1.08 0.11
Steam 3 0.01 500 35.0 0.34 0.07

C-Vanderpol 4 0.01 500 70.0 0.18 0.15
HybridOsc. 2 0.01 500 80.0 0.35 0.11

Hybrid/ SmoothOsc. 2 0.01 500 38.5 0.40 0.096
NN Systems Mountain Car 2 - 100 12.5 0.015 0.79

Quadrotor 6 0.01 120 40.0 0.064 0.20

Table 5.1: Training results for sensitivity function approximator NΦ in NeuralExplorer. Dims is the
number os system variables. MSE and MRE are respectively mean squared error and mean relative error.
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Benchmark Dims Step size Total steps Training MSE MRE
(sec) Time (min)

Brussellator 2 0.01 500 67.0 1.01 0.29
Buckling 2 0.01 500 42.0 0.59 0.17

Lotka 2 0.01 500 40.0 0.50 0.13
Jetengine 2 0.01 300 34.0 1.002 0.26
Vanderpol 2 0.01 500 45.50 0.23 0.23

Continuous Lacoperon 2 0.2 500 110.0 1.8 0.46
Nonlinear Roesseler 3 0.02 500 115.0 0.44 0.07
Dynamics Lorentz 3 0.01 500 67.0 0.48 0.08

Steam 3 0.01 500 58.0 0.13 0.057
C-Vanderpol 4 0.01 500 75.0 0.34 0.16
HybridOsc. 2 0.01 1000 77.0 0.31 0.077

Hybrid/ SmoothOsc. 2 0.01 1000 77.5 0.23 0.063
NN Systems Mountain Car 2 - 100 10.0 0.005 0.70

Quadrotor 6 0.01 120 25.0 0.0011 0.16

Table 5.2: Training results for inverse sensitivity function approximator NΦ−1 in NeuralExplorer.

5.3 Space Space Exploration Using an Approximator

We now present various applications in the domain of state space exploration using the neural

network approximations of sensitivity and inverse sensitivity. The goal of state space exploration is

to search for trajectories that satisfy or violate a given specification. We primarily concern ourselves

with a safety specification, that is, whether a specific trajectory reaches a set of states labelled as unsafe.

However, this unsafe set can denote the violation of any performance specification (Remark 1). In order

to search for such trajectories, we present various empirical techniques that use both forward and inverse

sensitivity.

5.3.1 Reaching a Specified Destination Using Inverse Sensitivity Approximator

In the course of state space exploration, after testing the behavior of the system for a given set of test

cases, the control designer might choose to explore the behavior of a system that reaches a destination or

approaches the boundary condition for safe operation. Given a domain of operation D, we assume that

the designer provides a desired target state z (with an error threshold of δ) that is reached by a trajectory

at time t. Our goal is to generate a trajectory ξ such that it visits a state in the δ neighborhood of the

target z at time t.

Our approach for generating the target trajectory is as follows. First, we generate an anchor trajectory

ξA from a randomly sampled state in the initial set Θ, and compute the difference vector of target state z
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and ξA(t). We now use the inverse sensitivity approximator NΦ−1 to estimate the perturbation required

at the initial state such that the trajectory after time t goes through z. Since the neural network can

only approximate the inverse sensitivity function, the trajectory after the perturbation need not visit

δ neighborhood of the destination. However, we can repeat the procedure until a threshold on the

number of iterations (K) is reached or the δ threshold is satisfied. The pseudo code of this procedure

called ReachTarget abbreviated asRT , is given in Algorithm 8. To summarize, it estimates the inverse

sensitivity at each step to displace the initial state, generates the simulation from modified initial state,

and treats this simulation as the new anchor. k is the number of simulations generated.

input :simulator: ξ, time instance: t ≤ T , reference trajectory: ξA, destination: z ∈ D,
Iterations bound: K, function NΦ−1 that approximates Φ−1, initial set: Θ, and threshold:
δ.

output : iterations: k, final trace: ξ(xk0, ·), final distance: dka, final relative distance: dr
1 x00, x

0
t ← ξA(0), ξA(t) ; // states at time 0 and t

2 v0 ← z − x0t ; // initial vector difference with z

3 dinit ← d0a ←∥v0∥ ; // initial distance

4 k ← 0;
5 while (dka > δ) & (k < K) do
6 v̂k− ← NΦ−1(xkt , v

k, t) ; // predict vk−
7 xk0 ← xk0 + v̂k− ; // perturb xk

0

8 xk+1
0 ← xk0;

9 ξk+1
A ← ξ(xk+1

0 , ·) ; // new anchor

10 xk+1
t ← ξk+1

A (t) vk+1 ← z − xk+1
t ; // new vector difference

11 dk+1
a ← ∥vk+1∥ ; // update distance to z

12 k ← k + 1 ; // increment corrections by 1

13 end while
14 dr ← dka/dinit ; // update relative distance

15 return (k, ξkA, d
k
a, dr);

Algorithm 8: ReachTarget (RT ) algorithm

5.3.2 Evaluation of ReachTarget on Standard Benchmarks

We evaluate the performance of ReachTarget (or, RT ) algorithm by randomly sampling a target

state z in the domain of interest and letRT generate a trajectory that goes through the δ-neighborhood

of the target at a specified time t. Typically,RT executes the loop in lines 2-12 for ∼ 10 times before

arriving in the δ-neighborhood of the target.
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Benchmark Dims Iteration count = 1 Iteration count = 5
da dr Time (ms) da dr Time (ms)

Brussellator 2 [0.19 - 1.87] [0.23 - 0.74] 11.38 [0.003- 0.22] [0.01 - 0.12] 31.34
Buckling 2 [1.67 - 11.52 [0.17 - 0.45] 13.61 [0.36- 2.09] [0.06 - 0.31] 34.51

Lotka 2 [0.08 - 0.24] [0.21 - 0.45] 12.38 [0.02 - 0.07] [0.09 - 0.22] 34.28
Jetengine 2 [0.05 -0.20] [0.19 - 0.28] 15.96 [0.0004 - 0.05] [0.006 - 0.14] 38.26
Vanderpol 2 [0.29 - 0.58] [0.16 - 0.66] 12.34 [0.03 - 0.18] [0.04 - 0.16] 34.02
Lacoperon 2 [0.03 - 0.13] [0.12 - 0.28] 17.18 [0.003 - 0.03] [0.02 - 0.16] 37.34
Roesseler 3 [0.72 - 2.02] [0.20 - 0.34] 16.08 [0.21 - 0.63] [0.06 - 0.14] 38.26
Lorentz 3 [1.24 - 5.60] [0.29 - 0.58] 24.72 [0.20 - 0.70] [0.05 - 0.17] 60.18
Steam 3 [1.59 - 5.21] [0.31 - 0.67] 8.68 [0.41 - 1.8] [0.08 - 0.30] 69.80

C-Vanderpol 4 [0.87 - 1.72] [0.34 - 0.60] 17.44 [0.20 - 0.40] [0.07 - 0.18] 44.86
HybridOsc. 2 [0.28 - 0.92] [0.13 - 0.29] 16.70 [0.03 - 0.31] [0.01 - 0.10] 45.82
SmoothOsc. 2 [0.37 - 1.09] [0.13- 0.23] 52.22 [0.04 - 0.42] [0.02 - 0.18] 136.72

Mountain Car 2 [0.004 - 0.24] [0.08 - 0.22] 138.90 [0.0002 - 0.005] [0.03 - 0.12] 266.76
Quadrotor 6 [0.014 -1.09] [0.10 - 0.67] 284.96 [0.004 - 0.04] [0.02 - 0.13] 668.78

Table 5.3: The evaluation results ofRT after 1 and 5 iterations.

For evaluations, we runRT 500 times by selecting random anchor trajectory, time step, and target

state for each run. In every run, we compute the relative dr and absolute distance da between the target

and the state of the trajectory generated byRT after one or five iterations of the main loop. Finally, we

report in Table 5.3 the range of values obtained for da and dr over those 500 runs. The demonstrations

on a couple of benchmarks are shown in Figure 5.1. Iteration 0 refers to initial anchor ξA. Subsequent 3

anchors/simulations are labeled as Iteration 1, 2 and 3 respectively. As shown, the course gets closer to

the target with each iteration. In this way, our algorithm can also be used to generate multiple trajectories

that reach within a certain neighborhood of a given target (Figure 5.2) or a set of target states (Figure 5.3).

Discussion: It can be observed from Table 5.3 that our technique is capable of achieving below 10%

relative distance in almost all cases after 5 iterations. That is, the trajectory generated byRT algorithm

after 5 iterations is around 10% away from the target than the initial trajectory. This was the case even

for chaotic systems, hybrid systems, and for control systems with neural network components. While

training the neural network might be time taking process, the average time for generating new trajectories

that approach the target is very fast (less than a second for all cases). The high relative distance in some

cases might be due to high dimensionality or large distance to the target which may be reduced further

with more iterations.

We now discuss and demonstrate a few variations of our algorithm.

1. Uncertainty in time: For many practical purposes, it may not be possible to know the exact time

instance at which the target is reachable from given initial configuration. In such cases, one can

provide a time interval, and invoke the algorithm to iteratively find a time instance where the
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(a) Coupled Vanderpol (b) Lotka

Figure 5.1: Basic demonstrations ofRT routine.

(a) Roesseler (b) Lorentz

Figure 5.2: Generating multiple executions arriving in a neighborhood of a given target

(a) Vanderpol (b) Hybrid Linear Oscillator

Figure 5.3: Generating executions arriving in the respective neighborhoods of multiple destinations
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simulation gets reasonably close to the target. Consider the designer is interested in finding the

maximum distance (or, height) the car can go to on the left hill in Mountain Car. By providing an

ordered list of target states and a time interval, she can obtain the maximum distance as well the

time instance at which it achieves the maxima (Figure 5.4a). If there is no state in the given initial

set from which the car can go to a particular target, the approach, as a side effect, can also provide

a suitable initial candidate that takes the car as close as possible to that target. In Quadrotor, one

can find an initial configuration from which the system can go to a particular location during a

given time interval (Figure 5.4b). Note that the Quadrotor benchmark has 5 discrete modes and

each linear segment in the figure corresponds to the system evolution in a particular mode.

2. Generalization: Based on our Mountain Car experiment, we observed that, for the given initial

set, the maximum distance the car can achieve on the left hill is approx. 1.17. However, even

after expanding the initial set from originally [-0.55, -0.45][0.0, 0.0] to [-0.60, -0.40][0.0, 0.0], our

approach finds the maximum achievable distance (1.3019) such that the car can still reach on the

top of the right hill (shown in Fig. 5.5). This shows that our neural network is able to generalize

the inverse sensitivity over trajectories that go beyond the test cases considered during the training

process.

3. Evaluating MRE for Random Targets: So far we have evaluated our technique with respect to the

target states that are reachable. We also perform the evaluation of ReachTarget by generating a

random trajectory from the domain and change its course at a provided time interval [25, 70] by a

randomly generated vector. We generate a large number of vectors in the unit sphere, scale them

on the scale 1-10, and compute the absolute as well as relative error after first iteration at time

instances in the given interval. The results for Roesseler system are demonstrated in Figure 5.6.

