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ABSTRACT 

Bailey M. DeBarmore: Electronic Health Record Phenotyping in Cardiovascular Epidemiology 
(Under the direction of Wayne D. Rosamond) 

 

The secondary use of EHR data for research is a cost-effective resource for a variety of 

research questions and domains; however, there are many challenges when using electronic 

health record (EHR) data for epidemiologic research. 

This dissertation quantified differences in prevalence for acute myocardial infarction (MI) 

and heart failure (HF) using phenotyping algorithms differing in diagnosis position of ICD-10-CM 

codes and the inclusion of clinical components. The period of interest was January 1, 2016 to 

December 31, 2019 for UNC Clinical Data Warehouse for Health data and October 1, 2015 and 

December 31, 2019 for Atherosclerosis Risk in Communities (ARIC) Study data, the latter used 

for validation analyses.  

During the period of interest, 13,200 acute MI cases and 53,545 HF cases were 

identified in the UNC data. Age-standardized prevalence of acute MI and HF were highest using 

Any Diagnosis Position algorithm and lowest for acute MI using 1st or 2nd Diagnosis Position with 

Lab or Procedure and 1st Diagnosis Position for HF. Projected differences in healthcare 

expenditures by algorithm as well as patient and clinical characteristics, such as event severity 

and mortality, were also estimated. When compared to physician-adjudicated hospitalizations in 

the ARIC study, the phenotyping algorithms used for the UNC analysis performed well given 

their simplicity. The algorithm with the highest sensitivity was Any Diagnosis Position for acute 

MI and HF at 75.5% and 70.5%. Specificity, PPV, and NPV ranged from 80-99% for all 

algorithms. Requiring clinical components had little effect except for increasing PPV slightly, 

while restricting diagnosis position to 1st or 2nd position decreased sensitivity and increased 
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PPV. The impact of clinical components or diagnosis position did not differ by race, age, or sex 

subgroups. 

The results from this dissertation can be used by researchers using EHR data for a 

variety of reasons from informing their own analytic decisions to validating their study findings. 

The continued use of EHR data for research requires transparency to facilitate reproducibility as 

well as studies focused on what we are measuring. 
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CHAPTER 1: OVERVIEW AND RATIONALE 

Utilizing electronic health record (EHR) data to capture detailed information about 

chronic disease burden has potential benefits to multiple aspects of epidemiology, including 

surveillance, predictive modeling, comparative effectiveness research, and traditional risk factor 

epidemiology. Using EHR data for epidemiologic analysis is a cost-effective method of re-using 

routinely collected healthcare data for observational research.1–4 With the recent expansion of 

EHR use across hospital systems and primary care offices in the United States (US) and the 

refinement of epidemiologic methods for secondary use of healthcare data, the possibility of 

using EHRs to create large datasets capable of supporting research on rare outcomes or 

subgroups grows as well. The logistic aspect of linking together EHR systems has been an area 

of interest for clinical and public health informaticians, focusing on interoperability between EHR 

systems and details of data partnerships, resulting in large distributed research networks 

(DRNs) such as PCORnet and the FDA Sentinel system.5,6 While these research networks 

facilitate the ability to conduct research with EHR data, to understand what we are 

measuring when utilizing EHR data requires a deeper understanding of EHR 

phenotyping. EHR phenotyping refers to the process of identifying and analyzing data on 

individuals with certain characteristics, such as a disease, in EHR data sets.7–11  

Quantifying the burden of cardiovascular disease, the #1 cause of death in the US, is 

important to understand progress towards reducing that burden. In addition to counting how 

many individuals or events are captured with a particular EHR phenotyping algorithm, equally 

important is who is captured with that algorithm.  Choice of EHR phenotyping algorithm includes 

many decisions, such as choice of diagnosis codes and/or clinical criteria, inpatient or outpatient 

setting, lookback duration, and observability requirements. These decisions are not always 
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reported transparently in the EHR-based research literature, hindering reproducibility in the field. 

Data fragmentation, resulting from the lack of EHR interoperability across a patient’s many 

healthcare institutions, negatively affects data completeness in EHR-based research. The 

resulting missingness and selection bias introduced can influence not only the validity and 

precision of disease burden estimates, but also the generalizability to the care-seeking 

population and transportability to the national population as a whole. While the transparent 

reporting of analytic decisions (i.e. algorithm components and lookback period duration) are 

crucial to improving the reproducibility of EHR-based epidemiology research, evaluating the 

effect of different analytic choices is crucial to improving the rigor of EHR-based epidemiology 

research.1,12 Thus, in addressing these methodologic challenges in my dissertation, I am 

contributing to efforts aimed at improving both the reproducibility and rigor of EHR-based 

epidemiology research. 

Furthermore, my proposed dissertation research is novel in 3 ways. First, it utilizes the 

10th revision of the International Classification of Diseases, Clinical Modification (ICD-10-CM) 

diagnosis codes, which have been used in clinical practice since October 2015, while EHR 

validation studies in the US have only been conducted using data from periods inclusive of ICD-

9-CM codes. Second, most EHR studies are limited to a single dataset, which may limit the 

generalizability to other health systems or EHR formats – I used a large healthcare data set 

from UNC Health and validating the results in a cohort study with physician-adjudicated events. 

Third, most EHR studies limit their analysis to one disease phenotype. I explored methodologic 

challenges across 2 conditions, including both acute and chronic cardiovascular conditions (i.e. 

acute myocardial infarction and acute and chronic heart failure) and across both inpatient and 

outpatient settings. The results of this dissertation contribute both methodologically and 

substantively to cardiovascular research using EHRs.  
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CHAPTER 2: STUDY OBJECTIVE AND SPECIFIC AIMS 

The overarching research question for this dissertation is: To what degree do various 

methodologic decisions in using electronic health records affect the application of EHR-based 

methods to epidemiologic research on cardiovascular disease? 

Specific Aims 

Aim 1: Compare the absolute and relative prevalence of estimates from different EHR 

phenotyping algorithms for acute myocardial infarction and heart failure. 

Aim 2: Compare characteristics of the population captured using different EHR 

phenotyping algorithms for acute myocardial infarction and heart failure by describing important 

phenotypic elements, such as disease severity and mortality, demographic characteristics and 

comorbidities. 

Aim 3: Apply algorithms evaluated in Aims 1 and 2 to an external dataset, the cohort 

surveillance data from the Atherosclerosis Risk in Communities (ARIC) Study, which contains 

validated cardiovascular outcomes. 
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CHAPTER 3: BACKGROUND AND SIGNIFICANCE 

Electronic Health Records 

What is an Electronic Health Record? 

Electronic medical records (EMRs) are an electronic version of a paper chart, 

containing patient medical and treatment history at one medical practice. Having an EMR alone 

does not meet federal regulations set forth by the Health Insurance Portability and 

Accountability Act of 1996 (HIPAA) and Meaningful Use.13 

Electronic health records (EHRs) include information from all clinicians involved in a 

patients’ care, as well as pharmacy, imaging, and laboratory data. EHR systems can also 

include administrative and financial tools. EHRs provide a broader perspective of a patient’s 

health, not just their medical status and treatment, and ideally move with the patient to different 

care providers.13 EHR systems can also be integrated with patient portals so that patients can 

access their own health information. The definition of EHRs is not always consistent throughout 

the literature. In fact, sometimes EMRs and EHRs are used interchangeably. EHR systems 

include EMRs, because the EMR is the clinical 

documentation portion of the EHR. The EHR 

system can also include additional components 

such as laboratory, radiology, and pharmacy 

information systems, administrative pieces such as 

billing and practice management, as well as 

research and quality functions like population 

health management (Figure 1). Figure 1. Electronic health record system 
components. 
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In 2003 in the report, “Key Capabilities of EHR Systems”14,  the Institute of Medicine (IOM) 

provided a practical EHR definition with 4 components in the report (below). This definition is 

currently used by the US government. 

1) Longitudinal collection of electronic health information for and about persons 

2) Immediate electronic access to person- and population-level information by authorized 

(and only) authorized users 

3) Provision of knowledge and decision-support that enhances the quality, safety, and 

efficiency of patient care 

4) Support for efficient processes of health care delivery 

Another challenge with defining EHR systems is that there is no one system a health care 

practice must adopt. Rather than defining all possibilities of what an EHR system must look like, 

the IOM identified 5 key criteria and 8 core EHR functionalities for EHR systems (Figure 2). A 

complete EHR system may or may not have all 8 functionalities, but should, as a whole, meet 

the 5 key criteria. Over the past decade, the secondary uses of EHR systems outlined in the 

Figure 2. Key Capabilities of an Electronic Health Record System 

Adapted from 1997 update on 1991 IOM Report “The Computer-Based Patient Record” and 
2003 IOM Report “Key Capabilities of an Electronic Health Record System” 
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1991 IOM Report have been included in federal incentive programs for Medicare reimbursement 

(see Current Situation section). 

Most vendors providing EHRs provide “health record systems” or “medical record 

systems” or refer to their services as “EHR software”. EHR software, or EHR systems, can 

include a variety of features including charting (e.g. templates, shortcuts, diagnostic code 

assistance, voice recognition and transcription, document quality reviews, chart search), e-

prescribing, practice management (e.g. appointment scheduling, online intake forms, insurance 

eligibility verification), medical billing, population health management (e.g. tracking quality 

indicators, clinical decision support tools), patient experience (e.g. patient portals), and 

electronic lab and imaging test ordering. 

History of Electronic Health Records 

What we know in the US as EHRs today began as clinical information systems in the 1960s, 

ranging from proprietary EHRs at academic medical centers to private sector efforts to harness 

the advantages of technology for healthcare (Figure 3). 

 

Figure 3. Influence of technology on the development of EHR systems in the United States 
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Advancements in technology in the 1960s and 1970s opened the door for health information 

from paper medical records to be digitized into electronic health records (first called “electronic 

medical records” or “clinical patient records”). However, development and implementation of 

these health information systems was limited to medical centers with the capacity for complex 

information technology infrastructure.15 For example, in 1961, Massachusetts General Hospital 

developed COSTAR (Computer Stored Ambulatory Record)16, with a modular design separating 

clinical information and accounting information, which reduced the burden of on-site storage, 

while including flexible clinical vocabulary to 

allow for heterogeneity across sites. Other 

medical center EHRs developed in the 1960s 

and 1970s including The Medical Record at 

Duke University in 1969,17 the Brigham 

Integrated Computing System at Brigham and 

Women’s Health System, and the Problem-

Oriented Medical Information System (PROMIS) 

at the University of Vermont in 1971.18 PROMIS, 

developed by Dr. Lawrence Weed at the Medical Center Hospital of Vermont, was novel in its 

goal of being able to retrieve patient information electronically in several ways: problem-

oriented, source-oriented, and time-oriented, as well as its advanced technology and scalability 

across the hospital (Figure 4). 

Parallel EHR development was occurring in the private sector. For example, in 1971, 

Lockheed corporation developed a system that allowed for multiple simultaneous users and 

included computerized physician order entry – a feature still being incorporated into some EHRs 

today.19 This innovative system became known as Eclipsys, and was incorporated into Allscripts 

company in the 1980s. At the same time, the Regenstrief Institute in Indianapolis developed the 

Regenstrief Medical Record System with the goal of creating a central location for patient 

Figure 4. Early EHR System: PROMIS 

PROMIS terminal in use at University of Vermont 
Medical Center, circa 1977. Photograph from 
“Automation of the Problem-Oriented Medical 
Record”, 1977, published by US National Center 
for Health Services Research. NLM ID: 7707453. 
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information.20 While the final system was cost prohibitive at the time, the goals driving the 

Regenstrief project are the same goals driving the EHR industry today: (1) Make clinical data 

immediately available to authorized users; (2) Reduce the work of clinical book keeping required 

to manage patients; (3) Make the information available in medical records accessible to clinical, 

epidemiological, outcomes, and management research.21 

The late 1970s and early 1980s saw the establishment of a number of health information 

technology companies that exist today, such as Cerner, established in 1976, Human Services 

Computing Inc., established in 1979 that later became Epic Systems, and Allscripts in 1982. 

While technological advancement, from mainframe computers to personal computers, the 

Internet and cloud-based software, and microprocessors in mobile devices and wearable health 

technology have shaped the EHR system (Figure 3), other forces such as legal and privacy 

concerns and overall healthcare trends began to shape the evolution of the electronic health 

record. In the 1980s, the IOM undertook an evaluation of paper health records, publishing the 

findings in 1991 (with an update in 1997), recommending EHR adoption as 1 of 7 key 

recommendations to improve patient care and patient safety.22 These recommendations shaped 

the next stage of EHR development and implementation, with private sector leaders joining 

together to create the Computer-Based Patient Record Institute to overcome barriers to EHR 

development and implementation.19 Health Level Seven (HL7), an international nonprofit 

standards development organization founded in 1987, became a key partner in ensuring that 

existing and future healthcare technology was interoperable between the many existing 

institution-specific and vendor EHRs. 

The US Public Health Service began developing the Veterans Health Information System 

and Technology Architecture (VistA) system in 1977 jointly with the Veterans Affairs (VA) 

Administration with implementation occurring by 1985 when computers were installed at all VA 

sites in parallel with the Indian Health Service Resource and Patient Management System and 

the Department of Defense.23 The VistA system is the product of government agencies 
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addressing clinical health delivery shortcomings identified in 1965 and formed the base of 

critical tools in research today, such as the Million Veterans Program 

(www.research.va.gov/mvp/). In 2019, the VA transitioned to a Cerner EHR system for better 

integration with Department of Defense records. 

The 1990s saw the beginning of the Internet, allowing for web-based platforms and cloud-

based technology, and affordable personal computers, both factors contributing to the 

affordability of EHRs. The 1991 IOM Report recommended implementation of electronic health 

records in all medical practices: inpatient and outpatient.22 Web-based platforms and cloud-

based technology meant more affordable EHR products to small practices; however, EHRs and 

health information systems developed at the time had been developed specifically for inpatient 

purposes and the expansion to ambulatory care presented specific challenges to the EHR 

industry as technology continued to advance and EHR development moved away from 

individual academic centers to private sector EHR vendors. New EHR vendors came on the 

market specifically to fill the gap in servicing ambulatory providers and this divide continues 

today, with the larger health systems that include both inpatient and outpatient services utilizing 

the largest vendors like Epic and Cerner, but ambulatory care practices using private practice 

based EHRs, such as Allscripts, athenahealth, eClinicalWorks, NextGen, Centricity, MediTech, 

McKesson, NueMD, Kareo, and Care360 that are nearly all cloud-based for affordability. 

The Health Insurance Portability and Accountability Act (HIPAA) of 1996 included specific 

components around the electronic exchange of health information,24 with privacy requirements 

for EHR vendors to meet compliance, becoming one of the most influential drivers of the next 

wave of EHR development.25 EHR development had moved to private vendors and these 

vendors offered customizable and “off-the-shelf” EHR options to medical centers and private 

practices. While these EHR options incorporated technological advances, the customization 

provided by EHR vendors contributed to the lack of interoperability we see today. Many medical 

centers had been using computer systems for accounting, administration, laboratory, and 

https://www.research.va.gov/mvp/
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radiology departments prior to electronic clinical care. Continuing this pattern, as hospitals 

developed clinical care systems, they often developed in silos, with a separate information 

system for nursing, pharmacy, critical care, cardiology, etc.   

As EHR development moved away from institutions developing their own proprietary 

systems and towards EHR vendors offering health information solutions, three main types of 

EHRs emerged in the 2000s: interfaced, integrated systems, and hybrid systems. Interfaced 

systems built interfaces for each existing, separate system that allowed providers to access 

information from each one and share information between them.26,27 Integrated systems, often 

used when a hospital had no existing clinical information system, had data from all departments 

integrated into a single data repository.26,27 Hybrid systems may have core functions in an 

integrated system with additional specialty modules as interfaced systems.26,27  The interfaced 

systems reflect the fragmentation of the healthcare industry and the beginning of the 

interoperability problem between EHR systems that persists today. Many EHR vendors offered 

specialty products geared at specific clinical systems rather than promoting integrated systems, 

allowing health practices to build a customized system with little incentive for integration. 

Current Situation 

Implemented in 2009, the American Reinvestment and Recovery Act (ARRA) included 

the Health Information Technology for Economic and Clinical Health (HITECH) Act. The 

HITECH Act featured EHRs centrally within the concept of “meaningful use”, an effort to 

promote the “meaningful use of interoperable electronic health records throughout the US health 

care delivery system as a critical national goal” implemented and enforced by the Centers for 

Medicare and Medicaid Services (CMS) and the Office of the National Coordinator for Health IT 

(ONC).28 The EHR Incentive Program, commonly called the Meaningful Use program, rolled out 

in stages and provided financial incentives to eligible healthcare professionals as they 

demonstrated adoption and meaningful use of certified EHR systems for patient care. A survey 

of 4,269 eligible hospitals found that EHR implementation prior to Meaningful Use was 3.2% per 
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year – and increased to 14.2% after Meaningful Use.29 Furthermore, EHR implementation 

among ineligible hospitals increased as well – from 0.1% to 3.3% per year after Meaningful 

Use.29 

The Medicare Access and CHIP Reauthorization Act (MACRA) of 2015 combined the 

Medicare EHR Incentive Program (Meaningful Use) with other CMS quality programs to form 

the Merit-Based Incentive Payment System (MIPS) (Figure 5). MACRA also ended the 

Sustainable Growth Rate formula which transitioned from incentives to use EHR technology to 

penalty payments for practices not meeting requirements. Healthcare providers continue to be 

incentivized to use certified EHR technology and other health information technology in order to 

receive Medicare reimbursements.30  

Use of EHRs for public health and population health management has remained a 

secondary use of EHRs since the Meaningful Use program. However, with the movement of 

health insurance policies towards “value-based” healthcare and the Learning Health System, 

health systems are now incentivized to shift their focus “from individual patient visits to 

managing larger populations and improving their overall health outcomes while maintaining cost 

efficiency”.31 Public health departments and clinicians have formed collaborations to share 

information for the purpose of population health, aligning medical and public health aims.31 

Figure 5. Description of Meaningful Use program under HITECH Act 2009 and transition to 
MIPS 

Meaningful Use Stage 3 sunsetted December 31, 2016. HITECH: Health Information Technology for Economic and 
Clinical Health. MU: Meaningful Use. MIPS; Merit-Based Incentive Payment System. MACRA: Medicare Access and CHIP 
Reauthorization Act of 2015. 
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Use of EHR Data for Research 

By 2016, 98% of all eligible and critical access hospitals and 80% of office-based 

physicians demonstrated meaningful use according to the Medicare EHR Incentive 

Program.32,33 While EHR adoption by office-based physicians varies substantially by state, from 

67% in New Jersey to 96% in North Carolina, EHR adoption by hospitals is high in all states and 

across hospital types (large, medium, small rural, critical access, small urban).32,33 Increased 

adoption of EHRs has led to the explosive growth of electronic health information available for 

secondary reuse, a trend that brings both opportunities and challenges.34,35 Senior epidemiology 

researchers have called for an update to epidemiology training curriculums to reflect macro 

trends, including health “Big Data” and healthcare reform, with epidemiologists needing to 

acquire advanced skills in linking large and complex datasets, and transition away from 

traditional data collection towards knowledge integration and collaboration with clinicians and 

health services resaerch.34 Public health informatics and epidemiology have a natural 

intersection, and reuse of EHR data for research is just one possibility. 

Public Health Informatics 

 Public health informatics is “the systematic application of information and computer 

sciences to public health practice, research, and learning.”36 The scope of public health 

informatics spans from conceptualization and design, development and deployment, refinement, 

maintenance, and evaluation of various systems relevant to public health, including 

communication, surveillance, information, and learning systems.37  

Population health informatics “addresses the information technology and analytic 

needs of groups and organizations responsible for the health management of defined 

populations”, where the definition of a population is dependent the denominator of interest  and 

can be individuals in a community or geographic region, or patients receiving care from a 

specific health delivery system.3,4,31,38 The essential services of public health35 are (1) 

assessment of public health situations and threats, (2) policy development to address what was 
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assessed, and (3) assurance to implement the policies developed. The evolving field of public 

health informatics plays a role in each of these activities through several needs, including 

interoperability, data standardization, and workflow management to optimize data quality.35 

Using electronic data for public health evaluation requires bringing together multiple data 

sources - a task that epidemiologists have traditionally completed with traditional data sets.35 

With increasing availability of electronic data sets, linkage is proving to be more challenging 

than expected due to lack of interoperability between systems and siloed storage systems of 

existing surveillance and the lack of a national patient identifier. For example, HIV surveillance, 

lead poisoning surveillance, and tuberculosis surveillance are all housed in separate programs 

with separate funding structures.39 Being able to analyze data from disparate sources once 

linked requires similar elements to be standardized between sources. Finally, because EHR 

data is collected for the purpose of clinical care, and not research, the quality in terms of 

missingness and accuracy is often inadequate for research needs. Attempts to improve data 

quality for research without disrupting clinical workflow, as well as considerations on how to 

store and facilitate access to stored EHR data are all areas that public health informatics 

contributes to.40 

Chronic Disease Surveillance 

Expansion of EHR systems and the refining of epidemiologic methods for secondary use 

of healthcare data opens up the possibility of using these databases for national cardiovascular 

disease surveillance. With increasing chronic disease burden across the nation, as well as 

across the world, public health agency jurisdiction has expanded from infectious disease to 

include chronic disease.3 Despite funding for financial incentives to promote the use of EHRs in 

clinical practices across the US, little funding has gone towards public health departments and 

research organizations to explore the use of EHRs for public health surveillance.2  

 



14 

Public health surveillance is the systematic collection, analysis, and interpretation of 

data, closely integrated with the timely dissemination and use of these data to help prevent and 

control diseases and injuries.41 The 7 essential elements of a public health surveillance 

system39 include (1) planning and system design, (2) data collection , (3) data management and 

collation, (4) analysis, (5) interpretation, (6) dissemination, and (7) application to public health 

programs. Informatics can complement and improve existing methods in each of these 7 

essential elements. Specific challenges for “surveillance informatics” are similar to challenges 

with using any electronic health data for research: data quality, data standardization, process 

automation, work flow, and validation.39  

EHR systems can be used to complement national surveys, such as the Behavioral Risk 

Factor Surveillance System (BRFSS) and the National Health and Nutrition Examination Survey 

(NHANES) via “informatics augmented health surveillance”.39,42–44 EHR data address several of 

weaknesses in national surveys, such as providing clinical data versus self-report, covering 

large populations versus representative samples, and timely access to data. The latter is a 

notable limitation of present surveillance in the US with years passing between data collection 

and research publications, given the data curation requirements. The electronic aspect of EHR 

systems also means that programs can be developed for public health agencies can develop 

programs to automatically “push and pull” EHR data from network practices  for detailed and 

timely surveillance updates, like what is being done in New York City.42  

The use of EHR data for public health surveillance is a natural extension of its use in 

Learning Health Systems, a paradigm that emerged from the expanding availability of health 

“Big Data” and the emphasis on “value-based” healthcare. In Learning Health Systems, data 

collected in the course of clinical care is reused in many ways, from hypothesis generation to 

clinical decision support to interventions to reduce hospital readmissions and prevent chronic 

disease.35,45 
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Current chronic disease national surveillance networks include the Surveillance, 

Epidemiology, and End Results Program (SEER, www.seer.cancer.gov), funded by the National 

Cancer Institute, and the US Renal Data System (USRDS, www.usrds.org) funded by the 

National Institutes of Diabetes and Digestive and Kidney Diseases. Despite several calls for a 

national surveillance system for heart disease and chronic respiratory disease46–48, no top-down 

surveillance system has been created. In 2010, the Centers for Disease Control and Prevention 

(CDC) launched an initiative called “Accelerating Situational Awareness through Health 

Information Exchange”, funding projects in Indiana, Washington and Idaho, and New York 

aimed at increasing information sharing between public health practitioners and clinical care 

providers.49 Several local efforts in using EHRs to characterize population health have shown 

promise, including the New York City Macroscope project, MDPHnet42,43 by the Massachusetts 

Department of Public Health, the Colorado Health Observation Regional Data Source 

(CHORDS), Chicago Health Atlas, and other efforts supported by Regional Health Information 

Organizations. In fact, Regional Health Information Organizations may be in a better position 

than local health departments to take advantage of existing aggregate data.2,44  

Many of the existing systems are distributed research networks (DRNs), including the 

NIH Collaboratory DRN and the Medicare Outcomes DRN. Many DRNs utilize PopMedNet 

(www.popmednet.org), “an open-source application used to facilitate multi-site health data 

networks.”50 The application provides the ability to query data from partners and securely 

transfer results back to a central organization or investigator. In a DRN, a central organization, 

such as a coordinating center or the public health agency, distributes electronic queries to 

participating practices who execute these queries behind their firewalls and securely return 

results to said central organization.43 The key advantage of DRNs over central repositories is 

that partners maintain control over their own data, maintaining autonomy. No data is curated 

and stored in a central repository, which is touted as a benefit to reduce required resources. 

While the DRN model protects patient privacy, a key concern of many clinicians, there are key 

http://www.popmednet.org/
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limitations in the DRN model for surveillance. First, participating and responding to queries are 

voluntary, and a practice withdrawing their participating can threaten the breadth of information 

available and the stability of longitudinal assessment.43 Second, the DRNs use a common data 

model that is a “one size fits most” and may not capture unstructured information. Third, 

because patient identifiers are not collected, patients seeking care across multiple participating 

sites will be duplicated in the dataset, and patients seeking care outside of the network cannot 

be linked with external health data.  

Sentinel6 and PCORnet5 have been at the forefront of the public health informatics 

literature in developing and testing common data models (CDMs). CDMs facilitate aggregation 

of data from different sources by transforming EHR data into a common model, with the goal to 

“represent knowledge in EHR-based data in a uniform fashion”.51 Commonly used data models 

include i2b2, OMOP (Observational Outcomes Medical Partnership), Sentinel, PCORnet, many 

of which use Health Level 7 (HL7) standards and the international Fast Healthcare 

Interoperability Resource (FHIR) standards to transform information into standardized 

vocabularies.51 Other standards for computable semantic interoperability include the Biomedical 

Research Integrated Domain Group (BRIDG) model, a joint effort between the Clinical Data 

interchange Standards Consortium (CDISC) , HL7, the National Cancer Institute, and the US 

Food and Drug Administration, the Protocol Representation Model and Study Design Model 

from CDISC, ISO EN 13606, and an extension of the International Organization for 

Standardization (ISO) standard 13606, the openEHR model.52 These layered semantic models 

are key for maximal transfer of clinical information in a correct matter, and the associated data 

model and underlying clinical terminology systems, such as ICD, SNOMED-CT (Systematized 

Nomenclature of Medicine – Clinical Terms), and UMLS (Unified Medical Language System), 

are often all supported by the CDM.51,52 Transformations between different CDMs, such as i2b2 

to PCORnet, are also common, so that platforms like PopMedNet can transform the data from a 



17 

health partner using i2b2 for the central data warehouse into the PCORnet CDM before running 

the query and returning results to the requestor.  

Another approach to community surveillance stems from large health delivery systems 

that provide care to nearly 100% of a geographic region. The Rochester Epidemiology Project 

(REP) started in 1966, and regularly shows high coverage of the area when comparing its 

repository of linked medical records with census data. The REP has utilized an “integrated 

approach”53 to surveillance, combining medical record data with vital statistics and various 

registries. This integrated approach can also be done at an aggregated level, looking at 

prevalence, incidence, and trends over time in cohorts, hospitalizations and procedures in 

discharge data, and causes of death in vital statistics. This birds-eye view is currently used by 

the American Heart Association (AHA) in the annual Heart Statistics report.54,55 

Clinical Trials  

The push behind Meaningful Use and widespread adoption of EHR systems was 

because policymakers believed EHR systems (versus paper records) can facilitate better patient 

healthcare56,57 by (1) organizing complex clinical information, (2) coordinating between health 

care team members, (3) reducing inaccurate, incomplete, or repetitive information and (4) 

improving cost efficiency by collecting data once and reusing it to serve billing, healthcare, 

research, and quality measure management. For these same reasons, EHRs can be leveraged 

to identify patients eligible for clinical trials in a cost effective and efficient way and in some 

cases, can provide support for the trial itself.52 For example, patient rights and consent, as well 

as clinical data recorded at study visits can be stored in the EHR,52 and be made accessible to 

the participant’s other doctors. Adverse event reporting is also more effective when done 

electronically through the EHR, rather than through a separate research system.52 The 

EHR4CR project (EHR for Clinical Research), a European consortium, was formed to develop 

the tools required for re-use of routinely collected health data while also supporting the use of 

EHRs for more cost-effective clinical research.52,58,59 EHRs can support this goal in several ways 
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including fast protocol feasibility assessment (how many patients meet these inclusion criteria?), 

efficient patient identification and recruitment, and study conduct.   

Data in the EHR 

Data in EHRs relevant to epidemiologic research include diagnosis codes, lab and 

imaging information, medication information, procedures, as well as clinical narrative notes.60 

Data can be structured or unstructured, with structured data stored in the EHR system in the 

form of data fields. An example of unstructured data is the text written in a physician’s note, or a 

radiologist’s impression of an x-ray. Informaticians may attempt to structure more data in the 

EHR with prompts and drop-down menus, though it can be difficult to anticipate all possibilities 

and additional forms may contribute to user fatigue. Data in claims, such as Medicare, 

MarketScan® and Optum Clinformatics® include final ICD-9-CM (pre-2015) and ICD-10-CM 

billing codes for inpatient and outpatient encounters, procedure codes, and pharmaceutical fill 

information, but lack encounter-level clinical data such as vital signs and lab test results. EHRs 

may or may not be linked with claims data.61 

The setting from which EHR data is drawn is important to consider. Even though a large 

health system may offer both inpatient and outpatient services, a patient utilizing inpatient 

services – and thus showing up in the EHR – may seek outpatient care elsewhere. Inpatient 

records “tend to be self-contained and episodic, with deep detailed data regarding episodes of 

acute illness”3 while ambulatory care, or outpatient care, EHRs typically “reflect care that is 

longitudinal and more likely to contain the clinical laboratory and medication data from which 

indicators of general health status can be constructed”.3  

Substantive knowledge of the condition being studied is critical when conducting 

epidemiologic research using EHRs. Traditional epidemiologic challenges, such as 

missingness, selection bias, and measurement error are all present when using EHRs, but 

some of the mechanisms operate differently. These specific challenges are elaborated on in 

later sections. 
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EHR Phenotyping 

EHR phenotyping refers to the process of 

identifying individuals with certain characteristics, such 

as a disease, in EHR data sets.7–11,62 The phenotyping 

process may involve an algorithm using ICD diagnosis 

codes, with or without additional clinical information. 

More complex processes may extract information from 

clinical narratives using natural language processing 

(NLP) or may involve manual chart review by trained 

abstractors.  

Prior to EMRs and EHR systems, healthcare 

practitioners devised clever systems to categorize 

patients into relevant groups while also maintaining 

documentation for patient care. One example is Dr. 

Henry S. Plummer’s “Unit Medical Record”, or dossier 

introduced in 1907 at the Mayo Clinic in Rochester, 

Minnesota.63 Before 1907, physicians at the Mayo 

Clinic, and nationwide, used bound ledgers to keep 

chronological entries about their patients.63 In order to 

conduct research, Mayo Clinic physicians had to track 

a patient’s medical treatment through ledgers owned 

by different physicians. Dr. Plummer’s dossier file 

addressed data fragmentation and individual 

ownership issues of the current ledger system and 

began the medical record number system still used by 

Mayo Clinic presently (Figure 6). Next, Dr. Plummer 

Figure 6. Unit Medical Record from 
1907  Developed by Dr. Henry Plummer at the Mayo 
Clinic, Rochester, Minnesota, 1907. Modified 
from Walter A Rocca, Barbara P Yawn, Jennifer 
L. St Sauver, Brandon R Grossardt, L Joseph 
Melton: History of the Rochester Epidemiology 
Project: Half a Century of Medical Records 
Linkage in a US Population. Mayo Clin Proc. 
2012 Dec 87 (12):1202-1213. Used with 
permission of Mayo Foundation for Medical 
Education and Research. All rights reserved. 

Figure 7. Plummer-Root patient index 
system  

Organized by organ system, listing patient medical 
record numbers (redacted) (Top). Hollerith punch 
cards used in Dr Joseph Berkson’s phenotyping 
solution in 1935 at the Mayo Clinic in Rochester, 
Minnesota (Bottom). Modified from Walter A Rocca, 
Barbara P Yawn, Jennifer L. St Sauver, Brandon R 
Grossardt, L Joseph Melton: History of the 
Rochester Epidemiology Project: Half a Century of 
Medical Records Linkage in a US Population. Mayo 
Clin Proc. 2012 Dec 87 (12):1202-1213. Used with 
permission of Mayo Foundation for Medical 
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and his secretary Mabel Root took steps towards phenotyping  by cataloguing patients with the 

same diagnosis together on index cards, organized by organ or organ systems, resulting in a list 

of medical record numbers to be used in research (Figure 7, top).63 The Plummer-Root system 

was expanded upon in 1935 by Dr Joseph Berkson, of Berkson bias. Dr. Berkson developed 

new indices for diagnoses and Berkson classification codes while upgrading the technology 

from handwritten index cards to Hollerith punch cards that could be mechanically processed 

(Figure 7, bottom).63 The punch cards allowed researchers to quickly identify patients with a 

given disorder, removing the need for a 

separate index of patient lists.64 Tabulating 

machines were used for medical 

epidemiologic research up until the 1960s, 

when computers gradually replaced tabulating 

machines.65  

What’s Been Done 

Electronic phenotyping refers to 

“identifying patients with certain characteristics 

of interest” without use of manual chart 

reviews.66 Until recently, electronic 

phenotyping always done with rule-based 

algorithms using inclusion and exclusion 

criteria to identify patients with specific 

characteristics;8 these algorithms are difficult 

to accurately apply across different EHR 

systems due to differences in how inclusion 

and exclusion criteria are constructed and 

applied, and how they are reported in 

Figure 8. Translation of patient health state to 
research analysis 

The feedback loops in the healthcare process (shaded/blue 
box) reflect in the data included or missing in the patient EHR, 
and to what degree of accuracy and variability. The healthcare 
process informs the EHR phenotyping and research analysis 
steps. Phenotyping transforms raw EHR data into clinically 
relevant features. EHR challenges are addressed in the 
phenotyping step so that a clinical research database can be 
formed. Adapted from Hripcsak and Alberts 2013, Pathak, Kho 
and Denny 2013. 
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published studies.67 EHR phenotyping is electronic phenotyping performed in the EHR system, 

and is the first step in utilizing data from EHRs for association studies for pharmacovigilance 

and comparative effectiveness research, for feeding data to clinical decision support as a key 

part of learning health systems, for integrating experimental studies into clinical workflow, and 

for translating genetic association studies into precision medicine.66 

Research efforts in EHR phenotyping focus on one or more challenges posed by EHR 

research, including data heterogeneity,68 missing data,8,69 variability between EHR systems,70 

and accuracy of content in the EHR.8,68,71 To develop accurate EHR phenotyping algorithms, 

researchers must consider the dynamic nature of the EHR, including how information comes 

into and is manipulated by the system, such as feedback loops in care and treatment (Figure 8). 

Rule-Based Methods  

Rule-based phenotyping algorithms typically include elements from clinical guidelines.66 

For example, a rule-based algorithm for acute myocardial infarction might follow the Fourth 

Figure 9. Flow diagram of atrial fibrillation rule-based phenotyping algorithm developed in 
CALIBER 

CPRD: Clinical Practice Research Data. HES: Hospital Episode Statistic. CALIBER:  Clinical Research Using 
Linked Bespoke Studies and Electronic health records. DVT/PE: deep vein thrombosis/pulmonary embolism. 
Figure 2 from Morley et al. 2014, PLoS ONE. 
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Universal Definition72 with clinical criteria for elevated cardiac biomarkers, abnormal 

electrocardiogram (ECG), and/or chest pain (found in structured or unstructured data fields). 

Alternatively, the algorithm may be a combination of ICD-10-CM diagnosis codes and/or Current 

Procedural Technology (CPT) codes, like those for percutaneous coronary intervention (PCI) or 

coronary bypass surgery (CABG), with or without additional clinical criteria. Rule-based 

algorithms can be as simple as requiring a certain ICD-10-CM discharge code in the primary 

position. Researchers have utilized advanced computing power and electronic phenotyping to 

expand on the simplicity of rule-based phenotyping. Efforts from consortium like the eMERGE 

network66,73,74 develop highly predictive rule-based phenotyping algorithms have been using 

iterative processing and multi-site clinician and informatician involvement. The eMERGE 

(electronic MEdical Records and GEnomics) network is a consortium of biorepositories linked to 

EHR systems. Other large biorepositories, such as the Clinical Practice Research Database 

(CPRD)  in the United Kingdom, have leveraged linked EHR data to develop complex but 

predictive phenotyping algorithms (Figure 9).75  

Natural Language Processing 

Natural language processing (NLP) is “a field of computer science and linguistics 

concerned with the interactions between computers and human (natural) languages”.76 In the 

context of EHR phenotyping, NLP is a type of text processing used to extract clinical concepts 

from unstructured portions of the EHR: clinical notes, pathology reports, radiology reports, 

medication lists, and discharge lists.66 A simplistic view of the NLP framework for clinical 

application include named entity recognition (identifying clinical concepts and linking to standard 

terminology framework), medical assertion (is a condition present or absent? was a treatment 

given or contradicted? and may utilize a negation detection algorithm like NegEx), and context 

analysis to detect uncertainty and time expressions. 

Around 80% of the information in an EHR is unstructured, and similar to how there is 

variability in what structured fields are included in a specific EHR system, there is variability in 
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how clinical concepts are recorded and the vocabulary used between providers and 

specialties.66,77 For example, the text accompanying pathology and radiology reports is often 

formulaic: [Condition] is [present/not present], while clinical notes may be more semantic: 

“Complete medical evaluation and obtain ECG”. While NLP tools have been developed with 

high sensitivity and PPV for specific diseases, the variability of underlying structure and systems 

limits application to other disease states and EHR systems than they were developed for.66,77  

Table 1 includes examples of clinical use cases for NLP from the Open Health NLP 

Consortium (www.ohnlp.org).  

Table 1. Examples of clinical use cases for natural language processing. 
NLP Clinical Use Cases 

Patient cohort identification: Query EHR data warehouses with inclusion and exclusion criteria for structured 
and unstructured clinical information to conduct analysis or to identify potential participants to recruit 

Clinical decision support: Contribute to learning health system by leveraging patient information to support 
clinical decision support as well as automate patient follow-up to improve individual care 

Health care quality research: Measure compliance with patient treatment and generate quality compliance 
measures for CMS 

Personalized medicine: Pharmacovigilance for rare medication side effects, identify unique patient cohorts, 
and identify genetic markers of pharmacodynamics 

BioSurveillance: Detect emerging infectious diseases and/or bioterrorism events from chief complaint fields in 
outpatient (urgent care) and emergency visits 

Drug development: Explore secondary uses of existing medications using EHR data 
Facilitate post-market safety surveillance 

Meeting EHR certification requirements: NLP can convert unstructured information to structured formats to 
meet documentation requirements for previous Meaningful Use Stage 2 and current MIPS Reporting 

Text summarization: Summarize a long patient history via NLP chart review rather than manual review. 
Summarize information across a group of patients to facilitate cohort identification 

List and examples adapted from Open Health Natural Language Processing Consortium website, 
www.ohnlp.org.  

 

Collaboration between clinicians, epidemiologists, computer scientists, and information 

scientists is important when using NLP EHR phenotyping. The underlying computing tasks NLP 

performs for EHR phenotyping include sentence detection, tokenization, part-of-speech (POS) 

tagging, and context analysis. Tokenization breaks sentences into tokens and discards 

extraneous information, such as punctuation. A token can be a keyword, a phrase, or a symbol. 

POS tagging marks words or tokens as a part of speech in definition and context, including 

negation. Basic context analysis utilizes n-grams which are combinations of 1+ words 

representing entities, phrases, or concepts found in the clinical narrative as well as stop words, 

http://www.ohnlp.org/
http://www.ohnlp.org/
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which are excluded from analysis (examples: a, an, the, of, for).78 An example of how NLP tags 

a clinical narrative is in Figure 10. 

One example of applying NLP phenotyping algorithms instead of rule-based algorithms 

is for EHR phenotyping of peripheral artery disease. Typically diagnosed by ankle-brachial index 

(ABI), there is no structured data field for clinicians to enter ABI in the EHR. Thus, NLP is 

required. Furthermore, there are numerous ICD diagnosis codes and CPT procedure codes that 

can indicate presence of peripheral artery disease, resulting in a complex rule-based algorithm 

with large uncertainty. Afzal et al.79 compared NLP with rule-based diagnosis code phenotyping 

algorithms, finding diagnosis codes to be less accurate (81% versus 92% accuracy), with 

accuracy driven by higher specificity and PPV. Their NLP algorithm used confirmation keywords 

corresponding to different parts of the body and location in the diagnosis list, and exclusion 

keywords such as “family history of…”, vascular claudication, varicose veins, diabetic foot, and 

location keywords to identify peripheral artery disease cases and controls.79  

Figure 10. Mock clinical documentation annotated by NLP framework cTAKES.  

Green underlines indicate event discovery; red underlines indicate negation, orange underline indicate 
uncertainty, and gray underline indicate temporal expressions. Dots to the top right of terms indicate Unified 
Medical Language System (UMLS) classifications. Source: http://ctakes.apache.org/whycTAKES.html 

http://ctakes.apache.org/whycTAKES.html
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Garvin et al.80 used EHR data from the Department of Veterans Affairs to automate the 

heart failure CMS quality measure, “Congestive Heart Failure Measure 19”,  which assesses if a 

patient with left ventricular ejection fraction (EF) < 40% was prescribed the appropriate 

medications at discharge. Developing the NLP method required annotation to train the software 

to “reference standards” in order to identify left ventricular dysfunction and extract 

corresponding EF values, as well as recognize, categorize, and extract medication information. 

Developing NLP algorithms can be complex and require multiple software platforms. Tools used 

by Garvin et al. included Knowtater Protégé plug-in software, Apache Unstructured Information 

Management Architecture (UIMA) framework, Extensible Human Oracle Suite of Tools, and 

RapTAT.80 The resulting framework, named CHIEF (Congestive Heart Failure Information 

Extraction Framework) detected left ventricular EF< 40% with a sensitivity of 97% and PPV of 

95% when compared to the reference standard, an annotated dataset reviewed by two 

independent annotators.  

