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ABSTRACT 

Hadi Beyhaghi: Advanced Analytics for Predicting Survival and Facilitating Precision 
Medicine in Checkpoint Immunotherapy 

(Under the direction of Kristen Hassmiller Lich) 

Checkpoint immunotherapy drugs, either individually or in combination with other 

drugs, have become standard of care for many cancers. The long-term survival impacts of 

these drugs on a subset of treated population and their unique survival dynamics have 

challenged traditional statistical methods to model long-term survival impacts and estimate 

individualized treatment rules. In this dissertation, I proposed novel machine learning 

techniques that can be used to tackle some of these challenges.  

This research addresses the following three aims using patient-level data from a 

checkpoint immunotherapy clinical trial for advanced melanoma: (1) Develop a novel 

individual-level survival extrapolation method for right-censored observations, and compare 

the predictive accuracy of the proposed method with population-level standard parametric 

models. (2) Compare the accuracy of survival extrapolation models that directly model 

heterogeneity of treatment response to the accuracy of the proposed survival extrapolation 

model from Aim 1 that incorporates cure fraction models at the individual level. (3) Estimate 

individualized treatment rules (ITRs) and calculate survival and cost impacts associated with 

implementing them in the trial cohort compared to the survival and cost impacts associated 

with universal use of the trial-recommended treatment.  

The Aim1 paper provides a tutorial that introduces the kernel-weighted survival forest 

(KWSF) model, a novel survival extrapolation method that uses patient-level characteristics 

to estimate individualized survival function. The findings showed that compared to standard 
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parametric models, KWSF more accurately predicted survival beyond the available trial 

follow up. The results of the Aim2 paper showed that compared to models that use standard 

parametric extrapolation, cure fraction models and KWSF with cure fraction extrapolation 

function were more accurate in predicting survival in the immunotherapy arm of the trial. The 

KWSF model with a cure fraction survival extrapolation function demonstrated comparable 

accuracy with cure fraction models, while uniquely allowing for estimating individual-level 

survival functions. The findings of Aim3 paper showed that compared to allocating treatment 

based on the average treatment effect from a clinical trial, treatment allocation based on the 

estimated ITRs resulted in higher survival gains and lower direct treatment costs, which is 

likely to persist even when considering the cost of implementing individualized treatment.  
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CHAPTER 1: INTRODUCTION 

Clinical trials of treatments that influence survival can face data limitations as a result 

of time and budget constraints. Specifically, results are commonly reported before key 

events, for example death, are observed for every participant in a clinical trial (i.e., some 

individuals are right-censored). In the presence of significant censoring, extrapolation 

beyond trial follow-up duration is necessary to estimate the complete survival impact of a 

new intervention.1  

Extrapolation beyond trial follow-up becomes particularly challenging when 

interventions’ mechanisms of action result in more complex hazard functions, due, for 

example, to heterogenous survival effects for a subset of patients. Treatment with 

checkpoint immunotherapy drugs is a prime example of such interventions. These drugs 

target the immune system checkpoints (molecules on certain immune cells that need to be 

activated or inactivated to start an immune response). Numerous trials have shown the 

positive impact of these drugs on overall survival; hence these drugs are considered the 

standard of care in many cancers.2,3 Checkpoint immunotherapy drugs typically trigger a 

durable response in a subset of patients, which translates to long-term survival for those 

patients.4 There is ongoing investigation into understanding the reasons behind the 

heterogeneity in response and what can be done to increase the response rate.5  

When used as a clinical input, for example in cost-effectiveness models, data from 

checkpoint immunotherapy trials are usually less mature than they need to be (i.e., the 

overall survival (OS) curves have yet to reach the median survival point).6,7 Therefore, 

substantial extrapolation is required, making the plausibility of the extrapolated portion of 
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alternative models far more important than the fit to the observed data.1,8,9 Numerous 

methods have been suggested and used to extrapolate survival beyond clinical trial follow-

up especially in the context of cost-effectiveness analysis of checkpoint immunotherapy 

drugs.10 Because cost-effectiveness models for these interventions typically require a 

lifetime horizon, understanding the long-term survival impact of different interventions is key 

to determine the relative economic and clinical value of checkpoint immunotherapy drugs. 

The majority of the survival extrapolation methods focus on modeling survival at the 

population level (e.g., standard parametric models, piecewise models) or subsets of 

population (e.g., cure models and landmark/response-based models).11-13  

Given the level of heterogeneity associated with checkpoint immunotherapy 

treatment response, it is important to develop models that are capable of estimating 

individual-level survival functions that can accurately predict survival beyond available follow 

up of a clinical trial (i.e., individual-level extrapolated survival functions). Such models 

leverage patient characteristics to estimate survival functions and can serve as the 

foundation for individual-level simulations to model the relative health and economic value of 

different treatment strategies, taking into account individual variation in treatment responses 

and ultimate survival outcomes.  

Additionally, individual-level extrapolated survival functions can be used to develop 

individualized treatment rules (ITRs) to inform precision and personalized medicine 

strategies. An ITR is a data-driven decision algorithm that recommends treatment according 

to patient characteristics in a way that, if implemented in practice, can maximize the health 

outcome(s) of interest at both individual and population level.14 Because of the high cost and 

a potential for serious adverse effects associated with checkpoint immunotherapy 

treatments, identifying which patients will benefit from these drugs has become increasingly 

critical. Therefore, ITRs may play a critical role in selecting patients for immunotherapy. 
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Clinical trial data are commonly used to construct ITRs; however, estimating ITRs 

particularly for checkpoint immunotherapy treatments can be challenging due to 

heterogeneous response to treatment, numerous potential outcome predictors, and a limited 

follow-up of clinical trials.15 Individual-level extrapolated survival functions can provide direct 

input for ITR estimation models while allowing these models to better capture the long-term 

survival impacts of different interventions. Additionally, to convince patients, healthcare 

providers, and healthcare systems to adopt these individualized treatment models in real-

world practice, evidence needs to be generated to show the potential economic and clinical 

benefits of implementing such strategies compared to treating patients based on the 

average treatment effect of a clinical trial.16 Such evidence is lacking in the literature as the 

majority of published papers focus on the methodological aspect of developing ITRs.17  

My proposed research seeks to fill the research gaps described above by developing 

a new method for estimating individual-level extrapolated survival functions, estimate the 

predictive accuracy of the new method compared to population-level methods, and 

proposing a novel approach to incorporate these individual-level extrapolated survival 

curves in an ITR estimation model. Furthermore, I estimate the potential economic and 

survival impact associated with implementing the estimated ITRs, using clinical trial data. My 

long-term goal is to help patients, physicians, and healthcare systems make better-informed 

decisions about novel cancer treatments and ultimately improve patients’ lives, while 

potentially reducing (and not substantially increasing) healthcare resource use. My central 

hypothesis is that using the estimated ITRs in treatment decisions has the potential to 

improve patient’s outcomes and reduce healthcare costs compared to treatment allocation 

based on average treatment effects from clinical trials. My research addresses the following 

three aims:   
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Aim 1: To develop a novel individual-level survival extrapolation method for right-

censored observations, and compare the predictive accuracy of the proposed method with 

population-level standard parametric models.  

To achieve Aim 1, I develop, describe and implement a novel survival extrapolation 

method that combines a non-parametric survival model based on extremely randomized 

trees with kernel-weighted parametric extrapolation. I then compare the accuracy of the 

resulting survival predictions with the results of population-level standard parametric 

extrapolation by estimating the mean squared error (MSE) associated with each model’s 

estimates. While the proposed method is more computationally complex, I hypothesize that 

compared to standard parametric models, it confers greater accuracy in estimating 

individual-level long-term survival effects. This aim is written as a tutorial with the objective 

of making this methodological innovation accessible to decision modelers. 

Aim 2: To compare the accuracy of survival extrapolation models that are designed 

to directly model heterogeneity of treatment response (i.e., cure fraction models and 

response-based/landmark models) to the accuracy of the proposed survival extrapolation 

model from Aim 1 that incorporates cure fraction models at the individual level.  

A class of approaches have been introduced recently, which are designed to 

accommodate some heterogeneity in population-level survival extrapolation – including cure 

fraction models and response-based/landmark models. In general, these approaches 

segment the population into more homogenous groups (e.g., based on their objective 

response to treatment in the response-based models) and use different models to 

extrapolate the survival for each group. The cure fraction models have been shown to have 

high accuracy in extrapolating population-level overall survival for checkpoint 

immunotherapy treatment.12,18 Although these methods offer more flexibility, they typically 

require longer follow-up to detect populations with markedly different survival.18 The 

proposed individual-level survival extrapolation method in Aim 1 has the capability to utilize 
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similar models to improve the prediction accuracy; however, it is not clear whether using 

these functions in individual-level extrapolation offers more accurate survival predictions. 

Therefore, it is possible that these population-level approaches may have similar accuracy 

to the proposed individual-level extrapolation methods.   

In Aim 2, I implement several variations of the individual-level survival extrapolation 

model described in Aim 1 with mixture and non-mixture cure fraction models as 

extrapolation functions. Parallel to the approach in Aim 1, I estimate the population-level 

extrapolated survival functions using cure models (mixture and non-mixture) and 

landmark/response-based model and then compare the accuracy of the resulting survival 

predictions with the corresponding results from individual-level extrapolation by estimating 

the MSE associated with each model’s estimates across multiple time points. While the 

proposed method in Aim 1 is uniquely capable of providing individual-level extrapolated 

survival curves, I hypothesize that compared to population-level survival extrapolation 

methods that directly model heterogeneity, an individual-level extrapolation that uses 

similarly flexible survival functions confers similar or greater accuracy in estimating 

individual-level long-term survival effects.  

Aim 3: To estimate ITRs using most accurate survival projections from Aims 1 and 2 

and calculate survival and cost impacts associated with implementing these ITRs in the trial 

cohort compared to the survival and cost impacts associated with universal use of the trial-

recommended treatment, with the goal of maximizing overall survival among patients with 

advanced melanoma.  

To achieve this aim, I used the most accurate individual-level extrapolated survival 

estimates from methods proposed in aims 1 and 2 as inputs in an outcome-weighted 

learning algorithm, an innovative classification approach that uses support vector machine 

techniques, to develop ITRs that maximize patient survival.19 I describe the characteristics of 

the subgroup who is assigned to each treatment, and estimate the direct treatment cost 
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(payer perspective) and survival impact of two distinct scenarios in the cohort of patients 

studied in the advanced melanoma trial: (1) where treatment allocation is based on the 

average treatment effect of the clinical trial, and (2) where treatment allocation is based on 

the estimated ITRs. Considering these results, I discuss the net monetary benefit of 

individualizing treatment in practice more broadly, taking into account costs and feasibility of 

implementing individualized treatment in real-world practice. The main hypothesis of this aim 

is that compared to allocating treatment based on the average treatment effect from a 

clinical trial, treatment allocation based on the estimated ITRs results in higher survival 

gained and lower direct treatment cost, which is likely to persist even when considering the 

cost of implementing individualized treatment and willingness to pay for life-years gained.  

The first two aims are methodological, addressing gaps in decision science methods 

through the use of predictive analytics (machine learning algorithms) and setting the stage 

for informed decision-making. The third aim builds on this foundation and other novel 

machine learning methods to inform cancer treatment decision making by assessing the 

cost and survival impacts of individualized treatment versus treatment assignment based on 

clinical trial results. 

For all three aims of this study, I used patient-level data from CA184-024 Study “A 

Multi-Center, Randomized, Double-Blind, Two-Arm, Phase III Study in Patients with 

Untreated Stage III (Unresectable) or IV Melanoma Receiving Dacarbazine plus 10 mg/kg of 

Ipilimumab vs. Dacarbazine with Placebo”. In this trial, a total of 502 subjects were 

randomized (250 to ipilimumab plus DTIC and 252 to DTIC monotherapy).20 The CA184-024 

is one of the longest running phase III trials of checkpoint immunotherapy for advanced 

melanoma. Available trial data includes minimum follow-up of 5 years.21 This phase III trial 

provides rich data to validate predictive algorithms for extrapolating survival data. In this trial, 

similar to other checkpoint immunotherapy drugs, ipilimumab was found to produce long-

term survival benefits in a subgroup of patients treated.22 While the treatments evaluated in 
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this clinical trial are no longer considered as standard of care for advanced melanoma, the 

proposed methods provide prototype approaches that can be used to inform future 

treatment decisions especially in the context of checkpoint immunotherapy. 

Results from these three aims have implications for decision analysis methods, 

clinical care and more specifically precision medicine, and policy development. This work 

serves as a case example of novel methodologic approaches to predict long-term survival 

impacts of checkpoint immunotherapy treatments beyond trial follow up that account for 

individual-level heterogeneity in treatment response. Lastly, although treatment decisions 

involve a number of complex and inter-related factors, application of the proposed predictive 

models may provide valuable individualized information that can improve decision making in 

the clinical setting.   

The remainder of this dissertation is organized as follows: Chapters 2-4 are 

individual manuscripts that correspond to Aims 1-3. These chapters are concise and 

intended to be submitted to peer-reviewed journals and therefore, formatted as such. 