The horizontal axis denotes the vector norm. Each colored-plot corresponds to a particular time

instance. The absolute error increases linearly with vector size, whereas the relative error appears

to be converging. Similar behavior is observed for other systems as well.

5.3.3 Falsification of Safety Specification

One of the widely used methods for performing state space exploration are falsification meth-

ods (Sankaranarayanan & Fainekos 2012, Nghiem et al. 2010). Here, the specification is provided in some
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(a) Mountain Car

(b) Quadrotor

Figure 5.4: Illustration on how to useRT routine for time given as an interval.
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Figure 5.5: Generalizability. This plot for MC benchmark demonstrates thatRT is capable of generaliz-
able to the behaviors outside of the test suite.

(a) Absolute error (b) Relative error

Figure 5.6: RT demonstrations for random destinations. Figures depict that the approximation error
changes in proportion to the magnitude of the inverse sensitivity.
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temporal logic such as Signal or Metric Temporal Logic (Maler, Nickovic & Pnueli 2008, Koymans 1990).

The falsifier then generates a set of test executions and computes the robustness of trajectory with respect

to the specification. It then invokes heuristics such as stochastic global optimization for discovering a

trajectory that violates the specification.

Given an unsafe set U , we provide a simple algorithm to falsify safety specifications. We generate a

fixed number (m) of random states in the unsafe set U . Then, using the ReachTarget sub-routine, generate

trajectories that reach a vicinity of the randomly generated states in U . We terminate the procedure when

we discover an execution that enters the unsafe set U . We compare the number of trajectories generated

by STL with the number of trajectories generated by ReachTarget in Figure 5.7. The box in each of the

figures denotes the initial set and the red box represents the unsafe set. Each of the points in the initial set

represents a sample trajectory generated by the falsification engine. When a falsification tool fails to find

a counterexample, NeuralExplorer may help (using much less number of samples) the system designer

by providing geometric insight into the reason why the property is not satisfied.

Falsification using approximation of inverse sensitivity enjoys a few advantages over other falsifica-

tion methods. First, since our approach approximates the inverse sensitivity, and we use the ReachTarget

sub-routine; if the approximation is accurate to a certain degree, each subsequent trajectory generated in

ReachTarget would make progress towards the destination. Second, if the safety specification is changed

slightly the robustness of the trajectories with respect to new specification and the internal representation

for the stochastic optimization solver has to be completely recomputed. However, since our trajectory

generation does not rely on computing the robustness for all the previously generated samples, our

algorithm is effective even when the safety specification is modified. The third and crucial advantage of

our approach lies when the falsification tool does not yield a counterexample. In those cases, the typical

falsification tools cannot provide any geometric insight into the reason why the property is not satisfied.

However, using an approximation of inverse sensitivity, the system designer can envision the required

perturbation of the reachable set in order to move the trajectory in a specific direction. This geometric

insight would be helpful in understanding why a specific trajectory does not go into the unsafe set.

Considering these advantages, the results demonstrated in Figures 5.7a, 5.7b, 5.7c and 5.7d should

not be surprising. We also would like to mention that these advantages come at the computational price

of training the neural networks to approximating the inverse sensitivity. In addition to the examples

shown above, we have included Figures 5.7e and 5.7f where S-TaLiRo terminates with a falsification
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(a) S-TaLiRo (b) NeuralExplorer

(c) S-TaLiRo (d) NeuralExplorer

(e) S-TaLiRo: Buckling (f) NeuralExplorer: Buckling

Figure 5.7: Falsification demonstrations in NeuralExplorer and S-TaLiRo for Brussellator, SA and
Buckling benchmarks.
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trajectory faster than our approach. The reasons for such cases and methods to improve falsification

using NeuralExplorer are a topic of future work.

5.4 Generating trajectories for Reachability

Another commonly used technique for performing state space exploration is generation of trajectories

from a set of random points generated using an apriori distribution. Based on the proximity of these

trajectories to the unsafe set, this probability distribution can further be refined to obtain trajectories that

move closer to the unsafe set. However, one of the computational bottlenecks for this is the generation

of trajectories. Since the numerical ODE solvers are sequential in nature, the refinement procedure for

probability distribution is hard to accelerate.

For this purpose, one can use the neural network approximation NΦ of sensitivity to predict many

trajectories in an embarrassingly parallel way. Here, a specific set of initial states for the trajectories

are generated using a pre-determined distribution. Only a few of the corresponding trajectories for the

initial states are generated using numerical ODE solvers. These are called as anchor trajectories. The

remainder of trajectories are not generated, but rather predicted using the neural network approximation

of sensitivity and anchor trajectories as ξ(xi, t) +NΦ(xi, xj − xi, t). Additionally, the designer has the

freedom to choose only a subset of the initial states for only a specific time interval for prediction and

refine the probability distribution for generating new states. This would also allow us to specifically

focus on a time interval or a trajectory without generating the prefix of it. Figures 5.8a and 5.8b show the

projected and actual trajectories, respectively, and for a particular cluster of points.

5.5 Discussion on Density based profiling

Similar to the inverse sensitivity based falsification, one can use the density based search space

method for generating trajectories that reach a destination and violate a safety specification. The search

procedure would work as follows. First, an anchor trajectory is generated and time intervals of its

trajectory that are closer to the unsafe set are identified. Then a set of new initial states are generated

according to an apriori decided distribution. Instead of generating the trajectory from these initial states,

the predicted trajectories using the anchor trajectory and neural network approximation of sensitivity is

generated specifically for the time intervals of interest. Then, the initial state with the predicted trajectory
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(a) (b)

Figure 5.8: Predicting trajectories using sensitivity approximation

(a) Brussellator (b) Brussellator

Figure 5.9: Density based profiling using sensitivity approximation for falsification. The initial states
explored in this iterative process are classified based on the distance between their respective trajectories
and the unsafe state.

that is closest to the unsafe set is (greedily) chosen and a new anchor trajectory from the selected initial

state is generated. This process of generating anchor trajectory, new distribution of initial states, and

moving closer to the unsafe set is continued until you reach within the threshold that is generated by the

user. Demonstration of this procedure on Brussellator system is shown in Figure 5.9.

Notice that this approach gives an underlying intuition about the geometric behavior of neighboring

trajectories. A similar method for density based estimation using inverse sensitivity approximation can

also be devised. Instead of sampling the initial set, the density based method for inverse sensitivity

generates random states with the given unsafe set and then generates a density map. The routine, starting

from a reference trajectory, attempts to iteratively find a falsifying trajectory for a given unsafe set.
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(a) Original density map (b) Density map for a different unsafe spec

(c) Original Density map (d) Density map for a different time instance

Figure 5.10: Density based profiling of the initial set using inverse sensitivity approximation. Notice the
difference in the distance profiles (color densities) as we select a difference unsafe spec in Brusselator
(Figures 5.10a and 5.10b) or change the time instance in Vanderpol (Figures 5.10c and 5.10d), thus
providing useful insights to the designer during falsification.

The initial states explored in this process are colored according to the distance between their respective

trajectories and the unsafe states. These color densities help in identifying regions in the initial set

potentially useful for falsification. An example of such a density map generated is given in Fig. 5.10.

5.6 Chapter Summary

This chapter has presented NeuralExplorer framework for state space exploration of closed loop

control systems using neural network. The framework learns two key properties of a dynamical system

called sensitivity and inverse sensitivity in the form of neural network approximations. It has discussed

how such sensitivity functions approximations can be utilized in performing falsification, predicting

system trajectories, profiling initial set, and generating some corner case executions.
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It has shown that such a state space exploration technique can give a geometric insight into the

behavior of the system and provide more intuitive information to the user, unlike earlier black box

methods. The evaluation results have demonstrated that our method can not only be applied to standard

nonlinear dynamical systems but also for control systems with neural network as feedback functions.
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CHAPTER 6: NEXG: PROVABLE AND GUIDED STATE SPACE EXPLORATION OF NEURAL
NETWORK CONTROL SYSTEMS USING LOCAL SENSITIVITY APPROXI-

MATION

The previous chapter presented the state space exploration framework using sensitivity approximation.

While achieving the desired goal of systematic exploration based on learning inherent system characteris-

tics, the framework suffers from high training time, sub-optimal coverage and lack of theoretical analysis

on its convergence.

This chapter 1 introduces NExG framework which involves approximating the local sensitivity (i.e.,

for small perturbation) of the trajectories of the closed loop dynamics. Additionally, the theoretical

framework is presented which establishes that the new method will produce a sequence of trajectories

that converge to the target state at a geometric rate. The thorough evaluation on various systems exhibits

that the state space exploration based on local sensitivity approximation outperforms NeuralExplorer and

achieve significant improvement in both the quality (coverage) and performance (convergence rate).

We begin with a sub-routine to show how to use an inverse sensitivity approximator NΦ−1(xt, v, t)

for small values of ∥v∥ in order to perform guided state space exploration given a destination state.

We then theoretically analyze the convergence of the presented technique followed by the suggestions

on guiding better approximators. Towards the end, we adapt our approach to falsify an MTL safety

specification.

6.1 Reaching a destination at specified time

As discussed earlier, in the course of state space exploration, the designer might want to explore the

system behavior that reaches a given destination or approaches the boundary condition for safe operation.

Given a domain of operation, and a sample trajectory ξ, the control system designer desires to generate

1The content of this chapter is previously appeared in preliminary form in the following preprint:

Goyal, Manish, Miheer Dewaskar, and Parasara Sridhar Duggirala. 2022. NExG: Provable and Guided State Space
Exploration of Neural Network Control Systems using Local Sensitivity Approximation. In arXiv:2207.03884.
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Figure 6.1: Toy execution of Algorithm 9 for a system consisting of a constant horizontal vector field in R2.

a trajectory that reaches a destination state z (with an error threshold of δ) at time t. Using previous

notation, our goal is to find a state x such that the state ξ(x, t) lies in the δ-neighborhood of z.

A toy illustration of our the state space exploration technique with oracle access to the exact inverse

sensitivity function is shown in Figure 6.1. Given an initial point x0, a destination z, and time t, we

successively move the initial point in small steps in the direction specified by Φ−1, so that the trajectory

starting from the new initial point at time t moves closer to that target z with each step. In practice, since

the exact inverse sensitivity function is unknown, we use a neural-network based approximation instead.

Formally, given an anchor trajectory starting from initial state x0 ∈ θ (typically chosen at random),

we first compute the vector w0 .
= z − x0t where x0t

.
= ξ(x0, t). Next, we estimate the inverse sensitivity

v̂0−
.
= NΦ−1(x0t , sw

0, t) required at x0 to move towards z, and then move x0 by v̂0−. Here, the input

s ∈ (0, 1), called as the scaling factor, controls the magnitude of movement at each step. This process is

again repeated: move the new initial state x10
.
= x0 + v̂0− by the vector v̂1− = NΦ−1(x1t , sw

1, t), where

w1 .
= z−x1t and x1t

.
= ξ(x10, t) is the point reached at time t by a new simulated trajectory for the system

starting from initial state x10. This process is repeated until xkt reaches a pre-specified neighborhood of z.

