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ABSTRACT

HAODONG WANG: SUPERVISED LEARNING FOR COMPLEX DATA
(Under the direction of Yufeng Liu and Quefeng Li)

Supervised learning problems are commonly seen in a wide range of scientific fields such as

medicine and neuroscience. Given data with predictors and responses, an important goal of su-

pervised learning is to find the underlying relationship between predictors and responses for future

prediction. In this dissertation, we propose three new supervised learning approaches for the anal-

ysis of complex data. For the first two projects, we focus on block-wise missing multi-modal data

which contain samples with different modalities. In the first project, we study regression prob-

lems with multiple responses. We propose a new penalized method to predict multiple correlated

responses jointly, using not only the information from block-wise missing predictors but also the

correlation information among responses. In the second project, we study regression problems

with censored outcomes. We propose a penalized Buckley-James method that can simultaneously

handle block-wise missing covariates and censored outcomes. For the third project, we analyze

data streams under reproducing kernel Hilbert spaces. Specifically, we develop a new supervised

learning method to learn the underlying model with limited storage space, where the model may

be non-stationary. We use a shrinkage parameter and a data sparsity constraint to balance the

bias-variance tradeoff, and use random feature approximation to control the storage space.
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CHAPTER 1

Introduction

Fast development of modern technology makes it possible to generate and store large-scale

and diverse data. Among different types of data, complex data with multiple modalities and

censored outcomes are increasingly prevalent across various scientific fields, including genetics and

neuroscience. Such data call for efficient statistics and machine learning tools for data analysis.

Besides static data, due to the unprecedented speed and volume of generated raw data in many

applications, one may need to analyze streaming data in practice, such as in finance and business.

This dissertation investigates several supervised learning techniques for multi-modal and streaming

data.

In this chapter, we first provide some background knowledge and literature review on machine

learning algorithms useful in subsequent chapters and then briefly introduce our problems and main

contributions. In Section 1.1, we review some existing multi-response linear regression methods in

the literature. In Section 1.2, we describe some literature on the analysis of survival data. In

Section 1.3, some existing supervised learning methods for analyzing data streams are discussed.

In Section 1.4, we provide an outline of our main contributions in this dissertation.

1.1 Multi-response linear regression methods

In many applications, we may have multiple response variables with the same set of predictors.

Multi-response regression is a useful regression technique to solve this problem. In particular, with

a q-dimensional vector of response variables for the i–th sample, Yi = (Yi1, . . . , Yiq)
>, the multi-

response regression model can be formulated as follows,

Yi = B>Xi + εi for i = 1, . . . , n,

1



where Xi ∈ Rp is the vector of predictors for the i-th subject, B is a p × q matrix of regression

coefficients, and εi denotes a q-dimensional error vector for the i-th sample.

The standard approach to estimate the regression parameter matrix B is to regress each re-

sponse variable separately on the same set of predictors. All single response regression procedures

can be applied to each response separately. For example, one can apply the ordinary least-squares

method to each response separately by solving

min
Bj

n∑
i=1

(
Yij −X>i Bj

)2
, for j = 1, . . . , q,

where Bj is the j-th column of B, and Yij is the j–th response of the i-th subject. Using some

simple linear algebra, it can be shown that the above problem is equivalent to solving the following

optimization problem

min
B

tr
[
(Y −XB)T (Y −XB)

]
, (1.1)

where Y = (Y1, . . .Yn)> is the n×q response matrix and X = (X1, . . . ,Xn)> is the n×p predictor

matrix (Yuan et al., 2007). Although this model is simple to implement, this approach may not be

optimal since it does not utilize the joint information among response variables.

To utilize the correlation information among response variables, Breiman and Friedman (1997)

proposed an approach called Curd and Whey (C&W). Their method predicts the multiple responses

with an optimal linear combination of the ordinary least-squares estimators. In particular, the

C&W procedure starts with fitting q separate ordinary least-squares models. Denote the resulting

predictor as ŶOLS . Then the C&W method tries to find another predictor ỹ = ŶOLSW with an

optimal q × q weight matrix W so that

E

{(
Yj −

(
ŶOLSW

)
j

)}2

≤ E

{(
Yj −

(
ŶOLS

)
j

)}2

, j = 1, . . . , q.

In other words, W reduces the mean-squared prediction error for each response. They showed that

W can be obtained by canonical analysis, and their method can outperform separate univariate

regression approaches (1.1) when there are correlations among the response variables.

Some other multi-response regression models have been proposed in the regularization frame-

work (Turlach et al., 2005; Yuan et al., 2007). These approaches impose a constraint on the param-

2



eters to regularize the estimators. In particular, they proposed to solve the following optimization

problem

min
B

tr
[
(Y −XB)T (Y −XB)

]
subject to J(B) ≤ t,

where J(B) is a constraint on B and t ≥ 0 is a tuning parameter for the constraint. Without any

constraint, i.e. when t =∞, the objective function is identical to (1.1) and consequently the method

becomes equivalent to the separate least-squares approach. However, by imposing a constraint, we

can achieve shrinkage for the resulting estimator. In particular, Yuan et al. (2007) proposed a

method performing factor estimation and selection. To encourage sparsity among singular values

of the regression parameter matrix, they let J(B) =
∑min(p,q)

i=1 σi(B), where σi(B) is the i-th

singular value of B. As a result, their method achieves dimension reduction in B. A similar

approach to handle multi-response regression is to use the reduced-rank regression by Izenman

(1975) to achieve rank reduction. Reduced-rank regression (RRR) introduces a rank constraint

on B, namely J(B) = rank(B) ≤ t, where t is the maximal allowed rank of B. In addition to

the regularization purpose, it can also be used as a dimension reduction and data exploration

method. If many predictors and responses are available, then RRR constructs “latent factors”

in the predictor space for explaining the variance of predictors. This method is also known as

redundancy analysis in ecology (Legendre and Anderson, 1999). Turlach et al. (2005) proposed

another constraint function, J(B) =
∑p

j=1 max (|βj1| , . . . , |βjm|). By imposing the max-`1 penalty,

their method can select a common subset of explanatory variables for predicting multiple response

variables.

1.2 Statistical analysis of survival data

In this section, we describe some supervised learning algorithms for censored survival data.

Survival analysis is an important area of statistical research. One important type of survival analysis

is the study of time to event data, in which the response variable is the time until a specific event

of interest occurs (Kleinbaum, 1996). Such data are commonly seen in many fields such as biology,

medicine, public health, epidemiology, and economics. The most prominent challenge of time to

event data is that the response, which is the time until some specified event, cannot always be fully

observed. Instead, the response may be right-censored, and consequently the actual response may

3



not be observed. In particular, the failure time T ∈ R is right censored at a censoring point C

when T > C, and the outcome Y ∈ R we observe is recorded as being equal to the censoring point.

In contrast, when T ≤ C, the outcome Y is recorded as the actual failure time. For example, when

a patient has been given a certain treatment, a right-censoring time might arise when the patient

is still alive at the end of the study or terminate the study due to other reasons (Miller 1976).

The accelerated failure time (AFT) model is one of the most commonly used models in sur-

vival data analysis, which assumes that the logarithm of the failure time is linearly related to the

covariates. Let T ∈ R be the failure time until a certain event of interest occurs, and X ∈ Rp be

the p-dimensional covariates vector. The accelerated failure time model assumes that

log(T ) = X>β + ε,

where β ∈ Rp is the p-dimensional regression coefficient vector, and ε ∈ R is the random noise. In

general, no specific parametric form is assumed for the distribution function of the error term ε. Two

general estimation strategies to handle censored responses in the AFT model include extensions of

least-squares estimators through missing data techniques (Buckley and James, 1979; Koul et al.,

1981; Miller and Halpern, 1982; Lai and Ying, 1991) and rank-based methods (Prentice, 1978;

Tsiatis, 1990; Lai and Ying, 1991).

Various rank-based methods have been well-studied for the AFT model with right-censored

data. Prentice (1978) first proposed the rank-based estimators based on the well-known weighted

log-rank statistics. Tsiatis (1990) studied the asymptotic properties of the rank-based estimators.

Jin et al. (2003) provided a reliable and accurate estimation procedure by using linear programming

techniques to compute the estimator proposed by Gehan (1965), a special version of the weighted

log-rank estimator.

By using the conditional expectation to impute the censored outcomes, Buckley and James

(1979) proposed a least-squares method to estimate the regression coefficient vector β in the model

for the AFT model with right-censored data. Lai and Ying (1991) studied the asymptotic properties

of the Buckley-James estimators. Jin et al. (2006) proposed an iterative algorithm to compute the

Buckley-James estimator. To incorporate high-dimensional covariates, various variable selection
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techniques have been applied to the Buckley–James estimators for the AFT model (Datta et al.,

2007; Johnson, 2009; Wang et al., 2008).

1.3 Supervised learning methods for data streams

Data are generated at an unprecedented rate and scale these days. The field of streaming

data analysis has emerged as a result of new data collection and storage technologies (Anderson,

2008; Wu et al., 2019; Hoi et al., 2021). Streaming data include high-throughput recordings that

collect large volumes of observations sequentially and continuously over time. The instances are in

an ordered sequence and typically arrive quickly and they may not be completely stored for future

study and analysis. In this context, regression models need to be continuously updated as new

data arrive. In addition, due to the vast amount of data, it is impossible to store the all the data.

Therefore, it is desirable for us to be able to incrementally learn the model without access of the

historical data.

Predictive models using such streaming data are widely applied in many fields, such as air

pollution monitoring (Hyde et al., 2017), detection of traffic congestion (Arasu et al., 2004), disease

surveillance (Althouse et al., 2015), and recommendation systems (Ta et al., 2016).

In this section, we describe a family of supervised learning algorithms for the analysis of data

streams.

1.3.1 Online gradient descent

We first describe a linear supervised learning algorithm, online gradient descent, for data

streams. Consider a sequence of instances, xt ∈ Rp, where t denotes the time and p is the dimen-

sionality of xt, and let yt be the response. At time t, an instance xt is observed. Then the model

uses ŷt = xt>β̂t−1 to make a prediction, where the coefficient β̂t−1 is the estimator obtained by the

model at time t − 1. After making the prediction, the true response yt becomes available. Then

one can use the true response yt to calculate the loss l(ŷt, yt). Finally the algorithm updates the

coefficient from β̂t−1 to β̂t.

Supervised learning on data streams can be reformulated as an online convex optimization

problem. The online gradient descent algorithm (OGD) (Zinkevich, 2003) can be viewed as an
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online version of the stochastic gradient descent algorithm (SGD) in convex optimization, which

is one of the simplest and most popular methods for convex optimization. At every iteration,

based on the loss occurred on the t-th sample xt ∈ Rp, the algorithm updates the current model

to a new model in the direction of the gradient of the current loss function. A projection may

be needed to ensure that the estimated parameters satisfy all constraints on parameters. Algo-

rithm 1 below summarizes the major steps of OGD, where ηt > 0 is the learning rate parameter.

Algorithm 1: Online Gradient Descent

Initialize β with some β̂0;

for t = 1, 2, . . . T do

Observe xt ∈ Rp, predict ŷt using β̂t−1;

Observe yt ∈ R, obtain loss l(ŷt, yt);

Update β̂t = ΠS(β̂t−1 − ηt∇̂l(ŷt, yt)), where ΠS(·) is the projection function to

constrain the updated model to lie in the feasible domain S of the parameters.

end

OGD is simple and easy to implement, but the projection step may sometimes be computa-

tionally intensive, depending on specific tasks.

1.3.2 Online kernel learning algorithm

Classical OGD algorithms focus on linear problems. For many supervised learning problems,

however, the response may have a nonlinear relationship with the predictors. Hence a nonlinear

model is needed. Online kernel learning algorithms fit the model in a reproducing kernel Hilbert

space (RKHS) H = {f |f : Rp → R} (Aronszajn, 1950). Here the RKHS with the reproducing

kernel function K(·, ·) : Rp × Rp → R satisfies the following properties:

• K has the reproducing property 〈f,K(x, ·)〉 = f(x) for x ∈ Rp,

• H is the closure of the span of all K(x, ·) with x ∈ Rp.

By the Representer theorem (Kimeldorf and Wahba, 1971), the optimal solution of the kernel opti-

mization problem in RKHS involving some loss functions lies in the span of kernels. Consequently,

the goal of a typical online kernel learning algorithm is to learn the kernel-based predictive model

ft(x) for predicting the response of a new instance xt ∈ Rp as ft(x
t) =

∑t−1
j=1 α

t
jK(xj ,xt), where αtj
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is the coefficient of the model. We define support vector (SV) at time t as the set SVt = {j : αtj 6= 0}.

Then, the model can be written as ft(x
T+1) =

∑
j∈SVt α

t
jK(xj ,xt). We use the notation |SV | to

denote the size of the SV set. In the literature, different online kernel methods have been proposed.

We begin by introducing the simplest one, that is, the kernelized online gradient descent (Kivinen

et al., 2004), which extends Algorithm 1 by using the kernel trick. Algorithm 2 below outlines the

kernelized online gradient descent, where ηt > 0 is the learning rate parameter.

Algorithm 2: Kernelized Online Gradient Descent

Initialize f with some f̂0;

for t = 1, 2, . . . T do

Observe xt ∈ Rp, predict ŷt using f̂t−1(xt);

Observe yt ∈ R, obtain loss l(ŷt, yt);

Update SVt = SVt−1 ∪ (xt, yt);

Update f̂t = ΠS(f̂t−1 − ηt∇̂l(ft−1(xt), yt), where ΠS(·) is the projection function to

constrain the updated model to lie in the feasible domain S of the parameters.

end

Although online kernel learning described in Algorithm 2 enjoys the clear advantage of flexibility

over linear models, it falls short in some critical drawbacks. One crucial issue is that the number of

support vectors grows linearly with increasing computational and space complexity. To address this

challenge, a family of algorithms, “budget online kernel learning”, have been proposed to bound

the number of SVs with a fixed budget B by using budget maintenance strategies.

One of the strategies is the “SV removal”, which maintains the budget simply and efficiently. It

first updates the SV set by adding a new SV whenever necessary. If the SV size exceeds the budget,

the SV removal method discards one of the existing SVs and updates the SV set accordingly. The

key step of SV removal is to find one of the existing SVs to be removed by minimizing the impact

of the resulting model. A straightforward way is to randomly discard one of the existing SVs

uniformly with probability 1
B , as adopted by RBP (Cavallanti et al., 2010) and BOGD (Zhao et al.,

2012). Instead of choosing randomly, in “Forgetron” (Dekel et al., 2005), the algorithm discards

the oldest SV by assuming an older SV is less representative for the distribution of fresh training

data streams. Although these methods are simple and highly efficient, the assumption may not be

reasonable in practice for satisfactory performance.
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Another strategy is the “SV projection”, which was initially introduced by Orabona et al.

(2009), where two new algorithms, Projectron and Projectron++, were proposed. These two

methods significantly outperformed the previous SV removal based algorithms such as RBP and

Forgetron. The SV projection methods follow the setting of SV removal and identify a support

vector for removal during the update of the model. It then chooses a subset of SVs as the projection

base. Following this, a linear combination of kernels in the projection base is used to approximate

the removed SV.

1.4 Main contributions and outline

In this dissertation, we propose several new flexible regression methods for complex data. In

particular, the following chapters are organized as follows:

• In Chapter 2, we consider a multi-response regression model for block-wise missing data. The

main contribution of this method is to allow missing values in both responses and predictors

and correlations among reactions. This method can also handle the case that no subject

has complete observation, while most traditional methods do not allow this. Our method

includes two steps. The first step is to estimate each element of the covariance and cross-

covariance matrices using all available observations without imputation. The second step

is to use a penalized likelihood approach to simultaneously estimate the sparse regression

coefficient matrix and the precision matrix of the error terms. We show that this method has

estimation and model selection consistency under the high-dimensional setting in terms of

theoretical studies. Numerical studies and the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data application also confirm that the proposed method performs competitively for

block-wise missing data. The proofs of several analysis results of this proposed model are

given in the Appendix A.

• In Chapter 3, we consider the problem of parameter estimation and variable selection for

the semi-parametric accelerated failure time model for high-dimensional block-missing multi-

modal data with censored outcomes. We propose a penalized Buckley-James method that

simultaneously handles block-wise missing covariates and censored outcomes. This method

can perform both variable selection and parameter estimation. The proposed method is
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evaluated by simulations and applied to the multi-modal neuroimaging dataset from the

ADNI with meaningful results.

• In Chapter 4, we consider a supervised learning model for analyzing data streams in Repro-

ducing Kernel Hilbert Spaces (RKHS). An adaptive supervised learning model is proposed

for data streams in RKHS with limited storage space. We use random feature approxima-

tion to control the storage space and training time. In addition, our model uses the data

sparsity constraint to balance the bias-variance tradeoff of the model and control the error

introduced by random feature approximation. Our method can also handle non-stationary

models. Numerical studies with simulated and real data confirm that the proposed method

performs competitively for data streams in both stationary and non-stationary cases.
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CHAPTER 2

Multi-response Regression for Block-missing Multi-modal Data without Impu-
tation

2.1 Introduction

With the prevalence of large-scale multi-modal data in various scientific fields, multi-response

linear regression has attracted growing research attentions in statistics and machine learning com-

munities (Rothman et al., 2010; Lee and Liu, 2012; Loh et al., 2013). While linear regression with

a scalar response has been well studied, many applications may have a vector as the response. In

particular, multi-response models have wide applications in scientific fields, especially for biological

problems (Kim et al., 2012). For example, for multi-tissue joint expression quantitative trait loci

(eQTL) mapping (Molstad et al., 2021), researchers consider predicting gene expression values in

multiple tissues simultaneously by using a weighted sum of eQTL genotypes. Separate prediction

for each tissue can be inefficient since same genes in different tissues are often correlated due to

the shared genetic variants or other unmeasured common regulators. In order to use data from all

tissues simultaneously, a joint eQTL modeling has been proposed to take cross-tissue expression

dependence into account (Molstad et al., 2021).

To apply variable selection methods for multi-response problems, one could separately fit each

response via a single-response model. There are many well-studied variable selection methods for

the single-response linear regression model such as LASSO (Tibshirani, 1996). Although it is simple

to apply a single-response linear regression method for each response separately, such a procedure

neglects the dependency structure among responses. By incorporating the dependency structure of

the response vector, one may obtain a more efficient multi-response linear regression approach in

terms of estimation and prediction.

To handle multi-response regression problems, a well-known approach, the Curds and Whey,

was proposed by Breiman and Friedman (1997) to improve the prediction performance by utilizing
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dependency among responses. Specifically, they first fit a single-response regression model for

each response and then modify the predicted values from those regressions by shrinking them using

canonical correlations between the response variables and the predictors. Another popular approach

to handle multi-response regression is to use dimension reduction. In particular, reduced rank

regression (Izenman, 1975) minimizes the least squares criterion subject to the constraint on the

rank of regression parameter matrix. Yuan et al. (2007) further extended this method for the high

dimensional setting. Their idea is to obtain dimension reduction by encouraging sparsity among

singular values of the parameter matrix. Although these methods may achieve better prediction

performance than the separate univariate regression, they did not address the problem of variable

selection.

In order to handle correlated responses together with variable selection, the precision matrix of

response vector given predictors and the regression parameter matrix can be estimated separately or

simultaneously (Lee and Liu, 2012). For separate estimation, Cai et al. (2013) used a constrained `1

minimization that can be treated as a multivariate extension of the Dantzig selector to estimate the

regression parameter matrix. After removing the regression effect using the estimated regression

parameter matrix, the precision matrix of the error terms can be estimated accordingly. One

potential drawback of this indirect method is that it ignores the relationship between different

responses given predictors when estimating the regression parameter matrix. In order to use all

information more efficiently, it can be desirable to estimate the precision matrix and regression

parameter matrix simultaneously. In the literature, various joint estimation techniques were studied

by Rothman et al. (2010), Yin and Li (2011) and Lee and Liu (2012). They formulated the

multi-response regression problem in a penalized log-likelihood framework, so that the parameter

and precision matrices can be estimated simultaneously. Using a similar idea, Chen et al. (2018)

proposed an estimation procedure to estimate the parameter and precision matrices simultaneously

based on the generalized Dantzig selector.

Despite a lot of development for multi-response linear regression, most existing methods only

deal with complete data without missing entries. However, many practical data are incomplete,

especially for multi-modal data. For instance, in the study of Alzheimer’s Disease (AD), data

from different sources are collected. This includes magnetic resonance imaging (MRI) of the brain,

positron emission tomography (PET) and cerebrospinal fluid (CSF). In practice, observations of a
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certain modality can be missing completely due to patient dropouts or other practical issues. This

leads to a block-wise missing data structure. It is important to integrate data from all modalities

to improve model prediction and variable selection.

To handle incomplete multi-modal data, one may simply remove those observations with missing

entries. However, such a procedure may greatly reduce the number of observations and lead to loss

of information. Another approach is to perform data imputation. Existing imputation methods,

such as matrix completion (Johnson, 1990) algorithms may possibly be unstable when the missing

values happen in blocks. In order to deal with multi-modal block-wise missing data, Yu et al. (2020)

proposed a new direct sparse regression procedure using covariance from block-missing multi-modal

data (DISCOM). They first used all available information to estimate the covariance matrix of

the predictors and the cross-covariance vector between the predictors and the response variable.

Based on the estimated covariance matrix and the estimated cross-covariance vector, they then

used an extended Lasso-type estimator to estimate the coefficients. However, the DISCOM only

considers single-response regression. Recently, Xue and Qu (2021) proposed the Multiple Block-

wise Imputation (MBI) method for single-response regression when data are block-wise missing.

They developed an estimating equation approach to accommodate block-wise missing patterns in

multi-modal data. The method was shown to have high selection accuracy and low estimation

error for single-response regression with block-wise missing data. However, since their imputation

method requires analyzing all combinations of different blocks, it can be computationally expensive

when the number of modalities is large.

In this paper, we consider a multi-response regression model for block-wise missing data. The

main contribution of our method is to allow missing values in both responses and predictors and

correlations among responses. This method can also handle the case that no subject has complete

observations, while most traditional methods do not allow this. Our method includes two steps.

The first step is to estimate each element of the covariance and cross-covariance matrices by using

all available observations without imputation. The second step is to use a penalized approach

to estimate the sparse regression coefficient matrix and the precision matrix of the error terms

simultaneously. We show that this method has estimation and model selection consistency under

the high-dimensional setting. Numerical studies and the ADNI data application also confirm that

the proposed method performs competitively for block-wise missing data.
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The remainder of the paper is organized as follows. In Section 2.2, we introduce the problem

background and our model. In Section 2.3, we establish some theoretical properties of our proposed

method. We present simulation studies and a multi-modal ADNI data example in Sections 2.4 and

2.5.

2.2 Methodology

2.2.1 Problem setup and notations

Consider the following multi-response linear regression model,

Y = XB∗ + E , (2.1)

where B∗ = (bjk) ∈ Rp×q is an unknown p × q parameter matrix, Y = (y1, . . . ,yn)> is the n × q

response matrix, X = (x1, . . . ,xn)> is the n × p design matrix and E = (ε1, . . . , εn)> is the n × q

error matrix. We assume that {xi}ni=1 are i.i.d. realizations of a random vector (X1, . . . , Xp)
> with

zero mean and covariance matrix ΣXX = (σXXij ) ∈ Rp×p. We use ΣXY = (σXYij ) ∈ Rp×q to denote

the cross-covariance matrix between xi and yi. We assume that the predictors come from multiple

modalities and there are pk predictors in the k-th modality. In addition, X has block-missing

values. That is, for one sample, its measurements in one modality can be entirely missing. We

assume elements of Y can also be missing. The errors εi = (εi1, . . . , εiq)
> for i = 1, . . . , n are i.i.d.

realizations from a random vector ε with zero mean and covariance matrix Σε = (σEEij ) ∈ Rq×q. We

let C∗ = Σ−1
ε . Moreover, we further assume xi and εi are uncorrelated. Denote the support of B∗

and C∗ as SB = {j : vec(B∗)j 6= 0} and SC = {j : vec(C∗)j 6= 0}, where “vec” is the vectorization

by column operator. For a set S, we denote |S| as its cardinality. Denote sB = |SB|, sC = |SC |

and s = max(sB, sC).

We employ the following notation throughout this article. The symbol Sd×d+ is used to denote

the sets of d × d symmetric positive-definite matrices. For a square matrix C = (cii′) ∈ Rp×p,

we denote its trace as tr(C) =
∑

i cii and its diagonal matrix as diag(C). For a matrix A =

(aij) ∈ Rp×q, we define its entrywise `1–norm as ‖A‖1 =
∑

i,j |aij | and its entrywise `∞–norm as

‖A‖∞ = maxi,j |aij | . In addition, we define its matrix `1–norm as ‖A‖L1 = maxj
∑

i |aij | , matrix
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`∞–norm as ‖A‖L∞ = maxi
∑

j |aij | , the spectral norm as ‖A‖2 = max‖x‖2=1 ‖Ax‖2, the Frobenius

norm as ‖A‖F =
√∑

i,j a
2
ij and the number of nonzero elements as ‖A‖0 =

∑
i,j I(aij 6= 0). Denote

the largest and smallest eigenvalues of A by λmax(A) and λmin(A) respectively. Denote the sub-

matrix of A with row and column indices in I1 and I2 as AI1I2 . For a vector v ∈ Rp, denote vI1

as the sub-vector of v with indices in I1, ‖v‖1 =
∑

i |vi|, ‖v‖∞ = maxi |vi|, ‖v‖min = mini |vi| and

‖v‖2 =
√∑

i v
2
i . For a function h(X), we use ∇Xh to denote a gradient or subgradient of h with

respect to X, if it exists. Finally, we write an . bn if an ≤ cbn for some constant c, and write

an � bn if an . bn and bn . an.

2.2.2 Proposed Multi-DISCOM method

For the multi-response linear regression model (2.1), if one separately applies least squares

estimation with the `1−norm penalty to each response, it essentially solves

arg minB E
[
‖Y −XB‖2F

]
+ λ‖B‖1 = arg minB tr

(
1
2B>ΣXXB−Σ>XY B

)
+ λ‖B‖1, (2.2)

where λ is a tuning parameter. We refer to this method as the separate LASSO, whose solution

is denoted as B̂LASSO. However, such an approach fails to account for the correlations between

responses and may lead to poor predictive performance (see, e.g., Breiman and Friedman (1997)).

To produce a better estimator, we propose to incorporate Σε into the estimation of B∗and solve

the following problem:

B̂0 = arg minB tr
[
C∗Σ̂YY + C∗B>Σ̂XXB− 2C∗B>Σ̂XY

]
+ λ‖B‖1, (2.3)

where λ is a tuning parameter, Σ̂Y Y , Σ̂XX and Σ̂XY are some estimators of ΣY Y , ΣXX and ΣXY .