Chapter 5 presents a summary of key insights and implications from this research: I discuss 

the strengths and weaknesses of this work and its relevance to practice, policy, and future 

research. 
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CHAPTER 2: KERNEL-WEIGHTED SURVIVAL FOREST FOR PROJECTING 
INDIVIDUAL-LEVEL MORTALITY: A TUTORIAL AND DEMONSTRATION USING 

DATA FROM AN IMMUNOTHERAPY TRIAL FOR ADVANCED MELANOMA 

Introduction  

Clinical trials of treatments that influence survival can face data limitations as a result 

of time and/or budget constraints. Specifically, trial results are commonly reported before 

key events, for example death, are observed for every participant in a clinical trial (i.e., some 

individuals are right-censored). In the presence of censoring, extrapolation beyond trial 

follow-up is necessary to estimate the complete survival impact of a new intervention.1 

Extrapolation beyond trial follow-up becomes particularly challenging when an 

intervention’s mechanism of action results in more complex hazard functions, due for 

example, to heterogenous survival effects for a subset of patients. Treatment with 

checkpoint immunotherapy drugs is a prime example of such interventions. These drugs 

target the immune system checkpoints -- molecules on certain immune cells that need to be 

activated or inactivated to start an immune response -- and are becoming the standard of 

care in many cancers.2,3 Checkpoint immunotherapy drugs trigger a durable response in a 

subset of patients, which translates to long-term survival for some – but not all – patients.4 

When used as a clinical input, for example in cost-effectiveness models, data from 

checkpoint immunotherapy trials are typically less mature than they need to be. Specifically, 

the overall survival (OS) curves have yet to reach the median survival point.5,6 Therefore, 

substantial extrapolation is required, making the plausibility of the extrapolated portion of 

alternative models far more important than the fit to the observed data.1,7,8  
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Numerous methods have been suggested and used to extrapolate survival beyond 

clinical trial follow-up, especially in the context of cost-effectiveness analysis of checkpoint 

immunotherapy drugs.9 However, the majority of these methods focus on modeling survival 

at the population level (e.g., standard parametric models) or among subsets of the 

population (e.g., cure models and landmark models). Given the level of heterogeneity of 

treatment response associated with these therapies, it is imperative to develop models that 

are capable of flexibly estimating individual-level survival functions that predict survival 

beyond available follow up of a clinical trial. Such models can inform precision and 

personalized medicine strategies, and serve as the foundation for individual-level simulation 

of these strategies’ relative economic value and efficiency. 

As the choice of extrapolation models could substantially impact survival estimates,10 

more accurate alternative modeling approaches are needed to extrapolate survival beyond 

trial follow-up that can accommodate the level of heterogeneity and survival dynamics 

present among treatments like checkpoint immunotherapy.7,10 In this tutorial, we provide a 

novel method that leverages survival forest and kernel-weighted parametric extrapolation to 

estimate patient-level survival functions to predict survival beyond trial follow up. More 

specifically, this tutorial aims to: (1) describe, in detail, the kernel-weighted survival forest 

(KWSF) model as a novel individual-level survival extrapolation method for right-censored 

observations; and, (2) implement and compare the accuracy of KWSF with population-level 

standard parametric models, using patient-level data from a checkpoint immunotherapy trial 

in patients with advanced melanoma.  

This tutorial is organized as follows: In the next section, we provide a step by step 

guide to understand and apply a survival forest algorithm in addition to individual-level 

kernel-weighted parametric extrapolation (together comprising the KWSF); Next, we 

compare the results of the KWSF extrapolation with standard population-level parametric 

models, using an illustrative example from a checkpoint immunotherapy trial in advanced 
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melanoma patients. Finally, we discuss the advantages and limitations of KWSF survival 

extrapolation.  

Survival Forests and Kernel-Weighted Extrapolation 

Below, we describe two main components of the KWSF algorithm, specifically 

survival forests and kernel-weighted parametric extrapolation. 

Survival Forest 

Survival forests are a category of tree-based models that have been suggested for 

imputing failure times (e.g., death in our case) for right-censored observations. Tree-based 

models form a broad class of nonparametric estimators for regression and classification and 

have evolved to some of the most popular machine learning tools with applications in 

survival analysis.11,12 These models provide a powerful tool to classify observations into 

homogenous groups, which can be used for extrapolating survival beyond trial follow up. 

Although other tree-based methods have been suggested for modeling survival in right-

censored observations, survival forest models based on extremely randomized trees (ERTs) 

tend to be more accurate than other tree-based models13 and were used in this tutorial. The 

survival ERT model was introduced by Zhu and Kosorok in 2012 as part of the recursively-

imputed survival trees (RIST) algorithm.13  

Extremely randomized trees 

To better understand the ERT algorithm, a sophisticated tree-based prediction 

model, we first review a few basics on decision trees and the process of building them. Of 

note, decision trees discussed here should not be confused with decision tree modeling, a 

modeling framework commonly used in cost-effectiveness models as a way to lay out 

decision alternatives (decision nodes) and chance events (event nodes) culminating in 

outcomes to support decision making. Tree-based methods have become increasingly 

popular statistical tools since Breiman and colleagues introduced the classification and 

regression tree (CART) algorithm in 1984.14 Early tree-based methods, including CART, 
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were based on a single tree structure, and the prediction rules were easy to interpret. 

Although the CART algorithm is one of the better-known tree-based methods, more 

sophisticated and accurate methods have been introduced since.15  

Fitting a Single Decision Tree 

A decision tree is the building block of tree-based prediction models. The term 

decision tree is used to describe a set of splitting rules, summarized in a tree structure, that 

are used to segment the predictor space of a given dataset, where predictor space is 

defined as a set of possible values for different predictors in a dataset.15  

Before starting to build a decision tree, the data need to be partitioned into the 

training and test datasets. Training data are the observations that are used to develop the 

predictive model (i.e., decision tree) that estimates the outcome based on available 

predictors.15 Different methods of partitioning data to training and test sets exist; however, 

the appropriateness of the partitioning method depends on the research question and the 

type of prediction model.16  

With training data in hand, building a decision tree requires a set of binary questions, 

the answer to each resulting in a split of the predictor space. The goal is to identify a series 

of splits that lead to the most accurate predictions. Each binary question partitions the 

predictor space into two distinct and non-overlapping regions, typically based on the value of 

only a single predictor at a time. A “goodness-of-split criterion” is required to assess the 

ability of competing splits to create the most distinct daughter nodes with respect to the 

outcome that the decision tree is trying to predict. In other words, goodness-of-split criteria 

are determined based on the outcome that the model is striving to predict. Every allowable 

split on each and every predictor is examined against the selected goodness-of-split 

criterion, and the best of these splits is chosen to partition the observations into two 

daughter nodes. Notably, a single predictor with more than two distinct values (i.e., potential 

splitting points) could be used to create multiple splits of the predictor space corresponding 
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to each splitting point. This process of splitting is repeated for each of the resulting daughter 

nodes, until a stopping criterion (e.g., a minimum number of observations in each daughter 

node) is reached. At this point, daughter nodes are referred to as terminal nodes.  

As for any prediction model, tree-based methods attempt to minimize the prediction 

error and predict the target outcome as accurately as possible. Learning algorithms achieve 

this goal by increasing a model’s complexity, for example, through adding more and more 

predictors to the model. This tendency of the algorithm, although leading to steady fall in 

bias, might result in “overfitting” of the model. Overfitting happens when the prediction 

algorithm models the random noise in the training data rather than the relevant relations 

between predictors and target outcomes. While an over-simplistic model that fails to use all 

relevant data for prediction (under-fitted model) can increase prediction error via increasing 

the bias, overfitting the model may increase the prediction variance (i.e., the amount by 

which the prediction for a given observation would change if we estimated the target 

outcome using a different training dataset). In prediction models, bias and variance are both 

important and one should not be improved at an excessive expense of the other.15 The bias-

variance tradeoff in the context of the proposed model is explained below.   

Single tree models like CART, if grown deeply enough, can minimize bias at the 

expense of increased variance (overfitting). As many other tree-based methods, CART 

deals with overfitting by pruning the decision tree – a technique that reduces the size of 

decision trees by removing sections of the tree that provide little power to classify 

observations,15 hence decreasing the variance without a significant increase in bias. Once 

the tree is built and pruned, it can be used to predict the outcome of interest for a given 

observation based on the corresponding predictor values.  

Ensembles and Randomization  

More recent tree-based methods address overfitting differently, for example by 

training numerous decision trees, introducing randomization in the tree building process, or 
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a combination of both. By creating many decision trees – an ensemble – and then averaging 

them, the variance of the final model can be greatly reduced over that of a single tree. 

However, the bias of the full model is equivalent to the bias of a single decision tree (which 

itself has low bias but high variance).17  

Implementing and interpreting a single decision tree model is fairly straightforward. 

However, accuracy has been shown to improve through implementation of methods that use 

ensembles and randomization.18 A common example, Breiman introduced a framework for 

tree ensembles called “Random Forests.19” Random forests make use of a process called 

bootstrap aggregation (“bagging”) to create an ensemble of decision trees. In bagging, 

numerous replicates of the original dataset are created using random sampling with 

replacement from the training dataset (bootstrapping) and a decision tree is fitted to each 

replicate dataset. Averaged predictions across the ensemble of trees are used to predict the 

target outcome (in the form of the predicted probability) for a given observation. In addition, 

rather than trying every possible predictor at each split of the tree, the random forest 

algorithm randomly selects a subset of predictors to be considered. More recently, Geurts 

and colleagues introduced the ERT method, implementing randomization at multiple levels, 

but without bagging.18 In the next section, we explain the features and process of fitting 

ERTs to training data to predict patient survival, as one of the two components of the KWSF 

method introduced in this tutorial.  

Fitting a Survival ERT 

The KWSF process starts by fitting an extremely randomized tree to the entire 

training dataset. Note that unlike random forest, ERTs are not built on bootstrap replications 

of the original training dataset but use the entire training dataset (Figure 2.1). Assume that 

the training dataset includes P predictors (where P = 10 in the Figure 2.1 example). For 

each predictor in the training dataset, a number of possible splitting points exist that 

correspond to the distinct values of that predictor. For example, a splitting point of 56 years 
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for the predictor AGE means that one can divide the training dataset into two groups: people 

younger than 56 and people who are 56 or older. Many other possible splitting points likely 

exist for AGE in the dataset, which will be considered in the ERT process. The ERT 

algorithm handles continuous and ordinal variables with ease. However, for nominal 

variables, we recommend creating binary variables corresponding to the number of distinct 

values similar to an indicator (dummy) variable approach in the context of regression 

models. 

For each split of the tree, the ERT algorithm randomly picks K predictors (where K=5 

in Figure 2.1 example) from the list of P possible predictors in the training dataset along with 

one randomly selected splitting point for each selected predictor. Randomly selecting the 

splitting point, a feature of ERT, adds another level of randomization to the fitted trees, 

hence the name extremely randomized tree. Randomization both at the predictor and the 

splitting point level allows the ERT algorithm to build distinct trees despite starting with the 

same dataset, as every tree is fitted to the entire training dataset. Once the K ‘predictor-

splitting point’ pairs are selected, the ERT algorithm tries each of the K candidate pairs in 

the split and picks the pair that maximizes the log-rank statistic (i.e., the goodness-of-split 

criterion for survival ERT) between the two resulting daughter nodes, where the Kaplan-

Meier estimator is used to calculate the survival function within each node. Identified this 

way, the predictor-splitting point pair will provide the most distinct daughter nodes in terms of 

survival among the K candidate pairs. The tree growing process continues until the model 

exhausts all possible predictor-splitting point pairs or until a node has no less than a user-

determined minimum number of observed events (e.g., deaths). The minimum number of 

observed events is a tuning parameter of the algorithm (see Setting Tuning Parameters). Of 

note, unlike CART models, pruning is not used in building ERTs, as ensemble methods and 

multi-level randomization are used to prevent overfitting. This process allows the ERT 
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algorithm to minimize bias by building deeper trees while avoiding the problem of high 

variance. 

Fitting M Survival ERTs 

The survival forest algorithm uses the above procedure M times to generate M 

ERTs, each starting with the entire training dataset. The number of trees M is a tuning 

parameter (see Setting Tuning Parameters below). Although each tree is built on the same 

dataset (i.e., the entire training dataset), randomization at predictor and splitting point levels 

helps generate M distinct trees, illustrated as differently shaped trees in Figure 2.2.  