Since NΦ−1 is only an approximation of Φ−1, the repeated application of the former will typically

compound the approximation error. Hence periodically simulating system trajectories starting from

intermediate initial states – a step that we term course correction – is important to keep the exploration

on track. Course correction steps not only confirm that the estimates at time t of the trajectory are indeed

close to the z, but they also allow our procedure to make suitable adjustments if that is not indeed the

case.

105



(a) Correction after every step. The number of correc-
tions performed (k) is 23.

(b) Correction after every 4 steps. The number of correc-
tions performed (k) is 7.

Figure 6.2: Periodically correcting the course of exploration (i.e., simulating a new trajectory to aid the
search) at different periods.

Since system simulation is expensive, our framework allows for course correction to be performed

more or less frequently as desired. The parameter p is designated as correction period because the

new anchor trajectory attempts to correct the course once for every p invocations of NΦ−1(·). Observe

the effect of performing course corrections at every step (i.e. p = 1) and every 4 steps (i.e. p = 4)

in Figures 6.2a and 6.2b respectively. Algorithm 9, which we call Reach Destination (abbreviated as

RD), provides further details of the our procedure. After termination, algorithmRD returns a 4-tuple

consisting of: the number of course corrections k, the trace ξkA of the last anchor trajectory, the absolute

distance dka between the target z and ξkA(t), and the relative distance dr.

Notice that course corrections count is same as the number of trajectories (simulations) generated. If

we were to consider physically simulating the plant (which can be expensive) as a part of the operational

cost, it would make sense to minimize the number of trajectories we simulate. Limiting the number of

simulated trajectories also makes the exploration algorithm more user-friendly by saving their time. Thus,

we choose the number of course corrections as the primary metric for performance evaluation.

6.2 Theoretical analysis of the convergence of ReachDestination

We now discuss the convergence of Algorithm 9. As seen in Figure 6.1, the distance between xit and

the target z contracts by a factor of 0 < 1 − sp < 1 in each iteration if the exact inverse sensitivity is

used. That is,
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input :simulator: ξ, time instance: t ≤ T , reference trajectory: ξA, destination: z ∈ D, course
corrections bound: K, function NΦ−1 that approximates Φ−1, initial set: θ, correction
period: p, scaling factor: s, and threshold: δ.

output :course corrections: k, final trace: ξ(xk0, ·), final distance: dka, final relative distance: dr
1 x00, x

0
t ← ξA(0), ξA(t) ; // states at time 0 and t

2 w0 ← z − x0t ; // initial vector difference with z

3 dinit ← d0a ←∥w0∥ ; // initial distance

4 k ← 0;
5 while (dka > δ) & (k < K) do
6 vk ← s× wk;
7 for 1 ≤ j ≤ p do
8 v̂k− ← NΦ−1(xkt , v

k, t) ; // predict vk−

9 xk0 ← x̂k,θ0 ← projθ(x
k
0 + v̂k−) ; // perturb xk

0

10 xkt ← xkt + vk ; // progress xk
t

11 end for
12 xk+1

0 ← xk0;
13 ξk+1

A ← ξ(xk+1
0 , ·) ; // new anchor

14 xk+1
t ← ξk+1

A (t) ; // course correction

15 wk+1 ← z − xk+1
t ; // new vector difference

16 dk+1
a ← ∥wk+1∥ ; // update distance to z

17 k ← k + 1 ; // increment corrections by 1

18 end while
19 dr ← dka/dinit ; // update relative distance

20 return (k, ξkA, d
k
a, dr);

Algorithm 9: ReachDestination (RD) algorithm

∥xkt − z∥ ≤ (1− sp)k∥x0t − z∥ (6.1)

Hence, the generated trajectory will reach the desired destination within an error of δ after k∗ iterations

where,

k∗ =
log(∥x0t − z∥/δ)
− log(1− sp)

. (6.2)

However, in RD algorithm, instead of exact inverse sensitivity, we use its approximation. In this

section, we show that it is possible to achieve a similar geometric rate of convergence even with an

approximation. However the convergence ofRD can fail badly in cases when the system is chaotic or

the approximation error is large. To this end we now make assumptions on the regularity of the system

and the magnitude of the approximation error that will ensure convergence.
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Assumption 1 Suppose there are functions η1, η2 : [0, T ]→ [0,∞) so that

η1(t)∥x− x′∥ ≤ ∥ξ(x, t)− ξ(x′, t)∥ ≤ η2(t)∥x− x′∥ (6.3)

for each x, x′ ∈ D and t ∈ [0, T ].

The functions η1 and η2, sometimes called as witnesses to the discrepancy function (Duggirala, Mitra

& Viswanathan 2013), provide worst-case bounds on how much the distance between trajectories expand

or contract starting from different initial states. These functions (and their ratios) can be considered as

a measure of the regularity of the system. Although in practice it may be hard to obtain the values η1

and η2 for the system at hand, exponential lower bound for η1 and a similar upper bound for η2 can be

obtained using Grönwall’s inequality under a Lipschitz continuity assumption on the vector field. As

shown in the following lemma, Assumption 1 also ensures that Φ−1(x, v, t) is a Lipschitz function of its

inputs x and v. This is important as such functions can be approximated by Neural networks of bounded

depth (see e.g. (Gühring, Raslan & Kutyniok 2020, Theorem 4.5)).

Lemma 3 If Assumption 1 is satisfied then for any t ∈ [0, T ]

∥Φ−1(z′, v′, t)− Φ−1(z, v, t)∥ ≤
(
2∥z − z′∥+ ∥v − v′∥

)
/η1(t)

Proof 5 By taking (x, x′) = (ξ−1(y, t), ξ−1(y′, t)) in Assumption 1, note that ∥ξ−1(y, t)−ξ−1(y′, t)∥ ≤

∥y − y′∥/η1(t) for any y, y′ ∈ D. The Lemma now follows by suitably applying triangle inequality

and the definiton of Φ−1.

In general, we will use the following model to measure the approximation error of NΦ−1 . The

separate roles played by the relative error εrel and the absolute error εabs will become more clear in the

context of Theorem 5.

Definition 23 NΦ−1 is called an (εrel, εabs)-approximator of Φ−1 upto radius r and time T if

∥NΦ−1(xt, v, t)− Φ−1(xt, v, t)∥ ≤ εrel∥Φ−1(xt, v, t)∥+ εabs

for any xt ∈ D, t ∈ [0, T ] and v ∈ Rn, with ∥v∥ ≤ r.
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We are now ready state Theorem 5 which bounds the distance between z and iterate xkt in the kth

iterations of the outer loop inRD when the system satisfies Assumption 1 and NΦ−1 satisfies Definition

23 with sufficiently small error terms (εrel, εabs). To further interpret Theorem 5, note that:

1. When the additive error εabs ≈ 0 is negligible, the relative error εrel < η1(t)η2(t)
−1 is suitably

small depending on the system regularity, and s takes a value close to its upper bound, then

Equation (6.3) holds for any k ∈ N with rε(t)/s ≈ 0. Hence, in this case, a geometric convergence

similar to that described for the toy example from above continues to hold with a slightly slower

convergence rate (i.e. − log(1− spγε(t)) instead of − log(1− sp)).

2. On the other hand, when εabs is small (so that rε(t) ≤ r) but non-negligible, the last term in

Equation 6.3 cannot be ignored. In this case, if the assumptions of Theorem 9 are satisfied, one

obtains the guarantee that limk→∞ da(k) ≤ rε(t)/s. Hence if rε(t)/s < δ, the termination

condition xkt ∈ Bδ(z) will eventually be satisfied. More precisely, RD will find an xkt in the

δ-neighborhood of z after at most k ≤ k∗ = ⌈log( δ−rε(t)/s
dinit

)/ log(1− spγε(t))⌉ iterations.

Theorem 5 (Convergence of RD) Fix the domain D = Rd and a time T > 0. Suppose

1. The system satisfies Assumption 1, and

2. NΦ−1 is an (εrel, εabs)-appoximation of Φ−1 for radius r and time T .

3. εrel, εabs ≥ 0 values small enough so that for each t ∈ [0, T ], γε(t)
.
= 1−εrelη2(t)η1(t)

−1 > 0

and rε(t)
.
= εabsη2(t)/γε(t) ≤ r.

Suppose the inputs θ = D, t ∈ [0, T ], and the destination z ∈ D to Algorithm 9 are given. For

sufficiently small s, the distance between the trajectory generated by Algorithm 9 after k iterations

of the outer loop is given as

∥xkt − z∥ ≤ (1− spγε(t))
k∥x0t − z∥+ rε(t)

s
(6.4)

for any k ∈ N.

The proof of Theorem 5, particularly for the case of εabs = 0, can be seen to be a suitable contraction

argument. Formal details are given below.
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Proof 6 (Proof of Theorem 5) In this proof, for mathematical clarity, we slightly the change nota-

tion for the variables used in Algorithm 9. For each k ≥ 0, let x0(k), xt(k), w(k) and da(k) denote

the values of the variables xk0, x
k
t , w

k and dka after k executions of the outer loop in Algorithm 9.

Hence the equalities w(k) = z − xt(k), d(k) = ∥w(k)∥, and xt(k) = ξ(x0(k), t) are satisfied for

any k ≥ 0.

Since θ = D, unwinding the inner loop in Algroithm 9, note

x0(k + 1) = x0(k) +

p∑
l=1

NΦ−1(xt(k) + (l − 1)sw(k), sw(k), t). (6.5)

Let ỹ(k) .
= xt(k+1)− xt(k) denote the increment between the k and (k+1)th iteration, and using

the fact that xt(k) = ξ(x0(k), t) note

ỹ(k) = ξ (x0(k + 1), t)− ξ(x0(k), t). (6.6)

The quantity ỹ(k) approximates the true target increment given by

y(k)
.
= ξ

(
x0(k) + Φ−1(xt(k), spw(k), t), t

)
− ξ(x0(k), t). (6.7)

Further, note using Definition (2.6) of Φ−1 that

y(k) = ξ
(
x0(k) + ξ−1(xt(k) + spw(k), t)− ξ−1(xt(k), t), t

)
− ξ (x0(k), t)

= ξ
(
x0(k) + ξ−1(xt(k) + spw(k), t)− x0(k), t

)
− xt(k)

= xt(k) + spw(k)− xt(k) = spw(k). (6.8)
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Subtracting (6.7) from (6.6), and using the upper bound from (6.3)

∥ỹ(k)− y(k)∥ =
∥∥ξ (x0(k + 1), t)− ξ

(
x0(k) + Φ−1(xt(k), spw(k), t), t

)∥∥
≤ η2(t)∥x0(k + 1)− x0(k)− Φ−1(xt(k), spw(k), t)∥

= η2(t)

∥∥∥∥∥
p∑

l=1

NΦ−1(xt(k) + (l − 1)sw(k), sw(k), t)

−
p∑

l=1

Φ−1(xt(k) + (l − 1)sw(k), sw(k), t)

∥∥∥∥∥
≤ pη2(t) max

l=1,...,p
∥NΦ−1(xt(k) + (l − 1)sw(k), sw(k), t)

−Φ−1(xt(k) + (l − 1)sw(k), sw(k), t)
∥∥ (6.9)

where the second equality is obtained by rewriting Φ−1(xt(k), spw(k), t) as a telescoping sum

and using (6.5). To bound the terms under the maximum in (6.9), we now use that NΦ−1 is an