In practice, C∗ is also unknown. It is natural to estimate C∗ first, then plug the estimate Ĉ

into (2.3) and solve the following problem:

B̂0 = arg min
B

tr
[
ĈΣ̂YY + ĈB>Σ̂XXB− 2ĈB>Σ̂XY

]
+ λ‖B‖1. (2.4)
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We refer this method as the two-step weighted LASSO. But as shown by the toy example in

Section 2.2.2.1, the two-step weighted LASSO may perform worse than the separate LASSO in

some problems.

In this article, we propose to estimate B∗ and C∗ simultaneously by solving the following

optimization problem:

(B̂, Ĉ) = arg min
C∈Sq×q+ ,B

tr
[
CΣ̂YY + CB>Σ̂XXB− 2CB>Σ̂XY

]
+λB‖B‖1 + λC‖C‖1 − log det C,

(2.5)

where λB and λC are tuning parameters. When λC is large enough, Theorem 4 by Banerjee et al.

(2008) implies that all off-diagonal entries in Ĉ become zero. Then our proposed method (2.5)

reduces to the separate LASSO (2.2). For a univariate response regression problem, our proposed

method (2.5) reduces to the DISCOM algorithm (Yu et al., 2020). When there is no missing entries,

our proposed method (2.5) reduces to the sparse conditional Gaussian graphical model introduced

by Yin and Li (2011).

The toy example in Section 2.2.2.1 illustrates that our joint estimation model (2.5) has better

estimation performance than the two-step weighted LASSO and the separate LASSO.

2.2.2.1 Toy example

For illustration, we consider a toy example similar to the one in Lee and Liu (2012). Assume

p = q = 2, X>X = I and Σε =
(

1 ρ
ρ 1

)
, where ρ is an unknown constant. We perform simulation

studies for this example with 200 training samples, 300 tuning samples and 1000 testing samples.

Set B∗ = ( 0 0
2 3.5 ) in Case 1 and

(
0 0
−2 3.5

)
in Case 2. Figure 2.1 shows the estimation error for the

separate LASSO, the two-step weighted LASSO and the joint estimation model (2.5). In Case 1,

the two-step weighted LASSO has a smaller estimation error than the separate LASSO when ρ is

positive. The result flips when ρ is negative. While in Case 2, the separate LASSO has a smaller

estimation error than the two-step weighted LASSO when ρ is positive. The joint estimation model

performs the best in all cases.
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Figure 2.1: Plots of the estimation errors for separated LASSO, two-step weighted LASSO and joint

estimation when Σε =

(
1 ρ
ρ 1

)
. The left panel is for B∗ =

(
0 0
2 3.5

)
and the right panel is for B∗ =(

0 0
−2 3.5

)
.

The simulation results can be explained by the following calculations. With the penalty pa-

rameter λ, the solution of the separate LASSO is given by B̂LASSO
ij = sign(B̂S

ij)[B̂
S
ij −λ/2]+, where

[u]+ = u if u ≥ 0, [u]+ = 0 if u < 0 and B̂S = (X>X)−1X>Y.

We can show that the two-step weighted LASSO (2.4) is equivalent to

B̂2step = arg minB

[
(vec(B)− vec(BS))>(I2 ⊗ Ĉ)(vec(B)− vec(BS)) + ‖ vec(B)‖1

]
. (2.6)

When estimate Ĉ is accurate, B̂2step should be very close to the solution of (2.3), where we use Σ−1
ε

as the weight. After we plug Ĉ = Σ−1
ε into (2.6), the solution is given by B̂2step

ij = sign(B̂S
ij)[|B̂S

ij |−

λ(1+ρ)/2]+ when sign(B̂S
i1B̂

S
i2) = 1 and B̂2step

ij = sign(B̂S
ij)[|B̂S

ij | −λ(1−ρ)/2]+ when sign(B̂S
i1B̂

S
i2) =

−1. Compared with B̂LASSO
ij = sign(B̂S

ij)[B̂
S
ij − λ/2]+, B̂2step

ij only differs in the shrinkage amount

for each entry. The shrinkage amounts for all entries of the Separate LASSO are the same, which

only depend on the tuning parameter λ. The shrinkage amounts for all entries of the two-step

weighted LASSO depend on ρ, λ and the sign of B̂S . Each entry of the two-step weighted LASSO

may have different shrinkage amounts.

We consider two cases of ρ in Case 1, where B∗ = ( 0 0
2 3.5 ). Since B∗21, B∗22 are far from 0, for

simplicity, we assume that sign(B̂S
21) = sign(B̂S

22) = 1.

1. Consider ρ = −0.4. When sign(B̂S
11B̂

S
12) = −1, the shrinkage amounts for B̂2step

21 and B̂2step
22

are 0.7λ, while the shrinkage amounts for B̂2step
11 and B̂2step

12 are 0.3λ. Thus the shrinkage

amounts for B̂2step
21 and B̂2step

22 are smaller than the shrinkage amounts for B̂2step
11 and B̂2step

12 .
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This means that with the tuning parameter λ that shrinks B̂2step
11 and B̂2step

12 to 0, the shrink-

age amounts for B̂2step
21 and B̂2step

22 are smaller than the shrinkage amounts for B̂LASSO
21 and

B̂LASSO
22 . Thus the two-step weighted LASSO has a smaller estimation error than separate

LASSO in this scenario. When sign(B̂S
11B̂

S
12) = 1, the shrinkage amounts for all entries in

B̂2step are equal.

2. Consider ρ = 0.4. When sign(B̂S
11B̂

S
12) = −1, the shrinkage amounts for B̂2step

21 and B̂2step
22 are

0.3λ, while the shrinkage amounts for B̂2step
11 and B̂2step

12 are 0.7λ. This means that with the

tuning parameter λ that shrinks B̂2step
11 and B̂2step

12 to 0, the shrinkage amounts for B̂2step
21 and

B̂2step
22 are larger than the shrinkage amounts for B̂LASSO

21 and B̂LASSO
22 . Thus the separate

LASSO is preferred to the two-step weighted LASSO in this scenario. When sign(B̂S
11B̂

S
12) = 1,

all entries in B̂2step have the same shrinkage amount.

In Case 2, where B∗ =
(

0 0
−2 3.5

)
, the two-step weighted LASSO is preferred to separate LASSO

only when ρ is negative. In conclusion, the performance of the two-step weighted LASSO compared

with the separate LASSO depends on the sign of B∗ and the covariance matrix Σε. In contrast, the

joint estimation model (2.5) is more flexible. When Σε and B∗ favor the separate LASSO, the joint

estimation model (2.5) can perform better by choosing a large λC . Otherwise, the joint estimation

model (2.5) can perform better by choosing a relatively small λC . Thus the joint estimation model

(2.5) can perform competitively in all cases.

2.2.2.2 Covariance estimation

Next we introduce how to obtain Σ̂XX , Σ̂XY and Σ̂Y Y when data have block-missing values. The

following notation will be used in this article. For the jth predictor, define SXj = {i : xij is not

missing}. For the jth response, define SYj = {i : yij is not missing}. Define SXXjk = {i : xij and xik

are not missing}, SXYjk = {i : xij and yik are not missing}, SXX/Yjkl = {i : xij , xik are not missing

but yil is missing}, SXY/Xjkl = {i : xij , yik are not missing but xil is missing} and SY Yjk = {i : yij

and yik are not missing}. Denote the cardinality of SXj , S
Y
j , SXXjk , SXYjk , S

XX/Y
jkl , S

XY/X
jkl and

SY Yjk as nXj , n
Y
j nXXjk , nXYjk , n

XX/Y
jkl , n

XY/X
jkl , and nY Yjk , respectively. Denote nX = minj |SXj |,

nXX = minj,k |SXXjk |, nXY = minj,k |SXYjk |, nY Y = minj,k |SY Yjk |, nXX/Y = minj,k,l |S
XX/Y
jkl | and

nXY/X = minj,k,l |S
XY/X
jkl |.
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We propose the initial estimators of ΣXX , ΣXY and ΣY Y to be the sample covariance

matrices using all available data, i.e. Σ̃XX = (σ̃XXjt ), Σ̃XY = (σ̃XYjt ), Σ̂Y Y = (σ̂Y Yjt ), where

σ̃XXjt =
∑

i∈SXXjt
xijxit/n

XX
jt , σ̃XYjt =

∑
i∈SXYjt

xijyit/n
XY
jt , and

σ̂Y Yjt =
1

nY Yjt

∑
i∈SY Yjt

yijyit. (2.7)

We point out our method requires Σ̃XX , Σ̃XY and Σ̂Y Y to be unbiased estimators of their coun-

terparts. When the missingness in X and Y is missing completely at random, the unbiasedness

assumption is satisfied. However, the unbiasedness assumption may also hold under some other

missing mechanism. For our theories, we do not specify any particular missing mechanism. The

unbiasedness assumption suffices.

For block-missing data X, the above estimate Σ̃XX can be ill-conditioned and have negative

eigenvalues. Therefore, it may not be a good estimate of ΣXX and cannot be used in (2.5) directly.

Next, we introduce an estimator that is both well-conditioned and more accurate than the initial

estimate Σ̃XX . According to the partition of the predictors into K modalities, Σ̃XX can be

partitioned into K2 blocks, denoted by Σ̃k1k2 for 1 ≤ k1, k2 ≤ K and Σ̃k1k2 being a pk1 × pk2

matrix. We denote

Σ̃I =



Σ̃11

Σ̃22

. . .

Σ̃KK


and Σ̃C =



0 Σ̃12 . . . Σ̃1K

Σ̃21 0 . . . Σ̃2K

...
...

. . .
...

Σ̃K1 Σ̃K2 . . . 0


,

where Σ̃I is called the intra-modality sample covariance matrix, which is a p × p block-diagonal

matrix containing K diagonal blocks of Σ̃XX , and Σ̃C = Σ̃−Σ̃I is called the cross-modality sample

covariance matrix containing all off-diagonal blocks of Σ̃XX . Let ΣI and ΣC be the true intra-

modality and cross-modality covariance matrices, respectively. For the block-missing multi-modal

data, due to the imbalanced sample sizes, the estimate Σ̃I can be relatively accurate while the

estimate Σ̃C can be inaccurate. In that case, we estimate ΣXX by a linear combination of Σ̃I

and Σ̃C with different weights. In addition, to ensure positive definiteness of our estimation, we
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adopt the idea of shrinkage estimation of the covariance matrix (Fisher and Sun, 2011) and add

the diagonal matrix diag(Σ̃I) to our estimator,

Σ̂XX = α1Σ̃I + (1− α1) diag(Σ̃I) + α2Σ̃C , (2.8)

where α1, α2 ∈ [0, 1] are two shrinkage weights. We add the diagonal matrix diag(Σ̃I) to ensure

the diagonal entries of our estimator are not shrunk.

By Weyl’s theorem, the eigenvalues of our estimator are greater than or equal to α1λmin(Σ̃I) +

(1 − α1)λmin(diag(Σ̃I)) + α2λmin(Σ̃C). Since diag(Σ̃I) is a positive definite matrix, by carefully

selecting the tuning parameters α1 and α2, the eigenvalues of our estimator can be guaranteed to

be positive.

As we dicussed before, our estimator Σ̂XX is a shrinkage estimator. Using a similar idea, we

use a shrinkage estimator to estimate ΣXY . That is, we propose to estimate ΣXY by

Σ̂XY = α3Σ̃XY , (2.9)

where α3 ∈ [0, 1] is the shrinkage weight. We want to find the optimal linear combination Σ̂∗XY =

α∗3Σ̃XY whose expected quadratic loss E‖Σ̂∗XY −ΣXY ‖F is minimized.

In our paper, we only consider a relative low dimension of Y with not too many incomplete

observations, so we will use Σ̂Y Y defined in (2.7) directly. But when the dimension of Y is very high,

or there are many incomplete observations of Y , a shrinkage estimator of ΣY Y is recommended

instead.

Denote γ∗ = (γ∗1 , . . . , γ
∗
K)> = (tr(Σ11)/p1, . . . , tr(Σ

KK)/pK)>, δI =
√

E‖Σ̃I −ΣI‖2F , δC =√
E‖Σ̃C −ΣC‖2F , δXY =

√
E‖Σ̃XY −ΣXY ‖2F and θ = ‖ diag(Σ̃I)− ΣI‖F . The optimal choice for

the weights of α1, α2, and α3 is shown in the following proposition 2.2.1.

Proposition 2.2.1. The solutions to the following two optimization problems:

(α∗1, α
∗
2) = arg min

α1,α2

E‖Σ̂XX −ΣXX‖2F (2.10)

α∗3 = arg min
α3

E
∥∥∥Σ̂XY −ΣXY

∥∥∥2

F
(2.11)

19



are

α∗1 =
θ2

θ2 + δ2
I

, α∗2 =
‖ΣC‖2F

‖ΣC‖2F + δC
2
, α∗3 =

‖ΣXY ‖2F
‖ΣXY ‖2F + δXY

2
.

In addition, for Σ̂∗XX = α∗1Σ̃I + (1− α∗1) diag(Σ̃I) + α∗2Σ̃C and Σ̂
∗
XY = α∗3Σ̃XY , we have

E
∥∥∥Σ̂∗XX −ΣXX

∥∥∥2

F
=

δ2
Iθ

2

δ2
I + θ2

+
δC

2 ‖ΣC‖2F
δC

2 + ‖ΣC‖2F
≤ δ2

I + δC
2 = E‖Σ̃XX −ΣXX‖2F ,

E
∥∥∥Σ̂∗XY −ΣXY

∥∥∥2

F
=

δXY
2 ‖ΣXY ‖2F

δXY
2 + ‖ΣXY ‖2F

≤ δXY 2 = E‖Σ̃XY −ΣXY ‖2F .

Define the `2-error of the estimators Σ̂XX and Σ̂XY as E‖Σ̂XX−ΣXX‖2F and E‖Σ̂XY −ΣXY ‖2F ,

respectively. Proposition 2.2.1 shows that our estimator is more accurate than the sample covariance

matrix.

Proposition 2.2.1 is closely related to Proposition 1 in Yu et al. (2020). They calculated the

optimal weight and estimation error for their proposed estimator Σ̂∗XX,DISCOM of ΣXX , whose

estimation error is

E‖Σ̂XX,DISCOM −ΣXX‖2F =
δ2
I θ̃

2

δ2
I + θ̃2

+
δC

2 ‖ΣC‖2F
δC

2 + ‖ΣC‖2F
,

where θ̃2 = ‖tr(Σ)Ip/p−ΣI‖2F . We can see that our estimator Σ̂XX has smaller `2-error compared

to their estimator. Comparing to their proposition, we also prove that our weighted estimator Σ̂XY

is more accurate than the sample covariance matrix.

2.2.3 Computational algorithm

In this section, we describe the computational algorithm to solve the optimization problem

(2.5). Since (2.5) is a bi-convex problem, the standard approach to solve this problem is via the

alternating minimization method. In particular, starting with some given initial point (B̂0, Ĉ0), at

the t–th iteration, we solve solving the following problems

B̂t = arg minB tr
[
Ĉt−1Σ̂Y Y + Ĉt−1B

>Σ̂XXB− 2Ĉt−1B
>Σ̂XY

]
+ λB‖B‖1, (2.12)

Ĉt = arg minC∈Sq×q+
tr
[
CΣ̂Y Y + CB̂>t Σ̂XXB̂t − 2CB̂>t Σ̂XY

]
+ λC‖C‖1 − log det C. (2.13)
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In each iteration of our algorithm, given Ĉt−1, we first update the estimator B̂t by solving

(2.12). Since (2.12) is quadratic in B, we use the coordinate descent algorithm to solve it. Then

we adopt the graphical lasso method by Friedman et al. (2008) to solve (2.13). We summarize the

above procedures in Algorithm 3 below.

Algorithm 3: Alternating minimization updating algorithm

Input: X, Y, λC , λB

Output: B̂, Ĉ

Obtain Σ̂XX by (2.8), Σ̂XY by (2.9), Σ̂Y Y by (2.7).

Initialize with

B̂0 = arg min
B

tr
[
Σ̂Y Y + B>Σ̂XXB− 2B>Σ̂XY

]
+ λB0

‖B‖1, (2.14)

Ĉ0 = arg min
‖C‖1≤R,C∈Sd×d

+

tr(CΣ̂0)− log det(C) + λC0
‖C‖1, (2.15)

where R is a large enough tuning parameter which is usually chosen to be λ−1
C0

(Loh and Wainwright, 2015) and Σ̂0 = Σ̂Y Y − 2Σ̂>XY B̂0 + B̂>0 Σ̂XXB̂0.

while max
{
‖B̂t − B̂t−1‖F , ‖Ĉt − Ĉt−1‖F

}
> threshold do

For a given Ĉt−1, let

B̂t = arg min
B

tr
[
Ĉt−1Σ̂Y Y + Ĉt−1B

>Σ̂XXB− 2Ĉt−1B
>Σ̂XY

]
+ λB‖B‖1;

For a given B̂t, let

Ĉt = arg min
‖C‖1≤R,C∈Sq×q+

tr
[
CΣ̂Y Y + CB̂>t Σ̂XXB̂t − 2CB̂>t Σ̂XY

]
+

λC‖C‖1 − log det C,

end

return Ĉt, B̂t.

2.3 Theoretical study

We establish the following theoretical results. First, we prove in Theorem 2.3.1 that the

proposed estimators Σ̂XX , Σ̂XY and Σ̂Y Y are consistent with high probability. We then show
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the convergence rate of our proposed estimators B̂ and Ĉ in Theorem 2.3.2. Finally, the selection

consistency of our proposed method is shown in Theorem 2.3.3. The technical assumptions (A1)

to (A5), and all proofs are provided in the Supplementary Material. In the following analysis, we

allow p and q to diverge as nXX , nXY and nY Y increase.

In Theorem 2.3.1, we prove the large deviation bounds for our proposed estimators Σ̂XX , Σ̂XY

and Σ̂Y Y .

Theorem 2.3.1. Suppose 1 − α1 = O(
√

log p/nX), 1 − α2 = O(
√

log p/nXX), and 1 − α3 =

O(
√

log pq/nXY ). If Conditions (A1) and (A2) hold, there exists positive constants v′1, v′2, and v′3

such that

P

(∥∥∥Σ̂XX −ΣXX

∥∥∥
∞
≥ v′1

√
log p

nXX

)
≤ 4

p
, (2.16)

P

∥∥∥Σ̂XY −ΣXY

∥∥∥
∞
≥ v′2

√
log(pq)

nXY

 ≤ 4

pq
, (2.17)

P

(∥∥∥Σ̂Y Y −ΣY Y

∥∥∥
∞
≥ v′3

√
log q

nY Y

)
≤ 4

q
. (2.18)

If we only use samples with complete observations, sample covariance estimators Σ̃XX,complete,

Σ̃XX,complete and Σ̃XX,complete have the following convergence rates

∥∥∥Σ̃XX,complete −ΣXX

∥∥∥
∞

= Op

(√
(log p)/ncomplete

)
,∥∥∥Σ̃XY,complete −ΣXY

∥∥∥
∞

= Op

(√
(log(pq))/ncomplete

)
,∥∥∥Σ̃Y Y,complete −ΣY Y

∥∥∥
∞

= Op

(√
(log q)/ncomplete

)
,

where ncomplete is the number of samples with complete observations; see Yu et al. (2020). For

block-missing data, ncomplete can be much smaller than nXX , nXY and nY Y .

Next, we give the properties of initial estimators B̂0 and Ĉ0. The following lemma describes

estimation consistency of the initial estimator B̂0.

Lemma 2.3.1. Suppose Conditions (A1)–(A4) hold, 1 − α1 = O(
√

log p/nX), 1 −

α2 = O(
√

log p/nXX), and 1 − α3 = O(
√

log pq/nXY ). If we choose λB0 =
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C(log(pq)/min(nXY , nXX))
1
2 ‖B∗‖L1 for some large enough constant C, then with probability at least

1− 4/p− 4/(pq), the initial estimator B̂0 = arg minB tr[Σ̂Y Y + B>Σ̂XXB− 2B>Σ̂XY ] + λB‖B‖1

satisfies

∥∥∥B̂0 −B∗
∥∥∥
F
.
√
qsB

∥∥∥Σ̂XY − Σ̂XXB∗
∥∥∥
∞

.‖B∗‖L1

√
qsB log(pq)

min(nXX , nXY )
.

Cai et al. (2013) showed that when there is no missing data and the true coefficient B∗ is exactly

sparse, their estimator B̂Cai has the convergence rate of ‖B̂Cai −B∗‖F = Op(Np

√
qsBlog(pq)/n),

where n is the sample size of the data and Np is the upper bound of ‖Σ−1
XX‖L∞ . When

there is no missing data, our initial estimator B̂0 has the convergence rate of ‖B̂0 − B∗‖F =

Op(‖B∗‖L1

√
qsBlog(pq)/n). If we assume ‖B∗‖L1 � ‖Σ−1

XX‖L∞ , the convergence rate of B̂0 is the

same as that of B̂Cai. When the data are block-wise missing, and we only use complete samples to

estimate B∗, we will have ‖B̂0 −B∗‖F = Op(‖B∗‖L1

√
qsB log(pq)/ncomplete), which can be much

slower than the rate in Lemma 2.3.1 as ncomplete is typically much smaller than nXX and nXY for

block-wise missing data.

For the single-response regression with block-wise missing data, the result in Lemma 2.3.1 is

the same as Theorem 2 in Yu et al. (2020) and the estimator B̂0 performs well when the dimension

of Y is small. But when the dimension of Y becomes large, the estimator B̂0 may perform poorly.

The following lemma describes consistency of our initial estimator Ĉ0.

Lemma 2.3.2. Suppose Conditions (A1)–(A4) hold, 1 − α1 = O(
√

log p/nX),

1 − α2 = O(
√

log p/nXX), 1 − α3 = O(
√

log pq/nXY ). If we choose λC0 =

C‖C∗‖22‖B∗‖L1

(
‖B∗‖L1 + sB

√
q
)

(log(pq)/min(nXX , nXY ))1/2 for a large enough C, it holds

with probability at least 1− 4/p− 4/(pq)− 4/q that

∥∥∥Ĉ0 −C∗
∥∥∥
F
.
√
sC‖C∗‖22‖Σε − Ĉ−10 ‖∞

.‖C∗‖22‖B∗‖L1
(‖B∗‖L1

+ sB
√
q)

√
sC log(pq)

min(nXX , nXY )
.

There are two terms in the estimation error bound of Ĉ0. The first term

‖C∗‖22‖B∗‖2L1

√
sC log(pq)

min(nXX ,nXY ) comes from the error induced by using incomplete observations to
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estimate ΣXX and ΣXY . The second term ‖C∗‖22‖B∗‖L1sB

√
sCq log(pq)

min(nXX ,nXY ) comes from the esti-

mation error of B̂0.

We next derive the convergence rates of B̂ and Ĉ. The convergence rates are related to nXX/Y

and nXY/X , which are fractions of nXX and nXY respectively. Hence, we let nXX/Y � nτ1XX and

nXY/X � nτ2XY with τ1, τ2 ∈ {−∞} ∪ [0, 1]. When the responses are complete while the covariates

have missing entries, nXX/Y = 0 and τ1 = −∞, nXY/X > 0 and τ2 ∈ [0, 1]. When the covariates

are complete while the responses have missing entries, nXY/X = 0 and τ2 = −∞, nXX/Y > 0

and τ1 ∈ [0, 1]. When both the responses and covaraites are complete, nXX/Y = nXY/X = 0 and

τ1 = τ2 = −∞. Theorem 2.3.2 below establishes the consistency of proposed estimators B̂ and Ĉ

in (2.5).

Theorem 2.3.2. Suppose Conditions (A1)–(A4) hold, 1 − α1 = O(
√

log p/nX), 1 − α2 =

O(
√

log p/nXX), 1 − α3 = O(
√

log(pq)/nXY ). If we choose λB and λC satisfying λB =

C((log p)1/2/min(n
1−τ1/2
XX , n

1−τ2/2
XY )‖B∗C∗‖L1 + {log(pq)/nXY }1/2) and λC = C‖C∗‖22[‖B∗‖2L1

+

sB‖B∗C∗‖L1/min(n
1/2−τ1/2
XX , n

1/2−τ2/2
XY )]

(log(pq)/min(nXX , nXY ))1/2 for a large enough C, then it holds with probability at least 1− 4/p−

4/(pq)− 4/q that

∥∥∥B̂−B∗
∥∥∥
F
.
√
sB

 ‖B∗C∗‖L1
(log(pq))1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +

{
log(pq)

nXY

}1/2
 ,

∥∥∥Ĉ−C∗
∥∥∥
F
.
√
sC‖C∗‖22

sB‖B∗C∗‖L1
(log(pq))1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +
‖B∗‖2L1

(log(pq))1/2

min
(
n
1/2
XX , n

1/2
XY

)


∥∥∥B̂−B∗
∥∥∥
1
.sB

 ‖B∗C∗‖L1(log(pq))1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +

{
log(pq)

nXY

}1/2
 ,

∥∥∥Ĉ−C∗
∥∥∥
1
.sC‖C∗‖22

sB‖B∗C∗‖L1
(log(pq))1/2

min
(
n
1−τ1/2
XX , n

1−τ2/2
XY

) +
‖B∗‖2L1

(log(pq))1/2

min
(
n
1/2
XX , n

1/2
XY

)
 .

Next, we discuss some direct implications of Theorem 2.3.2. First, we show that our estimators

are at least as good as the initial estimators under some conditions. Since τ1, τ2 ≤ 1 as n
XX/Y
jkl ≤

nXXjk and n
XY/X
jkl ≤ nXYjk , the convergence rate of ‖B̂−B∗‖F is no slower than Op(max(‖B∗C∗‖L1 , 1)√

sB log(pq)/min(nXX , nXY )). Similarly, the convergence rate of ‖Ĉ − C∗‖F is no slower than

Op(
√
sC‖C∗‖22(‖B∗‖2L1

+ sB‖B∗C∗‖L1)
√

log(pq)
min(nXX ,nXY )). Here the two slowest convergence rates
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are achieved when τ1 = τ2 = 1. If we assume ‖B∗C∗‖L1 = O(‖B∗‖L1

√
q), the upper bounds of

‖B̂−B∗‖F and ‖Ĉ−C∗‖F are at least as tight as ‖B̂0 −B∗‖F and ‖Ĉ0 −C∗‖F .