Estimating Survival function  

For each terminal node of a fitted ERT, the Kaplan-Meier (KM) survival function is 

calculated. Having several events in each terminal node allows the algorithm to calculate the 

KM survival function within each terminal node. For any particular individual, that person 

eventually falls into only one terminal node per each fitted ERT (Illustrated as red paths in 

Figure 2.2). The algorithm assumes that every individual who falls in a terminal node has the 

corresponding survival function of that node, which is referred to as within-terminal node 

homogeneity. Each individual will have a tree-specific survival function denoted �̂�𝑚
𝑖  in Figure 

2.2, which is the survival function of the corresponding terminal node that the individual falls 

into within that tree. Averaging over M trees, the forest-level survival function for an 

individual can be estimated using the following equation: 

�̂�𝑖 =
1

𝑀
∑ �̂�𝑚

𝑖

𝑀

𝑚=1

 

Individual-Level Kernel-Weighted Survival Extrapolation  

To extrapolate survival for an individual, we use the forest-level survival function that 

was estimated by averaging the survival functions across all terminal nodes that include the 

particular individual (�̂�𝑖). Multiple parametric distributions e.g., exponential, Weibull, log 

logistic, log normal, gamma, and generalized gamma are fitted to the forest-averaged 
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survival function to extrapolate survival beyond trial follow-up for that individual. The 

distribution with the lowest Akaike Information Criterion (AIC) is chosen to estimate the 

extrapolated survival function. The same process is repeated for every individual in the trial.  

Setting tuning parameters  

The ERT model offers several tuning parameter adjustments. For example, the 

number of predictors considered at each split, K, can be adjusted by the user. By default, K 

is set to the integer part of √𝑃, where P is the number of predictors in the dataset. 

Increasing the value of K could result in reducing bias but at the cost of increasing the 

calculation burden. The user can also determine the minimal number of observed events 

(i.e., deaths) in each terminal node, nmin. As nmin gets smaller, deeper trees can be fitted, 

which can result in decreased bias but increased likelihood of overfitting. Similarly, the user 

can determine the number of trees, M, that are fitted to form the survival forest. We expect 

that increasing the number of trees would improve the prediction accuracy albeit at the cost 

of increasing the calculation burden.  

Illustrative Example  

As an illustration, we implement and compare the performance of KWSF 

extrapolation with standard parametric models using clinical trial data from the CA184-024 

Trial. This trial evaluated the efficacy of ipilimumab (a checkpoint immunotherapy drug) 

combined with Dacarbazine (a chemotherapy drug) compared to the standard of care at the 

time of the trial in advanced melanoma patients. Advanced melanoma is the most 

aggressive form of skin cancer and is associated with poor prognosis with median OS 

ranging from 5.1 to 22.3 months.20 Ipilimumab is a monoclonal antibody that attaches to 

cytotoxic T-lymphocyte associated protein 4 (CTLA-4), a protein on some T cells that acts as 

a type of “off switch” to keep the immune system in check and to stop it from working.21,22 By 

inhibiting CTLA-4, Ipilimumab can boost the body’s immune response against cancer cells. 

Because this trial has longer follow-up period than most checkpoint immunotherapy trials, 
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the data allow to assess the prediction accuracy of proposed extrapolation models using 

varied amounts of follow-up data (i.e., two and three years).  

Dataset  

The CA184-024 Study is “A Multi-Center, Randomized, Double-Blind, Two-Arm, 

Phase III Study in Patients with Untreated Stage III (Unresectable) or IV Melanoma 

Receiving Dacarbazine Plus 10 mg/kg of Ipilimumab vs. Dacarbazine with Placebo”. A total 

of 502 subjects were randomized to ipilimumab plus DTIC (n=250), hereafter referred to as 

immunotherapy arm and to DTIC monotherapy (n=252), hereafter referred to as 

chemotherapy arm. 23 Ipilimumab is the first FDA-approved checkpoint immunotherapy for 

advanced melanoma, which makes CA184-024 one of the longest running phase III trials of 

any checkpoint immunotherapy for advanced melanoma.24-26 We identified 19 predictive 

variables based on the literature and data availability; predictors with any missing values 

were excluded from the analysis. All analyses were conducted based on an intention-to-treat 

framework i.e., trial data were analyzed assuming that subjects received the randomly 

assigned treatment.   

Partitioning the data 

For each arm of the CA184-024 trial, we construct two longitudinally-partitioned 

subsets of the data that include 2-year and 3-year follow up (the training datasets). The two 

and three years of follow up were selected because trial data are typically reported within 

these time frames for regulatory submission and obtaining reimbursement. For the 2-year 

partitioning, subjects who did not experience the event and were not censored before 2 

years were assumed to be censored at 2 years. Hence, in the corresponding training 

dataset, these subjects will have survival time (𝑌𝑖𝑙2) of 2 years and censorship status (𝛿𝑖𝑙2) of 

0 (censored). Subscript l2 indicates 2-year longitudinal partition. For subjects who 

experienced the event or were censored before 2 years, their survival time (𝑌𝑖𝑙2) and 

censorship status (𝛿𝑖𝑙2) remain the same as the values in the original dataset (𝑌𝑖 and 𝛿𝑖, 
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respectively). Similar process was applied to 3-year partitioned data (see the equations 

below). This process creates two training datasets per trial arm for a total of four training 

datasets.  

For the 2-year training dataset: 

𝑌𝑖𝑙2 = {
2 𝑦𝑒𝑎𝑟𝑠, 𝑌𝑖 > 2 𝑦𝑒𝑎𝑟𝑠

𝑌𝑖 , 𝑌𝑖 ≤ 2 𝑦𝑒𝑎𝑟𝑠
    δ𝑖𝑙2 = {

0, 𝑌𝑖 > 2 𝑦𝑒𝑎𝑟𝑠
0, 𝑌𝑖 ≤ 2 𝑦𝑒𝑎𝑟𝑠, 𝛿𝑖 = 0
1, 𝑌𝑖 ≤ 2 𝑦𝑒𝑎𝑟𝑠, 𝛿𝑖 = 1

 

For the 3-year training dataset (subscript l3 indicates 3-year longitudinal partition): 

𝑌𝑖𝑙3 = {
3 𝑦𝑒𝑎𝑟𝑠, 𝑌𝑖 > 3 𝑦𝑒𝑎𝑟𝑠

𝑌𝑖 , 𝑌𝑖 ≤ 3 𝑦𝑒𝑎𝑟𝑠
    δ𝑖𝑙3 = {

0, 𝑌𝑖 > 3 𝑦𝑒𝑎𝑟𝑠
0, 𝑌𝑖 ≤ 3 𝑦𝑒𝑎𝑟𝑠, 𝛿𝑖 = 0
1, 𝑌𝑖 ≤ 3 𝑦𝑒𝑎𝑟𝑠, 𝛿𝑖 = 1

 

Data Analysis  

We estimated the “true” individual-level survival functions by applying the survival 

forest algorithm as explained above using data from the full duration of available follow-up. 

The survival forest provides a nonparametric estimate of the survival function for each 

individual (�̂�𝑖𝑐) where subscript c indicates complete dataset. Using these survival functions 

for each individual, we calculated survival percent for 12 time points corresponding to 6-

month intervals from 6 to 72 months (�̂�𝑖𝑐(𝑡𝑗)). For each individual, we compared the survival 

percent for j=1, …, 12 (number of timepoints considered) with corresponding estimates from 

the two models described below: 

Standard parametric survival models  

We fit multiple parametric survival distributions including exponential, Weibull, log 

logistic, log normal, gamma, and generalized gamma to all four training datasets. Based on 

statistical metrics of goodness-of-fit (i.e., AIC), the best parametric fit was selected for each 

training dataset.1 For each selected model, we calculate percent survival for each of the 12 

time points. Since this model only generates population-level survival percent at the arm 

level (i.e., Dacarbazine + 10 mg/kg of Ipilimumab versus Dacarbazine + placebo), we 
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assume the same estimate applies to each subject in that arm. In other words, every 

individual in each arm is assumed to have the same survival percent at each time point as 

the arm-level estimate (�̃�(𝑡𝑗)). 

KWSF survival extrapolation  

We use the KWSF model (as described above) to estimate percent survival for the 

same 12 time points for each trial subject (𝑆𝑖(𝑡𝑗)). Of note, the same parametric models as 

above were fitted to the individual-level survival functions (i.e., the forest-level survival 

function for an individual) and the distribution with the lowest AIC was selected for survival 

percent estimations for that individual. This process allows for potentially different 

distributions to be selected for different subjects within a given arm.    

Comparison of Predictive Performance 

We assess predictive performance of each model by estimating mean squared error. 

We compare the predicted survival percent at each time point from the standard parametric 

survival models (𝑀𝑆𝐸1) and KWSF survival extrapolation (𝑀𝑆𝐸2) with the corresponding 

“true” survival percent estimates (�̂�𝑖𝑐(𝑡𝑗)). For i=1, …, n (number of subjects in each training 

dataset and j=1, …, 12 (number of timepoints), we calculated 𝑀𝑆𝐸1 and 𝑀𝑆𝐸2 for each of 

the four training datasets using the below equations12,27: 

𝑀𝑆𝐸1𝑗 =
1

𝑛
∑ (�̂�𝑖𝑐(𝑡𝑗) − �̃�(𝑡𝑗))

2
𝑛

𝑖=1

 𝑀𝑆𝐸2𝑗 =
1

𝑛
∑ (�̂�𝑖𝑐(𝑡𝑗) − 𝑆�̅�(𝑡𝑗))

2
𝑛

𝑖=1

 

All analyses were run using R version 4.0.2. 

Results  

The KM curves using the complete dataset are presented in Figure 2.3, where the 

dashed vertical lines indicate 24-month and 36-month longitudinally partitioned data. For the 

complete dataset, median survival was 11.17 and 9.07 months for patients who received 
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immunotherapy and patients who received chemotherapy, respectively. For the 2-year 

training dataset, 2-year survival was 28.78% and 17.77% for the immunotherapy and 

chemotherapy arms, respectively. Similarly, for the 3-year training dataset, 3-year survival 

was 21.17% and 12.12% for patients who received immunotherapy and patient who 

received chemotherapy, respectively.  

The estimated MSE for the selected models using 2-year and 3-year partitioned data 

for immunotherapy and chemotherapy arms are presented in Table 2.1. As expected, using 

the training dataset with longer follow-up period improves the prediction performance, as 

indicated by the lower MSE estimates in 3-year datasets compared to 2-year datasets 

across both arms. The KSWF model consistently outperforms the standard parametric 

model across all time points for both study arms, regardless of the duration of follow up. The 

sum of MSEs for survival projections beyond 30 months are 1.88% (using 2-year dataset) 

and 1.21% (using 3-year dataset) when estimated using the KWSF model in the 

chemotherapy arm, while the corresponding numbers for the immunotherapy arm are 4.41% 

(using 2-year dataset) and 3.40% (using 3-year dataset). Similarly, the estimated sum of 

MSEs across all time points in the chemotherapy arm is lower than the corresponding 

estimate for the immunotherapy arm, which signifies the challenges of extrapolating survival 

in the Immunotherapy arm of the trial.  

Figure 2.4 presents the estimated MSE and the associated error bars by trial arm 

and estimation method for 2 and 3-year partitioned datasets. Although the MSE is lower for 

KWSF method for both arms across all timepoints, the difference in predictive performance 

of the two models is more pronounced when the datasets with longer follow-up (3-year) are 

used, which might indicate that KWSF method is associated with more efficient use of 

additional data. Further, Figures 2.4C and 2.4D show a monotonous increase in MSE 

estimates after 30 months in the immunotherapy arm, while the corresponding rate of MSE 

increase is not as notable in the chemotherapy arm. This finding is consistent with the notion 
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that extrapolating survival for time points that are further away is more challenging in the 

immunotherapy arm. 

Discussion 

This tutorial presents a novel survival extrapolation method that can accommodate 

potential individual-level treatment response heterogeneity and survival dynamics of 

checkpoint immunotherapy treatments. The implementation of the proposed method on data 

from an immunotherapy clinical trial indicates that compared to standard parametric models, 

KWSF can more accurately predict survival beyond the available trial follow up. 

Currently more than 1,000 clinical trials are being conducted on the use of 

checkpoint immunotherapy drugs for numerous cancers and many of these trials have 

overall survival as the primary endpoint.28-30 Methods that can accurately estimate long-term 

survival impact earlier in the trial are necessary as such trials typically face data limitations 

due to time and/or budget constraints, which can prohibit longer follow-up durations. Despite 

the fact that the treatment regimens tested in the illustrative example of this tutorial are no 

longer considered as the standard of care for advanced melanoma, we believe the proposed 

extrapolation method can be used as a prototype for any randomized controlled trial of 

checkpoint immunotherapy or similar treatments in the context of a limited follow-up and 

known heterogeneity of treatment response. 

For the illustrative example, we selected the best fitting standard parametric models 

as the KWSF’s comparator, because such models are commonly used in extrapolating 

survival in the context of checkpoint immunotherapy drugs. However, other methods such 

as piecewise or spline-based models have been suggested for extrapolating survival beyond 

trial follow-up in this context.31 It is worth noting that these models can be similarly 

incorporated in the KWSF model and might further reduce prediction errors.  