(εrel, εabs)-approximator of Φ−1. Using Definition 23 followed by the lower bound in (6.3), we obtain

∥NΦ−1(x, v, t)− Φ−1(x, v, t)∥ ≤ εrel∥Φ−1(x, v, t)∥+ εabs

≤ εrelη1(t)
−1∥v∥+ εabs

(6.10)

as long as x ∈ D, ∥v∥ ≤ r and t ∈ [0, T ]. Using sdinit ≤ r, we have

∥ỹ(k)− y(k)∥ ≤ sp∥w(k)∥εrelη2(t)η1(t)
−1 + pη2(t)εabs (6.11)

whenever ∥w(k)∥ ≤ dinit. With the above estimate, we obtain using (6.8):

w(k + 1)− w(k) = −xt(k + 1) + xt(k)
.
= −ỹ(k) = −y(k) + y(k)− ỹ(k)

= −spw(k) + y(k)− ỹ(k).
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Recall da(k)
.
= ∥w(k)∥ = ∥z − xt(k)∥. Combining the above display with (6.11) shows the

following recursive inequality for da(k) whenever da(k) ≤ dinit:

da(k + 1) = ∥w(k + 1)∥ = ∥(1− sp)w(k) + y(k)− ỹ(k)∥

≤ (1− sp)∥w(k)∥+ ∥ỹ(k)− y(k)∥

≤ (1− sp{1− εrelη2(t)η1(t)
−1})da(k) + pη2(t)εabs

= (1− spγε(t))da(k) + pη2(t)εabs

where we have used the assumption that sp ≤ 1 in first inequality, (6.11) in the second inequality,

and the notation γε(t)
.
= 1− εrelη2(t)η1(t)

−1 in the final equality. From the assumed lower bound

on s, we have pη2(t)εabs ≤ spγε(t)dinit, and the hence the condition da(k) ≤ dinit continues to

holds for any k ∈ N by induction. Hence recursively applying the inequality in the last display we

obtain

da(k) ≤ (1− spγε(t))
kda(0) + pη2(t)εabs

k−1∑
i=0

(1− spγε(t))
k−1

≤ (1− spγε(t))
kdinit +

rε(t)

s
.

(6.12)

where, since spγε(t) ∈ [0, 1), we have used the formula for the infinite geometric sum to obtain the

last inequality.

6.2.1 Guidance on designing better approximators

Theorem 5 also provides guidance on how to design good approximators to use with RD. For

various approximators which one may consider that satisfy Definition 23, εabs will typically be non-

zero. Therefore, Theorem 5 suggests that approximators with small additive error εabs will have better

reachability guarantees when used within RD. This naturally raises the question of how to design

approximators with a small additive error εabs. One important aspect of this is the evaluation radius r > 0.

For any given approximator NΦ−1 , the additive error εabs = εabs(r) in Definition 23 can be considered

as an increasing function of the evaluation radius r. Therefore, one may hope to obtain estimators with

better values of εabs(r) by evaluating for small values of the radius r.

In Figure 6.3, we used testing data to empirically estimate the absolute error εabs(r) for Neural-

Explorer trained on four benchmarks, evaluated for various values of r. Even as r → 0, the εabs(r)
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values of NeuralExplorer seem to approach a non-zero value δ0 = limr→0 εabs(r) > 0. In the light of

Theorem 5, this might explain the lack of convergence of NeuralExplorer that we have observed in certain

empirical examples. Indeed, as the iterates xkt in the NeuralExplorer approach the target z, the error in

the approximation of NΦ−1 might possibly be dominating the increment Φ−1(xt, s(z − xt), t) needed to

proceed towards the target.

Motivated by the above discussion, in this work, we introduce approximators based on neural

networks ÑΦ−1(xt, v/∥v∥, t) that learn for small values of ∥v∥ only the direction (and not the magnitude)

of the vector Φ−1(xt, v, t) ≈ ∇vΦ
−1(xt, 0, t)v. By focusing only on learning the direction, we avoid

numerical issues involved in learning small values. Intuitively, if the value ∥Φ−1(xt, v, t)∥ was indeed

known, we can use the oracle-estimator

NΦ−1(xt, v, t) = ÑΦ−1(xt,
v

∥v∥
, t) · ∥Φ−1(xt, v, t)∥ (6.13)

to approximate Φ−1(xt, v, t) for small values of ∥v∥. Figure 6.3 shows the estimate of the εabs(r) versus

r plot for the oracle estimator 6.13. However, note that outside a testing scenario like that in Figure

6.3, NΦ−1(xt, v, t) cannot be evaluated for the directional approximators. Instead, we directly use

ÑΦ−1(xt,
v

∥v∥ , t) inRD algorithm by the modifications mentioned in Remark 8.

Remark 8 As mentioned above, it may be helpful to work with directional-approximator Ñ(xt, v/∥v∥, t)

for Φ−1(xt, v, t), which learn only the direction (and not the magnitude) of the vector Φ−1(xt, v, t) ≈

∇vΦ
−1(xt, v, t)v for small values of ∥v∥. One may then work directly with the the directional ap-

proximator Ñ(xt, v/∥v∥, t) inRD by simply replacing line 8 with the two statements

(8a) v̂k− ← ÑΦ−1(xkt ,
vk

∥vk∥ , t)

(8b) v̂k− ← (s× ∥vk∥) · v̂k−,

while keeping the rest of the algorithm unchanged.

The NExG algorithms used in the subsequent sections are based on directional-approximators ÑΦ−1

and the corresponding modifications toRD as mentioned in Remark 8.
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Figure 6.3: Empirical values of the additive error εabs in Definition 23 (assuming εrel ≈ 0) for the
approximators NΦ−1 learned for NeuralExplorer and NExG as a function of the evaluation radius r. Note
that we have the used the oracle-estimator NΦ−1 given by (6.13) to estimate the additive error of NExG,
since NExG only learns a directional approximator ÑΦ−1 .

6.3 Evaluation

We choose a standard benchmark suite of control systems with neural feedback functions (Dutta, Chen

& Sankaranarayanan 2019, Jankovic, Fontaine & Kokotovic 1996, Johnson, Lopez, Musau, Tran, Botoeva,

Leofante, Maleki, Sidrane, Fan & Huang 2020, Lopez, Musau, Tran & Johnson 2019) for evaluation. To

be more specific, systems #10-#12 are adopted from (Jankovic, Fontaine & Kokotovic 1996), system #13

is adopted from (Dutta, Chen & Sankaranarayanan 2019) and the rest of the benchmarks are adopted from

the ARCH suite (Johnson et al. 2020, Lopez et al. 2019). Considered benchmarks span 6 dimensional

systems, controllers with 6-10 hidden layers and 100-300 neurons per layer (c.f. Table 6.1).

6.3.1 Network architecture and Training

For each benchmark, we generate a fixed number (40) of anchor trajectories using a given ODE

solver. We generate additional 10 trajectories from the states randomly sampled in the small neighborhood

(∥v∥ = 0.001) of the initial states of each anchor trajectory. We chose step size (h) and steps count (T )

as shown in Table 6.1, however, a user can pick any suitable values for these parameters and the number
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of anchor trajectories. Our preliminary analysis shows that increasing the number of anchor trajectories

from 40 to 50 slightly improves the MRE, however, this improvement comes at the expense of training

time. This trade offs between the amount of data required, training time, distance between neighboring

points, and accuracy of the approximation are subjected to future research. Nonetheless, the evaluations

presented in subsequent sections underscores the promise of our approach even when the resources are

constrained. The data used for training the neural network is collected as previously described. We use

90% of the data for training and 10% for testing.

Table 6.1: Training inverse sensitivity approximator NΦ−1 in NExG. Each neural network feedback
controller configuration is given as the number of hidden layers and the maximum of neurons per layer.
Dims is the number of system variables and T is simulation time bound.

System NΦ−1 Training
NN Max Training

No. Name Dims controller steps Time MSE MRE
config (T) (min) %

#1 ARCH-1 2 6/50 200 8.0 0.018 16.0
#2 ARCH-2 2 7/100 300 11.0 0.038 15.0
#3 ARCH-3 2 5/50 350 14.0 0.014 10.2
#4 S. Pend. 2 2/25 250 9.0 0.021 15.0
#5 ARCH-4 3 7/100 250 10.0 0.007 6.0
#6 ARCH-5 3 7/100 250 10.0 0.009 13.0
#7 ARCH-6 3 6/100 250 10.0 0.007 5.6
#8 ARCH-7 3 2/300 250 11.0 0.01 9.5
#9 ARCH-8 4 5/100 250 12.0 0.005 8.0
#10 ARCH-9-I 4 3/100 250 12.0 0.005 4.2
#11 ARCH-9-II 4 3/20 250 11.0 0.005 7.3
#12 ARCH-9-III 4 3/20 250 11.0 0.005 4.5
#13 Unicycle 4 1/500 250 11.0 0.005 5.3
#14 D. Pend.-I 4 2/25 250 11.0 0.006 8.1
#15 D. Pend.-II 4 2/25 200 10.0 0.02 17.0
#16 I. Pend. 4 1/10 200 9.0 0.007 9.0
#17 ACC-3L 6 3/20 200 11.0 0.004 8.3
#18 ACC-5L 6 5/20 200 11.0 0.004 6.7
#19 ACC-7L 6 7/20 200 12.0 0.004 6.7
#20 ACC-10L 6 10/20 200 12.0 0.005 12.0

We use Python Multilayer Perceptron implemented in Keras 2.3 (Chollet et al. 2015) library with

Tensorflow as the backend. Every network has 3 layers with 512 neurons each and an output layer. The

input layer’s activation function is Radial Basis Function (RBF) with Gaussian basis (Vidnerová 2019).

The other two layers have ReLU activation (except System #11 which has its feedback controller trained
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with Sigmoid activation) and the output layer has linear activation function. The optimizer used

is stochastic gradient descent. The network is trained using Levenberg-Marquardt backpropagation

algorithm optimizing the mean absolute error loss function and the Nguyen-Widrow initialization. The

training and evaluation are performed on a system running Ubuntu 18.04 with a 2.20GHz Intel Core

i7-8750H CPU with 12 cores and 32 GB RAM. The network NΦ−1 training time, mean squared error

(MSE) and mean relative error (MRE) for learning Φ−1 are given in Table 6.1.

Although empirical, our choice for network architecture and evaluation metrics are somewhat

motivated by NeuralExplorer (Goyal & Duggirala 2020b). But the network training time in (Goyal &

Duggirala 2020b) and training error are notably high that may render the work unfavorable for many

practical applications. After performing experiments on multiple activation functions, we chose a non

linear multi variate radial basis function (RBF) with Gaussian basis as the input layer’s activation function

because its performance during evaluation was found to be consistent across benchmarks.

6.3.2 ReachDestination Evaluation

We analyze the performance of Algorithm 9 by picking, at every invocation of the algorithm, a

random reference trajectory ξA, a time t ∈ [0, T ], and a target state z, reachable at time t in the domain

of interest. We choose them randomly to not bias the evaluation of our search procedure to a specific

sub-space. The performance metrics used to evaluate various runs are number of course corrections (k)

and/or minimum relative distance (dr). The threshold δ is fixed as 0.004.