On the other hand, if ‖B∗C∗‖L1 = o(‖B∗‖L1

√
q) or max(τ1, τ2) < 1 and ‖B∗C∗‖2L1

=

o(min(n
1/2−τ1/2
XX , n

1/2−τ2/2
XY )), the upper bounds of ‖B̂ − B∗‖F and ‖Ĉ − C∗‖F are strictly tighter

than that of ‖B̂0 −B∗‖F and ‖Ĉ0 −C∗‖F . One example is when Var(εj) >
1√
q for all j ≤ q and

cov(εj , εk) = 0 for j 6= k. Another example is when nXX/Y = o(nXX), nXY/X = o(nXY ), and

‖B∗C∗‖2L1
= o(min(n

1/2−τ1/2
XX , n

1/2−τ2/2
XY )).

When Y is complete while X has missing entries, τ1 = −∞ and τ2 ∈ [0, 1]. Then convergence

rate of B̂ in Theorem 2.3.2 becomes

∥∥∥B̂−B∗
∥∥∥
F
.
√
sB

(
‖B∗C∗‖L1(log(pq))1/2

n
1−τ2/2
XY

+

{
log(pq)

nXY

}1/2
)
.

When X are complete while Y have missing entries, τ2 = −∞ and τ1 ∈ [0, 1]. In this case, we can

set α1 = α2 = 1 and have

∥∥∥B̂−B∗
∥∥∥
F
.
√
sB

(
‖B∗C∗‖L1(log(pq))1/2

n
1−τ1/2
XX

+

{
log(pq)

nXY

}1/2
)
.

When both X and Y are complete, τ1 = τ2 = −∞. In this case, we can set α1 = α2 = α3 = 1 and

have

‖B̂−B∗‖F .
√
sB log(pq)/n, (2.19)

where n is the sample size. The error bound in (2.19) is the minimax rate of the `1-penalized

estimator as shown in Raskutti et al. (2011).

In Theorem 2.3.3 below, we show that our proposed method is model selection consistent.

Theorem 2.3.3. Assume that Conditions (A1)–(A5) hold. Suppose 1− α1 = O(
√

log p/nX), 1−

α2 = O(
√

log p/nXX), 1− α3 = O(
√

log(pq)/nXY ). If (log(pq)/nXY )
1
2
−γ2/λB = o(1), λB‖((C∗ ⊗

ΣXX)SBSB )−1‖L∞/minj∈SB |β∗j | = o(1), sB‖((C∗⊗ΣXX)SBSB )−1‖L∞(log p/nXX)
1
2
−γ2 = o(1), and

sB

(log p/nXX)
1
2
−γ1−γ2/λB = o(1), then with probability at least 1− 4/p− 4/(pq)− 4/q, there exists a

solution B̂ to (2.5) such that sign(B̂) = sign(B∗).
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2.4 Numerical study

In this section, we examine the performance of our proposed method (Multi-DISCOM) related

to Σε, the signal-to-noise ratio and the distribution of error ε through some numerical studies. We

compare the efficiency of our proposed method with some other methods. These methods include (1)

Complete Lasso, which separately applies Lasso to each response only using samples with complete

observations (both X and Y have no missing values); (2) Imputed-Lasso, which separately applies

Lasso to each response using all samples, where missing data are imputed by the Soft-thresholded

SVD method; (3) MBI, which separately applies the MBI (Xue and Qu, 2021) to each response

using all samples, where missing data are imputed by the Multiple Block-wise Imputation; (4)

DISCOM, which separately applies the DISCOM (Yu et al., 2020) to each response; (5) Imputed-

MRCE, which runs the MRCE (Rothman et al., 2010) using all samples with missing data imputed

by the Soft-thresholded SVD method.

In all examples, we set q = 4, xi = (xi1, . . . , xip)
> ∼ N(0,Σ) with σjt = 0.6|j−t|. The ith row

of the coefficient matrix B∗ is (1, 1.5, 1, 1.5) for i = 1, p1 + 1, p1 + p2 + 1 and 0 otherwise. The

response Y has missing entries completely at random, with the missing proportion 0.01.

For each example, the data were generated from three modalities whose dimensions p1, p2 and

p3 are specified below. The training dataset contains n1 samples with complete observations, n2

samples from the third modality, n3 samples from the first and the third modalities and n4 samples

from the first modality. The tuning dataset contains 75 samples with complete observations and

the testing dataset includes 300 samples with complete observations. For each method, we train

our model with different tuning parameters on the training dataset. Then we choose the optimal

tuning parameter minimizing the mean squared error on the tuning dataset.

For each example, we repeat the simulation 50 times. To evaluate the selection performance

of the algorithm, we use false-positive rate (FPR) and false-negative rate (FNR) as criteria:

FPR = FP/(FP + TN) and FNR = FN/(FN + TP), where FN represents the number of coeffi-

cients wrongly detected to be zero, TN are the number coefficients rightfully detected to be zero,

TP are the coefficients rightfully detected to be nonzero and FP are the coefficients wrongly de-

tected to be nonzero. Furthermore, to evaluate the accuracy of our estimators, we used the mean

squared error (MSE) on the testing dataset and the `2 distance ‖B̂−B∗‖F as criteria.
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In Example 1, we examine our method related to Σε. Let n1 = n2 = n3 = n4 = 30, p1 = p2 =

p3 = 30. We set error εi = (εi1, . . . , εiq) ∼ N(0,Σε) with Σε = 3I2 ⊗
(

1 ρ
ρ 1

)
. We choose ρ ranging

from −0.4 to 0.4.

In Example 2, we examine the performance of our method related to the signal-to-noise ratio.

Let n1 = n2 = n3 = n4 = 30, p1 = p2 = p3 = 30. We set error εi = (εi1, . . . , εiq) ∼ N(0,Σε) with

Σε = αI2 ⊗
(

1 −0.4
−0.4 1

)
, and range α from 1 to 5.

In Example 3, we examine the robustness of our method when the error follows heavy-tailed

distribution. Let n1 = n2 = n3 = n4 = 30 and p1 = p2 = p3 = 30. We set error εi = (εi1, . . . , εiq) ∼

t10(0,Σε) where Σε = 3I2⊗
(

1 −0.4
−0.4 1

)
, and tν(0,Σε) refers to student’s t distribution with location

vector 0 and scale matrix Σε.

To demonstrate the results, we focus on the results of Example 1. We report the results of

other examples in Appendix A.

The results in Table 2.1 indicate that the Multi-DISCOM delivers the best performance in all

settings. Specifically, the Multi-DISCOM produces smaller MSE and estimation errors than the

other methods in all settings, especially when the correlations between different responses are large.

In addition, the Lasso method using the imputed data may deliver worse selection performance,

possibly due to randomness involved in the imputation of block-missing data. The results in Table

4 in the Supplement Materials indicate that the Multi-DISCOM has more advantage when signal-

to-noise ratio is small. When the signal-to-noise ratio is smaller, the noise has stronger effect on Y

and hence taking the precision matrix into account is more helpful for our estimation.

2.5 Application to the ADNI study

We apply the Multi-DISCOM to the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

study (Mueller et al., 2005) and compare it with several existing approaches. A primary goal

of this analysis is to identify biological markers and neuropsychological assessments to measure

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). We are

interested in predicting Mini-Mental State Examination (MMSE), ADAS1 and ADAS2. These

scores are commonly used diagnotic scores of AD. Data processing steps are summarized in the

supplementary materials.
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Method ‖B̂−B∗‖F MSE FPR FNR

ρ = −0.4

Lasso 1.51(0.06) 3.70(0.06) 0.09(0.02) 0.00(0.00)
Imputed-Lasso 1.73(0.06) 3.57(0.06) 0.11(0.01) 0.00(0.00)
MBI 2.10(0.08) 4.26(0.09) 0.12(0.02) 0.11(0.03)
DISCOM 1.44(0.04) 3.56(0.06) 0.05(0.00) 0.05(0.01)
Imputed-MRCE 1.53(0.05) 3.72(0.08) 0.17(0.03) 0.08(0.02)
Multi-DISCOM 1.40(0.04) 3.39(0.08) 0.02(0.01) 0.09(0.02)

ρ = 0.4

Lasso 1.55(0.06) 3.77(0.06) 0.11(0.02) 0.00(0.00)
Imputed-Lasso 1.75(0.06) 3.61(0.06) 0.13(0.01) 0.00(0.00)
MBI 2.14(0.08) 4.30(0.09) 0.13(0.02) 0.11(0.03)
DISCOM 1.46(0.04) 3.59(0.06) 0.06(0.00) 0.05(0.01)
Imputed-MRCE 1.54(0.05) 3.73(0.08) 0.19(0.03) 0.09(0.02)
Multi-DISCOM 1.43(0.04) 3.44(0.08) 0.04(0.01) 0.07(0.02)

Table 2.1: Performance comparison of different methods for Example 1 with different ρ’s. The values in
the parentheses are the standard errors of the measures.

After data processing, we have 93 features from MRI, 93 features from PET and 5 features from

CSF. There are 805 subjects in total, including 199 subjects with complete MRI, PET and CSF

features, 197 subjects with MRI and PET features only, 201 subjects with MRI and CSF features

only and 208 subjects with MRI features only.

In our analysis, we divide the data into training, tuning, and testing sets. The training set

consists of all subjects with incomplete observations and 40 randomly selected subjects with com-

plete features. The tuning set consists of another 40 randomly selected subjects with complete

observations. The testing set contains the remaining 119 subjects with complete observations. We

train our model with different tuning parameters on the training set. Then we choose the tuning

parameter which minimizes the mean squared error on the tuning set. The testing set is used to

evaluate different methods. We used all methods shown in the simulation study to predict the

MMSE score. For each method, the analysis was repeated 30 times using different partitions of

the data. In addition to the sum of mean squared errors (MSE) of all three responses, we compare

MSEs for each response (MSEMMSE , MSEADAS1 and MSEADAS2) as criteria. We also compare

the number of features selected by each method.

28



Method Overall MSE MSEMMSE MSEADAS1 MSEADAS2 # of Selected Features

Lasso 93.37(3.82) 5.31(0.19) 29.84(1.35) 58.23(2.40) 54.20

Imputed-Lasso 80.40(1.62) 4.54(0.12) 25.80(0.51) 50.07(1.15) 165.00

MBI 91.84(3.02) 5.13(0.14) 28.43(1.17) 58.29(2.16) 59.87

DISCOM 67.47(1.33) 4.26(0.11) 21.76(0.51) 41.45(0.86) 72.87

Imputed-MRCE 67.41(2.02) 4.29(0.10) 21.61(0.65) 41.50(1.33) 218.50

Multi-DISCOM 65.82(1.21) 4.22(0.12) 21.18(0.46) 40.41(0.80) 89.67

Table 2.2: Performance comparison for the ADNI data.

As shown in Table 2.2, the Multi-DISCOM delivers better performance than all other meth-

ods. The DISCOM has a similar overall MSE as the Multi-DISCOM, but worse MSEADAS1 and

MSEADAS2. One possible reason is that ADAS1 and ADAS2 are highly correlated, so taking the

precision matrix into account can help. Since there are 208 subjects with MRI features only, the

MBI method may not impute those 208 subjects accurately. As a consequence, the MBI method

may not perform well in this case.

Regarding to model selection, both the DISCOM and the Multi-DISCOM can deliver relatively

simple models. Figure 2.2 shows the selection frequency of the 191 features when predicting ADAS1.

The selection frequency of each feature is defined as the number of times of being selected in the

30 replications. As shown in Figure 2.2, for our method, some features are often selected and

many other features are rarely selected. This means that our method could deliver robust model

selection. However, for the Imputed-Lasso method, it selects very different features in different

replications. One possible reason for the unstable performance on model selection is due to the

randomness involved in the imputation of block-missing data. Hippocampus formation left (69th

region) and amygdale right (83th feature) are frequently selected by our method and known to be

highly correlated with AD and MCI by many existing studies (Jack et al., 1999; Misra et al., 2009;

Zhang et al., 2012b), but the DISCOM rarely selects these features.

2.6 Conclusion

In this paper, we propose a joint estimation method in a penalized framework with the entry-

wise `1 regularization using block-missing multi-modal predictors. We first estimate the covariance

29



lasso

0
5

10
15

DISCOM

0
5

10
15

20

Imputed lasso

0
5

10
15

20

MULT-DISCOM

0
5

10
15

20

Figure 2.2: Selection frequency of 191 features for prediction of ADAS1 score.

matrix of the predictors using a linear combination of the estimates of the variance of each predictor,

the estimates of the intra-modality covariance matrix, and the cross-modality covariance matrix.

The proposed estimator of the covariance matrix can be positive semidefinite and more accurate

than the sample covariance matrix. In the second step, based on the estimated covariance matrix,

a penalized estimator is used to deliver a sparse estimate of the coefficients in the optimal linear

prediction. Theoretical studies on the estimation and feature selection consistency are established.

Extensive simulation studies also indicate that our method has promising performance on estima-

tion, prediction and model selection for the block-missing multi-modal data. Finally, we apply the

Multi-DISCOM to the ADNI dataset and demonstrate that our model has good prediction power

and meaningful interpretation.
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CHAPTER 3

Regularized Buckley–James method for Right-censored Outcome and Block-
missing covariates

3.1 Introduction

Measures of neural activity such as magnetic resonance imaging (MRI) and positron emission

tomography (PET) yield thousands of predictor variables for diagnosis and prognosis in patients

with diseases such as the Alzheimer’s disease (AD). Since not all variables contain helpful informa-

tion for the model, selecting a parsimonious subset of variables with good prediction accuracy can

be very important. While linear regression with a scalar response and complete data has been well

studied (Tibshirani, 1996), data with censored outcomes and incomplete covariates present new

challenges.

AD is a progressive neurodegenerative disease characterized by overall cognitive decline as well

as behavioral and functional changes that eventually impair an individual’s ability to perform the

basic daily activities. People diagnosed with mild cognitive impairment (MCI), which is generally

considered as a transitional stage between healthy cognitive aging and dementia, are at significantly

increased risk of clinical AD (Knopman et al., 2003; Gauthier et al., 2006). Thus, MCI is a critical

prognostic and therapeutic component in AD study, and it is helpful to develop reliable methods

to analyze the conversion time from MCI to AD. Although up to 60% of MCI patients convert to

AD within ten years, many return to the normal cognitive function (Manly et al., 2008; Mitchell

and Shiri-Feshki, 2009). The AD conversion time of those participants who did not progress to AD

during their follow-up period was censored at their last visit time.

Increasing efforts have focused on building predictive models of the AD conversion based on

the proportional hazard (PH) model or accelerated failure time (AFT) model. For example, to

examine the usage of MRI and CerebroSpinal Fluid (CSF) biomarkers to predict the conversion

from MCI to AD, (Vemuri et al., 2009) used a single-predictor Cox PH model to predict the hazard
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ratio of the conversion from MCI to AD. They showed that MRI and CSF provide complimentary

predictive information about the conversion from MCI to AD. They also showed that combining

MRI and CSF can predict better than using either source alone. Liu et al. (2017) used independent

component analysis (ICA) and the multivariate Cox PH regression model to identify promising risk

factors associated with MCI conversion.

In the literature, many papers also used the AFT model (Kalbfleisch and Prentice, 2011; Cox

and Oakes, 2018) to analyze the conversion time of AD, where the response refers to the logarithm

of a failure time. The AFT model is based on the linear model and the estimated regression

coefficients can help provide useful interpretation (Reid, 1994). It is well-known that the linear

model and the PH model cannot hold simultaneously except in the case of the extreme value error

distribution. Two general estimation strategies to handle censored responses in the AFT model

include extensions of least-squares estimators through missing data techniques (Buckley and James,

1979; Koul et al., 1981; Miller and Halpern, 1982; Lai and Ying, 1991) and rank-based methods

(Prentice, 1978; Tsiatis, 1990; Lai and Ying, 1991). For example, (Oulhaj et al., 2009) used the

smoothing AFT procedure with G-splines to predict the period of time before cognitive impairment

occurs in community-dwelling elderly. (Ning et al., 2011) proposed a generalized Buckley-James

type of estimator using right-censored and length-biased data under semiparametric transformation

and AFT models. Their proposed method was applied to assess the effect of different diagnostic

categories of AD using survival data.

Several authors have also extended the PH and AFT models for variable selection and explored

their properties. (Tibshirani, 1997; Gui and Li, 2005) developed regularized Cox regression methods

by adding an `1 penalization term to the partial likelihood function of the Cox model. Similarly,

(Datta et al., 2007; Johnson, 2009) addded an `1 penalization term to the Buckley–James estima-

tors for the AFT model. Wang et al. (2008) added the elastic-net penalty in the Buckley–James

method for the AFT model to relate high-dimensional genomic data to censored survival outcomes.

(Johnson, 2009) proved that, under suitable regularity conditions, an `1-penalized Buckley-James

estimator with only one iteration yields a root-n consistent solution. Wang and Wang (2010) pro-

posed the Buckley-James boosting method for the semiparametric AFT models with right-censored

survival data, which can be used for prediction and variable selection.
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In the past few years, there has been extensive research on using neuroimaging data for MCI and

AD prediction (Eskildsen et al., 2013; Park and Moon, 2016). However, data in Alzheimer’s Disease

Neuroimaging Initiative (ADNI) study were collected from different sources, which include MRI,

PET, and CSF. Data from a specific modality can be entirely missing due to patient dropouts or

other practical issues. This leads to a block-wise missing data structure. Due to block-wise missing

structure with high dimensionality and censored response, it is challenging to identify the patients

likely to convert from MCI to AD. It is also interesting to further predict the conversion time for an

effective risk estimate, which could lead to an efficient intervention of pharmacological treatments

for early AD (Jack Jr, 2012).

Most of the AFT and PH models can only work with complete covariates. To handle incom-

plete multi-modal data in the ADNI study, one may use traditional AFT or PH models by simply

removing those observations with missing entries. However, such a procedure may greatly reduce

the number of observations and lead to loss of information. Another approach is to perform data

imputation, where missing data are replaced by data generated from an imputation model. Imputa-

tion methods have been used in both AFT models (Qi et al., 2018) and PH models (Paik and Tsai,

1997; White and Royston, 2009; Hsu and Yu, 2019) to deal with incomplete covariates. Another

approach is to use weighted estimating equations for AFT models (Nan et al., 2009; Steingrims-

son and Strawderman, 2017) and PH models (Wang and Chen, 2001; Qi et al., 2005; Luo et al.,

2009; Xu et al., 2009; Steingrimsson and Strawderman, 2017). They applied the inverse probability

weighted (IPW) technique to the existing estimation procedures for the complete covariate cases.

In particular, (Yu, 2011) proposed a revised Buckley-James estimator for data missing by design.

In order to deal with multi-modal block-wise missing data, (Yu et al., 2020) proposed a new direct

sparse regression procedure using the estimated covariance matrix from block-missing multi-modal

data (DISCOM). They first used all available information to estimate the covariance matrix of the

predictors and the cross-covariance vector between the predictors and the response variable. Then

they used an extended LASSO-type estimator to estimate the coefficients based on the estimated

covariance matrix and cross-covariance vector. Despite its usefulness, however, the DISCOM only

considers the linear regression model for uncensored data.

In this paper, we propose a regularized Buckley-James method for variable selection, parameter

estimation, and prediction for right-censored outcomes with block-wise missing data. It extends
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the DISCOM method (Yu et al., 2020) to right-censored survival data. Our proposed method has

several attractive properties. First, our approach can handle high-dimensional data and perform

variable selection. Second, it works with data with block-wise missing covariates and censored

outcomes. Third, our method can still deliver reliable results even if our training data have no

observation with complete covariates. Our proposed method includes two steps. The first step

is to estimate each element of the covariance and cross-covariance matrices using all available

observations. The second step is to use a penalized approach to estimate the sparse regression

coefficient vector by the Buckley-James method. Numerical studies and the ADNI data application

confirm that the proposed method performs competitively for block-wise missing data.

The remainder of this paper is organized as follows. In Section 3.2, we introduce the problem

background and our model. Simulation studies and a multi-modal ADNI data example are presented

in Sections 3.3 and 3.4. A brief summary of the paper is provided in Section 3.5.

3.2 Methodology

3.2.1 Problem setup and notations

Consider the following semiparametric AFT model,

T = Xβ∗ + ε, (3.1)

where β∗ = (b1, . . . , bp)
> ∈ Rp is an unknown p-dimensional vector, T = (t1, . . . , tn)> ∈ Rn is the

response vector, X = (x1, . . . ,xn)> is the n × p design matrix and ε = (ε1, . . . , εn)> is the the

error vector. Assume that {xi}ni=1 are i.i.d. realizations of a random vector X = (X1, . . . , Xp)
>

with zero mean and covariance matrix ΣXX = (σXXij ) ∈ Rp×p. Denote ΣXT = (σXTi ) ∈ Rp as the

cross-covariance vector between xi and ti for 1 ≤ i ≤ n. Assume that the predictors come from

multiple modalities and there are pk predictors in the k-th modality. In addition, assume that X

has block-wise missing values. That is, for each sample, its measurements in one modality can be

entirely missing. Let X̃ = (x̃1, . . . , x̃n)> be the imputed design matrix, where the missing values

in X are imputed by some imputation methods such as multiple imputation (Rubin, 2004) or the

soft-impute algorithm (Mazumder et al., 2010). For simplicity, we use the soft-impute algorithm
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to calculate X̃ in our numerical and case studies. The errors εi for 1 ≤ i ≤ n are i.i.d. realizations

from a random variable ε with zero mean and covariance σε. Moreover, we further assume that xi

and εi are uncorrelated for 1 ≤ i ≤ n.

Let T denote the transformed failure time, e.g., the logarithm of the conversion time from

MCI to AD. Suppose that C = (c1, . . . , cn)> ∈ Rn is the transformed censoring time which is

transformed in the same way as T, with ci being independent of ti given xi . When T is right

censored, we can only observe (yi, δi,xi) for 1 ≤ i ≤ n, where yi = min (ti, ci), and δi = 1{ti≤ci} is

the censoring indicator for the i-th observation.

We employ the following notation throughout this article. For a square matrix C = (cii′) ∈

Rp×p, we denote its diagonal matrix as diag(C). For a matrix A = (aij) ∈ Rp×q, we define the

largest and smallest eigenvalues of A as λmax(A) and λmin(A) respectively. For a vector v ∈ Rp,

let ‖v‖1 =
∑

i |vi|, and ‖v‖2 =
√∑

i v
2
i .

3.2.2 Regularized Buckley-James regression for complete observations

If there is no response censored and no covariate missing, then ti = yi for 1 ≤ i ≤ n and X is

fully observed. Then the least-squares method can be applied to estimate the parameters in model

(3.1) by solving the following optimization problem

β̂ = arg min
β

1

2
(Y −Xβ)>(Y −Xβ),

where Y = (y1, . . . , yn)> ∈ Rn. For a censored response with complete covariates, the key idea of

the Buckley-James method is to replace the censored ti by its expectation conditional on δi and

xi. Define the pseudo failure time y∗i as

y∗i =


yi δi = 1;

E (ti | ti > yi,xi) δi = 0.
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It can be shown that E(y∗i ) = E(ti) for 1 ≤ i ≤ n; for details see (Smith, 2017). With the true

β∗, E (ti | ti > yi,xi) has the form of

E (ti | ti > yi,xi) = x>i β
∗ + E

(
εi | εi > yi − x>i β∗

)
= x>i β

∗ +

∫ ∞
yi−x>i β

∗

tdF (t)

1− F
(
yi − x>i β

∗) , (3.2)

where F is the distribution function of residual εi(β
∗) = ti −x>i β

∗ for 1 ≤ i ≤ n. The distribution

of εi(β
∗) can be estimated nonparametrically by the Kaplan-Meier estimator (Kaplan and Meier,

1958)

F̂ (t) = 1−
∏
i:εi<t

(
1− di

ni

)
, (3.3)

where di =
∑n

j=1 I(εj = εi and δj = 1) and ni =
∑n

j=1 I(εj > εi). After substituting F with F̂ in

(3.2), the ỹ∗i can be simplified as

ỹ∗i = δiyi + (1− δi)

(
x>i β

∗ +

∫ ∞
yi−x>i β

∗

tdF̂ (t)

1− F̂
(
yi − x>i β

∗)
)
. (3.4)

Then the least-squares method can be applied to the following regression model

ỹ∗i = x>i β
∗ + ε∗i , (3.5)

where ε∗i has mean zero. Let Ỹ∗ = (ỹ∗1, . . . , ỹ
∗
n)>. The least-squares estimator of β∗ in model (3.5)

is

β̂ = arg min
β

1

2
(Ỹ∗ −Xβ)>(Ỹ∗ −Xβ) =

(
X>X

)−1
X>Ỹ∗.

The final solution requires an iterative procedure since values of ỹ∗i defined in (3.4) contain β.

In many areas such as genomic, medicine, and bioinformatics, the number of features p is usually

much larger than the sample size n and the classical Buckley-James method fails. Regularization

is needed to obtain a stable estimator of β with small prediction error. In this case, a modified

Buckley-James approach by using penalized least-squares with the penalty term Pλ(β) can be used,
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where λ is the tuning parameter. To be specific, we consider the following minimization problem

β̂ = arg min
β

1

2
(Y∗ −Xβ)>(Y∗ −Xβ) + Pλ(β), (3.6)

where λ is the tuning parameters and can be determined by cross validation. Given an initial value

β(0), the final estimator of β can be calculated (3.3), (3.4) and (3.6) iteratively.

3.2.3 Regularized Buckley-James regression for block-wise missing observations

Next we extend the regularized Buckley-James regression to block-wise missing multi-modal

observations. We assume that the predictors are collected from K modalities, and the k-th modality

has pk predictors for 1 ≤ k ≤ K.

Recall that the regularized Buckley-James regression for complete observations iteratively es-

timates y∗i by (3.4) and then solves the minimization problem (3.6). In order to handle block-wise

missing data, given ỹ∗i , we consider the population version of the `1 penalized least-square estimator

β0 =
(
β0

1,β
0
2, . . . ,β

0
p

)T
= arg min

β
E

[
1

2

n∑
i=1

(
ỹ∗i − x>i β

)2
]

+ λ‖β‖1.

If both ΣXX and ΣXỸ ∗ are known, β0 can be equivalently obtained by solving the following

optimization problem:

β0 = arg min
β

1

2
β>ΣXXβ −Σ>

XỸ ∗
β + λ‖β‖1.

Therefore we can obtain the estimator β̂ if estimators for ΣXX and ΣXỸ ∗ are available. Denote

Σ̂XX as the estimator of ΣXX . Next we explain how to calculate Σ̂XX when data are block-wise

missing. Define SXXjk = {i : xij and xik are not missing}, and nXXjt the cardinality of SXXjk . Let

Σ̃XX be the sample covariance matrix derived from all observed data, i.e. Σ̃XX = (σ̃XXjt ), where

σ̃XXjt =
∑

i∈SXXjt
(xijxit/n

XX
jt ). Note that Σ̃XX is required to be an unbiased estimator of ΣXX .