Efforts to increase interoperability of NLP processing has resulted in several consortia, 

similar to the eMERGE PheKB projects. cTAKES (clinical Text Analysis and Knowledge 

Extraction System), developed at the Mayo Clinic, is a shared repository of clinical training text 

developed for use by other research groups to create NLP tools for different disease 

conditions.81 The Open Health NLP Consortium is a composite of NLP modules and 

frameworks, both general, such as CLAMP (Clinical Language Annotation, Modeling, and 

Processing Toolkit) and targeted, such as MedEx for medication dosing, MedKAT for cancer-

specific use cases, and MedTime for parsing temporal tokens.76 

Machine Learning Methods 

Machine learning methods, or statistical learning methods, begin with a training data set 

with “perfectly” labeled phenotypes. The training data set is typically created with clinical experts 

and is resource-intensive.66 The burden can be reduced by using “noisy labels”, or imperfectly 

labeled data in large amounts resulting in highly specific (at the expense of sensitivity) 
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phenotypes for machine learning methods to train on, though an expert is still required to 

identify the noisy labels.82 Unsupervised machine learning is at the other end of the phenotyping 

spectrum, where the computer uses cluster analysis to phenotype candidates without pre-

defined labels.66 Work on unsupervised machine learning for EHR phenotyping in the past 5 

years has focused on validating these automatically generated phenotypes83 and improving the 

human readability of output to allow for quick evaluation.84 

Hybrid Approaches 

 Combining machine learning with NLP can reduce reliance on clinician labeling for 

reference data while also capturing uncertainty when attempting to identify complex diseases 

and syndromes, or disease with complex structured data elements such as peripheral artery 

disease. Noisy labeling can be performed from automated processes, including NLP. Murray et 

al.82 applied NLP-based noisy labeling to phenotyping systemic lupus erythematosus, a disease 

with high diagnostic uncertainty, varied manifestations and complex diagnosis criterion to 

develop a trained algorithm with area under the curve of 0.97.  

 Jiang et al.85 combined 2 machine learning algorithms for clinical concept extraction 

(problem, treatment, test), medical assertions and uncertainty (present, absent, possible, 

conditional, hypothetical) and other. The authors then created an NLP system using the 

machine learning concept and assertion discoveries, rather than a clinician, to train the NLP.85 

Finally, they applied a rule-based algorithm for final review. This framework represents a hybrid 

of machine learning (statistical learning approaches) for NLP, rather than entity-recognition or 

rule-based algorithms used in traditional NLP frameworks.85 

Current Situation 

The “three pillars” of phenotype definitions proposed by Ho et al.86 are (1) a phenotype 

represents complex interactions between several features,  (2) the definition should be concise 

and understandable by a medical professional, and (3) the definition can be translated into new 

domain knowledge. This idea of a phenotype definition is important to keep in mind as 
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substantive experts collaborate with computer scientists towards more automated phenotyping 

processes, moving away from rule-based methods towards unsupervised machine learning. 

With the rise in open source NLP, machine learning, and hybrid frameworks for EHR 

phenotyping, there has been a “paradigm shift away from bespoke phenotypes expertly crafted 

from individual data sets and toward the generation of thousands of phenotypes with minimal 

human supervision in a scalable format”66, a term dubbed “high-throughput phenotyping” by 

Hripcsak and Albers in 2013.8 

Methodologic Challenges 

Data Fragmentation and Epidemiologic EHR Research 

Data fragmentation is the analytic consequence of care fragmentation, or the 

dispersion of a patient’s healthcare management over several providers and/or institutions.87,88 

When a patient seeks care at different institutions, and those institutions do not have integrated 

Figure 11. Care fragmentation from lack of integrated EHR systems. 

Care fragmentation results in data fragmentation when a patients’ data from 
multiple providers and/or institutions is not integrated (left). Integrated EHR 
systems (right) facilitates EHR-based research by reducing data fragmentation 
and can lead to improved healthcare for the patient by facilitating 
communication between providers. 
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EHR systems, EHR-based research conducted at only one of those institutions will be subject to 

data fragmentation (Figure 11). 

To understand the impact of data fragmentation, one must understand the different ways 

care fragmentation can present in the US health system and how care fragmentation is 

quantified. There are several measures of care fragmentation used in the health services 

literature, including the Bice-Boxerman Index,89 Herfindahl-Hirschman Index,90 the Usual 

Provider of Care Index,91 and the Sequential Continuity Index.92 These commonly used metrics 

describe care dispersion, care density, and sequential care (Figure 12).  

The Bice-Boxerman Continuity of Care Index (BB COC) is a measure of both 

healthcare dispersion and healthcare density, where dispersion is “the spread of a patient’s care 

across multiple providers” and density is “the relative share of visits by each provider”.93 

Measuring dispersion is more complicated to calculate than measuring density and requires that 

patients have several visits to be included in the analyses. The BB COC Index is a good choice 

for researchers studying patient groups that see several different providers for a number of 

healthcare visits. The BB COC Index is calculated with the following formula: 

𝐵𝑖𝑐𝑒 − 𝐵𝑜𝑥𝑒𝑟𝑚𝑎𝑛 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 =  
(∑ 𝑛𝑖

2) − 𝑛
𝑝
𝑖=1

𝑛(𝑛 − 1)
 

where p is the total number of providers, n is the total number of visits during an episode, and ni 

is the number of provider visits to provider I. The BB COC Index is often reversed,94 so that a 

higher score indicates higher fragmentation. Some researchers call this reversed score the 

Fragmentation of Care Index.87,95 

The Herfindahl-Hirschman Index (HHI) is widely used in economics to measure 

market concentration, such as degree of monopolization. The HHI, when used in health services 

research, takes into account density of care, where a patient who sees 2 providers equally has 

a different HHI than a patient who sees 1 provider 90% of the time and another only 10% of the 

time. The HHI is calculated with the following formula: 
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𝐻𝑒𝑟𝑓𝑖𝑛𝑑𝑎ℎ𝑙 − 𝐻𝑖𝑟𝑠𝑐ℎ𝑚𝑎𝑛 𝐼𝑛𝑑𝑒𝑥 = ∑ (
𝑛𝑖

𝑛
)

2𝑝

𝑖=1
 

where p is the total number of providers, n is the total number of visits during an episode, and ni 

is the number of provider visits to provider I. 

The Usual Provider of Care Index (UPC Index) is one of the most commonly used 

density measures,93 but may be limited when persons with chronic conditions see specialists as 

a necessity of care, not as a feature of fragmented healthcare. The present care fragmentation 

measures do not account for communication flow between providers. Thus, the degree of 

integration between EHR systems of different providers as well as continuity of care in terms of 

healthcare provider communication is important to consider at the substantive level when 

deciding which measure to use (or if to use one). The UPC Index is calculated with the following 

formula: 

𝑈𝑠𝑢𝑎𝑙 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑜𝑓 𝐶𝑎𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 = max (
ni

n
) 

where n is the total number of visits during an episode and ni is the number of provider visits to 

provider I. 

The Sequential Continuity Index, usually abbreviated as SEQON, accounts for the 

order in which a patient sees different providers. Researchers interested in follow-up care for 

acute illness or regular check-ups for chronic conditions may find the SEQON Index useful.93 

Limitations with this measure include poor practical translation to health care interventions to 

improve continuity of care. Furthermore, if a patient sees their primary care provider and 

specialists regularly, but not sequentially, the SEQON index would only capture the transition of 

care between providers each month,93 not the consistency and frequency of visits. The SEQON 

Index is calculated with the following formula: 

𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =  
∑ 𝑐𝑗

𝑛−1
𝑗=1

𝑛 − 1
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where cj is an indicator for sequential visits to same providers and is equal to 1 if visits j and j+1 

to the same provider but equal to 0 otherwise, and n is the total number of visits during an 

episode. 

  

Figure 12. Example of care fragmentation across 6 visit patterns. 

The Bice-Boxerman Continuity of Care Index and Herfindahl-Hirschman Index approximate one another 
closely. In this example, the reversed indices are used so that values closer to one represent more fragmented 
care. In Scenario 1, the patient has 10 sequential visits with their primary care provider (P), resulting in a 
fragmentation score of 0. In Scenario 3, the patient sees their primary care provider regularly, with two visits to 
their cardiologist (C), increasing the fragmentation indices to 0.32-0.36. Scenarios 3 and 4 represent visit 
patterns typical of patients with chronic conditions, and if over the recommended amount of time, represent 
consistent physician follow-up which may lead to better management of the patient’s condition. Scenario 5 
represents a patient with regular follow-up to 4 different specialists – all of which may be necessary to manage 
several chronic conditions, such as heart disease, history of stroke, and diabetes. Scenario 6 represents a visit 
pattern with the most fragmented care, as each visit is with a different provider. Depending on the time period 
across which these visits were measured, the degree of care fragmentation may not be substantively 
meaningful. 
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Pollack et al.96 measured the correlation between these 4 measures of care 

fragmentation in Medicare patients with heart failure, chronic obstructive pulmonary disease 

(COPD), and/or diabetes mellitus who were enrolled in Fee-for-Service Medicare in 2008 and 

2009, and had at least 2 outpatient evaluation and management visits following a hospital 

episode for the chronic condition. At the provider level, the 4 measures were highly correlated 

with one another (r = 0.87 to 0.98, Table 2).  

Table 2. Correlation between Care Fragmentation Measures  
BB COC HHI UPC SEQON 

BB COC 1.00 
   

HHI 0.96 1.00 
  

UPC 0.96 0.98 1.00 
 

SEQON 0.91 0.87 0.88 1.00 

Average Pearson coefficients across heart failure, chronic 
obstructive pulmonary disease, and diabetes mellitus from 
Pollack et al.. BB COC: Bice-Boxerman Continuity of Care 
Index; HHI: Herfindahl-Hirschman Index; UPC: Usual Provider 
Care Index; SEQON: Sequential Continuity Index. 

Just as it is important to understand what types of visit patterns can lead to different 

quantitative measures of care fragmentation, it is important to understand what each index 

represents. For example, the UPC Index is calculated relative to a single provider, such as the 

provider a patient receives care from the majority of the time. For Scenario 1 in Figure 12, the 

UPC Index relative to the primary care provider is 1.00. In Scenario 2, the UPC Index drops to 

0.90, as the primary care provider is seen on 9 / 10 of the visits. In Scenario 5, the UPC Index 

relative to the primary care provider is 0.30. The SEQON Index measures sequential care with 

the same provider. For Scenarios 1 and 2 in Figure 12, the SEQON Index is 1.00 and 0.89 

respectively. However, for Scenario 3, with the majority of care provided by the primary care 

provider (P) but 2 / 10 visits to a cardiologist (C), the SEQON index drops to 0.67. Finally, for 

Scenarios 4 through 6, the SEQON index is 0, because the same provider is not seen more 

than once in a row. 
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In an analysis exploring the effect of provider-level fragmentation on emergency 

department visits and hospitalizations among Medicare Fee-for-Service patients in the Hudson 

valley, Kern et al.94 found similar results when using the reversed Bice-Boxerman Continuity of 

care Index, the reversed HHI and the reversed UPC Index. Frandsen et al.90 examined patient 

characteristics by provider fragmentation, measured by quartiles of the Herfindahl-Hirschman 

Index, and reported that patients of providers in the highest quartile of fragmentation versus the 

least fragmentation patients were more likely to be female, older, have multiple chronic 

conditions, and see several different specialists (Table 3). 

Table 3. Patient characteristics by level of provider-fragmentation. 
 Q1 Q2 Q3 Q4 

N 126,440 126,748 126,568 126,620 
HHI 0.59 0.74 0.82 0.85 

Age (mean, years) 43 45 48 49 
Female 52% 56% 62% 62% 
Diabetes 16% 17% 20% 23% 
Hypertension 41% 43% 48% 52% 
Ischemic heart disease 8% 11% 16% 18% 
Heart failure 2% 3% 4% 5% 
COPD 5% 6% 7% 8% 
≥ 2 chronic conditions 16% 19% 25% 29% 
Number of primary care providers seen 2.3 2.8 3.6 4.0 
Number of cardiologists seen 1.8 2.1 2.6 2.9 

Q1 indicates least fragmented care, Q4 indicates most fragmented care. Average number of primary care providers and 
cardiologist seen over study period. HHI: Herfindahl-Hirschman Index. COPD: chronic obstructive pulmonary disease. Data from 
Frandsen et al. 2015 Am J Manag Care 21(5):355-362, Table 1. 
 

What’s Been Done 

The two most relevant aspects of data fragmentation to EHR phenotyping are 1) care 

fragmentation and 2) longitudinal fragmentation. Inherent to both of these aspects is data 

completeness. Health services researchers have described the degree of care fragmentation 

across different demographic and payer populations in the US as well as the consequences of 

care fragmentation, including higher rates of emergency department visits, hospital admissions, 

higher healthcare costs, and suboptimal care.94,97 In a 5-year study of acute healthcare services 

in Massachusetts (2002-2007), Bourgeois et al.98 reported that 1/3 of adults visited 2 or more 

healthcare sites, and that these multi-site users accounted for over 50% of state-wide acute 

care visits. Compared to patients who sought care multiple times at the same site, those with 

multiple visits to ≥2 sites were more likely to be male (OR: 1.15 (95% CI 1.15, 1.16), non-white 
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(OR: 1.13, 95% CI: 1.12, 1.13), have a psychiatric diagnosis (OR: 1.90, 95% CI: 1.88, 1.92), 

and have their ED visit result in hospitalization (OR: 1.86, 95% CI: 1.85, 1.88).98  

Care Fragmentation 

It is important to distinguish substantively the types of patients seeking care at multiple 

sites. The Bourgeois et al.98 paper examined emergency department visits with the most 

common diagnosis codes being Symptoms (ICD-9 780-789), Sprains and strains of joints (ICD-

9 840-848) and Mental disorders (ICD-9 300-316). “Other forms of heart diseases” (ICD-9 420-

429) ranked 9th out of the top 10 reasons for the included patients seeking emergency care.98 

Being seen by several providers is often a medical necessity for those with chronic conditions, 

and it is lack of communication between the providers that contributes to suboptimal care and 

higher healthcare costs.94  

Kern et al.94 categorized Medicare Fee-For-Service patients continuously enrolled in 

2010 and 2011 with at least 4 ambulatory visits in 2010, as having 0, 1-2, 3-4, or ≥5 chronic 

conditions and examined the effect of ambulatory healthcare fragmentation on risk of hospital 

admissions over 2 years. Chronic conditions listed by CMS Chronic Conditions Warehouse 

were used and included: acquired hypothyroidism, acute MI, Alzheimer’s disease/related 

disorders or senile dementia, anemia, asthma, atrial fibrillation, benign prostatic hyperplasia, 

cataract, chronic kidney disease, COPD and bronchiectasis, depression, diabetes, glaucoma, 

heart failure, hip/pelvic fracture, hyperlipidemia, hypertension, ischemic heart disease, 

osteoporosis, rheumatoid arthritis / osteoarthritis, stroke / transient ischemic attack, breast 

cancer (female or male), colorectal cancer, prostate cancer, lung cancer, and endometrial 

cancer.94  

Among the 21,963 patients with 1-2 chronic conditions and 46,089 patients with 3-4 

chronic conditions, having more fragmented care was associated with HR 1.14 and HR 1.06 (no 

confidence intervals reported), respectively, compared to the least fragmented care (as 

measured via quintiles of reversed Bice-Boxerman Index).94 Fragmented care did not have a 
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statistically significant effect on hospital admission among those with 0 or ≥5 chronic 

conditions.94 More fragmented ambulatory care was associated with increased risk of 

emergency department visits among all patients with at least 1 chronic condition (1-2 conditions: 

HR 1.13, 3-4 conditions: HR 1.14, and ≥ 5 conditions: HR 1.10 compared to least fragmented 

care).94  

Data Completeness 

EHR-based research leverages routinely collected healthcare data present in the EHR 

system. Rule-based algorithms and high throughput clinical phenotyping algorithms alike utilize 

information such as test results, procedures, and treatments that may be missing due to data 

fragmentation.88,99 Patients missing data in one EHR system may be systematically different 

than those with complete data. Furthermore, missing inclusion/exclusion criteria can lead to 

subject selection bias.88  Finally, when using de-identified aggregated data from several 

institutions rather than integrated EHR systems, single individuals may be double-counted.99  

Weiskopf and Weng100 describe 5 components of data quality with respect to EHR 

data: plausibility, concordance, completeness, correctness, and currency (Figure 13, left). In a 

subsequent paper, Weiskopf et al.101 expand on data completeness as a measure of data 

quality, outlining 4 definitions of EHR completeness: documentation, breadth, density, and 

predictive completeness (Figure 13, right). Data may be considered complete based upon what 

one would expect from an EHR (intrinsic) or based on upon the data required for the research 

question (extrinsic)101 with documentation completeness, against an expected standard such as 

CMS quality control requirements, representing intrinsic completeness and the other 3 

definitions representing extrinsic completeness. 
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I will highlight two types of extrinsic data completeness: data breadth and data density 

(Figure 14). Data breadth refers to the variety of data types available. If an EHR phenotyping 

algorithm for heart failure requires diagnosis codes, medication data, lab results, and imaging 

results to identify a case, sufficient data breadth for sufficient patients would be required in order 

to identify cases with this algorithm. In contrast, if the majority of potential cases only have 

diagnosis codes and medication data, the applicability of that EHR phenotyping algorithm to that 

level of data completeness is limited. The idea of data breadth is particularly relevant when 

considering if missing algorithm components bias the analytic sample, that is, are persons with 

sufficient data breadth systematically different than those missing algorithm components and 

thus excluded from the analytic sample? 

Figure 13. The 5 Components of Data Quality and 4 Definitions of Data Completeness 

Data completeness is one of 5 aspects of data quality.  Figure based on data quality concepts from Weiskopf et 
al. J Am Med Inform Assoc 2013 20:144-151 and data completeness definitions from Weiskopf et al. Journal of 
Biomedical Informatics 2013 46:830-836, adapted under fair use. 
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Data density refers to the frequency of a certain type of data in the patient’s EHR. EHR 

phenotyping algorithms for diabetes may include repeat fasting glucose tests results to verify 

clinical diagnosis, and/or two or more ICD diagnosis codes in the outpatient setting to avoid 

including rule-out diagnoses. Requiring sufficient data density is most applicable in outpatient 

settings where you would expect to encounter rule-out diagnoses and/or when the clinical 

diagnostic process of a phenotype involves repeat measurements. An example of the latter 

would be including a certain change in troponin levels for acute myocardial infarction. This 

phenotyping algorithm would require repeat measures of troponin within the same encounter. 

Using EHR data from the Columbia University Department of Anesthesiology, Weiskopf 

et al.102 illustrated that selecting for completeness in EHR-based research biases the resulting 

analytic sample. Measuring illness severity with the American Society of Anesthesiology 

Physical Classification score, Weiskopf et al.102 found that sicker patients had more complete 

EHR data with respect to presence of laboratory test results and medication orders, with 

completeness calculated as the proportion of data points. This finding reflects how the health 

Figure 14. Illustration of data breadth and data density in EHR data. 

The categories along the y-axis represent different types of data found in the EHR. Each point on the x-axis 
represents an encounter recorded for a patient in the EHR. Desired information that is missing is denoted by 
a star. LEFT: When data breadth is desired, we are interested in the variety of data types available at one 
encounter. The highlighted encounters could feasibly represent primary care encounters, where 
demographics and medication data are updated, labs ordered and results recorded, and diagnosis codes 
selected for current health issues. RIGHT: When data density is desired, we are interested in frequency of a 
single data type. For example, if the EHR phenotyping algorithm requires 2 outpatient diagnosis codes for 
diabetes, or 2 lab results of elevated fasting glucose, we would prefer the data density completeness 
definition. Figures based on data completeness definitions and Figure 1 from Weiskopf et al. Journal of 
Biomedical Informatics 2013 46:830-836 under fair use. 
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care process, including feedback loops, is represented in the EHR (Figure 8). Sicker patients 

may have more clinical notes (seen more frequently by their provider and/or by specialists), 

more lab tests or imaging procedures ordered to monitor status or diagnose a condition yet to 

be determined, and more medication data documented because they receive more types of 

medication and/or because documentation is crucial to monitor interactions in an acute setting. 

Longitudinal Fragmentation and Lookback Period 

Longitudinal fragmentation is a specific type of data fragmentation that occurs when 

researchers restrict or expand inclusion criteria across a period of time. The term “lookback 

period” refers to the time before the period of interest in which the researcher “looks” into a 

patients’ data to see if they had an event-qualifying encounter, outcome of interest, drug 

prescription fill, etc. When using administrative data, lookback period and observability are 

typically examined together, considering an enrollment date as the start of lookback time and 

assuming that if a person sought healthcare, it would be observed in the healthcare claims 

dataset. In surveillance, lookback period is used to determine if a case is incident or prevalent. 

Using longer lookback periods increases the number of prevalent cases and thus reduces the 

number of incident cases, compared to using a shorter lookback period.103–105  

A rule of thumb adopted by many researchers as well as governmental standards 

agencies (e.g. Medicare quality measures) using EHR and/or administrative data in 

epidemiologic research is a 2-year lookback period.105–108 When looking at trends over time, 

Rassen et al. demonstrated that a 1-year lookback period provides more stable estimates and 

using a fixed lookback period is optimal for comparing subgroups.103 Longitudinal fragmentation 

observed in the lookback period is the manifestation of care fragmentation when looking at data 

over time and has several implications for using EHR data for epidemiologic research, including 

selection bias and misclassification. That is, the lookback period duration affects whether a 

person is “selected”, and the extent of person-time misclassification as well as event 

misclassification.105,109,110 
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Patients with a longer duration of observed time in the EHR have a larger “opportunity” 

to be diagnosed based on EHR phenotyping algorithms.111 Since these patients may differ 

systematically from the hypothesized target population, taking care in selecting the duration of 

observable time and understanding the implications is important. Shortreed et al.112 explored the 

impact of requiring “complete enough” data on the validity of results using the Group Health 

healthcare delivery system in Western Washington, United States. Risk of cancer and all-cause 

mortality among patients observed in the healthcare delivery system for >10 years was higher 

than those enrolled 5 – 10 years or <5 years, though the bias was reduced after standardizing 

to age and sex to the full enrollee population.112 The authors conclude that accounting for age 

and sex, which are well-captured in EHR systems, can mitigate bias from restricting analytic 

cohorts based on time observed.112 

Wei et al.88 utilized data from the Rochester Epidemiology Project, including patients 

seen at both Mayo Clinic Medical Center and Olmsted Medical Center, to describe the effect of 

data fragmentation on accuracy of type 2 diabetes ascertainment. The authors used the 

eMERGE phenotyping algorithm for type 2 diabetes (Figure 15, Figure 16) and set the gold 

standard as patients identified as cases and non-cases by both medical center EHR 

systems.88,113 The eMERGE type 2 diabetes algorithm was optimized to maximize PPV 

(compared to manual chart review).113 Wei et al. found age and sex differences between false 

negative type 2 diabetes patients identified compared to the true positive type 2 diabetes 

patients and noted implications for researchers who use age/sex-matched designs after 

applying high throughput clinical phenotyping algorithms to a single institution’s EHR data.88  
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Introducing Selection Bias with Observability Requirements 

For EHR data, persons may appear in the EHR for preventative visits, primary care 

treatment, and inpatient hospitalizations or procedures. There may be gaps in between 

encounters, particularly in healthier individuals who may only receive preventative care, or in 

areas where there are multiple institutions from which to receive healthcare. The lack of EHR 

linkages due to interoperability issues and data sharing means the same person may appear in 

multiple EHRs producing fragmented care and fragmented data. Researchers may limit their 

analytic sample to those with a certain number of encounters in a period of interest, such as 2 

outpatient encounters in a year. Selecting on data completeness or data continuity can 

introduce selection bias into the data analysis.101,102  

When estimating prevalence, the time period in which a person can contribute 

information is the observation period. Observability may be defined in a certain way, such as 

continuous enrollment in a healthcare plan for the duration of the period of interest,114,115 or at 

Figure 15. Algorithm for the identification of 
type 2 diabetes controls. 

*Glucose ≥110 mg/dl, HbA1c ≥6.0%. HbA1c, 
hemoglobin A1c; ICD-9, International 
Classification of Diseases, version 9; T1DM, type 
1 diabetes mellitus; T2DM, type 2 diabetes 
mellitus. Adapted from vertical Figure 2 from Kho 
et al. 2012 JAMIA 19(2):212-218, reproduced 
here under Oxford University Press license 
number 4678780414349 

Figure 16. Algorithm for the identification of 
subjects with type 2 diabetes. 

*Random glucose >200 mg/dl, fasting glucose >125 
mg/dl, HbA1c ≥6.5%. HbA1c, hemoglobin A1c; ICD-9, 
International Classification of Diseases, version 9; 
T1DM, type 1 diabetes mellitus; T2DM, type 2 
diabetes mellitus. Figure 1 from Kho et al. 2012 JAMIA 
19(2):212-218, reproduced here under Oxford 
University Press license number 4678780414349 
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least 2 years between the 1st and last documented encounter (Table 5).108 The sensitivity and 

specificity of a single EHR phenotyping algorithm will often vary by the length of 

observation,103,105 with shorter time periods contributing to greater misclassification of events.116 

Conversely, researchers using a low sensitivity algorithm may choose to utilize a longer 

lookback period.  

Data Fragmentation and Data Completeness 

For EHR phenotyping, the length of the time used for inclusion impacts what algorithm 

components are identified or considered missing. Wei et al.67 examined the effect of using all 

time available for patients in the REP EHR data warehouse, from 1997 to 2007, versus using 

smaller intervals, ranging from 1 year to 10 years, starting from 2007 and moving backwards 

(Table 4). For identifying type 2 diabetes patients with the eMERGE type 2 diabetes 

phenotyping algorithm113, the authors recommend using at least 7 years of data to identify cases 

with ≥ 90% PPV.67  

Building on Wei et al.’s analyses and calculating sensitivity and specificity of the time 

frame compared to the maximum of 11 years, sensitivity for detecting type 2 diabetes cases 

with the eMERGE phenotyping 

algorithm with one year was 75% and 

specificity was 98% (Figure 17). Using 2 

years of data improved sensitivity from 

75% to 85%. 

 

Figure 17. Sensitivity and specificity of type 2 
diabetes EHR phenotyping algorithm from Wei et al. 
2013 over 1 – 10 years compared to 11 years of EHR 
lookback. 
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Table 4. Applying type 2 diabetes phenotyping algorithm in different time frames 

Time Frame 

Identified 

subjects  

(TP + FP) 

TPs FPs TNs FNs PPV 
p-

value 

2007 (1 year) 2,970 2,089 881 50,632 681 70% <0.001 

2006-2007 (2 years) 3,280 2,366 914 50,599 404 72% <0.01 

2005-2007 (3 years) 3,374 2,466 908 50,605 304 73% <0.01 

2004-2007 (4 years) 3,273 2,550 723 50,790 220 78% <0.01 

2003-2007 (5 years) 3,051 2,616 435 51,078 154 86% <0.01 

2002-2007 (6 years) 2,967 2,650 317 51,196 120 89% <0.01 

2001-2007 (7 years) 2,936 2,692 244 51,269 78 92% <0.01 

2000-2007 (8 years) 2,919 2,721 198 51,315 49 93% <0.01 

1999-2007 (9 years) 2,858 2,743 115 51,398 27 96% <0.01 

1998-2007 (10 years) 2,768 2,755 13 51,500 15 99.5% 0.85 

1997-2007 (11 years) 2,770 2,770 ref 51,513 ref 100% ref 

P-value calculated for difference in row and marginal frequencies via McNemar test. Table adapted from Wei et al. 2013 Int J 
Medical Informatics. 

 
Rassen et al.103 presented several options for lookback observability, prevalence 

numerators, prevalence denominators, and incidence denominators and illustrated the effect on 

prevalence and incidence of 5 chronic conditions using claims data. Figure 18 expands on 

examples presented in Rassen et al.103  and Table 5 defines design choice parameters used in 

their paper and in Figure 18. 
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Table 5. Summary of design choices for EHR phenotyping studies. 
Observability  

All time Patients assumed to be observable at all times 

First to last encounter Patients assumed to be observable from start of first observed encounter 
to end of last encounter 

Event time margins and excluded gaps Each encounter assigned a margin of time, and exclude gaps form 
observable time that fall outside of the margins 

Also exclude time before start of first margin and after end of last margin 

Period of Interest (POI) Period of calendar time at which prevalence or incidence is going to be 
measured  

Lookback time Time used to determine if a patient has a condition or not 

All time From the first observed encounter to the day before the start of the POI 

Fixed time Begins at a fixed amount prior to the start of the POI (i.e., 2 years, 5 
years) and ends day before start of the POI 

Lookback observability  Can require that patients be observable during entirety of chosen 
lookback period. 

Prevalence numerator  

Point prevalence numerator Number of patients with condition in lookback time or on first day of POI 
(Day 1) 

Period prevalence numerator Number of patients with condition in lookback time or any time in the POI 

Prevalence denominator  

Day 1 population Number of patients contributing an observable person day on the first 
day of the POI 

Complete period population Number of patients that are observable during the entirety of the POI 

Any time population Number of patients who contribute at least 1 observable person day 
within the POI 

Sufficient time population Number of patients who contribute at least n observable person days 
within POI where n ≥ 1 

Incidence numerator The number of patients with condition observed in the POI, but did not 
have the condition observed in the lookback time (i.e. are at-risk) 

Cumulative incidence denominator  

At-risk, Day 1 population Number of patients at risk for condition and contributed observable 
person day on Day 1 of POI 

At-risk, complete period population Number of patients at risk for condition and contributed observable time 
during the entirety of the POI 

At-risk, any time population Number of patients at risk for condition and contributed at least 1 
observable day within the POI 

At-risk, sufficient time population Number of patients at risk for the condition and contributed at least n 
observable days within the POI where n ≥ 1.  

Incidence rate denominator  

Person-time at risk  Amount of observable person time in the POI when a patient is at risk for 
condition 

Adapted from Rassen et al. 2019 Clinical Epidemiology 11 under fair use. 



43 

  

TOP: Hypothetical timeline from 2018 (period of interest, POI) to start of EHR in 2008 with periods of observability in EHR (solid 
green) and time not observed in the EHR (dashed green) for 5 patients. Event-qualifying encounter represented by circle. 
Lookback period (LB) duration varies from 2 years, 5 years, to all available time (all time). BOTTOM: Classifying a patient as a 
prevalent case, incident case, or no case depends on the duration of the lookback period, choice of point or period prevalence, 
observability requirement for lookback period, and observability requirement during the period of interest to be in the 
denominator. Top figure format based upon Rassen et al. 2019 Clinical Epidemiology vol 11 under fair use. 
 

Figure 18. Visual representation of 5 patient scenarios and implications for EHR phenotyping 
results. 
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Inpatient versus Outpatient Healthcare Settings 

Many EHR-based studies and claims studies utilize inpatient hospitalization data alone. 

Recent research quantifies the percent of cardiovascular cases missed, particularly heart 

failure117 and peripheral artery disease,106 when limiting to inpatient claims alone. Camplain et 

al. reported that misclassification of heart failure in the outpatient setting with reduced lookback 

period was 2-5 times higher than misclassification due to lookback period with inpatient heart 

failure.117 Kalbaugh et al. found that 70% of peripheral artery disease encounters captured as 

prevalent or incident in the ARIC cohort were in the outpatient setting.106 In health systems 

providing both inpatient and outpatient care researchers are able to identify cases from both 

settings in a single EHR, and examine the differences between the resulting cases.  

Linking EHR Systems with Health Insurance Claims 

The Wei et al. analyses67,88 utilized a unique integrated EHR system, allowing them to 

simulate data fragmentation. Another way to examine the effect of data fragmentation on EHR-

based research estimates is to link EHR data with insurance claims, with the latter providing a 

complete or near-complete record of healthcare services billed regardless of institution or 

provider.61 For example, in Figure 11, a patient would only be observable in the hospital EHR to 

a hospital researcher (without integration) but if the hospital EHR was linked with the patient’s 

health insurance claims, the researcher would be able to see how often and for what reasons 

the patient sought care outside of the hospital system. There are a number of obstacles 

preventing linkage of EHR data to insurance claims including lack of a universal patient 

identifier, patient privacy and research usage, data rights (individual versus institution), and 

regulatory oversight by insurance companies and the government.61  

Many researchers utilize administrative data alone, without linkage to EHR data. Using 

phenotyping algorithms based upon discharge diagnosis codes may produce similar estimates 

when applied in EHR data and insurance claims. However, when using insurance claims alone, 

such as Medicare or MarketScan®, the results are not generalizable (or transportable) to the 
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general US population.118 For example, Medicare represents the older adult population, and 

MarketScan® represents the employed population. Finally, both EHR data and health insurance 

claims represent the care seeking population. A not-insignificant portion of the US population 

lacks health insurance and only rarely seeks care. Some EHR based projects, such as NYC 

Macroscope, have compared characteristics of adults seeking primary care to those who do not, 

using data from the NYC Community Health Survey and NYC Health and Nutrition Examination 

Survey.119 Around 70-75% of the NYC population aged 20 and older had seen a health care 

provider in the past year, with those seeking care more likely to be older, female, non-Hispanic, 

and insured versus those who had not sought care in the past year.119 There was a higher 

prevalence of diabetes (17% vs 7%), hypercholesterolemia (36% vs 22%) and hypertension 

(36% vs 26%) in the care-seeking population compared to the non-care-seeking population.119 

Current Situation 

 Data fragmentation exists at the intersection of health services research (care 

fragmentation), epidemiology (determining time-at-risk and potential bias), and informatics 

(phenotyping algorithm components). Care fragmentation indices commonly used in health 

services research may be useful to quantify the degree of fragmentation a patient experiences 

in their healthcare; however, these indices may not capture the substantively important aspects 

of care fragmentation. The extent that care fragmentation affects epidemiologic methods 

depends at which point in the health care process the epidemiologist is trying to 

describe, and overlaps with informatics when we begin to think about EHR integration 

and data fragmentation, as well as more traditional challenges such as selection bias and 

missingness that need to be operationalized differently when using EHR data for 

epidemiologic research. Inherent in the issue of data fragmentation is the lack of 

interoperability between EHR systems, selection bias introduced by lookback duration and 

observability requirements, and finally, the inability to generalize EHR-based results – from the 

care seeking population - to the general population. The concept of data fragmentation is an 
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overarching construct present in the US healthcare setting that must be considered when 

conducting EHR-based research. 

Reproducibility and EHR Research 

Definition 

In the context of research using EHR systems, reproducibility is the “ability of 

independent investigators to obtain the same findings when applying the same design and 

operational choices in the same data source.”120 Replication, in contrast, is the ability to obtain 

the same findings when applying the same design and choices in different data sources.120 A 

pre-requisite to reproducibility in EHR research is transparency.121 Other investigators cannot 

apply the same design and operational choices if those choices are not clearly reported.122 

Thus, reproducibility, transparency, and reporting are related concepts in the context of EHR 

research. 

What’s Been Done 

The STROBE Statement (Strengthening The Reporting of OBservational studies in 

Epidemiology)123 was developed to improve research reporting (and thus transparency), to allow 

readers to evaluate the science with as much information as possible. Langan et al.124 

expanded on the STROBE Statement with the RECORD Checklist (REporting of studies 

Conducted using Observational Routinely collected Data) and the new RECORD-PE Checklist 

that account for key differences in healthcare databases and traditional epidemiologic data 

sources. Additional reporting includes listing codes and algorithms used, validation efforts and 

results, and overall, mechanisms for generating the final analytic sample so that it could be 

reproduced by independent investigators. 
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Current Situation 

In 2015, the “Reproducibility Crisis” was brought to the attention of mainstream media by 

a group of psychologists attempting to reproduce several studies published in top psychology 

papers, with “sobering results”, with results from only 39 of 100 psychology experiments 

purportedly replicated.125 In 2016, Nature published results of a survey asking researchers how 

much they trust literature in their field, how often they have attempted, and succeeded, in 

reproducing findings, and how often they attempted to publish those results.126 Of 1,576 

researcher respondents, 52% believed there was a significant reproducibility crisis, and 34% 

reporting no lab procedures in place for replicating experiments.126 In 2018, the Proceedings of 

the National Academy of Sciences of the United States of America published an opinion piece 

on whether science is “facing a reproducibility crisis”, with the author, Danielle Fanelli, 

concluding that the narrative of a reproducibility crisis was in fact false, and suggesting instead 

a “narrative of epochal changes and empowerment of scientists” as a more “accurate, inspiring, 

and compelling” narrative.127 Scientific American published 2 pieces on the reproducibility crisis, 

focused first on the psychology experiments and then on biology and experimental sciences, in 

2018 and 2019 respectively.128,129 Reasons for the lack of reproducibility in science include 

pressure to publish novel findings, rather than build methodologically upon existing literature, 

poor training in documentation and method writing, fear of sharing techniques between 

scientists, and a lack of external incentives for aiding reproducibility.128 These are examples 

from across the scientific disciplines. Specific to epidemiology, a methods-heavy field, 

epidemiology has had the STROBE Statement since 2011- an observational version of the 

randomized control trial Consolidated Standards of Reporting Trials (CONSORT) diagram. The 

STROBE Statement is listed in the Uniform Requirements for Manuscripts Submitted to 

Biomedical Journals and endorsed in Author Instructions for over 120 journals, including Lancet, 

PLoS journals, BMJ Open, Annals journals, and Archives of Public Health. RECORD and 

RECORD-PE have been translated from English into German, Chinese, Japanese and French, 
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and are endorsed by at least 20 scientific journals, referring to the RECORD statement in 

Instructions to Authors (www.record-statement.org/endorsements), and include journals like 

BMJ, Clinical Epidemiology, International Journal of Epidemiology, JAMA Internal Medicine, 

PLoS Medicine, and PLoS ONE.  

The Need for Standard Phenotyping Algorithms in EHR Research 

The need for validation studies to develop standard phenotyping algorithms is linked 

closely with the issue of event misclassification in EHR research. Results from validation studies 

can be used to develop standard phenotyping algorithms and/or quantify the bias introduced by 

using alternate case definitions. Despite there being both simple and sophisticated methods to 

quantify bias, such as quantitative bias assessment, bias assessment is rarely done in 

epidemiology studies, instead authors listing misclassification as a limitation. 130 Standard 

phenotyping algorithms allow for comparability between studies and the ability to estimate 

disease burden estimates from disparate data sources, a key skill needed by epidemiologists of 

the future.34 While epidemiologic collaborations are often able to successfully map variables 

between studies, standardizing EHR data across systems can be more complicated because of 

the inherent nature of the health care process.8,9,131 Reasons for entering healthcare information 

during the provision of healthcare varies by region,132–136 health care system,8,118,137 health care 

provider,135,138,139 patient characteristics,140,141 disease severity,138 and time.134,142,143 

Consequently, the utility and validity of a phenotype utilizing these varying healthcare data can 

also vary by the same characteristics.144 The validation studies that would contribute to 

developing valid standard phenotyping algorithms and use of those standard phenotyping 

algorithms would reduce, in theory, event misclassification in EHR-based research.  

Many authors have called attention to the need for standard phenotyping algorithms 

when using EHR data, administrative data, and specifically, when studying cardiovascular 

disease.72,137,145 The 2 main rationales behind these calls to action is the need to compare 

estimates between groups and across time.72,106,146,147 Clinical definitions of events, such as 

http://www.record-statement.org/endorsements
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acute myocardial infarction, vary over time. The introduction of troponin as a clinical marker in 

the early 2000’s was studied as a factor influencing trends of acute myocardial infarction over 

time.148–150 Researchers found that more NSTEMI, and overall less severe acute myocardial 

infarctions were identified by elevated troponin, contributing to an increased prevalence due to 

differential detection.150,151 While creating standard phenotyping algorithms would be resource 

intensive, the effect of new coding systems, the introduction of new tests, and changes in 

treatment, on time trends can be lessened by the use of standard phenotyping algorithms.147 

Table 6. Examples of coding changes, new tests, and new treatments on prevalence and incidence 
of acute myocardial infarction, and heart failure 

 Acute myocardial infarction Heart failure 

Diagnostic coding ICD-10 includes specific codes for 

NSTEMI and STEMI152 

Inconsistency – 1/3 patients hospitalized 

for acute HF exacerbation lack HF in 

primary or secondary position 

Hospitalization rates and costs 

associated with medical reimbursements 

resulting in unbundling and upcoding153  

New tests Troponin detects less severe events 

and more NSTEMI72,149,154 

Increased use of echocardiography and 

improvements in echocardiographic 

imaging increase diagnosis153 

New treatments Stents, drug-eluting stents, 

percutaneous coronary intervention, 

dual antiplatelet therapy 

Pacemakers, implantable cardioverting 

defibrillators (and combination); left-

ventricular assist devices 

 

A standard phenotyping algorithm, or “case definition”, in EHR research would be a 

phenotyping algorithm used across all EHR-based studies. Ideally, it would be shown to have 

high validity across sociodemographic groups, or if not, researchers would develop specific 

standard phenotyping algorithms for varying groups. Readers could correctly assume that 

researchers constructed their algorithm in the way outlined in previous methodologies, and 

according to transparent reporting guidelines, such as STROBE and its extension, RECORD. 
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The lack of standard definitions is a specific data challenge that encompasses both 

validity and missingness concerns.9,72,106,131,146 Different definitions used to identify 

cardiovascular conditions in various studies leads to conflicting prevalence and incidence 

estimates, and prevents comparison between published literature.106,137,145 Creation of standard 

definitions would allow public health stakeholders, clinicians, researchers, and policy makers to 

understand the current burden of disease in the United States as well as evaluate the success 

of various initiatives such as Healthy People 2020, Life’s Simple 7®, and the Million Hearts® 

Initiative towards reducing the burden of cardiovascular disease in the US.  

Establishing standard phenotyping algorithms requires consideration of not only the data 

source but also the healthcare setting, such as outpatient encounters versus inpatient 

hospitalizations. Phenotyping algorithms can vary in the actual diagnosis codes they include, 

the diagnosis code position, and the lookback period to establish prevalent conditions. 

Depending on the research purpose, investigators may want to use a phenotyping algorithm 

that optimizes sensitivity, specificity, or PPV. Current literature often references this choice in 

validity optimization, noting that definitions with diagnosis codes in the primary position are less 

sensitive compared to those with diagnosis codes in any position, but therefore produce fewer 

false positives. Examining the performance of possible standard phenotyping algorithms in 

different data sources and different healthcare settings is necessary to evaluate the 

performance and selection of the optimal standard definition for various research scenarios.  

Wei et al.88 found that missing diagnostic criteria due to data fragmentation across EHR 

systems contributed to false negative and false positive type 2 diabetes identification. Reasons 

for event misclassification differed between false negatives and false positives, and between 

cases and non-cases. Contributing factors for false negative cases were incomplete diagnosis 

data (44% of FN case), incomplete medication data (30%), <2 clinical visits (21%) and missing 

lab values (5%). For false positive cases, all were due to incomplete diagnosis data to exclude 

based on type 1 diabetes diagnosis. For false negative non-cases, 68% were missing lab values 
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and 32% had <2 clinical visits. For false positive non-cases, 63% were missing lab values, 34% 

had incomplete diagnosis data, and 3% had incomplete medication data. 

Current Situation 

 Researchers often use phenotyping algorithms that have either been used by other 

researchers in their field or reflect what types of data they have available. However, as 

demonstrated by researchers diving deeper into the methodologic choices behind EHR 

phenotyping and even shallow comparisons by changing the position of a diagnosis code, 

variability in results depending on the specific phenotyping algorithm and other methodologic 

considerations is high. 

In her dissertation, McCormick compared hypertension and diabetes prevalence 

estimates using 3 different ambulatory care phenotyping algorithms: annual, augmented, and 

extended (Table 7).155 Annual phenotype cases (numerator) had at least 1 diagnosis code in 12 

months, augmented had at least 2 codes in 12 months, and extended had at least 2 codes in 24 

months. The corresponding care population (denominator) for annual was at least 1 ambulatory 

care visit in 12 months, augmented was at least 2 visits in 12 months, and extended was at 

least 2 visits in 24 months. The annual definition was based on surveillance definitions used by 

the NYC Macroscope project and augmented definitions were based upon the phenotype 

definitions used by the CMS Data Warehouse.4 

Prevalence estimates were calculated using data from the Colorado Health Observation  

Regional Data Service (CHORDS, www.denverpublichealth.org/health-data-statistics/chords), a 

Regional Distributed Data Network that includes 11 data partners (as of October 2019), 

including Kaiser Permanente of Colorado and the Colorado Regional Health Information 

Organization, among others.  