1. Comparison with NeuralExplorer (Goyal & Duggirala 2020b): The neural network architec-

tures used in this work are the same as those used in NeuralExplorer. For a given N ∈ Z+ number

of anchor trajectories, NeuralExplorer creates all possible C(N, 2) pairs of these trajectories for

training as it attempts to learn the inverse sensitivity function for any v ∈ Rn in the domain of

interest. Whereas NExG focuses on learning only the direction of the inverse sensitivity. So we

only sample a few random points (say, y) in a small neighborhood of the initial state of each anchor

trajectory and generate total y ×N pairs. As a consequence, we achieve up to 60% reduction in

the training time. Further, the state space exploration algorithm in NeuralExplorer predicts inverse

sensitivity directly for wk and course corrects at every step; whereas, NExG predicts only the

direction of the inverse sensitivity vector needed to move in the direction wk. Hence the NExG
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Table 6.2: Performance evaluation w.r.t. NeuralExplorer. The common parameters values are δ = 0.004
and K = 30. We fix s = 0.5 and p = 2 for NExG. k is the number of simulations generated. dka is the
distance between ξkA(t) and the destination z, and dr% = (dka/dinit)× 100.

System NeuralExplorer NExG System NeuralExplorer NExG
k dr% k dr% k dr% k dr%

#1 21 14 5 1.8 #11 30 6.1 4 0.4
#2 27 9.6 6 1.3 #12 30 13.8 4 0.6
#3 10 6.4 5 2.7 #13 30 11.4 13 2.3
#4 18 5.5 5 1.4 #14 29 7.6 10 1.9
#5 30 13.3 7 2.7 #15 26 12.7 8 3.7
#6 24 11.2 5 3.9 #16 29 22.5 6 2.2
#7 28 12.5 5 2.1 #17 30 8.0 8 0.4
#8 23 5.5 7 1.7 #18 30 6.7 7 0.4
#9 30 12.3 12 3.5 #19 30 5.5 6 0.3
#10 29 4.3 10 1.0 #20 30 5.4 17 1.6

search is guided by additional parameters like the scaling factor s and the correction period p. We

report in Table 6.2 the mean values of k and dr computed over 250 runs of each technique for each

system. The evaluation shows that NExG has a relative error of 1-4% (with considerably fewer

iterations) as compared to the relative error of 5-15% for NeuralExplorer.

2. Correction period (p) and scaling factor (s): We fix the tuple (ξA, z, t) in each benchmark,

run RD for s ∈ {0.01, 0.1}, p ∈ {2, 5, 10}. The evaluation results presented in Table 6.3 are to

make some important observations and emphasize that the technique performs consistently across

systems. For a fixed tuple (ξA, z, t), change in the number of trajectories (k) generated byRD is

roughly inversely proportional to the change in the product s · p. For example, k in the first row

(i.e., s = 0.01) in System #1 shows that the number of trajectories reduces from ∼ 500 to ∼ 50

(10 fold reduction) when course correction is performed only once for every 10 steps instead of at

every steps. This trend is observed in almost all systems for appropriate values of the product s · p.

It can also be observed that the number of trajectories remains roughly the same for different (s,

p) pairs as long as the product s · p is same. For e.g., the value of k for pairs (s = 0.01, p = 10)

and (s = 0.1, p = 1) is ∼ 50 in System #1. These results are consistent with the theoretical bound

(6.4) that decreases geometrically in k for a fixed value of s · p.

3. Satisfying initial conditions: As the algorithm increments the initial state xk0 in line 9, it may

happen that next x̂k+1
0

.
= (xk0 + v̂k−) is not in the initial set θ, thus violating the initial constraint or
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Table 6.3: RD evaluation. dinit is the distance between the initial reference trajectory ξ0A(t) and
destination z, s is the scaling factor, and p is the correction period. For the reasonable values of the
product s · p, the results validate that k remains roughly the same for same s · p.

Course corrections k
System dinit s

p = 1 p = 5 p = 10

#1 0.43
0.01 528 105 52
0.1 52 10 3

#7 0.39
0.01 418 83 41
0.1 41 7 3

#11 0.37
0.01 381 76 37
0.1 37 7 3

#17 0.85
0.01 550 109 54
0.1 54 10 3

(a) OriginalRD (b) Axis-alignedRD

Figure 6.4: RD can be customized to provide different algorithm(s) for state space exploration with a
constrained initial set. In the figure, the inner box represents the initial set. As shown, originalRD tends
to generate smoother trajectories because it moves in the direction of the target at each step.

resulting into the unsatisfiability of the reachability problem definition. We address this problem

by picking a element-wise projection of x̂k0 in θ denoted as x̂k,θ0
.
= projθ(x̂

k
0) ∈ θ, defined by

x̂k,θ0
.
= argminx∈θ∥x − x̂k0∥. Consider System #10 with 2nd component of its initial set hyper-

rectangle, given as θ[2] .
= [−0.5, 0.0]. Both Figures 6.4a and 6.4b demonstrate how the course of

exploration makes a detour around the initial set boundary in order to satisfy its constraints.

4. Customizing the state space exploration algorithm: Note that the inverse sensitivity approxi-

mator NΦ−1 is agnostic to the exact state space exploration technique. While our implementation

of RD uses this estimator to proceed in a straight line direction towards the destination (i.e. vk

has the same direction as z − xkt ), the progress direction can also be customized. This allows
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for designing custom state space exploration algorithm by prioritizing trajectories along different

directions at different steps. For an n-dimensional system, at every step, one might be interested

in picking a direction among the 2n unit vectors ±êj , j ∈ {1, 2, . . . n} that are aligned with the

orthonormal axes. For instance, one can choose the direction vector that is closest to z − xt. The

illustration of one such axis-aligned approach is given in Figure 6.4b. It emphasizes that instead

of RD, we can also use some other state space exploration algorithm that requires an inverse

sensitivity approximator.

5. Coverage analysis: Given an initial set θ ⊆ D, we assess the coverage among the set of reachable

states at time t ∈ [0, T ] by calculating the proportion of points in the reachable set that RD

converges to, within a neighborhood of radius δ. To obtain a convenient representation of the

reachable set for an n-dimensional system, we use a polygon with faces in the 2n template

directions {±ei : i = 1, 2, . . . , n}. While we have used orthonormal vectors as template directions,

different set of template directions can yield a less conservative approximation of the reachable

set. The polygon in our experiment was obtained by starting from the destination state of random

anchor trajectory ξA(·) at time t, and using a modification of RD to maximally perturbs the

destination state in each of the template directions. This provides as many extremal points as the

number of template directions, and can be used to construct the bounding polygon (e.g. see the

black rectangle in Figure 6.5a), denoted by Z , as an approximation of the reachable set. Next, to

assess the coverage for Z , we sampled 200 points from Z uniformly at random, and examined

which were the ones that RD could converge within a δ = 4 × 10−3 neighborhood at time t

starting from the initial set θ. As shown in Figure 6.5a, 137 out of these 200 points were reached

fromRD, with the color of the point (green or red) representing ifRD was successful or not. For

each of these points in Z , we also plot the best initial point output byRD. Most of these red initial

points (that did not reach the destination) lie on the boundary of the initial set θ, suggesting that

the trajectory that can possibly reach its destination might perhaps start from a state outside the

given initial set.

While the reachable set coverage - as a side effect - does provide an intuition about the coverage of

the initial set, one can run another set of experiments to explicitly measure initial set coverage. A

given initial set is partitioned into multiple subsets and a fixed number of states are sampled in
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(a) System #1 - Coarse approximation (b) System #1 - Refined approximation

(c) System #2 - Coarse approximation (d) System #2 - Refined approximation

Figure 6.5: Measuring coverage of a set in Systems #1 and #2. For every red colored state in the
destination set,RD could not find a trajectory that reaches within its δ-neighborhood.
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each of these subsets. Now, simulations ξ(x, ·) are generated from these sampled states x and, for

a given time t, the points ξ(x, t) in simulations constitute the set of destinations. Finally,RD is

invoked for these set of destination points and their corresponding initial states as returned by the

procedure yields a notion of coverage for the initial set as shown in Figure 6.6. Another notion of

coverage in the given initial set is to sample states on its boundary and check how many boundary

states are reachable from the centroid of the initial set.

Figure 6.6: Measuring coverage of the initial set. States are sampled in the destination set and inverse
sensitivity approximator is used to obtain their corresponding initial states.

6.4 Falsification of a Safety Specification

For a given system and corresponding safety specification in either Signal or Metric Temporal

Logic (Maler, Nickovic & Pnueli 2008, Koymans 1990), the falsification is aimed at finding a system

parameter or an input that violates the specification. Existing falsification schemes generate executions

using some heuristics or stochastic global optimization and compute their robustness w.r.t. the safety

specification denoted as a set of states. Robustness (ρ ∈ R) is used as a measure to quantify how deep is

the execution within the set or how far away it is from the set. Informally, it determines the degree to

which an execution satisfies (ρ > 0) or violates (ρ < 0) a given safety specification. Our framework can

currently handle a subset of MTL formulas.

φ ::= ⊤ | p | ¬φ | ⊤Ulφ
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where p is an atomic proposition, l is a non-empty interval of R≥0, and φ is a well formed MTL

formula. The temporal operator ♢ (eventually) is defined as ⋄lφ := ⊤Ulφ. The reader can refer

to (Nghiem et al. 2010) for robust semantics of MTL formulas.

6.4.1 Our Falsification algorithm

We describe a simpleRD-based algorithm to obtain a falsifying trajectory to a given safety specifica-

tion ¬♢lU , where U ⊆ Rn is the unsafe set. We generate an anchor trajectory ξA, sample a state z ∈ U ,

and choose t = argmint′∈l∥ξA(t′) − z∥. We then invoke RD sub-routine for generating trajectories

until we obtain a counterexample (ρk < 0) to the given safety specification or bound I is exhausted,

where ρk is the robustness of trajectory ξkA. To be precise, in the falsification run ofRD- (i) distance dka is

replaced by robustness ρk, (ii) constraint dka > δ is replaced by ρk > 0, and (iii) an additional constraint

xkt /∈ U is added to the main while loop condition. While it may be the case that z is not reachable at

time t, both these parameters primarily act as anchors to guide the procedure in obtaining a falsifying

execution.

6.4.2 Evaluation of Falsification techniques

We evaluate our falsification algorithm against one of the widely used falsification platforms, S-

TaLiRo (Sankaranarayanan & Fainekos 2012, Nghiem et al. 2010). Monte-Carlo sampling scheme in

S-TaLiRo is sensitive to the “temperature” parameter β, where the adaptation of β is performed after

every fixed number of iterations provided it is unable to find a counterexample by then. We keep β = 50

which is the default value, and we consider p = 2, s = 0.5 for our RD-based falsification scheme.

Although adaptation parameters and mechanisms in both approaches are different, an upper bound (K) on

the number of trajectories is crucial to both of them. We fix K = 100 for systems #1-#16 and K = 150

for systems #17-#30 in S-TaLiRo. We consider K = 50 for NExG as we notice that, if it can, it usually

finds a trajectory of interest in notably less number of iterations. The sampling time is fixed as 0.01.