When the elements in X are missing completely at random, the unbiasedness assumption is satisfied.

However, the unbiasedness assumption can also hold under some other missing mechanisms.
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Since the data X are block-wise missing, the estimator Σ̃XX defined above can be ill-

conditioned. As a result, Σ̃XX is not a good estimator of ΣXX . Thus it cannot be used directly in

our optimization problem. To resolve this problem, we partition Σ̃XX into K2 blocks, denoted as

Σ̃k1k2 ∈ Rpk1×pk2 for 1 ≤ k1, k2 ≤ K. We let

Σ̃I =



Σ̃11

Σ̃22

. . .

Σ̃KK


and Σ̃C =



0 Σ̃12 . . . Σ̃1K

Σ̃21 0 . . . Σ̃2K

...
...

. . .
...

Σ̃K1 Σ̃K2 . . . 0


,

where Σ̃I is a p × p block-diagonal matrix containing K diagonal blocks of Σ̃XX , and Σ̃C =

Σ̃XX − Σ̃I is a p × p matrix containing all off-diagonal blocks of Σ̃XX . Here, Σ̃I and Σ̃C are

called the intra-modality and cross-modality sample covariance matrices, respectively. Since data

are block-wise missing, we use more data to estimate the entries in Σ̃I than those in the Σ̃C .

Thus the estimator Σ̃I can be relatively more accurate than Σ̃C . We linearly combine Σ̃I and Σ̃C

with different weights to estimate ΣXX . In addition, as in (Yu et al., 2020), we adopt the idea of

shrinkage estimation of the covariance matrix (Fisher and Sun, 2011) and add the diagonal matrix

diag(Σ̃I) to our estimator to ensure the resulting estimator to be positive definite. We let

Σ̂XX = α1Σ̃I + (1− α1) diag(Σ̃I) + α2Σ̃C , (3.7)

where α1, α2 ∈ [0, 1] are two shrinkage weights. The diagonal matrix (1 − α1) diag(Σ̃I) in (3.7)

ensures that the diagonal entries of our estimator are not shrunk. The eigenvalues of Σ̂XX is larger

than or equal to α1λmin(Σ̃I) + (1 − α1)λmin(diag(Σ̃I)) + α2λmin(Σ̃C) by Weyl’s theorem, where

(1− α1)λmin(diag(Σ̃I)) > 0 since diag(Σ̃I) is a positive-definite matrix. Thus Σ̂XX is guaranteed

to be positive definite by carefully selecting the tuning parameters α1 and α2. In practice, α1 and

α2 can be chosen from the set {(α1, α2) : α1 ∈ [0, 1], α2 ∈ [0, 1], Σ̂XX is positive semidefinite} by

cross-validation or using an additional tuning dataset.

Let ỹ
∗(m)
i be the i-th failure time calculated in the m-th step of Buckley-James method,

Ỹ
∗(m)
i = (ỹ

∗(m)
1 , . . . , ỹ

∗(m)
n )>, Σ

(m)

XỸ ∗
be the covariance vector between X and Ỹ∗(m), and Σ̂

(m)

XỸ ∗

be an estimator of Σ
(m)

XỸ ∗
. Next we discuss how to calculate Σ̂

(m)

XỸ ∗
when X is block-wise missing.

38



let β(m−1) be the coefficient vector derived in the (m−1)-th step. In the m-th step, ỹ∗(m) is defined

as

ỹ
∗(m)
i = δiyi + (1− δi)

x>i β(m−1) +

∫ ∞
yi−x>i β

(m−1)

tdF̃ (m)(t)

1− F̃ (m)
(
yi − x>i β

(m−1)
)
 ,

where F̃ (m) is the estimated distribution function of ti−x>i β
(m−1). However, since X is block-wise

missing, ỹ
∗(m)
i can not be calculated directly. In order to estimate Σ

(m−1)

XỸ ∗
, we decompose it as

Σ
(m−1)

XỸ ∗
= E(X>Ỹ∗(m))

= E(X>(X(β(m−1)) + Ẽ∗(m)))

= E(X>X)β(m−1) + E(XẼ∗(m)),

where Ẽ∗(m) = (ẽ∗1(β(m−1)), . . . , ẽ∗n(β(m−1)))> and

ẽ∗i (β
(m−1)) =


yi − x>i β

(m−1) δi = 1;∫∞
yi−x>i β

(m−1)
tdF̃ (m)(t)

1−F̃ (m)(yi−x>i β
(m−1))

δi = 0.

Let Σ
(m)

XẼ∗
be the covariance vector between X and Ẽ∗(m), and Σ̂

(m)

XẼ∗
be an estimator of Σ

(m)

XẼ∗
.

Then we can estimate Σ
(m)

XỸ ∗
as

Σ̂
(m)

XỸ ∗
= Σ̂XXβ

(m−1) + Σ̂
(m)

XẼ∗
. (3.8)

Define SXj = {i : xij is not missing} and let nXj as the cardinality of SXj . In order to estimate

Σ
(m)

XẼ∗
, let Ê∗(m) = (ê∗1(β(m−1)), . . . , ê∗n(β(m−1))) and

ê∗i (β
(m−1)) =


yi − x̃>i β(m−1) δi = 1;∫∞
yi−x̃>i β

(m−1)
tdF̂ (m)(t)

1−F̂ (m)(yi−x̃>i β
(m−1))

δi = 0.

Here x̃i are the imputed predictors and F̂ (m) is the estimated distribution function of ti−x̃>i β(m−1).

Define Σ̃
(m)

XẼ∗
as the sample covariance matrix using all available data, i.e. Σ̃

(m)

XẼ∗
= (σ̃

XẼ∗,(m)
j ),

where σ̃
XẼ∗,(m)
j =

∑
i∈SXj

xij ê
∗
i /n

X
j . Since our estimator Σ̂XX in (3.7) is a shrinkage estimator, we

39



also use a shrinkage estimator to estimate Σ
(m)

XẼ∗
by

Σ̂
(m)

XẼ∗
= α3Σ̃

(m)

XẼ∗
, (3.9)

where α3 ∈ [0, 1] is the shrinkage weight. In practice, α3 can also be chosen by cross-validation or

using an additional tuning dataset.

In summary, given Σ̂XX and Σ̂
(m)

XẼ∗
as defined in (3.7) and (3.9), in the m-th iteration of the

regularized Buckley-James method, we solve the optimization problem

β(m) = arg min
β

1

2
β>Σ̂XXβ − β(m−1)>Σ̂>XXβ + Σ̂

(m)>
XẼ∗

β + λ‖β‖1 (3.10)

by the proximal gradient descent algorithm (Parikh et al., 2014).

In Algorithm 4, we summarized the major steps for our proposed method, DISCOM-BJ, given

a set of tuning parameters (α1, α2, α3, λ).

We make two important remarks about the proposed procedure. First, our method applies to

any penalty for linear models, including LASSO and elastic net (Zou and Hastie, 2005). Secondly,

to be numerically effective, the starting values β(0) may be obtained by using the least-squares

estimator treating all observations as uncensored (Buckley and James, 1979). Other choices, e.g.

using only uncensored observations, are also feasible.

3.3 Numerical Study

We perform some numerical studies to compare our proposed method (DISCOM-BJ) with

some other methods, which include

1. `2-BJ, which applies the regularized Buckley-James regression to samples with complete ob-

servations and uses Pλ(β) = λ‖β‖2;

2. Imputed-`2-BJ, which applies the regularized Buckley-James regression to all samples with

missing values being imputed by the soft-thresholded SVD method and uses Pλ(β) = λ‖β‖2;

3. `1-BJ, which applies the regularized Buckley-James regression to samples with complete ob-

servations and uses Pλ(β) = λ‖β‖1;
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Algorithm 4: Regularized Buckley-James method by using covariance from multi-
modality data

Input: {(yi, δi,xi), 1 ≤ i ≤ n}, λ
Output: β(m)

Let β(0) be the initial value of β.

while
∣∣∣β(m) − β(m−1)

∣∣∣ > d do

Compute εi(β
(m−1)) for 1 ≤ i ≤ n by

εi

(
β(m−1)

)
= yi − x̃>i β(m−1),

where x̃i is the imputed predictors of the i-th observation.

Compute F̂ (m)(t) by

F̂ (m)(t) = 1−
∏

i:εi(β
(m−1))<t

(
1− di

ni

)
,

where di =
∑n

j=1 I[εj(β
(m−1)) = εi(β

(m−1)) and δj = 1] and

ni =
∑n

j=1 I(εj(β
(m−1)) > εi(β

(m−1))).

Compute Ẽ∗(m) = (e∗1(β(m−1)), . . . , e∗n(β(m−1)))> by

e∗i (β
(m−1)) =

yi − x̃
>
i β

(m−1) δi = 1;∫∞
yi−x̃>i β

(m−1)
tdF̂ (m)(t)

1−F̂ (m)(yi−x̃>i β
(m−1))

δi = 0.

Compute Σ̂XX and Σ̂
(m)

XẼ∗
by (3.7) and (3.9) respectively.

Update β(m) by

β(m) = min
β

1

2
β>Σ̂XXβ − β(m−1)>Σ̂>XXβ + Σ̂

(m)>
XẼ∗

β + λ‖β‖1.

end

return β(m).
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4. Imputed-`1-BJ, which applies the regularized Buckley-James regression to all samples with

missing values being imputed by the soft-thresholded SVD method and uses Pλ(β) = λ‖β‖1;

5. Boosting-BJ, which applies the Buckley-James boosting method with linear least-squares

(Wang and Wang, 2010) to samples with complete observations;

6. Imputed-Boosting-BJ, which applies the Buckley-James boosting method with linear-least

squares (Wang and Wang, 2010) to all samples with missing values being imputed by the

soft-thresholded SVD method.

For all examples, we generate the natural logarithm of the true survival time by

T = x>β + ε, where ε ∼ N(0, 1).

and set xi = (xi1, . . . , xip)
> ∼ N(0,Σ) with Σ = (σjt), where σjt = 0.6|j−t|. The data are generated

from three modalities whose dimensions p1, p2 and p3 are specified in each example. The true

coefficient vector is

β =(b, b, b, 0, · · · , 0︸ ︷︷ ︸
p1−3

, b, b, b, 0, · · · , 0︸ ︷︷ ︸
p2−3

, b, b, b, 0, · · · , 0︸ ︷︷ ︸
p3−3

),

where b is a constant. We generate ε1, ε2, . . . , εn
iid∼ N(0, 1). The censoring time C is generated

from unif(τl, τu), where τl, τu are tuned to achieve the desired censoring rate. The censoring rates

are specified in each example.

The training dataset contains 25 samples with complete observations, 25 samples with observa-

tions from the third modality, 25 samples with observations from the first and the third modalities

and 25 samples with observations from the first modality. The tuning dataset contains 100 samples

with complete observations without censoring response and the testing dataset includes 400 samples

with complete observations without censoring response. For each method, we train our model with

different tuning parameters on the training dataset. Then we choose the optimal tuning parameters

minimizing the mean squared error on the tuning dataset.

For each example, the experiment is repeated 50 times. To evaluate the selection perfor-

mance of the algorithm, we use false-positive rate (FPR) and false-negative rate (FNR) defined
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as FPR = FP/(FP + TN) and FNR = FN/(FN + TP), where FN is the number of coefficients

wrongly estimated as zero, TN is the number coefficients rightfully estimated as zero, TP is the

number of coefficients rightfully estimated as nonzero and FP is the number of coefficients wrongly

estimated as nonzero. Furthermore, to evaluate the accuracy of our estimators, the mean squared

error MSE = ‖Ttest − T̂test‖2 on the testing dataset and the `2 distance ‖β − β̂‖2 are used as

the criteria, where Ttest is the logarithm of the survival time vector in the test dataset, T̂test is the

logarithm of the predicted survival time vector in the test dataset, and β̂ is the estimated coefficient

vector.

In Example 1, we examine how our method performs with various signal-to-noise ratios. We

set p = 90, p1 = p2 = p3 = 30 and the censoring rate equal to 50%. In Example 1(a) and 1(b), we

set b to be 0.5 and 2 respectively.

In Example 2, we examine how our method performs with various p. We set b = 1 and the

censoring rate equal to 50%. In Example 2(a), we set p to be 60, where p1 = p2 = p3 = 20. In

Example 2(b), we set p to be 120, where p1 = p2 = p3 = 40.

In Example 3, we examine how our method performs with various censoring rates. We set

p = 90, p1 = p2 = p3 = 30 and b = 1. In Example 3(a) to 3(f), we respectively let (τl, τu) ∈

{(1, 6.8950), (1, 3.64), (1, 1.21), (−5, 5), (−5, 2.515), (−5, 0.16)} such that the yielding censoring rate

P(T > C) ranges from 0.2 to 0.7 with an increment of 0.1.

We report the simulation results in Tables 3.1, 3.2 and 3.3. Table 3.1 shows the results of

Example 1 with two different signal to noise ratios. Table 3.2 shows the results of Example 2 with

two different dimensions. Table 3.3 shows the results of Example 3 with different censoring rates.

Based on the results, we can see that imputed versions of `2-BJ, `1-BJ and Boosting-BJ perform

better than the un-imputed version of these methods in terms of the parameter estimation and

variable selection. Compared with other exisiting methods, our proposed DISCOM-BJ delivers the

best performance in all these three examples.

3.4 Application to the ADNI study

We apply the DISCOM-BJ to the ADNI study (Mueller et al., 2005) and compare it with

several other approaches. A primary goal of this analysis is to identify biological markers and
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Example 1(a) [low signal to noise ratio]
MSE EST FPR FNR

`2-BJ 4.14 (0.09) 1.34 (0.01) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 2.91 (0.07) 1.21 (0.01) 1.00 (0.00) 0.00 (0.00)
`1-BJ 3.64 (0.12) 1.40 (0.02) 0.17 (0.02) 0.49 (0.03)
Imputed-`1-BJ 2.56 (0.09) 1.27 (0.03) 0.16 (0.01) 0.31 (0.02)
Boosting-BJ 4.37 (0.15) 1.54 (0.03) 0.07 (0.00) 0.58 (0.02)
Imputed-Boosting-BJ 2.85 (0.09) 1.22 (0.02) 0.06 (0.00) 0.34 (0.02)
DISCOM-BJ 2.51 (0.09) 1.21(0.03) 0.18 (0.02) 0.26 (0.02)

Example 1(b) [high signal to noise ratio]

`2-BJ 47.19 (1.22) 5.31 (0.05) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 26.26 (0.80) 4.62 (0.05) 1.00 (0.00) 0.00 (0.00)
`1-BJ 29.93 (1.49) 4.54 (0.09) 0.23 (0.02) 0.24 (0.02)
Imputed-`1-BJ 16.84 (0.80) 4.22 (0.09) 0.20 (0.01) 0.14 (0.01)
Boosting-BJ 41.40 (1.70) 5.32 (0.09) 0.06 (0.00) 0.42 (0.03)
Imputed-Boosting-BJ 25.67 (0.98) 4.37 (0.08) 0.04(0.00) 0.22 (0.02)
DISCOM-BJ 15.16 (0.63) 3.87 (0.08) 0.19 (0.01) 0.09 (0.01)

Table 3.1: Performance comparison of different methods for Example 1 with different signal to noise ratios.
The values in the parentheses are the standard errors of the measures.

Example 2(a) [p = 60]
MSE EST FPR FNR

`2-BJ 10.87 (0.34) 2.49 (0.03) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 5.81 (0.19) 2.16 (0.03) 1.00 (0.00) 0.00 (0.00)
`1-BJ 7.58 (0.40) 2.38 (0.04) 0.24 (0.02) 0.28 (0.03)
Imputed-`1-BJ 4.77 (0.17) 2.14 (0.04) 0.25 (0.01) 0.14 (0.02)
Boosting-BJ 10.28 (0.39) 2.65 (0.04) 0.08 (0.00) 0.43 (0.02)
Imputed-Boosting-BJ 6.91 (0.22) 2.16 (0.04) 0.06 (0.00) 0.23 (0.02)
DISCOM-BJ 4.46 (0.18) 1.97 (0.04) 0.29 (0.02) 0.09 (0.02)

Example 2(b) [p = 120]

`2-BJ 13.73 (0.31) 2.73 (0.02) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 8.84 (0.24) 2.43 (0.02) 1.00 (0.00) 0.00 (0.00)
`1-BJ 9.91 (0.45) 2.52 (0.05) 0.14 (0.01) 0.37 (0.03)
Imputed-`1-BJ 5.83 (0.22) 2.26 (0.05) 0.16 (0.01) 0.19 (0.01)
Boosting-BJ 12.65 (0.51) 2.86 (0.05) 0.06 (0.00) 0.48 (0.02)
Imputed-Boosting-BJ 7.23 (0.26) 2.20 (0.04) 0.04 (0.00) 0.24 (0.02)
DISCOM-BJ 5.52 (0.24) 2.08 (0.05) 0.16 (0.01) 0.13 (0.02)

Table 3.2: Performance comparison of different methods for Example 2 with different dimensions. The
values in the parentheses are the standard errors of the measures.
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Example 3(a) [P(T > C) = 0.2]
MSE EST FPR FNR

`2-BJ 9.39 (0.25) 2.43 (0.02) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 5.88 (0.13) 2.15 (0.02) 1.00 (0.00) 0.00 (0.00)
`1-BJ 5.85 (0.31) 2.07 (0.05) 0.26 (0.02) 0.15 (0.02)
Imputed-`1-BJ 4.18 (0.16) 1.99 (0.04) 0.18 (0.01) 0.10 (0.01)
Boosting-BJ 8.10 (0.34) 2.35 (0.05) 0.06 (0.00) 0.31 (0.02)
Imputed-Boosting-BJ 5.18 (0.19) 1.93 (0.03) 0.04 (0.00) 0.13 (0.01)
DISCOM-BJ 3.81 (0.14) 1.81 (0.04) 0.16 (0.01) 0.07 (0.01)

Example 3(b) [P(T > C) = 0.3]

`2-BJ 10.40 (0.25) 2.52 (0.03) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 6.31 (0.14) 2.20 (0.02) 1.00 (0.00) 0.00 (0.00)
`1-BJ 6.82 (0.31) 2.16 (0.04) 0.26 (0.02) 0.19 (0.02)
Imputed-`1-BJ 4.40 (0.16) 2.01 (0.04) 0.19 (0.01) 0.10 (0.01)
Boosting-BJ 9.08 (0.35) 2.43 (0.04) 0.06 (0.00) 0.35 (0.02)
Imputed-Boosting-BJ 5.71 (0.20) 1.98 (0.03) 0.04 (0.00) 0.16 (0.02)
DISCOM-BJ 4.14 (0.13) 1.85 (0.03) 0.19 (0.01) 0.09 (0.01)

Example 3(c) [P(T > C) = 0.4]

`2-BJ 11.56 (0.28) 2.57 (0.02) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 6.92 (0.16) 2.27 (0.02) 1.00 (0.00) 0.00 (0.00)
`1-BJ 7.76 (0.32) 2.27 (0.04) 0.24 (0.02) 0.24 (0.02)
Imputed-`1-BJ 4.78 (0.16) 2.08 (0.04) 0.21 (0.01) 0.11 (0.01)
Boosting-BJ 10.36 (0.36) 2.56 (0.04) 0.06 (0.00) 0.40 (0.02)
Imputed-Boosting-BJ 6.47 (0.19) 2.07 (0.03) 0.05 (0.00) 0.17 (0.02)
DISCOM-BJ 4.48 (0.14) 1.90 (0.04) 0.22 (0.02) 0.08 (0.01)

Example 3(d) [P(T > C) = 0.5]

`2-BJ 12.65 (0.31) 2.64 (0.03) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 7.46 (0.22) 2.32 (0.03) 1.00 (0.00) 0.00 (0.00)
`1-BJ 8.79 (0.39) 2.42 (0.05) 0.17 (0.01) 0.34 (0.03)
Imputed-`1-BJ 5.41 (0.28) 2.19 (0.05) 0.19 (0.01) 0.18 (0.02)
Boosting-BJ 11.46 (0.53) 2.72 (0.06) 0.06 (0.00) 0.43 (0.02)
Imputed-Boosting-BJ 7.14 (0.29) 2.17 (0.05) 0.04 (0.00) 0.24 (0.02)
DISCOM-BJ 5.05 (0.23) 2.03 (0.05) 0.21 (0.02) 0.12 (0.01)

Example 3(e) [P(T > C) = 0.6]

`2-BJ 14.36 (0.34) 2.75 (0.03) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 8.95 (0.26) 2.44 (0.03) 1.00 (0.00) 0.00 (0.00)
`1-BJ 10.62 (0.39) 2.54 (0.04) 0.20 (0.02) 0.37 (0.03)
Imputed-`1-BJ 6.36 (0.31) 2.31 (0.05) 0.18 (0.01) 0.22 (0.02)
Boosting-BJ 13.95 (0.55) 2.99 (0.05) 0.06 (0.00) 0.52 (0.02)
Imputed-Boosting-BJ 8.81 (0.32) 2.39 (0.05) 0.04 (0.00) 0.30 (0.02)
DISCOM-BJ 5.84 (0.29) 2.16 (0.05) 0.22 (0.02) 0.17 (0.02)

Example 3(f) [P(T > C) = 0.7]

`2-BJ 15.76 (0.36) 2.83 (0.03) 1.00 (0.00) 0.00 (0.00)
Imputed-`2-BJ 10.82 (0.30) 2.61 (0.03) 1.00 (0.00) 0.00 (0.00)
`1-BJ 12.09 (0.40) 2.61 (0.03) 0.21 (0.03) 0.44 (0.02)
Imputed-`1-BJ 7.42 (0.31) 2.39 (0.05) 0.18 (0.01) 0.28 (0.02)
Boosting-BJ 17.29 (0.61) 3.36 (0.05) 0.06 (0.00) 0.59 (0.02)
Imputed-Boosting-BJ 11.39 (0.33) 2.74 (0.04) 0.04 (0.00) 0.36 (0.02)
DISCOM-BJ 6.83 (0.28) 2.24 (0.04) 0.36 (0.04) 0.12 (0.02)

Table 3.3: Performance comparison of different methods for Example 3 with different censoring rates. The
values in the parentheses are the standard errors of the measures.
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neuropsychological assessments to measure the progression of MCI and early AD. We are interested

in predicting the time to convert to state AD of patients who was initially diagnosed as MCI in the

ADNI study. We extract biomarkers from three complementary data sources: MRI, PET and CSF.

Note that, as (Xue and Qu, 2021) stated, our sparsity assumption of the proposed method may not

be suitable for raw imaging data or imaging data at small scales since images have to show some

visible atrophy for AD. However, the sparsity assumption can still be reasonable for the region of

interest (ROI) level data. Thus, we apply the DISCOM-BJ to the ROI level data in ADNI.

We process the image data following the similar procedure as in (Yu et al., 2020). For the MRI,

after correction, spatial segmentation and registration steps, we obtain the image for each subject

based on the Jacob template with 93 manually labeled ROIs. For each of the 93 ROIs in the labeled

MRI, we compute the volume of gray matter as a feature. For each PET image, we first align the

PET image to its respective MRI image using affine registration. Then, we calculate the average

intensity of every ROI in the PET image as a feature. For the CSF modality, five biomarkers

are used in this study, namely amyloid β(Aβ42), CSF total tau (t-tau), tau hyperphosphorylated

at threonine 181 (p-tau), and two tau ratios with respective to Aβ42 (i.e., t-tau/Aβ42 and p-

tau /Aβ42)

After data processing, we have 93 features from MRI, 93 features from PET and 5 features

from CSF. There are 376 subjects in total, including 56 subjects with complete MRI, PET, CSF

features and uncensored response, 38 subjects with complete MRI, PET, CSF features and censored

response, 101 subjects with MRI and PET features only, 89 subjects with MRI and CSF features

only, and 92 subjects with MRI features only.

In our analysis, we divide the data into training, tuning, and testing sets. The training set

consists of all subjects with incomplete observations and 40 randomly selected subjects with com-

plete features. The tuning set consists of another 18 randomly selected subjects with complete

observations. The testing set contains the remaining 36 subjects with complete observations. We

train our model with different tuning parameters on the training set. Then we choose the tuning

parameters which minimize the mean squared error on the tuning set. The testing set is used

to evaluate different methods. We used all methods shown in the simulation study to predict the

conversion time from MCI to AD. For each method, the analysis is repeated 50 times using different
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method `2-BJ Imputed-`2-BJ `1-BJ Imputed-`1-BJ DISCOM-BJ

MSE 0.99(0.04) 1.01(0.04) 0.88(0.03) 0.88(0.04) 0.84(0.02)

Table 3.4: Performance comparison for the ADNI data. The values in the parentheses are the standard
errors of the measures.

Top features selected by DISCOM-BJ

Uncus left
Hippocampal formation left
Middle temporal gyrus right;
Precuneus left;
Angular gyrus left;
amyloid β (Aβ42)
CSF total tau(t-tau);
tau hyperphosphorylated at threonine 181

Table 3.5: Top 8 features selected by DISCOM-BJ.

partitions of the data. In addition to the sum of MSE of all three responses. We also compare the

number of features selected by each method.

The results in Table 3.4 show that our proposed DISCOM-BJ method acquires the best pre-

diction performance with smaller MSE than `1-BJ, Imputed-`1-BJ , `2-BJ and Imputed-`2-BJ. To

further understand our results, since each MRI and PET features correspond to one ROI, we can

examine whether the selected features are meaningful by studying their corresponding brain regions.

Table 3.5 shows the names of top 8 features selected by our method, where the first 5 features are

ROIs, and the last 3 features correspond to the CSF modality. Figure 3.1 shows these 5 ROIs of

the brain. Among these 5 brain regions, some regions such as uncus left, middle temporal gyrus

left and hippocampus formation left are known to be highly correlated with AD and MCI by many

studies using group comparison methods (Misra et al., 2009; Zhang et al., 2012a). It would be

interesting to study whether the other two brain regions (Middle temporal gyrus right and Angular

gyrus left) are truly related to the conversion from MCI to AD.