For hypertension and diabetes, the annual definition provided the largest numerator and 

denominator, and the largest population coverage of the 3 definitions (25% coverage of the 

Denver census population).155 The annual definition also had the highest population coverage 

http://www.denverpublichealth.org/health-data-statistics/chords
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by age, gender, and racial subgroups. The augmented definition (2 codes in 12 months) 

resulted in the smallest population and lowest coverage at 17% of the Denver population.156 For 

both conditions, the annual definition and extended definition provided similar population 

numbers and coverage – McCormick selected the annual definition for further analyses given 

the ease of year-to-year comparisons.155  

Table 7. Three prevalence phenotypes for hypertension and diabetes. 

Prevalence Phenotype 
Case Definition  

(Numerator) 
Care Population Definition (Denominator) 

Annual At least 1 code in 12 months At least 1 visit in 12 months 

Augmented At least 2 codes in 12 months At least 2 visits in 12 months 

Extended At least 2 codes in 24 months At least 2 visits in 24 months 

Modified from Table 4, page 65 of McCormick dissertation.155 

Transportability of Validation Results 

Within existing literature, validation of cardiovascular events using EHR data varies. For 

example, using EHR data from participating institutions in the Cardiovascular Research Network 

(CVRN), Reynolds et al estimated incidence of STEMI and NSTEMI, and conducted a manual 

chart review on a subset using ARIC adjudication criteria, which includes cardiac biomarker 

elevation, chest pain, and ECG evidence.157 A study by Williams et al at Geisinger Health 

System in Pennsylvania validated a subset of acute MI identified by ICD-9-CM codes by 

verifying cardiac biomarker elevation alone.158 The U.S. healthcare system transitioned to ICD-

10-CM coding on October 1, 2015 and validation of cardiovascular ICD-10-CM codes are 

needed. Validation studies to date with US administrative data have examined ICD-9-CM based 

definitions. With the increased granularity of the ICD-10 system compared to ICD-9, health 

services researchers thought diagnosis-code based algorithms would perform better.159 

However, the use of broad and non-specific codes vary by region and country,132,134 and limit 

research, as does the variability in use of ICD-10 versus ICD-10-CM codes between countries. 
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 Because a definition is validated in one database does not mean it is valid in another.121 

Furthermore, a validated definition may not transport to a subgroup within the same database. 

For example, a case definition for acute myocardial infarction developed for those aged 65 and 

above in a Canadian EHR system may not transport to a younger population in the same EHR 

system just as it may not transport to an American EHR system. Published studies often re-use 

definitions because they were “previously validated”, even if it was from a separate database, or 

a different subset of the same database. The transportability of a definition’s validity depends on 

many factors, such as study population demographics141,160 and event severity138 as well as 

factors more difficult to evaluate, such as differential coding practices by practitioner,135,138,139 

facility,8,118,137 region/country,132–136 and time.134,142,143  

 Internal validity is the validity of inferences applied from the study population to the 

source population from which it was drawn. Generalizability, or external validity, is the validity of 

inferences applied from the study population to the target population from which the source 

population was drawn. Transportability is the validity of inferences applied from the study 

population to a distinct target population.161,162  Bareinboim and Pearl161 use do-calculus to show 

how transportability can be mathematically defined via recalibration, direct transport, and 

weighted recalibration and Westreich et al.162 expand on this example by constructing inverse 

odds weights for transportability of a certain treatment to an external target population. 

Quantitative Bias Analysis 

Quantitative bias analysis (QBA) is “the process of quantifying the direction, magnitude, 

and uncertainty of the bias affecting an estimate of association.163,164 Internal validation studies 

– where the overall sample is split to allow for a validation substudy – are typically worth the 

reduction in sample size.165 Sensitivity, specificity, PPV, and NPV can be calculated from the 

validation subset and applied to the remainder of the sample by estimating predictive values 

with a range of uncertainty, using probabilistic bias analysis.164 Carl van Walraven166 

demonstrated that bootstrap imputation can be used to correct for misclassification when 



54 

phenotyping in administrative data. He used a model that generates individual probabilities that 

a person is a case using predictor models derived in a training set and then validated. Overall 

disease prevalence was estimated on each bootstrap sample with the final point estimate taken 

as the median value. Factors that may influence the ability of QBA and/or bootstrap imputation 

to address outcome misclassification can be examined by plotting mean squared error against 

relative difference in sensitivity and specificity (for QBA) or against a scaled Brier score 

(bootstrap), the latter of which measures calibration of the model (or percent agreement) used in 

imputation for determining disease status. Given the effect of demographic factors, such as 

race/ethnicity, on the transportability of validation methods as well as the burden of 

cardiovascular disease, conducting these bias assessments stratified by race would provide 

useful estimates for future researchers interested in assessing or correcting outcome 

misclassification using administrative data. 

Cardiovascular Diseases 

Two conditions – acute MI and heart failure – were chosen as the substantive topics for 

this dissertation for several reasons. Both conditions are prevalent in the US but present in 

different ways. Patients experiencing MI will almost exclusively seek care at a high-level acute 

care center, rather than primary care or another outpatient health setting. In contrast, heart 

failure patients are increasingly being managed in the outpatient setting.137 In addition, as acute 

MI treatment improves, more patients are surviving after acute MI though the damage to their 

heart muscle increases their risk of developing heart failure later on. 
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Acute Myocardial Infarction 

Epidemiology 

For 2013-2018, the prevalence of 

acute myocardial infarction in the US was 

estimated at 3% in adults, slightly higher in 

men (4%) and lower in women (2%).167 

Self-report of “ever being told by a doctor 

that you had a myocardial infarction” in 

BRFSS data differs by state, ranging from 

2.8% in California to 6.4% in Kentucky, with a national average of 4.4% (Figure 19).168 

The risk of heart disease, including myocardial infarction, differs by age, race/ethnicity, and 

gender, with higher risk as age increases, higher risk in non-white populations, and higher risk 

in men compared to women (Figure 20).167,169166,168 

The aging of the population, with 

a larger proportion of the population 

approaching and surpassing 65 years 

was reflected in a higher prevalence in 

these age groups compared to the 

oldest age group (Figure 21).  

Research from ARIC Community 

Surveillance from 2005 to 2014 

confirmed race and gender disparities in 

incidence of myocardial infarction, with 

higher incidence in blacks than whites, while maintaining the gender disparity (Figure 22). 

Figure 19. Prevalence of self-report myocardial 
infarction from BRFFS, 2018. 

Figure 20. Prevalence of myocardial infarction 
from NHANES by race/ethnicity and gender, 
2013 – 2018. 
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From Diagnosis to Phenotyping 

The Fourth Universal Definition of Myocardial Infarction distinguishes between 

myocardial injury and myocardial injury in the setting of acute myocardial ischemia, the latter 

being the clinical definition of acute myocardial infarction.72 Acute myocardial injury can be 

detected by a rise and fall in cardiac troponin levels and can occur in the setting of nonischemic 

myocardial injury due to myocarditis, kidney disease, surgery, or trauma.72 Sustained elevation 

of cardiac troponin may indicate chronic ongoing myocardial injury, such as heart failure, rather 

than an acute infarction. 

Myocardial injury can be related to acute myocardial ischemia due to atherosclerotic 

plaque disruption with thrombosis (Type 1 MI) or through oxygen supply/demand imbalance due 

to reduced myocardial perfusion or increased myocardial oxygen demand (Type 2 MI). Causes 

of myocardial injury, i.e., elevated troponin, include cardiac conditions like heart failure, 

Figure 22. Incidence of myocardial infarction, 
by race and gender from ARIC Community 
Surveillance, 2005-2014. 

Figure 21. Percent of US Population 2015-
2018 self-reporting heart attack, NHANES. 
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myocarditis, cardiomyopathy, and cardiac procedures, among others, as well as systemic 

conditions such as kidney disease, stroke, sepsis, chemotherapy, and intense exercise. 

Diagnosing acute myocardial infarction is an exercise in differential diagnosis, as many of the 

symptoms occur both during myocardial infarction and other conditions (Figure 23). Myocardial 

ischemia can manifest as diffuse pain, dyspnea, or fatigue and can be clinically detected by 

changes on the electrocardiogram (ECG).72,170,171  However, ECG changes alone is insufficient 

to diagnose acute myocardial infarction because ST-segment shifts can occur in acute 

pericarditis, left ventricular hypertrophy, left bundle branch block, Brugada syndrome, Takotsubo 

Syndrome, and early repolarization patterns.72 The complex and sometimes subjective process 

of diagnosing acute myocardial infarction may be reflected in a patient’s EHR, but not in the 

data extracted to use for research. Recommendations for coding Type 1 are to code Type 1 

STEMI by the location of the affected vessel or myocardial segment (I21.0 – I21.3) and Type 1 

NSTEMI as I21.4. Recommendations for coding Type 2 MI are to code the underlying cause as 

the primary diagnosis code and I21.A1 as the secondary diagnosis code.172 

Table 8 and Table 9 list the relevant ICD-10-CM codes for acute myocardial 

infarction and commonly used phenotyping algorithms in the literature, respectively. 
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Figure 23. Diagnosing myocardial infarction versus myocardial injury from elevated cardiac 
troponin. 
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Table 8. International Classification of Disease Version 10 Clinical Modification Codes for 
Ischemic Heart Diseases 

ICD-10-CM Description 

I21 Acute myocardial infarction 

I21.0 ST elevation (STEMI) myocardial infarction of anterior wall 

I21.1 ST elevation (STEMI) myocardial infarction of inferior wall 

I21.2 ST elevation (STEMI) myocardial infarction of other sites 

I21.3 ST elevation (STEMI) myocardial infarction unspecified site 

I21.4 Non-ST elevation (NSTEMI) myocardial infarction 

I21.9 Acute myocardial infarction, unspecified 

I21.A Other type of myocardial infarction  

I21.A1 Myocardial infarction Type 2 

I21.A9 Other myocardial infarction type 

I22 Subsequent MI 

I22.0 Subsequent STEMI of anterior wall 

I22.1 Subsequent STEMI of inferior wall 

I22.2 Subsequent NSTEMI 

I22.8 Subsequent STEMI of other site 

I22.9 Subsequent STEMI of unspecified site 

I23 Certain complications following STEMI and NSTEMI within 28 day period  

I24 Other acute ischemic heart disease 

I24.0 Acute coronary thrombosis not resulting in myocardial infarction 

I24.1 Dressler’s syndrome 

I24.8 Other forms of acute ischemic disease 

I24.9 Acute ischemic heart disease, unspecified 

I25 Chronic ischemic heart disease 

I25.1 Atherosclerotic heart disease of native coronary artery 

I25.2 Old myocardial infarction 

I25.6 Silent myocardial ischemia 

I25.82 Chronic total occlusion of coronary artery 

I24.89 Other forms of chronic ischemic heart disease 

I25.9 Chronic ischemic heart disease, unspecified  

 



60 

Table 9. Myocardial Infarction Phenotyping Algorithm Examples from the Literature 
Phenotyping Algorithm Study Location and Source 

ICD-10  

I21 – I22 Minnesota, USA148; United Kingdom173–175; England and 

Western Australia134 

I21 Denmark176 

I21, I22, I25.2 – for comorbidities Canada152 

I21.01, I21.02, I21.09, I21.11, I21.19, I21.21, I21.29, 

I21.3, I21.4, I21.9, I21.A1, I21.A9, I22.0, I22.1, I22.2, 

I22.8, I22.9 

Chronic Conditions Data Warehouse, CMS 

Requirements  

Primary diagnosis position England and Western Australia134; United States157 

Primary or secondary United States158,177, Chronic Conditions Data Warehouse, 

CMS 

Any position Scotland175 

ICD-9  

410.0 – 410.6, 410.8 (STEMI) – maps to I21.0 – I21.3 

410.7, 410.9 (NSTEMI) - maps to I21.4 

United States157,178 

410.x0, 410.x1 – maps to I21; 410.x2 – maps to I22 United Kingdom173,174; Canada179; United States180–183 

410.x1 – maps to I21 United States184 

410.x0, 410.x1 – maps to I21; 410.x2 – maps to I22 

412 – maps to I25.2 

United States185; Canada152 

410.x0, 410.x1 – maps to I21; 410.x2 – maps to I22 

411 – maps to I24 

United States186 

Chart Review  

Chest pain, cardiac enzymes, and ECG  Switzerland187; North Carolina, USA177; Massachusetts, 

USA188 

  

Severity 

Indicators of acute myocardial infarction severity include a systolic blood pressure < 100 

mmHg or abnormal pulse rate at presentation, ST-segment elevation, initial Q wave, new Q 

wave, diagnostic ECG, abnormal cardiac enzymes, definite (versus probable) MI, cardiogenic 

shock, and acute episodes of heart failure during hospitalization.189–191 Markers of severity also 

include Killip class 2-4 and peak creatine kinase-MB (CK-MB) ratio.186 
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Treatment 

With STEMI, early recognition of the event and early management are the current 

standard-of-care with the following goals: relief of ischemic pain, correction of hemodynamic 

abnormalities, initiation of reperfusion therapy with PCI or fibrinolysis, antithrombotic therapy (to 

prevent rethrombosis or acute stent thrombosis if stents placed), β blocker therapy (to prevent 

repeat ischemic and life-threatening ventricular arrythmias).192 Patients may undergo coronary 

bypass artery grafting if fibrinolysis or reperfusion via PCI fails. In-hospital pharmacotherapy 

following triage includes antiplatelet therapy (including dual antiplatelet therapy), treatment with 

angiotensin-converting enzyme inhibitors to prevent left ventricle remodeling, statin therapy, and 

anticoagulation to prevent embolization if the patient experienced thrombosis in the left ventricle 

or has underlying atrial fibrillation.192 Discharge planning includes prescriptions for 

antithrombotic therapies, β blockers, ACE inhibitors/ARBs/aldosterone blockers, and statins; 

plan for cardiac rehabilitation; risk factor modification (smoking cessation, diet and nutrition 

behaviors); among other factors.193 

Once STEMI is ruled out, and an NSTEMI or unstable angina diagnosis is made, acute 

patient management centers around 6 goals: relieving ischemic pain; correcting hemodynamic 

abnormalities; early risk stratification; early invasive strategy versus conservative medical 

therapy; antithrombotic therapy (to prevent thrombosis or embolism of an ulcerated plaque), and 

β blocker therapy (to prevent repeat ischemic and life-threatening ventricular arrythmias).194 

Long-term antiplatelet therapy, statin therapy, angiotensin-converting enzyme inhibitors if high 

risk, and long-term anticoagulation for patient with underlying atrial fibrillation are recommended 

for post-hospital management.194 
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Heart Failure 

Epidemiology 

For 2015-2018, the prevalence of heart failure was estimated at 2.1% in adults, more 

common in males (2.5%) and females (1.7%),167 which was a change from previous prevalence 

estimates with both sexes having a prevalence around 2%.169 Hospitalization among Medicare-

eligible adults aged 65 or older varied by state, with higher age-adjusted rates in Ohio, 

Michigan, Minnesota, Pennsylvania, New York, Kentucky, West Virginia, Tennessee, North 

Carolina, Rhode Island, Massachusetts, and Louisiana than the other states (Figure 24).  

Heart failure prevalence differs by race/ethnicity and gender, with higher prevalence 

among non-Hispanic black men and women than in whites or Hispanics, and slightly lower 

prevalence among Asian men and women (Figure 25).169  

  

The epidemiology of heart failure in the US is a classic example in the effect of changing 

incidence and mortality on prevalence estimates. Researchers estimate that while incidence has 

stayed stable over time, or perhaps decreased, survival has improved. With increased risk of 

heart failure with increasing age, and the aging of the population, prevalence has increased 

over time (Figure 26).137 The epidemiology of heart failure is also a classic example of the effect 

of measurement on the estimated burden of condition. Heart failure incidence is often measured 

Figure 24. Hospitalization for heart failure among 
Medicare-eligible persons over the age of 65 
years, 2019. Data from CMS Part A Claims Data. 

Figure 25. Prevalence of Heart Failure, 
NHANES 2015 – 2018. 



63 

via hospitalizations using administrative data that measures at the event level, not the person 

level.53,137,195  

Furthermore, with increasing care for heart failure shifting to the outpatient setting, 

estimates that do include outpatient ascertainment may be 1) underestimating burden and 2) 

overestimating severity.137 In the ARIC Study, annual event rates for first acute decompensated 

heart failure events in the community surveillance population increased for whites and blacks of 

both genders with age, with consistently higher prevalence among black men compared to the 

other race-gender groups. The differences between race-gender groups, however, lessened 

with increasing age (Figure 27).169 

  

Case Definitions 

Heart failure definitions, both clinical and research are varied. In this section I present 6 

heart failure classification schemes: the ARIC HF Classification Scheme, the Framingham HF 

Criteria, the Modified Boston Criteria, the Gothenburg Criteria, the NHANES Criteria, and the 

Cardiovascular Clinical Trialist Criteria. The Framingham HF Criteria and NHANES Criteria 

classify HF as present or absent, the Cardiovascular Clinical Trialist Criteria classifies HF as a 

new diagnosis, a new event without prior HF, or a recurrent event, while the other 3 

Figure 26. Heart failure prevalence by gender 
and age, NHANES (2015 – 2018) 

Figure 27. Annual event rate for first 
decompensated HF, ARIC Community 
Surveillance, 2005 – 2014. 
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classification schemes produce graded levels of either severity or certainty. Criteria used in 

each classification scheme include patient-reported dyspnea, evidence ascertained on physical 

examination, and evidence seen on chest X-ray exams. The ARIC classification also 

differentiates between acute and chronic HF. 

A 2012 study by Rosamond et al. compared the ARIC HF Classification Scheme to the 

other 4 criteria (Table 10).196 The ARIC Classification scheme for heart failure uses a physician 

to review a comprehensive medical record abstraction that includes evidence of new onset of 

symptoms, history of heart failure, general medical history, physical examination findings, chest 

X-ray findings, ejection fraction, biomarkers, and medication prescriptions to classify a patient 

as having acute decompensated heart failure, chronic heart failure, or if heart failure is unlikely 

and/or unclassifiable. 

Table 10. Cross-tabulation of HF Classification Criteria versus ARIC HF Classification (Rosamond 
et al. 2012) 

 ARIC HF Classification 

HF Present Chronic Stable HF No HF 

Framingham 9.6% 21.9% 

Modified Boston 11.2% 24.9% 

NHANES 11.8% 26.6% 

Gothenburg 14% 23.9% 

Modified Boston: definite or probable HF considered “HF present”; Gothenburg: 

levels 2 and 3 considered “HF present”. Adapted from Table 2, Rosamond et al. 

Circ Heart Fail, 2012. 

 

In 1971, the Framingham Heart Study published the Framingham Heart Failure Criteria, 

a list of major and minor criteria used to diagnose heart failure as definite, probable, or 

questionable.153,197,198 The first classification scheme of its kind for heart failure, the Framingham 

Heart Failure Criteria were developed by following study participants over time (Table 11). One 
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challenge with using the Framingham Criteria in EHR-based research is that many of the 

presenting features, such as hepatojugular reflux positive or hepatomegaly, are not often 

recorded, and are also not recorded as absent. In a 2005 validation study, Lee et al. assessed 

the PPV of a primary or secondary ICD-9 diagnosis code of 428 against the Framingham 

Criteria and Carlson criteria, classified via manual chart review, in four Canadian hospitals.199 

Among patients with a ICD-9 428 code, dyspnea was recorded in 94% of the records, rales in 

80%, ankle edema in 57%, tachycardia in 37%, and radiographic findings of pulmonary edema 

in 52%, cardiomegaly in 48%, and pleural effusion in 38%.199 Recording of nocturnal cough, 

hepatojugular reflux positive, and hepatomegaly were low (6%, 8%, and 5%, respectively) of the 

1,808 patients identified.199 In the ARIC comparison study, nearly 10% of those classified as “HF 

present” by Framingham HF criteria were considered to have “chronic stable HF” but 22% of 

those classified as “HF Present” by Framingham were deemed to not have HF by the ARIC 

criteria (Table 10).196 

Table 11. Framingham Heart Failure Criteria (Ho et al. Circulation. 1993 – current version) 
Heart failure present with 2 major criteria or 1 major + 2 minor criteria as long as minor criteria cannot be 

attributed to another condition 

Major criteria Minor criteria 

Paroxysmal nocturnal dyspnea or orthopnea 

Neck vein distension 

Rales 

Cardiomegaly 

Acute pulmonary edema 

S3 gallop 

Increased venous pressure >16cm of water 

Circulation time ≥ 25 seconds 

Hepatojugular reflex 

Ankle edema 

Night cough 

Dyspnea on exertion 

Hepatomegaly 

Pleural effusion 

Vital capacity reduced 1/3 of maximum 

Tachycardia (HR ≥120/min) 

Major or minor criterion 

Weight loss of ≥4.5 kg in 5 days in response to treatment 
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The Carlson criteria debuted in 1985, developed by Dr Karen Carlson and coauthors 

used a general medical population from Massachusetts General and 2 community health 

centers in 1979. They identified 150 patients on long-term digitalis therapy and determined the 

reason for digitalis therapy. For patients for whom heart failure was the sole rationale behind 

digitalis therapy, Carlson et al. developed the scoring criteria with three levels of certainty 

(definite, possible, unlikely) by assigning points for patient history, physical exam findings, and 

chest radiography interpretation indicative of HF (Table 12).200 The Carlson criteria, now often 

called the Modified Boston Criteria, is used primarily for research, including its use as a gold 

standard to assess performance of diagnosis-code based phenotyping algorithms.153,199 

Table 12. Modified Boston Criteria for Heart Failure (Carlson et al. J Chron Dis. 1985) 
Heart failure: Definite (8-12 points), Possible (5-7 points), Unlikely (<5 points) 

Category I: History Category II: Physical Exam Category III: Chest X-ray 

No dyspnea  +0 Heart Rate  Normal +0 

Leg fatigue while walking on level +1 91 – 110 bpm +1 Upper flow redistribution +2 

Dyspnea walking on level +2 > 110 bpm +2 Cardiac enlargement* +3 

Paroxysmal nocturnal dyspnea +3 Jugular venous pressure  Interstitial pulmonary edema +3 

Orthopnea +4 > 6 mm H2O +2 Bilateral pleural effusion +3 

Dyspnea at rest +4 
>6 mm H2O with liver enlargement or 

pitting edema 
+3 Alveolar pulmonary edema +4 

  Pulmonary rales    

  At bases only +1   

  More than basilar +2   

  Wheezes present +3   

  S3 Gallop present +3   

*cardiac enlargement gender specific <540 ml/m2 in men and >490 ml/m2 in women.  

The Gothenburg Criteria involves calculating 3 scores: a cardiac score, a pulmonary 

disease score, and a therapy score (Table 13). The point system assigns heart failure scores 

based on medical history, physical examination findings, and pharmacotherapy information 

captured in these scores.201 Developed by Dr Henry Eriksson and coauthors out of Östra 

Hospital in Gothenburg, Sweden, the researchers used a sample of 817 men born in 1913 to 

develop the scoring criteria and then applied the scoring system to a subset of 644 men at last 



67 

67 years of age at the time of these study. In a comparison of the ARIC Heart Failure 

Classification system, 14% of those classified as chronic stable HF were classified as “HF 

present” by Gothenburg (levels 2 and 3), and 24% of those classified as “no HF” by ARIC were 

classified as “HF present” by Gothenburg (Table 10).196 

Table 13. Gothenburg Criteria for Heart Failure (Eriksson et al., Eur Heart J. 1987) 
Cardiac Score Pulmonary Disease Score Therapy Score 

Coronary heart disease  Chronic bronchitis  Digitalis +1 

In past +1 In past +1 Diuretic +1 

In past year +2 In past year +2   

Angina pectoris  Asthma    

In past  +1 In past +1   

In past year  +2 In past year +2   

Swollen legs at end of day +1 Coughing, phlegm, wheezing +1   

Pulmonary rales +1 Rhonchi +1   

Atrial fibrillation (ECG) +1     

Coronary artery disease and angina pectoris can only contribute 2 points together 

The NHANES Heart Failure Criteria (Table 14) were developed and presented by 

Shocken et al. in 1992 as a way of tabulating the national prevalence of ‘congestive heart 

failure’ using NHANES data. The NHANES Criteria are very similar to the Modified Boston 

Criteria, and performed similarly against the ARIC Classification scheme in Rosamond et al. 

2012, with nearly 12% of those classified as “HF present” by NHANES also classified as 

“chronic stable” HF, though 27% of those classified as “HF present” by NHANES were 

considered to not have HF according to the ARIC classification (Table 10).196 
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Table 14. NHANES Heart Failure Criteria (Schocken et al. J Am Coll Cardiol. 1992) 
Heart failure present with score ≥ 3 

Dyspnea Physical Exam Chest X-ray 

Hurrying on the level or up slight hill +1 Heart Rate  Pulmonary vessel cephalization +1 

At ordinary pace on the level +1 91 – 110 bpm +1 Interstitial edema +2 

Stops for breath when walking at 

own pace 
+2 ≥ 111 bpm +2 Alveolar fluid and pleural fluid +3 

Stops for breath after 100 yards on 

the level 
+2 Jugulovenous Distention  Interstitial fluid and pleural fluid +3 

  Alone +1   

  Plus edema +2   

  Plus hepatomegaly +2   

  Rales and Crackles    

  Either lower long field +1   

  Either lower or either upper lung field +2   

The Cardiovascular Clinical Trialists’ (Trialist) definition of heart failure was developed by 

a group of heart failure trialists, statisticians, and scientists in 2008202 and compared to 

physician adjudication in ARIC in Loehr et al. 2013.203 The Trialist group convened to develop a 

‘meaningful’ definition that is relevant to multiple stakeholders while balancing the use of non-

specific but clinically relevant symptoms common to HF with indications for HF treatment that 

tend to identify only severe events. Their consensus definition included objective evidence of 

cardiac dysfunction, evidence of treatment for HF, classification of the event as clinically 

meaningful and that captures the course of the disease and includes hospitalizations. 

Additionally, this definition is a contemporary answer to the limitations of previous criteria that 

were developed prior to the use of clinical biomarkers like BNP and cardiac imaging for HF 

diagnosis and care.203 The Trialist HF criteria classify 3 possible types of HF events: new 

diagnosis, new event without prior HF, and new event with history of HF with details shown in 

Table 15. In comparison to physician adjudication using ARIC criteria, 69% of those deemed to 

have ADHF per Trialist criteria were classified as Definite ADHF and 16% as Possible ADHF by 

ARIC criteria (Table 16). 
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Table 15. Cardiovascular Clinical Trialist Criteria for Heart Failure (Zannad et al. 2008 and Loehr et 
al. 2013) 

 New Diagnosis of HF 
New HF Event without Prior 

HF 

New Event with History of 

HF (Recurrent Event) 

History of HF No No Yes 

HF signs and symptoms + / - * Yes Yes 

Treatment for HF Yes* Yes Yes 

Imaging and biomarkers Yes Yes Yes 

*Treatment for HF symptoms required but does not require ≥ 2 symptoms as the other 2 categories do. Signs and symptoms 

include shortness of breath or dyspnea on exertion, orthopnea, paroxysmal nocturnal dyspnea, fatigue or reduced exercise 

tolerance, pulmonary edema, rales, peripheral edema, jugular venous distention, S3 gallops, hepatojugular reflux, altered 

hemodynamics, and cardiomegaly. Treatment includes the initiation or increase int treatment with loop diuretics or IV vasoactive 

agents. Imaging and biomarkers require at least 1 of the following: BNP above ≥ 400 ng/L, elevated NT-pro-BNP ≥ 450 ng/L for 

<50 years or ≥900 ng/dL for 50-75 years or ≥ 1800 ng/L for ≥ 75 years and documentation of reduced left ventricular EF below 

40% or diastolic dysfunction. Adapted from Table 1 in Loehr et al. 2013. 

 

Table 16. Comparison of Cardiovascular Clinical Trialist Criteria to ARIC Physician Adjudication of 
Acute Decompensated Heart Failure (Loehr et al. 2013) 

 ADHF (ARIC) No ADHF (ARIC) 

Trialist Criteria Definite Possible Chronic HF Not HF Unclassifiable 

ADHF 69% 16% 6% 5% 4% 

No ADHF 25% 22% 20% 23% 10% 

In comparing the Trialist criteria for ADHF (acute decompensated HF) to physician adjudication, those with ADHF 

could be classified as Definite or Possible, via ARIC criteria, and those without ADHF could be classified as 

chronic stable HF, or to not have HF or be unclassifiable. Adapted from Table 3 in Loehr et al 2013. 

 

Table 17 and Table 18 list the relevant ICD-10-CM codes for heart failure and commonly 

used phenotyping algorithms in the literature, respectively. ICD-9-CM code 428, most commonly 

used for ‘congestive heart failure’ was present in the primary position of 93% of acute 

decompensated heart failure hospitalizations but only in 4% of medical records for patients 

deemed to have chronic stable heart failure per the ARIC HF Classification.196  
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Table 17. International Classification Disease Version 10 Clinical Modification Codes for Heart 
Failure 

I50. Heart failure 

I50.1 LV failure, unspecified I50.8 Other heart failure 

I50.2 Systolic (congestive) heart failure I50.81 Right heart failure 

I50.20 Unspecified I50.810 Unspecified 

I50.21 Acute I50.811 Acute 

I50.22 Chronic I50.812 Chronic 

I50.23 Acute on chronic I50.813 Acute on chronic 

I50.3 Diastolic (congestive) heart failure I50.814 Due to left heart failure 

I50.30 Unspecified I50.82 Biventricular heart failure 

I50.31 Acute I50.83 High output heart failure 

I50.32 Chronic I50.84 End stage heart failure 

I50.33 Acute on chronic I50.89 Other heart failure 

I50.4 Combined systolic and diastolic heart 

failure 

I50.9 Heart failure, unspecified  

I50.40 Unspecified   

I50.41 Acute   

I50.42 Chronic   

I50.53 Acute on chronic   

I09. Other rheumatic heart diseases I11. Hypertensive heart disease 

I09.81 Rheumatic heart failure I11.0 Hypertensive heart disease with 

heart failure 

I13. Hypertensive heart and chronic kidney disease   

I13.0 …with heart failure and stage 1 – 4 CKD 

or unspecified CKD 

  

I13.2 …with heart failure and stage 5 CKD or 

ESRD 
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Table 18. Heart Failure Phenotyping Algorithm Examples from the Literature 
Phenotyping Algorithm Study Location and Source 

ICD-10  

I509, I501, I50, I43, I52, I420, I42, I260, I132, I130, I110 CPRD, United Kingdom204,205 

I09.81, I11.0, I13.0, I13.2, I50.1, I50.20, I50.21, I50.22, I50.23, I50.30, I50.31, 

I50.32, I50.33, I50.40, I50.41, I50.42, I50.43, I50.810, I50.811, I50.812, 

I50.813, I50.814, I50.82, I50.83, I50.84, I50.89, I50.9 in any position 

Chronic Conditions Data 

Warehouse, CMS 

Requirements  

≥ 1 hospitalization discharge code in any position or ≥2 outpatient discharge 

codes in any position on separate days 

MarketScan, United States206 

Any position Chronic Conditions Data 

Warehouse, CMS 

ICD-9  

402.01, 402.11, 402.91 – maps to I11.0 

404.01, 404.11, 404.91, 404.03, 404.13, 404.93 – maps to I13.0 and I13.2 

428 – maps to I50 

Medicare, United States183,206–208 

+ 398.91 – maps to I09.81 Medicare, United States105,209 

428 – maps to I50 United States142,195,210,211 

Pathophysiology 

Heart failure is a complex clinical syndrome, rather than a specific disease, and its 

complex nature reflects in the diagnosis process. Clinical evaluation includes a history of heart 

failure symptoms (shortness of breath, orthopnea, paroxysmal nocturnal dyspnea, acute hepatic 

congestion, palpitations, fatigue, weakness, and edema), physical exam (heart rhythm, including 

displaced apical impulse, gallop rhythm, and elevate jugular venous pressure), vital signs and 

appearance (sinus tachycardia, narrow pulse pressure, diaphoresis, peripheral 

vasoconstriction), volume assessment (pulmonary congestion, peripheral edema, elevated 

jugular venous pressure; the latter typically present when peripheral edema is due to heart 

failure) and clinical history (previous myocardial infarction, older age).212 If heart failure is 

suspected, initial testing includes electrocardiogram (ECG), with abnormal results predictive of 

the specific HF cause or contributing factor, such as arrhythmias, amyloid heart disease, and 

heart damage due to myocardial infraction or ischemia; and blood tests to differentiate cause of 

heart failure (complete blood count – anemia, infection; electrolytes, BUN, and creatinine – renal 
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impairment; liver function tests – hepatic congestion; fasting blood glucose – diabetes mellitus) 

as well as confirmatory evidence of suspected heart failure (BNP and NT-proBNP).212 

The cardiac hormone B-type natriuretic peptide (BNP) and its non-active prohormone 

form, N-terminal pro-BNP (NT-proBNP) are two biomarkers used regularly in clinical practice 

and research settings to diagnose heart failure and assess clinical status among patients with 

heart failure.137,213 BNP and NT-proBNP are released in response to myocyte stretching, which 

corresponds to changes in heart pressure.213 Circulating levels of NT-proBNP increase with age, 

and researchers have found that age-specific cut-offs have better validity than a single cut-

off.212,213 These molecules can be used to exclude a heart failure diagnosis when low, and to 

confirm a diagnosis when elevated, in conjunction with clinical judgement.212,213 Elevated levels 

may also be indicative of acute coronary syndrome, myocarditis, valvular heart disease, 

hypertrophic cardiomyopathy, cardiotoxicity, atrial fibrillation/flutter, or right ventricular 

dysfunction due to pulmonary disease.212,213 Levels may also be elevated in the setting of 

reduced kidney function, as the kidneys are responsible for clearing the hormone from the 

bloodstream.212,213 Thus, elevated BNP or NT-proBNP cannot be used alone to diagnose HF but 

instead can be used in the setting of other clinical information.  

Imaging techniques often used to evaluate a patient for heart failure include chest 

radiographs (x-rays) and echocardiogram. Chest x-rays allow for differentiation between 

pulmonary disease as the cause of heart failure, and also allow for some visualization of the 

heart structure and size, and the presence of pulmonary congestion.212 Echocardiograms are 

used to quantify ejection fraction (EF) as well as evaluate atrial and ventricular size, systolic and 

diastolic function, regional wall motion abnormalities, pericardial disease, and valvular 

disease.212 Clinical diagnosis of heart failure is aimed at establishing if heart failure is present, 

and if so, the underlying cause or etiology.153,212 As demonstrated by the many possible 

examinations and tests, there are many possible etiologies leading to heart failure (Table 19). 

Heart failure is often subtyped by ejection fraction, where HF with reduced EF (HFrEF) is EF ≤ 
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40, HF with preserved EF (HFpEF) is EF ≥ 50), and HF with moderate EF (HFmEF) is EF 41 – 

49.214 

Table 19. Taxonomy of heart failure etiologies 
Ischemic  Valvular 

Coronary artery disease  Rheumatic heart disease 

Coronary dissection  Degenerative valvular disease 

Coronary embolism   

  Pericardial disease 

Hypertensive   

  Other 

Congenital heart disease   

   

Primary cardiomyopathies  Secondary cardiomyopathies 

Genetic   Amyloidosis 

Hypertrophic cardiomyopathy  Sarcoidosis 

Arrhythmogenic cardiomyopathy  Storage disease (e.g. hemochromatosis, Fabry disease) 

Left ventricular noncompaction  Connective tissue disorder (e.g., scleroderma) 

Mitochondrial myopathy  Thyroid disease 

Ion-channel disorder (long QT syndrome, Brugada, etc.)  Endomyocardial fibrosis 

Acquired 

Tachycardia-induced 

 Nutritional deficiencies (e.g., selenium, beriberi, 

kwashiorkor) 

Peripartum  Anemia 

Stress-induced (Takotsubo)  Arteriovenous fistula 

Chagas   

Toxin-related (e.g., anthracycline)   

Myocarditis   

Substance-abuse-induced (e.g., alcohol, cocaine)   

HIV   

Viral   

Giant cell myocarditis   

Adapted from Ziaeian and Fonarow, “Epidemiology and aetiology of heart failure” Nature Reviews Cardiology, 2016 (13) 

Box 1 and used with permission from Springer Nature under license number 4697831051072. 
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The variety of tests and examinations performed in the diagnosis of heart failure also 

reflect in the difficulty of using structured EHR fields to phenotype heart failure. Chest x-ray 

reports typically have narratives that may indicate (or exclude) cardiomegaly, pulmonary 

congestion, pleural effusion, pneumonic consolidation, and atelectasis, which are important 

factors to consider in identifying a patient with HF via EHR. There have been efforts to structure 

these findings into x-ray observation report entry systems to facilitate data extraction.215 

Similarly, ECG interpretations are also written in narrative form, indicating presence or absence 

of atrial fibrillation/flutter and specific measurements, like QT interval, in addition to 

echocardiogram results, where we would want to extract the calculated ejection fraction or 

confirm cardiomegaly.  

Severity 

The New York Heart Association Functional Classification system categorizes patients 

with heart failure based on symptoms and objective evidence of cardiovascular disease, the 

latter of which is based upon electrocardiograms, stress tests, x-rays, echocardiograms, and 

radiological imaging (Table 20). Under the New York Heart Association (NYHA) Functional 

Classification system patients are assigned both a functional class (I – IV) and an objective 

assessment class (A-D). Health care practitioners may use the ACC/AHA Heart Failure Stages 

Grading Criteria in addition or instead of the NYHA system (Table 21). The two classification 

systems are often grouped together when recommending treatment imitation and escalation 

(Figure 28).216 
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Table 20. New York Heart Association Functional Classification System for Heart Failure 
Class Patient Symptoms Class Objective Assessment 

I No limitation of physical activity. Ordinary physical 

activity does not cause undue fatigue, palpitation, 

dyspnea (shortness of breath). 

A No objective evidence of cardiovascular disease. 

No symptoms and no limitation in ordinary physical 

activity. 

II Slight limitation of physical activity. Comfortable at 

rest. Ordinary physical activity results in fatigue, 

palpitation, dyspnea (shortness of breath). 

B Objective evidence of minimal cardiovascular 

disease. Mild symptoms and slight limitation during 

ordinary activity. Comfortable at rest 

III Marked limitation of physical activity. Comfortable at 

rest. Less than ordinary activity causes fatigue, 

palpitation, or dyspnea. 

C Objective evidence of moderately severe 

cardiovascular disease. Marked limitation in activity 

due to symptoms, even during less-than-ordinary 

activity. Comfortable only at rest. 

IV Unable to carry on any physical activity without 

discomfort. Symptoms of heart failure at rest. If any 

physical activity is undertaken, discomfort increases. 

D Objective evidence of severe cardiovascular 

disease. Severe limitations. Experiences symptoms 

even while at rest. 

Adapted from “Classes of heart failure” at https://www.heart.org/en/health-topics/heart-failure/what-is-heart-
failure/classes-of-heart-failure, accessed 28 October 2019. Original source: Criteria Committee, New York Heart 
Association, Inc. Diseases of the Heart and Blood Vessels. Nomenclature and Criteria for diagnosis, 6th edition 
Boston, Little, Brown and Co. 1964, p 114. 
 

Table 21. ACC/AHA Heart Failure Stages Grading Criteria 
Stage Description 

A Patient at high risk for developing HF in future but no functional or structural heart disorder 

B Structural heart disorder but no symptoms at stage 

C Previous or current symptoms of heart failure in context of underlying structural heart problem but 

managed with medical treatment 

D Advanced disease requiring hospital-based support, a heart transplant, or palliative care 

https://www.heart.org/en/health-topics/heart-failure/what-is-heart-failure/classes-of-heart-failure
https://www.heart.org/en/health-topics/heart-failure/what-is-heart-failure/classes-of-heart-failure
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Treatment 

Medication management for HFrEF patients is aimed at improving ejection fraction or 

reducing ejection fraction decline. These medications include angiotensin converter enzyme 

(ACE) inhibitors, angiotensin II receptor blockers (ARBs), angiotensin receptor neprilysin 

inhibitors (ARNIs), and β blockers. Diuretics may be used regularly to control heart failure 

symptoms, and are used orally or intravenously during acute heart failure decompensation 

events to reverse volume overload leading to pulmonary congestion, peripheral edema, and 

elevated jugular venous pressure. 

Figure 28. Heart Failure Classification: 2 systems 
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When pharmacologic therapy does not sufficiently control heart failure symptoms, 

patients may elect to undergo surgical procedures or use devices. If heart failure is caused by 

coronary artery disease, leaking valves, or pericarditis, surgeries such as coronary artery 

bypass grafting, valve surgery, or pericardiectomies may relieve symptoms but are higher risk 

than percutaneous options like percutaneous valve repair and percutaneous angioplasties. 

There are also devices that can be implanted during surgery to help the heart pump, relieve 

symptoms, and/or reduce the risk of sudden death. Pacemakers can help correct arrythmias 

common ion advanced heart failure while implantable cardioverter defibrillators reduce the risk 

of sudden cardiac death by detecting ventricular fibrillation and shocking the heart back into 

normal rhythm (Figure 29, Panel A). Newer implantable cardioverter defibrillators can function 

as both a pacemaker (speed up slow rhythm, slow down fast rhythm, coordinate chambers) and 

as a defibrillator. A left ventricular assist device (LVAD) is a mechanical pump that relieves 

symptoms and helps the heart pump better (Figure 29, Panel B). An LVAD may or may not be a 

bridge therapy to heart transplantation. 

Figure 29. Pacemaker and implantable cardioverter defibrillator (ICD) [Panel A] and left ventricular 
assist device (LVAD) [Panel B] treatment options for advanced heart failure. Reproduced with 
permission from Healthwise, Incorporated. 
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Public Health Significance 

This proposed project is relevant because the burden of cardiovascular disease in the 

US is high and current efforts to reduce this burden are limited in their ability to evaluate impact 

of population-based interventions and policies because we lack a national cardiovascular 

surveillance system. Even without a national cardiovascular surveillance system, comparison of 

research findings using electronic phenotyping for cardiovascular research is limited due to the 

variation and lack of reproducibility of the methods. The AHA’s mission and 2020 Goal for 

cardiovascular health demonstrate the AHA’s dedication to reduce cardiovascular disease. 

Achieving public health goals require accurate and practical methods to evaluate success. 

Results from the presented research provide useful and relevant resources for EHR researchers 

to measure evolving disease occurrence, allowing them to make informed analytic decisions 

and evaluate the validity of their own study findings. The resulting improvement in EHR and 

claims data research in chronic conditions such as cardiovascular disease will impact public 

health through improved estimates to guide programs and policies aimed at improving 

America’s health. 
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CHAPTER 4: RESEARCH PLAN 

Overview 

The overarching research question for this dissertation is: To what degree do various 

methodologic decisions in using electronic health records affect the application of EHR-based 

methods to epidemiologic research on cardiovascular disease? To answer this question, I used 

data from the UNC Carolina Data Warehouse for Health (CDW-H) and the Atherosclerosis Risk 

in Communities (ARIC) Study. For Manuscript 1 (acute MI) and Manuscript 2 (HF), I compared 

the prevalence of cardiovascular disease from different EHR phenotyping algorithms (Aim 1) 

and compared the populations captured by each algorithm (Aim 2). For Manuscript 3, I applied 

the algorithms evaluated in Aims 1 and 2 to the ARIC Study cohort surveillance data, which 

contains validated event data (Aim 3). 