In addition to the piecewise models, other extrapolation models have been 

suggested that capture heterogeneity by partitioning the trial population into more 
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homogenous groups. A number of such models that have been suggested for checkpoint 

immunotherapy drugs include cure fraction models, parametric mixture models, and 

landmark models.32,33 Although these models can account for the complexities of the hazard 

functions associated with checkpoint immunotherapy drugs, they are not designed to 

capture potential individual-level heterogeneity. The survival forest model presented in this 

tutorial allows for estimating a non-parametric individual-level survival function by leveraging 

patient-level characteristics.13 The survival forest combined with parametric extrapolation 

allows for estimating an individual-level survival function that can predict survival beyond the 

available follow up. We believe this individual-level extrapolation is an effective way to 

model the heterogeneity of treatment effects in checkpoint immunotherapy. 

Although KWSF shows reduction in prediction error (MSE) across all time points for 

both trial arms, the MSE of KWSF method seems to be getting closer to the MSE of 

standard parametric extrapolation for time points that are further away in the future 

particularly in the immunotherapy arm. We believe this trend happens as a result of the 

parametric extrapolation that was used in KWSF. Incorporating other survival extrapolation 

models such as cure fraction models might further improve the prediction accuracy of 

KWSF. Further, limited follow up from the trial and lack of external data (e.g., real-world data 

from registries) makes it difficult to validate the results of the extrapolation beyond the 

available trial data.33 This limitation is particularly important for recently approved 

immunotherapy drugs, where real-world data have not accumulated. In addition, all the 

calculations in the proposed method are based on the original randomly assigned 

interventions, and KWSF does not explicitly model potential survival impacts of the second- 

and third-line treatments. 

Although the proposed method does not require the use of any external data, access 

to patient-level trial data is necessary to develop the survival forest, which can be a 

limitation. However, we believe with the recent trend towards improved data sharing and trial 
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transparency, patient-level data from clinical trials will continue to become more accessible 

in the future, making the proposed method more feasible.  

This tutorial introduces the KWSF model as a novel survival extrapolation method 

that uses patient-level characteristics to estimate individualized survival function, which can 

then be used for individual-level survival extrapolation. The KWSF algorithm, as described 

above, can be used to develop an application that inputs the characteristics of a given 

patient (outside the clinical trial) who received similar interventions to estimate their 

individualized survival function. Such application can help develop microsimulation models 

for economic evaluation of checkpoint immunotherapy drugs as well as informing the 

estimation of individualized treatment rules. Future studies are needed to further evaluate 

the performance of the KWSF models in predicting survival beyond trial follow up.  
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Table 2.1. Percent MSE using 2-year and 3-year partitioned data, by arm and estimation methods 

Time Periods (months) 

Chemotherapy  
2-year follow up 

Chemotherapy  
3-year follow up 

Immunotherapy  
2-year follow up 

Immunotherapy  
3-year follow up 

KWSF SPM* KWSF SPM* KWSF SPM** KWSF SPM** 

6 0.19% 0.27% 0.16% 0.27% 0.08% 0.25% 0.11% 0.23% 

12 0.19% 0.31% 0.24% 0.33% 0.19% 0.26% 0.18% 0.31% 

18 0.13% 0.27% 0.16% 0.27% 0.12% 0.23% 0.11% 0.27% 

24 0.10% 0.24% 0.09% 0.23% 0.09% 0.16% 0.07% 0.18% 

30 0.17% 0.26% 0.09% 0.23% 0.10% 0.14% 0.05% 0.13% 

36 0.21% 0.30% 0.09% 0.28% 0.14% 0.18% 0.07% 0.14% 

42 0.25% 0.33% 0.13% 0.29% 0.24% 0.27% 0.15% 0.19% 

48 0.25% 0.32% 0.14% 0.29% 0.42% 0.46% 0.29% 0.33% 

54 0.29% 0.35% 0.18% 0.32% 0.63% 0.66% 0.47% 0.50% 

60 0.36% 0.41% 0.24% 0.38% 0.82% 0.87% 0.64% 0.69% 

66 0.34% 0.38% 0.24% 0.35% 1.04% 1.11% 0.84% 0.91% 

72 0.39% 0.42% 0.28% 0.39% 1.25% 1.33% 1.02% 1.13% 

Total after 3 years 1.88% 2.21% 1.21% 2.02% 4.41% 4.69% 3.40% 3.75% 

Total 2.88% 3.87% 2.02% 3.62% 5.13% 5.91% 3.99% 5.01% 

MSE: mean squared error. KWSF: kernel-weighted survival forest. SPM: standard parametric model 
* Log normal distribution had the lowest AIC and was used for this estimation 
** Log logistic distribution had the lowest AIC and was used for this estimation 
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The tree fitting process starts with a training dataset, which includes P predictors (P=10 in this example). Each predictor has a number of distinct values that can be used to split the predictor 

space (For example, P1 has 10 distinct values (splitting points) and P9 is a continuous variable). The algorithm randomly selects K predictor-splitting point pairs (K=5 in this example) and tries 

each pair in the split, evaluating each based on a goodness-of-split criterion (in this example log rank test statistic). In this example, predictor P8 and splitting point 2 is identified as the best 

split in the first split of the tree. Similar splitting process is repeated for each daughter node until no further splitting can be done without a node having fewer than nmin events, at which point 

daughter nodes are referred to as terminal nodes, depicted as rectangles at the bottom of the tree.  

Figure 2.1. Fitting an extremely randomized tree (ERT) 
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The trees start with the entire training dataset (same dataset across all trees). For each tree, a particular subject will end up in a single terminal node, for example the path for 
the ith subject in the 1st, 2nd, …, and the mth ERT are depicted in red. Each terminal node contains a predetermined minimum number of events (nmin). Note that the shape of 

the trees can be different due to the randomization process used in fitting them. Once the survival function for the ith subject is estimated at node level within each tree (�̂�𝑚
𝑖 ), the 

algorithm averages the survival function over all trees and estimates the pooled survival function (�̂�𝑖).  

Figure 2.2. Fitting M independently generated extremely randomized trees  
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Figure 2.3. KM curves for the complete dataset 
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Figure 2.4. Estimated MSE by trial arm and estimation method for 2 and 3-year partitioned datasets 

 

MSE: mean squared errors. DTIC: dacarbazine. IO: immune-oncology (i.e., immunotherapy). KWSF: kernel-weighted survival forest. 
SPM: standard parametric model. 
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CHAPTER 3: COMPARING THE ACCURACY OF KERNEL-WEIGHTED 
SURVIVAL FOREST AND EXTRAPOLATION METHODS THAT DIRECTLY 

MODEL HETEROGENEITY IN PREDICTING SURVIVAL USING DATA FROM A 
CHECKPOINT IMMUNOTHERAPY TRIAL 

Introduction 

Checkpoint immunotherapy drugs are approved or under investigation in many 

cancers.1 Currently hundreds of clinical trials are being conducted on the use of checkpoint 

immunotherapy drugs for numerous indications and many of these trials have overall 

survival (OS) as their primary endpoint.2-4 Methods that can accurately estimate long-term 

survival impact earlier in the trial are necessary as such trials typically face data limitations 

due to time and/or budget constraints, which can prohibit longer follow-up durations.5 

Checkpoint immunotherapy drugs typically trigger a durable response in a subset of 

patients, which translates to long-term survival for some – but not all – patients.6 This 

heterogenous survival effect for a subset of patients makes extrapolation beyond trial follow-

up particularly challenging for checkpoint immunotherapy interventions, as such 

extrapolation models are required to accommodate the complex survival dynamics of these 

treatment.7,8 

Numerous methods have been suggested and used to extrapolate survival beyond 

clinical trial follow-up for checkpoint immunotherapy drugs.8-10 These extrapolation methods 

can be categorized into three main groups: (1) Models that are built based on an entire 

survival curve as one unit; (2) Models that are built based on partitioning the survival curve 

into different time periods and modeling each period separately; (3) Models that are built 

based on partitioning the trial population into more homogenous groups and separately 

extrapolating the survival for each group.  
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Models built based on entire survival curve as one unit include standard parametric 

survival models and more flexible models such as fractional polynomials that can model 

complex hazard functions but still use the entire trial survival curve as one unit. Such 

methods are more flexible than standard parametric models and thus more capable of 

capturing complex hazard functions associated with checkpoint immunotherapy’s unique 

survival dynamics.11 

Models built based on partitioning the survival curve into pieces include piecewise 

and spline-based (e.g., restricted cubic splines) models. Such models offer higher degree of 

flexibility and are suitable to perform extrapolation when hazard rates are not constant over 

time.9,10 Piecewise and spline-based models have been commonly used for extrapolating 

survival beyond trial follow-up in the checkpoint immunotherapy trials.10 

Models built based on segmenting the trial population into homogenous groups 

assume that the trial population is composed of groups that respond differently to treatments 

and may have distinct survival curves, hence require different modeling techniques to 

produce an unbiased OS estimation.12 Cure fraction models and landmark models are 

examples of this category that have been suggested and used for checkpoint 

immunotherapy drugs.12,13 Although these methods offer more flexibility, they typically 

require longer follow-up to detect populations with markedly different survival. Further, such 

models are designed to extrapolate survival at population level or for segments of the 

population.12 

Given the level of heterogeneity associated with checkpoint immunotherapy 

treatments, we believe models that are capable of flexibly estimating individual-level survival 

functions can provide an effective way to model the heterogeneity of treatment response in 

survival extrapolation for checkpoint immunotherapy recipients. Such models can inform 

precision and personalized medicine strategies, and serve as the foundation for individual-

level simulation of these strategies’ relative economic value and efficiency. The Aim 1 
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tutorial presented a novel method to estimate individual-level survival functions that can 

predict survival beyond trial follow up for right-censored observations. This novel model 

leverages survival forest based on extremely randomized trees14 and kernel-weighted 

parametric extrapolation, together called kernel-weighted survival forest (KWSF).  

The group 3 models explained above can directly model the heterogeneity of 

treatment response and have shown favorable accuracy in extrapolating survival for 

checkpoint immunotherapy interventions.9,13 Since the KWSF model has the capability to 

utilize different extrapolation functions, we hypothesized that using similarly flexible 

extrapolation functions such as cure fraction models can further improve the prediction 

accuracy of the KWSF model. However, it is not clear whether a KWSF model that uses 

cure fraction survival function confers similar or greater accuracy than population-based 

cure fraction models in estimating individual-level long-term survival effects.  

The aim of this study is to compare the accuracy of survival extrapolation models 

that are designed to directly model heterogeneity of treatment response (e.g., cure fraction 

models and response-based/landmark models) with the accuracy of the KWSF model that 

utilizes cure fraction models at individual level. Models are trained using the 2- and 3-year 

patient-level data from a checkpoint immunotherapy trial in patients with advanced 

melanoma, and predicted survival estimates from different models are compared with 

corresponding estimated true survival using maximum follow up data available.  

Methods 

Dataset  

For this study we used individual-level data from the CA184-024 trial. This trial is “A 

Multi-Center, Randomized, Double-Blind, Two-Arm, Phase III Study in Patients with 

Untreated Stage III (Unresectable) or IV Melanoma Receiving Dacarbazine Plus 10 mg/kg of 

Ipilimumab vs. Dacarbazine with Placebo”. A total of 502 subjects were randomized to 

ipilimumab plus DTIC (n=250) and to DTIC monotherapy (n=252).15 We identified 18 
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predictive variables based on the literature and data availability; predictors with missing 

values were excluded from the analysis. All analyses were conducted based on an intention-

to-treat framework i.e., trial data were analyzed assuming that subjects received the 

randomly assigned treatment.  

For each arm of the CA184-024 trial, we constructed two longitudinally-partitioned 

subsets of the data that include 2-year and 3-year follow up (the training datasets). The two 

and three years of follow up were selected because trial data are typically reported within 

these time frames for regulatory submission and other applications. The partitioning process 

has been previously described in more detail in the Aim 1 paper.  

Candidate Models 

Population-level models 

Cure fraction models  

Cure fraction models assume that a fraction of the population will be “cured” and thus 

the survival curve will eventually reach a plateau. In the context of cancer trials, by 

definition, cure happens when the hazard rate of death in the cancer patients returns to the 

same level as that expected in the general population.16 Parametric cure models can be 

used to estimate the cure fraction, modeling ‘cured’ and ‘uncured’ with different 

distributions.13 The most popular framework for cure models is to assume that the study 

population is a mixture of patients who are cured and patients who are not cured and to 

explicitly model this mixture (cure fraction mixture models).13 In a mixture cure model, these 

‘cured’ and ‘uncured’ subjects are modeled separately, with the cured individuals subject to 

no excess risk and the uncured individuals subject to excess risk modeled using a 

parametric survival distribution.16 In a non-mixture model, a parametric survival distribution is 

scaled in a way that survival asymptotically approaches the cure fraction.16,17 For this study 

we used Weibull distribution for both mixture and non-mixture cure models.  