3.5 Conclusion

In this paper, we propose an `1-penalized Buckley-James method using block-missing multi-

modal predictors and censored responses. In each iteration of Buckley-James method, with pseudo

responses, we first estimate the covariance matrix of the predictors using a linear combination
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Figure 3.1: Top 5 brain regions selected by DISCOM-BJ, where the uncus left region is highlighted by the
blue circle.

of the estimates of the variance of each predictor, the intra-modality covariance matrix, and the

cross-modality covariance matrix. The proposed estimator of the covariance matrix can be positive

semidefinite and more accurate than the sample covariance matrix. In the second step of each

iteration, based on the estimated covariance matrix, a penalized estimator is used to deliver a

sparse estimate of the coefficients. Extensive simulation studies also indicate that our method

has promising performance in estimation, prediction and model selection for the block-missing

multi-modal data. Finally, we apply the DISCOM-BJ method to the ADNI dataset to predict the

conversion time of the patients from MCI to AD. We demonstrate that our model has accurate

prediction and meaningful interpretation.
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CHAPTER 4

Adaptive Supervised Learning on Data Streams in Reproducing Kernel Hilbert
Spaces with Data Sparsity Constraint

4.1 Introduction

With the advance in technology, the volume of data generation is increasing at a very rapid

rate. Due to the challenges of big data in many applications, streaming data analysis has attracted

considerable attention. Supervised learning methods analyzing streaming data need to address

several challenges, such as limited storage and concept drift. Specifically, the amount of memory

required by the algorithms becomes infeasible as the number of samples in the data streams increases

(Langford et al., 2009). Moreover, sometimes the data stream exhibits a phenomenon referred

to as concept drift (Tsymbal, 2004), in which the underlying model evolves, causing the model

constructed using old samples to become not applicable to new observations. Traditional machine

learning algorithms may not be able to provide a good model as they may not adapt to the new

changes.

The stochastic gradient descent (SGD) algorithm (Robbins and Monro, 1951), which can effi-

ciently handle large-scale data sets, has gained increasing attention in developing supervised learn-

ing tools for data streams (Rosenblatt, 1958; Littlestone, 1988; Hazan et al., 2007). Given a convex

loss function and a training set, researchers can use the SGD to obtain a sequence of models that

converge to the optimal model. For many supervised learning problems, linear models can be

suboptimal when the response has a nonlinear relationship with the predictors.

To improve the flexibility of the model, various nonlinear regression models (Friedman et al.,

2001) can be used. Online learning with kernels (Kivinen et al., 2004) embeds the model in a

reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950) to address the nonlinear relationship

in the model. Since the regression function is assumed to be in a RKHS, it is common to take the

squared norm of the regression function as the penalty. By the representer theorem (Kimeldorf
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and Wahba, 1971), the resulting regression function can be represented as a linear combination of

kernel functions determined by the training data. In addition to the typical squared norm penalty,

Zhang et al. (2016) introduced a data sparsity constraint. Zhang et al. (2016) showed that the

regression model with the data sparsity constraint can have competitive prediction performance for

various problems, especially when the sample size is small or moderate, or a sparse representation

of the data can reasonably approximate the underlying function. The data points corresponding

to kernel functions with non-zero coefficients are called support vectors (SVs).

The size of SVs grows linearly over time, posing storage and computational problems for these

models. This may result in increasing storage space and training time. To resolve this issue,

researchers have developed several different approaches. A family of algorithms, called “budget

online kernel learning”, has been proposed to bound the number of SVs with a fixed budget.

Cavallanti et al. (2007) and Zhao et al. (2012) discarded one of the existing SVs uniformly during

the training process. Dekel et al. (2005) discarded the oldest SVs during the training process.

Orabona et al. (2008) used a new kernel function to approximate the removed SVs. These methods

may suffer information loss when removing or approximating the SVs.

Another promising strategy is to explore the functional approximation techniques for achieving

scalable kernel learning (Lu et al., 2016). The key idea is to construct a kernel-induced feature

representation such that the inner product of instances in the new feature space can effectively

approximate the kernel function. Because of the approximation, the model can suffer from high

variation. As pointed out by Sun et al. (2018), the number of random features needed for a

consistent estimation grows when the number of SVs increases.

Many machine learning algorithms focus on a fixed model, where the relationship between the

responses and the covariates doesn’t change over time. However, learning a fixed function may

not always be suitable for data streams. Many data streams are non-stationary. As a result, the

underlying model may change over time. This problem is also known as concept drift, where the

conditional distribution of the response given the predictors changes over time. Concept drift can

affect the learner’s performance if not handled properly. There are many algorithms in the literature

for this issue. Schaul et al. (2013) introduced the vSGD for non-stationary models. In particular,

in each step of the vSGD, the algorithm determines the learning rate adaptively to minimize the
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loss function by using a quadratic approximation of the objective function. One drawback of vSGD

is that it may not be able to capture the model correctly when it changes rapidly.

Another common way to deal with concept drift is to detect changes and react accordingly.

Concept drift can be detected by its effect on characteristic features of the model, such as the

regression or classification accuracy. Such quantitative features can be accompanied by statistical

tests to assess the significance. Such tests can rely on some well-known statistics, such as the

Hoeffding bound (Frias-Blanco et al., 2014), or suitable distances such as the Hellinger distance

(Ditzler and Polikar, 2011). These indirect methods rely on the statistical power of the tests.

In this paper, we consider a supervised learning problem on data streams with the regression

function in a RKHS. Our proposed method has several important features. First, by using random

feature approximation, the proposed method doesn’t need to store all the previous data and uses

limited storage space and training time even when the total sample size is enormous. In addition,

the variation of our model and the error induced by random feature approximation is reduced by

using the data sparsity constraint and a shrinkage parameter. Finally, this method can also handle

non-stationary models. In particular, at time t, our approach finds the best model in a RKHS by

using the previously estimated model and kernel functions generated by the data we observe at time

t. It updates the model by a shrinkage parameter and random feature approximation. Numerical

studies in simulated and real data applications also confirm that the proposed method performs

competitively for data streams in both stationary and non-stationary problems.

The remainder of this chapter is organized as follows. In Section 4.2, the problem background

and the model are introduced. The simulated and real data examples are used to demonstrate the

effectiveness of our proposed method in Sections 4.3 and 4.4, respectively.

4.2 Methodology

4.2.1 Problem setup and notation

We consider the supervised learning problem when the observations arrive sequentially. The

goal is to recover the underlying mean function. At each time t, we are given a set of nt instances

{(xti, yti), i = 1, . . . , nt} as our training set, where t = 1, . . . T , nt is the number of data we receive

at time t, T is the total number of times we observe, xti ∈ Rp is the p-dimensional covariate vector
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of the i-th observation, and yti ∈ R is the response of the i-th observation. We consider fitting the

model in a RKHS H = {f |f : Rp → R} with a reproducing kernel function K(·, ·). The data at

time t are observed according to the model

Y t = ft(X
t) + ε, (4.1)

where Y t ∈ R,Xt ∈ Rp, ft ∈ H, and ε ∈ R is the random noise. While traditional learning

algorithms assume the data are sampled from a fixed model, here we assume that the model ft

may vary as a function of time t. Since we want to fit the model on data streams, with possibly an

infinite number of observations, it is unrealistic to store all the data. Our goal is to fit our model

with limited storage space.

4.2.2 Proposed method

4.2.2.1 Adaptive kernel learning on data streams

First, we describe the general adaptive kernel learning model on data streams. Given the

training data {(xti, yti), i = 1, . . . , nt} at time t, we consider the penalized regression problem which

only uses these nt samples

f̃t(x) = arg min
ft∈H

1

nt

nt∑
i=1

L(ft(x
t
i), y

t
i) + λJ(ft), (4.2)

where L is a convex and differentiable loss function which measures the goodness of fit of ft, J is

a penalty function on ft in order to avoid overfitting, and λ is a tuning parameter that controls

the magnitude of penalty J(ft). By the representer theorem (Kimeldorf and Wahba, 1971), the

estimated function in (4.2) can be written as

f̃t(x) =

nt∑
i=1

α̃t,iK
(
xti,x

)
, (4.3)

where α̃t,i is the coefficients to be estimated, and we let α̃t = (α̃t,1, . . . , α̃t,nt)
>. To learn our model

in RKHS, it is common to use the regular squared norm penalty, which aims to solve the following
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optimization problem

f̃t(x) = arg min
ft∈H

1

nt

nt∑
i=1

L(ft(x
t
i), y

t
i) + λ ‖ft‖2H , (4.4)

where ‖ft‖H is the norm of ft in RKHS H.

The kernel representation of the regression function is similar to the knot structure in the

smoothing splines. Each observation in the training data can be regarded as a knot in a multidi-

mensional space. For large sample size problems, the solution to (4.4) is known to be consistent

with desirable theoretical properties. However, since the sample size, nt in each time is usually

small in practice, using all kernel functions for the representation may introduce a similar issue

as using too many knots in spline regressions. For spline regression, it is known that too many

knots may lead to overfitting and unnecessary fluctuation in the resulting estimator. To obtain

the estimators with a sparse kernel function representation, Zhang et al. (2016) proposed the data

sparsity penalty to constrain the estimated kernel function coefficient vector α̃t in an `1-ball. As

shown in Zhang et al. (2016), the data sparsity model is desirable in this case since it can deliver

estimators with a sparse kernel function representation. Hence we follow their method and use

the data sparsity penalty in our model as well. By (4.2) and (4.3), we aim to solve the following

optimization problem with data sparsity constraint

α̂t = arg min
αt

 1

nt

nt∑
i=1

L

 nt∑
j=1

αt,jK(xtj ,x
t
i), y

t
i

+ λ‖αt‖1

 , (4.5)

where αt = (αt,1, . . . , αt,nt)
>, and ‖αt‖1 refers to the `1-norm of αt. However, model (4.5) only

uses the training data at time t without previous information. For t > 1, in order to use both the

observations we receive at time t, and the previous models we estimated before time t, we rewrite

our estimated function as

f̂t(x) = γtf̂t−1(x) +

nt∑
j=1

α̂t,jK
(
xtj ,x

)
, where γt ∈ [0, 1]. (4.6)
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Here the adaptive weight γt illustrates how the model changes from time t − 1 to time t. If the

underlying true model ft doesn’t change, γt is expected to be 1 when f̂t−1 is a good estimator of

ft−1.

In summary, for the training dataset {(xti, yti), i = 1, . . . , nt} and the model f̂t−1(x) estimated

at time t− 1, our adaptive kernel learning model solves the following optimization at time t

(γ̂t, α̂t) = arg min
γt,αt

 1

nt

nt∑
i=1

L

γtf̂t−1(xti) +

nt∑
j=1

αt,jK(xtj ,x
t
i), y

t
i

+ λ‖αt‖1

 subject to γt ∈ [0, 1].

(4.7)

4.2.2.2 Adaptive kernel learning on data streams with adjusted learning rate

When the underlying true model ft doesn’t change from time t− 1 to time t, the model (4.7)

uses
∑nt

j=1 α̂t,jK(xtj ,x
t
i) to fit the residual of our last model yti − f̂t−1(x) at time t− 1. Hence the

bias of our model is reduced. However, f̂t(x) is highly correlated to f̂t−1(x) due to the sequential

modeling process when γt = 1. Compared to the model (4.5) which only uses the data at time

t, our model (4.7) has a smaller bias but a relatively larger variation. One advantage of the data

sparsity constraint is that it can deliver estimators with a sparse kernel function representation.

Hence it is a much simpler model with a relatively small variation.

In order to balance between the bias and variation, we introduce a shrinkage parameter ν.

After we solve the optimization problem (4.7), if the solution γ̂t = 1, then the estimator f̂t(x) is

updated as

f̂t(x) = f̂t−1(x) + ν

nt∑
j=1

α̂t,jK
(
xtj ,x

t
i

)
. (4.8)

The shrinkage parameter 0 < ν ≤ 1 controls the learning rate of our model.

If γt 6= 1, the underlying true model ft may be changed from time t − 1 to t and it is not

necessary to use the shrinkage parameter. Then the estimator f̂t(x) is still updated as

f̂t(x) = f̂t−1(x) +

nt∑
j=1

α̂t,jK
(
xtj ,x

t
i

)
. (4.9)

The learning rate parameter ν balances the learning speed and convergence rate tradeoff of

our model. With a large ν, our model can estimate ft well with only a few batches of data but
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may converge to a suboptimal model. On the other hand, with a small ν, our model needs more

batches of data to estimate ft well but will converge to a model with better prediction. Hence, in

practice, if the number of batches T is small, or if we want to have a good estimation with only a

few batches of training data for frequently changing model ft, it is recommended to use a larger

ν such as 1. If the number of batches T is large and the model ft doesn’t change frequently, our

model can eventually have a better prediction with a smaller ν such as 0.1.

4.2.2.3 Adaptive kernel learning on data streams with limited storage space

In order to solve the optimization problem (4.7), we need to evaluate K(xti,x
t′
j ) for all the

covariates xt
′
j we have received until time step t − 1 to calculate f̂t−1(xi), where time t′ ≤ t − 1.

Since the total sample size n =
∑T

t=1 nt can be very large, it is impossible for us to store all the data

due to the limited storage. Here, we adopt random feature approximation (Lu et al., 2016) to store

our model f̂t(x) with limited storage for future use. The key idea is to construct a kernel-induced

feature representation z(x) such that the inner product of instances in the new feature space can

effectively approximate the kernel function as

K (xi,xj) ≈ z (xi)
> z (xj) ,

where z(x) ∈ RD is a function of x, where D is the dimension of the function. A common random

feature approximation technique, random Fourier features, can be used in shift-invariant kernels

(Rahimi et al., 2007). A shift-invariant kernel is a family of reproducing kernel functions that can

be written as K (x1,x2) = k(∆x), where k is some function and ∆x = x1 − x2 is the difference

between two instances. Examples of shift-invariant kernels include some widely used kernels, such as

the Gaussian and Laplace kernels. By performing an inverse Fourier transform of the shift-invariant

kernel function, one can obtain:

K (xi,xj) = k (xi − xj) =

∫
Rp
p(u)eiu

>(xi−xj)du,

where

p(u) =

(
1

2π

)p ∫
Rp
e−iu

>(∆x)k(∆x)d(∆x),
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which is a proper probability density function calculated from the Fourier transform of function

k(∆x). More specifically, for a Gaussian kernel K(xi,xj) = exp(−‖xi − xj‖22 /(2σ
2)), where σ is

the width of the Gaussian kernel, we have the corresponding random Fourier component u with the

distribution p(u) = N
(
0, σ−2I

)
. Then for a continuous, positive-definite and shift-invariant kernel

function, according to the Bochner theorem (Rudin, 1962), the kernel function can be expressed as

K (xi,xj) =

∫
Rp
p(u)eiu

>(xi−xj)du

=Eu

[
cos
(
u>xi

)
cos
(
u>xj

)
+ sin

(
u>xi

)
sin
(
u>xj

)]
=Eu

[[
sin
(
u>xi

)
, cos

(
u>xi

)]
·
[
sin
(
u>xj

)
, cos

(
u>xj

)]]
,

where the operator · refers to the dot product between two vectors. Then any shift-invariant kernel

function can be expressed by the expectation of the inner product between original data’s new

representation, where the new representation of the data is z(x) =
[
sin
(
u>x

)
, cos

(
u>x

)]>
. We

can sample D ∈ N number of random Fourier components u1, . . .uD independently for constructing

the new representation as

z(x) =
(

sin
(
u>1 x

)
, cos

(
u>1 x

)
, . . . , sin

(
u>Dx

)
, cos

(
u>Dx

))>
.

The kernel learning task in the original input space can be approximated by solving a linear learning

task in the new feature space.

Using the above approximation, when t = 1, the model f̂1(x) =
∑n1

i=1 α̂1,iK(x1
i ,x) can be

rewritten as

f̂1(x) =

n1∑
i=1

α̂1,iK
(
x1
i ,x
)
≈

n1∑
i=1

α̂1,iz
(
x1
i

)>
z(x) = û>1 z(x),

where û1 =
∑n1

i=1 α̂1,iz(x
1
i ). Let µt = ν when γt = 1 and µt = 1 when γt 6= 1. Similarly, the model

f̂2(x) = γ2f̂1(x) + µ2
∑n2

i=1 α̂2,iK(x2
i ,x) can be rewritten as

f̂2(x) ≈ γ2û
>
1 z(x) + µ2

n2∑
i=1

α̂2,iz
(
x2
i

)>
z(x) = û>2 z(x),
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where û2 = γ2û1 + µ2
∑n2

i=1 α̂2,iz(x
2
i ). By induction, when t > 1, for given model at time step

t− 1 as f̂t−1(x) = û>t−1z(x), our estimated function f̂t(x) = γtf̂t(x) + µt
∑nt

i=1 α̂t,iK(xti,x) can be

written as

f̂t(x) ≈ γtût−1z(u) + µt

nt∑
i=1

α̃t,iz
(
xti
)>
z(x) = û>t z(x),

where ût = γtût−1 + µt
∑nt

i=1 α̂t,iz(x
t
i). Then the optimization problem (4.7) can be written as

(γ̂t, α̂t) = arg min
γt,αt

 1

nt

nt∑
i=1

L

γtû>t−1z(xti) +

nt∑
j=1

αt,jz
(
xtj
)>
z(xti), y

t
i

+ λ‖α‖1

 subject to γt ∈ [0, 1],

(4.10)

where ût−1 is the coefficient vector of the previous model we estimated at time t − 1. If γ̂t = 1,

then the estimator ût is updated as

ût = γtût−1 + ν

nt∑
i=1

α̂t,iz(x
t
i).

If γt 6= 1, the estimator ût is updated as

ût = γtût−1 +

nt∑
i=1

α̂t,iz(x
t
i).

Then instead of keeping all the data to evaluate kernel functions at each time step, we need to keep

a D-dimensional vector ût.

Data sparsity constraint can also reduce the approximation error induced by the random feature

approximation. When we use the random feature approximation, the more kernel functions we use,

the larger approximation error it may generate. As pointed out by Sun et al. (2018), the number of

random features D needed for a consistent estimation grows when the number of kernel functions

increases. Thus when we use fewer kernel functions to estimate the model by using data sparsity

constraint, we can also reduce the error induced by the random feature approximation.

Algorithm 5 below describes the major steps of the Incremental Adaptive Data Sparsity Ker-

nel (IADSK) learning method for a given shift-invariant kernel function K(x1,x2) = k(∆x), the

number of random Fourier components D, and the learning rate ν, loss function L.
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Algorithm 5: incremental Adaptive Data Sparsity Kernel learning (IADSK) method

Input: data stream {(xti, yti), i = 1, . . . , nt}Tt=1, a shirft-invariant kernel function
K(x1,x2) = k(∆x), the number of random Fourier components D and the
learning rate ν, loss function L.

Output: {f̂t}Tt=1

Generate D random Fourier components u1, . . .uD independently with the distribution

p(u) =

(
1

2π

)d ∫
e−iu

>(∆x)k(∆x)d(∆x).

Constructing the random feature function as

z(x) =
(

sin
(
u>1 x

)
, cos

(
u>1 x

)
, . . . , sin

(
u>Dx

)
, cos

(
u>Dx

))>
.

Let û0 = 0. for t = 1 to T do
Compute γt and α̂t by

min
γt,α̂t

 1

nt

nt∑
i=1

L

γtû>t−1z(x
t
i) +

nt∑
j=1

α̂t,jz
(
xtj
)>
z(xti), y

t
i

+ λt‖α̂t‖1

 subject to γt ∈ [0, 1],

where tuning parameter λt is chosen by cross validation
Compute ût by

ût =

{
γtût−1 +

∑nt
i=1 α̂t,iz

(
xti
)

if γt < 1;

γtût−1 + ν
∑nt

i=1 α̂t,iz
(
xti
)

if γt = 1.

Compute f̂t by
f̂t(x) = û>t z(x).

end
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4.3 Numerical study

In this section, we perform three numerical studies to compare the efficiency of our proposed

method (IADSK) with different learning rates ν and two other methods. In particular, we choose

ν = 1, 0.5 and 0.3 for IADSK. The other two methods include

• Fourier online gradient descent (FouGD) method (Lu et al., 2016), which is an online kernel

learning method using random Fourier features for approximating kernel functions.

• Incremental Adaptive Ridge Kernel (IARK) learning method with different learning rate ν,

which uses the squared norm penalty ‖f‖2H instead of the data sparsity penalty, where ‖f‖H

is the norm of f in RKHS H. In particular, we also choose learning rate ν = 1, 0.5 and 0.3

for our proposed method.

In our numerical study, we use the Gaussian kernel and the `2-loss as our loss function in our

training model (4.10). Then L(f̂(x), y) = (y − f̂(x))2 and K(xi,xj) = exp(−‖xi − xj‖22 /(2σ
2)).

Let the number of random features D be 30. For the first two examples, we aim to compare our

method with other methods when the model is stationary. For the first example, we generate the

data by

Yt = 3 exp((Xt − 0.5)2) + exp((Xt − 1)2) + ε.

For the second example, we generate the data by

Yt = 10 exp(X2
t ) + ε.

Let ε ∼ N(0, 0.1) and Xt ∈ R follow a uniform distribution within [−1, 1]. In both examples, we

let the size of each batch of our training samples be 10, 20, or 40, and generate 3000 batches of

training samples in total.

For the third example, we aim to compare our method with other methods when the model is

non-stationary. We generate the data by

Yt = 3 exp((Xt − 0.5)2) + exp((Xt − 1)2) + ε,
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when t ∈ [1, 500], and

Yt = 3 exp((Xt + 0.5)2) + exp((Xt + 1)2) + ε,

when t ∈ [501, 1000]. Let ε ∼ N(0, 0.1) and Xt ∈ R follows a uniform distribution within [−1, 1].

We let the size of the each batch of our training samples be 20, and generate 1000 batches of

training samples in total.

For each example, we repeat the simulation 50 times. To evaluate the prediction performance

of the algorithms at time t, we generate 100 testing samples {(Xt
i,text, Y

t
i,test), i = 1, . . . , 100}. Then

we use the average testing error from time 1 until time t as the criterion

1

t

t∑
i=1

1

100

100∑
j=1

(Y i
j,test − Ŷ i

j,test)
2,

where Ŷ t
j,test = f̂t(X

t
j,text) is the prediction using our estimated model f̂t at time t. In addition,

after we plot the performance of all methods, we zoom in some parts of the plot to highlight the

comparison of different methods. In particular for the first and second examples, we first plot the

performance of all te methods for all batches. Secondly, we plot the performance of IADSK with

3 different learning rates for the first 50 batches. Then we plot the performance of FouGD and

IADSK with 3 different learning rates for the last 1000 batches. Finally we plot the performance

of IADSK with 3 different learning rates for the last 1000 batches.

For the third example, we first plot the performance of IADSK with 3 different learning rates,

IARK with 3 different learning rates, and FouGD for all batches. Then the performance of FouGD

and IADSK with 3 different learning rates for time t ∈ [400, 600]. Finally, we plot the performance

of IADSK with 3 different learning rates for time t ∈ [400, 600].

We report the simulation results in Figures 4.1 to 4.7. Figures 4.1, 4.2, 4.3 and 4.4 show the

results of Example 1 with 10, 20 and 40 training samples in each batch respectively. Figures 4.4,

4.5, 4.6 and 4.4 show the results of Example 2 with 10, 20 and 40 training samples in each batch

respectively. Figure 4.7 shows the result of Example 3.

Compared with the other two methods, our proposed IADSK method always delivers better

prediction than FouGD and IARK. Specifically, the average testing error of IADSK with ν = 1
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Figure 4.1: Performance comparison of different methods for Example 1 with 10 samples in each batch.
The top left figure compare the performance of all methods for all 3000 batches of data. The top right
figure compare the performance of IADSK with different learning rate for the first 50 batches of data. The
bottom left figure compare the performance of FouGD and IADSK with different learning rate for the last
1000 batches of data. The bottom right figure compare the performance of IADSK with different learning
rate for the last 1000 batches of data.

and 0.8 decrease much faster than the other methods when t ≤ 50, and IADSK with ν = 1 and 0.8

perform better when t is small.
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Figure 4.2: Performance comparison of different methods for Example 1 with 20 samples in each batch.
The top left figure compare the performance of all methods for all 3000 batches of data. The top right
figure compare the performance of IADSK with different learning rate for the first 50 batches of data. The
bottom left figure compare the performance of FouGD and IADSK with different learning rate for the last
1000 batches of data. The bottom right figure compare the performance of IADSK with different learning
rate for the last 1000 batches of data.

For the first example when nt = 10, Figure 4.1 shows that the IADSK with ν = 1 or 0.8 always

produces smaller average testing errors than the other methods. But as time t becomes larger, the

testing error of FouGD decreases faster than that of IADSK and IARK.
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Figure 4.3: Performance comparison of different methods for Example 1 with 40 samples in each batch.
The top left figure compare the performance of all methods for all 3000 batches of data. The top right
figure compare the performance of IADSK with different learning rate for the first 50 batches of data. The
bottom left figure compare the performance of FouGD and IADSK with different learning rate for the last
1000 batches of data. The bottom right figure compare the performance of IADSK with different learning
rate for the last 1000 batches of data.

For the first example when nt = 20 or 40 and the second example when nt = 10, 20 or 40,

Figures 4.2, 4.3, 4.4, 4.5 and 4.6 show that although the average testing error of IADSK with ν = 1

is smaller than all the other methods when t ≤ 50, when t > 2000, the testing error of IADSK with

ν = 0.3 or 0.5 become smaller than IADSK with ν = 1.
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Figure 4.4: Performance comparison of different methods for Example 2 with 10 samples in each batch.
The top left figure compare the performance of all methods for all 3000 batches of data. The top right
figure compare the performance of IADSK with different learning rate for the first 50 batches of data. The
bottom left figure compare the performance of FouGD and IADSK with different learning rate for the last
1000 batches of data. The bottom right figure compare the performance of IADSK with different learning
rate for the last 1000 batches of data.

For the third example, the lower right plot in Figure 4.7 shows that the model change at time

t = 500 has more impact on the performance of FouGD than our proposed method. In addition,

the lower-left plot shows that the average testing error of IADSK with ν = 1 or 0.8 decrease faster

than IADSK with ν = 0.5 or 0.3 after the model changes.
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Figure 4.5: Performance comparison of different methods for Example 2 with 20 samples in each batch.
The top left figure compare the performance of all methods for all 3000 batches of data. The top right
figure compare the performance of IADSK with different learning rate for the first 50 batches of data. The
bottom left figure compare the performance of FouGD and IADSK with different learning rate for the last
1000 batches of data. The bottom right figure compare the performance of IADSK with different learning
rate for the last 1000 batches of data.