Data Sources 

For Aims 1 and 2, I used electronic health record (EHR) data from the UNC CDW-H to 

estimate prevalence of cardiovascular disease by phenotyping algorithm and characterized the 

populations captured by each algorithm. For Aim 3, I used ARIC event data to calculate 

sensitivity and specificity of the algorithms evaluated in the UNC CDW-H in Aims 1 and 2. 



80 

UNC Health 

UNC Health includes 

13 affiliate hospitals and 350 

clinics across North Carolina 

and reports 3.5 million clinical 

visits, 120,000 surgeries, and 

470,000 emergency 

department visits on their 

website. The CDW-H contains EHR data from patients seen at all UNC Health sites across the 

state of North Carolina (Figure 30), providing substantial heterogeneity in the patient population 

than data from one hospital alone. In 2014, UNC transitioned from a legacy EHR system to 

Epic, with EHR data stored in the Carolina Data Warehouse for Health (CDW-H). Four of the 

UNC Health hospitals (UNC Medical Center, UNC Hillsborough, Chatham Hospital, and UNC 

Rex Healthcare) have Epic data available starting in 2014. Other hospitals were acquired after 

2014, and their data availability is shown in Appendix Table 139. High Point Regional was 

owned by UNC Health from 2016 to 2018 before ownership transferred to Wake Forest Baptist 

Health.  

Comparing the UNC Health Population to North Carolina 

The demographics of 

North Carolina compared to 

the United States is presented 

in Table 22. North Carolina 

can be divided into 8 

geographic-commercial 

regions: Mountains, Triad, 

Triangle, Northeast, Southeast, Outer Banks, Sandhills, and Greater Charlotte (Figure 31). UNC 

Figure 30. UNC Healthcare System Hospitals with Epic Data, 
2016 – 2020. 

Figure 31. UNC Healthcare System Hospitals with Epic Data, 
2016 – 2020 with respect to the 8 geographic-commercial 
regions in North Carolina. 
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Health has hospitals in 5 of the 8 regions (shown as white dots in Figure 31), with a reduced 

presence in the Triad since the transfer of High Point Regional in 2018 to Wake Forest Baptist 

Health. Major population centers in North Carolina correspond with major health care systems in 

addition to UNC Health.  

Figure 32 shows an overlay 

of UNC Health hospital sites in 

yellow stars over other hospitals in 

North Carolina (blue box with white 

H). Major population centers are 

shown with text labels, as are 

major military sites which affect the 

demographics of the area (Fort 

Bragg and Camp LeJeune). The 3 regions without a UNC Health presence include Greater 

Charlotte, the Sandhills, and the Outer Banks.  

Using US Census data (2014 – 2018) from each county with a UNC Health hospital site (called 

the “UNC catchment population” from this point forward), and select counties from the 3 regions 

not served by UNC Health (called the “non-UNC catchment population” from this point forward), 

I tabulated demographic data by county and by UNC versus non-UNC in Table 22. For regions 

without UNC Health hospitals, I present data for Mecklenburg County and Cabarrus County 

(Greater Charlotte), Cumberland County (Fayetteville, NC, Sandhills), and Carteret County and 

Camden County (Outer Banks). The location of these 5 additional counties are shown in 

Appendix Figure 203 with additional visualizations for the following statistics in Error! R

eference source not found.. 

In North Carolina, women make up 51.4% of the population, compared to 51.3% in the 

UNC catchment population and 50.9% in the non-UNC catchment population. The proportion of 

Figure 32. Hospitals in North Carolina, adapted from 
North Carolina Healthcare Association image. 
https://www.ncha.org/hospitals-health-systems-2/ 

https://www.ncha.org/hospitals-health-systems-2/
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women across the regions was consistent, with slightly lower percentage in Onslow County 

(45.1%), possibly due to the presence of Camp Lejeune, a Marine Corp base.  

Table 22. Characteristics of North Carolina Counties in UNC catchment population and non-
UNC catchment population  

United 

States 

State UNC Non-

UNC 

Under 18 years 22.3% 21.9% 21.8% 22.6% 

≥ 65 years 16.5% 16.7% 17.8% 15.9% 

Female 50.8% 51.4% 51.3% 50.9% 

Non-Hispanic White 76.3% 62.6% 66.0% 63.8% 

Black 13.4% 22.2% 20.0% 21.8% 

American Indian and Alaska Native 1.3% 1.6% 0.8% 1% 

Asian 5.9% 3.2% 2.5% 3.4% 

Hispanic/Latino 18.5% 9.8% 10.0% 8.9% 

Language other than English spoken at home 21.5% 11.6% 11.3% 11.0% 

Households with a computer 88.8% 87.4% 86.6% 90.9% 

Households with broadband Internet  80.4% 78.3% 77.4% 84.4% 

High school graduate or higher (≥ 25 years) 87.7% 87.4% 86.4% 89.5% 

Bachelor's degree or higher (≥ 25 years) 31.5% 30.5% 27.6% 29.5% 

Persons ≤ 65 years with a disability 8.6% 9.5% 10.8% 10.0% 

Persons ≤ 65 years without health insurance 10% 12.7% 13.0% 11.9% 

In labor force (≥16 years) 62.9% 61.3% 59.9% 61.9% 

Median household income  $60,293 $52,413  $51,655  $58,396  

Per capita income, past 12 months  $32,621 $29,456  $28,495  $30,321  

Persons in poverty 11.8% 14.0% 14.5% 11.2% 

Population per square mile 87.4 196 348 582 

Income reported in 2018 dollars. Population per square mile reported for 2010.  

Data from US Census Bureau. 
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The UNC catchment population is slightly older than the non-UNC catchment population, 

with nearly 18% of the population 65 years or older compared to 16% in the non-UNC 

catchment population. Both across and within regions there is heterogeneity in the proportion of 

the population over the age of 65, with higher proportions in the Northeast (Nash, Lenoir, 

Wayne), the Outer Banks (Carteret), and the Mountains (Henderson, Caldwell) (Appendix 

Figure 204). 

The Mountains and Outer Banks of North Carolina are predominantly white (Appendix 

Figure 206), with similar distribution of white residents in the UNC and non-UNC catchment 

populations (Appendix Figure 205). The Northeast has the highest proportions of black 

residents in the state (Appendix Figure 206) and while the overall proportion of blacks in the 

UNC and non-UNC catchment populations are similar, there is variation within regions of the 

UNC catchment area, particularly Guilford County in the Triad, where High Point Regional 

Hospital is located (Appendix Figure 207). 

The Hispanic/Latino population is highest in Duplin County, in the Southeast (23%) but 

with 10% or higher proportions in the Triangle and Greater Charlotte. The Hispanic/Latino 

makeup of the UNC versus non-UNC catchment population is similar (Appendix Figure 208). 

The distribution of American Indian and Alaska Native, Asian and Asian-American, and 

Hispanic/Latino varies throughout the state. The highest proportion of American Indian and 

Alaska Native in 2018 was in Robeson County (40%), bordering Cumberland County, and 

Swain County (27%) in the Mountains (Appendix Figure 209). The American Indian and Alaska 

Native makeup of the UNC versus non-UNC catchment population is similar (Table 22). The 

Asian and Pacific Islander population in North Carolina is concentrated in the Greater Charlotte, 

Triangle, and Triad regions, with the highest percent in Orange County (8.2%)(Appendix Figure 

209). Asian and Pacific Islanders make up slightly lower percent of the UNC catchment 

population than the state overall and non-UNC catchment population (2.5% versus 3.4% and 

3.2%, respectively). 
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The proportion of persons under 65 years of age without health insurance is slightly 

higher lower in the non-UNC catchment population than the UNC and state average, with 

slightly lower percentages in the Triangle area than the other UNC regions (Appendix Figure 

210). Median household income is higher in the non-UNC catchment population than the UNC 

and state average, and within the UNC regions median household income is higher in the 

Triangle area (Appendix Figure 211). Percent of persons in poverty was highest in Lenoir and 

Wayne Counties in the Northeast regions included in the UNC catchment population, and 

consistently higher in the Triad counties compared to the Triangle (Appendix Figure 212). The 

percent of persons under 65 years with a disability was notably higher in Lenoir County than the 

other UNC regions and slightly higher in the UNC catchment population than the non-UNC 

catchment population (Appendix Figure 213). The percent of persons at last 16 years of age 

employed is similar across all counties, regions, and between the UNC catchment and non-UNC 

catchment population (Appendix Figure 214). The percent of persons at least 25 years of age 

with a high school degree or higher is above 80% in the state overall but was slightly higher in 

the non-UNC catchment population than the UNC catchment population (Appendix Figure 215). 

The percent of those 25 years old or older with at least a Bachelor’s degree was notably higher 

in the Triangle area, specifically Wake, Chatham, and Orange county, and lowest in Caldwell 

(Mountains), Lenoir (Northeast), and Davidson, Randolph, and Rockingham (Triad)(Appendix 

Figure 216). At least 80% of households across the state report having a computer, with similar 

proportions across regions and counties, but slightly higher proportions in the non-UNC 

catchment population than the UNC population (Appendix Figure 217). Just under 80% of the 

state population reports having a broadband internet connection, with slightly higher proportions 

in Wake and Orange County, and slightly higher proportions in the non-UNC catchment 

population than the UNC catchment population (Appendix Figure 218). A larger proportion of 

households in the Triangle report a language other than English spoken at home but there is no 
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difference between the non-UNC catchment and the UNC catchment population (Appendix 

Figure 219).  

The Carolina Data Warehouse for Health 

In the CDW-H, data is available at the patient level and at the encounter level. The 

patient record includes demographic information as listed in Table 23 below, and each 

encounter is linked to the patient record. Additionally, there are 4 data domains: diagnosis, 

laboratory, procedure, and medications. 

Table 23. Patient and encounter level data in the UNC Carolina Data Warehouse-Health 

Patient Level  Encounter Level 

Date of birth  Encounter type Procedures 

Gender  Encounter reason for visit Surgery details 

Address  Discharge disposition Medications 

Living status  POC information (e.g. vitals, BMI) Payor/coverage 

Death date  ADT* Episodes of care 

Race  Social history (e.g. smoking) Patient education 

Ethnicity  Labs Appointments and scheduling 

Problem list  Diagnoses Patient communication 

POC: Point-of-care; *ADT: Hospital tracking system (admissions, discharges, and transfers) 

 

Diagnoses are documented using ICD-10-CM codes in the CDW-H and the ICD codes 

can be linked to the patient, the patient visit, an inpatient stay, an inpatient admission, or a 

hospital billing account. Diagnosis types for inpatient encounters include the admission 

diagnoses, the hospital problem list diagnoses, the physician billing diagnoses, and the final 

hospital billing diagnoses. The problem list diagnoses are linked to the patient, rather than a 

specific encounter, and travel with the patient as they receive care throughout the UNC Health 

system. In Table 24, problem list diagnoses are listed under outpatient encounters as they are 
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typically updated by outpatient health care practitioners. In outpatient encounters, rather than 

billing diagnoses, the clinical diagnoses logged for the visit can be used. For both inpatient and 

outpatient, there may be physician billing diagnoses, which the physician codes separately for 

their services and submits to the payer. In the CDW-H, location of the diagnosis code in the 

diagnosis list is indicated by “line” or the priority of the diagnosis, such as primary, secondary, 

and so on. 

Table 24. Types of diagnoses in the UNC Carolina Data Warehouse – Health by inpatient and 
outpatient encounter 

Inpatient 

Admission diagnoses The initial diagnoses at admission 

Hospital problem list A list of ongoing diagnoses while the patient was admitted to the 

hospital 

Physician billing diagnoses Diagnoses used to justify billing for provider time 

Hospital billing diagnoses The main reasons for the patient visit or inpatient stay and the 

final discharge diagnosis on the hospital account 

Outpatient 

Problem list diagnoses Patient-level ongoing diagnoses with begin and end date (if 

applicable)  

Clinical diagnoses Encounter-level diagnoses noted in patient chart after 

examination 

Physician billing diagnoses Diagnoses used to justify billing for provider time 

 

Laboratory data is stored in the CDW-H at the individual lab level and at the panel level 

and the results may be discrete or non-discrete. Discrete results may be numeric and include 

the reference range, and others have a positive or negative result (see Table 25). Non-discrete 

results include free text from a pathologist interpretation. When a patient is seen for suspected 

acute myocardial infraction, troponin or CK-MB biomarker tests are ordered several times. It 
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was cost-saving to request the data for all the troponin or CK-MB biomarker tests from the 

analyst rather than specifying the first, last, or highest value. Laboratory data was retrievable by 

LOINC® code in the CDW-H. The LOINC® codes corresponding to creatine kinase-MB, 

troponin I, troponin T, NT-proBNP, and BNP are in Appendix Table 146. 

Table 25. Example of discrete lab data in the UNC Carolina Data Warehouse - Health 

Ordered Test Name Component Test Name Reference 

Range Normal 

Result Abnormal 

Status 

Magnesium Magnesium 1.6 – 2.2 1.3 LOW 

Iron & TIBC Iron 35 – 165 48  

Iron & TIBC Transferrin 200 – 380 366  

Iron & TIBC Total Iron Binding 

Capacity (Calc) 

252 – 479 449.5  

Iron & TIBC Iron Saturation (Calc) 15 – 50 10 LOW 

Pregnancy, Urine Pregnancy Test Urine  NEGATIVE  

Example from Clinical Informatics for Research SharePoint Site, Data Domain: Labs. 

https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-Domain-Labs.aspx 

Procedures as defined in the CDW-H are “any chargeable event during a clinical 

encounter” including blood draws and medication administration in addition to imaging studies, 

revascularizations, surgery, and other events typically thought of as procedures. Procedures 

occurring in the hospital (facility) use ICD-10-PCS codes while procedures billed by physicians 

use CPT® codes (see example in Table 26). Procedure codes are linked both to the patient and 

the encounter, and can have associated diagnosis codes.  

https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-Domain-Labs.aspx
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Table 26. Example of procedure data in the UNC Carolina Data Warehouse - Health 

Patient ID Encounter 

ID 

Procedure 

Code 

Procedure 

Type 

Procedure Description Procedure 

Date 

12345 236478 26502 CPT PR HAND TENDON PULLEY 

RECONST, GRAFT 

1/3/2017 

12345 023472 45386 CPT COLNSCP PROX SPLENC 

FLXR; DILAT 1/GT-45386 

4/5/2016 

16723 239874 82.41 ICD10 SUT TENDON SHEATH 

HAND 

3/7/2018 

Example from Clinical Informatics for Research SharePoint Site, Data Domain: Procedures. 

https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-Domain-Procedures.aspx 

I requested procedure data to characterize disease severity, such as previous cardiac 

revascularizations or LVAD placement. The ICD-9-CM (diagnosis and procedure), ICD-10-CM, 

ICD-10-PCS, and CPT® codes provided to the CDW-H analyst are listed in Appendix Table 

147). 

Medication data is best requested from the CDW-H using RxNorm codes, or RxCUI 

(concept unique identifiers). RxNorm is a normalized naming system for drugs as well as an 

interoperation system for drug terminology and pharmacy knowledge base systems. RxNorm is 

produced by the National Library of Medicine and includes generic and branded prescription 

and over-the-counter drugs. A single medication order has several data elements associated 

with it, including drug name, strength, form, frequency, refills, day supply, and class (inpatient or 

outpatient) for both inpatient and inpatient. An abbreviated example of medication data from the 

CDW-H is shown in Table 27. For inpatient admissions, the Medical Administration Record 

(MAR) data shows expand on the base medication order to include administration time and 

specific order dosage. Medication RxCUI codes for heart failure algorithms are listed in 

Appendix Table 148. 

https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-Domain-Procedures.aspx
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Table 27. Example of medication data in the UNC Carolina Data Warehouse - Health 

Order ID Medication Name Patient 

ID 

Encounter 

ID 

Order Start 

Date 

Order 

End Date 

Medication 

Order Class 

87654321 IBUPROFEN 800 

MG TABLET 

98765 ZXYW 6/17/2018 6/6/2019 OUTPATIENT 

65432109 ACETAMINOPHEN 

325 MG TABLET 

123456 ABCDE 3/2/2020 3/1/2021 OUTPATIENT 

12345678 IBUPROFEN 800 

MG TABLET 

98765 ZXYW 6/17/2018 6/18/2018 INPATIENT 

Example from Clinical Informatics for Research SharePoint Site, Data Domain: Medications. 

https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-Domain--Medications.aspx 

 

Study Population 

The period of interest for these analyses is January 1, 2016 to December 31, 2019 in 

order to use ICD-10-CM codes in the phenotyping algorithms; however, data from July 1, 2015 

to December 31, 2019 was requested to provide 6 months of pre-event data for patients that 

have events in the first half of 2016. The study population was all persons seeking care at UNC 

Health (inpatient or outpatient clinical face-to-face encounters) between January 1, 2016 and 

December 31, 2019 who are at least 20 years old at that clinical encounter. I also created a 

subset of this population for sensitivity analyses by restricting the analytic sample to only those 

with at least 1 outpatient clinical face-to-face encounter during the period of interest. 

The rationale for this period of interest is two-fold. Given the chronic nature of ischemic 

heart disease and heart failure, it takes time for subclinical disease to manifest as acute MI or 

heart failure symptoms requiring care. Thus, having several years of data improves the chances 

of capturing chronic events. Second, I am interested in algorithms using ICD-10-CM diagnosis 

codes, which went into effect in October 2015. The period of interest presented represents a 

https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-Domain--Medications.aspx
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period where institutions would be familiar with ICD-10-CM coding, reducing the chances of 

inconsistencies. 

The UNC Health hospitals represented in this period of interest (2016 – 2019) include 

UNC Medical Center, UNC Hillsborough, Chatham Hospital, UNC Rex, Caldwell Memorial, 

Pardee Hospital, High Point Regional (2016-2018), Johnston Health, UNC Lenoir (2017-2019), 

Wayne UNC Health (2018-2019), Nash UNC Health (2018-2019), and Onslow Memorial (2019). 

No analyses were stratified by hospital. UNC Rockingham was not included as the EHR 

information provided includes physician billed information only.  

ARIC Cohort 

The ARIC Study is an ongoing prospective cohort study of 15,792 individuals aged 45 - 

64 initially recruited from 4 US communities (Forsyth County, North Carolina; Jackson, 

Mississippi; suburban Minneapolis, Minnesota; and Washington County, Maryland ) between 

1987 and 1989.217 Follow-up visits occurred in 1990-1992 (visit 2), 1993-1995 (visit 3), 1996-

1998 (visit 4), 2011-2013 (visit 5), 2016-2017 (visit 6), 2018-2019 (visit 7), and 2020-2021 (visit 

8) (Figure 33) with annual or semi-annual telephone follow-up in between visits, during which 

participants are asked about hospitalizations (see Appendix for forms). Cohort surveillance and 

validation for death due to coronary heart disease (in and out of hospital), fatal and non-fatal 

hospitalized myocardial infarction (MI), and hospitalized stroke, began at the beginning of the 

study in 1987. Capture and validation of hospitalized heart failure (HF) events began in 2005, 

and classifies cases of acute decompensated HF, chronic stable HF, or no HF. Prior to 2005, 

HF cases occurring among cohort participants can be identified using hospital discharge 

diagnosis codes.  The following paragraph, from page 47 in the ARIC Manual 3 on Cohort 

Surveillance, describes cohort surveillance in the ARIC Study. “The goal of cohort surveillance 

is to identify and record hospital discharge diagnoses and procedure codes for all 

hospitalizations for each cohort participant. Selected hospitalizations are further investigated in 

order to validate the diagnosis of myocardial infarction, heart failure, and stroke events.”218 
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All hospitalizations reported by cohort participants are recorded in ARIC Study records via 

annual and semi-annual telephone interviews though only hospitalized MI, stroke, HF, and 

death from CHD are validated via Mortality and Morbidity Classification Committee (MMCC) 

review.  

ARIC Event Classification and Adjudication  

Possible events are identified via review of hospital discharge indices and via telephone 

interviews. Annual and semi-annual follow-up of the ARIC study cohort participants is completed 

by telephone and done for several reasons: (1) to maintain contact with the participant, (2) to 

maintain correct address information, and (3) to document interim medical and life course 

events.219,220 Annual follow-up calls occur in a 3-month window surrounding the anniversary of 

the participant’s visit 1 date. The semi-annual follow up call occurs in a 3-month window 

between the annual follow-up interviews. Several forms are completed during the annual and 

semi-annual follow-up interviews (Table 28). The forms relevant to this dissertation include the 

AFU Follow-Up Questionnaire (AFU), the Semi-Annual Follow-Up Core Questions (SAF) and 

Medical Condition Update (MCU) forms (see Appendix for forms). The questionnaires collect 

information on deaths, hospitalizations for “heart attack”, HF, stroke, and cardiovascular 

procedures, prescription medication use, and smoking status. The MCU form is used to collect 

Figure 33. ARIC study design for cohort exams and cohort surveillance. Adapted from ARIC Study 
materials, 2 July 2020 at sites.cscc.unc.edu/aric/study_design 
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data on the first time a participant reports a physician telling them they had one of the 10 

conditions on the form. Cohort participants who move out of the original study center area are 

still contacted, traced, and interviewed by study staff to obtain information on hospitalizations 

and/or death information. Every hospitalization and death are reported to ARIC Surveillance to 

initiate an investigation. 

During follow-up telephone calls, participants or their proxy are asked about 

hospitalizations (see Appendix for forms). Information about the reason for hospitalization, 

hospital name, and approximate date of hospitalization are asked during the telephone call, the 

medical charts for those hospitalizations are requested, and the discharge ICD-10-CM codes for 

these hospitalizations are documented. If a hospitalization record contains ICD-10-CM 

diagnoses for MI or HF, additional information is extracted before undergoing review by the 

MMCC, a physician panel of 1 or 2 physicians with additional adjudication for disagreement. 

Table 28. Forms completed during ARIC study annual and semi-annual follow-up calls 
 Form Code Annual Follow-

Up Call 

Semi-Annual 

Follow-Up Call 

Annual Follow-Up Questionnaire* AFU X  

Semi-Annual Follow-Up Core Questions* SAF  X 

Semi-Annual Follow-Up General Interview  GNG  X 

Six Item Screener (participant) or AD8 Dementia 

Screening Interview (proxy) 

SIS or AD8 X X 

Medical Conditions Update Form MCU X X 

Contact Information Update CIU X X 

Informed Consent Tracking ICT X X 

*AFU and SAF are corresponding questionnaires to ascertain hospitalizations and collect death 
information 
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Hospitalized Myocardial Infarction 

Hospital discharge code lists are reviewed for ICD-10-CM I11, I20, I21, I22, I24, I25, I46, 

I47, I48, I49, I50, J81, and R00.1 among others prior to full record abstraction.218,221,222 

Information abstracted for potential hospitalized MI cases includes presence of ischemic pain, 

history of MI or cardiovascular disease, and cardiac biomarkers (e.g., troponin). Copies of up to 

3 electrocardiograms (ECG) (first, last, and third) are obtained from each hospitalization and 

sent to the Wake Forest ECG Reading Center (EPICARE) for classification by the Minnesota 

coding system.223,224 A standardized computerized algorithm is used to classify MI as definite, 

probable, suspect, or no MI based on the presence of chest pain, biomarker levels, and 

electrocardiographic data.72,225 Criteria for each of the 3 diagnostic algorithm elements has 

remained constant during the study period and has been previously described in detail 

elsewhere.191 Cases then go on to MMCC for final event classification. Exceptions include when 

an event does not meet criteria for a full hospital record abstraction form completion and lacks 

an ICD-9 410 or ICD-10-CM I20 or I21 diagnosis code. These cases are automatically classified 

as No MI. Another exception is for events with no ICD-9-CM 410 or ICD-10-CM I20 or I21 

diagnosis code, no pain, normal/incomplete enzymes, and absent/uncodeable/other ECG 

findings which are also classified as No MI. All other cases require MMCC review (see Appendix 

for form).  

Hospitalized Heart Failure 

Hospital discharge code lists are reviewed for ICD-10-CM B20-21, B24, B32-34, B42, 

B50-52, B54, B97, E10-14, G45, I00-I13, I15, I20-I99, K64, M30-31, Q20-28, R00, R09, R41, 

R45, R53.81, R58, R64, R68.82, R69, R94, R96, R98, R99 as well as HF-related symptoms 

prior to full record abstraction.218,221,222 These HF-related symptoms include shortness of breath 

(new onset or worsening), paroxysmal nocturnal dyspnea, orthopnea, hypoxia, or mention of HF 

as the reason for hospitalization by the physician. If potential HF hospitalization records meet 

both discharge code and symptom criteria, then the full medical record is abstracted for 
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evidence of new onset of symptoms, history of HF, general medical history, physical exam signs 

and symptoms, diagnostic tests including chest X-ray, echocardiogram, cardiac catheterization, 

coronary angiography, BNP and pro-BNP test results, and medications.196 All hospitalized HF 

cases are then reviewed by 2 physicians on the HF MMCC (see Appendix for form) and 

classified as an overall heart failure diagnosis of “A” (definite decompensated heart failure), “B” 

(possible decompensated heart failure), “C” (chronic stable heart failure), “D” (heart failure 

unlikely), and “E” (heart failure unclassifiable).221 Disagreements between the 2 physicians are 

adjudicated by the chair of the HF MMCC. If a participant has multiple HF events, each is 

treated independently for event adjudication, that is, the MMCC does not have information on 

previous HF hospitalizations when determining if an individual hospitalization meets the HF 

diagnostic criteria.221 The Coordinating Center is responsible for data entry and linkage for 

multiple hospitalizations.  

Study Population 

To restrict analysis to the ICD-10-CM era, the ARIC study population was be restricted 

to October 1, 2015 to December 31, 2019. For this dissertation work, the period of interest 

corresponds to visit 6 (2016-2017) forward, with event data collected via follow-up interviews 

twice a year. In addition to survival bias, the overall ARIC cohort alive in 2016 is notably older 

than what I expect to see in the UNC CDW-H population. For reference, between 2016 and 

2018 (the ICD-10-CM era), ARIC investigated and classified 1,615 acute MI cases and 2,153 

HF cases. 

Approach for Aims 1 and 2 (Manuscripts 1 and 2) 

Phenotyping Algorithms (Aim 1) 

Aim 1: Compare the absolute and relative prevalence of estimates from different EHR 

phenotyping algorithms for acute myocardial infarction and heart failure. 

EHR phenotyping refers to the process of identifying individuals with certain 

characteristics, such as a disease, in EHR data sets.7–11,62 The phenotyping process may 
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involve an algorithm using ICD diagnosis codes, with or without additional clinical information. 

Electronic phenotyping refers to “identifying patients with certain characteristics of interest” 

without use of manual chart reviews.66 EHR phenotyping is electronic phenotyping performed in 

the EHR system, and is the first step in utilizing data from EHRs for association studies for 

pharmacovigilance and comparative effectiveness research, for feeding data to clinical decision 

support as a key part of learning health systems, for integrating experimental studies into clinical 

workflow, and for translating genetic association studies into precision medicine.66 Rule-based 

phenotyping algorithms can be as simple as requiring a certain ICD-10-CM diagnosis code in 

the primary position of an inpatient encounter and as complex as requiring a dozen components 

that incorporate diagnosis codes, prescriptions, lab test results, and temporality.  

Phenotyping algorithms varying in their restrictiveness and element types were 

constructed for each cardiovascular condition. Some of the algorithms have inpatient and 

outpatient designations. The main differences between inpatient and outpatient EHR 

phenotyping algorithms include where the diagnosis codes are located (hospital billing list 

versus clinical diagnosis list) and the number of encounters on which the diagnosis code must 

appear. Outpatient algorithms often require a diagnosis on >1 encounters because the first 

occurrence may be a “rule-out diagnosis”, or a diagnosis that the practitioner codes as a 

rationale for additional test or procedures to be performed to confirm the disease. For example, 

a patient may have a diabetes code as rationale for a glucose tolerance test, and a second 

diabetes code at a follow-up encounter to discuss positive test results. A patient with suspected 

diabetes but a negative glucose tolerance test would not have the second code occurrence. 

Outpatient is synonymous for ambulatory care in this analysis and includes primary and 

specialist care. 

“Problem List” Algorithm 

The problem list in the EHR is a “patient focused, comprehensive, dynamic listing of 

significant or on-going medical, surgical, social, or family history issues affecting the patient’s 
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overall health and plan of care.”226 Problem lists can be a separate functionality in the EHR 

system or a list automatically populated at the beginning of provider notes, typically in the 

History & Physical (“H&P”) note during hospitalizations and in the advanced practitioner’s note 

in the outpatient setting. Nearly all contemporary EHR systems have problem list functionalities, 

though the presentation of the problem list may vary between EHR software and within a single 

platform, such as Epic. The basic problem list functionality has the clinician begin to enter text 

and then select from a list of general terms, which are backlinked to ICD-10-CM or SNOMED-

CT codes. The backlinked codes can be queried as structured data. A problem in the problem 

list can be associated, or linked, with an encounter and a problem identified during a visit can be 

transferred from visit notes to the problem list. Patient problem lists represent health conditions 

that are actively managed in the outpatient setting, or historical conditions that are relevant to 

current patient care. There are start dates and end dates (for historical conditions) associated 

with problem list diagnoses, and problem list diagnoses may be inpatient (hospital problem list) 

or associated with the patient, rather than the encounter. The hospital problem list in the UNC 

CDW-H is a list of all problems that arose and/or were treated during a patient’s hospitalization. 

“Any Diagnosis Position” Algorithm 

The clinical diagnosis list is the term used to refer to the ICD-10-CM list from outpatient 

encounters in the CDW-H, while the hospital billing diagnosis list pertains to inpatient 

encounters and is the hospital account final discharge diagnosis list including the main reasons 

for the visit or stay. The discharge diagnosis list may not be the same as the admission 

diagnosis list or as the billing list. Studies interested in changes in a condition during the 

duration of a hospital stay may compare diagnoses in the admission versus discharge list. For 

cardiovascular disease, a patient may be admitted for trouble breathing (e.g., due to acute HF 

exacerbation) or chest pain (e.g., due to acute MI), and the admission diagnosis will reflect the 

reason for admission.  
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In some systems, at discharge, the primary diagnosis code is the most serious or 

resource-intensive issue treated during hospitalization, while the principal diagnosis code will 

reflect what occasioned admission.227 In other systems, primary and principal are synonymous. 

An example relevant to these analyses where the primary and principal diagnosis codes may 

differ is if a patient was admitted to the hospital for a hip replacement, but prior to the procedure, 

experienced an acute MI and instead of the hip replacement, underwent PCI. The primary 

diagnosis for the hospitalization would be the acute MI, as it led to the most resource use, while 

the principal diagnosis would be the condition leading to the need for hip replacement (e.g., fall, 

osteoarthritis) which was the reason for admission.  

Secondary diagnoses are conditions that require clinical evaluation, treatment, 

diagnostic studies, extended length of stay, or increased monitoring during hospitalization but 

are not the reason for admission. A patient with existing heart failure presenting to the 

emergency room with complaints of chest pain is later admitted for acute MI. At discharge, their 

primary and principal diagnosis would be the acute MI, and heart failure would be a secondary 

diagnosis because the patient’s heart failure would require additional treatment considerations 

during admission. Comorbidities may be gleaned from discharge diagnosis lists using 

secondary codes (second position or further). In the CDW-H, location of the diagnosis code in 

the diagnosis list is indicated by “line” or the priority of the diagnosis. 

The most commonly used phenotyping algorithms in EHR-based epidemiologic research 

are the presence of a condition-related ICD code anywhere in the billing or discharge diagnosis 

list. Algorithms used may vary within or between studies in 1) the choice of ICD codes used or 

2) the position of the ICD code in the diagnosis list. In this project, Any Diagnosis Position 

captures patients with a condition-related ICD-10-CM code in any position in the diagnosis list. 

1st or 2nd Diagnosis Position captures patients with a condition-related ICD-10-CM code in the 

first (principal or primary) or second position in the diagnosis list. The rationale for including the 

second diagnosis position is particularly important when a patient is seen for a problem resulting 
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from the condition of interest, such as pneumonia secondary to heart failure or when coding 

guidelines require a certain order of coding, such as with Type 2 MI (the underlying reason 

should be coded primary and Type 2 MI as secondary).  

The Centers for Medicare and Medicaid Services provide guidelines for ICD-10-CM and 

ICD-10-PCS coding and reporting on behalf of the “Cooperating Parties for the ICD-10-CM”: 

The American Hospital Association, The American Health Management Association, CMS, and 

the National Center for Health Statistics. These guidelines provide specific instructions for what 

ICD-10-CM codes should be used for certain conditions and in what order. Relevant to this 

analysis is that, for Type 2 myocardial infarctions, the associated ICD-10-CM code (I21.A1) 

should be coded as the second diagnosis code, with the underlying cause as the primary 

diagnosis code.227 Thus, a study interested in all types of myocardial infarction, but only 

including patients with I21 diagnoses in the primary position could be missing a large proportion 

of patients admitted for Type 2 myocardial infarction. However, not all institutions maintain strict 

adherence to the medical coding guidelines. 

Algorithms with Clinical Components 

Researchers using electronic phenotyping rule-based algorithms in EHR may require 

clinical components that are very specific to a certain condition. These clinical components may 

be the presence of a lab test or its result, a medication order, or a procedure and may be used 

in their own rule-based algorithm or combined with ICD codes. In this analysis, 2 additional 

algorithms were used to identify persons meeting criteria for Any Diagnosis Position who also 

have a lab test, medication, or procedure related to the cardiovascular condition of interest, 

forming the Any Diagnosis Position with Lab/Procedure/Medication and 1st or 2nd Diagnosis 

Position with Lab/Procedure/Medication algorithms. 

Acute Myocardial Infarction 

For acute MI, the ICD-10-CM codes of interest were I21 (Acute myocardial infarction) 

and I22 (Subsequent myocardial infarction). These codes have been used in previous studies 
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identifying myocardial infarction hospitalizations.134,148,173–175 ICD-10-CM codes I21 and I22 

include cardiac infarction, coronary embolism, occlusion, rupture, and thrombosis; and heart, 

myocardium, or ventricle infarction. I22 includes recurrent myocardial infarction; myocardium 

reinfarction; heart, myocardium, or ventricle rupture, and subsequent type 1 myocardial 

infarction. Subsequent or recurrent myocardial infarctions are those occurring within four weeks, 

or 28 days, of a previous acute myocardial infarction. In epidemiologic analyses of cohort 

studies, such as the ARIC Study, multiple MI events occurring within 28 days are typically 

considered to be the same event.  

The Problem List algorithm for MI included I21 or I22 diagnoses in the hospital problem 

list. The hospital problem list documents problems that occur during a hospitalization, for 

example, during a non-MI hospitalization. The Any Diagnosis Position algorithm for MI included 

I21 or I22 diagnoses in any position in the hospital billing or discharge list. The 1st or 2nd 

Diagnosis Position algorithm for MI included I21 or I22 diagnoses first or second position in the 

hospital billing or discharge list. The clinical components for the MI algorithms was an elevated 

cardiac biomarker lab value (troponin I, troponin T, high-sensitivity troponin I, high-sensitivity 

troponin T, or CK-MB) or a myocardial infarction-related procedure at the encounter of interest. 

Relevant procedures include percutaneous coronary intervention (PCI, or PCTA), coronary 

artery bypass grafting (CABG), and cardiac angiography. The ICD-10 and CPT® codes for 

these procedures are listed in Appendix Table 147.The algorithms including these clinical 

components are the Any Diagnosis Position with Lab/Procedure and 1st or 2nd Diagnosis 

Position with Lab/Procedure. The MI algorithms were only applied to inpatient clinical 

encounters. 

While, in theory, all patients undergoing a MI-related procedure would have I21 or I22 

associated with the procedure codes, there is likely a difference between the population 

captured by diagnosis code alone versus diagnosis code and procedure code. I calculated the 
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proportion of patients captured by the clinical component algorithms who had both an elevated 

cardiac biomarker and procedure code, and those who had one or the other. Myocardial 

infarction-related procedures do not always occur at the time of an acute event, and may be 

performed in patients with symptomatic angina or intermediate coronary syndrome. These 

patients would have a procedure code associated with an ICD-10-CM code other than I21 or I22 

and wouldn’t be captured in any of the algorithms selected. 

Acute MI subtypes can be classified using specific ICD-10-CM codes: STEMI (I21.0x, 

I21.1x, I21.3, I21.4), NSTEMI (I21.4),  Type 2 MI (I21.A1), Unspecified MI (I21.9), and Other MI 

Type (I21.A9).The frequency of these subtype codes within each algorithm were tabulated for 3 

reasons:  (1) to inform on how often certain codes are used, specifically specific versus “other 

and unspecified” codes (I21.9, I1.A9), (2) to describe the distribution of STEMI, NSTEMI, and 

Type 2 MI events, and (3) to describe the severity of MI events captured by each algorithm 

(STEMI considered more severe than NSTEMI). Myocardial infarction event classification in the 

ARIC study (definite, probable, suspect, no MI) depends on chest pain symptoms, biomarker 

elevation, and electrocardiogram (ECG) information. With UNC CDW-H data, it is not feasible to 

perform natural language processing to find chest pain information in clinician notes or ECG 

interpretations, thus any effort at describing the phenotyping algorithms as definite, probable, 

suspect, or no MI in parallel with the ARIC classifications would be incorrect.  

Heart Failure 

For HF, the ICD-10-CM codes of interest were I50 (Heart failure), I13.0 and I13.2 

(Hypertensive heart disease and chronic kidney disease with heart failure), and I11.0 

(Hypertensive heart disease with heart failure). Medicare-based EHR HF studies utilized ICD-9-

CM codes that map to these four ICD-10-CM codes. Researchers using the Clinical Practice 

Research Datalink in the United Kingdom have used a broader inclusive HF algorithm that also 

included ICD-10 codes for pulmonary embolism, pericarditis, cardiomyopathy, and rheumatic 

HF.204,205 



101 

The Problem List algorithm for HF includes I50, I13.0, I13.2, or I11.0 in the hospital 

problem list (inpatient) or in the patient problem list (outpatient). The Any Diagnosis Position 

algorithm for HF includes I50, I13.0, I13.2, or I11.0 diagnoses in any position in the hospital 

billing or discharge list (inpatient) or in any position in the clinical diagnosis list on >1 occasion 

(outpatient). The clinical diagnosis list includes diagnoses recorded for outpatient encounters. 

An outpatient diagnosis must be present on 2 clinical outpatient encounters at least 7 days 

apart, using the date of the first encounter as the date of the diagnosis. The Any Diagnosis 

Position with Labs/Medication requires administration of a loop diuretic or an elevated BNP or 

NT-proBNP value (inpatient setting) or an outpatient medication order for an ACE inhibitor, 

ARB< ARNI, β blocker, or diuretic associated with the HF encounter (outpatient setting).  

Because the clinical diagnosis list does not have diagnosis line priority (i.e. first, second), 

the 1st or 2nd Diagnosis Algorithm and the more restrictive version requiring clinical components 

was only applied in the inpatient setting. This inpatient 1st or 2nd Diagnosis Algorithm with 

Labs/Medication corresponds to a previous hospital-based EHR phenotyping study by Blecker 

et al.228 Presence of an echocardiogram on record or an ejection fraction (EF) result was not 

required because 1) in the Blecker et al. study, they found that that 12% of 1,631 patients with a 

primary or secondary diagnosis of heart failure did not have an echocardiogram on record228 

and 2) ejection fraction or echocardiogram results was not available in the UNC CDW-H data 

(under the PCOR CDM). Researchers using ICD-9-CM codes to ascertain heart failure 

hospitalizations have found that restricting to the primary diagnosis position underestimates 

acute heart failure hospitalizations.117,229 I explored this finding in the UNC CDW-H data by also 

using a final algorithm, 1st Diagnosis Position.  

To distinguish between encounters for acute-on-chronic HF and chronic HF, I used ICD-

10-CM codes I50.23, I50.33, I50.43, and I50.813 for acute-on-chronic and I50.22, I50.32, 

I50.42, and I50.812 for chronic HF. In Aim 3, these subtypes were compared to the A/B (definite 
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and probable acute on chronic HF), C (chronic heart failure), and D/E (unlikely or unclassifiable 

HF) ARIC classification system. Just like with acute MI, I described the proportion of patients in 

the algorithm that were coded using “unspecified” codes, such as I50.9 (Heart failure, 

unspecified). 

Phenotypic Comparisons (Aim 2) 

Aim 2: Compare characteristics of the population captured using different EHR phenotyping 

algorithms for acute myocardial infarction and heart failure by describing important phenotypic 

elements, such as disease severity and mortality, demographic characteristics and comorbidity 

indices. 

Given that the algorithms for each cardiovascular condition differ in their broadness and 

components, it is reasonable to hypothesize that the patients classified as a case in the Problem 

List algorithm but not in a clinical component algorithm may differ from patients classified as a 

case in the Any Diagnosis Position algorithm. For each condition, a table comparing 

demographics (age, sex, self-reported race and ethnicity), vitals (body mass index (BMI), 

smoking status (current, former, never, unknown), comorbidities (hypertension, diabetes, kidney 

disease, ischemic heart disease, atrial fibrillation, previous stroke or transient ischemic attack 

(TIA), heart failure) and total comorbidity burden was constructed. Data for HF is presented for 

all HF cases as well as stratified by inpatient/outpatient setting. Using linked NC state death 

data, I also calculated 7-day mortality, 30-day mortality, and 1-year mortality. The 7-day 

mortality is meant to represent hospitalization mortality and includes deaths up to 7 days after 

discharge (inpatient) or within 1 week of an outpatient encounter (outpatient). For 30-day and 1-

year mortality, time was calculated from the discharge date (inpatient) or event-qualifying 

encounter date (outpatient). Disease severity indicators for MI included MI subtype (STEMI, 

NSTEMI, Type 2 MI, Unspecified MI, other MI Type, recurrent MI), cardiogenic shock, and acute 

heart failure via ICD-10-CM codes in the billing or discharge list of the event-qualifying 

encounter (or the problem list for Problem List). Disease severity indicators for HF include 
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acute-on-chronic exacerbation, chronic HF, end-stage HF, unspecified HF type, and other HF 

type determined from ICD-10-CM codes in the billing or discharge list of the event-qualifying 

encounter (or the problem list for Problem List) as well as procedure codes for LVAD placement, 

pacemaker placement, heart transplant, or implantable cardioverter defibrillators placement. 

The corresponding ICD-10-CM codes and procedure codes for all variables are listed in the 

Appendix. In the final tables, any cells with counts <10 were reported as “<10” per NC TraCS 

protocols. 