Landmark models 
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In these models, patients are split into response groups, based on their status at a 

pre-specified time point (landmark).12 Standard parametric survival models are fitted to 

extrapolate response-specific OS curves from landmark. These curves are then weighted by 

the observed response distribution at the landmark. Using the weighted sum of survival 

curves, the landmark model calculates a single composite curve to extrapolate survival 

beyond the key trial follow up.12 The following response categories were included in trial 

data: (1) Responders defined as patients who have complete or partial response; (2) Stable 

disease defined as patients who remain progression free 3 months or more from the start of 

treatment; (3) Progressive disease defined as patients who progress or are censored prior 

to 3 months. For each response group a number of standard parametric distributions (similar 

to standard parametric model estimation below) were tested and the best fitting distribution 

(i.e., lowest AIC) was selected.   

Standard parametric models  

Similar to Aim 1 analysis, we included standard parametric models as a baseline 

comparison because such models are commonly used in extrapolating survival in the 

context of checkpoint immunotherapy drugs. Briefly, we fit multiple parametric survival 

distributions including exponential, Weibull, log logistic, log normal, gamma, and generalized 

gamma to all four training datasets. Based on statistical metrics of goodness-of-fit (i.e., AIC), 

the best parametric fit was selected for each training data set.7 

Individual-level models 

KWSF using standard parametric extrapolation function 

We use the KWSF model (as described in the Aim 1 paper) to estimate percent 

survival for each trial subject. Of note, the same parametric models as above were fitted to 

the individual-level survival functions (i.e., the forest-level survival function for an individual) 

and the distribution with the lowest AIC was selected for survival percent estimations for that 
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individual. This process allows for potentially different distributions to be selected for 

different subjects within a given arm.   

KWSF using cure fraction extrapolation function 

We implemented variations of the KWSF model described in Aim 1 with mixture and 

non-mixture cure models as the extrapolation functions. Of note, the same mixture and non-

mixture cure models as described in population-level models above (i.e., parametric cure 

model with Weibull distribution) were fit to the individual-level survival functions.  

Comparison of Predictive Accuracy 

As described in Aim 1, we estimated the “true” individual-level survival functions by 

applying the survival forest algorithm using data from the full duration of available follow-up. 

The survival forest provides a nonparametric estimate of the survival function for each 

individual (�̂�𝑖𝑐) where subscript c indicates complete data set. Using these survival functions 

for each individual, we calculated survival percent for 12 time points corresponding to 6-

month intervals from 6 to 72 months (�̂�𝑖𝑐(𝑡𝑗)).  

For each selected population-level model above, we calculated percent survival for 

each of the above 12 time points. Since these models only generate population-level 

survival percent at the trial arm level, we assumed the same estimate applies to each and 

every subject in that arm. In other words, every individual in each arm was assumed to have 

the same survival percent at each time point as the arm-level estimate (�̃�(𝑡𝑗)). For the 

individual-level models, we calculated percent survival for each subject for the same 12 time 

points (𝑆�̅�(𝑡𝑗)). 

We assess predictive accuracy of each model by estimating mean squared error 

(MSE). To calculate the MSE, we compared the predicted survival percent at each time 

point with the corresponding “true” survival percent estimates (�̂�𝑖𝑐(𝑡𝑗)). 𝑀𝑆𝐸1 indicates the 

MSE calculated for the population-level models and 𝑀𝑆𝐸2 indicates the MSE calculated for 
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individual-level models i.e., KWSF variations (𝑀𝑆𝐸2). For i=1, …, n (number of subjects in 

each training dataset and j=1, …, 12 (number of timepoints), we calculated 𝑀𝑆𝐸1 and 𝑀𝑆𝐸2 

for each of the four training datasets using the below equations18,19: 

𝑀𝑆𝐸1𝑗 =
1

𝑛
∑ (�̂�𝑖(𝑡𝑗) − �̃�(𝑡𝑗))

2
𝑛

𝑖=1

 𝑀𝑆𝐸2𝑗 =
1

𝑛
∑ (�̂�𝑖(𝑡𝑗) − 𝑆�̅�(𝑡𝑗))

2
𝑛

𝑖=1

 

All analyses were conducted using R version 4.0.2. 

Results  

Figure 3.1 shows the distribution of the response status at week 12 after receiving 

trial treatments for the immunotherapy (Ipilimumab + DTIC) and the chemotherapy (DTIC + 

placebo) arms. As shown in the figure, the response status for 89 (36%) and 72 (29%) 

subjects were unknown for the immunotherapy and chemotherapy arms, respectively. 

Because of the high percentage of unknown responses, landmark/response-based models 

were not included in model comparison presented in this paper.  

The model comparison results are presented as estimated MSEs for 12 time points 

comparing the predictive accuracy of 3 individual-level models including KWSF with 

standard parametric extrapolation functions, KWSF with mixture cure model, and KWSF with 

non-mixture cure model as well as 3 population-level models including standard parametric 

model, mixture cure model, and non-mixture cure model. Note that the MSEs associated 

with KWSF model and population-level standard parametric model were previously reported 

in the Aim 1 paper and are included as a baseline to show potential improvement in the 

model accuracy when more flexible extrapolation functions are used.  

 Table 3.1 shows the estimated MSEs associated with the selected models for the 

immunotherapy arm using 2-year data cut. For this training data set, non-mixture cure 

models both at individual-level and population-level were associated with lower prediction 
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errors, with total MSE of 2.48% and 2.24%, respectively. The estimated total MSE after 2 

years, representing the MSE of testing data set, indicates that the population-level non-

mixture cure model was slightly more accurate than the individual-level non-mixture cure 

model with estimated MSE of 1.46% and 2.09%, respectively. The estimated MSEs for the 

immunotherapy arm using 3-year data cut, show that similar to 2-year data cut, both 

individual- and population-level cure models perform better than models that use standard 

parametric extrapolation (Table 3.2). Among the selected models, the individual-level 

mixture cure models had the best accuracy with the estimated total MSE and total MSE after 

3 years of 1.07% and 0.56%, respectively.  

Tables 3.3 shows the estimated MSEs associated with the selected models for the 

chemotherapy arm using 2-year data cut. For this training data set, the KWSF model with 

standard parametric extrapolation function was associated with the lowest total MSE 

(2.88%) and total MSE after 2 years (2.26%). When using 3-year data cut, the individual-

level non-mixture cure model was associated with the lowest MSEs (i.e., highest accuracy) 

in the chemotherapy arm (Table 3.4).  

As expected, the MSE associated with both individual- and population-level cure 

models decreased when using longer follow up i.e., a 3-year data cut to train the models 

(Figure 3.2). Additionally, when 3-year training data sets were used, it appears that the 

MSEs for selected models tend to converge when projecting survival for time points that are 

further away in the future (Figure 3.2B and 3.2D).  

Discussion 

Developing and evaluating more flexible and accurate models for survival 

extrapolation for checkpoint immunotherapy drugs is an active area of research9,20 and while 

a selection of these methods is discussed here, this study is not intended to provide a 

comprehensive review of all suggested methods. We limited the scope of the candidate 

models to those that directly model the heterogeneity of treatment response by segmenting 
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the trial population into seemingly more homogenous groups. Cure fraction models and 

landmark models are two examples of such models that have been used for survival 

modeling of checkpoint immunotherapy drugs.12 

Introduced in Aim 1 tutorial, the KWSF model is a novel survival extrapolation 

method that can accommodate potential individual-level treatment response heterogeneity 

and unique survival dynamics of checkpoint immunotherapy treatments. The findings from 

Aim 1 illustrated that the KWSF model that uses standard parametric distributions as the 

extrapolation function had higher prediction accuracy than standard parametric models. 

Additionally, the modular feature of KWSF model allows for using a variety of extrapolation 

functions that are more flexible and may improve the prediction accuracy of the model. This 

study compared the accuracy of survival extrapolation estimates from cure fraction models 

with estimates from KWSF with cure fraction extrapolation function.    

The results of this study show that compared to models that use standard parametric 

extrapolation, cure fraction models and KWSF with cure fraction extrapolation function were 

more accurate in predicting survival in the immunotherapy arm. This finding is aligned with 

previous literature on cure fraction models for survival extrapolation in checkpoint 

immunotherapy drugs.9,13 Our findings also provide further evidence illustrating the utility of 

cure fraction models for survival extrapolation both at individual and population level. The 

difference between accuracy of cure models and standard parametric models were less 

noticeable for the chemotherapy arm, potentially indicating that cure fraction might not be as 

effective for survival modeling of traditional cancer treatments such as chemotherapy.  

Although cure fraction models produced more accurate survival predictions both at 

population level and when used as an extrapolation function in individual-level models, 

these models are subject to several limitations. Specifically, applying cure models requires a 

certain “maturity” of data such that the differences between cured and non-cured subgroups 

can be identified. However, follow-up times for clinical trials that include checkpoint 



 

43 

immunotherapy treatments are typically insufficient to detect populations with markedly 

improved outcomes.13 Similarly, the landmark models assume that patients who respond to 

treatment are prognostically different from non-responders.12 However, verifying that the 

response measure is a reliable predictor of OS can prove difficult particularly for checkpoint 

immunotherapy.21 

Although the KWSF model with standard parametric extrapolation function is capable 

of capturing potential individual-level heterogeneity, our findings illustrated that in the 

immunotherapy arm, the accuracy of KWSF prediction were further improved when cure 

fraction models were used as the extrapolation function. That said, the individual-level 

extrapolation (KWSF + cure fraction extrapolation) did not demonstrate marked 

improvement in accuracy (as indicated by lower MSEs) compared to the population-level 

cure models. We believe this finding might be the result of inherent characteristics of the 

survival forest model used in KWSF. The survival forest algorithm calculates the tree-based 

survival function for each individual based on limited number of subjects who experienced 

the event (i.e., death) and share a terminal node with a given subject.14 Having such small 

number of events may decrease the effectiveness of cure fraction models in distinguishing 

cure mixtures for each individual.  

Despite the fact that the treatment regimens tested in the clinical trial used for this 

paper are no longer considered as the standard of care for advanced melanoma,22-24 we 

used this trial because it offers a relatively long follow-up period compared to most 

checkpoint immunotherapy trials.25,26 Such data allow for assessing the prediction accuracy 

of proposed extrapolation models using varied amounts of follow-up duration (i.e., two and 

three years). Additionally, the selection of the 12 timepoints allows for more granular 

comparison of the model accuracy and makes it possible to demonstrate the longitudinal 

change in prediction accuracy for the time points that are increasingly further away from the 

available follow up in the training data sets.  
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External data with a longer follow up would allow to validate the results of the 

survival extrapolation models further in the future. However, such data are not available for 

recently approved immunotherapy drugs. In addition, the possibility of subsequent 

treatments for patients who did not respond to the first-line immunotherapy treatments 

makes it more challenging to model survival further in the future as the KWSF model is not 

designed to explicitly model potential survival impacts of the subsequent treatments. 

Additionally, none of the variations of KWSF require the use of any external data; however, 

access to patient-level trial data is necessary to develop the survival forest, which can be a 

limitation. We believe with the recent trend towards improved data sharing and trial 

transparency, patient-level data from clinical trials will continue to become more accessible 

in the future, making the implementation of the proposed methods more feasible.  

Although cure fraction models demonstrated reasonably accurate survival 

predictions for the immunotherapy arm, they are not designed to generate individual-level 

extrapolated survival functions. The KWSF model with a cure fraction survival extrapolation 

function demonstrated comparable accuracy with cure fraction models, while uniquely 

allowing for estimating individual-level survival functions that can be used to inform precision 

and personalized medicine strategies, and serve as the foundation for individual-level 

simulation of checkpoint immunotherapy drugs’ relative economic value and efficiency. 