4.4 Experiments on real data

In this section, we demonstrate the performance of our proposed model using the abalone

dataset from UCI datasets. Abalone is a mollusk with a peculiar ear-shaped shell lined with
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Figure 4.6: Performance comparison of different methods for Example 2 with 40 samples in each batch.
The top left figure compare the performance of all methods for all 3000 batches of data. The top right
figure compare the performance of IADSK with different learning rate for the first 50 batches of data. The
bottom left figure compare the performance of FouGD and IADSK with different learning rate for the last
1000 batches of data. The bottom right figure compare the performance of IADSK with different learning
rate for the last 1000 batches of data.

mother of pearl. Researchers can estimate its age by counting the number of rings in its shell with

a microscope, but it is time-consuming. In this section, we will use different methods to predict

the age by using physical measurements. The sample data contains 4177 observations and eight

features. All of the predictor variables are continuous except for sex, which is a categorical variable
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Figure 4.7: Performance comparison of different methods for Example 3 with 20 samples in each batch.
The top figure compare the performance of all methods for all 3000 batches of data. The bottom left figure
compare the performance of FouGD and IADSK with different learning rate for time t ∈ [400, 600]. The
bottom right figure compare the performance of IADSK with different learning rate for time t ∈ [400, 600].

with possible values ‘M’ (for males), ‘F’ (for females), and ‘I’ (for infants). The goal is to predict

the number of rings on the abalone and thereby determine its age.

In our experiments, we divide the data into the training set and testing set. The testing set

consists of 57 randomly selected subjects, and the training set consists of T batches of samples, and

each batch contains nt subjects, where T and nt are specified in each experiment. The analyses
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were repeated 30 times for each method using different data partitions. We use the Gaussian kernel

and the `2-loss in our training model (4.10). To evaluate the result, we use the average testing error

from time 1 until time t as the criterion

1

t

t∑
i=1

1

100

100∑
j=1

(Y i
j,test − Ŷ i

j,test)
2.

In the first experiment, we let nt = 20 and T = 206. In the second experiment, we let nt = 40

and T = 103. The results are plotted in Figure 4.8. Both results indicate that our proposed

method IADSK with ν = 1 and ν = 0.8 deliver the best prediction among all methods. In addition,

although the total numbers of training samples are the same in both experiments, the performance

of both IADSK and IARK in the second experiment is better than those in the first experiment.

Figure 4.8: Performance comparison of different methods for Abalone data. The left figure compare the
performance of all methods for Abalone data with 20 samples in each batch. The right figure compare the
performance of all methods for Abalone data with 40 samples in each batch.

68



APPENDIX A: SUPPLEMENTS TO CHAPTER 2

A.1 Toy example with adaptive LASSO penalty

The advantage of joint estimation is not pertained to the choice of penalty. If we choose other

penalty functions, we can still see such an advantage. To illustrate that, we did some further

simulation experiments in the toy example with the adaptive LASSO penalty. In particular, we

plot the estimation errors of the original adaptive LASSO method (“Separate LASSO” in Figure 1)

and the adaptive LASSO penalty with precision matrix as the adjusted weight (“2-step weighted

LASSO” in Figure 1). We use cross-validation to choose the tuning parameter. The resulting

estimation errors are shown in Figure A.1. It shows that the two-step weighted adaptive LASSO

may perform worse than separate adaptive LASSO, so it also has the same problem as LASSO.

Jointly estimate B∗ and C∗ with the adaptive LASSO penalty can solve this problem.

Figure A.1: Plots of the estimation errors for separated adaptive LASSO, two-step weighted adaptive

LASSO and joint estimation when Σε =

(
1 ρ
ρ 1

)
. The left panel is for B∗ =

(
0 0
2 3.5

)
and the right panel

is for B∗ =

(
0 0
−2 3.5

)
.
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A.2 Regularity Conditions

Assumption A.2.1. Suppose there exists two positive constants L1 and L2 such that for any u1 ∈

Rp, u2 ∈ Rq, and t ∈ R, E
(
exp

(
tu>1 xi

))
≤ exp

(
L2
1‖u1‖22t2

2

)
and E(exp(tu>2 yi)) ≤ exp

(
L2
2‖u2‖22t2

2

)
.

Assumption A.2.2. nXX ≥ 6 log p, nXY ≥ 4 log(pq) and nY Y ≥ 6 log q.

Under Condition A.2.1, the predictor and the response vectors follow sub-Gaussian distribu-

tions. Condition A.2.2 ensures that the missing proportion of the data is not too large in order

to get consistent estimators of B∗ and C∗. If we further assume that (log(pq))/n0 = O(1), with

n0 = min {nXX , nXY , nY Y }, Condition A.2.2 is satisfied when n0 is sufficiently large.

In order to prove Lemma 2.3.1 and 2.3.2, we need the following additional assumptions.

Assumption A.2.3. ‖B∗‖L1 ≤ cγ10 and ‖C∗‖L1 ≤ cγ20 where 0 < γ1, γ2 < 1
16 and c0 =

min{ nXY
log(pq) ,

nXX
log p ,

nY Y
log q }. ‖B

∗‖2 ≤ c for some positive constant c.

Assumption A.2.4. Suppose that ΣXX and C∗ satisfy c ≤ λmin(ΣXX) ≤ λmax(ΣXX) ≤ C and

c ≤ λmin(C∗) ≤ λmax(C∗) ≤ C for some positive constants c and C.

Condition A.2.3 makes a weak assumption on the upper bounds of the norms of the

true parameters, where the two upper bounds can diverge as (log(pq))/n0 → 0, with n0 =

min {nXX , nXY , nY Y }. We impose the sub-Gaussian assumption on yi in Condition A.2.1. We

essentially assume that it has bounded variance. Since it is the response from a linear model, it is

reasonable to assume that Var(yi) is bounded. Since Var(yi) ≥ B∗>Var(xi)B
∗, the boundness of

Var(yi) implies that ‖B∗‖2 is bounded, if we assume λmax(Var(xi)) <∞. Condition A.2.4 ensures

that the eigenvalues of ΣXX and C∗ are bounded away from 0 and infinity.

Assumption A.2.5.
∥∥∥(C∗ ⊗ΣXX)SCBSB

(C∗ ⊗ΣXX)−1
SBSB

∥∥∥
∞
≤ 1 − η holds for a constant η ∈

(0, 1).

Condition A.2.5 can be viewed as a population version of the strong irrepresentable condition

proposed in Zhao and Yu (2006).
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A.3 Proof of Proposition 2.1

We use a similar argument as the proof of Proposition 1 in Yu et al. (2020), we first decompose

the objective function into the estimation error of intra-modality sample covariance matrix, the

estimation error of diagonal entries and the estimation error of cross-modality sample covariance

matrix. Then we find the optimal value of each term.

By using the facts that ΣXX = ΣI+ΣC and E(Σ̃I) = ΣI , we can rewrite the objective function

in (2.10) as

arg minα1,α2 E‖Σ̂XX −ΣXX‖2F

= arg minα1,α2

{
α2

1E
∥∥∥Σ̃I −ΣI

∥∥∥2

F
+ (1− α1)2 E

∥∥∥diag(Σ̃I)−ΣI

∥∥∥2

F
+ E

∥∥∥α2Σ̃C −ΣC

∥∥∥2

F

}
.

The optimal value of α2 can be obtained by minimizing E‖α2Σ̃C −ΣC‖2F . Thus, the optimal value

is α∗2 =
‖ΣC‖2F
‖ΣC‖2F+δ2C

. Then taking the derivative of the objective function with respect to α1, we can

find that the optimal value of α1 is α∗1 = θ2

θ2+δ2I
.

At the optimum, the value of the objective function is equal to
δ2Iθ

2

δ2I+θ2
+

δ2C‖ΣC‖2F
δ2C+‖ΣC‖2F

≤ δ2
I + δ2

C .

Since E‖Σ̃XX −ΣXX‖2F = δ2
I + δ2

C , we have E‖Σ̂∗XX −ΣXX‖2F ≤ E‖Σ̃XX −ΣXX‖2F .

By taking the derivative of the objective function of (2.11) with respect to α3, the optimal

value of α3 is α∗3 =
‖ΣXY ‖2F

‖ΣXY ‖2F+δ2XY
. At the optimum, the value of the objective function is equal to

δ2XY ‖ΣXY ‖2F
δ2XY +‖ΣXY ‖2F

, which is less than δ2
XY . Since E‖Σ̃XY −ΣXY ‖2F = δ2

XY , we have E‖Σ̂∗XY −ΣXY ‖2F ≤

E‖Σ̃XY −ΣXY ‖2F .

A.4 Proof of Theorem 2.3.1

We first gives the large deviation bounds for the sample covariance matrices Σ̃XX and Σ̃XY by

a similar argument as the proof of Lemma 1 in Yu et al. (2020). Then we calculate the convergence

rate of entries in the estimated intra-modality sample covariance matrix, entries in the estimated

cross-modality sample covariance matrix and estimated diagonal entries using the previous bound,

and then calculate the overall convergence rate of using the union bound.

Without loss of generality, we assume σXXjj = 1 for 1 ≤ j ≤ p. Then, under Condition A.2.1, we

know that Xj is sub-Gaussian with parameter L1. Let δ1 = 8
√

6
(
1 + 4L2

1

)√ log p
nXXjk

. If nXX > 6 log p,
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we have δ1 < 8
(
1 + 4L2

1

)
. By letting ν1 = 8

√
6
(
1 + 4L2

1

)
, it follows from Lemma A.9.2 that

P
(∣∣σ̃XXjk − σXXjk ∣∣ ≥ δ1

)
≤ 4 exp

{
−

nXXjk δ2
1

128
(
1 + 4L2

1

)2
}

= 4 exp

{
− ν2

1 log p

128
(
1 + 4L2

1

)2
}

= 4p
− ν21

128(1+4L2
1)

2

≤ 4

p3
.

Hence, under Conditions A.2.1 and A.2.2, we have

maxj,k P

(∣∣∣σ̃XXjk − σXXjk ∣∣∣ ≥ ν1

√
log p
nXXjk

)
≤ 4

p3
.

By the union bound, we have

P
(
‖Σ̃XX −ΣXX‖∞ ≥ ν1

√
log p
nXX

)
≤ 4

p .

Let Yj denote the jth response. Without loss of generality, we assume that Yj has finite

variance. Under Condition A.2.1, Yj/
√

Var(Yj) is sub-Gaussian with parameter L2/
√

Var(Yj). Let

δ3 = 16(1 + 4 max{L2
1,

L2
2

minj(Var(Yj))
})
√

log(pq)

nXYjk
max{maxj(Var(Yj)), 1}. When nXY > 4 log(pq), we

have

δ3 < 8

(
1 + 4 max

{
L2

1,
L2

2

minj (Var(Yj))

})
max
j

(Var(Yj), 1) .

By choosing ν2 = 16(1 + 4 max{L2
1,

L2
2

minj(Var(Yj))
}) max{maxj(Var(Yj)), 1}, it follows from

Lemma A.9.2 that for any 1 ≤ j, k ≤ pq, we have

P
(∣∣σ̃XYjk − σXYjk ∣∣ ≥ δ3) ≤ 4 exp

− ν22 log(pq)

128
(

1 + 4 max
{
L2
1,

L2
2

minj(Var(yj))

})2
maxj (Var(Yj), 1)


≤ 4

(pq)2
.
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Hence, by Condition A.2.1 and nXY > 4 log(pq), there exists a positive constant ν2 such that

maxj,k P

(∣∣∣σ̃XYjk − σXYjk ∣∣∣ ≥ ν2

√
log(pq)

nXYjk

)
≤ 4

(pq)2
.

By the union bound, we have

P

(
‖Σ̃XY −ΣXY ‖∞ ≥ ν2

√
log(pq)
nXY

)
≤ 4

pq .

Based on the definition of Σ̂XX , we have

σ̂XXjt − σXXjt =


σ̃XXjt − σXXjt if j = t;

α1σ̃
XX
jt − σXXjt if j 6= t, j and t are in the same modality;

α2σ̃
XX
jt − σXXjt if j and t are in different modalities.

Thus, if j = t, there exists a positive constant ν1 such that with probability at least 1 − 4/p3, it

holds that ∣∣σ̂XXjt − σXXjt ∣∣ =
∣∣σ̃XXjt − σXXjt ∣∣ ≤ ν1

√
log p/nX .

If j 6= t and j and t are in the same modality, it holds with probability at least 1− 4/p3 that

∣∣σ̂XXjt − σXXjt ∣∣ =
∣∣α1σ̃

XX
jt − σXXjt

∣∣ ≤ α1

∣∣σ̃XXjt − σXXjt ∣∣+ (1− α1)
∣∣σXXjt ∣∣

≤ α1

∣∣σ̃XXjt − σXXjt ∣∣+ 1− α1

≤ α1ν1

√
log p/nX + 1− α1.

Similarly, if j 6= t and j and t are in different modalities, it holds with probability at least 1− 4/p3

that ∣∣σ̂XXjt − σXXjt ∣∣ =
∣∣α2σ̃

XX
jt − σXXjt

∣∣ ≤ α2

∣∣σ̃XXjt − σXXjt ∣∣+ (1− α2)
∣∣σXXjt ∣∣

≤ α2

∣∣σ̃XXjt − σXXjt ∣∣+ 1− α2

≤ α2ν1

√
log p/nXX + 1− α2.

Therefore, by the union bound, there exists a constant ν ′1 such that

P

(∥∥∥Σ̂XX −ΣXX

∥∥∥
∞
≥ v′1

√
log p

nXX

)
≤ 4

p
.
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Similarly, it holds with probability at least 1− 4/(pq)2 that

∣∣σ̂XYjk − σXYjt ∣∣ =
∣∣α3σ̃

XY
jt − σXYjt

∣∣ ≤ α3

∣∣σ̃XYjt − σXYjt ∣∣+ (1− α3)
∣∣σXYjt ∣∣

≤ α3

∣∣σ̃XYjt − σXYjt ∣∣+ 1− α3

≤ α3ν2

√
log(pq)/nXY + 1− α3.

Therefore, by the union bound, there exists a constant ν ′2 such that

P

∥∥∥Σ̂XY −ΣXY

∥∥∥
∞
≥ v′2

√
log(pq)

nXY

 ≤ 4

pq
.

Let δ2 = 8
√

6(1 + 4
L2
2

minj(Var(Yj))
)

√
log q
nY Yjk

maxj(Var(Yj)). If nY Y > 6 log q, we have

δ2 < 8

(
1 + 4

L2
2

minj (Var(Yj))

)
max
j

(Var(Yj)) .

By choosing ν ′3 = 8
√

6(1 + 4
L2
2

minj(Var(Yj))
) maxj(Var(Yj)), it follows from Lemma A.9.2 that

P
(∣∣σ̂Y Yjk − σY Yjk ∣∣ ≥ δ2

)
≤ 4 exp

−
ν ′23 log q

128

(
1 + 4

L2
2

minj(Var(Yj))

2
)2


≤ 4

q3
.

Hence, under Conditions A.2.1 and A.2.2, we have

maxj,k P

(∣∣∣σ̂Y Yjk − σY Yjk ∣∣∣ ≥ ν ′3√ log q
nY Yjk

)
≤ 4

q3
,

where ν ′3 is a positive constant. By the union bound, we have

P
(
‖Σ̂Y Y −ΣY Y ‖∞ ≥ ν ′3

√
log q
nY Y

)
≤ 4

q .
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A.5 Proof of Lemma 2.3.1

We use a similar argument as the proof of Theorem 2 in Yu et al. (2020). By Theorem 2 in Yu

et al. (2020), we have ‖B̂i − B∗i ‖2 = Op(
√
sBλB). In order to prove the `2–error bound, we only

need to prove ‖Σ̂XY,i − Σ̂XXB̂i‖∞ ≤ λB, where Σ̂XY,i and B̂i are the ith column of Σ̂XY and B̂,

respectively. Let ∆XX = Σ̂XX −ΣXX and ∆XY = Σ̂XY −ΣXY . Let ∆XX
i and ∆XY

i be the ith

column of ∆XX and ∆XY , respectively. We have

∥∥∥Σ̂XY,i − Σ̂XXB∗i

∥∥∥
∞

=
∥∥∆XY

i −∆XXB∗i
∥∥
∞

≤
∥∥∆XY

i

∥∥
∞ −

∥∥∆XX
∥∥
∞ ‖B

∗
i ‖L1

≤(‖B∗‖L1v
′
1 + v′3)

√
log(pq)

min(nXX , nXY )

.λB0 .

Denote the ith column of B̂0 as B̂0,i. By Theorem 2 in Yu et al. (2020), we have

∥∥∥B̂0,i −B∗i

∥∥∥2

F
= Op

(
sB

∥∥∥Σ̂XY,i − Σ̂XXB∗i

∥∥∥2

∞

)
= Op

(
‖B∗i ‖

2
1 sB

log(pq)

min(nXX , nXY )

)
.

Adding all q columns together, we have

∥∥∥B̂0 −B∗
∥∥∥
F

= O

(
‖B∗‖L1

√
sBq log(pq)

min(nXX , nXY )

)
.

A.6 Proof of Lemma 2.3.2

We first verify the RSC conditions of the objective function, see (A.29) and (A.30) in Theorem

A.9.1. Then we use Theorem 1 of Loh and Wainwright (2015) to prove the convergence rate.

Recall that Σ̂0 = Σ̃Y Y − 2Σ̂>XY B̂0 + B̂>0 Σ̂XXB̂0. Let Ln(C) = tr(Σ̂0C) − log det(C). Its

Hessian matrix is ∇2Ln(C) = (C⊗C)−1.
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For any ∆C0 such that ‖∆C0‖F ≤ 1. By Mean Value Theorem, there exists some t ∈ [0, 1] such

that

〈
∇Ln(C∗ + ∆C0)−∇Ln (C∗) , vec

(
∆C0

)〉
= vec(∆C0)>

(
∇2Ln

(
C∗ + t∆C0

))
vec(∆C0)

≥λmin

(
∇2Ln

(
C∗ + t∆C0

))
‖∆C0‖2F

=
∥∥C∗ + t∆C0

∥∥−2

2
‖∆C0‖2F

≥
(
‖C∗‖2 + t‖∆C0‖2

)−2 ‖∆C0‖2F

≥ (‖C∗‖2 + 1)−2 ‖∆C0‖2F .

Thus, (A.29) holds. Moreover, since Ln is convex, the function f(t) := Ln(C∗ + t∆C0) is also

convex. So, f ′(1)− f ′(0) ≥ f ′(t)− f ′(0) for all t ∈ [0, 1]. Since

f ′(1)− f ′(0) =
〈
∇Ln

(
C∗ + ∆C0

)
, vec

(
∆C0

)〉
−
〈
∇Ln (C∗) , vec

(
∆C0

)〉
=
〈
∇Ln

(
C∗ + ∆C0

)
−∇Ln (C∗) , vec

(
∆C0

)〉
,

f ′(t)− f ′(0) =
〈
∇Ln

(
C∗ + t∆C0

)
, vec

(
∆C0

)〉
−
〈
∇Ln (C∗) , vec

(
∆C0

)〉
=

1

t

〈
∇Ln

(
C∗ + t∆C0

)
−∇Ln (C∗) , t vec

(
∆C0

)〉
,

we have

〈
∇Ln

(
C∗ + ∆C0

)
−∇Ln (C∗) , vec

(
∆C0

)〉
≥ 1

t

〈
∇Ln

(
C∗ + t∆C0

)
−∇Ln (C∗) , t vec

(
∆C0

)〉
.

For any ‖∆C0‖F ≥ 1, take t = 1
‖∆C0‖F

∈ (0, 1]. Since ‖t∆C0‖F = 1, we have

〈
∇Ln

(
C∗ + ∆C0

)
−∇Ln (C∗) , vec

(
∆C0

)〉
≥‖∆C0‖F

〈
∇Ln

(
C∗ +

∆C0

‖∆C0‖F

)
−∇Ln (C∗) , vec

(
∆C0

‖∆C0‖F

)〉
≥‖∆C0‖F (‖C∗‖2 + 1)−2 .
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Thus, (A.30) holds. Denote ∆XX = ΣXX − Σ̂XX , ∆XY = ΣXY − Σ̂XY and ∆Y Y = ΣY Y − Σ̂Y Y .

Theorem 2.3.1 implies that with probability at least 1− 4
p −

4
pq −

4
q , we have

‖∆XX‖∞ ≤ v′1

√
log p

nXX
, ‖∆XY ‖∞ ≤ v′2

√
log(pq)

nXY
, ‖∆Y Y ‖∞ ≤ v′3

√
log q

nY Y
.

Then, we have

‖∇Ln (C∗)‖∞

=
∥∥∥Σε − Σ̂0

∥∥∥
∞

≤‖Σε − Σ̂Y Y + 2Σ̂>XY B∗ −B∗>Σ̂XXB∗‖∞ +
∥∥∥Σ̂Y Y − 2Σ̂>XY B∗ + B∗>Σ̂XXB∗−

(Σ̂Y Y − 2Σ̂>XY B̂0 + B̂>0 Σ̂XXB̂0)
∥∥∥
∞

≤2‖B∗ − B̂0‖L1‖Σ̂XY ‖∞ + 2‖B∗ − B̂0‖L1‖B∗‖L1‖Σ̂XX‖∞ + ‖B∗ − B̂0‖L1

‖B∗ − B̂0‖L1‖Σ̂XX‖∞ + ‖∆Y Y ‖∞ + 2‖B∗‖L1‖∆XY ‖∞ + ‖B∗‖2L1
‖∆XX‖∞

.‖B∗‖2L1

√
log(pq)

min(nXX , nXY )
+ ‖B∗‖L1sB

√
q log(pq)

min(nXX , nXY )
.

Then, the result follows from Theorem A.9.1.

A.7 Proof of Theorem 2.3.2

We first rely on verifying the RSC conditions of our loss function to express the upper bound

of ‖B̂ − B∗‖1 as a function of ‖Ĉ − C∗‖1; see (A.15). Similarly, we show that the upper bound

of ‖Ĉ−C∗‖1 can also be expressed as a function of ‖B̂−B∗‖1; see (A.18). Combining these two

results with some algebra proves the theorem.

For Ln(B,C) = tr[CΣ̂YY + BCB>Σ̂XX − 2CB>Σ̂XY]− log det(C), we have ∇2
BLn(B,C) =

2Σ̂XX ⊗C and ∇2
CLn(B,C) = C−1 ⊗C−1.

For L(B,C) = tr
[
CΣYY + BCB>ΣXX − 2CB>ΣXY

]
− log det(C), we have ∇2

BL(B,C) =

2ΣXX ⊗C and ∇2
CL(B,C) = C−1 ⊗C−1.
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Denote ∆B = B∗ − B̂ and ∆C = C∗ − Ĉ. For any t ∈ [0, 1], denote B̂t = B∗ + t∆B. For any

vector vI1 ∈ Rpq, we have

v>I1∇
2
BL(B̂t, Ĉ)vI1 = 2v>I1(ΣXX ⊗ Ĉ)vI1

≥2‖vI1‖22λmin(ΣXX)λmin(Ĉ) ≥ λmin(ΣXX)λmin(Ĉ)‖vI1‖22.

In addition, define

ε̃Bn = max
t′∈[0,1]

{
‖∇2

BL(B̂t, Ĉ)−∇2
BLn(B̂t, Ĉ)‖∞

}
=
∥∥∥2∆XX ⊗ Ĉ

∥∥∥
∞
,

where ∆XX = Σ̂XX −ΣXX . Then, we have

v>I1∇
2
BLn(B̂t, Ĉ)vI1
‖vI1‖22

=
v>I1∇

2
BL(B̂t, Ĉ)vI1
‖vI1‖22

+
v>I1(∇2

BLn(B̂t, Ĉ)−∇2
BL(B̂t, Ĉ))vI1

‖vI1‖22

≥αB −
ε̃Bn ‖vI1‖21
‖vI1‖22

,

where αB = λmin(ΣXX)(λmin(C∗)− λmin(∆C)).

Let δB = vec(∆B) and δC = vec(∆C). Then, we have

〈
δB, vec

(
∇BLn(B̂, Ĉ)−∇BLn(B∗, Ĉ)

)〉
=

〈
δB, vec

(∫ 1

0
∇2
BLn

(
B∗ + t(B̂−B∗), Ĉ

)
∆Bdt

)〉
≥〈δB, αBδB〉 − ε̃Bn ‖δB‖21

=αB‖δB‖22 − ε̃Bn ‖δB‖21.

(A.1)

For any matrix B = (Bij) ∈ Rp×q, define f1(B) = (bij), where bij = 1 if Bij > 0, bij = −1 if

Bij < 0 and bij = 0 if Bij = 0. Similarly, for any matrix C = (Cij) ∈ Rq×q, define f2(C) = (cij),

where cij = 1 if Cij > 0, cij = −1 if Cij < 0 and cij = 0 if Cij = 0. Then f1(B) ∈ ∇B(‖B‖1) and

f2(C) ∈ ∇C(‖C‖1). Since B̂ is a stationary point of Ln + λB‖B‖1 and Ĉ is a stationary point of
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Ln + λC‖C‖1, we have

〈vec(∇BLn(B̂, Ĉ) + λBf1(B̂)), δB〉 ≥ 0, (A.2)

and

〈vec(∇CLn(B̂, Ĉ) + λCf2(Ĉ)), δC〉 ≥ 0. (A.3)

By (A.1) and (A.2), we have

αB‖δB‖22 − ε̃Bn ‖δB‖21

≤〈vec(∇BLn(B̂, Ĉ)−∇BLn(B∗, Ĉ)), δB〉

=〈vec(∇BLn(B̂, Ĉ)), δB〉 − 〈vec(∇BLn(B∗, Ĉ)), δB〉

≤〈vec(∇B(λB‖B̂‖1 + λC‖Ĉ‖1)), δB〉 − 〈vec(∇BLn(B∗, Ĉ)), δB〉

≤λB‖B∗‖1 − λB‖B̂‖1 + ‖∇BLn(B∗, Ĉ)‖∞‖δB‖1.

(A.4)

Define

λ̃B = Cλ(log p)1/2/min(n
1−τ1/2
XX , n

1−τ2/2
XY )(‖B∗C∗‖L1 + ‖B∗‖L1‖δC‖1)

+ Cλ max {λmax(C∗), 1/λmin(C∗)}{ log(pq)

nXY
}1/2(1 + ‖δC‖1),

(A.5)

where Cλ is a constant only depending on λmax(C∗), 1/λmin(C∗), L1, L2. Then with a large enough

constant Cλ, we have λB < λ̃B. By Lemma A.9.5, we have

‖∇BLn(B∗, Ĉ)‖∞ . λ̃B. (A.6)

By Lemma A.9.3, we have

‖δB‖1 =
∥∥∆B

∥∥
1

=
∥∥∥vec

(
∆B

)
SB

∥∥∥
1

+
∥∥∥vec

(
∆B

)
SCB

∥∥∥
1

.4
∥∥∥vec

(
∆B

)
SB

∥∥∥
1

.4
√
sB

∥∥∥vec
(
∆B

)
SB

∥∥∥
2

.
√
sB ‖δB‖2 .