Demographics and Comorbidities 

The demographic and comorbidity variables listed in the previous section were identified 

from all-available lookback prior to the event-qualifying encounter, up to the data start date of 

July 1, 2015. The majority of the literature on lookback period duration refers to outcome 

classification, that is, how far back in a patient’s medical history should we look to determine if 

an event is incident or prevalent. Less research has been done on optimal lookback period 

duration for comorbidities. The general consensus is that the longer the lookback period, the 

greater the sensitivity of an outcome definition, but also the greater risk of bias as those with 

longer lookback period available in the EHR may differ from those with less data available.111 

Shortreed et al. found that adjusted for age and sex may mitigate bias introduced by a fixed 

lookback period.112 A compromise is to set a fixed lookback period duration for all patients which 

minimizes variation due to left censoring and is optimal when comparing different patient 

groups.103 Knowing this, comorbidities determined from 180-day lookback and 365-day lookback 

were also tabulated as a sensitivity analysis. 
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BMI and Smoking Status 

Body mass index and smoking status were ascertained from the vitals PCORNet files 

and a patient could have multiple observations per encounter for these variables. I conducted a 

sensitivity analysis calculating BMI by algorithm using the average weight and height values 

over the closest encounter to the event-qualifying encounter (or vital information from the event-

qualifying encounter itself) compared to using the EHR-calculated BMI value when available. I 

found extreme values for weight, height, and EHR-calculated BMI and compared the resulting 

BMI values by algorithm when applying an informed trimming rule and a statistical trimming rule. 

The informed trimming rule, based on work by Das et al.230 and VistA EHR data, excluded 

weights ≤75 lbs or ≥ 700 lbs, heights ≤ 48 in or ≥ 84 in, and EHR-BMI ≤ 11.7 or ≥ 79.6. The 

statistical trimming rule excluded weight and height below the 1st percentile and above the 99th 

percentile.  

Smoking status (current, former, never, unknown) was determined using the first record 

at the event-qualifying encounter or the encounter closest to the event-qualifying encounter, 

with the thought that it would most accurately reflect the patient’s smoking status around the 

time of the event. For example, if a patient is admitted with acute MI and reports being a current 

smoker (first record of interest), but decides to quit smoking by the end of their hospitalization 

(last record: former smoker), the first record of interest would more accurately describe their 

smoking status leading up to the event. 

Missingness as a Patient Characteristic 

Weiskopf et al.102 used EHR data from the Columbia University Department of 

Anesthesiology to illustrate that sicker patients had more complete EHR data with respect to 

laboratory test results and medication orders. Sicker patients are more likely to interact with the 

healthcare system, and thus have data recorded, and due to the feedback mechanisms of how 

healthcare is provided,8 they are more likely to have tests ordered and procedures performed.102 

While demographic information like age, sex, and increasingly race/ethnicity, are nearly 
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universally documented in the EHR, other characteristics such as BMI and smoking status may 

be recorded more often for some patients than others. Furthermore, sicker patients are more 

likely to have more healthcare encounters in a fixed period.112 For these reasons, I tabulated the 

extent of missingness for variables in the phenotypic comparison tables both when the value 

was recorded as “Unknown” and when no data was available (i.e. missing). I was unable to 

calculate healthcare encounter frequently by algorithm as originally proposed, because the data 

provided was not a complete denominator population.  

Event Severity and Mortality 

I hypothesized that patients captured in the clinical component algorithms for each 

cardiovascular condition would represent a sicker, more severe patient population than those 

captured in Problem List and diagnosis position only because sicker patients are more likely to 

interact with the healthcare system, have labs run, have abnormal lab results, and to have 

procedures done. In this scenario, because sicker patients are likely to have more data 

available and qualify as an event via clinical component algorithms, it is also likely that we might 

be more certain of their status as a case. If this hypothesis is correct, I would expect other 

markers of event severity would be more common in the clinical diagnosis component algorithm 

patient population. Myocardial infarction severity can be characterized in terms of STEMI versus 

NSTEMI subtypes, presence of cardiogenic chock or acute HF at the event-qualifying encounter 

as well as history of recurrent MI. On the other hand, HF severity is typically staged based on 

patient’s exercise capacity and symptomatic burden using ACC or NYHA classes. These 

classifications are not amenable to EHR phenotyping as they would not be stored as structured 

data nor would they be universally recorded in clinician notes. For these analyses, 

hospitalizations for acute-on-chronic HF exacerbations, LVAD or ICD implantation, end-stage 

HF, chronic HF, and progression to heart transplant were considered indicators of HF severity. 

Ejection fraction was not available in the PCORNet CDM. Finally, an increased risk of mortality 

could indicate a more severe patient population.  
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Algorithm Overlap and Excluded Groups 

This dissertation work is intended for researchers who want to make informed decisions 

regarding phenotyping algorithm choices. By calculating what percent of patients meeting the 

Any Diagnosis Position algorithm also meet the more restrictive 1st and 2nd Diagnosis Position 

algorithm, as well as describing those who do not also meet the more restrictive algorithm, 

researchers can make a decision on whether they should require a more restrictive algorithm 

and who they would be losing from their analytic sample if they do so. This overlap also applies 

to those who, for example, meet the Any Diagnosis Position algorithm and do or do not meet the 

Any Diagnosis Position with Clinical Components algorithm. The percent overlap between the 

different algorithms was calculated and the phenotypic comparisons in the main Aim 2 analysis 

were repeated for the groups excluded by increasing restrictiveness. 

Statistical Analyses 

The statistical analyses for Aim 1 in Manuscript 1 center on estimating prevalence of MI 

and HF for the period of interest (2016-2019) and by race/age/sex subgroups and age-

standardizing these prevalence estimates to the US 2010 Census population. The difference in 

MI and HF prevalence between the algorithms was estimated using prevalence differences and 

prevalence ratios. 

Statistical analyses for Aim 2 in Manuscripts 1 and 2 involved constructing descriptive 

tables for the patient population captured by each algorithm. Quantitative comparison by 

modeling the probability of being a case given certain characteristics was originally proposed, 

however this analysis was not possible because a complete patient denominator dataset was 

not provided. 
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Estimating Prevalence 

For Aim 1, the prevalence of acute MI and HF was calculated for each algorithm. 

Prevalence was selected rather than incidence for several reasons. When calculating incidence 

in EHR datasets, methodologic decisions about lookback period duration and observability 

during lookback period must be made. The sensitivity analyses required to examine the effect of 

these methodologic decisions warranted a separate aim if looking at incidence, which extended 

the scope of this project beyond that of a dissertation. These methodologic decisions are 

described in the Background section under “Longitudinal Fragmentation and Lookback Period” 

in Methodologic Challenges. 

Prevalence was calculated for the entire population as a whole, as well as on a subset of 

individuals who qualify for the 1 outpatient encounter inclusion criteria outlined in the Study 

Population section. In addition to estimating prevalence for the entire period of interest (2016-

2019), prevalence for each year (2016, 2017, 2018, 2019) was estimated using the cases 

identified in that calendar year and a denominator of adults at least 20 years of age who sought 

care at UNC Health during that calendar year for crude prevalence. For individuals who 

experienced more than one acute MI or more than one HF event (inpatient or outpatient), the 

first event occurring in the period of interest was counted. For HF, prevalence was also 

calculated separately by inpatient and outpatient setting. 

Prevalence differences between were calculated using Any Diagnosis Position as the 

reference group using the following equations, where xi refers to the number of cases defined 

by algorithm i, and pi refers to prevalence by algorithm i. Given that 𝑝𝑖 =
𝑥𝑖

𝑛𝑖
 and 𝑆𝐷(𝑝𝑖) =

√
𝑝𝑖(1−𝑝𝑖)

𝑛𝑖
 , the 95% confidence interval for the prevalence of the cardiovascular condition for 

algorithm i was calculated using 𝑝𝑖 ± 1.96(𝑆𝐷(𝑝𝑖)). Given that 𝑃𝐷1,2 = 𝑝1 − 𝑝2 =
𝑥1

𝑛1
−

𝑥2

𝑛2
 and 

𝑆𝐷(𝑃𝐷1,2) = √
𝑝1(1−𝑝1)

𝑛1
+

𝑝2(1−𝑝2)

𝑛2
, the 95% confidence interval for the prevalence difference 
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between the two algorithms, with Any Diagnosis Position (i=2) as referent, was calculated using 

𝑃𝐷1,2 ± 1.96(𝑆𝐷(𝑃𝐷1,2))and repeated for the remaining algorithms. Finally, given that 𝑃𝑅1,2 =
𝑝1

𝑝2
 

and 𝑆𝐷(𝐿𝑛(𝑃𝑅1,2)) = √
(𝑛1−𝑥1)/𝑥1

𝑛1
+

(𝑛2−𝑥2)/𝑥2

𝑛2
, the 95% confidence interval for the prevalence 

ratio between the two algorithms, with Any Diagnosis Position (i=2) as referent, was calculated 

using 𝑒𝑥𝑝[(𝐿𝑛(𝑃𝑅1,2)) ± 1.96(𝑆𝐷(𝐿𝑛(𝑃𝑅1,2)))] and repeated for the remaining algorithms. A 

sensitivity analysis was done, changing the referent group to 1st or 2nd Diagnosis Position for the 

MI and HF algorithms 1st or 2nd Diagnosis Position with Labs or Medication as well as the HF 

algorithm 1st Diagnosis Position. Prevalence estimates for each algorithm were age-

standardized to the US 2010 Census population using 7 age groups with 95% confidence 

intervals generated via bootstrap (1000 iterations). The prevalence differences and 95% 

confidence intervals for standardized (Std) prevalence estimates were calculated using the 

following formulas: 

𝑆𝑡𝑑(𝑃𝐷𝑖,2) =  𝑆𝑡𝑑(𝑝𝑖) − 𝑆𝑡𝑑(𝑝2) 

𝑤ℎ𝑒𝑟𝑒 𝑆𝑡𝑑(𝑝𝑖) =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑁)
 

𝑎𝑛𝑑 𝑆𝐷 (𝑆𝑡𝑑(𝑃𝐷𝑖,2)) = √
𝑝𝑖(1 − 𝑝𝑖)

𝑁
+

𝑝2(1 − 𝑝2)

𝑁
 

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 95% 𝐶𝐼 =  𝑆𝑡𝑑(𝑃𝐷𝑖,2) ± 1.96(𝑆𝐷[𝑆𝑡𝑑(𝑃𝐷𝑖,2)]) 

The prevalence ratios and 95% confidence intervals for standardized (Std) prevalence 

ratios were calculated using the following formulas: 

𝑆𝑡𝑑(𝑃𝑅𝑖,2) =
𝑆𝑡𝑑(𝑝𝑖)

𝑆𝑡𝑑(𝑝2)
 

𝑆𝐷(𝐿𝑛(𝑆𝑡𝑑(𝑃𝑅𝑖,2))) =
√

𝑁 − 𝑥𝑖
𝑥𝑖

𝑁
+

𝑁 − 𝑥2
𝑥2

𝑁
 

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 95% 𝐶𝐼 =  𝑒𝑥𝑝 [(𝐿𝑛(𝑆𝑡𝑑(𝑃𝑅1,2))) ± 1.96 (𝑆𝐷(𝐿𝑛(𝑆𝑡𝑑(𝑃𝑅1,2))))] 
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Subgroup Analysis 

In surveillance, event rates and cross-sectional prevalence estimates are typically 

reported by age group, race, sex, and race-sex groups. Given that this dissertation work aims to 

inform future work in national surveillance, describing any differences by age, race, or sex 

groups between different phenotyping algorithms would be informative. Prevalence was 

calculated for males and females; for whites and Blacks; and for race-sex groups of white 

males, white females, black males, and black females and age-standardized to the US 2010 

Census population using 7 age-groups from age 20 to 84+ years. 

Strengths and Limitations 

Some of the questions posed in these analyses have been addressed previously using 

ICD-9-CM codes. However, given the differences in the ICD-10-CM coding schema compared 

to ICD-9-CM and the increasing use of routinely collected healthcare data by researchers for 

secondary research, these questions need to be answered specifically for ICD-10-CM codes. 

Additionally, this project is addressing diagnosis-based algorithm questions in the EHR arena, 

rather than in claims/administrative data. 

A key strength of the proposed algorithms in this analysis is their practicality. The 

algorithms presented are commonly used in research and require limited data, in contrast to 

some complex phenotyping algorithms that require multiple data points that may be missing in a 

large proportion of the patient population documented in the EHR. 

A limitation of this project is the lack of a gold standard, such as chart review. Chart 

review is not feasible for this project due to time and cost restrictions. Manuscript 2, using 

adjudicated events from a community-based cohort, is my answer to addressing this limitation. 

Another limitation of these analyses is the lack of distinction between incident and prevalent 

events. This distinction is an important epidemiologic question and misclassification between 

incident and prevalent events using administrative (claim) data has been a topic of many 

research papers. Examining this question is out of scope for this project. Another limitation is 
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how the denominator is enumerated. While using the first denominator (all persons with clinical 

encounters at UNC Health) allows me to capture persons who present to UNC Health only for 

an inpatient acute MI or HF admission who do not otherwise seek care at UNC Health, it does 

not provide an easily interpretable underlying study population. In contrast, the inclusion criteria 

of an outpatient encounter creates a more defined “seeks care at UNC Health” population. 

However, with the more restrictive latter definition, we lose potential cases who perhaps seek 

outpatient care elsewhere, or who do not regularly engage with the healthcare network at all. 

Furthermore, given the ill-defined catchment area of UNC Health, particularly in areas with close 

proximity to other large area hospitals, a patient may seek outpatient care at UNC Health and 

thus contribute to the denominator of the subset analyses, but may seek care for an inpatient 

acute MI or HF encounter at another hospital. Thus, it is possible that we miss both cases and 

denominator contributions no matter the methodologic choices. It is important to examine the 

assumptions surrounding population definition with knowledge of the specific health system (i.e. 

is it the only healthcare provider in the area). A remedy for this challenge is to link patient data 

with claims data, to identify when someone seeks care for the event regardless of what 

institution they seek care at. Patient-level linkage is beyond the scope of this dissertation, but is 

discussed in the “Data Fragmentation and Data Completeness” section in Methodologic 

Challenges. 

Approach for Aim 3 (Manuscript 3) 

Aim 3: Apply phenotyping algorithms evaluated in Aims 1 and 2 to an external dataset that 

contains validated cardiovascular outcomes, such as the cohort surveillance data from the 

Atherosclerosis Risk in communities (ARIC) Study. 

Analytic Sample 

The ARIC cohort surveillance datasets were left truncated on October 1, 2015 to 

correspond to ICD-10-CM era. The data was right censored at the end of ARIC 2019 

surveillance. Data from the closest prior visit (e.g. Visit 5 [2012-2013], Visit 6 [2016-2017], Visit 
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7 [2018-2019]) was used to collect comorbidity information. In the ARIC study, information on 

prevalent conditions identified at previous visits (similar to identifying comorbidities using a pre-

event 6-month window extending into 2015 in Aims 1 and 2) is carried forward into future visit 

datasets. For example, hypertension status at visit 1 through 7 is documented with distinct 

variables in the visit 7 dataset. 

Event Identification 

The ARIC cohort surveillance datasets consist of event files, hospitalization files, and 

occurrence files. ARIC incidence files are collated from all data sources and published for each 

year. Hospitalized MI occurrences within 28 days of each other are considered a single event 

and are linked in the ARIC event data using a single event ID and the participant cohort ID. 

Details on each hospitalization are included in the ARIC occurrence data with a unique 

occurrence ID linked to a single participant cohort ID and a single event ID. The hospitalization 

considered the qualifying event is identified via MI date in the ARIC incidence file. Similarly, the 

hospitalization considered to be the qualifying hospitalized HF event is identified via HF date in 

the ARIC incident file. Event dates were cross-checked between the most up to date ARIC 

incidence file and the surveillance data sets to gather information from the correct 

hospitalization. Analyses were conducted using events as the individual unit, rather than 

persons. 

Phenotyping Algorithms 

Algorithms from the inpatient setting in Aims 1 and 2 were evaluated in the ARIC cohort 

event surveillance dataset (Table 29). Problem list diagnoses are not collected in the ARIC 

study; thus the Problem List algorithm could not be applied in this analysis. Appendix Table 152 

(MI) and Table 153 (HF) list the variable names and corresponding ARIC datasets that were 

used to construct each phenotyping algorithm listed in Table 29. These tables also include the 

variables corresponding to the underlying components (e.g. ECG, pain, and biomarker evidence 

for MI diagnostic algorithm) of each ARIC classification. 
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Table 29. Phenotyping algorithms for evaluation in the ARIC cohort event surveillance data 
 Acute Myocardial Infarction Hospitalized Heart Failure 

Any Diagnosis 

Position 

(I21 or I22) in any position in hospital 

discharge list 

(I50, I13.0, I13.2, or I11.0) in any position in 

hospital discharge list 

Any Diagnosis 

Position + Lab or 

Procedure 

(I21 or I22) in primary or secondary position 

in hospital discharge list 

(I50, I13.0, I13.2, or I11.0) in primary or 

secondary position in hospital discharge list 

1st or 2nd Diagnosis 

Position 

(I21 or I22) in any position in hospital 

discharge list 

AND  

Elevated cardiac biomarker (troponin I, 

troponin T, CK-MB) OR cardiac procedure 

during hospitalization 

(I50, I13.0, I13.2, or I11.0) in any position in 

hospital discharge list 

AND  

inpatient administration of IV diuretics OR 

(elevated BNP >500 pg/mL or elevated NT-

proBNP >450 pg/mL or >900 pg/mL for 

those <50 years* and ≥ 50 years, 

respectively) 

1st or 2nd Diagnosis 

Position + Lab or 

Procedure 

(I21 or I22) in primary or secondary position 

in hospital discharge list 

AND  

Elevated cardiac biomarker (troponin I, 

troponin T, CK-MB) OR cardiac procedure 

during hospitalization 

(I50, I13.0, I13.2, or I11.0) in primary or 

secondary position in hospital discharge list 

AND  

inpatient administration of IV diuretics OR 

(elevated BNP >500 pg/mL or elevated NT-

proBNP >450 pg/mL or >900 pg/mL for 

those <50 years* and ≥ 50 years, 

respectively) 

1st Diagnosis 

Position 
- 

(I50, I13.0, I13.2, or I11.0) in primary 

position in hospital discharge list 

*All ARIC participants were over 50 years of age during period of interest 
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Phenotypic Comparisons 

Similar to Aim 2, the population captured by each algorithm-ARIC classification 

subgroup was compared on key phenotypic variables, such as demographics, comorbidities, 

and disease severity. Algorithm-classification subgroups refer to the permutations of each 

algorithm cross-tabulated with each ARIC classification. I made phenotypic comparisons by 

phenotyping algorithm and where possible, the same variables tabulated from the EHR in Aims 

1 and 2 are included from ARIC documentation, though these variables are not defined via 

diagnostic codes in ARIC. For example, the presence of STEMI or NSTEMI ICD-10-CM codes 

was tabulated as well as the determination of STEMI versus NSTEMI subtype via ARIC 

algorithm. Appendix Table 156 (MI) and Table 157 (HF) list the variable names and 

corresponding ARIC datasets that were used for the independent measures used to compare 

each algorithm-classification subgroup. 

Additional Tabulations 

ARIC surveillance data includes full medical record abstraction (structured and 

unstructured data). I took advantage of the additional depth and breadth of data available to 

further describe the populations captured by each phenotyping algorithm. The ARIC MI 

algorithm utilizes cardiac pain symptoms, cardiac biomarker evidence, and electrocardiogram 

evidence. The proportion of MI cases identified by each phenotyping algorithm meeting the 

varying levels of evidence for each of these data points is presented. For HF cases, I 

distinguished between characteristics determined via transthoracic echocardiogram and 

transesophageal echocardiogram, such as dilated left ventricle, dilated right ventricle, impaired 

left ventricle systolic function, and impaired right ventricle systolic function, as well as chest x-

ray evidence.  
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Variable Definitions 

This section defines the specific variables corresponding to measures that I used to 

describe populations captured in each algorithm. There are additional tables in the Appendix 

describing the variable names and corresponding datasets. Some measures have multiple 

corresponding variables from different data sources collected in the ARIC study, such as history 

of diabetes recorded at the MI hospitalization versus measured at the most recent visit. Values 

from the event hospitalization were used when available, followed by information from the 

closest visit prior to the event. 

Demographics: Age at the time of hospitalization was calculated using the event date and date 

of birth. Gender, race, sex, and center was crosschecked between the hospitalization dataset 

and visit data as a quality control measure.\ 

Body Mass Index: For hospitalized MI, body mass index is not extracted from medical records. 

I tabulated body mass index recorded at the closest prior visit by algorithm-classification group. 

For hospitalized HF, body mass index at discharge is extracted from hospitalization event 

medical records. Mean (SD) body mass index by algorithm group as well as categorized body 

mass index was tabulated.  

Smoking Status: For hospitalized MI, smoking status as reported during the event is extracted 

from the medical records and was tabulated in addition to smoking status recorded at the 

closest visit. For hospitalized HF, smoking status from the closest visit was tabulated. Smoking 

status recorded at visits is provided in several binary variables (current smoker (yes/no), former 

smoker (yes/no), ever smoker (yes/no)) and as a categorical variable (current, former, ever 

smoker).  

Hypertension: For both hospitalized MI and HF, history of hypertension is recorded at the time 

of hospitalization and extracted from the medical record. Hypertension is also defined using visit 

data (SBP ≥ 140 or DBP ≥ 90 or self-report/catalogued use of anti-hypertensive medications). 
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Note that catalogued use of medication refers to that ARIC participants are asked to bring all 

medication prescription bottles to ARIC visits for review and documentation by study staff. 

Diabetes: For both hospitalized MI and HF, history of diabetes is recorded at the time of 

hospitalization and extracted from the medical record. Diabetes can also be defined using visit 

data (fasting blood glucose ≥ 126 mg/dL or non-fasting blood glucose ≥ 200 or self-

report/catalogued use of glucose-lowering medication). 

Kidney Disease and Kidney Failure: The ARIC Study has 2 definitions for incident chronic 

kidney disease stage 3 or greater. Definition 1 includes participants that develop an eGFR-Cr 

<60 mL/min/1.73 m2 AND an eGFR-Cr decline from baseline visit of at least 25% as recorded at 

study visits. Definition 2 includes Definition 1 but also includes US Renal Data System 

(USRDS)-identified end-stage kidney disease events and cohort participants with 

hospitalizations or deaths with kidney disease-related ICD-9-CM or ICD-10-CM codes in any 

position (Appendix Table 154). The ARIC Study definition for incident kidney failure captures 

persons with USRDS-identified end stage kidney disease, eGFR-Cr <15 mL/min/1.73 m2 at a 

study visit, or a hospitalization or death with kidney failure-related ICD-9-CM or ICD-10-CM 

codes in any position (Appendix Table 155). Prevalent kidney failure is identified via USRDS 

registry identification or eGFR-Cr <15 mL/min/1.73 m2 at a previous study visit. For this analysis, 

I used visit data to identify prevalent kidney disease (eGFR-Cr < 60 mL/min/1.73 m2) and kidney 

failure (eGFR-Cr < 15 mL/min/1.73 m2) as well as data from the incident files. For HF 

hospitalizations, report of dialysis use at the time of hospitalization is extracted from the medical 

record and was reported. 

Atrial Fibrillation: Incident atrial fibrillation and the self-report date (or last date of semi- or 

annual follow-up prior to the end of visit 7) is provided in the ARIC incidence file and were used 

for hospitalized MI and HF events. HF hospitalizations also have history of atrial fibrillation or 

flutter extracted from the hospital record. This data source was used to tabulate atrial fibrillation 

prevalence by HF algorithm-classification group. 
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History of Stroke or TIA: History of stroke or TIA prior to the ARIC study and incident ischemic 

stroke or TIA are documented in several ARIC datasets. For hospitalized MI and HF, history of 

stroke in the medical record is extracted into the surveillance datasets. History of stroke or TIA 

reported at visit 1 is included in the incidence dataset and prevalent stroke by the end of visit 7 

is included in the visit 7 dataset. The incidence dataset also has a variable for definite or 

probable incident ischemic stroke with the associated hospitalized stroke admission date that 

can be used along with the MI or HF event date to determine if the stroke occurred before the 

qualifying event. 

Mortality: Death data from proxy report, obituary review, or linkage with the National Death 

Index is recorded in the ARIC status and incidence files. Death date and event date for MI or HF 

was used to calculate 7-day, 28-day and 1-year mortality, calculated from date of discharge. 

Statistical Analyses 

Sensitivity, Specificity, PPV, and NPV 

Each phenotyping algorithm was cross-tabulated with ARIC surveillance classifications 

for MI and HF in several ways. For MI and HF, r x c contingency tables for combined groupings 

(definite/probable, suspect/no MI; A/B, C, D/E) where A refers to definite acute decompensated 

heart failure, B refers to probable acute decompensated heart failure, C refers to chronic stable 

heart failure, D refers to unlikely heart failure, and E refers to unclassifiable heart failure per the 

MMCC adjudication. It is common in ARIC publications to treat acute HF as the outcome (A or 

B) compared to non-acute HF (C, D or E). 

Sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) was calculated for each algorithm against the separate classifications and the groupings, 

treating the ARIC classification as the gold standard for the period of interest.  

For hospitalized MI in 2 categories, the calculations for sensitivity, specificity, PPV, and 

NPV are straight forward. Because the analysis is event-based, rather than individual-based, I 

used a generalized estimating equation model with a binomial distribution, independent 
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correlation structure, and logit link to account for correlation between an individuals’ multiple 

events. For classifications with more than 2 categories, separate 2 x 2 tables for each algorithm 

and classification were created to calculate sensitivity, specificity, PPV, NPV, treating the 

classification of interest as a “positive” and all others as “negative” (e.g. Definite MI versus 

Probable MI, Suspect MI, and No MI). 

Subgroups 

Sensitivity, specificity, PPV, and NPV was also calculated by age, race, and gender 

subgroups to determine if these measures for the MI algorithms and HF algorithms vary by 

population. The calculations described in the previous section was repeated for age categories 

(74 – 84 years and 85 years and over), race groups (black and white), and sex (males and 

females). I was unable to calculate accuracy measures by race-sex subgroups for acute MI 

events due to a lack of cases among black males. 

Sensitivity Analyses 

Accuracy calculations were repeated using a person-based dataset restricted to the first event a 

person experienced in the period of interest. 

Strengths and Limitations 

A strength of the proposed analyses for Manuscript 3 is the use of the ARIC cohort 

surveillance data with adjudicated hospitalized MI and hospitalized HF events. Events are 

reviewed by a physician panel with established procedures and disagreements resolved with 

additional physician review. Another strength is that the breadth and depth of data available for 

the hospitalizations is greater in the ARIC study than in the CDW-H because the entire medical 

record for the relevant hospitalization is reviewed and extracted compared to using only 

structured data elements from the CDW-H. 

A limitation of the analyses proposed for Manuscript 3 is the lack of generalizability of 

the ARIC population to a more general population both with regards to race composition (limited 

to white and black), geographic distribution (4 distinct centers), and race-geographic limitations 
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(black ARIC population primarily in Jackson, MS), age (74 years and up during period of 

interest), and healthy volunteer bias (participants in a long-standing cohort study and survived to 

2016 to meet inclusion criteria). All results are interpreted in light of these limitations, with steps 

taken to examine the phenotypic comparisons conducted in Aim 2 to those conducted in Aim 3. 

Ethical Aspects of Proposed Research and Guideline Compliance  

In compliance with the guidelines on ethical human subject research per the UNC Chapel Hill 

Office of Human Research Ethics Standard Operating Procedures, an application similar if not 

identical to this document was submitted to the UNC Chapel Hill Institutional Review Board and 

a manuscript proposal for Aim 3 was drafted and submitted to the ARIC Steering Committee. 

There was no contact with patients or participants.   
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CHAPTER 5: RESULTS FROM AIMS 1 AND 2 

Introduction 

Routinely collected electronic healthcare data is increasingly being used for chronic 

disease case finding, both for study enrollment and for secondary research analysis.8,231,232 

Electronic phenotyping refers to “identifying patients with certain characteristics of interest” 

without use of manual chart reviews.66 Until recently, electronic phenotyping was always done 

with rule-based algorithms using inclusion and exclusion criteria to identify patients with specific 

characteristics;8 these algorithms are difficult to accurately apply across different EHR systems 

due to differences in how inclusion and exclusion criteria are constructed and applied, and how 

they are reported in published studies.67 EHR phenotyping is electronic phenotyping performed 

in the EHR system, and is the first step in utilizing data from EHRs for association studies for 

pharmacovigilance and comparative effectiveness research, for feeding data to clinical decision 

support as a key part of learning health systems, for integrating experimental studies into clinical 

workflow, and for translating genetic association studies into precision medicine.66 

EHR phenotyping has moved from simpler rule-based phenotyping to complex hybrid 

approaches requiring natural language processing (NLP) capabilities and using machine 

learning methods to increase certainty in case identification. However, these complex 

algorithms are not always transferable between health systems. While use of common data 

models (CDM) helps facilitate the transferability of phenotyping algorithms, there are many 

researchers working within their healthcare system without access to CDM infrastructure and 

without expertise in NLP or machine learning. The overarching goal of this analysis was to 

explore practical rule-based algorithms based on ICD-10-CM diagnosis codes, and to provide 

information to researchers on the underlying patient populations captured (and missed) when 
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requiring additional clinical components or when restricting to inpatient or outpatient setting. 

Specifically, the first objective of this paper was to compare the absolute and relative prevalence 

estimates from different EHR phenotyping algorithms using ICD-10-CM codes for acute MI and 

heart failure. The second objective was to compare the characteristics of the patient population 

captured by the different algorithms on important phenotypic elements, including demographic 

characteristics, comorbidities, disease severity, and mortality. 

Methods 

Data Source 

UNC Health includes 13 affiliate hospitals and 350 clinics across North Carolina and 

reports 3.5 million clinical visits, 120,000 surgeries, and 470,000 emergency department visits 

on their website. The Clinical Data Warehouse for Health (CDW-H) contains EHR data from 

patients seen at all UNC Health sites across the state of North Carolina, providing substantial 

heterogeneity in the patient population than data from one hospital alone.  

In the CDW-H, data is available at the patient level and at the encounter level and for 

this analysis, was extracted using the PCORNet Common Data Model (CDM). Diagnoses are 

documented at the encounter level and diagnosis types for inpatient encounters include the 

admission diagnoses, the hospital problem list diagnoses, the physician billing diagnoses, 

hospital discharge diagnoses, and the final hospital billing diagnoses. For this analysis, I used 

codes in the hospital problem list and final hospital discharge and billing diagnoses. Outpatient 

encounter diagnosis types include patient problem list diagnoses, clinical diagnoses, which are 

noted in the patient chart after examination, and physician billing diagnoses. In this analysis, I 

used patient problem list diagnoses and clinical diagnoses. The hospital problem list records 

codes for issues that occur during a hospitalization. In contrast, the patient problem list is 

associated with the patient, not a specific encounter, and represents a “patient focused, 

comprehensive, dynamic listing of significant or on-going medical, surgical, social, or family 

history issues affecting the patient’s overall health and plan of care”.226  
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Study Population 

The study population included all adults seeking care at UNC Health (inpatient or 

outpatient clinical face-to-face encounters) between January 1, 2016 and December 31, 2019 

who are at least 20 years old at that clinical encounter. I also created a subset of this population 

for sensitivity analyses by restricting the analytic sample to only those with at least 1 outpatient 

clinical face-to-face encounter during the period of interest. Comorbidity data for patients with an 

event during the period of interest was requested back to July 1, 2015 to provide at least 6-

months of comorbidity data for events that occurred during the beginning of 2016. 

Phenotyping Algorithms 

Phenotyping algorithms for this project were constructed using ICD-10-CM diagnosis 

codes and differed by diagnosis location and requiring clinical components (i.e., elevated lab 

results, medications, or procedure codes). Acute MI algorithms involved looking for ICD-10-CM 

I21.x (Acute MI) or I22.x (Subsequent MI) codes from inpatient encounters in various locations 

and positions: in the Problem List, Any Diagnosis Position of the hospital billing or discharge list, 

Any Diagnosis Position with Labs or Procedure, 1st or 2nd Diagnosis Position of the hospital 

billing or discharge list, or 1st or 2nd Diagnosis Position with Labs or Procedure (Table 30). The 

lab component was an elevated cardiac biomarker result for troponin I, troponin T, high-

sensitivity troponin I or troponin T, or creatine kinase-MB. The procedure component included 

cardiac procedure codes for percutaneous coronary interventions (PCI), coronary artery bypass 

graft (CABG), or cardiac angiography at the time of the event encounter. Specific codes used 

are listed in the Appendix. 

Heart failure algorithms involved looking for ICD-10-CM codes I50.x (Heart failure), I13.0 

or I13.2 (Hypertensive heart disease and chronic kidney disease with heart failure), or I11.0 

(Hypertensive heart disease with heart failure) in the Problem List, Any Diagnosis Position, Any 

Diagnosis Position with Labs or Medications, 1st or 2nd Diagnosis Position, 1st or 2nd Diagnosis 

Position with Labs or Medications, or 1st Position (Table 30). 



122 

 Algorithms were slightly different depending on inpatient versus outpatient encounters. 

For Problem List, inpatient encounters used the hospital problem list while outpatient 

encounters used the patient problem list. For Any Diagnosis Position, the inpatient algorithm 

used the hospital billing or discharge list while outpatient algorithms required the code of interest 

in the clinical diagnosis list on 2 or more occasions. For the inpatient Any Diagnosis Position 

and Lab or Medications algorithm, the medication component included oral or intravenous 

administration of a loop diuretic. The lab component included an elevated BNP (>500 pg/mL) or 

elevated NT-proBNP (>450 pg/mL for those <50 years or >900 pg/mL for those ≥ 50 

years).212,213  For the outpatient algorithm, the medication component was any outpatient 

medication order for ACE inhibitor, ARB, ARNI, beta blocker, or diuretic associated with the 

event encounter, and there was no lab component. The 1st or 2nd Diagnosis Position algorithms 

were only assessed for inpatient encounters. 
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Table 30. Phenotyping Algorithms  
 Acute MI Heart Failure 

 Inpatient Inpatient Outpatient 

Problem List 
I21 or I22 in hospital 

problem list 

(I50, I13.0, I13.2, or I11.0) 

in hospital problem list 

(I50, I13.0, I13.2, or I11.0) 

in patient problem list 

Any Diagnosis Position 

I21 or I22 in any position 

of hospital billing or 

discharge list 

(I50, I13.0, I13.2, or I11.0) 

in any position in hospital 

billing or discharge list 

(I50, I13.0, I13.2, or I11.0) 

in clinical diagnosis list on 

≥ 2 occasions 

Any Diagnosis Position + 

Clinical Component 

I21 or I22 in any position 

of hospital billing or 

discharge list 

and elevated cardiac 

biomarker* or cardiac 

procedure code** at time 

of event encounter 

(I50, I13.0, I13.2, or I11.0) 

in any position in hospital 

billing or discharge list and 

inpatient administration of 

loop diuretic or elevated 

BNP or NT-proBNP*** 

(I50, I13.0, I13.2, or I11.0) 

on ≥ 2 occasions  

and outpatient medication 

order for ACE inhibitor, 

ARB, ARNI, beta blocker, 

or diuretic 

1st or 2nd Diagnosis 

Position  

I21 or I22 in 1st or 2nd 

position of hospital billing 

or discharge list 

(I50, I13.0, I13.2, or I11.0) 

in 1st or 2nd position of 

hospital billing or 

discharge list 

- 

1st or 2nd Diagnosis 

Position + Clinical 

Component 

I21 or I22 in 1st or 2nd 

position of hospital billing 

or discharge list and 

elevated cardiac 

biomarker* or cardiac 

procedure code** at time 

of event encounter 

(I50, I13.0, I13.2, or I11.0) 

in 1st or 2nd position in 

hospital billing or 

discharge list and 

inpatient administration of 

loop diuretic or elevated 

BNP or NT-proBNP*** 

- 

1st Diagnosis Position - 

(I50, I13.0, I13.2, or I11.0) 

in 1st position in hospital 

billing or discharge list 

- 

*Elevated cardiac biomarker result for troponin I, troponin T, high-sensitivity troponin I or troponin T, and creatine 
kinase-MB. **Cardiac procedure codes included ICD-9-CM, ICD-10-PCS, ICD-10-CM, and CPT® codes for 
percutaneous coronary interventions (PCI), coronary artery bypass graft (CABG), or cardiac angiography at the time 
of the event encounter. Specific codes are recorded in the Appendix. ***Elevated lab value for HF algorithm included 
an elevated BNP (>500 pg/mL) or elevated NT-proBNP (>450 pg/mL for those <50 years or >900 pg/mL for those ≥ 
50 years).  

 

Patient and Event Characteristics 

Age at the time of the event is reported as mean (SD), median (Q1, Q3), and in age 

categories (20-34, 35-44, 45-54, 55-64, 65-74, 75-84, and ≥ 85 years). Sex was recorded in the 

EHR as female, male, or unknown. Self-reported race was recorded as white, Black, Asian, 
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Pacific Islander or Native Hawaiian, American Indian or Alaska Native, Other, or Unknown. For 

these analyses, Asian and Pacific Islander or Native Hawaiian were combined. Ethnicity was 

recorded in the EHR as Hispanic or Latino, Not Hispanic or Latino, or Unknown.  

Smoking status recorded at the closest encounter 365 days prior to and including the 

event-qualifying encounter and categorized as current, former, never, or unknown. Current 

smoker includes “current every day smoker”, “current some days smoker”, “smoker (current 

status unknown), “heavy smoker”, and “light smoker” from the PCORNet CDM. Unknown 

smoking status includes “unknown if ever” and “no information”. If there were multiple smoking 

status data points for a single encounter, the first record for the encounter was used. 

Body mass index (BMI) was calculated using recorded weight and height at the closest 

encounter 365 days prior to and including the event-qualifying encounter. When multiple weight 

or height measurements were recorded for a single encounter, the average was taken. Average 

weight or height below the 1st or above the 99th percentile were excluded before calculating BMI. 

In addition to weight and height, a BMI value calculated by the EHR was also available. I also 

conducted a sensitivity analysis using an informed trimming method based on Das et al.230 and 

VistA EHR data, which excluded weights ≤75 lbs or ≥ 700 lbs, heights ≤ 48 in or ≥ 84 in, and 

EHR-BMI ≤ 11.7 or ≥ 79.6. The main results reported use a statistical trimming method 

excluded weight and height below the 1st percentile and above the 99th percentile.  

Comorbidities included hypertension, diabetes, kidney disease, atrial fibrillation, and 

previous stroke or transient ischemic attack (TIA), heart failure (for acute MI events), and 

ischemic heart disease (for HF events), defined using ICD-9-CM or ICD-10-CM codes on 1 

inpatient or ≥ 2 outpatient encounters and all available lookback (back to 1 Jul 2015) prior to the 

event. The codes used are reported in the Appendix. A sensitivity analysis limiting lookback 

period to 180 days and 365 days prior to and up to the event was conducted. In addition to 

prevalence of each comorbidity, the percent of cases with at least 1 comorbidity as well as a 

comorbidity score (0 to 6) was calculated for each algorithm.  
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Mortality was determined by linking data with state death records. Seven-day, thirty-day, 

and 1-year mortality were calculated from the discharge date for inpatient encounters and the 

clinical encounter date for outpatient encounters.  

Severity indicators for acute MI were determined using ICD-10-CM codes from the event 

encounter and included MI subtype (STEMI, NSTEMI, Unspecified MI Type, Other MI Type, 

Type 2 MI, Recurrent MI) and in-hospital complications (Cardiogenic shock, acute heart failure). 

For HF events, severity indicators included acute-on-chronic exacerbation, chronic HF, end-

stage HF, unspecified HF, as well as ICD-9-CM and ICD-10-CM codes for heart transplant, 

LVAD placement, pacemaker procedure, or implantable cardiac defibrillator. The specific codes 

used are listed in the Appendix.  

Statistical Analysis 

Prevalence was calculated for each algorithm and then standardized to the US 2010 

Census population using 7 age groups (20-34, 35-44, 45-54, 55-64, 65-74, 75-84, and ≥ 85 

years) and bootstrapped 95% confidence intervals. Prevalence differences and prevalence 

ratios and 95% confidence intervals, treating Any Diagnosis Position as referent, were also 

calculated. A sensitivity analysis was done changing 1st or 2nd Diagnosis Position to referent for 

1st or 2nd Diagnosis Position (MI and HF) and 1st Diagnosis Position (HF). Prevalence by age, 

race and sex subgroups was also calculated. To quantify the differences in prevalence 

estimates between algorithms beyond prevalence differences, total healthcare expenditures 

was estimated for each algorithm assuming an average cost for acute MI hospitalization in the 

US of $24,695, ranging from $17,346 to $30,021233 and average 30-day episode Medicare costs 

for HF hospitalizations of $15,423 (95% CI: $12,437, $18,408).234 
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Results 

Prevalence Estimates by Algorithm 

Crude Prevalence Estimates 

Acute Myocardial Infarction 

Between 2016-2019, a total of 13,200 acute MI cases were identified. The prevalence of 

acute MI was highest at 576 events per 100,000 with the Any Diagnosis Position algorithm and 

lowest at 378 per 100,000 with 1st or 2nd Diagnosis Position with Lab or Procedure (Table 31). In 

a sensitivity analysis restricting the analysis population to adult patients with at least 1 outpatient 

encounter during the period of interest, the prevalence estimates were similar to the main 

analysis using a denominator of adult patients with at least 1 inpatient or outpatient encounter 

(Table 32). When comparing the prevalence estimates between acute MI algorithms, with Any 

Diagnosis Position as referent, the smallest difference was Any Diagnosis Position with Lab or 

Procedure (PD: -0.0005 [95% CI -0.0006, -0.0003]; PR 0.92 [95% CI 0.89, 0.94]) and the largest 

difference was 1st or 2nd Diagnosis Position with Lab or Procedure (PD: -0.002 [95% CI -0.0021, 

-0.0018]; PR 0.66 [95% CI 0.64, 0.68]) (Table 31). When comparing 1st or 2nd Diagnosis Position 

with Lab or Procedure to 1st or 2nd Diagnosis Position (rather than Any Diagnosis Position) the 

prevalence difference was -0.0003 (95% CI -0.0004; -0.0001) and the prevalence ratio was 0.93 

(95% CI 0.90, 0.96). Prevalence differences and ratios by year are reported in Table 31, Figure 

41, and Figure 42. 

Heart Failure 

During the period of interest, a total of 53,545 HF cases were identified (9,560 inpatient 

and 44,080 outpatient). The prevalence of heart failure was highest at 3,225 events per 100,000 

with the Any Diagnosis Position algorithm (521 per 100,000 for inpatient and 2,704 per 100,000 

for outpatient) and lowest at 58 per 100,000 for 1st Diagnosis Position (Table 33). HF prevalence 

was calculated for the outpatient algorithms of Problem List, Any Diagnosis Position, and Any 

Diagnosis Position with Lab or Medication using a denominator of adults with at least 1 
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outpatient encounter during the period of interest. The prevalence estimates were similar to 

calculations using a denominator of adult patients with at least 1 inpatient or outpatient 

encounter (Table 34). The majority of events for the HF Problem List algorithm came from the 

hospital problem list (86%), while the majority of events for HF Any Diagnosis Position came 

from the outpatient setting (84%). The large number of cases in Any Diagnosis Position for HF 

were drastically reduced once requiring a clinical component, with 65% of Any Diagnosis 

Position with Lab or Medication coming from the inpatient setting and 35% coming from the 

outpatient setting. Over the period of interest, the percent of cases identified from outpatient 

encounters decreased from 21% in 2016 to 9% in 2019 for Problem List, 42% in 2016 to 31% in 

2019 for Any Diagnosis Position with Lab or Medication and stayed relatively constant for Any 

Diagnosis Position, varying between 82% and 85% over the period of interest (Figure 34). 