Future studies are needed to further evaluate the accuracy of the KWSF models and its 

variations in predicting survival beyond trial follow up. 
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Table 3.1. MSE using 2-year partitioned data in immunotherapy arm by estimation methods 

Time Period (months) 

Estimation Method 

KWSF SPM*  P-MCM I-MCM P-NMCM I-NMCM 

6 0.08% 0.25% 0.16% 0.06% 0.17% 0.07% 

12 0.19% 0.26% 0.23% 0.14% 0.23% 0.13% 

18 0.12% 0.23% 0.22% 0.09% 0.22% 0.10% 

24 0.09% 0.16% 0.16% 0.09% 0.16% 0.09% 

30 0.10% 0.14% 0.16% 0.14% 0.14% 0.11% 

36 0.14% 0.18% 0.26% 0.28% 0.18% 0.19% 

42 0.24% 0.27% 0.33% 0.37% 0.19% 0.24% 

48 0.42% 0.46% 0.37% 0.43% 0.19% 0.28% 

54 0.63% 0.66% 0.39% 0.46% 0.19% 0.30% 

60 0.82% 0.87% 0.40% 0.48% 0.19% 0.32% 

66 1.04% 1.11% 0.40% 0.48% 0.19% 0.32% 

72 1.25% 1.33% 0.40% 0.48% 0.19% 0.33% 

Total 5.13% 5.91% 3.49% 3.50% 2.24% 2.48% 

Total after 2 years  4.64% 5.02% 2.71% 3.12% 1.46% 2.09% 

MSE: mean squared error. KWSF: kernel-weighted survival forest. SPM: standard parametric model. P-MCM: population-level 
mixture cure model. I-MCM: individual-level mixture cure model. P-NMCM: population-level non-mixture cure model. I-NMCM: 
individual-level non-mixture cure model.  
* Log logistic distribution had the lowest AIC and was used for this estimation 
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Table 3.2. MSE using 3-year partitioned data in immunotherapy arm by estimation methods 

Time Period (months) 

Estimation Method 

KWSF SPM*  P-MCM I-MCM P-NMCM I-NMCM 

6 0.11% 0.23% 0.16% 0.06% 0.16% 0.06% 

12 0.18% 0.31% 0.29% 0.20% 0.27% 0.14% 

18 0.11% 0.27% 0.22% 0.10% 0.22% 0.09% 

24 0.07% 0.18% 0.17% 0.07% 0.16% 0.06% 

30 0.05% 0.13% 0.13% 0.05% 0.13% 0.05% 

36 0.07% 0.14% 0.13% 0.04% 0.13% 0.04% 

42 0.15% 0.19% 0.11% 0.06% 0.11% 0.06% 

48 0.29% 0.33% 0.11% 0.08% 0.11% 0.08% 

54 0.47% 0.50% 0.10% 0.09% 0.10% 0.11% 

60 0.64% 0.69% 0.10% 0.10% 0.10% 0.12% 

66 0.84% 0.91% 0.10% 0.11% 0.10% 0.14% 

72 1.02% 1.13% 0.10% 0.11% 0.10% 0.15% 

Total 3.99% 5.01% 1.71% 1.07% 1.69% 1.12% 

Total after 3 years  3.40% 3.75% 0.62% 0.56% 0.62% 0.66% 

MSE: mean squared error. KWSF: kernel-weighted survival forest. SPM: standard parametric model. P-MCM: population-level 
mixture cure model. I-MCM: individual-level mixture cure model. P-NMCM: population-level non-mixture cure model. I-NMCM: 
individual-level non-mixture cure model.  
* Log logistic distribution had the lowest AIC and was used for this estimation 
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Table 3.3. MSE using 2-year partitioned data in chemotherapy arm by estimation methods 

Time Period (months) 

Estimation Method 

KWSF SPM*  P-MCM I-MCM P-NMCM I-NMCM 

6 0.19% 0.27% 0.32% 0.27% 0.29% 0.23% 

12 0.19% 0.31% 0.31% 0.18% 0.30% 0.16% 

18 0.13% 0.27% 0.29% 0.13% 0.29% 0.13% 

24 0.10% 0.24% 0.23% 0.09% 0.23% 0.09% 

30 0.17% 0.26% 0.21% 0.15% 0.21% 0.14% 

36 0.21% 0.30% 0.29% 0.25% 0.25% 0.20% 

42 0.25% 0.33% 0.34% 0.31% 0.25% 0.24% 

48 0.25% 0.32% 0.41% 0.41% 0.26% 0.30% 

54 0.29% 0.35% 0.50% 0.48% 0.31% 0.34% 

60 0.36% 0.41% 0.50% 0.48% 0.30% 0.35% 

66 0.34% 0.38% 0.58% 0.59% 0.34% 0.43% 

72 0.39% 0.42% 0.58% 0.59% 0.34% 0.43% 

Total 2.88% 3.87% 4.57% 3.93% 3.36% 3.04% 

Total after 2 years  2.26% 2.77% 3.41% 3.26% 2.26% 2.43% 

MSE: mean squared error. KWSF: kernel-weighted survival forest. SPM: standard parametric model. P-MCM: population-level 
mixture cure model. I-MCM: individual-level mixture cure model. P-NMCM: population-level non-mixture cure model.  
I-NMCM: individual-level non-mixture cure model.  
* Log normal distribution had the lowest AIC and was used for this estimation 
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Table 3.4. MSE using 3-year partitioned data in chemotherapy arm by estimation methods 

Time Period (months) 

Estimation Method 

KWSF SPM*  P-MCM I-MCM P-NMCM I-NMCM 

6 0.16% 0.27% 0.33% 0.25% 0.30% 0.21% 

12 0.24% 0.33% 0.40% 0.28% 0.32% 0.18% 

18 0.16% 0.27% 0.27% 0.12% 0.28% 0.13% 

24 0.09% 0.23% 0.24% 0.07% 0.23% 0.08% 

30 0.09% 0.23% 0.23% 0.08% 0.22% 0.08% 

36 0.09% 0.28% 0.24% 0.05% 0.24% 0.05% 

42 0.13% 0.29% 0.23% 0.08% 0.23% 0.08% 

48 0.14% 0.29% 0.23% 0.12% 0.22% 0.10% 

54 0.18% 0.32% 0.27% 0.16% 0.24% 0.14% 

60 0.24% 0.38% 0.26% 0.17% 0.23% 0.14% 

66 0.24% 0.35% 0.29% 0.23% 0.24% 0.19% 

72 0.28% 0.39% 0.29% 0.23% 0.24% 0.19% 

Total 2.02% 3.62% 3.29% 1.84% 3.00% 1.56% 

Total after 3 years  1.21% 2.02% 1.58% 0.98% 1.41% 0.85% 

MSE: mean squared error. KWSF: kernel-weighted survival forest. SPM: standard parametric model. P-MCM: population-level 
mixture cure model. I-MCM: individual-level mixture cure model. P-NMCM: population-level non-mixture cure model.  
I-NMCM: individual-level non-mixture cure model.  
* Log normal distribution had the lowest AIC and was used for this estimation 

 



 

49 

Figure 3.1. Distribution of objective response at 12 weeks by trial arm 

PR/CR: Partial/complete response defined as patients who have complete or partial 
response. SD: Stable disease defined as patients who remain progression free 3 months or 
more from start of treatment. PD: Progressive disease defined as patients who progress or 
are censored prior to 3 months. 
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Figure 3.2. Estimated mean squared errors for 12 time points by trial arm and estimation method 
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CHAPTER 4: ESTIMATING INDIVIDUALIZED TREATMENT RULES TO 
MAXIMIZE OVERALL SURVIVAL USING AN IMMUNOTHERAPY TRIAL FOR 

ADVANCED MELANOMA 

Introduction 

Currently hundreds of clinical trials are being conducted globally to evaluate the 

effectiveness of checkpoint immunotherapy drugs. These drugs target the immune system 

checkpoints – molecules on certain immune cells that need to be activated or inactivated to 

start an immune response – and are considered the standard of care in many cancers.1 

Checkpoint immunotherapy drugs typically trigger a durable response in a subset of 

patients, which translates to long-term survival for some – but not all – patients.2 However, 

the predictors of long-term survival are yet to be fully understood and long-term follow-up is 

the ultimate way to determine whether distinct subpopulations truly exists in terms of 

response to checkpoint immunotherapy.3 

Although checkpoint immunotherapy has revolutionized cancer treatment in many 

ways, these drugs have the potential to cause life-threating side effects and financial toxicity 

due to high cost. The cost of immunotherapy can vary widely based on factors such as 

treatment duration and the type and staging of cancer; however, evidence shows that on 

average the treatment cost of immunotherapy drugs is significantly higher than 

chemotherapy alternatives.4 Potential side effects of checkpoint immunotherapy usually 

result from an overstimulated or misdirected immune response, and can range from mild to 

moderate or severe.1 In more serious cases, checkpoint immunotherapy can cause the 

immune system to attack vital organs, which can lead to severe and sometimes life-

threatening side effects in the lungs, intestines, liver, kidneys, or other organs. Serious side 
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effects could lead to treatment being stopped and might require suppressing the immune 

system.5-7 

Because of the known heterogeneity in treatment response, as well as high cost and 

potential for severe adverse events associated with checkpoint immunotherapy drugs, 

identifying patients who will benefit from these drugs has become increasingly critical. 

Therefore, percision medicine strategies that can help individualize treatments for patients 

(or subsets of patients) have grown in popularity both in clinical practice and medical 

research.8 An individualized treatment rule (ITR) is a precision medicine tool that can be 

used for this purpose. ITR is a data-driven decision algorithm that recommends an optimal 

treatment according to patient characteristics in a way that, if implemented in practice, can 

maximize the health outcome of interest.9 ITRs can be particularly beneficial in the context 

of known heterogeneity of treatment response, for instance, cancer treatment with 

checkpoint immunotherapy drugs.  

Clinical trial data are commonly used to construct ITRs; however, complexity of 

disease mechanism, individual heterogeneity, and presence of numerous known and 

unknown potential outcome predictors make constructing ITRs using trial data difficult, 

particularly in trials with limited follow-up. In this paper we used outcome-weighted learning 

(OWL) to estimate ITRs that can maximize individual- and population-level survival gains.10 

OWL is a novel classification approach that has been suggested for constructing ITRs using 

clinical trial data. This approach directly estimates the decision rule that maximizes outcome 

of interest and is robust to the model misspecification.10 

To estimate ITRs via OWL using clinical trial data, the reward value (i.e., the health 

outcome of interest) needs to be known to calculate the individual weights. However, clinical 

trials can be limited in the data they provide on the outcome of interest as a result of time 

and/or budget constraints. Specifically, trial results are commonly published before the 

outcome of interest i.e., overall survival (OS) is reached for all participants (i.e., some 
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individuals are right-censored).11 Cui and colleagues extend the OWL framework to right-

censored survival data using the recursively-imputed survival trees (RIST), a tree-based 

approach that nonparametrically imputes the survival time for right-censored observations.12 

However, the RIST algorithm caps the imputed failure time at the end of the follow-up 

duration of the clinical trial.13 Since checkpoint immunotherapy drugs typically result in a 

long-term survival in a subset of population that goes well beyond typical trial follow-up,2 

using RIST alone for imputation might underestimate the survival impact of these 

treatments. To extrapolate the survival time beyond trial follow-up, we used an individual-

level extrapolation model that was introduced in the Aim1 paper. The proposed method uses 

kernel-weighted survival forest (KWSF) to estimate failure time in a manner that is suitable 

for implementation within OWL.  

Additionally, the literature is scarce when it comes to the evidence that demonstrates 

the potential economic and clinical benefits of implementing ITRs in real-world practice as 

the majority of the ITR-related literature focuses on the methodological aspect of estimating 

ITRs.8 Generating evidence that shows the clinical and economic impacts associated with 

implementing ITRs is critical to convince patients, healthcare providers, and healthcare 

systems to adopt these precision medicine strategies. Specifically, more evidence is needed 

to compare individualizing treatment strategies with strategies that allocate treatments 

based on the average treatment effect observed in clinical trials as typically recommended 

in evidence-based guidelines and oncology value frameworks.14,15 

Using patient-level data from a checkpoint immunotherapy clinical trial in advanced 

melanoma, this study aims to estimate ITRs using most accurate survival projections from a 

novel individual-level extrapolation method proposed in the Aim1 paper and calculate 

survival and cost impacts associated with implementing these ITRs in the trial cohort 

compared to the survival and cost impacts associated with universal use of the trial-
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recommended treatment, with the goal of maximizing OS among patients with advanced 

melanoma.  

Methods 

Dataset 

We trained and tested the ITRs in this study using patient-level data from the CA184-

024 trial, a multi-center, randomized, double-blind, two-arm, phase III study in patients with 

untreated stage III (unresectable) or IV melanoma receiving dacarbazine (DTIC) plus 

ipilimumab vs. DTIC with placebo.16 In this trial, a total of 502 subjects were randomized to 

ipilimumab plus DTIC (n=250) and to DTIC monotherapy (n=252). The CA184-024 study 

has a relatively long follow-up duration, and available trial data includes minimum follow-up 

of 5 years.17,18 In this trial, ipilimumab was found to produce long-term survival results in a 

fraction of subjects treated; similar impact has been seen in other checkpoint 

immunotherapy trials.2 We identified 18 predictive variables based on data availability; 

predictors with missing values were excluded from the analysis. All analyses were 

conducted based on an intention-to-treat framework i.e., trial data were analyzed assuming 

that subjects received the randomly assigned treatment.  

Estimating Extrapolated Failure Times for Right-Censored Subjects  

We used KWSF, a novel method to estimate individual-level survival functions 

(introduced in Aim 1 paper), to predict survival beyond trial follow up for right-censored 

subjects. This novel model leverages survival forest based on extremely randomized 

trees13,19 and kernel-weighted parametric extrapolation. For the parametric extrapolation, 

multiple parametric survival distributions including exponential, Weibull, log logistic, log 

normal, gamma, and generalized gamma were fitted to each individual-level survival 

function (i.e., the forest-level survival function for an individual) and the distribution with the 

lowest AIC was selected for survival extrapolation for that individual. This process allows for 
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potentially different distributions to be selected for different subjects within the trial. KWSF 

was used to estimate failure time only for the censored subjects.  

Estimating ITRs Using Extrapolated Failure Times 

The individual-level extrapolated survival estimates were used as inputs in the OWL 

algorithm, an innovative classification approach that uses support vector machine 

techniques, to develop ITRs that maximize patient survival.10 The OWL method can directly 

estimate a decision rule that, if implemented in practice, will maximize the clinical output i.e., 

OS.10 Using clinical trial data, information about the optimal IRT is available only indirectly 

through the observed and extrapolated reward (OS). To better utilize this indirect 

information, the OWL algorithm assigns differential weights to each individual based on their 

observed/extrapolated OS. More specifically, for subjects observed to have a large reward 

(i.e., longer OS) this rule is apt to recommend the same treatment assignments that the 

subject has actually received; however, for individuals with small rewards (i.e., shorter OS), 

the rule is more likely to give the opposite treatment assignment to what they received. 