(A.7)
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Then by (A.4), (A.6) and (A.7), it holds with probability at least 1− 4
p −

4
pq that

{
αB − 16ε̃Bn sB

}
‖δB‖22

≤λB‖B∗‖1 − λB‖B̂‖1 + ‖∇BLn(B∗, Ĉ)‖∞‖δB‖1

.λB‖B∗‖1 − λB‖B̂‖1 + λ̃B‖δB‖1

.λB‖B∗‖1 − λB‖B̂‖1 + λ̃B‖ vec
(
∆B

)
SB
‖1

.λ̃B‖ vec(∆B)SB‖1 − λB‖ vec(B̂)SCB
‖1

.λ̃B
√
sB‖δB‖2.

(A.8)

Next we show that with large enough nXX and q, αB − 16ε̃Bn sB is bounded away from 0. To

show αB is bounded away from 0, we first prove that Ln(B,C) satisfies the RSC condition (A.29)

and (A.30) with respect to C for any B.

For any t′ ∈ [0, 1], denote Ĉt′ = C∗ + t′∆C . For any vector vI2 ∈ Rq2 , we have

v>I2∇
2
CL(B̂, Ĉt′)vI2

=v>I2((Ĉt′)−1 ⊗ (Ĉt′)−1)vI2

≥(‖C∗‖2 + t′‖∆C‖2)−2‖vI2‖22,

where we use the Weyl’s inequality that λmax(C∗) − t′λmax(∆C) ≥ λmax(Ĉt′). Then, for all

‖∆C‖F ≤ 1 and any B, we have

v>I2∇
2
CLn(B, Ĉt′)vI1
‖vI2‖22

≥ (‖C∗‖2 + t′‖∆C‖2)−2 ≥(‖C∗‖2 + 1)−2.

Then, for any ‖∆C‖F ≤ 1 and any B we have

〈δC , vec(∇CLn(B, Ĉ)−∇CLn(B,C∗))〉

=

〈
δC , vec

(∫ 1

0
∇2
CLn

(
B,C∗ + t′(Ĉ−C∗)

)
∆Cdt

)〉
≥αC‖δC‖22,

(A.9)
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where αC = (‖C∗‖2 +1)−2. If ‖∆C‖F > 1, since Ln(B,C) is convex with respect to C, the function

f : [0, 1]→ R given by f(t) := Ln(B,C∗+ t′∆C) is also convex, so f ′(1)− f ′(0) ≥ f ′(t′)− f ′(0) for

all t′ ∈ [0, 1]. Computing the derivatives of f yields

〈vec(∇CLn(B, Ĉ)−∇CLn(B,C∗)), δC〉

≥ 1

t′
〈
vec(∇Ln

(
B,C∗ + t′∆C

)
−∇Ln (B,C∗)), t′δC

〉
.

Taking t′ = 1
‖∆C‖F

∈ (0, 1], for any ‖∆C‖F > 1 and any B, we have

〈vec(∇CLn(B, Ĉ)−∇CLn(B,C∗)), δC〉 ≥ αC‖δC‖2. (A.10)

Combining (A.9) and (A.10), we show that Ln(B,C) satisfies the RSC conditions (A.29) and (A.30)

with respect to C for any B. Next, following the proof of Lemma A.9.1 from Loh and Wainwright

(2015), we can prove ‖δC‖2 ≤ 3(‖C∗‖2 + 1)2/2. For completeness, we prove it as follows.

By (A.3) and (A.10), we have

〈
vec(−λCf2(Ĉ)−∇CLn(B̂,C∗)), δC

〉
≥ αC‖δC‖2.

By Hölder’s inequality and the triangle inequality, we also have

〈
vec(−λCf2(Ĉ)−∇CLn(B̂,C∗)), δC

〉
≤ 3

2
λC‖δC‖1.

Combining the above two inequalities yields

‖δC‖2 ≤
3‖δC‖1λC

2αC
≤ 3RλC

2αC
. (A.11)

With our choice of λC and R, and large enough nXX , nXY , nY Y , we have ‖δC‖2 ≤ 3(‖C∗‖2 +1)2/2.

Since
√∑q

i=1 |λi(∆
C)|2 ≤ ‖∆C‖F , where λi(∆

C) denotes all the q eigenvalues of ∆C , we have

λmin(∆C) ≤ 3(‖C∗‖2+1)2

2q . Thus with large enough q, αB = λmin(ΣXX)(λmin(C∗) − λmin(∆C)) is

bounded away from 0 by Condition A.2.4.
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Denote ∆Y Y = ΣY Y −Σ̂Y Y . Theorem 2.3.1 implies that with probability at least 1− 4
p−

4
pq−

4
q ,

we have

‖∆XX‖∞ ≤ v′1

√
log p

nXX
; (A.12)

‖∆XY ‖∞ ≤ v′2

√
log(pq)

nXY
; (A.13)

‖∆Y Y ‖∞ ≤ v′3

√
log q

nY Y
. (A.14)

By inequalities (A.12), (A.13), (A.14) and Condition A.2.3, with probability at least 1 − 4
p , it

holds that

ε̃Bn = 2‖∆XX‖∞‖Ĉ‖∞ .v′1

(
log p

nXX

) 1
2
−γ2

.

Thus when nXX and q are large enough, αB − 16ε̃Bn sB is bounded away from 0. Then by (A.8), it

holds with probability at least 1− 4
p −

4
pq that

‖δB‖2 . λ̃B
√
sB.

By (A.7), it holds with probability at least 1− 4
p −

4
pq that

‖δB‖1 .
√
sB ‖δB‖2 . λ̃BsB, (A.15)

where λ̃B is as stated in (A.5). Next, we show that the upper bound of ‖C∗ − Ĉ‖1 can also be

expressed as a function of ‖B̂−B∗‖1. By (A.3) and (A.9), we have

αC‖δC‖22 ≤ λC‖C∗‖1 − λC‖Ĉ‖1 − 〈vec(∇CLn(B̂,C∗)), δC〉.
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By (A.12), (A.13) and (A.14), it holds with probability at least 1− 4
p −

4
pq −

4
q that

∥∥∥∇CLn(B̂,C∗)
∥∥∥
∞

=
∥∥∥Σε − Σ̂0

∥∥∥
∞

≤‖Σε − Σ̂Y Y + 2Σ̂>XY B∗ −B∗>Σ̂XXB∗‖∞ +
∥∥∥Σ̂Y Y − 2Σ̂>XY B∗ + B∗>Σ̂XXB∗−

(Σ̂Y Y − 2Σ̂>XY B̂ + B̂>Σ̂XXB̂)
∥∥∥
∞

.‖B∗‖2L1

√
log(pq)

min(nXX , nXY )
+ ‖δB‖1.

Then, with probability at least 1− 4
p −

4
pq −

4
q , it holds that

‖δC‖2 .
√
sC‖C∗‖22‖B∗‖2L1

√
log(pq)

min(nXX , nXY )
+
√
sC‖C∗‖22‖δB‖1. (A.16)

By Lemma A.9.3, we have

‖δC‖1 =
∥∥∥vec

(
∆C

)
SC

∥∥∥
1

+
∥∥∥vec

(
∆C

)
SCC

∥∥∥
1

.4
∥∥∥vec

(
∆C

)
SC

∥∥∥
1

.
√
sC ‖δC‖2 .

(A.17)

Finally, we combine (A.15), (A.16) and (A.17) to show the upper bounds of the estimation

errors of Ĉ and B̂.
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By (A.5), (A.16) and (A.17, with large enough nXX , nXY , it holds with probability at least

1− 4
p −

4
pq −

4
q that

‖δC‖1

.sC‖C∗‖22‖B∗‖2L1

√
log(pq)

min(nXX , nXY )
+ sBsC‖C∗‖22

 (log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

)
(‖B∗C∗‖L1 + ‖B∗‖L1‖δC‖1) + max {λmax(C∗), 1/λmin(C∗)}

{
log(pq)

nXY

}1/2

(1 + ‖δC‖1)

)

.‖C∗‖22sC

‖B∗‖2L1
+

‖B∗C∗‖L1sB

min
(
n

1/2−τ1/2
XX , n

1/2−τ2/2
XY

)
√ log(pq)

min(nXX , nXY )

+ ‖δC‖1sBsC‖C∗‖22

 (log p)1/2‖B∗‖L1

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

) + max {λmax(C∗), 1/λmin(C∗)}

{
log(pq)

nXY

}1/2
)
.

With large enough nXX , nXY , we have

sBsC‖C∗‖22(
(log p)1/2‖B∗‖L1

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

) + max {λmax(C∗), 1/λmin(C∗)}{ log(pq)

nXY
}1/2) = o(1),

so we have

‖δC‖1

.‖C∗‖22sC

‖B∗‖2L1
+

‖B∗C∗‖L1sB

min
(
n

1/2−τ1/2
XX , n

1/2−τ2/2
XY

)
√ log(pq)

min(nXX , nXY )

.λCsC .

(A.18)

By choosing large enough nXX , nXY and nY Y , it holds with probability at least 1− 4
p −

4
pq −

4
q

that

‖δC‖1 . 1. (A.19)
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By (A.16) and (A.19), it holds with probability at least 1− 4
p −

4
pq −

4
q that

‖δC‖2

.
√
sC‖C∗‖22‖B∗‖2L1

√
log(pq)

min(nXX , nXY )
+ sB

√
sC‖C∗‖22

 (log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

)
(‖B∗C∗‖L1 + ‖B∗‖L1‖δC‖1) + max {λmax(C∗), 1/λmin(C∗)}

{
log(pq)

nXY

}1/2

(1 + ‖δC‖1)

)

.‖C∗‖22
√
sC

‖B∗‖2L1
+

‖B∗C∗‖L1sB

min
(
n

1/2−τ1/2
XX , n

1/2−τ2/2
XY

)
√ log(pq)

min(nXX , nXY )

.λC
√
sC .

By Lemma A.9.5 and (A.19), with probability at least 1−4
p−

4
pq−

4
q , we have ‖∇BLn(B∗, Ĉ)‖∞ .

λB. Then by (A.15), it holds with probability at least 1− 4
p −

4
pq −

4
q that

‖δB‖22

≤λB‖B∗‖1 − λB‖B̂‖1 + ‖∇BLn(B∗, Ĉ)‖∞‖δB‖1

.λB‖B∗‖1 − λB‖B̂‖1 + λB‖δB‖1

.λB
√
sB‖δB‖2.

So with probability at least 1− 4
p −

4
pq −

4
q , it holds that

‖δB‖2 . λB
√
sB,

and

‖δB‖1 . λBsB.

This completes the proof.
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A.8 Proof of Theorem 2.3.3

We use a similar argument as the proof of Theorem 6 in Yu et al. (2020). We first transfer the

objective function. Then we show the upper bounds of ‖(ΓSBSB )−1‖L∞ and
∥∥∥γ̂SCB − Γ̂SCBSB

β∗SB

∥∥∥
∞

.

We use them to show that ‖β̂SB − βSB
∗‖∞ < minj∈SB |β∗j | with probability close to 1. Then we

show that
∥∥∥γ̂SCB − Γ̂SCBSB

β̂SB

∥∥∥
∞
≤ λB with probability close to 1.

By properties of trace and vectorization, we can rewrite (2.5) as

(B̂, Ĉ)

= arg min
C∈Sq×q

+ ,B

{
tr
[
CΣ̂Y Y

]
+ tr

[
B>Σ̂XXBC

]
− 2 tr

[
B>Σ̂XY C

]
+ λB‖B‖1 + λC‖C‖1 − log det C

}
= arg min

C∈Sq×q
+ ,B

{
tr
[
CΣ̂Y Y

]
+ vec (B)

>
(
C⊗ Σ̂XX

)
vec (B)− 2 vec(B)> vec

(
Σ̂XY C

)
+ λB‖B‖1+

λC‖C‖1 − log det C} .

Denote β = vec(B), (2.5) is equivalent to solving

(β̂, Ĉ) = arg min
β,C∈Sq×q+

{
tr
[
CΣ̂Y Y

]
− log det C− 2β> vec(Σ̂XY C)

+β>
(
C⊗ Σ̂XX

)
β + λB‖β‖1 + λC‖C‖1

}
,

(A.20)

For an optimal solution (β̂, Ĉ) to (A.20), β̂ should satisfy

β̂ = arg min
β

{
−2β>γ̂ + β>Γ̂β + λB‖β‖1

}
, (A.21)

where Γ̂ = Ĉ ⊗ Σ̂XX and γ̂ = vec(Σ̂XY Ĉ). This can be proved by contradiction. If β̂ does

not satisfy (A.21), let β1 be a solution of (A.21). Denote Ln(β,C) = tr
[
CΣ̂Y Y

]
− log det C −

2β> vec(Σ̂XY C) + β>
(
C⊗ Σ̂XX

)
β + λB‖β‖1 + λC‖C‖1. Then

Ln(β̂, Ĉ)− Ln(β1, Ĉ)

=
(

2β̂
>
γ̂ + β̂

>
Γ̂β̂ + λB‖β̂‖1

)
−
(

2β>1 γ̂ + β>1 Γ̂β1 + λB‖β1‖1
)

>0,
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which is a contradiction. Thus β̂ should satisfy (A.21). Since Ĉ is the optimal solution to (A.20),

it is positive definite. By our construction, Σ̂XX is also positive definite. Thus (A.21) is a strictly

convex problem, which has a unique solution. Thus β̂ is the unique solution to (A.21).

By the Karush–Kuhn–Tucker (KKT) conditions of (A.21), we know that β̂ is a solution to

(A.21) if there exists a subgradient ωB ∈ Rpq such that

γ̂ − Γ̂β̂ = λBω
B, (A.22)

where ωBj = sign(β̂j) if β̂j 6= 0, and ωBj ∈ [−1, 1] if β̂j = 0.

First, we show that for j ∈ SB, with high probability, there exists a solution β̂ to (A.21) s.t.

∥∥∥β̂SB − β∗SB∥∥∥∞ < min
j∈SB

|β∗j |,

where β̂SB is the sub-vector of β̂ with indices in SB. Then letting β̂SCB
= 0, we show that

β̂ also satisfies the KKT conditions with high probability for j 6∈ SB. Then, by construction,

sign(β̂) = sign(β∗). Define events A1 = {‖β̂SB − β
∗
SB
‖∞ < minj∈SB |β∗j |} and A2 = {‖γ̂SCB−

Γ̂SCBSB
β̂SB‖∞ ≤ λB}, where β∗ = vec(B∗). We show that P (A1) and P (A2) are close to 1.

Denote V = ‖(ΓSBSB )−1‖L∞ , where Γ := C∗ ⊗ΣXX . Since

∥∥∥∥(Γ̂SBSB

)−1
− (ΓSBSB )−1

∥∥∥∥
L∞

≤
∥∥∥(ΓSBSB )−1

∥∥∥
L∞

∥∥∥∥(Γ̂SBSB

)−1
∥∥∥∥
L∞

∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
L∞

≤
∥∥∥(ΓSBSB )−1

∥∥∥
L∞

(∥∥∥(ΓSBSB )−1
∥∥∥
L∞

+

∥∥∥∥(Γ̂SBSB

)−1
− (ΓSBSB )−1

∥∥∥∥
L∞

)
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
L∞

=V

(
V +

∥∥∥∥(Γ̂SBSB

)−1
− (ΓSBSB )−1

∥∥∥∥
L∞

)∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
L∞

,
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by some algebra, we have,

∥∥∥∥(Γ̂SBSB

)−1
− (ΓSBSB )−1

∥∥∥∥
L∞

≤
V 2
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
L∞

1− V
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
L∞

≤
sBV

2
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

1− sBV
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

,

and

∥∥∥∥(Γ̂SBSB

)−1
∥∥∥∥
L∞

≤V +
sBV

2
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

1− sBV
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

=
V

1− sBV
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

.

By Theorem 2.3.2, with probability at least 1− 4
p −

4
pq −

4
q , it holds that

∥∥∥Ĉ−C∗
∥∥∥

1
. λCsC , (A.23)

where λC = C‖C∗‖22[‖B∗‖2L1
+ sB‖B∗C∗‖L1/min(n

1/2−τ1/2
XX , n

1/2−τ2/2
XY )](log(p

q)/min(nXX , nXY ))1/2. Denote ∆C = Ĉ − C∗. By (A.23) and Condition A.2.3, with

probability at least 1− 4
p −

4
pq −

4
q , it holds that

∥∥∥Γ̂− Γ
∥∥∥
∞
≤
(
‖C∗‖∞ + ‖∆C‖∞

)
‖Σ̂XX −ΣXX‖∞ .

(
log p

nXX

) 1
2
−γ2

. (A.24)

Define γ := vec(ΣXY C∗). Then, with probability at least 1− 4
p −

4
pq −

4
q , it holds that

∥∥∥γ̂SB − Γ̂SBSBβ
∗
SB

∥∥∥
∞
≤
∥∥γ̂SB − γSB∥∥∞ +

∥∥∥(ΓSBSB − Γ̂SBSB

)
β∗SB

∥∥∥
∞

≤
∥∥γ̂SB − γSB∥∥∞ +

∥∥∥ΓSBSB − Γ̂SBSB

∥∥∥
∞

∥∥β∗SB∥∥∞
≤
∥∥γ̂SB − γSB∥∥∞ + sB‖B∗‖∞

∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞
.
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By (A.23), with probability at least 1− 4
p −

4
pq −

4
q , it holds that

‖γ̂ − γ‖∞

≤
(
‖C∗‖L∞ + ‖∆C‖L∞

)
‖Σ̂XY −ΣXY ‖∞

.

(
log(pq)

nXY

) 1
2
−γ2

. (A.25)

Since β̂SB = (Γ̂SBSB )−1γ̂SB − λB(Σ̂XX,SBSB )−1 sign(β̂SB ), sB
λB

( log p
nXX

)
1
2
−γ1−γ2 = O(1),

1
λB

( log(p+q)
nXY

)
1
2
−γ2 = O(1), sBV ( log p

nXX
)
1
2
−γ2 = O(1), with probability at least 1 − 4

p −
4
pq −

4
q , it

holds that

∥∥∥β̂SB − β∗SB∥∥∥∞ =

∥∥∥∥(Γ̂SBSB

)−1
γ̂SB − λB

(
Γ̂SBSB

)−1
· sign

(
β̂SB

)
− β∗SB

∥∥∥∥
∞

≤
∥∥∥∥(Γ̂SBSB

)−1
γ̂SB − β

∗
SB

∥∥∥∥
∞

+ λB

∥∥∥∥(Γ̂SBSB

)−1
∥∥∥∥
L∞

≤
(∥∥∥γ̂SB − Γ̂SBSBβ

∗
SB

∥∥∥
∞

+ λB

)
·
∥∥∥∥(Γ̂SBSB

)−1
∥∥∥∥
L∞

≤
(∥∥γ̂SB − γSB∥∥∞ + sB‖B∗‖∞

∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

+ λB

)
V

1− sBV
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

≤ 2λBV

1− sBV
∥∥∥Γ̂SBSB − ΓSBSB

∥∥∥
∞

≤ 4λBV < min
j∈SB

|β∗j |,

for sufficiently large p, q, nXX ,nXY and nY Y . The last step holds because we assume that

λBV/minj∈SB |β∗j | = o(1). Thus we have P (A1) ≥ 1 − 4
p −

4
pq −

4
q for sufficiently large p, q,

nXX ,nXY and nY Y .
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For ‖Γ̂SCBSB
(
Γ̂SBSB

)−1
− ΓSCBSB

(ΓSBSB )−1 ‖L∞ , we have

∥∥∥∥Γ̂SC
BSB

(
Γ̂SBSB

)−1
− ΓSC

BSB
(ΓSBSB

)
−1
∥∥∥∥
L∞

≤
∥∥∥∥ΓSC

BSB

((
Γ̂SBSB

)−1
− (ΓSBSB

)
−1
)∥∥∥∥

L∞

+

∥∥∥∥(Γ̂SC
BSB
− ΓSC

BSB

)(
Γ̂SBSB

)−1∥∥∥∥
L∞

≤
∥∥∥ΓSC

BSB
(ΓSBSB

)
−1
∥∥∥
L∞
·
∥∥∥ΓSBSB

− Γ̂SBSB

∥∥∥
L∞
·
∥∥∥∥(Γ̂SBSB

)−1∥∥∥∥
L∞

+

∥∥∥∥(Γ̂SBSB

)−1∥∥∥∥
L∞

·
∥∥∥Γ̂SC

BSB
− ΓSC

BSB

∥∥∥
L∞

≤
∥∥∥∥(Γ̂SBSB

)−1∥∥∥∥
L∞

·
(∥∥∥Γ̂SBSB

− ΓSBSB

∥∥∥
L∞

+
∥∥∥Γ̂SC

BSB
− ΓSC

BSB

∥∥∥
L∞

)
≤ 2sBV ‖Γ̂− Γ‖∞

1− sBV ‖Γ̂− Γ‖∞
. (A.26)

Since β̂SB = (Γ̂SBSB )−1γ̂SB−λB(Σ̂XX,SBSB )−1 ·sign(β̂SB ), with probability at least 1− 4
p−

4
pq −

4
q ,

it holds that

∥∥∥γ̂SCB − Γ̂SCBSB
β̂SB

∥∥∥
∞

≤
∥∥∥∥γ̂SCB − Γ̂SCBSB

(
Γ̂SBSB

)−1
γ̂SB

∥∥∥∥
∞

+ λB

∥∥∥∥Γ̂SCBSB (Γ̂SBSB

)−1
∥∥∥∥
L∞

≤
∥∥∥γ̂SCB − γSCB∥∥∥∞ +

∥∥∥∥(ΓSCBSB
(ΓSBSB )−1 − Γ̂SCBSB

(
Γ̂SBSB

)−1
)
γSB

∥∥∥∥
∞

+

∥∥∥∥Γ̂SCBSB (Γ̂SBSB

)−1 (
γSB − γ̂SB

)∥∥∥∥
∞

+ λB

∥∥∥∥Γ̂SCBSB (Γ̂SBSB

)−1
∥∥∥∥
L∞

≤
∥∥∥γ̂SCB − γSCB∥∥∥∞

(I)

+

∥∥∥∥(ΓSCBSB
(ΓSBSB )−1 − Γ̂SCBSB

(
Γ̂SBSB

)−1
)

ΓSBSBβ
∗
SB

∥∥∥∥
∞

(II)

+

∥∥∥∥Γ̂SCBSB (Γ̂SBSB

)−1 (
γSCB
− γ̂SCB

)∥∥∥∥
∞

+ λB

∥∥∥∥Γ̂SCBSB (Γ̂SBSB

)−1
∥∥∥∥
L∞

(III)

.

By Condition A.2.3, Condition A.2.5, (A.24), (A.25) and (A.26), with probability at least

1− 4
p −

4
pq −

4
q , it holds that

(I) .

(
log(pq)

nXY

) 1
2
−γ2

,
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(II) ≤sB‖B∗‖∞‖Γ̂− Γ‖∞

(
1 +

∥∥∥∥Γ̂SCBSB (Γ̂SBSB

)−1
∥∥∥∥
L∞

)

.sB

(
log p

nXX

) 1
2
−γ1−γ2

(
2− η +

2sBV ‖Γ̂− Γ‖∞
1− sBV ‖Γ̂− Γ‖∞

)
,

(III) ≤
(
λB +

∥∥∥γSCB − γ̂SCB∥∥∥∞)
∥∥∥∥Γ̂SCBSB (Γ̂SBSB

)−1
∥∥∥∥
L∞

.

(
λB +

(
log(pq)

nXY

) 1
2
−γ2
)(

1− η +
2sBV ‖Γ̂− Γ‖∞

1− sBV ‖Γ̂− Γ‖∞

)
.

Since sB
λB

( log p
nXX

)
1
2
−γ1−γ2 = O(1), 1

λB
( log(p+q)

nXY
)
1
2
−γ2 = O(1), and sBV ( log p

nXX
)
1
2
−γ2 = O(1), when

p, q, nXY , nXX and nY Y are sufficiently large, with probability at least 1− 4
p −

4
pq −

4
q , it holds that

(I)

λB
≤ η

4
,

(II)

λB
≤ η

4
,

(III)

λB
≤ 1

λB

(
λB +

∥∥∥γSCB − γ̂SCB∥∥∥∞)
(

1− η +
2sBV ‖Γ̂− Γ‖∞

1− sBV ‖Γ̂− Γ‖∞

)

=1− η +
1

λB

2sBV ‖Γ̂− Γ‖∞
1− sBV ‖Γ̂− Γ‖∞

+
1

λB

∥∥∥γSCB − γ̂SCB∥∥∥∞ (1− η+(
2sBV ‖Γ̂− Γ‖∞

1− sBV ‖Γ̂− Γ‖∞

)

≤1− η

2
.

Thus, with probability at least 1− 4
p −

4
pq −

4
q , it holds that

∥∥∥γ̂SCB − Γ̂SCBSB
β̂SB

∥∥∥
∞

λB
=

(I) + (II) + (III)

λB
≤ η

4
+
η

4
+ 1− η

2
= 1.

Therefore, P (A2) = P
(
‖γ̂C

SCB
− Γ̂C

SCBSB
β̂SB‖∞ ≤ λB

)
≥ 1− 4

p −
4
pq −

4
q .

Since P (‖β̂SB−β
∗
SB
‖∞ < minj∈SB |β∗j |) ≥ 1− 4

p−
4
pq −

4
q , with probability at least 1− 4

p−
4
pq −

4
q

it holds that |β̂j−β∗j | < |β∗j | for j ∈ SB. Thus, we have P (sign(β̂SB ) = sign(β∗SB )) ≥ 1− 4
p−

4
pq−

4
q .

Let β̂ ∈ Rpq which satisfies β̂SCB
= 0 and β̂SB = β̂SB . Since P (‖γ̂C

SCB
− Γ̂C

SCBSB
β̂SB‖∞ ≤ λB) ≥
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1− 4
p −

4
pq −

4
q , β̂ satisfies (A.22) with probability at least 1− 4

p −
4
pq −

4
q . Thus, we have verified

that sign(β̂) = sign(β∗) with high probability. This completes the proof.

A.9 Supporting lemmas

Lemma A.9.1. (Lemma 1 from Cai et al. (2013)) Let ξ1, . . . , ξn be independent random variables

with mean zero. Suppose that there exists some t > 0 and B̄n such that
∑n

k=1E
{
ξ2
ke
t|ξk|
}
6 B̄2

n.

Then uniformly for 0 < x 6 B̄n,

pr

(
n∑
k=1

ξk > CtB̄nx

)
6 exp

(
−x2

)
,

where Ct = t+ t−1.

Lemma A.9.2. (Lemma 1 from Ravikumar et al. (2011)) Consider a zero-mean random vector

X = (X1, . . . , Xp)
> with covariance Σ = (σij) such that Xj/

√
σjj is sub-Gaussian with parameter

L for 1 ≤ j ≤ p. Let {Xi}ni=1 be i.i.d. samples of X, the sample covariance Σ̂ = (σ̂ij) satisfies the

tail bound that

P (|σ̂jt − σjt| ≥ δ) ≤ 4 exp

{
− nδ2

128 (1 + 4L2)2 maxj (σjj)
2

}
,

for all δ ∈
(
0, 8 maxj (σjj)

(
1 + 4L2

))
.