When comparing the prevalence estimates between HF algorithms, with Any Diagnosis 

Position as referent, the smallest difference was Any Diagnosis Position with Lab or Medication 

(PD: -0.0284 [95% CI -0. 0286, -0. 0281]; PR 0.12 [95% CI 0.121, 0.121]) and the largest 

difference was 1st Diagnosis Position (PD: -0.0317 [95% CI -0.0319, -0.0314]; PR 0.018 [95% CI 

0.018, 0.018]) (Table 33). When comparing 1st or 2nd Diagnosis Position with Lab or Procedure 

to 1st or 2nd Diagnosis Position (rather than Any Diagnosis Position) the prevalence difference 

was -0.0004 (95% CI -0.0005; -0.0004) and the prevalence ratio was 0.69 (95% CI 0.69, 0.69). 

When comparing 1st Diagnosis Position to 1st or 2nd Diagnosis Position (rather than Any 

Diagnosis Position) the prevalence difference was -0.0008 (95% CI -0.0009, -0.0007) and the 

prevalence ratio was 0.42 (95% CI 0.42, 0.42). Prevalence differences and ratios by year are 

reported in Table 33, Figure 43, and Figure 44. 
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Clinical Components 

Acute Myocardial Infarction 

Acute MI patients could qualify as a case for the clinical component algorithms by having 

an elevated cardiac biomarker lab result and/or a cardiac procedure associated with the event-

qualifying encounter with I21 or I22 ICD-10-CM codes in the hospital billing or discharge list. For 

the period of interest, 57% of acute MI cases via Any Diagnosis Position with Lab or Procedure 

had an elevated cardiac biomarker only, 2% had a cardiac procedure code only, and 41% had 

both (Figure 35). The distribution was similar for 1st or 2nd Diagnosis Position with Lab or 

Procedure. Over time for both algorithms, the percent of cases qualifying via elevated biomarker 

alone increased (from 50% to 65% for Any Diagnosis Position with Lab or Procedure and from 

44% to 60% for 1st or 2nd Diagnosis Position with Lab or Procedure) while those qualifying via 

elevated cardiac biomarker and procedure declined (Figure 36, Figure 37). 

Heart Failure 

Heart failure patients could qualify as a case during inpatient encounters for the clinical 

component algorithms by having one of the specified HF ICD-10-CM codes in the hospital billing 

or discharge list and having a medication order for an oral or intravenous loop diuretic or an 

elevated lab value for NT-proBNP or BNP. For the period of interest, 33% of cases via Any 

Diagnosis Position with Lab or Medication had only a medication order for a loop diuretic, 10% 

had only had an elevated lab value, and 57% had both (Figure 38). The distribution was similar 

for 1st or 2nd Diagnosis Position with Lab or Medication, with 30% having only a medication order 

for a loop diuretic, 10% with only an elevated lab value, and 60% with both (Figure 38, Figure 

39). Over time for both algorithms, the percent of cases qualifying via lab only, medication only, 

or both, stayed relatively constant (Figure 39, Figure 40). 
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Standardized Prevalence Estimates 

Acute Myocardial Infarction 

The standardized prevalence of acute MI was highest at 434 events per 100,000 with 

the Any Diagnosis Position algorithm, and lowest at 290 per 100,000 with 1st or 2nd Diagnosis 

Position with Lab or Procedure (Figure 45). When comparing the prevalence estimates between 

acute MI algorithms, with Any Diagnosis Position as referent, the smallest difference was 

Problem List (PD: -0.0005 [95% CI -0.0005, -0.0004]; PR 0.90 [95% CI 0.89, 0.90]) and the 

largest difference was 1st or 2nd Diagnosis Position with Lab or Procedure (PD: -0.0014 [95% CI 

-0.0014, -0.0014]; PR 0.67 [95% CI 0.67, 0.67]) (Table 39, Figure 46, Figure 47). When 

comparing 1st or 2nd Diagnosis Position with Lab or Procedure to 1st or 2nd Diagnosis Position 

(rather than Any Diagnosis Position) the prevalence difference was -0.0002 (95% CI -0.0002; -

0.0002) and the prevalence ratio was 0.93 (95% CI 0.93, 0.93).  

Heart Failure 

The standardized prevalence of heart failure was highest at 2,719 events per 100,000 

with the Any Diagnosis Position algorithm (415 per 100,000 for inpatient and 2,304 per 100,000 

for outpatient) and lowest at 36 per 100,000 for 1st Diagnosis Position (Figure 48).  

When comparing the prevalence estimates between HF algorithms, with Any Diagnosis 

Position as referent, the smallest difference was Any Diagnosis Position with Lab or Medication 

(PD: -0.0228 [95% CI -0. 0228, -0. 0228]; PR 0.16 [95% CI 0.16, 0.16]) and the largest 

difference was 1st Diagnosis Position (PD: -0.0268 [95% CI -0.0268, -0.0268]; PR 0.013 [95% CI 

0.013, 0.013]) (Table 39, Figure 49, Figure 50). When comparing 1st or 2nd Diagnosis Position 

with Lab or Procedure to 1st or 2nd Diagnosis Position (rather than Any Diagnosis Position) the 

prevalence difference was -0.0003 (95% CI -0.0003; -0.0003) and the prevalence ratio was 0.64 

(95% CI 0.64, 0.64). When comparing 1st Diagnosis Position to 1st or 2nd Diagnosis Position 

(rather than Any Diagnosis Position) the prevalence difference was -0.0005 (95% CI -0.0005, -

0.0005) and the prevalence ratio was 0.40 (95% CI 0.40, 0.40) (Table 39). 
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Healthcare Expenditures 

To translate these occurrence differences to real-world estimates, age-group specific 

occurrence estimates for each algorithm were applied to the 2020 US population. For acute MI, 

the resulting number of cases by algorithm were: Problem List algorithm - 1.05 million cases, 

Any Diagnosis Position - 1.17 million cases, Any Diagnosis Position with Lab and/or Procedure - 

1.07 million cases, 1st or 2nd Diagnosis Position - 0.84 million cases, and 1st or 2nd Diagnosis 

Position with Lab and/or Procedure - 0.78 million cases. Assuming an average cost of $24,965 

per acute MI hospitalization (range $17,436 - $30,021),233 the impact of these different 

estimates by algorithm, compared to Any Diagnosis Position, ranged from $2.4 billion to $9.7 

billion dollars (Table 40). For HF hospitalizations, the resulting number of cases by algorithm 

were: Hospital Problem List algorithm – 0.46 million cases, Any Diagnosis Position - 1.13 million 

cases, Any Diagnosis Position with Lab and/or Diuretic – 0.62 million cases, 1st or 2nd Diagnosis 

Position - 0.24 million cases, 1st or 2nd Diagnosis Position with Lab and/or Diuretic - 0.16 million 

cases, and 1st Diagnosis Position – 0.1 million cases. Assuming an average cost of $15,423 

(95% CI: $12,437, $18,408) per hospitalization, compared to Any Diagnosis Position, the 

difference in total costs ranged from $8 billion to $16 billion dollars (Table 41). 

Age, Race and Sex Subgroups 

Acute Myocardial Infarction 

The standardized prevalence of acute MI by age group was similar for Problem List, Any 

Diagnosis Position, and 1st or 2nd Diagnosis Position for ages 20-34 years and 35-44 years but 

the difference between algorithms grew with increasing age (Figure 51). The difference between 

algorithms with and without clinical components increased slightly with increasing age (Figure 

52). Standardized prevalence of acute MI was higher in males than females (Figure 56), but 

similar between white and Black patients (Figure 57). When looking at race-sex groups, MI 

prevalence was highest in white males, followed by Black males, and then Black females and 

white females, with similar prevalence between white and Black females (Figure 58).  
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Heart Failure 

The standardized prevalence of HF by age group was similar by algorithm for ages 20-

34 years (Figure 53). Prevalence estimates for Any Diagnosis Position diverged quickly from the 

other algorithms at age 35-44 years and older with little difference between those Problem List, 

1st or 2nd Diagnosis Position, and 1st Diagnosis Position by age until 75-84 years and 85+ years 

(Figure 53). The difference between algorithms with and without clinical components diverged 

after 20-34 years, similar to the relationship between Any Diagnosis Position and all other HF 

algorithms (Figure 54, Figure 55).  

Standardized prevalence of HF was slightly higher in males than females, with the 

difference most pronounced using algorithm Any Diagnosis Position (Figure 59). HF prevalence 

was higher in white than Black patients, with larger differences between race groups for 

Problem List and Any Diagnosis Position than the 1st or 2nd Diagnosis Position algorithms 

(Figure 60). When looking at race-sex groups, HF prevalence was highest in Black males, 

followed by Black females, and then white males and white females (Figure 61).  

Patient and Event Characteristics by Algorithm 

Demographics 

Demographic characteristics of the UNC Health study population denominator are 

presented in Table 42. 

Age, Sex, Race, and Ethnicity 

Acute Myocardial Infarction 

The age distribution of patients captured by each acute MI algorithm was similar (Figure 

62) with an average age between 67 and 68 years (Table 43). Around 40% of patients captured 

by each algorithm were female (ranging from 41% in 1st or 2nd Diagnosis Position to 43% in Any 

Diagnosis Position with Lab or Procedure) and the percent of patients self-identifying as 

Hispanic/Latino ethnicity was approximately 3% in each algorithm patient group (Table 43). 
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Nearly 75% of each algorithm’s patient population self-identified as white, 20% as Black, 0.8% 

as Asian (including Pacific Islander or Native Hawaiian), 0.3-0.4% as American Indian or Alaska 

Native, 3.4 - 3.7% as “Other”, and 1.4 - 1.9% had “Unknown” recorded for race group in their 

EHR (Table 43). Phenotypic comparisons for each acute MI algorithm are presented by year in 

Table 44 (2016), Table 45 (2017), Table 46 (2018), and Table 47 (2019). 

Heart Failure 

The age distribution of patients captured by each HF algorithm varied slightly (Figure 63) 

but average age, between 70 and 72 years was similar (Table 48). Age distribution and average 

age were similar when stratified by patient setting and are presented in Table 53 and Figure 64. 

Around 50% of patients captured by each algorithm were female (ranging from 49% in 1st 

Diagnosis Position to 52% in Problem List) and the percent of patients self-identifying as 

Hispanic/Latino ethnicity was between 1.5% and 2% in each algorithm patient population (Table 

48). Between 66% and 70% of each algorithm’s patient population self-identified as white, 24 - 

29% as Black, 0.7 - 1.1% as Asian, 0.4 - 0.6% as American Indian or Alaska Native, around 2% 

as “Other”, and 1.2 - 2.7% had “Unknown” recorded for race group in their EHR (Table 48). Sex, 

race, and ethnicity did not differ by patient setting for HF algorithms (Table 53). Phenotypic 

comparisons for each HF algorithm are presented by year in Table 49 (2016), Table 50 (2017), 

Table 51 (2018), Table 52 (2019) and stratified by patient setting in Table 54 (2016), Table 55 

(2017), Table 56 (2018), and Table 57 (2019). In summary, for both acute MI and HF 

algorithms, the patient population captured by each algorithm did not differ substantially by 

demographic characteristics. 

BMI and Smoking Status 

Acute Myocardial Infarction 

The prevalence of obesity (defined as BMI ≥ 30 kg/m2) among patients identified as 

cases was similar between acute MI algorithms, ranging from 36% (Any Diagnosis Position) to 
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38% (Problem List) (Table 43). Across algorithms, mean BMI was approximately 29 kg/m2 and 

median BMI was approximately 28 kg/m2 (Q1, Q3: 25, 33 kg/m2). The distribution of smoking 

status was similar between patients identified by each acute MI algorithms (Table 43, Figure 

65). 

Heart Failure 

For the HF algorithms, the percent of patients with a BMI ≥ 30 kg/m2 ranged from 39% 

(Any Diagnosis Position) to 42% (Any Diagnosis Position with Lab or Medication) (Table 48). 

Mean BMI was between 30 - 31 kg/m2 and median BMI was between 29 - 30 kg/m2, (Q1, Q3: 

25, 35 kg/m2) (Table 48). The distribution of smoking status was similar between patients 

identified by each HF algorithm (Table 48, Figure 66). 

Methodologic Decisions 

Body mass index was calculated in several ways: using the weight and height data as 

reported, by using a statistical trimming method, and by using an informed trimming method. 

The statistical trimming method excluded weights and heights outside of the 1st and 99th 

percentile while the informed trimming method excluded weights ≤75 lbs or ≥ 700 lbs, heights ≤ 

48 in or ≥ 84 in, and EHR-BMI ≤ 11.7 or ≥ 79.6.230 This section compares results using 

calculated BMI (using averaged weight and height with various trimming rules) and EHR BMI 

(BMI calculated and reported by the EHR). 

For acute MI algorithms, the percent of patients with calculated BMI ≥ 30 kg/m2 was 

lowest for statistically trimmed values, with similar percentages between untrimmed and 

informed trimmed values (Table 58, Figure 67). In contrast, the percent of patients with EHR 

BMI ≥ 30 kg/m2 was similar between untrimmed and statistically trimmed, and highest for 

informed trimmed (Table 58, Figure 68). Percent of cases with BMI ≥ 30 kg/m2 did not differ 

between acute MI algorithms.  
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For HF algorithms, the percent of patients with calculated BMI ≥ 30 kg/m2 was similar for 

untrimmed, statistically trimmed, and informed trimmed values (Table 59, Figure 69). When 

stratified by inpatient/outpatient setting, this finding held for all algorithms except for the patient 

Problem List, with a lower percent of patients with calculated BMI ≥ 30 kg/m2 when using the 

statistically trimmed method compared to untrimmed and informed trimmed (Table 60, Figure 

70). The percent of patients with EHR BMI ≥ 30 kg/m2 was similar across methods (Table 59, 

Figure 71) and patient setting (Table 60, Figure 72), but the pattern across algorithms differed 

from calculated BMI when stratified by patient setting (Figure 70). When measuring obesity 

using statistically trimmed calculated BMI, the percent was lowest in Patient Problem List at 

38% and highest in Any Diagnosis Position with Lab or Medication at 56%. In contrast, the 

percent of patients with obesity defined with statistically trimmed EHR BMI varied less, from 

44% with Hospital Problem List to 50% in Patient Problem List (Table 60).   

Comorbidities 

Acute Myocardial Infarction 

History of hypertension, diabetes, kidney disease, atrial fibrillation, and previous 

ischemic stroke or TIA were tabulated by algorithm using ICD-9-CM and ICD-10-MC codes from 

encounters 365 days prior to and including the event-qualifying encounter. Across acute MI 

algorithms, the prevalence of hypertension was 32 - 34%, diabetes 45 - 51%, kidney disease 50 

- 56%, heart failure 50 - 54%, atrial fibrillation 17 - 19%, and ischemic stroke or TIA 12 - 14% 

with lower prevalence among cases defined via 1st or 2nd Diagnosis Position algorithms (Table 

43, Figure 73). The distribution of comorbidity burden score was similar for Problem List, and 

Any Diagnosis Position algorithms, but lower among patients defined via 1st or 2nd Diagnosis 

Position algorithms (Table 43, Figure 74). 
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Heart Failure 

Across HF algorithms, the prevalence of hypertension was 72-87%, diabetes 45-50%, 

kidney disease 60-64%, ischemic heart disease 60-64%, atrial fibrillation 25-31%, and ischemic 

stroke or TIA 9-13% without a clear pattern by algorithm (Table 48, Figure 75). The distribution 

of comorbidity burden was similar across HF algorithms (Table 48,  Figure 76). When stratified 

by patient setting, comorbidity distribution and burden was slightly different across algorithms 

(Table 53, Figure 77, Figure 78).  

Comorbidity Lookback Period 

The majority of the literature on lookback period duration refers to outcome 

classification, that is, how far back in a patient’s medical history we should look to determine if 

an event is incident or prevalent. The general consensus is that the longer the lookback period, 

the greater the sensitivity of an outcome definition, but also the greater risk of bias as those with 

longer lookback period available in the EHR may differ from those with less data available.111 

Less research has been done on optimal lookback period duration for comorbidities. The main 

analyses for this paper were done using all-available lookback to determine prevalence of 

comorbidities by acute MI or HF algorithm, left-censored at July 1, 2015. In a sensitivity 

analysis, I limited lookback period duration to 180-days or 365-days prior to and including the 

event-qualifying encounter. For acute MI cases, the prevalence of any comorbidity was similar 

between 180-day and 365-day lookback, and increased by about 2 percentage points when 

using all available lookback across algorithms (Table 61, Figure 79). This trend was similar 

across the six comorbidities, with +1-3% higher prevalence when using all available lookback 

but did not differ by algorithm (Table 61, Figure 80 - Figure 85). For HF cases, there prevalence 

of any comorbidity and each comorbidity varied less by lookback period duration, with +0-1% 

between 180-day, 365-day, and all available lookback (Table 62, Figure 86 - Figure 92). This 

pattern was consistent for HF algorithms when stratified by inpatient versus outpatient setting 

(Table 63, Figure 93 - Figure 99). 
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Event Severity and Mortality 

Acute Myocardial Infarction 

For acute MI cases captured by each algorithm, ICD-10-CM codes from the event-

qualifying encounter were used to classify cases as STEMI, NSTEMI, Type 2 MI, Unspecified 

MI type, Other MI Type, or Recurrent MI. The distribution of STEMI to NSTEMI was about 

30:70, with lowest prevalence of STEMI at 20% in Problem List and highest in 1st or 2nd 

Diagnosis Position at 29% and lowest prevalence of NSTEMI at 69% in 1st or 2nd Diagnosis 

Position and highest at 76% in Any Diagnosis Position with Lab or Procedure (Table 43, Figure 

101). Type 2 MI and Unspecified MI coding was most common in Problem List at 3.5% and 3%, 

respectively, and lowest in 1st or 2nd Diagnosis with Lab or Procedure at 1.9% and 0.9%, 

respectively (Table 43, Figure 100). ICD-10 coding for Other MI Type was not common, ranging 

from 0-0.1%. Prevalence of Recurrent MI was also low, ranging from 0.1-0.2% (Table 43, Figure 

100). In-hospital complications of cardiogenic shock and acute heart failure were measured 

using ICD-10-CM codes from the event-qualifying encounter discharge and billing list. 

Prevalence of cardiogenic shock ranged from 0.9% in 1st or 2nd Diagnosis Position with Lab or 

Procedure to 9% in Problem List. Prevalence of acute heart failure ranged from 6.1% in 1st or 

2nd Diagnosis Position with Lab or Procedure to 8% in Problem List (Table 43, Figure 102). The 

last measure of event severity used was mortality (7-day, 30-day, and 1-year). Across acute MI 

algorithms, 7-day mortality ranged from 3 - 5%, 30-day mortality ranged from 6 - 9%, and 1-year 

mortality ranged from 14 - 19% (Table 43, Figure 103). Mortality was highest in Problem List 

and lowest in 1st or 2nd Diagnosis Position algorithms. There was no notable difference in 

mortality between algorithms with and without clinical components (Table 43, Figure 103). 

Heart Failure 

Heart failure cases were classified as acute-on-chronic exacerbation, chronic HF, end-

stage HF, other HF, or unspecified HF, using ICD-10-CM codes from the event-qualifying 
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encounter. Prevalence of acute-on-chronic exacerbation ranged from 7% in Any Diagnosis 

Position with Labs or Medication to 12% in Problem List (Table 48, Figure 104). For overall HF 

algorithms, chronic HF was most common in Any Diagnosis Position at nearly 17%, followed by 

Any Diagnosis Position with Lab or Meds at 10% and the other algorithms at 3-6% (Table 48, 

Figure 104). Unspecified HF was least common in Problem List at 37% and most common in 1st 

Diagnosis Position at 85%. Additionally, Unspecified HF was more common in the inpatient 

setting (Table 53, Figure 106). The prevalence of “Other HF” and End-stage HF was very low 

(i.e., ≤ 0.1%) (Table 48, Figure 104).When stratified by patient setting, codes for acute-on-

chronic exacerbation were 12% for Hospital Problem List, 5% for Patient Problem List, 5% for 

inpatient Any Diagnosis Position, 13% for outpatient Diagnosis on ≥ 2 Occasions, 9% for 

inpatient Any Diagnosis Position with Lab or Medication and 3% for outpatient Diagnosis on ≥2 

Occasions with Prescription (Table 53, Figure 106). There was not a trend for acute-on-chronic 

exacerbation to be more common in the inpatient setting; however, chronic HF was more 

common in the outpatient setting (Table 53, Figure 106).  

Procedure codes for LVAD placement, pacemaker placement, heart transplant, or 

implantable cardiac defibrillator placement were used to measure disease severity. History of 

LVAD placement ranged from 0% to 0.2%; pacemaker placement 0.8% to 2.5%, and 

implantable cardiac defibrillator 0.8% to 3.1% (Table 48, Figure 105). No patients in this dataset 

had a history of heart transplant related to heart failure. Pacemaker or implantable cardiac 

defibrillator placement was more common in Problem List and Any Diagnosis Position than in 

the 1st or 2nd Diagnosis algorithms or 1st Diagnosis Position (Table 48, Figure 105). When 

stratified by patient setting, pacemaker or implantable cardiac defibrillator placement was more 

common in the outpatient than inpatient setting (Table 53, Figure 107). Mortality among HF 

cases was highest in Problem List and lowest in Any Diagnosis Position (Table 48, Figure 108). 

When stratified by patient setting, mortality was highest for inpatient algorithms, except for 
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Problem List where mortality was similar for Hospital Problem List and Patient Problem List 

(Table 53, Figure 109). 

Missingness 

Previous research has found that sicker patients undergoing anesthetic procedures had 

more complete EHR data with respect to laboratory test results and medication orders.102 Other 

researchers have hypothesized that sicker patients are more likely to interact with the 

healthcare system,112 and thus have data recorded.8 Following these two hypotheses, we would 

expect fewer missing data points in the ‘sicker’ patient population. For the acute MI algorithms 

used in this paper, it is reasonable to suggest that patients with elevated troponin biomarkers or 

a cardiac procedure may represent a more severe acute MI patient than patients without these 

clinical components. For HF patients, the same logic applies with the clinical component 

algorithms requiring an elevated BNP or NT-proBNP lab value or use of a HF-related 

medication. The prevalence of missing or unknown race, ethnicity, smoking status, and BMI is 

shown by acute MI algorithm in Figure 110 and by HF algorithm in Figure 111. Race and 

ethnicity were unknown in 1-2% of cases across acute MI algorithms (Figure 110). Smoking 

status was unknown or missing in 21% of clinical component cases compared to 22% of Any 

Diagnosis Position and 1st or 2nd Diagnosis Position cases (Figure 110). Body mass index was 

missing in 16% of clinical component cases compared to 18% of Any Diagnosis Position and 1st 

or 2nd Diagnosis Position cases (Figure 110). For HF cases, race and ethnicity were unknown 

in 1-3% of cases and the same by clinical component requirement (Figure 111). Unknown or 

missing smoking status was similar between inpatient algorithms with and without clinical 

components and across algorithms (Figure 112) but differed by clinical component inclusion for 

outpatient cases, with greater missingness for HF cases without clinical components (Figure 

112). 
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Algorithm Overlap and Excluded Groups 

Algorithm Overlap 

Acute Myocardial Infarction 

Of the 13,200 acute MI cases identified between 2016 and 2019 in the UNC Health 

dataset, 34% (n=4509) had I21 or I22 in both the hospital problem list and the diagnosis list with 

29% having I21 or I22 in the hospital problem list alone (Figure 113, Figure 114). Half of the 

acute MI cases had I21 or I21 in the 1st or 2nd diagnosis position (Figure 115) and 25% had I21 

or I22 in 1st or 2nd position and the hospital problem list (Figure 114). When considering the 

algorithms as exclusive groups, meaning a patient qualified only for a specified algorithm, the 3 

most common acute MI algorithms were Problem List Only (29%), cases with I21 or I22 in both 

the 1st or 2nd Diagnosis Position and Lab/Procedure the Problem List (25%), and I21 or I22 in 1st 

or 2nd Diagnosis Position list with elevated cardiac biomarkers and/or cardiac procedure codes 

(22%) (Figure 116). 

Heart Failure 

Of the 53,545 HF cases identified during the period of interest in the UNC Health 

dataset, only 2% had a HF code in the problem list and the diagnosis list with 2.5% having the 

HF codes in the problem list only (Figure 117 - Figure 119). The majority of HF cases had a HF 

code in the 3rd or lower position (inpatient) or on ≥ 2 clinical encounters (outpatient) (92%) 

without an elevated BNP or NT-proBNP lab or HF-related medication (Figure 119, Figure 120) 

driven by the large number of outpatient HF cases without clinical components. 

Of 9,560 inpatient HF cases, 9% (n=901) had a HF code in the hospital problem list and 

diagnosis list with 12% (n=1125) having codes in the problem list only and 79% (n=7534) having 

codes in the diagnosis list only (Figure 121 - Figure 123). Five percent (n=511) had codes in the 

hospital problem list and the 1st or 2nd diagnosis position. In sum, for inpatient HF cases in this 

analysis, the majority of cases had HF codes in the diagnosis list but not the hospital problem 

list. 
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Of 44,080 outpatient HF cases, 0.02% (n=9) had HF codes on ≥ 2 clinical encounters 

and in the patient problem list, with 0.7% (n=330) with codes only in the patient problem list and 

99% (n=43,741) with codes only in the clinical encounter list on ≥ 2 encounters (Figure 124 - 

Figure 126). In sum, for outpatient HF cases, the majority of cases had codes in the clinical 

encounter list, not the patient problem list. 

Patients Excluded by Clinical Components 

A post-hoc analysis was conducted comparing the phenotypic characteristics of patients 

who did not meet the clinical component requirements (i.e. elevated lab values, procedure 

codes, or medications). For example, patients who had an ICD-10-CM code in any diagnosis 

position as well as clinical components were compared to patients who had an ICD-10-CM code 

in any diagnosis position but who did not have the required clinical components. 

Acute Myocardial Infarction 

 Of the 13,200 acute MI cases identified in the UNC Health data set between 2016 and 

2019, 8549 had I21 or I22 diagnosis codes in any diagnosis position as well as an elevated 

cardiac biomarker and/or cardiac procedure code, while 777 had a diagnosis code but no 

clinical component; 6120 had codes in the 1st or 2nd diagnosis code with clinical components 

while 460 had codes in the 1st or 2nd diagnosis code with no clinical components. Demographic 

characteristics were similar between acute MI cases with codes in Any Diagnosis Position and 

1st or 2nd Diagnosis Position with and without clinical components (Table 64) except the percent 

of female cases, which was lower in the group without clinical component than the group with 

clinical components. The distribution of smoking status was similar about the Any Diagnosis 

Position groups but differed for the 1st or 2nd Diagnosis Position groups. The percent of cases 

with an obese BMI was lower among those without clinical components than with clinical 

components. The prevalence of hypertension, diabetes, kidney disease, heart failure, and 

previous stroke or TIA were similar between the 2 groups, though the prevalence of atrial 

fibrillation was slightly higher in the group without clinical components. In general, the groups 
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without lab or procedure were more likely to be STEMI, Type 2 MI, or Unspecified MI than the 

group with labs or procedures. In-hospital complications and mortality were similar between the 

groups. 

Heart Failure 

 Of the 53,545 HF cases identified in this analysis, 6302 had HF codes in any diagnosis 

position as well as elevated BNP or NT-proBNP values and/or a HF-related medication while 

45,883 had no clinical components; 2,076 cases had HF codes in the 1st or 2nd diagnosis 

position with clinical components and 721 with codes in the 1st or 2nd diagnosis position had no 

clinical components. Sex, race, and ethnicity distribution was similar between cases with HF 

codes in Any Diagnosis Position and 1st and 2nd Diagnosis Position with and without clinical 

components however, age was lower among those with codes in the 1st and 2nd Diagnosis 

Position without clinical components compared to with clinical components (Table 65). The 

distribution of smoking status was similar for the Any Diagnosis Position groups but differed for 

the 1st or 2nd Diagnosis Position groups. The percent of cases with an obese BMI was lower 

among those without clinical components than with clinical components. The prevalence of 

comorbidities was lower among cases without clinical components than those with, as was the 

percent of cases with any comorbidity and the average number of comorbidities. Prevalence of 

codes for Unspecified HF and placement of LVAD, pacemaker, and implantable cardiac 

defibrillator were lower among cases without clinical components than with them, while the 

prevalence of codes for chronic HF were higher. For cases with HF codes in Any Diagnosis 

Position, the prevalence of codes for acute-on-chronic exacerbation were higher among those 

without clinical components; however, for cases with HF codes in 1st or 2nd Diagnosis Position, 

the prevalence of these codes was lower.  

Discussion 

These analyses sought to describe whether acute MI and HF prevalence differed based 

on choice of phenotyping algorithm and if the patient group captured by each algorithm differed 
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on key phenotypic characteristics, including demographics and severity indicators. Crude and 

age-standardized prevalence estimates did differ statistically by algorithm, though the small 

magnitude of difference may not be clinically significant. A challenge of using EHR data, with 

such large sample sizes, is that statistical tests of differences may not always result in 

meaningful differences.235  When examining age, race, and sex subgroups, the patterns seen 

were consistent with self-reported MI and HF prevalence from NHANES 2013-2016 data;169 

however the prevalence estimates themselves did not correspond with previously reported 

definitions of MI or HF based on community-based cohorts or nationally representative samples, 

likely due to a difference in comparing hospitalized MI or treated HF events from this study to 

self-reports of “ever diagnosed” measures from other studies. 

It is not clear if we can assume that patients with an acute MI code in the 1st or 2nd 

diagnosis position represent more severe cases than patients captured in other algorithms, as 

patients captured in these other algorithms may have experienced an in-hospital MI while 

admitted for another condition. In fact, mortality was highest for acute MI cases with codes in 

the hospital problem list or in any diagnosis position compared to cases with codes in the 1st or 

2nd diagnosis position. Furthermore, while an elevated cardiac biomarker value may be 

indicative of a more severe or more certain acute MI case, the occurrence of a cardiac 

procedure code may not. The difference in treatment courses for MI subtypes also complicates 

the interpretation of these phenotyping algorithms along a severity spectrum, with more STEMI 

events being treated with procedures than non-STEMI events. Mortality and in-hospital 

complications were largely similar between acute MI algorithms with and without clinical 

components, though prevalence of comorbidities and comorbidity burden was higher among 

cases with clinical components. While it may not be straight forward which algorithm represents 

more severe patients, patients who had more clinical data (lab values or procedure codes) did 

have fewer missing data on smoking status and BMI. 
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Mortality is commonly used as a severity indicator for risk classification scores. In a 

review of 4 US national cardiovascular data registries, Masoudi et al. report an in-hospital death 

rate of 6.4% for STEMI and 3.4% for NSTEMI patients which are similar to the range of 3 – 

4.6% of 7-day mortality found in this analysis.236 The same report showed cardiogenic shock in 

4.4% of STEMI and 1.6% NSTEMI patients, compared to 1-2% of cases in this analysis. Using 

2009-2010 data from the National Inpatient Sample, Rodriguez et al. found in-hospital mortality 

ranged from 7.4% in females with STEMI to 4.6% in males, and 4.8% in females with NTSEMI 

and 3.9% in males.237 

Given the large amount of overlap between algorithms, it is not surprising that in general, 

the phenotypic characteristics of patients captured by each algorithm were similar. However, the 

patients without clinical components who did not meet the criteria of the more restrictive 

algorithms may represent a different patient population that researchers do or do not want to 

exclude based on their research question. A clear example is the distribution of MI subtypes, 

with acute MI cases without clinical components not following the typical 30:70 ratio of 

STEMI:NSTEMI cases and instead having a higher prevalence of STEMI, Type 2 MI, and 

Unspecified MI Type codes compared to cases with clinical components. 

I chose to study HF along with acute MI because of the differences in how patients with 

these conditions are managed in the US healthcare system. Heart failure patients are 

increasingly being seen in the outpatient setting and it is logical to hypothesize that patients 

captured via inpatient encounters with these phenotyping algorithms may differ than those 

captured via outpatient encounter. However, the findings of these analyses demonstrate that the 

inpatient HF cases were not necessarily sicker than outpatient cases, though the findings are 

not free of confounding due to indication. With regards to missingness, some researchers build 

a base study population using outpatient encounters with the logic that outpatient encounters 

are likely to have more data available on patient characteristics. In this analysis, I found that 
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race, ethnicity, smoking status, and BMI were more likely to be missing for outpatient HF cases 

than inpatient HF cases. 

A strength of this analysis is the focus on ICD-10-CM codes. Some of the questions 

posed in these analyses have been addressed previously using ICD-9-CM codes. However, 

given the differences in the ICD-10-CM coding schema compared to ICD-9-CM and the 

increasing use of routinely collected healthcare data by researchers for secondary research, 

these questions need to be answered specifically for ICD-10-CM codes. Additionally, much of 

the existing ICD-10-CM research has been done in administrative healthcare claims data, not 

EHR data. A key strength of this analysis is the practicality of the algorithms used. The 

phenotyping algorithms presented are commonly used in research and require limited data, in 

contrast to some complex phenotyping algorithms that require multiple data points that may be 

missing in a large proportion of the patient population documented in the EHR. In addition, not 

all researchers have access to data beyond diagnosis codes and diagnosis position. 

A limitation of this analysis is the lack of a gold standard, such as chart review, which 

was beyond the scope due to time and cost restrictions. Another limitation is that this analysis 

did not distinguish between incident and prevalent events. This distinction is an important 

epidemiologic question and misclassification between incident and prevalent events using 

administrative healthcare claims data has been a topic of many research papers. When 

calculating incidence in EHR datasets, methodologic decisions regarding lookback period 

duration and observability during lookback period must be made. The sensitivity analyses 

required to examine the effect of these methodologic challenges was beyond the scope of these 

analyses. A third limitation is that this analysis was done in a health system with a poorly 

enumerated patient population. In contrast to rural areas where a healthcare system may be the 

only provider in the area, several large healthcare systems, including UNC Health, have 

locations across the state of North Carolina. Furthermore, patients may seek outpatient care 

from one healthcare system but acute care from another healthcare system. Thus, creating an 
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outpatient-care only patient denominator may result in missing cases who sought care 

elsewhere. The ideal way of addressing this limitation is to link patient EHR data with healthcare 

claims data to address data fragmentation with poorly defined patient catchment areas. This is 

most widely available for Medicare claims data, which restricts the number of patients that can 

be included in the analysis. Additionally, linking the UNC Health EHR data with Medicare claims 

was beyond the scope of this analysis due to time and cost restrictions. 

Conclusion 

EHR phenotyping is a key step in many types of research, from case finding for clinical 

trial research or comparative effectiveness studies, to secondary data analysis, to public health 

efforts to quantify disease burden in a county or state. The results of this analysis suggest two 

points: that overall occurrence of acute MI and HF differs depending on the phenotyping 

algorithm used and that requiring cases to have certain clinical components may alter the 

demographic and severity of the captured study population. This work was done with the 

intention of informing researchers who are deciding between different phenotyping algorithms. 

Researchers should consider the purpose of their phenotyping algorithm – for example, are they 

identifying potential cases to be screened for a clinical trial or is the phenotyping algorithm being 

used for secondary data analysis to classify exposures or outcomes? The potential for more 

severe cases or increased missingness has different implications depending on the research 

question and setting. Finally, future work will be needed to determine the validity of these rule-

based algorithms compared to a diagnostic classification gold standard. This work is presented 

in Chapter 6. 
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Tables for Aims 1 and 2 

Table 31. Prevalence, Prevalence Differences, Prevalence Ratios for Acute Myocardial Infarction by Algorithm, UNC Health, 2016-2019 
 Algorithm 1 

Problem List 

Any Diagnosis 

Position 

Any Diagnosis Position + 

Lab or Procedure 

1st or 2nd Diagnosis 

Position 

1st or 2nd Diagnosis Position 

+ Lab or Procedure 

Prevalence per 100k      

2016 – 2019 518 (507, 529) 576 (565, 588) 528 (517, 539) 407 (397, 416) 378 (369, 388) 

2016 251 (239, 262) 275 (263, 287) 252 (241, 264) 194 (184, 204) 184 (174, 194) 

2017 292 (280, 304) 312 (300, 324) 287 (276, 299) 225 (214, 235) 209 (199, 219) 

2018 269 (258, 280) 298 (286, 309) 277 (266, 288) 208 (198, 218) 194 (185, 203) 

2019 221 (211, 231) 263 (252, 274) 235 (225, 246) 183 (174, 192) 167 (158, 176) 

Prevalence 

Difference 

     

2016 – 2019 -0.0006 (-0.0007, -0.0004) Ref -0.0005 (-0.0006, -0.0003) -0.0017 (-0.0018, -0.0015) -0.0020 (-0.0021, -0.0018) 

2016 -0.0002 (-0.0004, -0.0001) Ref -0.0002 (-0.0004, -0.0001) -0.0008 (-0.0010, -0.0007) -0.0009 (-0.0011, -0.0008) 

2017 -0.0002 (-0.0004, -0.00003) Ref -0.0002 (-0.0004, -0.0001) -0.0009 (-0.0010, -0.0007) -0.0010 (-0.0012, -0.0009) 

2018 -0.0003 (-0.0004, -0.0001) Ref -0.0002 (-0.0004, -0.00005) -0.0009 (-0.0010, -0.0007) -0.0010 (-0.0012, -0.0009) 

2019 -0.0004 (-0.0006, -0.0003) Ref -0.0003 (-0.0004, -0.0001) -0.0008 (-0.0009, -0.0007) -0.0010 (-0.0011, -0.0008) 

Prevalence Ratio      

2016 – 2019 0.90 (0.87, 0.93) Ref 0.92 (0.89, 0.94) 0.71 (0.68, 0.73) 0.66 (0.64, 0.68) 

2016 0.91 (0.86, 0.97) Ref 0.92 (0.86, 0.98) 0.71 (0.66, 0.76) 0.67 (0.62, 0.72) 

2017 0.94 (0.89, 0.99) Ref 0.92 (0.87, 0.97) 0.72 (0.68, 0.76) 0.67 (0.63, 0.71) 

2018 0.90 (0.85, 0.96) Ref 0.93 (0.88, 0.98) 0.70 (0.66, 0.74) 0.65 (0.61, 0.69) 

2019 0.84 (0.79, 0.89) Ref 0.90 (0.84, 0.95) 0.70 (0.65, 0.74) 0.64 (0.59, 0.68) 

Sensitivity Analysis      
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Prevalence 

Difference 
   

  

2016 – 2019 - - - Ref -0.0003 (-0.0004, -0.0001) 

2016 - - - Ref -0.0001 (-0.0002, 0.00004) 

2017 - - - Ref -0.0002 (-0.0003, -0.00001) 

2018 - - - Ref -0.0001 (-0.0003, -0.000005) 

2019 - - - Ref -0.0002 (-0.0003, -0.00004) 

Prevalence Ratio - - -   

2016 – 2019 - - - Ref 0.93 (0.90, 0.96) 

2016 - - - Ref 0.95 (0.88, 1.02) 

2017 - - - Ref 0.93 (0.87, 1.00) 

2018 - - - Ref 0.93 (0.87, 1.00) 

2019 - - - Ref 0.91 (0.85, 0.98) 

Prevalence reported per 100,000 persons. The number of adults (≥ 20 years) with an inpatient or outpatient encounter at UNC Health was 1,618,168 (2016-2019), 733,650 

(2016), 801,085 (2017), 853,079 (2018), and 863,153 (2019). 



 

148 

Table 32. Prevalence Estimates for Acute Myocardial Infarction by Algorithm among Adults with 
>1 Outpatient Encounter, UNC Health, 2016-2019 

 Algorithm 1 

Problem List 

Any 

Diagnosis 

Position 

Any Diagnosis 

Position + Lab or 

Procedure 

1st or 2nd Diagnosis 

Position 

1st or 2nd Diagnosis 

Position + Lab or 

Procedure 

Period 

Prevalence 

     

2016 – 2019 520 (509, 531) 579 (567, 590) 530 (519, 542) 408 (398, 418) 380 (370, 389) 

2016 251 (240, 263) 276 (264, 288) 253 (242, 265) 195 (185, 205) 184 (175, 194) 

2017 293 (281, 305) 313 (301, 325) 288 (277, 300) 225 (215, 236) 210 (200, 220) 

2018 270 (259, 281) 299 (288, 311) 278 (267, 290) 209 (199, 219) 195 (186, 204) 

2019 222 (212, 232) 264 (253, 275) 236 (226, 247) 184 (175, 193) 168 (159, 176) 

Prevalence reported per 100,000 persons. Prevalence calculated using cases who had at least 1 outpatient encounter between 

2016-2019 or during the year of interest and OP encounter denominator. The total number of adults (≥ 20 years) with outpatient 

encounter (OP encounter denominator) at UNC Health was 1,610,077 (2016-2019), 729,982 (2016), 797,080 (2017), 848,814 

(2018), and 858,837 (2019). 
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Table 33. Prevalence, Prevalence Differences, Prevalence Ratios for Heart Failure by Algorithm, UNC Health, 2016-2019 
Heart Failure Problem List Any Diagnosis 

Position 

Any Diagnosis Position + 

Lab or Medication 

1st or 2nd Diagnosis 

Position 

1st or 2nd Diagnosis 

Position + Lab or 

Medication 

First Diagnosis Position 

Period Prevalence 

2016 – 2019 146 (140, 152) 3,225 (3,198, 3,252) 389 (380, 399) 139 (133, 145) 96 (92, 101) 58 (55, 62) 

2016 114 (106, 122) 1,969 (1,938, 2,001) 283 (271, 295) 83 (76, 90) 62 (56, 67) 37 (33, 42) 

2017 78 (72, 84) 1,694 (1,665, 1,722) 185 (176, 195) 62 (57, 68) 42 (38, 47) 25 (22, 29) 

2018 56 (51, 61) 1,533 (1,507, 1,559) 166 (157, 175) 63 (58, 68) 43 (39, 48) 26 (23, 30) 

2019 49 (44, 54) 1,285 (1,261, 1,309) 154 (145, 162) 70 (65, 76) 47 (42, 51) 28 (24, 31) 

Prevalence Difference 

2016 – 2019 -0.0308 (-0.0311, -0.0305) Ref -0.0284 (-0.0286, -0.0281) -0.0309 (-0.0311, -0.0306) -0.0313 (-0.0316, -0.0310) -0.0317 (-0.0319, -0.0314) 

2016 -0.0186 (-0.0189, -0.0182) Ref -0.0169 (-0.0172, -0.0165) -0.0189 (-0.0192, -0.0185) -0.0191 (-0.0194, -0.0188) -0.0193 (-0.0196, -0.0190) 

2017 -0.0162 (-0.0164, -0.0159) Ref -0.0151 (-0.0154, -0.0148) -0.0163 (-0.0166, -0.0160) -0.0165 (-0.0168, -0.0162) -0.0167 (-0.0170, -0.0164) 

2018 -0.0148 (-0.0150, -0.0145) Ref -0.0137 (-0.0139, -0.0134) -0.0147 (-0.0150, -0.0144) -0.0149 (-0.0152, -0.0146) -0.0151 (-0.0153, -0.0148) 

2019 -0.0124 (-0.0126, -0.0121) Ref -0.0113 (-0.0116, -0.0111) -0.0121 (-0.0124, -0.0119) -0.0124 (-0.0126, -0.0121) -0.0126 (-0.0128, -0.0123) 

Prevalence Ratio       

2016 – 2019 0.045 (0.045, 0.045) Ref 0.121 (0.121, 0.121) 0.043 (0.043, 0.043) 0.030 (0.030, 0.030) 0.018 (0.018, 0.018) 

2016 0.058 (0.058, 0.058) Ref 0.144 (0.144, 0.144) 0.042 (0.042, 0.042) 0.031 (0.031, 0.031) 0.019 (0.019, 0.019) 

2017 0.046 (0.046, 0.046) Ref 0.110 (0.109, 0.110) 0.037 (0.037, 0.037) 0.025 (0.025, 0.025) 0.015 (0.015, 0.015) 

2018 0.037 (0.037, 0.037) Ref 0.108 (0.108, 0.108) 0.041 (0.041, 0.041) 0.028 (0.028, 0.028) 0.017 (0.017, 0.017) 

2019 0.038 (0.038, 0.038) Ref 0.120 (0.120, 0.120) 0.055 (0.055, 0.055) 0.036 (0.036, 0.036) 0.022 (0.022, 0.022) 

Sensitivity Analysis 

Prevalence Difference 

2016 – 2019 - - - Ref -0.0004 (-0.0005, -0.0004) -0.0008 (-0.0009, -0.0007) 

2016 - - - Ref -0.0002 (-0.0003, -0.0001) -0.0005 (-0.0005, -0.0004) 

2017 - - - Ref -0.0002 (-0.0003, -0.0001) -0.0004 (-0.0004, -0.0003) 

2018 - - - Ref -0.0002 (-0.0003, -0.0001) -0.0004 (-0.0004, -0.0003) 

2019 - - - Ref -0.0002 (-0.0003, -0.0002) -0.0004 (-0.0005, -0.0004) 

Prevalence Ratio - - -    

2016 – 2019 - - - Ref 0.69 (0.69, 0.69) 0.42 (0.42, 0.42) 

2016 - - - Ref 0.74 (0.74, 0.74) 0.45 (0.45, 0.45) 

2017 - - - Ref 0.67 (0.67, 0.67) 0.41 (0.41, 0.41) 

2018 - - - Ref 0.69 (0.69, 0.69) 0.42 (0.42, 0.42) 

2019 - - - Ref 0.67 (0.67, 0.67) 0.40 (0.40, 0.40) 

Prevalence reported per 100,000 persons. The number of adults (≥ 20 years) with an inpatient or outpatient encounter at UNC Health was 1,618,168 (2016-2019), 733,650 (2016), 801,085 (2017), 853,079 

(2018), and 863,153 (2019). 