Therefore, the optimal IRT misclassifies less individuals with high reward as compared to 

the individuals with low reward.10 The OWL uses support vector machines to solve this 

weighted classification problem.  

In this analysis, we randomly divided the 502 subjects into four groups and use three 

parts as training data to estimate the optimal rule and calculate the empirical value of the 

reward function based on the remaining part. We then permute the training and testing 

groups and average the four results. This procedure is then repeated 100 times and 

averaged to obtain the empirical value of reward i.e., average OS resulting from the 

treatment allocations based on ITR recommendations. Additionally, we characterized 

subjects who were recommended to receive either treatments by the ITR algorithm.    
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Estimating the Economic Impact of Each Treatment Allocation Strategy  

To estimate the economic impact of implementing the ITRs, direct treatment cost 

(payer perspective) for each trial intervention were estimated using a set of parameters 

extracted from the literature. For Ipilimumab, we assumed a four-dose regimen at a dose of 

3 mg per kilogram of body weight.20 The unit cost of Ipilimumab was estimated to be 

$6,659.07 per 50 mg vial.21 Assuming average weight of 80 kilogram, 5 vials will be needed 

for each dose, which results in $33,295 per dose and $133,181 per treatment course. The 

cost of one dose of DTIC was estimated to be $989.22 Assuming a 6-dose treatment for a 

typical course of DTIC,16 the total treatment cost was estimated to be $5,933. Since the 

same dose of DTIC was used in both arms, we estimated per person cost of treatment in the 

immunotherapy arm (ipilimumab + DTIC) to be $139,115. For the chemotherapy arm (DTIC 

monotherapy), the per person treatment cost was estimated to be $5,933. The drug 

administration costs were assumed to be equal between the two arms of treatment and was 

not factored in the calculations.  

Overall survival (life years gained) and direct treatment cost (measured in 2020 US 

dollars) were assessed for four distinct treatment allocations strategies in the cohort of 

subjects studied in this advanced melanoma trial: (1) immunotherapy all: treatment 

allocation based on the average treatment effect of the clinical trial (i.e., every subjects 

receives immunotherapy); (2) ITR: treatment allocation based on the estimated ITRs; (3) 

chemotherapy all: a hypothetical treatment allocation strategy where every subject receives 

the less costly, and less effective treatment (i.e., every subject receives chemotherapy); and 

(4) RCT: treatment allocation based on the randomization implemented in the clinical trial. 

The last two strategies were selected to provide baseline estimates for comparison as they 

are unlikely to be used in practice.  

To compare the cost and benefits of these four treatment allocation strategies, we 

calculated the incremental cost effectiveness ratio (ICER) as defined by (Coststrategy1 − 
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Coststrategy2)/ (LYstrategy1 − LYstrategy2), with LY indicating life years gained. Additionally, the net 

monetary benefit of each strategy was estimated for three levels of willingness to pay (WTP) 

threshold per life-year gained: $50,000, $100,000, and $150,000 as defined by (LYstrategy1 * 

WTP) - Coststrategy1.23 All analyses were conducted using R version 4.0.2. 

Results 

The mean survival time using the available trial follow up data was 466.76 and 

630.89 days in chemotherapy and immunotherapy arms, respectively. The corresponding 

numbers after survival extrapolation for right-censored subjects were 477.33 and 690.38 

days for the chemotherapy and immunotherapy arms, respectively.  

Among the 502 trial subjects, the ITR algorithm allocated 273 subjects to 

immunotherapy and 231 subjects to chemotherapy. Table 4.1 shows the distribution of a 

select demographic and prognostic factors24,25 among the subjects who were randomized to 

receive immunotherapy and chemotherapy in trial compared to subjects who were allocated 

to the same interventions by the ITR algorithm. Compared to the RCT treatment 

assignment, the ITR algorithm recommended slightly older subjects to receive 

immunotherapy (mean age of 59.11 years in ITR vs. 57.52 years in RCT). Similarly, higher 

proportion of female subjects were recommended to receive immunotherapy under ITR 

treatment allocation (43% in ITR vs. 39% in RCT). Further, the ITR algorithm recommended 

higher proportion of subjects with concomitant use of steroid to receive immunotherapy 

(72% in ITR vs. 63% in RCT).  

Compared to other strategies, the ITR treatment allocation resulted in the highest 

average survival time estimate (879 days), while the “chemotherapy all” strategy resulted in 

the lowest average survival time (509 days). The discounted survival time were estimated to 

be 2.35, 1.83, 1.38, and 1.58 years for ITR, “immunotherapy all”, “chemotherapy all”, and 

RCT treatment allocation strategies, respectively (Table 4.2).  
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The strategies that allocate immunotherapy to a higher proportion of subjects were 

associated with higher average treatment costs with $139,115, $77,830, $72,259, and 

$5,933 for “immunotherapy all”, ITR, RCT, and “chemotherapy all” strategies, respectively. 

Compared to “immunotherapy all”, the ITR strategy was associated with lower treatment 

cost and higher life years gained with calculated ICER of -$118,236/LY (Table 4.3). The 

“immunotherapy all” strategy was associated with the lowest estimated net benefit across all 

WTP thresholds considered, ranging from -$47,371 to $136,116 for WTP of $50,000/LY and 

$150,000/LY, respectively (Table 4.4). The ITR strategy resulted in the highest net monetary 

benefit for WTP of $100,000/LY and WTP of $150,000/LY with $157,490 and $275,149, 

respectively, while the “chemotherapy all” strategy provided the highest net monetary benefit 

at the WTP of $50,000. (Figure 4.1) 

Discussion 

For this study, we used a combination of two machine learning methods together 

forming a novel approach to ITR estimation using clinical trial data that has a built-in 

mechanism to extrapolate survival. The KWSF algorithm provides individual-level 

extrapolated survival estimates that projects survival beyond the available trial follow up for 

right-censored subjects. This feature is particularly important for checkpoint immunotherapy 

drugs as such drugs typically result in long-term survival in a subset of patients and the 

extrapolation can provide a more accurate representation of survival effects of the 

checkpoint immunotherapy treatments.  

We opted to use the OWL approach for constructing ITRs because of its robustness 

to model misspecification and ability to incorporate extrapolated survival estimates. OWL 

uses a weighted classification framework to directly estimate the decision rule that 

maximizes outcome of interest. Robustness to model misspecification combined with OWL’s 

ability to incorporate support vector machine makes OWL an ideal candidate for 
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constructing ITR using patient-level clinical trial data. Further, this algorithm provides a 

platform that can be used for trial or real-world data for other immunotherapy treatments. 

Recently, value frameworks have been proposed for use in the clinical settings to 

facilitate individual treatment discussions between physicians and their patients. For 

instance, the ASCO Value Framework14,15 and the NCCN Evidence Blocks26 aim to assist 

providers and patients to make informed decisions about the value of oncology treatment 

regimens. These value frameworks typically assess the survival impact as well as other 

outcomes associated with an intervention based on the observed average treatment effect 

in a clinical trial. Our findings indicate that such use of average treatment effect produces 

less survival gains compared to what can be achieved using ITR recommendations. In fact, 

in our analysis, the “immunotherapy all” strategy that represents the recommendation based 

on the average treatment effect was associated with higher direct treatment costs, while 

resulting in lower survival gains compared to treatment allocation based on the estimated 

ITRs. Additionally, the “immunotherapy all” strategy resulted in the lowest estimated net 

monetary benefit across all WTP thresholds considered.  

This study is subject to a number of limitations both in terms of the methodology and 

data availability. The OWL algorithm is based on support vector machine estimator which is 

primarily designed for binary classification e.g., comparing two treatments at a time10,12; 

however, similar methods can be expanded for multicategory classification.27-29 For 

example, in a multi-arm clinical trial, the algorithm can be used to compare two arms at a 

time or to compare a given arm vs. all others. Further, the reward function for the OWL 

method was defined as OS; therefore, the OWL algorithm optimizes survival gains but does 

not account for quality of life, an important factor in treatment selection in oncology settings.  

Additionally, patients have heterogenous preferences with regard to outcomes such 

as a given intervention’s safety and tolerability, quality of life impacts, and financial 

affordability that will need to be factored in the decision-making process.30 While the OWL 
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approach provides individualized treatment recommendation that can maximize OS, it is not 

designed to incorporate heterogeneity in patient preferences for different health and 

economic outcomes.31 Furthermore, the net monetary benefit calculations in this study only 

include direct treatment costs, not accounting for cost associated with adverse events and 

other treatment- and cancer-associated healthcare resource utilization. 

The CA184-024 trial is one of the first phase III trials that assessed a checkpoint 

immunotherapy in advanced melanoma comparing Ipilimumab + DTIC with DTIC 

monotherapy.32 However, Ipilimumab plus DTIC or DTIC monotherapy that were evaluated 

in this trial are not considered standard of care in advanced melanoma as several safer and 

more effective options have since become available for this indication.33-35 While this study 

estimated ITRs for Ipilimumab plus DTIC vs. DTIC monotherapy, it prototypes approaches 

that can be used to inform additional treatment decisions especially in the context of 

checkpoint immunotherapy clinical trials.  

The OWL algorithm, as described above, can be used to develop an application that 

inputs the characteristics of a given patient (outside the clinical trial) and provides the 

optimum treatment that can maximize OS. Implementing such tools and applications in 

practice, however, is subject to many challenges. Unlike traditional forms of statistical 

analysis, the machine learning algorithms has many features and components with little 

meaning to a human observer, making the explanation of the modeling technique difficult or 

impossible to interpret, which in turn makes it more difficult to convince patients and 

physicians to use these tools.36 

Additionally, embedding treatment recommendations from such algorithms in clinical 

protocols and electronic health records (EHR) systems can be challenging.36 Such 

integration issues can be a barrier to broader implementation of these precision medicine 

tools.37 For widespread adoption of ITRs to take place, factors such as appropriate 

regulatory approvals, integration with EHR systems, quality standards to ensure the 
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reliability of these tools, training and educating clinicians, and financial resources for 

implementation and updating these tools need to be in place.  

The findings of this study show that compared to allocating treatment based on the 

average treatment effect from a clinical trial, treatment allocation based on the estimated 

ITRs resulted in higher survival gains and lower direct treatment costs, which is likely to 

persist even when considering the cost of implementing individualized treatment and 

willingness to pay for life-years gained. We also demonstrated that maximizing survival 

using ITRs have the potential to create the highest net monetary benefit. This happens as a 

result of the ITR’s ability to allocate the checkpoint immunotherapy treatment to patients 

who will benefit from it, which can make a big difference in cost for patients and healthcare 

system. Future studies are needed to test the capabilities of the proposed models in 

creating ITRs using more recent checkpoint immunotherapy trials.   

 

 

 

  



 

 

6
5

 

Table 4.1. Distribution of a select prognostic characteristics of the trial subjects by allocation strategy (n=502) 

 Variables 

RCT allocation ITR allocation 

Immunotherapy 
(n=250) 

Chemotherapy 
(n=252) 

Immunotherapy 
(n=271) 

Chemotherapy 
(n=231) 

Age (years) 57.52 (13.18) 56.42 (13.26) 59.11 (12.40) 54.46 (13.74) 

Sex      

Female 98 (39%) 103 (41%) 116 (43%) 85 (37%) 

Male 152 (60%) 149 (59%) 155 (57%) 146 (63%) 

ECOG*     

Grade 0 177 (70%) 179 (71%) 189 (70%) 167 (72%) 

Grade 1 73 (29%) 73 (29%) 82 (30%) 64 (28%) 

Current tumor stage**     

Stage III 6 (2%) 12 (5%) 4 (1%) 14 (6%) 

Stage IV 244 (97%) 240 (95%) 267 (99%) 217 (94%) 

Metastasis stage**     

M0 6 (2%) 8 (3%) 4 (1%) 10 (4%) 

M1A 37 (15%) 43 (17%) 47 (17%) 33 (14%) 

M1B 64 (25%) 62 (25%) 65 (24%) 61 (26%) 

M1C 143 (57%) 137 (55%) 155 (57%) 127 (55%) 

Prior Adjuvant therapy     

Interferon 58 (23%) 56 (22%) 77 (28%) 37 (16%) 
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None 184 (73%) 185 (73%) 185 (68%) 184 (80%) 

Other  8 (3%) 11 (4%) 9 (3%) 10 (4%) 

Baseline elevated LDH     

Elevated 93 (37%) 110 (44%) 93 (34%) 110 (48%) 

Normal 157 (62%) 140 (56%) 178 (66%) 119 (52%) 

Not reported 0 (0%) 2 (1%) 0 (0%) 2 (1%) 