Lemma A.9.3. (Lemma 1 of Negahban et al. (2012)) Suppose that L is a convex and differentiable

function and consider any optimal solution θ̂λn to the following optimization problem

θ̂λn ∈ arg min
θ∈Rp

{L (θ; Zn1 ) + λnR(θ)} ,

where λn > 0 is a constant and R : Rp → R+ is a decomposable norm. For a given inner product

〈·, ·〉, define the dual norm of R as

R∗(v) := sup
u∈Rp\{0}

〈u,v〉
R(u)

= sup
R(u)≤1

〈u,v〉.
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If λn ≥ 2R∗ (∇L (θ∗; Zn1 )) and for any pair of sets (M,M⊥) over which R is decomposable, the

error ∆̂ = θ̂λn − θ∗ belongs to the set

S
(
M,M⊥;θ∗

)
:=
{

∆ ∈ Rp | R
(
∆M⊥

)
≤ 3R

(
∆M

)
+ 4R

(
θ∗M⊥

)}
.

Lemma A.9.4. Under assumptions of Theorem 2.3.2, ∆B = B̂−B∗ belongs to the set

CB :=
{

∆B ∈ Rp×q
∣∣∣∥∥∥∆B

SCB

∥∥∥
1
≤ 3

∥∥∆B
SB

∥∥
1

}
, (A.27)

and ∆C = Ĉ−C∗ belongs to the set

CC :=
{

∆C ∈ Rq×q
∣∣∣∥∥∥∆C

SCC

∥∥∥
1
≤ 3

∥∥∆C
SC

∥∥
1

}
. (A.28)

Proof of Lemma A.9.4. Since Y = XB∗ + E , we have

ΣY Y = Cov(Y,Y) = Cov(XB∗ + E,XB∗ + E) = B∗>ΣXXB∗ + Cov(E , E)

= B∗>ΣXXB∗ + C∗−1,

ΣXY = Cov(X,Y) = Cov(X,XB∗ + E) = ΣXXB∗.

Thus, by Theorem 2.3.1 and Condition A.2.3, it holds with probability at least 1− 4
p −

4
pq −

4
q that

‖∇BLn(B∗,C∗)‖∞

=
∥∥∥2C∗>B∗>Σ̂XX − 2C∗>Σ̂>XY

∥∥∥
∞

=
∥∥∥2C∗>B∗>∆XX − 2C∗>∆XY >

∥∥∥
∞

≤2‖C∗‖L1(‖B∗‖L1‖∆XX‖∞ + ‖∆XY ‖∞)

.max

{(
log p

nXX

) 1
2
−γ1−γ2

,

(
log(pq)

nXY

) 1
2
−γ2
}

.λB,
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and

‖∇CLn(B∗,C∗)‖∞

=
∥∥∥B∗>Σ̂XXB∗ + Σ̂Y Y −C∗−1 − 2B∗>Σ̂XY

∥∥∥
∞

=
∥∥∥B∗>∆XXB∗ + ∆Y Y − 2B∗>∆XY

∥∥∥
∞

≤‖B∗‖2L1
‖∆XX‖∞ + ‖∆Y Y ‖∞ + 2‖B∗‖L1‖∆XY ‖∞

.max

{(
log p

nXX

) 1
2
−2γ1

,

(
log(pq)

nXY

) 1
2
−γ1

,

(
log q

nY Y

) 1
2

}

.λC .

Since L1 penalty is decomposable, by applying Lemma A.9.3, we have

∥∥∥∆B
SCB

∥∥∥
1
≤ 3‖∆B

SB
‖1 + 4‖B∗

SCB
‖1 = 3‖∆B

SB
‖1,

∥∥∥∆C
SCC

∥∥∥
1
≤ 3‖∆C

SC
‖1 + 4‖C∗

SCC
‖1 = 3‖∆B

SC
‖1.

Theorem A.9.1. (Theorem 1 of Loh and Wainwright (2015)) Consider the optimization problem

β̃ = arg min
‖β‖1≤R,β∈Ω

Ln(β) + λ‖β‖1,

where Ω is some convex set and the empirical loss Ln satisfies the RSC conditions

〈∇Ln (β∗ + ∆)−∇Ln (β∗) ,∆〉 ≥


α1‖∆‖22 − τ1

log p

n
‖∆‖21, ∀‖∆‖2 ≤ 1; (A.29)

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1, ∀‖∆‖2 ≥ 1; (A.30)

α1, α2 are positive constants and τ1, τ2 are non-negative constants. Suppose n ≥ 16R2 max(τ21 ,τ22 )
α2
2

log p,

‖β∗‖1 ≤ R and

4

L
max

{
‖∇Ln (β∗)‖∞ , α2

√
log p

n

}
≤ λ ≤ α2

6RL
,
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where L is a constant. Then for any vector β̃ with ‖β̃‖1 ≤ R and satisfies the first-order necessary

condition 〈
∇Ln(β̃) +∇‖β̃‖1,β − β̃

〉
≥ 0, for all ‖β‖1 ≤ 1,

it holds that ∥∥∥β̃ − β∗∥∥∥
2
≤ 6λ

√
k

4α1
, and

∥∥∥β̃ − β∗∥∥∥
1
≤ 24λk

4α1
,

where k = ‖β∗‖0.

Lemma A.9.5. Let nXX/Y � nτ1XX and nXY/X � nτ2XY with τ1, τ2 ∈ {−∞}∪ [0, 1], δC = vec(C∗−

Ĉ), 1 − α1 = O(
√

log p/nX), 1 − α2 = O(
√

log p/nXX) and 1 − α3 = O(
√

log(pq)/nXY ). With

probability at least 1− 4
p −

4
pq , we have

∥∥∥∇B {tr[ĈΣ̂YY + B∗ĈB∗>Σ̂XX − 2ĈB∗>Σ̂XY]− log det(Ĉ)
}∥∥∥
∞

.
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

)(‖B∗C∗‖L1 + ‖B∗‖L1‖δC‖1)

+ max {λmax(C∗), 1/λmin(C∗)}
{

log(pq)

nXY

}1/2

(1 + ‖δC‖1).

Proof. Denote ∆Y Y = ΣY Y − Σ̂Y Y , Theorem 2.3.1 implies that with probability at least 1− 4
p −

4
pq −

4
q , we have

‖∆XX‖∞ ≤ v′1

√
log p

nXX
; (A.31)

‖∆XY ‖∞ ≤ v′2

√
log(pq)

nXY
; (A.32)

‖∆Y Y ‖∞ ≤ v′3

√
log q

nY Y
. (A.33)

Define ỹij and x̃ij to be the underlying complete data without missing entries. Define the observed-

data indicator matrix as MX = (mX
ij ) and MY = (mY

ij) such that mX
ij = 1 when xij is observed,

mX
ij = 0 when xij is missing, mY

ij = 1 when yij is observed and mY
ij = 0 when yij is missing. Then

we can write the observed data as xij = mX
ij x̃ij , yij = mY

ij ỹij . Define αXXij to be the adjusting
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weight we use to estimate (Σ̂XX)ij , that is

αXXij =


1 if i = j;

α1 if i 6= j, i and j are in the same modality;

α2 if i and j are in different modalities.

Then we have

∥∥∥∇B {tr[ĈΣ̂YY + B∗ĈB∗>Σ̂XX − 2ĈB∗>Σ̂XY]− log det(Ĉ)
}∥∥∥
∞

=
∥∥∥2Ĉ>B∗>Σ̂XX − 2Ĉ>Σ̂>XY

∥∥∥
∞
.

(A.34)

When either Y or X has missing entries, we have

(Σ̂XXB∗ − Σ̂XY )ij

=

p∑
l=1

αXXil
∑

k∈SXXil
xkixkl

nXXil
B∗lj −

α3
∑n

k∈SXYij
xkim

Y
kj ỹkj

nXYij

=(Σ̂XXB∗ − Σ̂XX̃B∗)ij − (Σ̂Xε)ij ,

where (Σ̂XX̃)ij = α3
∑

k∈SXYij
xkix̃kj/n

XY
ij , and (Σ̂Xε)ij = α3

∑
k∈SXYij

xkiεkj/n
XY
ij . Then by (A.34)

we have

∥∥∥∇B {tr[ĈΣ̂YY + B∗ĈB∗>Σ̂XX − 2ĈB∗>Σ̂XY]− log det(Ĉ)
}∥∥∥
∞

=2
∥∥∥(Σ̂XX − Σ̂XX̃)B∗Ĉ− Σ̂XεĈ

∥∥∥
∞

≤2
∥∥∥(Σ̂XX − Σ̂XX̃)B∗C∗

∥∥∥
∞

+ 2
∥∥∥(Σ̂XX − Σ̂XX̃)B∗(C∗ − Ĉ)

∥∥∥
∞

+2
∥∥∥Σ̂XεC

∗
∥∥∥
∞

+ 2
∥∥∥Σ̂Xε(C

∗ − Ĉ)
∥∥∥
∞
.

We first derive an upper bound for the first term ‖(Σ̂XX − Σ̂XX̃)B∗C∗‖∞. Define SXXYjkl =

{i : xij , xik and yil are not missing} and nXXYjkl = |SXXYjkl |.
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When n
XX/Y
ijl 6= 0 and n

XY/X
ilj 6= 0, for each entry in matrix Σ̂XX − Σ̂XX̃ and 1 ≤ l ≤ q, with

probability at least 1− 4
p3

, we have

(Σ̂XX − Σ̂XX̃)ij

=
1

nXXYijl

∑
k∈SXXYijl

XikXjk

nXXYijl (αXXij nXXij − α3n
XY
il )

nXXij nXYil

+
1

n
XX/Y
ijl

∑
k∈SXX/Yijl

XikXjk

αXXij n
XX/Y
ijl

nXXij
− 1

n
XY/X
ilj

∑
k∈SXY/Xilj

XikXjk

α3n
XY/X
ilj

nXYil

≤

 1

nXXYijl

∑
k∈SXXYijk

XikXjk −ΣXX,ij

 nXXYijl (αXXij nXXij − α3n
XY
il )

nXXij nXYil

+

 1

n
XX/Y
ijl

∑
k∈SXX/Yijl

XikXjk −ΣXX,ij

 αXXij n
XX/Y
ijl

nXXij

−

 1

n
XY/X
ilj

∑
k∈SXY/Xilj

XikXjk −ΣXX,ij

 α3n
XY/X
ilj

nXYil
+ 2(1− αXXij ) + 2(1− α3)

.

√
log p

nXXYijl

nXXYijl (nXXij − nXYil )

nXXij nXYil
+

√
log p

n
XX/Y
ijl

n
XX/Y
ijl

nXXij
+

√
log p

n
XY/X
ilj

n
XY/X
ilj

nXYil
+ αXXij − α3

.
√

log pmax

max
ijl

(n
XX/Y
ijl )1/2

nXXij

 ,max
ijl

(n
XY/X
ilj )1/2

nXYil

− (1− αXXij ) + (1− α3)

.
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

) ,
where τ1, τ2 ∈ [0, 1].
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When n
XX/Y
ijl = 0 and n

XY/X
ilj 6= 0, for each entry in matrix Σ̂XX − Σ̂XX̃ and 1 ≤ l ≤ q, with

probability at least 1− 4
p3

, we have

(Σ̂XX − Σ̂XX̃)ij

=
1

nXXYijl

∑
k∈SXXYijl

XikXjk

nXXYijk (αXXij nXXij − α3n
XY
il )

nXXij nXYil

− 1

n
XY/X
ilj

∑
k∈SXY/Xilj

XikXjk

α3n
XY/X
ilj

nXYil

.
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

) ,
where τ2 ∈ [0, 1], τ1 ∈ {−∞} ∪ [0, 1].

When n
XX/Y
ijl 6= 0 and n

XY/X
ijl = 0, for each entry in matrix Σ̂XX − Σ̂XX̃ and 1 ≤ l ≤ q, with

probability at least 1− 4
p3

, we have

(Σ̂XX − Σ̂XX̃)ij

=
1

nXXYijl

∑
k∈SXXYijl

XikXjk

nXXYijk (αXXij nXXij − α3n
XY
il )

nXXij nXYil

+
1

n
XX/Y
ijl

∑
k∈SXX/Yijl

XikXjk

αXXij n
XX/Y
ijl

nXXij

.
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

) ,
where τ1 ∈ [0, 1], τ2 ∈ {−∞} ∪ [0, 1].
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When n
XX/Y
ijl = n

XY/X
ijl = 0, nXXYijl = nXXij = nXYil . Then for each entry in matrix Σ̂XX−Σ̂XX̃

and 1 ≤ l ≤ q, with probability at least 1− 4
p3

, we have

(Σ̂XX − Σ̂XX̃)ij

=
(αXXij − α3)

nXXYijl

∑
k∈SXXYijl

XikXjk

.max(1− α1, 1− α2, 1− α3)

√
log p

nXXYijl

.
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

) ,
where τ1, τ2 ∈ {−∞} ∪ [0, 1].

If we combine the above four cases, for each entry in matrix Σ̂XX − Σ̂XX̃ and 1 ≤ l ≤ q, with

probability at least 1− 4
p3

, we have

(Σ̂XX − Σ̂XX̃)ij .
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

) ,
where τ1, τ2 ∈ {−∞} ∪ [0, 1].

Then by Holder’s inequality and the union bound, with probability at least 1− 4/p we have

‖(Σ̂XX − Σ̂XX̃)B∗C∗‖∞ .
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

)‖B∗C∗‖L1 . (A.35)

Similarly, for the second term
∥∥∥(Σ̂XX − Σ̂XX̃)B∗(C∗ − Ĉ)

∥∥∥
∞

, with probability at least 1−4/p

we have

‖(Σ̂XX − Σ̂XX̃)B∗(C∗ − Ĉ)‖∞ .
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

)‖B∗‖L1‖δC‖1. (A.36)

Next we focus on the third term ‖Σ̂XεC
∗‖∞. Each entry of the matrix (Σ̂XεC

∗)ij can be

written as α3

nXYij

∑
k∈SXYij

Xki(εkC
∗)j . By Condition A.2.1 and monotone convergence theorem, for

any t ∈ R, we have

E
[
exp

(
X2
ki

8L2
1

)]
= E

[ ∞∑
l=0

X2l
ki(

4L2
1

)l
l!

1

2l

]
≤
∞∑
l=0

1

2l
= 2.
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By Condition A.2.1, the error vectors also follow sub-Gaussian distribution. Assume

E(exp(tu>2 εi)) ≤ exp
(
L2
3‖u2‖22t2

2

)
. Then we have

E

[
exp

(
(εkC

∗)2
j

8L2
3‖C∗j‖22

)]
≤ 2.

By Young’s inequality and the simple inequality s2es ≤ e2s for s > 0, we have

E
[
(Xki(εkC

∗)j |)2 exp

(
|Xki(εkC

∗)j |
8L1L3λmax(C∗)

)]
≤E

[
exp

(
|Xki(εkC

∗)j |
4L1L3λmax(C∗)

)]
≤E

[
exp

(
X2
ki

8L2
1

)
exp

(
(εkC

∗)2
j

8L2
3‖C∗‖22

)]

≤1

2

[
E exp

(
X2
ki

8L2
1

)]2

+
1

2

[
E exp

(
(εkC

∗
j )

2

8L2
3‖C∗‖22

)]2

≤4.

By Lemma A.9.1, let B̄n = 2
√
nXY , t = 1

8L1L3λmax(C∗) and x =
√

2 log(pq), we have

maxi,j P


∣∣∣∣∣∣∣

1

nXYij

∑
k∈SXYij

(
Xki

(
ε>k C∗

)
j

)∣∣∣∣∣∣∣ ≥ C1

{
log(pq)

nXY

}1/2

 ≤ 2(pq)−2. (A.37)

where C1 =
√

2
8L1L3λmax(C∗) + 8

√
2L1L3λmax(C∗). So with probability at least 1 − 2(pq)−1, we can

bound the third term by

‖Σ̂XεC
∗‖∞ . C1

{
log(pq)

nXY

}1/2

. (A.38)

Similarly, for the last term
∥∥∥Σ̂Xε(C

∗ − Ĉ)
∥∥∥
∞

, we have

∥∥∥Σ̂Xε(C
∗ − Ĉ)

∥∥∥
∞

. C2

{
log(pq)

nXY

}1/2

‖δC‖1, (A.39)

where C2 =
√

2
8L1L3λmin(C∗)−1 + 8

√
2L1L3λmin(C∗)−1.
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By (A.35), (A.36), (A.38), (A.39), with probability at least 1− 4
p −

4
pq we have

∥∥∥∇B {tr[ĈΣ̂YY + B∗ĈB∗>Σ̂XX − 2ĈB∗>Σ̂XY]− log det(Ĉ)
}∥∥∥
∞

.
(log p)1/2

min
(
n

1−τ1/2
XX , n

1−τ2/2
XY

)(‖B∗C∗‖L1 + ‖B∗‖L1‖δC‖1)

+ max {λmax(C∗), 1/λmin(C∗)}
{

log(pq)

nXY

}1/2

(1 + ‖δC‖1).

We remark that, when both X and Y are complete, we can set α1 = α2 = α3 = 1. Then by

(A.34) we have

∥∥∥∇B {tr[ĈΣ̂YY + B∗ĈB∗>Σ̂XX − 2ĈB∗>Σ̂XY]− log det(Ĉ)
}∥∥∥
∞

≤
∥∥∥2C∗>Σ̃Xε

∥∥∥
∞

+
∥∥∥2(C∗ − Ĉ)>Σ̃Xε

∥∥∥
∞
,

where (Σ̃Xε)ij =
∑n

k=1 xkiεkj/n. By (A.37), with probability at least 1− 2(pq)−1, we have

‖C∗>Σ̃Xε‖∞ . C1

{
log(pq)

n

}1/2

,

and ∥∥∥2(C∗ − Ĉ)>Σ̃Xε

∥∥∥
∞

. C2

{
log(pq)

n

}1/2

‖δC‖.

Hence with probability at least 1− 4
p −

4
pq we also have

∥∥∥∇B {tr[ĈΣ̂YY + B∗ĈB∗>Σ̂XX − 2ĈB∗>Σ̂XY]− log det(Ĉ)
}∥∥∥
∞

.max {λmax(C∗), 1/λmin(C∗)}
{

log(pq)

nXY

}1/2

(1 + ‖δC‖1),

which is the same as stated in Lemma A.9.5 if we set τ1 = τ2 = −∞ as both X and Y are

complete.
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A.10 Numerical study

In this section, we show some additional results of our numerical studies. The complete results

for Example 1 are shown in Table A.3. The results for Example 2 are shown in Table A.4. The

results for Example 3 are shown in Table A.5.

A.11 Data processing details in the ADNI study

In Section 2.5, we are interested in predicting Mini-Mental State Examination (MMSE), ADAS1

and ADAS2 in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (Mueller et al.,

2005). These scores are commonly used diagnotic scores of AD. We extract biomarkers from

three complementary data sources: serial magnetic resonance imaging (MRI), positron emission

tomography (PET) and CerebroSpinal Fluid (CSF). Note that, as Xue and Qu (2021) stated, our

sparsity assumption of the proposed method might not be suitable for raw imaging data or imaging

data at small scales since images have to show some visible atrophy for AD. However, the sparsity

assumption can still be reasonable for the region of interest (ROI) level data. Thus, we apply the

Multi-DISCOM to the ROI level data in ADNI instead of the raw data.

We process the image data following the similar procedure as Yu et al. (2020). For the MRI,

after correction, spatial segmentation and registration steps, we obtain the image for each subject

based on the Jacob template with 93 manually labeled ROIs. For each of the 93 ROIs in the labeled

MRI, we compute the volume of gray matter as a feature. For each PET image, we first align the

PET image to its respective MRI using affine registration. Then, we calculate the average intensity

of every ROI in the PET image as a feature. For the CSF modality, five biomarkers were used in

this study, namely amyloid β(Aβ42), CSF total tau (t-tau), tau hyperphosphorylated at threonine

181 (p-tau), and two tau ratios with respective to Aβ42 (i.e., t-tau/Aβ42 and p-tau /Aβ42).
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Method ‖B̂−B∗‖F MSE FPR FNR

ρ = −0.4

Lasso 1.51(0.06) 3.70(0.06) 0.09(0.02) 0.00(0.00)
Imputed-Lasso 1.73(0.06) 3.57(0.06) 0.11(0.01) 0.00(0.00)
MBI 2.10(0.08) 4.26(0.09) 0.12(0.02) 0.11(0.03)
DISCOM 1.44(0.04) 3.56(0.06) 0.05(0.00) 0.05(0.01)
Imputed-MRCE 1.53(0.05) 3.72(0.08) 0.17(0.03) 0.08(0.02)
Multi-DISCOM 1.40(0.04) 3.39(0.08) 0.02(0.01) 0.09(0.02)

ρ = −0.2

Lasso 1.50(0.06) 3.73(0.06) 0.10(0.02) 0.00(0.00)
Imputed-Lasso 1.71(0.06) 3.59(0.06) 0.11(0.01) 0.00(0.00)
MBI 2.15(0.08) 4.25(0.09) 0.12(0.02) 0.11(0.03)
DISCOM 1.43(0.04) 3.52(0.06) 0.05(0.00) 0.05(0.01)
Imputed-MRCE 1.52(0.05) 3.78(0.08) 0.16(0.03) 0.07(0.02)
Multi-DISCOM 1.41(0.04) 3.40(0.08) 0.02(0.01) 0.09(0.02)

ρ = 0

Lasso 1.49(0.06) 3.67(0.06) 0.08(0.02) 0.00(0.00)
Imputed-Lasso 1.71(0.06) 3.55(0.06) 0.10(0.01) 0.00(0.00)
MBI 2.05(0.08) 4.21(0.09) 0.10(0.02) 0.09(0.03)
DISCOM 1.42(0.04) 3.53(0.06) 0.04(0.00) 0.05(0.01)
Imputed-MRCE 1.51(0.05) 3.70(0.08) 0.15(0.03) 0.09(0.02)
Multi-DISCOM 1.42(0.04) 3.43(0.08) 0.03(0.01) 0.10(0.02)

ρ = 0.2

Lasso 1.54(0.06) 3.75(0.06) 0.10(0.02) 0.00(0.00)
Imputed-Lasso 1.74(0.06) 3.59(0.06) 0.13(0.01) 0.00(0.00)
MBI 2.10(0.08) 4.29(0.09) 0.11(0.02) 0.10(0.03)
DISCOM 1.43(0.04) 3.57(0.06) 0.05(0.00) 0.05(0.01)
Imputed-MRCE 1.53(0.05) 3.73(0.08) 0.19(0.03) 0.08(0.02)
Multi-DISCOM 1.41(0.04) 3.42(0.08) 0.04(0.01) 0.07(0.02)

ρ = 0.4

Lasso 1.55(0.06) 3.77(0.06) 0.11(0.02) 0.00(0.00)
Imputed-Lasso 1.75(0.06) 3.61(0.06) 0.13(0.01) 0.00(0.00)
MBI 2.14(0.08) 4.30(0.09) 0.13(0.02) 0.11(0.03)
DISCOM 1.46(0.04) 3.59(0.06) 0.06(0.00) 0.05(0.01)
Imputed-MRCE 1.54(0.05) 3.73(0.08) 0.19(0.03) 0.09(0.02)
Multi-DISCOM 1.43(0.04) 3.44(0.08) 0.04(0.01) 0.07(0.02)

Table A.3: Performance comparison of different methods for Example 1 with different ρ’s. The values in
the parentheses are the standard errors of the measures.

103



Method ‖B̂−B∗‖F MSE FPR FNR

α = 1

Lasso 1.33(0.08) 2.19(0.06) 0.12(0.02) 0.00(0.00)
Imputed-Lasso 1.44(0.06) 2.28(0.06) 0.15(0.01) 0.00(0.00)
MBI 1.68(0.19) 3.56(0.07) 0.14(0.02) 0.13(0.03)
DISCOM 1.29(0.06) 1.86(0.06) 0.05(0.00) 0.05(0.01)
Imputed-MRCE 1.49(0.05) 2.13(0.08) 0.18(0.03) 0.07(0.02)
Multi-DISCOM 1.26(0.04) 1.77(0.09) 0.03(0.02) 0.07(0.01)

α = 3

Lasso 1.51(0.06) 3.70(0.06) 0.09(0.02) 0.00(0.00)
Imputed-Lasso 1.73(0.06) 3.57(0.06) 0.11(0.01) 0.00(0.00)
MBI 2.10(0.08) 4.26(0.09) 0.12(0.02) 0.11(0.03)
DISCOM 1.44(0.04) 3.56(0.06) 0.05(0.00) 0.05(0.01)
Imputed-MRCE 1.53(0.05) 3.72(0.08) 0.17(0.03) 0.08(0.02)
Multi-DISCOM 1.40(0.04) 3.39(0.08) 0.02(0.01) 0.09(0.02)

α = 5

Lasso 1.81(0.06) 5.70(0.06) 0.11(0.02) 0.01(0.00)
Imputed-Lasso 1.89(0.06) 5.77(0.06) 0.15(0.01) 0.01(0.00)
MBI 2.37(0.10) 5.95(0.12) 0.15(0.03) 0.12(0.02)
DISCOM 1.71(0.04) 5.41(0.08) 0.06(0.02) 0.07(0.01)
Imputed-MRCE 1.93(0.05) 5.66(0.09) 0.18(0.03) 0.10(0.02)
Multi-DISCOM 1.64(0.05) 5.19(0.12) 0.04(0.03) 0.10(0.02)

Table A.4: Performance comparison of different methods for Example 2 with different signal-to-noise ratios.
The values in the parentheses are the standard errors of the measures.

Method ‖B̂−B∗‖F MSE FPR FNR

Lasso 1.50(0.06) 3.68(0.06) 0.09(0.02) 0.00(0.00)
Imputed-Lasso 1.72(0.06) 3.56(0.06) 0.12(0.01) 0.00(0.00)
MBI 2.11(0.08) 4.26(0.09) 0.12(0.02) 0.11(0.03)
DISCOM 1.45(0.04) 3.56(0.06) 0.05(0.00) 0.05(0.01)
Imputed-MRCE 1.55(0.05) 3.74(0.08) 0.18(0.03) 0.08(0.02)
Multi-DISCOM 1.41(0.04) 3.42(0.08) 0.03(0.01) 0.09(0.02)

Table A.5: Performance comparison of different methods for Example 3 with heavy-tailed error. The values
in the parentheses are the standard errors of the measures.
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