 
 



 

 

1
5
0
 

Table 34. Prevalence for Heart Failure by Algorithm and Patient Setting, UNC Health, 2016-2019 

Heart 
Failure Hospital 

Problem 
List 

Patient Problem List Any 
Diagnosis 
Position 

(Inpatient) 

Diagnosis on ≥ 2 Occasions 
(Outpatient) 

 

Any 
Diagnosis 
Position + 

Lab or 
Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + Prescription 

(Outpatient) 

 
Using IP/OP 
denominator 

Using OP 
denominator 

Using IP/OP 
denominator 

Using OP 
denominator 

Using IP/OP 
denominator 

Using OP 
denominator 

2016 – 
2019 

125 (120, 
131) 

21 (19, 23) 21 (19, 23) 
521 (510, 

532) 
2,704 (2,679, 

2,729) 
2,717 (2,692, 

2,742) 
254 (247, 

262) 
135 (129, 

141) 
136 (130, 

141) 

2016 90 (83, 97) 25 (21, 28) 25 (21, 28) 
343 (330, 

356) 
1,626 (1,597, 

1,655) 
1,635 (1,605, 

1,664) 
165 (156, 

174) 
118 (110, 

126) 
118 (110, 

126) 

2017 68 (62, 73) 11 (8, 13) 11 (8, 13) 
248 (237, 

259) 
1,446 (1,420, 

1,472) 
1,453 (1,427, 

1,479) 
118 (110, 

125) 
68 (62, 74) 68 (63, 74) 

2018 52 (47, 57) 4 (3, 6) 4 (3, 6) 
233 (222, 

243) 
1,300 (1,276, 

1,324) 
1,307 (1,283, 

1,331) 
114 (107, 

121) 
52 (47, 57) 52 (47, 57) 

2019 45 (40, 49) 4 (3, 6) 4 (3, 6) 
226 (216, 

236) 
1,059 (1,038, 

1,081) 
1,065 (1,043, 

1,086) 
115 (108, 

122) 
39 (35, 43) 39 (35, 43) 

Prevalence reported per 100,000 persons. The number of adults (≥ 20 years) with an inpatient or outpatient encounter (IP/OP encounter denominator) at UNC 
Health was 1,618,168 (2016-2019), 733,650 (2016), 801,085 (2017), 853,079 (2018), and 863,153 (2019). The number of adults (≥ 20 years) with outpatient 
encounter (OP encounter denominator) at UNC Health was 1,610,077 (2016-2019), 729,982 (2016), 797,080 (2017), 848,814 (2018), and 858,837 (2019). 
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Table 35. Prevalence for Heart failure by Algorithms among Patients with >1 Outpatient Encounter, 
UNC Health, 2016-2019 

 
Algorithm 1 

Problem List 

Any Diagnosis 

Position 

Any Diagnosis 

Position + Lab 

or Medication 

1st or 2nd 

Diagnosis 

Position 

1st or 2nd 

Diagnosis 

Position + Lab 

or Medication 

First 

Diagnosis 

Position 

Period 

Prevalence 
      

2016 – 

2019 
147 (141, 153) 3,241 (3,213, 3,268) 392 (382, 402) 174 (167, 180) 129 (123, 134) 79 (75, 83) 

2016 115 (107, 123) 1,979 (1,947, 2,011) 285 (273, 297) 106 (98, 113) 83 (77, 90) 50 (45, 55) 

2017 79 (72, 85) 1,702 (1,674, 1,730) 187 (177, 196) 81 (75, 88) 60 (55, 65) 38 (34, 42) 

2018 56 (51, 61) 1,614 (1,588, 1,641) 167 (158, 175) 77 (71, 83) 56 (51, 61) 35 (31, 39) 

2019 49 (44, 54) 1,291 (1,267, 1,315) 155 (146, 163) 84 (78, 90) 60 (55, 65) 36 (32, 40) 

Prevalence reported per 100,000 persons. Prevalence calculated using cases who had at least 1 outpatient encounter between 

2016-2019 or during the year of interest and OP encounter denominator. The total number of adults (≥ 20 years) with outpatient 

encounter (OP encounter denominator) at UNC Health was 1,610,077 (2016-2019), 729,982 (2016), 797,080 (2017), 848,814 

(2018), and 858,837 (2019). 

 

Table 36. Age-Standardized Absolute Prevalence Estimates for Acute Myocardial Infarction, UNC 
Health, 2016-2019 

 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 

Position + Lab or 

Procedure 

1st or 2nd 

Diagnosis 

Position 

1st or 2nd 

Diagnosis 

Position + Lab or 

Procedure 

Overall 388 (380, 397) 434 (425, 443) 397 (389, 406) 313 (305, 320) 290 (283, 298) 

By Sex      

Males 527 (511, 542) 536 (521, 551) 536 (522, 551) 442 (429, 456) 408 (408, 408) 

Females 287 (278, 297) 296 (287, 305) 296 (286, 306) 218 (210, 227) 205 (205, 205) 

By Race      

White 476 (464, 488) 522 (509, 534) 477 (466, 489) 382 (371, 392) 354 (354, 354) 

Black 432 (412, 453) 527 (505, 550) 481 (459, 503) 365 (347, 385) 339 (339, 339) 

By Race-Sex 

Groups 
     

White Males 705 (683, 728) 769 (746, 792) 700 (678, 723) 590 (570, 611) 545 (545, 545) 

White Females 366 (353, 381) 404 (390, 419) 372 (359, 387) 276 (265, 288) 258 (258, 258) 

Black Males 560 (524, 600) 691 (651, 735) 627 (589, 667) 484 (451, 520) 443 (443, 443) 

Black Females 348 (324, 372) 419 (392, 447) 384 (360, 410) 286 (264, 309) 269 (269, 269) 

Prevalence reported per 100,000 persons. Estimates age-standardized to the US 2010 Census population using 7 age-groups 

(20-34, 35-44, 45-54, 55-64, 65-75, 75-84, and 85+ years). 
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Table 37. Age-Standardized Absolute Prevalence Estimates for Heart Failure, UNC Health, 2016-
2019 

 Problem List Any Diagnosis 

Position 

Any Diagnosis 

Position + Lab or 

Medication 

1st or 2nd 

Diagnosis 

Position 

1st or 2nd 

Diagnosis 

Position + Lab 

or Medication 

First Diagnosis 

Position 

Overall 188 (182, 193) 2,719 (2,698, 2,741) 441 (433, 450) 90 (86, 94) 57 (54, 60) 36 (34, 39) 

By Sex       

Males 222 (213, 231) 3,057 (3,022, 3,092) 513 (498, 527) 103 (97, 110) 66 (62, 72) 43 (39, 47) 

Females 165 (158, 172) 2,489 (2,462, 2,516) 394 (383, 405) 81 (76, 86) 52 (48, 56) 31 (28, 35) 

By Race       

White 661 (640, 683) 9,393 (9,304, 9,483) 1,512 (1,476, 1,549) 299 (282, 316) 193 (181, 206) 118 (109, 128) 

Black 96 (91, 102) 1,468 (1,445, 1,491) 245 (236, 255) 55 (50, 59) 34 (31, 38) 22 (20, 26) 

By Race-

Sex 

Groups 

      

White 

Males 
254 (242, 267) 3,497 (3,451, 3,545) 579 (560, 598) 114 (106, 123) 71 (65, 78) 44 (39, 49) 

White 

Females 
191 (182, 201) 2,816 (2,780, 2,854) 442 (428, 457) 87 (80, 95) 58 (52, 64) 35 (30, 41) 

Black 

Males 
353 (324, 384) 4,901 (4,789, 5,014) 862 (817, 909) 189 (168, 213) 128 (108, 152) 90 (64, 126) 

Black 

Females 
240 (221, 260) 3,936 (3,854, 4,020) 631 (600, 663) 142 (137, 147) 84 (73, 97) 50 (42, 60) 

Prevalence reported per 100,000 persons. Estimates age-standardized to the US 2010 Census population using 7 age-groups (20-34, 35-44, 45-

54, 55-64, 65-75, 75-84, and 85+ years). 

 

Table 38. Age-Standardized Absolute Prevalence Estimates for Heart Failure by Algorithm and 
Inpatient/Outpatient Setting, UNC Health, 2016-2019 

 

Hospital 

Problem List 

Patient 

Problem 

List 

Any Diagnosis 

Position (Inpatient) 

Diagnosis on ≥ 2 

Occasions 

(Outpatient) 

Any Diagnosis 

Position + Lab 

or Meds 

(Inpatient) 

Diagnosis on ≥ 

2 Occasions + 

Prescription 

(Outpatient) 

Overall 167 (161, 172) 18 (16, 19) 415 (406, 424) 2,304 (2,283, 2,325) 222 (216, 228) 219 (219, 219) 

By Sex       

Males 201 (193, 210) 21 (18, 24) 461 (447, 475) 2,596 (2,564, 2,628) 258 (248, 268) 255 (245, 265) 

Females 150 (143, 156) 16 (14, 18) 386 (375, 397) 2,103 (2,078, 2,128) 199 (192, 207) 194 (186, 202) 

By Race       

White 429 (413, 445) 58 (58, 58) 1,414 (1,381, 1,449) 7,979 (7,900, 8,058) 258 (245, 271) 778 (738, 820) 

Black 86 (81, 92) 10 (10, 10) 239 (231, 248) 1,228 (1,208, 1,249) 199 (193, 206) 120 (116, 125) 

By Race-Sex 

Groups       

White Males 429 (408, 451) 23 (23, 23) 516 (498, 535) 2,981 (2,937, 3,026) 290 (277, 304) 288 (275, 302) 

White Females 307 (291, 325) 16 (16, 16) 434 (419, 449) 2,383 (2,348, 2,417) 231 (220, 242) 211 (202, 222) 

Black Men 427 (391, 466) 31 (31, 31) 809 (765, 855) 4,091 (3,992, 4,193) 443 (410, 478) 420 (388, 454) 

Black Women 367 (335, 401) 28 (28, 28) 637 (604, 672) 3,299 (3,223, 3,376) 301 (280, 323) 330 (308, 354) 

Prevalence reported per 100,000 persons. Estimates age-standardized to the US 2010 Census population using 7 age-groups (20-34, 35-44, 45-

54, 55-64, 65-75, 75-84, and 85+ years). 
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Table 39. Prevalence Differences and Prevalence Ratios for Acute Myocardial Infarction and Heart 
Failure Algorithms Using Standardized Prevalence 

Acute Myocardial Infarction Algorithm  Prevalence Difference Prevalence Ratio 

Problem List -0.0005 (-0.0005, -0.0004) 0.90 (0.89, 0.90) 

Any Diagnosis Position ref ref 

Any Diagnosis Position + Lab or Procedure -0.0004 (-0.0004, -0.0004) 0.92 (0.91, 0.92) 

1st or 2nd Diagnosis Position -0.0012 (-0.0012, -0.0012) 0.72 (0.72, 0.72) 

1st or 2nd Diagnosis Position + Lab or Procedure -0.0014 (-0.0014, -0.0014) 0.67 (0.67, 0.67) 

Heart Failure Algorithm  Prevalence Difference Prevalence Ratio 

Problem List -0.0253 (-0.0253, -0.0253) 0.069 (0.069, 0.069) 

Any Diagnosis Position ref ref 

Any Diagnosis Position + Lab or Medication -0.0228 (-0.0228, -0.0228) 0.160 (0.159, 0.160) 

1st or 2nd Diagnosis Position -0.0263 (-0.0263, -0.0263) 0.033 (0.033, 0.033) 

1st or 2nd Diagnosis Position + Lab or Medication -0.0266 (-0.0266, -0.0266) 0.021 (0.021, 0.021) 

1st Diagnosis Position -0.0268 (-0.0269, -0.0268) 0.013 (0.013, 0.013) 

 

Table 40. Average Cost of Acute Myocardial Infarction Hospitalization by Phenotyping Algorithm 

 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 

Position with Lab 

and/or Procedure 

1st or 2nd 

Diagnosis 

Position 

1st or 2nd 

Diagnosis 

Position with Lab 

and/or Procedure 

Cases 1.05 million 1.17 million 1.07 million 0.83 million 0.78 million 

Difference 0.12 million Ref 0.098 million 0.33 million 0.39 million 

Cost (billions 

USD) 
$25.9 (18.3, 31.5) $28.9 (20.4, 35.2) $26.5 (18.7, 32.2) $20.7 (14.6, 25.2) $19.2 (13.6, 23.4) 

Cost Difference 

(billions USD) 
$3.0 (2.1, 3.6) Ref $2.4 (1.7, 2.9) $8.2 (5.8, 10.0) $9.7 (6.8, 11.8) 

Healthcare estimates from Nicholson et al. used ($24,695 per case, ranging from $17,436 to $30,021). Case counts calculated 

from age-specific occurrence rates applied to the US 2020 Census population. Dollar amounts in USD. 
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Table 41. Average Cost of Heart Failure Hospitalization by Phenotyping Algorithm 
 

Hospital 

Problem List 

Any Diagnosis 

Position 

Any Diagnosis 

Position with 

Lab and/or 

Diuretic 

1st or 2nd 

Diagnosis 

Position 

1st or 2nd 

Diagnosis 

Position with 

Lab and/or 

Diuretic 

1st Diagnosis 

Position 

Cases 0.46 million 1.13 million 0.62 million 0.24 million 0.16 million 0.10 million 

Difference -0.67 million Ref -0.51 million -0.89 million -0.97 million -1.03 million 

Cost (billions 

USD) 
$7.2 (5.8, 8.5) 

$17.4 (14.1, 

20.8) 
$9.5 (7.7, 11.3) $3.7 (3.0, 4.5) $2.4 (1.9, 2.9) $1.5 (1.2, 1.8) 

Cost Difference 

(billions) 

-$10.3 (-8.3, -

12.3) 
Ref 

-$7.9 (-6.4, -

9.5) 

-$13.7 (-11.0, -

16.3) 

-$15.0 (-12.1, -

17.9) 

-$15.9 (-12.8, -

19.0) 

Healthca USDre estimates from Wadhera et al. 2018 used mean $15,423 (95% CI 12,437, 18408) per hospitalization. Case 

counts calculated from age-specific occurrence rates applied to the US 2020 Census population.  Dollar amounts in USD. 
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Table 42. Demographic characteristics of UNC Health study population denominator, 2016-2019 
 Adults ≥ 20 years with at least 1 

inpatient or outpatient encounter 

at UNC Health between 2016 and 

2019 

N 1,618,168 

Age category  

20-34 years 321,606 (19.9%) 

35-44 years 229,850 (14.2%) 

45-54 years 258,776 (16.0%) 

55-64 years 290,715 (18.0%) 

65-74 years 268,864 (16.6%) 

75-84 years 164,931 (10.2%) 

≥ 85 years 83,427 (5.2%) 

Female 943,086 (58.3%) 

Unknown 505 (0.03%) 

Race  

White 1,017,184 (62%) 

Black 304,536 (18.8%) 

Asian 28,129 (1.7%) 

American Indian or Alaska Native 6,312 (0.4%) 

Other 98,705 (6.1%) 

Unknown 154,883 (9.6%) 

Ethnicity  

Hispanic/Latino 89,333 (5.5%) 

Unknown 187,121 (11.6%) 

Calculated BMI (kg/m2), n 1,347,619 

≥ 30 kg/m2* 541,753 (40.2%) 

Missing 270,549 (16.7%) 

Smoking status, n 1,456,806 

Current* 224,477 (15.4%) 

Former* 341,650 (23.5%) 

Never* 822,716 (56.5%) 

Unknown* 67,963 (4.7%) 

Missing 161,362 (10.0%) 

BMI: body mass index. Asian race group includes Native Hawaiian and Pacific 

Islander. Unknown race includes “no information”, “refused”, and “unknown”. 

Current smoker includes current every day smoker, current some days smoker, 

smoker (current status unknown), heavy smoker, and light smoker. Unknown 

smoking status includes “unknown if ever” and “no information”. *Percent in each 

category calculated as a percent of available observations. 
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Table 43. Phenotypic Characteristics of Patient Population Captured by Acute Myocardial 
Infarction Algorithms, UNC Health, 2016-2019 

2016-2019 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 

N (%) 8383 9326 8549 6580 6120 

Age, years      

Mean (SD) 68.2 (14.0) 68.1 (14.3) 68.1 (14.3) 67.1 (14.2) 67.2 (14.1) 

Median (Q1, Q3) 
68.6 (58.5, 
78.8) 

68.7 (58.2, 
78.7) 

68.7 (58.3, 78.6) 
67.5 (57.1, 
77.5) 

67.6 (57.3, 77.4) 

Age category      

20-34 years 91 (1.1%) 132 (1.4%) 117 (1.4%) 87 (1.3%) 78 (1.3%) 

35-44 years 369 (4.4%) 443 (4.8%) 397 (4.6%) 351 (5.3%) 319 (5.2%) 

45-54 years 1,057 (12.6%) 1,189 (12.7%) 1,083 (12.7%) 907 (13.8%) 840 (13.7%) 

55-64 years 1,892 (22.6%) 2,023 (21.7%) 1,868 (21.9%) 1,504 (22.9%) 1,400 (22.9%) 

65-74 years 2,184 (26.1%) 2,432 (26.1%) 2,246 (26.3%) 1,732 (26.3%) 1,628 (26.6%) 

75-84 years 1,750 (20.9%) 1,930 (20.7%) 1,764 (20.6%) 1,271 (19.3%) 1,180 (19.3%) 

≥ 85 years 1,040 (12.4%) 1,177 (12.6%) 1,074 (12.6%) 728 (11.1%) 675 (11.0%) 

Female 3,567 (42.6%) 3,979 (42.7%) 3,674 (43.0%) 2,675 (40.7%) 2,511 (41.0%) 

Race      

White 6,163 (73.5%) 6,789 (72.8%) 6,223 (72.8%) 4,830 (73.4%) 4,492 (73.4%) 

Black 1,661 (19.8%) 1,986 (21.3%) 1,813 (21.2%) 1,349 (20.5%) 1,251 (20.4%) 

Asian 64 (0.8%) 73 (0.8%) 65 (0.8%) 55 (0.8%) 48 (0.8%) 

American Indian or 
Alaska Native 

29 (0.3%) 31 (0.3%) 28 (0.3%) 28 (0.4%) 25 (0.4%) 

Other 307 (3.7%) 317 (3.4%) 292 (3.4%) 229 (3.5%) 216 (3.5%) 

Unknown 159 (1.9%) 130 (1.4%) 128 (1.5%) 89 (1.4%) 88 (1.4%) 

Ethnicity      

Hispanic/Latino 227 (2.7%) 250 (2.7%) 231 (2.7%) 188 (2.9%) 177 (2.9%) 

Unknown 190 (2.3%) 157 (1.7%) 150 (1.8%) 106 (1.6%) 102 (1.7%) 

Calculated BMI 
(kg/m2), n 

7074 7627 7143 5408 5129 

Mean (SD) 29.3 (6.7) 29.3 (6.7) 29.3 (6.7) 29.4 (6.6) 29.5 (6.6) 

Median (Q1, Q3) 28.3 (24.6, 33) 28.3 (24.7, 33) 28.3 (24.7, 33) 28.4 (25, 33.1) 28.4 (25, 33.1) 

≥ 30 kg/m2* 2821 (39.9%) 2977 (39.0%) 2802 (39.2%) 2162 (40.0%) 2056 (40.1%) 

Missing 1309 (15.6%) 1699 (18.2%) 1406 (16.4%) 1172 (17.8%) 991 (16.2%) 

Smoking status, n 6,880 7,514 69,91 5,281 4,975 

Current* 1,657 (24.1%) 1,836 (24.4%) 1,691 (24.2%) 1,385 (26.2%) 1,284 (25.8%) 

Former* 2,463 (35.8%) 2,638 (35.1%) 2,457 (35.1%) 1,780 (33.7%) 1,687 (33.9%) 

Never* 2,555 (37.1%) 2,819 (37.5%) 2,636 (37.7%) 1,974 (37.4%) 1,871 (37.6%) 

Unknown* 205 (3.0%) 221 (2.9%) 207 (3.0%) 142 (2.7%) 133 (2.7%) 

Missing 1,503 (17.9%) 1,812 (19.4%) 1,558 (18.2%) 1,299 (19.7%) 1,145 (18.7%) 

Mortality      

7-day 385 (4.6%) 373 (4.0%) 344 (4.0%) 201 (3.1%) 182 (3.0%) 

30-day 762 (9.1%) 730 (7.8%) 672 (7.9%) 387 (5.9%) 355 (5.8%) 
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1-year 1,601 (19.1%) 1,630 (17.5%) 1,512 (17.7%) 926 (14.1%) 867 (14.2%) 

Comorbidities      

Hypertension 4,928 (58.8%) 5,640 (60.5%) 5,161 (60.4%) 3,686 (56.0%) 3,442 (56.2%) 

Diabetes 3,811 (45.5%) 4,278 (45.9%) 3,928 (45.9%) 2,933 (44.6%) 2,731 (44.6%) 

Kidney disease 4,581 (54.6%) 5,226 (56.0%) 4,807 (56.2%) 3,316 (50.4%) 3,097 (50.6%) 

Heart failure 4,425 (52.8%) 5,099 (54.7%) 4,660 (54.5%) 3,277 (49.8%) 3,043 (49.7%) 

Atrial fibrillation 1,474 (17.6%) 1,772 (19.0%) 1,598 (18.7%) 1,110 (16.9%) 1,014 (16.6%) 

Previous stroke or TIA 1,082 (12.9%) 1,334 (14.3%) 1,217 (14.2%) 799 (12.1%) 750 (12.3%) 

Any comorbidity 6,888 (82.2%) 7,687 (82.4%) 7,061 (82.6%) 5,200 (79.0%) 4,853 (79.3%) 

Number of 
comorbidities, mean 
(SD) 

2.4 (1.7) 2.5 (1.7) 2.5 (1.7) 2.3 (1.7) 2.3 (1.7) 

Comorbidity Burden      

0 1,495 (17.8%) 1,639 (17.6%) 1,488 (17.4%) 1,380 (21.0%) 1,267 (20.7%) 

1 1,291 (15.4%) 1,351 (14.5%) 1,252 (14.6%) 1,057 (16.1%) 990 (16.2%) 

2 1,394 (16.6%) 1,454 (15.6%) 1,342 (15.7%) 1,057 (16.1%) 987 (16.1%) 

3 1,572 (18.8%) 1,711 (18.3%) 1,584 (18.5%) 1,126 (17.1%) 1,066 (17.4%) 

4 1,781 (21.2%) 2,072 (22.2%) 1,887 (22.1%) 1,322 (20.1%) 1,221 (20.0%) 

5 718 (8.6%) 925 (9.9%) 841 (9.8%) 544 (8.3%) 503 (8.2%) 

6 132 (1.6%) 174 (1.9%) 155 (1.8%) 94 (1.4%) 86 (1.4%) 

Myocardial Infarction 
Severity Indicators 

     

STEMI 1673 (20%) 2,266 (24.3%) 1,857 (21.7%) 1,931 (29.3%) 1,637 (26.7%) 

NSTEMI 6212 (74.1%) 6,753 (72.4%) 6,466 (75.6%) 4,545 (69.1%) 4,411 (72.1%) 

Type 2 294 (3.5%) 308 (3.3%) 268 (3.1%) 133 (2.0%) 114 (1.9%) 

Unspecified MI type 247 (3.0%) 127 (1.4%) 86 (1.0%) 67 (1.0%) 53 (0.9%) 

Other MI type <10 <10 <10 <10 <10 

Recurrent MI <10 15 (0.2%) 13 (0.2%) 11 (0.2%) 10 (0.2%) 

Cardiogenic shock 152 (1.8%) 102 (1.1%) 92 (1.1%) 64 (1.0%) 55 (0.9%) 

Acute heart failure 670 (8.0%) 715 (7.7%) 661 (7.7%) 407 (6.2%) 376 (6.1%) 

BMI: body mass index. IHD: ischemic heart disease. NSTEMI: Non-ST segment elevation myocardial infarction. STEMI: ST-
segment elevation myocardial infarction. Asian race group includes Native Hawaiian and Pacific Islander. Unknown race includes 
“no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available 
lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the Supplement. Body mass index 
calculated from average weight and height over multiple records for a single encounter within 1 year of case encounter. Weights 
and heights below the 1st or above the 99th percentile were excluded before calculating BMI. Sensitivity analysis limiting lookback 
period of 180 days and 365 days prior to event shown in Supplement. Current smoker includes current every day smoker, current 
some days smoker, smoker (current status unknown), heavy smoker, and light smoker. Unknown smoking status includes 
“unknown if ever” and “no information”. Smoking status determined from the first record, when there were multiple records per 
encounter. Mortality during hospitalization includes death dates within 7 days of discharge date. 30-day and 1-year mortality 
calculated from discharge date. STEMI defined as codes I21.0, I21.1, I21.2, I21.3; NSTEMI defined as code I21.4; Type 2 MI 
defined as code I21.A1; Unspecified MI type defined as code I21.9; other MI type defined as I21.A9; recurrent MI defined as 
code I22. Cardiogenic shock defined as code R57.0. Acute heart failure defined as codes I50.21, I50.23, I50.31, I50.33, I50.41, 
I50.43, I50.811, and I50.813. MI subtype pulled from problem list at event qualifying encounter for algorithm Problem List and 
from the hospital discharge or billing list for the other algorithms. *Percent in each category calculated as percent of available 
observations. 
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Table 44. Phenotypic Characteristics of Patient Population Captured by Acute Myocardial 
Infarction Algorithms, UNC Health, 2016 

Year: 2016 Problem List 
Any Diagnosis 

Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab or 
Procedure 

N 1838 2018 1852 1424 1348 

Age category      

20-34 years 18 (1.0%) 27 (1.3%) 20 (1.1%) 18 (1.3%) 14 (1.0%) 

35-44 years 74 (4.0%) 93 (4.6%) 81 (4.4%) 71 (5.0%) 63 (4.7%) 

45-54 years 270 (14.7%) 276 (13.7%) 253 (13.7%) 214 (15.0%) 204 (15.1%) 

55-64 years 404 (22.0%) 430 (21.3%) 399 (21.5%) 310 (21.8%) 293 (21.7%) 

65-74 years 514 (28.0%) 554 (27.5%) 518 (28.0%) 394 (27.7%) 380 (28.2%) 

75-84 years 346 (18.8%) 401 (19.9%) 365 (19.7%) 274 (19.2%) 258 (19.1%) 

≥85 years 212 (11.5%) 237 (11.7%) 216 (11.7%) 143 (10.0%) 136 (10.1%) 

Female 769 (41.8%) 832 (41.2%) 767 (41.4%) 552 (38.8%) 530 (39.3%) 

Race      

White 1,352 (73.6%) 1,475 (73.1%) 1,356 (73.2%) 1,040 (73.0%) 990 (73.4%) 

Black 373 (20.3%) 436 (21.6%) 397 (21.4%) 303 (21.3%) 282 (20.9%) 

Asian 13 (0.7%) 17 (0.8%) 16 (0.9%) 11 (0.8%) 10 (0.7%) 

American Indian or Alaska 
Native 

<10 <10 <10 
<10 <10 

Other 62 (3.4%) 61 (3.0%) 55 (3.0%) 47 (3.3%) 44 (3.3%) 

Unknown 32 (1.7%) 21 (1.0%) 21 (1.1%) 17 (1.2%) 17 (1.3%) 

Ethnicity      

Hispanic/Latino 53 (2.9%) 51 (2.5%) 48 (2.6%) 38 (2.7%) 36 (2.7%) 

Unknown 46 (2.5%) 35 (1.7%) 34 (1.8%) 27 (1.9%) 27 (2.0%) 

Comorbidities      

Hypertension 1,016 (55.3%) 1,213 (60.1%) 1,100 (59.4%) 783 (55.0%) 739 (54.8%) 

Diabetes 830 (45.2%) 926 (45.9%) 853 (46.1%) 633 (44.5%) 599 (44.4%) 

Kidney disease 980 (53.3%) 1,148 (56.9%) 1,049 (56.6%) 727 (51.1%) 689 (51.1%) 

Heart Failure 963 (52.4%) 1,114 (55.2%) 1,015 (54.8%) 722 (50.7%) 680 (50.4%) 

Atrial fibrillation 351 (19.1%) 414 (20.5%) 381 (20.6%) 267 (18.8%) 253 (18.8%) 

Previous stroke or TIA 244 (13.3%) 302 (15.0%) 270 (14.6%) 195 (13.7%) 183 (13.6%) 

Any comorbidity  1,509 (82.1%) 1,678 (83.2%) 1,544 (83.4%) 1,136 (79.8%) 1,080 (80.1%) 

Comorbidity Burden  
     

0 329 (17.9%) 340 (16.8%) 308 (16.6%) 288 (20.2%) 268 (19.9%) 

1 301 (16.4%) 290 (14.4%) 276 (14.9%) 224 (15.7%) 216 (16.0%) 

2 311 (16.9%) 321 (15.9%) 297 (16.0%) 243 (17.1%) 231 (17.1%) 

3 340 (18.5%) 383 (19.0%) 353 (19.1%) 237 (16.6%) 231 (17.1%) 

4 368 (20.0%) 432 (21.4%) 393 (21.2%) 282 (19.8%) 263 (19.5%) 

5 165 (9.0%) 204 (10.1%) 183 (9.9%) 122 (8.6%) 114 (8.5%) 

6 24 (1.3%) 48 (2.4%) 42 (2.3%) 28 (2.0%) 25 (1.9%) 
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Myocardial Infarction 
Severity Indicators 

     

STEMI 282 (15.3%) 542 (26.9%) 443 (23.9%) 440 (30.9%) 386 (28.6%) 

NSTEMI 778 (42.3%) 1,491 (73.9%) 1,426 (77.0%) 1,000 (70.2%) 979 (72.6%) 

Type 2 <10 <10 <10 0 0 

Unspecified MI type <10 <10 <10 <10 <10 

Other MI type 0 0 0 0 0 

Recurrent MI <10 <10 <10 <10 <10 

Cardiogenic shock 31 (1.7%) 20 (1.0%) 19 (1.0%) 13 (0.9%) 12 (0.9%) 

Acute heart failure 141 (7.7%) 161 (8.0%) 149 (8.0%) 96 (6.7%) 92 (6.8%) 

IHD: ischemic heart disease. NSTEMI: Non-ST segment elevation myocardial infarction. STEMI: ST-segment elevation 
myocardial infarction. Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Asian race 
group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. 
Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific 
codes for comorbidities are listed in the Supplement. STEMI defined as codes I21.0, I21.1, I21.2, I21.3; NSTEMI defined as code 
I21.4; Type 2 MI defined as code I21.A1; Unspecified MI type defined as code I21.9; other MI type defined as I21.A9; recurrent 
MI defined as code I22. Cardiogenic shock defined as code R57.0. Acute heart failure defined as codes I50.21, I50.23, I50.31, 
I50.33, I50.41, I50.43, I50.811, and I50.813. MI subtype pulled from problem list at event qualifying encounter for algorithm 
Problem List and from the hospital discharge or billing list for the other algorithms. 
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Table 45. Phenotypic Characteristics of Patient Population Captured by Acute Myocardial 
Infarction Algorithms, UNC Health, 2017 

Year: 2017 Problem List 
Any Diagnosis 

Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab or 
Procedure 

N 2341 2499 2302 1799 1675 

Age category      

20-34 years 18 (0.8%) 26 (1.0%) 24 (1.0%) 18 (1.0%) 18 (1.1%) 

35-44 years 104 (4.4%) 123 (4.9%) 112 (4.9%) 101 (5.6%) 92 (5.5%) 

45-54 years 285 (12.2%) 317 (12.7%) 292 (12.7%) 240 (13.3%) 226 (13.5%) 

55-64 years 572 (24.4%) 567 (22.7%) 524 (22.8%) 423 (23.5%) 393 (23.5%) 

65-74 years 586 (25.0%) 639 (25.6%) 580 (25.2%) 464 (25.8%) 431 (25.7%) 

75-84 years 459 (19.6%) 504 (20.2%) 470 (20.4%) 344 (19.1%) 323 (19.3%) 

≥85 years 317 (13.5%) 323 (12.9%) 300 (13.0%) 209 (11.6%) 192 (11.5%) 

Female 994 (42.5%) 1,080 (43.2%) 997 (43.3%) 745 (41.4%) 700 (41.8%) 

Race      

White 1,739 (74.3%) 1,859 (74.4%) 1,711 (74.3%) 1,347 (74.9%) 1,246 (74.4%) 

Black 445 (19.0%) 505 (20.2%) 463 (20.1%) 350 (19.5%) 330 (19.7%) 

Asian 12 (0.5%) 15 (0.6%) 14 (0.6%) 12 (0.7%) 11 (0.7%) 

American Indian or Alaska 
Native 

<10 <10 <10 <10 <10 

Other 82 (3.5%) 76 (3.0%) 72 (3.1%) 54 (3.0%) 53 (3.2%) 

Unknown 56 (2.4%) 38 (1.5%) 36 (1.6%) 30 (1.7%) 29 (1.7%) 

Ethnicity      

Hispanic/Latino 56 (2.4%) 59 (2.4%) 55 (2.4%) 43 (2.4%) 42 (2.5%) 

Unknown 68 (2.9%) 48 (1.9%) 44 (1.9%) 39 (2.2%) 37 (2.2%) 

Comorbidities      

Hypertension 1,394 (59.5%) 1,530 (61.2%) 1,416 (61.5%) 1,032 (57.4%) 968 (57.8%) 

Diabetes 1,078 (46.0%) 1,137 (45.5%) 1,049 (45.6%) 788 (43.8%) 735 (43.9%) 

Kidney disease 1,244 (53.1%) 1,367 (54.7%) 1,261 (54.8%) 875 (48.6%) 816 (48.7%) 

Heart Failure 1,225 (52.3%) 1,357 (54.3%) 1,245 (54.1%) 889 (49.4%) 821 (49.0%) 

Atrial fibrillation 419 (17.9%) 487 (19.5%) 441 (19.2%) 318 (17.7%) 288 (17.2%) 

Previous stroke or TIA 317 (13.5%) 372 (14.9%) 346 (15.0%) 232 (12.9%) 223 (13.3%) 

Any comorbidity  1,903 (81.3%) 2,050 (82.0%) 1,892 (82.2%) 1,414 (78.6%) 1,319 (78.7%) 

Comorbidity Burden      

0 438 (18.7%) 449 (18.0%) 410 (17.8%) 385 (21.4%) 356 (21.3%) 

1 347 (14.8%) 366 (14.6%) 339 (14.7%) 289 (16.1%) 270 (16.1%) 

2 384 (16.4%) 392 (15.7%) 362 (15.7%) 293 (16.3%) 275 (16.4%) 

3 430 (18.4%) 433 (17.3%) 402 (17.5%) 289 (16.1%) 270 (16.1%) 

4 487 (20.8%) 548 (21.9%) 505 (21.9%) 353 (19.6%) 327 (19.5%) 

5 206 (8.8%) 257 (10.3%) 235 (10.2%) 160 (8.9%) 149 (8.9%) 

6 49 (2.1%) 54 (2.2%) 49 (2.1%) 30 (1.7%) 28 (1.7%) 

Myocardial Infarction 
Severity Indicators 

     

STEMI 347 (14.8%) 668 (26.7%) 555 (24.1%) 565 (31.4%) 482 (28.8%) 
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NSTEMI 910 (38.9%) 1,828 (73.1%) 1,751 (76.1%) 1,239 (68.9%) 1,202 (71.8%) 

Type 2 10 (0.4%) 20 (0.8%) 15 (0.7%) 10 (0.6%) 7 (0.4%) 

Unspecified MI type 0 0 0 0 0 

Other MI type <10 <10 <10 <10 <10 

Recurrent MI <10 <10 <10 <10 <10 

Cardiogenic shock 34 (1.5%) 28 (1.1%) 22 (1.0%) 19 (1.1%) 14 (0.8%) 

Acute heart failure 195 (8.3%) 205 (8.2%) 192 (8.3%) 125 (6.9%) 114 (6.8%) 

IHD: ischemic heart disease. NSTEMI: Non-ST segment elevation myocardial infarction. STEMI: ST-segment elevation 
myocardial infarction. Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Asian race 
group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. 
Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific 
codes for comorbidities are listed in the Supplement. STEMI defined as codes I21.0, I21.1, I21.2, I21.3; NSTEMI defined as code 
I21.4; Type 2 MI defined as code I21.A1; Unspecified MI type defined as code I21.9; other MI type defined as I21.A9; recurrent 
MI defined as code I22. Cardiogenic shock defined as code R57.0. Acute heart failure defined as codes I50.21, I50.23, I50.31, 
I50.33, I50.41, I50.43, I50.811, and I50.813. MI subtype pulled from problem list at event qualifying encounter for algorithm 
Problem List and from the hospital discharge or billing list for the other algorithms. 
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Table 46. Phenotypic Characteristics of Patient Population Captured by Acute Myocardial 
Infarction Algorithms, UNC Health, 2018 

Year: 2018 Problem List 
Any Diagnosis 

Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab or 
Procedure 

N 2296 2540 2364 1775 1656 

Age category      

20-34 years 27 (1.2%) 39 (1.5%) 38 (1.6%) 26 (1.5%) 25 (1.5%) 

35-44 years 95 (4.1%) 113 (4.4%) 99 (4.2%) 90 (5.1%) 79 (4.8%) 

45-54 years 280 (12.2%) 325 (12.8%) 303 (12.8%) 236 (13.3%) 217 (13.1%) 

55-64 years 494 (21.5%) 553 (21.8%) 517 (21.9%) 419 (23.6%) 396 (23.9%) 

65-74 years 603 (26.3%) 669 (26.3%) 634 (26.8%) 471 (26.5%) 444 (26.8%) 

75-84 years 535 (23.3%) 539 (21.2%) 494 (20.9%) 349 (19.7%) 324 (19.6%) 

≥85 years 262 (11.4%) 302 (11.9%) 279 (11.8%) 184 (10.4%) 171 (10.3%) 

Female 972 (42.3%) 1,091 (43.0%) 1,020 (43.1%) 712 (40.1%) 663 (40.0%) 

Race      

White 1,685 (73.4%) 1,849 (72.8%) 1,720 (72.8%) 1,308 (73.7%) 1,224 (73.9%) 

Black 447 (19.5%) 516 (20.3%) 481 (20.3%) 349 (19.7%) 324 (19.6%) 

Asian 20 (0.9%) 24 (0.9%) 20 (0.8%) 18 (1.0%) 14 (0.8%) 

American Indian or Alaska 
Native 

<10 <10 <10 <10 <10 

Other 90 (3.9%) 97 (3.8%) 91 (3.8%) 64 (3.6%) 60 (3.6%) 

Unknown 46 (2.0%) 47 (1.9%) 47 (2.0%) 29 (1.6%) 29 (1.8%) 

Ethnicity      

Hispanic/Latino 62 (2.7%) 70 (2.8%) 67 (2.8%) 52 (2.9%) 49 (3.0%) 

Unknown 45 (2.0%) 46 (1.8%) 44 (1.9%) 29 (1.6%) 27 (1.6%) 

Comorbidities      

Hypertension 1,394 (60.7%) 1,518 (59.8%) 1,419 (60.0%) 983 (55.4%) 925 (55.9%) 

Diabetes 1,058 (46.1%) 1,158 (45.6%) 1,083 (45.8%) 793 (44.7%) 745 (45.0%) 

Kidney disease 1,277 (55.6%) 1,395 (54.9%) 1,307 (55.3%) 884 (49.8%) 832 (50.2%) 

Heart Failure 1,214 (52.9%) 1,360 (53.5%) 1,274 (53.9%) 861 (48.5%) 809 (48.9%) 

Atrial fibrillation 381 (16.6%) 454 (17.9%) 415 (17.6%) 274 (15.4%) 249 (15.0%) 

Previous stroke or TIA 279 (12.2%) 355 (14.0%) 324 (13.7%) 197 (11.1%) 182 (11.0%) 

Any comorbidity  1,899 (82.7%) 2,069 (81.5%) 1,930 (81.6%) 1,387 (78.1%) 1,299 (78.4%) 

Comorbidity Burden       

0 397 (17.3%) 471 (18.5%) 434 (18.4%) 388 (21.9%) 357 (21.6%) 

1 355 (15.5%) 373 (14.7%) 348 (14.7%) 293 (16.5%) 272 (16.4%) 

2 376 (16.4%) 392 (15.4%) 366 (15.5%) 280 (15.8%) 262 (15.8%) 

3 430 (18.7%) 445 (17.5%) 410 (17.3%) 291 (16.4%) 273 (16.5%) 

4 510 (22.2%) 579 (22.8%) 546 (23.1%) 366 (20.6%) 348 (21.0%) 

5 202 (8.8%) 248 (9.8%) 232 (9.8%) 140 (7.9%) 129 (7.8%) 

6 26 (1.1%) 32 (1.3%) 28 (1.2%) 17 (1.0%) 15 (0.9%) 

Myocardial Infarction 
Severity Indicators 

     

STEMI 320 (13.9%) 607 (23.9%) 506 (21.4%) 527 (29.7%) 441 (26.6%) 
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NSTEMI 910 (39.6%) 1,816 (71.5%) 1,772 (75.0%) 1,207 (68.0%) 1,188 (71.7%) 