We exclude cases where the initial reference trajectory ξA is falsifying so as to minimize the bias

induced by different distributions in different schemes. For a given pair of initial configuration θ and

safety specification ¬♢lU in each system, we report in Table 6.4 the mean of total trajectories (k)

generated along with mean robustness (ρ) computed over 250 runs of respective techniques.
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(a) #8 from S-TaLiRo (b) #8 from NExG

(c) #13 from S-TaLiRo (d) #13 from NExG

(e) #11 from S-TaLiRo (f) #11 from NExG

Figure 6.7: Falsification demonstrations. The red-colored box is the unsafe set and the inner while-colored
box is the initial set. Figures show that NExG takes a very few trajectories to find a counterexample in a
more directed manner and it can supplement other falsification tools.
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The evaluations exhibit that our algorithm not only takes a very few trajectories to converge but also

the obtained counterexample is often more robust. Unlike NExG, the performance of S-TaLiRo seems

to deteriorate further with increase in the number of system dimensions and complexity. Figures 6.7a

and 6.7b demonstrate this behavior. Even in scenarios whereRD generates more than 10 trajectories,

experiments indicate that it is able to reach the neighborhood around U within fewer iterations. This

observation motivated us to attempt to integrate both frameworks. In the case of non-convergence in

S-TaLiRo, its best execution can be used as the input reference trajectory forRD. One such instance is

shown in Figure 6.7e where S-TaLiRo is unable to find a falsifying trajectory within 100 iterations. We

use its best sample as the reference ξA forRD and find 4th trajectory to be a counterexample (Figure 6.7f).

This exercise is performed for illustration purpose i.e., at present we manually port the best sample from

S-TaLiRo to NExG. One of the future tasks is to automate this integration. Additionally, our approach -

as a side effect - provides intuition about the course of exploration leading to the falsifying execution

unlike scattered stochastically sampled states generated in S-TaLiRo.

Another important take away from this comparison is that if S-TaLiRo fails to find a counterexample

for a given specification, the user is left with a sample of trajectories generated by S-TaLiRo and the

execution that comes closest to falsifying the given safety specification. Instead, in our case, the user

can still access the inverse sensitivity approximator and manually (or algorithmically) probe nearby

trajectories and proceed to discover a falsifying trajectory. Finally, S-TaLiRo’s implementation platform

is MATLAB while our framework is implemented in Python. We do not report the wall-clock time taken

by respective frameworks as performance differences are expected due to their different implementation

platforms.

One may analogize inverse sensitivity approximator to an offline hash of results, which may make

the comparison with S-TaLiRo (which performs Falsification in an online fashion) seem unfair. This

analogy, however, motivates us to make some clarifications and highlight a few important differences as

a rationale behind the comparison.

Note first that, in the training phase, we learn the inverse sensitivity based on trajectories starting

from uniformly sampled points in the domain. In particular, instead of learning a system property specific

to the task at hand, we are learning a generic system property that can be used in many applications.

Secondly, our intention to perform this comparative analysis is not to compete with S-TaLiRo, but

to emphasize the effectiveness of learning the sensitivity function in an offline manner to aid in state
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space exploration. Standard gradient based techniques are not designed to use an offline component

because they only rely on the current simulation to falsify the given specification based on robustness,

and information from previous simulations is discarded at each step.

In our systematic state space exploration, simulation at each successive step is guaranteed (under

some assumptions) to get closer to a desirable execution. We agree that we pre-process data to learn

system properties, but this learned information enable us to deliver more promise by guaranteeing

convergence as supported by our evaluations.

While we have primarily focused on neural-network feedback control systems, this approach can be

applied to other nonlinear dynamical and hybrid systems. Our analysis with higher dimensional non-

linear systems yields similar performance results. The falsification results in S-TaLiRo for LaubLoomis

(7-dim), Biological model I (7-dim), and Biological model II (9-dim) are (ρ = 0.003, k = 112),

(ρ = 0.046, k = 149), and (ρ = 0.155, k = 150) respectively; the results for these systems in NExG are

(ρ = 0.003, k = 21), (ρ = −0.0016, k = 15), and (ρ = 0.002, k = 29).

6.5 Predicting Trajectories

(a) System #2 (b) System #5

Figure 6.8: Predicting system trajectories using sensitivity approximation for small perturbations. Taking
the trajectory that starts from the centroid of the initial set as the reference, we predict the trajectories
that start at the corners of the initial set.

As already discussed in previous chapter, predicting trajectories is another commonly used state

space exploration technique. Since the numerical ODE solvers used for generating trajectories are

sequential, accelerating the refinement is hard. Moreover, invoking the exact simulation engine may

become computationally expensive for exploring a high-dimensional space. To alleviate these bottlenecks,
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Table 6.4: Initial configuration and safety specification for falsification techniques

Initial Safety
System configuration specification

θ ¬♢lU
#1 [(0.5, 1.5)∧(0.5, 1.5)] ¬♢[0.7,0.9][(0.30, 0.35)∧(-1.1, -1.05)]
#2 [(0.8, 1.2)∧(0.9, 1.2)] ¬♢[0.7,0.9][(1.50, 1.55)∧(0.20, 0.25)]
#3 [(0.4, 1.2)∧(0.4, 1.2)] ¬♢[0.8,1.0][(0.3, 0.4)∧(0.0, 0.1)]
#4 [(1.5, 2.0)∧(1.0, 1.5)] ¬♢[0.7,0.9][(1.15, 1.2)∧(-0.95, -0.90)]
#5 [(0.2, 0.7)∧(0.2, 0.7)∧(0.2, 0.7)] ¬♢[0.6,0.8][(1.0, 1.05)∧(0.05, 0.1)∧(-1.15, -1.10)]
#6 [(0.1, 0.6)∧(0.1, 0.6)∧(0.1, 0.6)] ¬♢[0.7,0.9][(0.10, 0.15)∧(0.0, 0.05)∧(0.10, 0.15)]
#7 [(0.2, 0.5)∧(0.2, 0.5)∧(0.2, 0.5)] ¬♢[1.0,1.2][(0.4, 0.45)∧(-0.3, -0.25)∧(-0.45, -0.4)]
#8 [(0.2, 0.5)∧(0.2, 0.5)∧(0.2, 0.5)] ¬♢[1.0,1.2][(0.05, 0.1)∧(0.25, 0.3)∧(-0.35, -0.3)]

#9 [(0.1, 0.4)∧(0.1, 0.4) ¬♢[0.6,0.8][(-0.15, -0.10)∧(-0.80, -0.75)
∧(0.1, 0.4)∧(0.1, 0.4)] ∧(0.0, 0.05)∧(-0.60, -0.55)]

#10 [(0.5, 1.0)∧(-1, -0.5) ¬♢[0.8,1.0][(-0.2, -0.15)∧(-1.05, -1.0)
∧(-0.5, 0)∧(0.5, 1)] ∧(0.2, 0.25)∧(0.25, 0.3)]

#11 [(-1, -0.5)∧(-0.6, -0.1) ¬♢[1.0,1.2][(-0.55, -0.5)∧(0.7, 0.75)
∧(0.2, 0.7)∧(-0.5, 0)] ∧(0.65, 0.7)∧(0.25, 0.3)]

#12 [(-1, -0.5)∧(-0.6, -0.1) ¬♢[1.0,1.2][(-0.55, -0.5)∧(0.25, 0.3)
∧(0.2, 0.7)∧(-0.5, 0)] ∧(-0.05, 0.0)∧(-0.3, -0.25)]

#13 [(9.3, 9.7)∧(-4.7, -4.3) ¬♢[0.8,1.0][(8.4, 8.45)∧(-3.55, -3.5)
∧(2, 2.4)∧(1.3, 1.7)] ∧(2.5, 2.55)∧(2.2, 2.25)]

#14 [(1.0, 1.5)∧(1.0, 1.5) ¬♢[1.0,1.2][(1.55, 1.6)∧(0.25, 0.3)
∧(1, 1.5)∧(1, 1.5)] ∧(-0.65, -0.6)∧(-1.2, -1.15)]

#15 [(1.0, 1.4)∧(1.0, 1.4) ¬♢[0.4,0.6][(0.90, 0.95)∧(0.65, 0.7)
∧(1.0, 1.4)∧(1.0, 1.4)] ∧(-1.8, -1.75)∧(-1.20, -1.15)]

#16 [(0.0, 0.3)∧(0.0, 0.3) ¬♢[0.8,1.0][(0.05, 0.1)∧(-0.05, 0.0)
∧(0.0, 0.3)∧(-0.3, 0.0)] ∧(-0.05, 0.0)∧(0.0, 0.05)]

#17 [(90.0, 92.0)∧(32.0, 32.5)∧(0.0, 0.0) ¬♢[0.7,0.9][(113.5, 114.0)∧(31.3, 31.4)∧(-1.60, -1.55)
∧(10.0, 11.0)∧(30.0, 30.5)∧(0.0, 0.0)] ∧(32.0, 32.5)∧(29.5, 30.0)∧(-0.10, -0.05)]

#18 [(90.0, 92.0)∧(32.0, 32.5)∧(0.0, 0.0) ¬♢[0.7,0.9][(116.5, 117.0)∧(31.6, 31.7)∧(-1.65, -1.6)
∧(10.0, 11.0)∧(30.0, 30.5)∧(0.0, 0.0)] ∧(34.5, 35.0)∧(29.5, 30.0)∧(-0.45, -0.35)]

#19 [(90.0, 92.0)∧(32.0, 32.5)∧(0.0, 0.0) ¬♢[0.8,1.0][(120.0, 120.3)∧(31.1, 31.2)∧(-1.75, -1.7)
∧(10.0, 11.0)∧(30.0, 30.5)∧(0.0, 0.0)] ∧(37.0, 38.0)∧(30.5, 31.0)∧(0.1, 0.2)]

#20 [(90.0, 92.0)∧(32.0, 32.5)∧(0.0, 0.0) ¬♢[0.6,0.8][(112.8, 112.9)∧(31.7, 31.8)∧(-1.55, -1.5)
∧(10.0, 11.0)∧(30.0, 30.5)∧(0.0, 0.0)] ∧(31.0, 31.5)∧(30.1, 30.2)∧(0.0, 0.1)]
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Table 6.5: Performance of falsification techniques. k is the number of simulations generated and ρ is the
robustness. The parity of ρ determines whether the execution satisfies (ρ > 0) or falsifies (ρ < 0) a given
safety specification, whereas its magnitude determines how robust is the execution.

System S-TaLiRo NExG System S-TaLiRo NExG
k ρ k ρ k ρ k ρ

#1 12 -0.01✓ 3 -0.01✓ #11 95 0.031 3 -0.016✓
#2 24 -0.006✓ 3 -0.005 #12 98 0.058 6 -0.009✓
#3 8 -0.02✓ 4 -0.014 #13 81 0.009 4 -0.01✓
#4 11 -0.008✓ 3 -0.008✓ #14 59 -0.002✓ 6 -0.002✓
#5 39 0.008 17 -0.005✓ #15 55 -0.002 8 -0.007✓
#6 21 -0.005 3 -0.007✓ #16 47 -0.002 9 -0.003✓
#7 20 -0.005 3 -0.007✓ #17 150 0.10 15 -0.001✓
#8 36 0.008 9 0.001✓ #18 150 0.81 14 -0.002✓
#9 76 0.005✓ 22 0.005✓ #19 149 0.11 9 -0.007✓

#10 88 0.01 5 -0.005✓ #20 145 0.14 34 0.015✓

neural network approximation of sensitivity (NΦ) can be used generate (predict) trajectories in a parallel

fashion.