Concomitant steroid use     

No 92 (37%) 164 (65%) 76 (28%) 180 (78%) 

Yes 158 (63%) 88 (35%) 195 (72%) 51 (22%) 

RCT: Randomized Controlled Trial. ITR: Individualized Treatment Rules. ECOG: Eastern Cooperative Oncology Group 
Performance Status. LDH: Lactate Dehydrogenase  

*ECOG performance status grade 0 indicates 0—Fully active, able to carry on all pre-disease performance without restriction, and 
grade 1 indicates Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary 
nature38 

**Classified according to the tumor–node–metastasis categorization for melanoma of the American Joint Committee on Cancer20,39 
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Table 4.2. Survival gains estimation for four different treatment allocation strategies  

 

Treatment allocation strategies 

ITR recommended Ipi + DTIC all* DTIC all* RCT assignment** 

Number allocated to Ipi + DTIC  271 250 0 250 

Number allocated to DTIC  231 0 252 252 

Average survival-days (extrapolated) 879 679 509 583 

Average survival-years (extrapolated) 2.41 1.86 1.39 1.60 

Average survival-years (discounted***) 2.35 1.83 1.38 1.58 

ITR: Individualized Treatment Rules. Ipi: Ipilimumab. DTIC: Dacarbazine. RCT: randomized controlled trial. 
*Based on the corresponding results from the trial after survival extrapolation 
**Based on the original allocation in the trial after survival extrapolation  
***At 3% rate 
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Table 4.3. Incremental cost estimation for 4 different treatment allocation strategies 

 

Treatment allocation strategies 

ITR recommended Ipi + DTIC all* DTIC all* RCT assignment** 

Average cost per person $77,830  $139,115  $5,933  $72,259  

Average survival-years 2.35 1.83 1.38 1.58 

Cost/LY $33,074 $75,817 $4,294 $45,737 

ICER ($/LY) ($118,236) NA $293,932  $262,178  

ITR: individualized treatment rules. Ipi: Ipilimumab. DTIC: Dacarbazine. RCT: randomized controlled trial. LY: life years. ICER: 
incremental cost-effectiveness ratio 
*Based on the corresponding results from the trial after survival extrapolation 
**Based on the original allocation in the trial after survival extrapolation 
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Table 4.4. Net monetary benefit estimates for four treatment allocation strategies by different WTP values 

Treatment allocation 
strategies ICER 

Net monetary benefit for different levels of WTP 

$50,000/LY $100,000/LY $150,000/LY 

ITR recommended ($118,236) $39,830  $157,490  $275,149  

Ipi + DTIC all* NA ($47,371) $44,372  $136,116  

DTIC all* $293,932  $63,155  $132,243  $201,332  

RCT assignment** $262,178  $6,735  $85,728  $164,721  

WTP: willingness to pay. LY: life years. Ipi: Ipilimumab. DTIC: Dacarbazine. ITR: individualized treatment rules. RCT: randomized 
controlled trial. ICER: incremental cost-effectiveness ratio 
*Based on the corresponding results from the trial after survival extrapolation 
**Based on the original allocation in the trial after survival extrapolation 
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Figure 4.1. Net monetary benefit of four treatment allocation strategies by WTP  

 

WTP: willingness to pay. ITR: individualized treatment rule. Ipi: ipilimumab. DTIC: 
dacarbazine. RCT: randomized controlled trial. LY: life years 
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CHAPTER 5: CONCLUSIONS 

Since the first approval of a checkpoint immunotherapy drug by the US Food and 

Drug Administration in March 2011, this class of drugs, either individually or in combination 

with other drugs, have become standard of care for many cancers.1 The long-term survival 

impacts of checkpoint immunotherapy drugs on a subset of treated population and their 

unique survival dynamics have challenged traditional statistical methods for example to 

model long-term survival impacts and estimate individualized treatment rules.2 In this 

dissertation, I proposed novel machine learning techniques that can be used to tackle some 

of these challenges.  

In the first paper of this dissertation, I used the Recursively Imputed Survival Trees 

(RIST) algorithm, a sophisticated nonparametric survival imputation method,3 to develop 

Kernel-Weighted Survival Forest (KWSF) algorithm, a fit-for-purpose algorithm for individual-

level survival extrapolation beyond the trial follow up. I tested the KWSF model on patient-

level data from a checkpoint immunotherapy trial comparing its prediction accuracy with that 

of standard parametric models as a proof-of-concept study. Additionally, the first paper has 

been written in a tutorial format, where I described in details all the innerworkings of this new 

algorithm to make it more accessible for applied decision modelers.  

The second paper of this dissertation expands on the novel method proposed in the 

first paper by taking advantage of its modular feature that allows for more flexible 

extrapolation functions to be used at individual level. In this paper, the predictive accuracy of 

the KWSF variations with cure fraction extrapolation function was compared with survival 

extrapolation methods that directly model heterogeneity of treatment response.4  
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Finally, the third paper of this dissertation uses the individual-level extrapolated 

survival estimates from the first two papers as inputs for outcome weighted learning (OWL) 

algorithm, a novel machine learning algorithm that directly estimates individualized 

treatment rules (ITRs).5 The estimated ITRs were designed to allocate treatment based on 

patient’s characteristics in a way that, if implemented in practice, will maximize the overall 

survival.6 Additionally, I estimated the survival impact, direct treatment cost, and net 

monetary benefit associated with using the estimated ITRs and compared these outcomes 

with treatment allocation strategies that are based on average treatment effect estimate 

from clinical trials, as commonly recommended in oncology value frameworks.7,8  

Summary of Results 

The first paper provides a tutorial that introduces the KWSF model as a novel 

survival extrapolation method that uses patient-level characteristics to estimate 

individualized survival function, which can then be used for individual-level survival 

extrapolation. This model can accommodate potential individual-level treatment response 

heterogeneity and survival dynamics of checkpoint immunotherapy treatments. The 

implementation of the proposed method on data from a checkpoint immunotherapy clinical 

trial in advanced melanoma showed that compared to standard parametric models, KWSF 

more accurately predicted survival beyond the available trial follow up. The KSWF model 

consistently outperformed the standard parametric model across all time points assessed in 

the study for both chemotherapy and immunotherapy arms, regardless of the duration of 

follow up available to train the models.   

The results of the second paper showed that compared to models that use standard 

parametric extrapolation, cure fraction models and KWSF with cure fraction extrapolation 

function were more accurate in predicting survival in the immunotherapy arm of the trial. Our 

findings also provided further evidence illustrating the utility of cure fraction models for 

survival extrapolation both at individual and population levels. The difference between 
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accuracy of cure models and standard parametric models were less noticeable for the 

chemotherapy arm, potentially indicating that cure fraction might not be as effective for 

survival modeling of traditional cancer treatments such as chemotherapy. The KWSF model 

with a cure fraction survival extrapolation function demonstrated comparable accuracy with 

cure fraction models, while uniquely allowing for estimating individual-level survival functions 

that can be used to inform precision medicine strategies, and serve as the foundation for 

individual-level simulation of checkpoint immunotherapy drugs’ relative economic value and 

efficiency.  

The findings of third paper showed that compared to allocating treatment based on 

the average treatment effect from a clinical trial, treatment allocation based on the estimated 

ITRs resulted in higher survival gains and lower direct treatment costs, which is likely to 

persist even when considering the cost of implementing individualized treatment and 

willingness to pay for life-years gained. We also demonstrated that maximizing the overall 

survival using ITRs has the potential to create the highest net monetary benefit. This 

happens as a result of the ITR’s ability to allocate the checkpoint immunotherapy treatment 

to patients who will benefit from it, which can make a big difference in cost for patients and 

healthcare systems.  

Limitations 

For all three aims of this study, I used patient-level data from CA184-024 Study: a 

multi-center, randomized, double-blind, two-arm, phase III study in patients with untreated 

stage III (unresectable) or IV melanoma receiving dacarbazine plus ipilimumab vs. 

dacarbazine with placebo.9 The CA184-024 offers a relatively long follow-up duration with 

minimum follow-up of 5 years.10,11 The longer-term follow-up duration of this trial allows for 

assessing the prediction accuracy of proposed extrapolation models using varied amounts 

of follow-up duration (i.e., two and three years); however, the treatments evaluated in this 

clinical trial are not considered a standalone treatment options for advanced melanoma.12-14 
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That being said, we believe the proposed extrapolation method can be used as a prototype 

for any randomized controlled trial of checkpoint immunotherapy or similar treatments in the 

context of a limited follow-up and known heterogeneity of treatment response. Similarly, in 

the third paper, although the ITRs were estimated for ipilimumab plus DTIC vs. DTIC 

monotherapy, the proposed algorithm prototypes approaches that can be used to inform 

additional treatment decisions especially in the context of checkpoint immunotherapy clinical 

trials.  

Further, limited follow up from the trial and lack of external data (e.g., real-world data 

from registries) makes it difficult to validate the results of the extrapolation beyond the 

available trial data. This limitation is particularly important for recently approved checkpoint 

immunotherapy drugs, where long-term real-world data have not accumulated yet. In 

addition, the algorithms used in this dissertation are not designed to explicitly model 

potential survival impacts of the subsequent i.e., second- and third-line treatments. 

The OWL algorithm used in the third paper is based on support vector machine 

estimator which is primarily designed for binary classification5; however, similar methods can 

be expanded for multicategory classification, e.g., clinical trials with more than two arms.15-17 

Further, the reward function for the OWL method was defined as overall survival; therefore, 

the OWL algorithm optimizes survival gains but does not account for quality of life, an 

important factor in treatment selection in oncology settings. Additionally, we acknowledge 

that patients have heterogenous preferences with regard to treatment outcomes such as 

safety and tolerability, quality of life impacts, and financial affordability that will need to be 

factored in the decision-making process. While the OWL approach provides individualized 

treatment recommendation that can maximize overall survival, it is not designed to 

incorporate heterogeneity in patient preferences for different health and economic 

outcomes. Furthermore, the net monetary benefit calculations in this third paper only include 
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direct treatment costs, not accounting for cost associated with adverse events and other 

treatment- and cancer-associated healthcare resource utilization. 

Real-world implementation of machine learning tools such as proposed algorithms is 

subject to many challenges.18 Unlike traditional forms of statistical analysis, the machine 

learning algorithms has many features and components with little meaning to a human 

observer, making the explanation of the modeling technique difficult or impossible to 

interpret, which in turn makes it more difficult to convince patients, physicians, and 

healthcare systems to use these tools.18 Additionally, embedding treatment 

recommendations from such algorithms in clinical protocols and electronic health records 

(EHR) systems can be challenging.18 We acknowledge that such integration issues can be a 

barrier to a widespread implementation of these precision medicine tools.19 For broader 

adoption of ITRs to take place, factors such as appropriate regulatory approvals, integration 

with EHR systems, quality standards to ensure the reliability of these tools, training and 

educating clinicians, and financial resources for implementation and updating these tools 

need to be established.  

Policy Implications and Future Research  

Results from the three papers of this dissertation have implications for decision 

analysis methods, precision medicine and clinical care, and policy development. This work 

serves as a case example of novel methodologic approaches to predict long-term survival 

impacts of checkpoint immunotherapy treatments beyond trial follow up that account for 

potential individual-level heterogeneity in treatment response. The KWSF algorithm can be 

used to develop an application that inputs the characteristics of a given patient (outside the 

clinical trial) who received similar interventions to estimate their individualized survival 

function. Such application can help develop individual-level simulation models for economic 

evaluation of checkpoint immunotherapy drugs as well as informing the estimation of 

individualized treatment rules. Lastly, although treatment decisions involve a number of 
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complex and inter-related factors, application of the proposed predictive models may 

provide valuable individualized information that can improve decision making in the clinical 

setting.  

Several potential expansions of this work may provide more insights and help 

facilitate the widespread adoption of these algorithms: First, it is imperative to train and 

validate the proposed novel methods using patient-level data from more recent and 

clinically-relevant checkpoint immunotherapy clinical trials as well as external data sources. 

Second, developing user-friendly applications based on the proposed methods that can 

input characteristics of a given patient and generate extrapolated survival function and the 

optimum individualized treatment rule that can be used by researchers and clinicians. Third, 

evaluating the real-world effectiveness of using the ITR application for allocating treatment 

and comparing the associated health and economic outcomes with the standard of care 

treatment allocation can generate more convincing evidence for adoption of these new 

models. Lastly, embedding the proposed ITR application in electronic health records 

systems and clinical workflows can facilitate a more widespread use of the proposed 

application in real-world practice.  

The first two papers of this dissertation are methodological, addressing gaps in 

decision science methods through the use of predictive analytics (machine learning 

algorithms) and setting the stage for informed decision-making. The third paper builds on 

this foundation and other novel machine learning methods to inform cancer treatment 

decision making by assessing the cost and survival impacts of individualized treatment rules 

versus treatment assignment based on average treatment effect from clinical trial results. 

Using the novel algorithms described above, this dissertation provides valuable tools for 

individual-level survival extrapolation and developing individualized treatment rules that has 

the potential to improve patient outcomes and reduce healthcare costs.  
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