The procedure is slightly different from what was discussed in Section 5.4 as NExG approximates the

gradient of sensitivity. Given a reference trajectory ξ(x0, ·), assume that we are interested in predicting

a trajectory ξ(x′0, ·). For w .
= x′0 − x0 and s ≪ 1, we use NΦ(x0, sw, t) to estimate the perturbation

needed at ξ(x0, t), ∀t ∈ [1, T ] . This way we predict the trajectory ξ(x0 + sw, ·) (see Equation 5.1). We

treat this trajectory as the next reference and repeat the procedure until we predict the trajectory ξ(x′0, ·).

The choice of reference trajectory is crucial to the prediction. A distant initial reference trajectory

would result into coarse approximation of the predicted trajectory due to the error compounded at each

step. For our analysis, we attempt to predict the trajectories originating at the corners of the given initial

set. Therefore, we choose the reference trajectory that starts from the centroid of the given initial set as

centroid is equidistant to each corner. Figure 6.8 illustrates the result of predicting system trajectories for

Systems #2 and #5. Actual trajectories in the figure are computed with a given numerical ODE solver.

6.6 Chapter Summary

This chapter has proposed a new state space exploration technique NExG that is an improvement

over existing state space and falsification approaches. This work can also be used to generate near-miss

trajectories. Instead of continuing to run the RD algorithm to search for execution that reaches the
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target state, a control designer can terminate early and use a custom state space exploration using inverse

sensitivity to generate near miss safety instances where the trajectory approaches the set of unsafe states

within a threshold.

The illustration on estimating system trajectories has shown that such sensitivity approximation is

considerably effective. The approach also gives the designer the freedom to choose only a subset of the

initial states for only a specific time interval for prediction and refine the probability distribution for

generating new states.

Acknowledgement. Miheer Dewaskar (Duke University, NC) as involved throughout the project,

and in particular, helped in building theoretical framework for providing convergence guarantees.
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CHAPTER 7: CONCLUSION

Traditional control design techniques have primarily focused on stability or convergence, however,

with ever increasing interest in autonomous systems and their intricate behaviors, it is imperative to invest

into their safety for them to become mainstream. At the same time, systems (software and hardware)

as well as specifications are getting complex and more involved, thus making safety verification task

extremely challenging. Many techniques have been proposed for safe CPS design and analysis. However,

unlike stability analysis tools, most of these system analysis techniques may not yield much insight into

the system behavior beyond proving or falsifying a property or giving a representative execution at best.

There is a need for tools that can aid the designer in performing systematic state space exploration or

validating the quality of existing analysis frameworks. Extension of a verification engine to validate

safety violations along with other state space exploration techniques presented in this thesis can enable a

control designer to gain additional information about an otherwise difficult to analyze system. Further,

these behavioral validation mechanisms are flexible enough to supplement existing system engineering

and analysis techniques. This, in turn, would result in to an enhanced certification process of complex

cyber physical systems, a crucial step in expediting their mainstream adoption. Additionally, the state

space exploration work can pave a way towards deploying neural networks for making this certification

endeavor scalable.

This chapter briefly summarizes the results of this dissertation (Section 7.1) and directions for future

work (Section 7.2).

7.1 Summary of Results

In this thesis, we have provided multiple ways to conduct behavioral validation of Cyber-physical

systems. We have demonstrated how data can be used to learn useful system traits and methodically

obtain desirable system behaviors. In the first part of this thesis, we have defined longest, deepest and

robust counterexamples to a safety specification for a given linear hybrid systems. We have developed

these counterexample generation algorithms in a linear hybrid system model checking tool, HyLAA.
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The evaluations have shown that change in the depth direction or the size of the unsafe set can result

into different counterexamples. The results have demonstrated that these counterexamples not only yield

useful insights regarding system behaviors to a control designer but also helps her in comparing different

controllers across iterations during control synthesis.

In the second part, we have introduced the notion of absolute longest counterexample and provide

SMT and MILP-based frameworks to generate such counterexamples. The experiments demonstrate

that the length of the longest counterexample can be different from an actual intersection duration of

the reachable set with the unsafe set. The evaluations also illustrate that both frameworks may return

different longest counterexamples of the same length. We have also presented an approach to find an

unsafe execution corresponding to a pattern given by the user.

This work is followed by generating complete characterization of counterexamples to represent all

modalities of a safety violation given as an STL specification. An algorithm is described to represent these

characterizations as a binary decision diagram (BDD). As the size of the diagram may grow exponential

in the number of overlaps between the reachable set and the unsafe set, a framework for dynamically

finding isomorphic nodes has been proposed and shown to significantly reduce the size of the original

decision diagram.

Finally, we have proposed two frameworks which use sensitivity (or its gradient) approximation

for systematic state space exploration in non-linear dynamical systems and neural network feedback

control systems. We have demonstrated with various experiments how these frameworks can be used for

reachability, falsification as well as predicting system trajectories. We have also presented a theoretical

study to provide convergence guarantees of the sensitivity gradient based algorithm. In addition to

out-performing state of the art falsification techniques, these frameworks enable the control designer to

develop custom algorithms for state space exploration and generate trajectories that navigate the state

space along with additional constraints.

7.2 Directions for future work

There are multiple directions for future work based on the contributions of this dissertation.

Counterexamples guided control synthesis. While various counterexamples provides useful metrics

to compare different controllers, the designer would ideally be interested in using these counterexamples
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in synthesizing a safe controller similar to CEGIS techniques. As a preliminary step, we designed

a mechanical method which exploits the longest contiguous and deepest counterexamples (more as

heuristics) for synthesizing a safe stable controller in some cases. We give an overview of this approach

in the Appendix. Although our empirical approach acts as a good first step and provides some guidance

for safe controller synthesis using multiple counterexample candidates, it lacks insights on a possible

theoretical connection between stability and the type of the safety violation. To reap the full benefit of

our counterexample generation work, a more formal way of such counterexample driven safe controller

synthesis that is generalizable to a class of systems should be explored. If synthesizing an optimal safe

controller is challenging, the designer may be interested in exploiting these counterexamples in obtaining

a sub-optimal (i.e., least-violating) controller (Girard & Eqtami 2021, Apaza-Perez & Girard 2022) for

safety.

Another interesting direction is to extend the notion of various counterexamples to the systems with

disturbances. Here, the aim could be to find the least (or highest) violating disturbance, based on a

performance metric, during the iterative control synthesis, which can hopefully provide some useful

information to the designer and likely expedite the design process.

Characterization of counterexamples. Our technique for the characterization of counterexamples

currently supports safety specifications with one proposition. An extension to this work would be to

characterize violations to a safety property specified as the conjunction of propositions. But the main

challenge with such a specification is that its negation would introduce disjunction of propositions.

Consequently, we may end up building as many decision diagrams as the number of propositions in the

disjunction. Alternatively, we can construct a multivariate decision diagram (Brodley & Utgoff 1995) by

introducing a new decision variable for every proposition. However, the size of these multiple decision

diagrams or such multivariate decision tree would be exponential in the number of propositions as well

as exponential in the number of overlaps between the reachable set and the unsafe set. For addressing

this exponential state space blow up, one interesting future direction would be to find an approximation

algorithm for BDD construction that captures a large fraction but not all characterizations of the safety

violation. Another possible direction is to explore a more efficient graphical representation such as

probabilistic decision trees for these characterizations.

Extensions of the NExG framework. This task can be broken into multiple sub-tasks. As our

choice of network architecture, training data, scaling factor etc. is mostly empirical, one sub-task could
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be to investigate other network architectures to accelerate network training, explore other parameters

configurations, machine learning libraries or different activation functions to improve the performance of

NExG. Another extension would be to enhance the presented falsification technique to the general class

of STL specification, automate its integration with S-TaLiRo, and falsify large industrial scale designs

with complex specifications.

We have briefly described a technique in NExG to visualize the coverage of the initial set or the

unsafe set. But having some formal notion(s) of coverage could be useful in designing better state space

exploration techniques in NExG framework and formally arguing about their performances. This notion

of coverage can potentially be extended to the set coverage for a general performance specification to

validate the performance and quality of an existing reachability analysis or falsification algorithm.

Many realistic modern day systems are modeled as feedback systems with environmental inputs.

Therefore, extending our state space exploration framework to handle such generic systems would be

important. While we have given some thought to such framework which might use Recurrent Neural

Network (RNN), Long short-term memory (LSTM) or their variants, we believe such an extension

requires some engineering for incorporating these machine learning frameworks into NExG. Finally,

integrating our method into frameworks used for generating adversarial executions during control

synthesis can greatly aid the design process.

Explore beyond sensitivity approximation. While we have leveraged sensitivity information for our

state space exploration work, there might be other fundamental characteristics of a closed loop dynamical

system. Thus, it may be worthwhile to explore either adapting scalable techniques from linear systems

literature to closed loop- or open loop- feedback control systems or looking at some application specific

behavioral properties such as superposition of trajectories, Jacobian matrices, discrepancy functions. One

might also consider exploring existing frameworks used for learning state density distribution (Meng

et al. 2021), reachability function (Sun & Mitra 2022), state classification (Phan et al. 2018) or PDE (Long

et al. 2018) in designing more efficient systematic state space exploration schemes.
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APPENDIX A: COUNTEREXAMPLE BASED CONTROL SYNTHESIS

In this chapter, we present an approach which uses longest and deepest counterexamples to a safety

specification for finding a safe and stable control input. The technique is purely empirical, is developed

for our own understanding, and is documented here for future references. It is a part of the future research

to explore an underlying theoretical framework for establishing the relationship, if any, between safety

and stability using such counterexamples.

A.1 Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) is the problem of finding a control that stabilizes a time-invariant

linear system to the origin. LQR has been extensively studied and researched upon by control theory

experts. While we introduce the problem for helping the reader with the context, there are many texts

available for someone interested in more details. One of the widely referred textbooks is Linear Systems

Theory (Hespanha 2018).

Given a linear time-invariant system

˙x(t) = Ax(t) + Bu(t), (A.1)

LQR problem is aimed at finding the control input u(t), t ∈ [0,∞) which minimizes the following

cost function (with Q = Q′ ⪰ 0, R = R′ ≻ 0):

J
∆
=

∫ ∞

0
[x(t)′Qx(t) + u(t)′Ru(t)]dt. (A.2)

The matrix Q controls the energy of the system output and R controls the energy of the control

signal. Since decreasing one energy requires increase in the other term, LQR seeks a controller that

minimizes both energies by establishing a trade-off between them. The optimal input is generally a

constant state feedback u(t) = Kx(t), where K
.
= −(R+B′PB)−1B′PA and P satisfies a Algebraic

Riccati Equation (ARE) given as P .
= Q+A′PA−A′PB(R+B′PB)−1B′PA.
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input :Simulation equivalent reachable set computation routine: computeSimEquivReach,
time bound: T, matrices: A,B, initial set: Θ, unsafe set: Ψ, LQR function: LQR,
iterations bound: K

output :Hybrid system: H such that computeSimEquivReach(H,Θ) ∩Ψ = ∅, iterations: k
1 n← get sys dims (A) ; // n is the number of system variables

2 m← get inp dims (B) ; // m is the number of inputs

3 Q,R← In, Im ; // State and input weight matrices

4 K ← LQR(A,B, Q,R) ; // State feedback gains

5 L′ ∆
= ⟨A′,0⟩ where A′ .

= A− B ×K;
6 Reach(Θ)← computeSimEquivReach (L′,Θ);
7 if Reach(Θ) ∩Ψ = ∅ then
8 return L′;
9 end if

10 lce← computeLCE(Reach(Θ),Ψ) ; // Algorithm 2

11 ζ ← get time seqs(lce,T);
12 H ← constructHybridAutomaton(L′, ζ);
13 Reach(Θ)← computeSimEquivReach (H,Θ);
14 k ← 1;
15 while lce ̸= ⊥ & k ≤ K do
16 d̄← 1n ; // n dimensional vector

17 for each orthonormal direction di ∈ Rn do
18 di

max ← max dTi x given x ∈ S where S ∈ Reach(Θ), S ∩Ψ ̸= ∅ ;
19 di

min ← min dTi x given x ∈ S where S ∈ Reach(Θ), S ∩Ψ ̸= ∅ ;
20 d̄[i]← |di

max − di
min|;

21 end for
22 Q← (d̄)TQ;
23 K ← LQR(A,B, Q,R) ; // New state feedback gains

24 for l ∈ H.L do
25 A′

l ← A′
l − B′l ×K;

26 end for
27 Reach(Θ)← computeSimEquivReach (H,Θ);
28 k ← k + 1 ; // increment iterations by 1

29 lce′ ← computeLCE(Reach(Θ),Ψ) ; // Re-compute counterexample

30 if lce′.length > lce.length then
31 break;
32 end if
33 lce← lce′;
34 end while
35 if lce ̸= ⊥ & k < K then
36 return ⊥;
37 end if
38 else
39 returnH;
40 end if

Algorithm 10: Control synthesis using a variety of counterexamples
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A.2 Control synthesis algorithm

The technique for synthesizing a safe control input denoted as ceBasedControlSynth (abbreviated

as CS) is presented in Algorithm 10. It takes as input the matrices A,B, time bound T, initial set Θ,

unsafe set Ψ, iterations bound K, and handles to the simulation equivalent reachable set computation

routine and LQR function. If successful, the algorithm returns the synthesized linear hybrid systemH

such that its simulation equivalent reachable set is safe w.r.t. Ψ and the number of iterations k taken to

obtainH.

The algorithm initializes the matrices Q,R in line 3. It computes state feedback gains for the given

dynamics matrices (line 4), uses these gains to construct a linear system (line 5) which stabilizes to

the origin, and computes its simulation equivalent reachable set (line 6). If the overlap between the

reachable set and the unsafe set is non-empty, it obtains a longest contiguous counterexample (lce)

in line 10. Next, for the lce interval duration [t1, t2], the routine “get time seqs” yields 3 intervals

[0, t1 − 1], [t1 − 1, t2 + 1], [t2 + 1, T − 1]. These intervals are used to construct a hybrid automatonH

(in line 12) having one location for each interval. The switching time between two successive intervals

denotes the guard condition of the discrete transition between corresponding locations. For instance, the

guard condition of the transition L1 → L2 between locations L1 and L2 would be GL1→L2

.
= t ≥ (t1−1)

and the guard of the transition L2 → L3 would be GL2→L3

.
= t ≥ (t2 + 1).

The while loop (lines 15-34) iterates until the simulation equivalent reachable set Reach(Θ) has

empty overlap with Ψ or the iterations bound K is exhausted. Every iteration in the while loop does the

following. In lines 18-19, the deepest counterexamples in 2n orthonormal directions (for n dimensional

system) are obtained; then, for each dimension, the difference in the depths of its corresponding

counterexamples is stored in the vector d̄ (line 20). The matrix Q is updated by computing its dot

product with d̄ in line 22. New feedback gains are obtained (line 23), the dynamics in each location of the

hybrid system are updated (line 26), and simulation equivalent reachable set is re-computed in line 27).

If the duration of the longest counterexample is longer than the duration of the previous one, the routine

terminates (lines 30- 32); otherwise, next iteration of the while loop is carried out.

Evaluation and discussion. We have implemented Algorithm 10 in HyLAA and the results of

performing this control synthesis technique in two systems are shown in Figure A.1. Unsafe set for
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(a) Original unsafe system - #1 (b) Synthesized safe system - #1

(c) Original unsafe system - #2 (d) Synthesized safe system - #2

Figure A.1: Illustration of safe controller synthesis using counterexamples. Left hand side figures
correspond to the reachable set computed for original stable unsafe system L′. Right hand side figures
are the reachable sets obtained for the hybrid systemH returned by Algorithm 10. Different colors in the
reachable set correspond to different locations in the hybrid system.

System #1 is Ψ1
.
= x2 ≥ 1.2 and for System #2 is Ψ2

.
= x1 ≥ 2 ∧ x3 ≥ 0.55. The number of iterations

(k) taken for synthesizing safe control system are 2 and 7, respectively, for these systems.

These examples are presented only to illustrate how Algorithm 10 works in practice. While we could

find a few such successful case studies, there were a couple of other benchmarks where the algorithm

either performed worse (i.e., the duration of the longest counterexample got longer by using depths as the

weights for the Q matrix) or did not terminate (i.e., the duration of the longest counterexample did not

reduce after a point). As mentioned earlier, developing a theoretical framework for understanding the

nuances of our counterexamples based control synthesis is a part of future research. Such theoretical

study, additionally, may yield some intuition for designing a holistic approach generalizable to a larger

set of systems.
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APPENDIX B: OTHER WORKS

Some publications to which the author contributed fall beyond the scope of this dissertation and may

as well not related to Cyber-physical systems. These contributions are summarized briefly here.

Concurrency groups: a new way to look at real-time multiprocessor lock nesting. (Nemitz,

Amert, Goyal & Anderson 2019)

When designing a real-time multiprocessor locking protocol, the allowance of lock nesting creates

complications that can inhibit parallelism. Such protocols are typically designed by focusing on the

arbitration of re- source requests that should be prohibited from executing concurrently. This paper

proposes “concurrency groups,” a new concept that reflects an alternative point of view that focuses

instead on requests that can be allowed to execute concurrently. A concurrency group is simply a group

of lock requests, determined offline, that can safely execute together. This paper’s main contribution is

the CGLP, a new real-time multiprocessor locking protocol that supports lock nesting through the use

of concurrency groups. The CGLP is able to reap run time parallelism benefits that have eluded prior

protocols by investing effort offline in the construction of concurrency groups. A schedulability study is

presented to quantify these benefits, as well as an approach to determining such groups using an Integer

Linear Program (ILP) solver, which we show to be efficient in practice.

Safety and progress proofs for a reactive planner and controller for autonomous driving. (Karimi,

Goyal & Duggirala 2021)

We perform a safety and progress analysis of a map-less path planner and path-tracking controller

for an autonomous car racing on a circuit. Here, map-less means that the planner operates purely based

on the current on-board sensor data to follow the racing track. In contrast, a map-based planner uses

both sensor data and a map (either known apriori or built at run time) to localize the vehicle within the

map and perhaps plan a racing line. Our planner chooses a path on the Voronoi diagram of the current

perception and our controller uses pure-pursuit to track the path. A version of our planner and controller

won the Generalized RAcing Intelligence Competition (GRAIC) which includes dynamic obstacles as

well. Our safety and performance analysis has two parts. The first part gives sufficient conditions such

that the oblivious plan is consistent with a map-based plan computed from the Voronoi diagram of the full
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map of the racing track. The second part proves the safety and progress with respect to a hybrid automata

model of the closed system (i.e. the map, planner, and controller), using reachable set computation. The

map is needed for the proofs, but not needed by the motion planner. As examples, we prove the safety

and progress of our planner for five circuits. Furthermore, the convergence of the computed reachable

sets to the tracking path proves the stability of the pure-pursuit controller.

An Approach to Align Programs for Checking Equivalence. (Goyal, Azeem, Madhukar &

Venkatesh 2021)

The problem of checking whether two programs are semantically equivalent or not has a diverse

range of applications, and is consequently of substantial importance. Our current motivation comes from

the need to automatically evaluate an assignment submission in a programming course, by comparing it

with a reference implementation made available by the teacher. This task is typically done by generating

test-cases, and then checking that the two programs behave similarly for all the tests. It is certainly

desirable to not be limited to test-cases, and to ask the question of equivalence in general, i.e. whether

the two programs would behave similarly for every input. There are several techniques that address this

problem, chiefly by constructing a product program that makes it easier to derive useful invariants. A

novel addition to these is a technique that uses alignment predicates to align traces of the two programs,

in order to construct a program alignment automaton. Being guided by predicates is not just beneficial

in dealing with syntactic dissimilarities, but also in staying relevant to the property. However, there

are also drawbacks of a trace-based technique. Obtaining traces that cover all program behaviors is

difficult, and any under-approximation may lead to an incomplete product program. Moreover, an indirect

construction of this kind is unaware of the missing behaviors, and has no control over the aforesaid

incompleteness. This paper, addressing these concerns, presents an algorithm to construct the program

alignment automaton directly instead of relying on traces.

Artificial neural networks in tandem with molecular descriptors as predictive tools for con-

tinuous liposome manufacturing. (Sansare, Duran, Mohammadiarani, Goyal, Yenduri, Costa, Xu,

O’Connor, Burgess & Chaudhuri 2021)
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The current study utilized an artificial neural network (ANN) to generate computational models to

achieve process optimization for a previously developed continuous liposome manufacturing system.

The liposome formation was based on a continuous manufacturing system with a co-axial turbulent

jet in a co-flow technology. The ethanol phase with lipids and aqueous phase resulted in liposomes of

homogeneous sizes. The input features of the ANN included critical material attributes (CMAs) (e.g.,

hydrocarbon tail length, cholesterol percent, and buffer type) and critical process parameters (CPPs) (e.g.,

solvent temperature and flow rate), while the ANN outputs included critical quality attributes (CQAs) of

liposomes (i.e., particle size and polydispersity index (PDI)). Two common ANN architectures, multiple-

input-multiple-output (MIMO) models and multiple-input–single-output (MISO) models, were evaluated

in this study, where the MISO outperformed MIMO with improved accuracy. Molecular descriptors,

obtained from PaDEL-Descriptor software, were used to capture the physio-chemical properties of the

lipids and used in training of the ANN. The combination of CMAs, CPPs, and molecular descriptors

as inputs to the MISO ANN model reduced the training and testing mean relative error. Additionally, a

graphic user interface (GUI) was successfully developed to assist the end-user in performing interactive

simulated risk analysis and visualizing model predictions.
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