Type 2 53 (2.3%) 123 (4.8%) 103 (4.4%) 55 (3.1%) 45 (2.7%) 

Unspecified MI type 16 (0.7%) 52 (2.0%) 39 (1.6%) 27 (1.5%) 22 (1.3%) 

Other MI type 0 0 0 0 0 

Recurrent MI 0 <10 0 <10 0 

Cardiogenic shock 43 (1.9%) 28 (1.1%) 27 (1.1%) 16 (0.9%) 15 (0.9%) 

Acute heart failure 186 (8.1%) 187 (7.4%) 173 (7.3%) 101 (5.7%) 91 (5.5%) 

IHD: ischemic heart disease. NSTEMI: Non-ST segment elevation myocardial infarction. STEMI: ST-segment elevation 
myocardial infarction. Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Asian race 
group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. 
Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific 
codes for comorbidities are listed in the Supplement. STEMI defined as codes I21.0, I21.1, I21.2, I21.3; NSTEMI defined as code 
I21.4; Type 2 MI defined as code I21.A1; Unspecified MI type defined as code I21.9; other MI type defined as I21.A9; recurrent 
MI defined as code I22. Cardiogenic shock defined as code R57.0. Acute heart failure defined as codes I50.21, I50.23, I50.31, 
I50.33, I50.41, I50.43, I50.811, and I50.813. MI subtype pulled from problem list at event qualifying encounter for algorithm 
Problem List and from the hospital discharge or billing list for the other algorithms. 
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Table 47. Phenotypic Characteristics of Patient Population Captured by Acute Myocardial 
Infarction Algorithms, UNC Health, 2019 

Year: 2019 Problem List 
Any Diagnosis 

Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab or 
Procedure 

N 1908 2269 2031 1582 1441 

Age category      

20-34 years 28 (1.5%) 40 (1.8%) 35 (1.7%) 25 (1.6%) 21 (1.5%) 

35-44 years 96 (5.0%) 114 (5.0%) 105 (5.2%) 89 (5.6%) 85 (5.9%) 

45-54 years 222 (11.6%) 271 (11.9%) 235 (11.6%) 217 (13.7%) 193 (13.4%) 

55-64 years 422 (22.1%) 473 (20.8%) 428 (21.1%) 352 (22.3%) 318 (22.1%) 

65-74 years 481 (25.2%) 570 (25.1%) 514 (25.3%) 403 (25.5%) 373 (25.9%) 

75-84 years 410 (21.5%) 486 (21.4%) 435 (21.4%) 304 (19.2%) 275 (19.1%) 

≥85 years 249 (13.1%) 315 (13.9%) 279 (13.7%) 192 (12.1%) 176 (12.2%) 

Female 832 (43.6%) 976 (43.0%) 890 (43.8%) 666 (42.1%) 618 (42.9%) 

Race      

White 1,387 (72.7%) 1,606 (70.8%) 1,436 (70.7%) 1,135 (71.7%) 1,032 (71.6%) 

Black 396 (20.8%) 529 (23.3%) 472 (23.2%) 347 (21.9%) 315 (21.9%) 

Asian 19 (1.0%) 17 (0.7%) 15 (0.7%) 14 (0.9%) 13 (0.9%) 

American Indian or Alaska 
Native 

<10 10 (0.4%) 10 (0.5%) <10 <10 

Other 73 (3.8%) 83 (3.7%) 74 (3.6%) 64 (4.0%) 59 (4.1%) 

Unknown 25 (1.3%) 24 (1.1%) 24 (1.2%) 13 (0.8%) 13 (0.9%) 

Ethnicity      

Hispanic/Latino 56 (2.9%) 70 (3.1%) 61 (3.0%) 55 (3.5%) 50 (3.5%) 

Unknown 31 (1.6%) 28 (1.2%) 28 (1.4%) 11 (0.7%) 11 (0.8%) 

Comorbidities      

Hypertension 1,124 (58.9%) 1,379 (60.8%) 1,226 (60.4%) 888 (56.1%) 810 (56.2%) 

Diabetes 845 (44.3%) 1,057 (46.6%) 943 (46.4%) 719 (45.4%) 652 (45.2%) 

Kidney disease 1,080 (56.6%) 1,316 (58.0%) 1,190 (58.6%) 830 (52.5%) 760 (52.7%) 

Heart Failure 1,023 (53.6%) 1,268 (55.9%) 1,126 (55.4%) 805 (50.9%) 733 (50.9%) 

Atrial fibrillation 323 (16.9%) 417 (18.4%) 361 (17.8%) 251 (15.9%) 224 (15.5%) 

Previous stroke or TIA 242 (12.7%) 305 (13.4%) 277 (13.6%) 175 (11.1%) 162 (11.2%) 

Any comorbidity  1,577 (82.7%) 1,890 (83.3%) 1,695 (83.5%) 1,263 (79.8%) 1,155 (80.2%) 

Comorbidity Burden       

0 331 (17.3%) 379 (16.7%) 336 (16.5%) 319 (20.2%) 286 (19.8%) 

1 288 (15.1%) 322 (14.2%) 289 (14.2%) 251 (15.9%) 232 (16.1%) 

2 323 (16.9%) 349 (15.4%) 317 (15.6%) 241 (15.2%) 219 (15.2%) 

3 372 (19.5%) 450 (19.8%) 419 (20.6%) 309 (19.5%) 292 (20.3%) 

4 416 (21.8%) 513 (22.6%) 443 (21.8%) 321 (20.3%) 283 (19.6%) 

5 145 (7.6%) 216 (9.5%) 191 (9.4%) 122 (7.7%) 111 (7.7%) 

6 33 (1.7%) 40 (1.8%) 36 (1.8%) 19 (1.2%) 18 (1.2%) 

Myocardial Infarction 
Severity Indicators 

     

STEMI 212 (11.1%) 449 (19.8%) 353 (17.4%) 399 (25.2%) 328 (22.8%) 
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NSTEMI 674 (35.3%) 1,618 (71.3%) 1,517 (74.7%) 1,099 (69.5%) 1,042 (72.3%) 

Type 2 61 (3.2%) 162 (7.1%) 147 (7.2%) 68 (4.3%) 62 (4.3%) 

Unspecified MI type 15 (0.8%) 63 (2.8%) 38 (1.9%) 32 (2.0%) 25 (1.7%) 

Other MI type <10 <10 <10 <10 <10 

Recurrent MI <10 <10 <10 <10 <10 

Cardiogenic shock 44 (2.3%) 26 (1.1%) 24 (1.2%) 16 (1.0%) 14 (1.0%) 

Acute heart failure 148 (7.8%) 162 (7.1%) 147 (7.2%) 85 (5.4%) 79 (5.5%) 

IHD: ischemic heart disease. NSTEMI: Non-ST segment elevation myocardial infarction. STEMI: ST-segment elevation 
myocardial infarction. Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Asian race 
group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. 
Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific 
codes for comorbidities are listed in the Supplement. STEMI defined as codes I21.0, I21.1, I21.2, I21.3; NSTEMI defined as code 
I21.4; Type 2 MI defined as code I21.A1; Unspecified MI type defined as code I21.9; other MI type defined as I21.A9; recurrent 
MI defined as code I22. Cardiogenic shock defined as code R57.0. Acute heart failure defined as codes I50.21, I50.23, I50.31, 
I50.33, I50.41, I50.43, I50.811, and I50.813. MI subtype pulled from problem list at event qualifying encounter for algorithm 
Problem List and from the hospital discharge or billing list for the other algorithms. 
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Table 48. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms, UNC Health, 2016-2019 

 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Medication 

1st Diagnosis 
Position 

N 2365 52185 6302 2797 2076 1271 

Outpatient 2,026 (14.3%) 43,750 (83.8%) 2,184 (34.7%) - - - 

Age, years       

Mean (SD) 72.1 (14.9) 70.3 (14.1) 70.9 (14.4) 69.7 (15.6) 71.4 (15.4) 71.1 (15.5) 

Median (Q1, Q3) 73.4 (62.8, 83.7) 71.5 (61.2, 80.9) 72.2 (61.1, 82.1) 71.2 (59.1, 82.2) 73.6 (60.7, 83.5) 72.7 (60.7, 83.4) 

Age category       

20-34 years 37 (1.6%) 740 (1.4%) 84 (1.3%) 53 (1.9%) 31 (1.5%) 23 (1.8%) 

35-44 years 86 (3.6%) 1,775 (3.4%) 216 (3.4%) 135 (4.8%) 85 (4.1%) 54 (4.2%) 

45-54 years 189 (8.0%) 4,954 (9.5%) 603 (9.6%) 278 (9.9%) 190 (9.2%) 112 (8.8%) 

55-64 years 392 (16.6%) 9,864 (18.9%) 1,166 (18.5%) 497 (17.8%) 338 (16.3%) 212 (16.7%) 

65-74 years 570 (24.1%) 13,780 (26.4%) 1,543 (24.4%) 629 (22.5%) 445 (21.4%) 284 (22.3%) 

75-84 years 583 (24.7%) 12,929 (24.8%) 1,572 (24.9%) 654 (23.4%) 520 (25.0%) 295 (23.2%) 

≥85 years 508 (21.5%) 8,143 (15.6%) 1,129 (17.9%) 551 (19.7%) 467 (22.5%) 291 (22.9%) 

Female 1,219 (51.5%) 26,527 (50.8%) 3,177 (50.3%) 1,411 (50.4%) 1,039 (50.0%) 623 (49.0%) 

Race       

White 1,645 (69.6%) 35,032 (67.1%) 4,236 (67.1%) 1,839 (65.7%) 1,396 (67.2%) 847 (66.6%) 

Black 574 (24.3%) 14,321 (27.4%) 1,746 (27.7%) 817 (29.2%) 580 (27.9%) 358 (28.2%) 

Asian 16 (0.7%) 348 (0.7%) 54 (0.9%) 27 (1.0%) 22 (1.1%) 12 (0.9%) 

American Indian or 
Alaska Native 

14 (0.6%) 290 (0.6%) 32 (0.5%) 13 (0.5%) <10 <10 

Other 52 (2.2%) 1,176 (2.3%) 147 (2.3%) 67 (2.4%) 45 (2.2%) 29 (2.3%) 

Unknown 64 (2.7%) 1,018 (2.0%) 98 (1.6%) 34 (1.2%) 25 (1.2%) 20 (1.6%) 

Ethnicity       

Hispanic/Latino 45 (1.9%) 984 (1.9%) 114 (1.8%) 53 (1.9%) 32 (1.5%) 19 (1.5%) 

Unknown 73 (3.1%) 1,154 (2.2%) 120 (1.9%) 36 (1.3%) 25 (1.2%) 22 (1.7%) 

BMI (kg/m2), n 1957 13403 4807 2242 1739 1045 

Mean (SD) 30.5 (8) 31.3 (7.9) 31.1 (7.9) 30.7 (7.9) 30.6 (7.9) 30.3 (7.7) 

Median (Q1, Q3) 28.9 (24.7, 34.8) 30 (25.6, 35.7) 29.7 (25.3, 35.6) 29.4 (25, 35.2) 29.2 (24.9, 35) 29.1 (24.7, 34.4) 

≥ 30 kg/m2* 865 (44.2%) 6659 (49.7%) 2330 (48.5%) 1039 (46.3%) 790 (45.4%) 470 (45.0%) 
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 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Medication 

1st Diagnosis 
Position 

Missing 408 (17.3%) 38782 (74.3%) 1495 (23.7%) 555 (19.8%) 337 (16.2%) 226 (17.8%) 

Smoking status, n       

Current* 325 (16.4%) 2,300 (14.8%) 797 (15.6%) 408 (17.2%) 290 (16.2%) 181 (16.6%) 

Former* 816 (41.1%) 6,476 (41.8%) 2,118 (41.6%) 925 (39.0%) 726 (40.6%) 430 (39.4%) 

Never* 762 (38.4%) 6,388 (41.2%) 2,078 (40.8%) 983 (41.4%) 729 (40.8%) 453 (41.5%) 

Unknown* 83 (4.2%) 333 (2.1%) 101 (2.0%) 58 (2.4%) 43 (2.4%) 28 (2.6%) 

Missing 379 (16%) 36688 (70.3%) 1208 (19.2%) 423 (15.1%) 288 (13.9%) 179 (14.1%) 

Comorbidities       

Hypertension 1,711 (72.3%) 45,775 (87.7%) 5,238 (83.0%) 2,258 (80.7%) 1,680 (80.9%) 1,029 (81.0%) 

Diabetes 1,077 (45.5%) 25,998 (49.8%) 3,018 (47.8%) 1,270 (45.4%) 974 (46.9%) 583 (45.9%) 

Kidney disease 1,443 (61.0%) 32,143 (61.6%) 3,845 (60.9%) 1,675 (59.9%) 1,339 (64.5%) 815 (64.1%) 

Ischemic Heart Disease 1,473 (62.3%) 33,765 (64.7%) 4,099 (64.9%) 1,742 (62.3%) 1,365 (65.8%) 814 (64.0%) 

Atrial fibrillation 598 (25.3%) 14,327 (27.5%) 1,995 (31.6%) 736 (26.3%) 607 (29.2%) 350 (27.5%) 

Previous stroke or TIA 223 (9.4%) 6,920 (13.3%) 782 (12.4%) 339 (12.1%) 261 (12.6%) 153 (12.0%) 

Any comorbidity  2,196 (92.9%) 50,155 (96.1%) 6,046 (95.8%) 2,640 (94.4%) 1,983 (95.5%) 1,202 (94.6%) 

Number of 
comorbidities, mean 
(SD) 

2.8 (1.4) 3.0 (1.3) 2.9 (1.4) 3.0 (1.4) 3.0 (1.4) 2.9 (1.4) 

Comorbidity Burden        

0 169 (7.1%) 2,030 (3.9%) 267 (4.2%) 157 (5.6%) 93 (4.5%) 69 (5.4%) 

1 327 (13.8%) 5,180 (9.9%) 721 (11.4%) 372 (13.3%) 238 (11.5%) 151 (11.9%) 

2 465 (19.7%) 9,829 (18.8%) 1,123 (17.8%) 529 (18.9%) 373 (18.0%) 218 (17.2%) 

3 613 (25.9%) 14,128 (27.1%) 1,744 (27.6%) 734 (26.2%) 552 (26.6%) 350 (27.5%) 

4 552 (23.3%) 14,257 (27.3%) 1,636 (25.9%) 681 (24.3%) 551 (26.5%) 332 (26.1%) 

5 213 (9.0%) 5,888 (11.3%) 698 (11.1%) 280 (10.0%) 232 (11.2%) 127 (10.0%) 

6 26 (1.1%) 873 (1.7%) 124 (2.0%) 44 (1.6%) 37 (1.8%) 24 (1.9%) 

Mortality       

7-day 45 (1.9%) 159 (0.3%) 48 (0.8%) 29 (1.0%) 22 (1.1%) 14 (1.1%) 

30-day 103 (4.4%) 448 (0.9%) 124 (2.0%) 79 (2.8%) 68 (3.3%) 42 (3.3%) 

1-year 301 (12.7%) 2,268 (4.3%) 545 (8.6%) 262 (9.4%) 224 (10.8%) 138 (10.9%) 
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 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Medication 

1st Diagnosis 
Position 

Severity Indicators       

Acute on Chronic 
Exacerbation 

281 (11.9%) 6,177 (11.8%) 423 (6.7%) 211 (7.5%) 206 (9.9%) 118 (9.3%) 

Chronic HF 145 (6.1%) 8,644 (16.6%) 652 (10.3%) 139 (5.0%) 76 (3.7%) 38 (3.0%) 

End Stage HF 0 48 (0.1%) 0 0 0 0 

Other HF <10 <10 <10 <10 <10 <10 

Unspecified HF 876 (37.0%) 30,577 (58.6%) 4,736 (75.0%) 2,257 (80.7%) 1,724 (83.0%) 1,077 (84.7%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement <10 <10 <10 <10 <10 <10 

Pacemaker 44 (1.9%) 1,306 (2.5%) 156 (2.5%) 24 (0.9%) 20 (1.0%) 10 (0.8%) 

Implantable cardiac 
defibrillator 

44 (1.9%) 1,403 (2.7%) 196 (3.1%) 23 (0.8%) 21 (1.0%) 11 (0.9%) 

BMI: body mass index. Missing: no documentation related to the variable. Unknown includes “no information”, “refused”, and “unknown”. Current smoker includes current every day 
smoker, current some days smoker, smoker (current status unknown), heavy smoker, and light smoker. Unknown includes “unknown if ever” and “no information”. Asian race group 
includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 
all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the Supplement. Body mass index calculated from average weight and height 
over multiple records for a single encounter within 1 year of case encounter. Weights and heights below the 1st or above the 99th percentile were excluded before calculating BMI. 
Sensitivity analysis limiting lookback period of 180 days and 365 days prior to event shown in Supplement. Current smoker includes current every day smoker, current some days 
smoker, smoker (current status unknown), heavy smoker, and light smoker. Unknown smoking status includes “unknown if ever” and “no information”. Smoking status determined 
from the first record, when there were multiple records per encounter. Mortality during hospitalization includes death dates within 7 days of discharge date. 30-day and 1-year 
mortality calculated from discharge date. Acute on chronic HF defined as I50.23, I50.33, I50.43, or I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage 
HF defined as I50.84. Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF type pulled from the problem list at the event-qualifying encounter for Problem List 
algorithms and from the hospital billing or discharge list for all other algorithms. Heart transplant, LVAD placement, pacemaker, and implantable cardiac defibrillator determined 
from all-available lookback procedure codes prior to event. The specific codes used are available in the Supplement. *Percent in category calculated out of available observations. 
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Table 49. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms, UNC Health, 2016 

Year: 2016 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd 
Diagnosis Position 

1st or 2nd 
Diagnosis Position 

+ Lab or 
Medication 

First Diagnosis 
Position 

N 838 14448 2074 771 607 364 

Outpatient 180 (21%) 14,448 (83%) 864 (42%) - - - 

Age category       

20-34 years 10 (1.2%) 212 (1.5%) 32 (1.5%) 20 (2.6%) 14 (2.3%) 11 (3.0%) 

35-44 years 23 (2.7%) 512 (3.5%) 58 (2.8%) 30 (3.9%) 16 (2.6%) 11 (3.0%) 

45-54 years 70 (8.4%) 1,436 (9.9%) 203 (9.8%) 84 (10.9%) 63 (10.4%) 40 (11.0%) 

55-64 years 129 (15.4%) 2,813 (19.5%) 359 (17.3%) 118 (15.3%) 83 (13.7%) 47 (12.9%) 

65-74 years 176 (21.0%) 3,866 (26.8%) 529 (25.4%) 172 (22.3%) 138 (22.7%) 80 (22.0%) 

75-84 years 217 (25.9%) 3,513 (24.3%) 527 (25.3%) 192 (24.9%) 154 (25.4%) 89 (24.5%) 

≥85 years 213 (25.4%) 2,096 (14.5%) 373 (17.9%) 155 (20.1%) 139 (22.9%) 86 (23.6%) 

Female 441 (52.6%) 7,244 (50.1%) 1,071 (51.5%) 398 (51.6%) 315 (51.9%) 191 (52.5%) 

Race       

White 597 (71.2%) 9,667 (66.9%) 1,414 (67.9%) 532 (69.0%) 422 (69.5%) 243 (66.8%) 

Black 196 (23.4%) 4,078 (28.2%) 562 (27.0%) 202 (26.2%) 156 (25.7%) 99 (27.2%) 

Asian <10 103 (0.7%) 14 (0.7%) <10 <10 <10 

American Indian or Alaska Native <10 72 (0.5%) 13 (0.6%) <10 <10 <10 

Other 17 (2.0%) 292 (2.0%) 42 (2.0%) 18 (2.3%) 11 (1.8%) 10 (2.7%) 

Unknown 18 (2.1%) 236 (1.6%) 36 (1.7%) 11 (1.4%) 10 (1.6%) <10 

Ethnicity       

Hispanic/Latino 15 (1.8%) 235 (1.6%) 31 (1.5%) 13 (1.7%) 8 (1.3%) 6 (1.6%) 

Unknown 28 (3.3%) 312 (2.2%) 53 (2.5%) 13 (1.7%) 12 (2.0%) 9 (2.5%) 

Comorbidities       

Hypertension 617 (73.6%) 12,063 (83.5%) 1,711 (82.2%) 588 (76.3%) 484 (79.7%) 291 (79.9%) 

Diabetes 397 (47.4%) 7,521 (52.1%) 1,052 (50.6%) 363 (47.1%) 307 (50.6%) 169 (46.4%) 

Kidney disease 561 (66.9%) 9,310 (64.4%) 1,374 (66.0%) 505 (65.5%) 430 (70.8%) 246 (67.6%) 

Ischemic Heart Disease 562 (67.1%) 9,783 (67.7%) 1,422 (68.3%) 535 (69.4%) 445 (73.3%) 248 (68.1%) 

Atrial fibrillation 236 (28.2%) 4,739 (32.8%) 728 (35.0%) 231 (30.0%) 198 (32.6%) 110 (30.2%) 

Previous stroke or TIA 100 (11.9%) 2,062 (14.3%) 279 (13.4%) 99 (12.8%) 82 (13.5%) 49 (13.5%) 
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Any comorbidity  791 (94.4%) 13,802 (95.5%) 1,998 (96.0%) 719 (93.3%) 583 (96.0%) 340 (93.4%) 

Comorbidity Burden  
      

0 47 (5.6%) 646 (4.5%) 83 (4.0%) 52 (6.7%) 24 (4.0%) 24 (6.6%) 

1 103 (12.3%) 1,405 (9.7%) 217 (10.4%) 97 (12.6%) 63 (10.4%) 38 (10.4%) 

2 152 (18.1%) 2,366 (16.4%) 321 (15.4%) 104 (13.5%) 81 (13.3%) 49 (13.5%) 

3 215 (25.7%) 3,527 (24.4%) 547 (26.3%) 191 (24.8%) 155 (25.5%) 95 (26.1%) 

4 201 (24.0%) 4,097 (28.4%) 563 (27.1%) 212 (27.5%) 182 (30.0%) 107 (29.4%) 

5 103 (12.3%) 2,070 (14.3%) 286 (13.7%) 95 (12.3%) 84 (13.8%) 42 (11.5%) 

6 17 (2.0%) 337 (2.3%) 64 (3.1%) 20 (2.6%) 18 (3.0%) <10 

Severity Indicators       

Acute on Chronic Exacerbation 726 (86.6%) 13,504 (93.5%) 1,930 (92.7%) 694 (90.0%) 530 (87.3%) 322 (88.5%) 

Chronic HF 80 (9.5%) 1,329 (9.2%) 195 (9.4%) 42 (5.4%) 31 (5.1%) 18 (4.9%) 

End Stage HF 0 0 0 0 0 0 

Other HF 0 0 0 0 0 0 

Unspecified HF 291 (34.7%) 11,516 (79.7%) 1,791 (86.1%) 702 (91.1%) 571 (94.1%) 347 (95.3%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement <10 <10 <10 <10 <10 0 

Pacemaker 14 (1.7%) 786 (5.4%) 46 (2.2%) 6 (0.8%) 5 (0.8%) <10 

Implantable cardiac defibrillator 28 (3.3%) 944 (6.5%) 67 (3.2%) 12 (1.6%) 10 (1.6%) <10 

Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Unknown includes “no information”, “refused”, and “unknown”. Asian race group 
includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 
all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or 
I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF 
type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from the hospital billing or discharge list for all other algorithms. Heart transplant, 
LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available lookback procedure codes prior to event. The specific codes used are available in 
the Appendix.. 
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Table 50. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms, UNC Health, 2017 

Year: 2017 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd 
Diagnosis Position 

1st or 2nd 
Diagnosis Position 

+ Lab or 
Medication 

First Diagnosis 
Position 

N 626 13567 1486 648 478 302 

Outpatient 85 (14%) 11,583 (85%) 544 (42%) - - - 

Age category       

20-34 years 6 (1.0%) 175 (1.3%) 13 (0.9%) <10 <10 <10 

35-44 years 22 (3.5%) 426 (3.1%) 53 (3.6%) 37 (5.7%) 22 (4.6%) 13 (4.3%) 

45-54 years 51 (8.1%) 1,243 (9.2%) 150 (10.1%) 65 (10.0%) 50 (10.5%) 25 (8.3%) 

55-64 years 90 (14.4%) 2,520 (18.6%) 278 (18.7%) 121 (18.7%) 86 (18.0%) 50 (16.6%) 

65-74 years 176 (28.1%) 3,557 (26.2%) 377 (25.3%) 142 (21.9%) 98 (20.5%) 69 (22.8%) 

75-84 years 150 (24.0%) 3,391 (25.0%) 359 (24.1%) 141 (21.8%) 113 (23.6%) 66 (21.9%) 

≥85 years 131 (20.9%) 2,255 (16.6%) 258 (17.3%) 134 (20.7%) 108 (22.6%) 78 (25.8%) 

Female 328 (52.4%) 6,957 (51.3%) 756 (50.8%) 335 (51.7%) 251 (52.5%) 155 (51.3%) 

Race       

White 441 (70.4%) 9,476 (69.8%) 1,051 (70.6%) 468 (72.2%) 349 (73.0%) 224 (74.2%) 

Black 143 (22.8%) 3,376 (24.9%) 360 (24.2%) 148 (22.8%) 103 (21.5%) 63 (20.9%) 

Asian <10 87 (0.6%) 16 (1.1%) <10 <10 <10 

American Indian or Alaska Native <10 57 (0.4%) <10 <10 <10 <10 

Other 15 (2.4%) 305 (2.2%) 32 (2.2%) 14 (2.2%) 10 (2.1%) <10 

Unknown 20 (3.2%) 266 (2.0%) 23 (1.5%) <10 7 (1.5%) <10 

Ethnicity       

Hispanic/Latino 14 (2.2%) 249 (1.8%) 30 (2.0%) 16 (2.5%) 12 (2.5%) 6 (2.0%) 

Unknown 24 (3.8%) 296 (2.2%) 24 (1.6%) <10 <10 <10 

Comorbidities       

Hypertension 446 (71.2%) 12,115 (89.3%) 1,246 (83.7%) 523 (80.7%) 386 (80.8%) 246 (81.5%) 

Diabetes 276 (44.1%) 6,688 (49.3%) 713 (47.9%) 307 (47.4%) 239 (50.0%) 144 (47.7%) 

Kidney disease 374 (59.7%) 8,484 (62.5%) 908 (61.0%) 392 (60.5%) 307 (64.2%) 199 (65.9%) 

Ischemic Heart Disease 361 (57.7%) 8,896 (65.6%) 954 (64.1%) 403 (62.2%) 303 (63.4%) 187 (61.9%) 

Atrial fibrillation 165 (26.4%) 3,875 (28.6%) 471 (31.7%) 169 (26.1%) 132 (27.6%) 73 (24.2%) 

Previous stroke or TIA 50 (8.0%) 1,840 (13.6%) 191 (12.8%) 86 (13.3%) 67 (14.0%) 39 (12.9%) 
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Any comorbidity  571 (91.2%) 13,077 (96.4%) 1,429 (96.0%) 612 (94.4%) 455 (95.2%) 288 (95.4%) 

Comorbidity Burden  
      

0 55 (8.8%) 490 (3.6%) 59 (4.0%) 36 (5.6%) 23 (4.8%) 14 (4.6%) 

1 85 (13.6%) 1,274 (9.4%) 175 (11.8%) 86 (13.3%) 55 (11.5%) 37 (12.3%) 

2 126 (20.1%) 2,488 (18.3%) 261 (17.5%) 122 (18.8%) 88 (18.4%) 56 (18.5%) 

3 163 (26.0%) 3,678 (27.1%) 402 (27.0%) 161 (24.8%) 120 (25.1%) 83 (27.5%) 

4 145 (23.2%) 3,826 (28.2%) 402 (27.0%) 161 (24.8%) 127 (26.6%) 78 (25.8%) 

5 46 (7.3%) 1,556 (11.5%) 162 (10.9%) 69 (10.6%) 55 (11.5%) 26 (8.6%) 

6 <10 255 (1.9%) 27 (1.8%) 13 (2.0%) 10 (2.1%) <10 

Severity Indicators       

Acute on Chronic Exacerbation 78 (12.5%) 1,902 (14.0%) 100 (6.7%) 47 (7.3%) 45 (9.4%) 30 (9.9%) 

Chronic HF 34 (5.4%) 2,573 (19.0%) 175 (11.8%) 33 (5.1%) 16 (3.3%) 8 (2.6%) 

End Stage HF 0 <10 0 0 0 0 

Other HF <10 <10 <10 <10 <10 0 

Unspecified HF 237 (37.9%) 7,015 (51.7%) 1,054 (70.8%) 506 (78.1%) 386 (80.8%) 248 (82.1%) 

Heart transplant       

LVAD placement <10 <10 <10 <10 <10 <10 

Pacemaker 19 (3.0%) 200 (1.5%) 46 (3.1%) <10 <10 <10 

Implantable cardiac defibrillator <10 206 (1.5%) 48 (3.2%) <10 <10 <10 

Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Unknown includes “no information”, “refused”, and “unknown”. Asian race group 
includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 
all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or 
I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF 
type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from the hospital billing or discharge list for all other algorithms. Heart transplant, 
LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available lookback procedure codes prior to event. The specific codes used are available in 
the Appendix.. 

 



 

 

1
7
3
 

Table 51. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms, UNC Health, 2018 

Year: 2018 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd 
Diagnosis Position 

1st or 2nd 
Diagnosis Position 

+ Lab or 
Medication 

First Diagnosis 
Position 

N 479 13,077 1,415 653 476 297 

Outpatient 38 (8%) 11,092 (85%) 442 (37%)  - - - 

Age category             

20-34 years 12 (2.5%) 186 (1.4%) 18 (1.3%) 11 (1.7%) <10 <10 

35-44 years 18 (3.8%) 443 (3.4%) 56 (4.0%) 33 (5.1%) 23 (4.8%) 12 (4.0%) 

45-54 years 36 (7.5%) 1,225 (9.4%) 125 (8.8%) 56 (8.6%) 33 (6.9%) 18 (6.1%) 

55-64 years 88 (18.4%) 2,491 (19.0%) 296 (20.9%) 125 (19.1%) 89 (18.7%) 59 (19.9%) 

65-74 years 124 (25.9%) 3,438 (26.3%) 334 (23.6%) 159 (24.3%) 104 (21.8%) 77 (25.9%) 

75-84 years 124 (25.9%) 3,260 (24.9%) 351 (24.8%) 164 (25.1%) 133 (27.9%) 77 (25.9%) 

≥85 years 77 (16.1%) 2,034 (15.6%) 236 (16.7%) 105 (16.1%) 86 (18.1%) 49 (16.5%) 

Female 247 (51.6%) 6,607 (50.5%) 678 (47.9%) 302 (46.2%) 216 (45.4%) 142 (47.8%) 

Race             

White 332 (69.3%) 8,716 (66.7%) 934 (66.0%) 424 (64.9%) 319 (67.0%) 204 (68.7%) 

Black 113 (23.6%) 3,565 (27.3%) 399 (28.2%) 194 (29.7%) 136 (28.6%) 79 (26.6%) 

Asian <10 99 (0.8%) 15 (1.1%) <10 <10 <10 

American Indian or Alaska Native <10 96 (0.7%) <10 <10 <10 <10 

Other 10 (2.1%) 307 (2.3%) 42 (3.0%) 18 (2.8%) 13 (2.7%) <10 

Unknown 15 (3.1%) 294 (2.2%) 20 (1.4%) <10 <10 <10 

Ethnicity             

Hispanic/Latino 10 (2.1%) 267 (2.0%) 35 (2.5%) 15 (2.3%) <10 <10 

Unknown <10 312 (2.4%) 24 (1.7%) <10 <10 <10 

Comorbidities             

Hypertension 344 (71.8%) 11,681 (89.3%) 1,172 (82.8%) 537 (82.2%) 381 (80.0%) 232 (78.1%) 

Diabetes 213 (44.5%) 6,402 (49.0%) 623 (44.0%) 289 (44.3%) 205 (43.1%) 133 (44.8%) 

Kidney disease 268 (55.9%) 7,840 (60.0%) 798 (56.4%) 373 (57.1%) 288 (60.5%) 184 (62.0%) 

Ischemic Heart Disease 285 (59.5%) 8,274 (63.3%) 887 (62.6%) 398 (60.9%) 303 (63.7%) 182 (61.3%) 

Atrial fibrillation 107 (22.3%) 3,248 (24.8%) 407 (28.7%) 163 (25.0%) 127 (26.7%) 77 (25.9%) 
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Previous stroke or TIA 40 (8.4%) 1,636 (12.5%) 162 (11.4%) 69 (10.6%) 51 (10.7%) 31 (10.4%) 

Any comorbidity 446 (71.2%) 12,115 (89.3%) 1,246 (83.7%) 523 (80.7%) 386 (80.8%) 246 (81.5%) 

Comorbidity Burden        

0 38 (7.9%) 479 (3.7%) 72 (5.1%) 33 (5.1%) 25 (5.3%) 19 (6.4%) 

1 72 (15.0%) 1,304 (10.0%) 177 (12.5%) 82 (12.6%) 57 (12.0%) 37 (12.5%) 

2 104 (21.7%) 2,644 (20.2%) 269 (19.0%) 147 (22.5%) 99 (20.8%) 59 (19.9%) 

3 120 (25.1%) 3,727 (28.5%) 422 (29.8%) 184 (28.2%) 135 (28.4%) 81 (27.3%) 

4 109 (22.8%) 3,470 (26.5%) 332 (23.4%) 141 (21.6%) 111 (23.3%) 68 (22.9%) 

5 35 (7.3%) 1,290 (9.9%) 124 (8.8%) 59 (9.0%) 43 (9.0%) 29 (9.8%) 

6 <10 163 (1.2%) 20 (1.4%) <10 <10 <10 

Severity Indicators             

Acute on Chronic Exacerbation 53 (11.1%) 1,753 (13.4%) 85 (6.0%) 45 (6.9%) 43 (9.0%) 22 (7.4%) 

Chronic HF 19 (4.0%) 2,576 (19.7%) 155 (10.9%) 32 (4.9%) 17 (3.6%) <10 

End Stage HF 0 19 (0.1%) 0 0 0 0 

Other HF 0 <10 0 0 0 0 

Unspecified HF 190 (39.7%) 6,571 (50.2%) 988 (69.8%) 503 (77.0%) 372 (78.2%) 243 (81.8%) 

Heart transplant  0 0 0 0 0 0 

LVAD placement <10 <10 <10 <10 <10 <10 

Pacemaker <10 185 (1.4%) 36 (2.5%) <10 <10 <10 

Implantable cardiac defibrillator <10 165 (1.3%) 53 (3.7%) <10 <10 <10 

Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Unknown includes “no information”, “refused”, and “unknown”. Asian race group 
includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 
all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or 
I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF 
type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from the hospital billing or discharge list for all other algorithms. Heart transplant, 
LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available lookback procedure codes prior to event. The specific codes used are available in 
the Appendix.. 
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Table 52. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms, UNC Health, 2019 

Year: 2019 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd 
Diagnosis Position 

1st or 2nd 
Diagnosis Position 

+ Lab or 
Medication 

First Diagnosis 
Position 

N 422 11,093 1,327 725 515 308 

Outpatient 36 (9%) 9,143 (82%) 335 (31%)  - - - 

Age category             

20-34 years 9 (2.1%) 167 (1.5%) 21 (1.6%) 14 (1.9%) <10 <10 

35-44 years 23 (5.5%) 394 (3.6%) 49 (3.7%) 35 (4.8%) 24 (4.7%) 18 (5.8%) 

45-54 years 32 (7.6%) 1,050 (9.5%) 125 (9.4%) 73 (10.1%) 44 (8.5%) 29 (9.4%) 

55-64 years 85 (20.1%) 2,040 (18.4%) 233 (17.5%) 133 (18.3%) 80 (15.5%) 56 (18.2%) 

65-74 years 94 (22.3%) 2,919 (26.3%) 303 (22.8%) 156 (21.5%) 105 (20.4%) 58 (18.8%) 

75-84 years 92 (21.8%) 2,765 (24.9%) 335 (25.2%) 157 (21.7%) 120 (23.3%) 63 (20.5%) 

≥85 years 87 (20.6%) 1,758 (15.8%) 262 (19.7%) 157 (21.7%) 134 (26.0%) 78 (25.3%) 

Female 203 (48.1%) 5,719 (51.6%) 672 (50.6%) 376 (51.9%) 257 (49.9%) 135 (43.8%) 

Race             

White 275 (65.2%) 7,173 (64.7%) 837 (63.0%) 415 (57.2%) 306 (59.4%) 176 (57.1%) 

Black 122 (28.9%) 3,302 (29.8%) 425 (32.0%) 273 (37.7%) 185 (35.9%) 117 (38.0%) 

Asian <10 59 (0.5%) <10 <10 <10 <10 

American Indian or Alaska Native <10 65 (0.6%) <10 <10 <10 <10 

Other 10 (2.4%) 272 (2.5%) 31 (2.3%) 17 (2.3%) 11 (2.1%) <10 

Unknown 11 (2.6%) 222 (2.0%) 19 (1.4%) <10 <10 <10 

Ethnicity             

Hispanic/Latino <10 233 (2.1%) 18 (1.4%) <10 <10 <10 

Unknown 12 (2.8%) 234 (2.1%) 19 (1.4%) <10 <10 <10 

Comorbidities             

Hypertension 304 (72.0%) 9,916 (89.4%) 1,109 (83.5%) 610 (84.1%) 429 (83.3%) 260 (84.4%) 

Diabetes 191 (45.3%) 5,387 (48.6%) 630 (47.4%) 311 (42.9%) 223 (43.3%) 137 (44.5%) 

Kidney disease 240 (56.9%) 6,509 (58.7%) 765 (57.6%) 405 (55.9%) 314 (61.0%) 186 (60.4%) 

Ischemic Heart Disease 265 (62.8%) 6,812 (61.4%) 836 (63.0%) 406 (56.0%) 314 (61.0%) 197 (64.0%) 

Atrial fibrillation 90 (21.3%) 2,465 (22.2%) 389 (29.3%) 173 (23.9%) 150 (29.1%) 90 (29.2%) 
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Previous stroke or TIA 33 (7.8%) 1,382 (12.5%) 150 (11.3%) 85 (11.7%) 61 (11.8%) 34 (11.0%) 

Any comorbidity 393 (93.1%) 10,678 (96.3%) 1,275 (96.0%) 689 (95.0%) 494 (95.9%) 296 (96.1%) 

Comorbidity Burden       

0 29 (6.9%) 415 (3.7%) 53 (4.0%) 36 (5.0%) 21 (4.1%) 12 (3.9%) 

1 67 (15.9%) 1,197 (10.8%) 152 (11.4%) 107 (14.8%) 63 (12.2%) 39 (12.7%) 

2 83 (19.7%) 2,331 (21.0%) 272 (20.5%) 156 (21.5%) 105 (20.4%) 54 (17.5%) 

3 115 (27.3%) 3,196 (28.8%) 373 (28.1%) 198 (27.3%) 142 (27.6%) 91 (29.5%) 

4 97 (23.0%) 2,864 (25.8%) 339 (25.5%) 167 (23.0%) 131 (25.4%) 79 (25.6%) 

5 29 (6.9%) 972 (8.8%) 126 (9.5%) 57 (7.9%) 50 (9.7%) 30 (9.7%) 

6 <10 118 (1.1%) 13 (1.0%) <10 <10 <10 

Severity Indicators             

Acute on Chronic Exacerbation 38 (9.0%) 1,578 (14.2%) 87 (6.6%) 42 (5.8%) 41 (8.0%) 24 (7.8%) 

Chronic HF 12 (2.8%) 2,166 (19.5%) 127 (9.6%) 32 (4.4%) 12 (2.3%) <10 

End Stage HF 0 25 (0.2%) 0 0 0 0 

Other HF <10 <10 <10 <10 <10 <10 

Unspecified HF 158 (37.4%) 5,475 (49.4%) 903 (68.0%) 546 (75.3%) 395 (76.7%) 239 (77.6%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement <10 <10 <10 0 0 0 

Pacemaker <10 135 (1.2%) 28 (2.1%) <10 <10 0 

Implantable cardiac defibrillator <10 88 (0.8%) 28 (2.1%) <10 <10 0 

Unknown: documentation states “Unknown”. Missing: no documentation related to the variable. Unknown includes “no information”, “refused”, and “unknown”. Asian race group 
includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 
all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or 
I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF 
type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from the hospital billing or discharge list for all other algorithms. Heart transplant, 
LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available lookback procedure codes prior to event. The specific codes used are available in 
the Appendix.. 
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Table 53. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms by Inpatient/Outpatient Setting, UNC 
Health, 2016-2019 

2016-2019 Hospital Problem List Patient Problem List 
Any Diagnosis 

Position (Inpatient) 

Diagnosis on ≥ 2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

N 2026 339 8435 43750 4117 2185 

Age, years       

Mean (SD) 72 (15.1) 72.6 (14.2) 69.7 (15.2) 70.5 (13.8) 71.8 (14.8) 69.3 (13.4) 

Median (Q1, Q3) 73.4 (62.7, 83.7) 73.4 (63.9, 84) 71 (59.5, 81.6) 71.6 (61.5, 80.8) 73.4 (61.7, 83.4) 70.3 (60.1, 79.2) 

Age category       

20-34 years 35 (1.7%) <10 156 (1.8%) 584 (1.3%) 55 (1.3%) 28 (1.3%) 

35-44 years 74 (3.7%) 12 (3.5%) 418 (5.0%) 1,357 (3.1%) 161 (3.9%) 54 (2.5%) 

45-54 years 157 (7.7%) 32 (9.4%) 912 (10.8%) 4,042 (9.2%) 358 (8.7%) 245 (11.2%) 

55-64 years 343 (16.9%) 49 (14.5%) 1,598 (18.9%) 8,266 (18.9%) 703 (17.1%) 459 (21.0%) 

65-74 years 486 (24.0%) 84 (24.8%) 1,952 (23.1%) 11,828 (27.0%) 938 (22.8%) 602 (27.6%) 

75-84 years 495 (24.4%) 88 (26.0%) 1,922 (22.8%) 11,007 (25.2%) 1,038 (25.2%) 532 (24.3%) 

≥85 years 436 (21.5%) 72 (21.2%) 1,477 (17.5%) 6,666 (15.2%) 864 (21.0%) 265 (12.1%) 

Female 1,050 (51.8%) 169 (49.9%) 4,449 (52.7%) 22,078 (50.5%) 2,078 (50.5%) 1,095 (50.1%) 

Race       

White 1,417 (69.9%) 228 (67.3%) 5,598 (66.4%) 29,434 (67.3%) 2,796 (67.9%) 1,434 (65.6%) 

Black 481 (23.7%) 93 (27.4%) 2,439 (28.9%) 11,882 (27.2%) 1,127 (27.4%) 614 (28.1%) 

Asian 15 (0.7%) <10 63 (0.7%) 285 (0.7%) 34 (0.8%) 20 (0.9%) 

American Indian or 
Alaska Native 

10 (0.5%) <10 36 (0.4%) 254 (0.6%) 16 (0.4%) 16 (0.7%) 

Other 48 (2.4%) <10 202 (2.4%) 974 (2.2%) 90 (2.2%) 57 (2.6%) 

Unknown 55 (2.7%) <10 97 (1.1%) 921 (2.1%) 54 (1.3%) 44 (2.0%) 

Ethnicity       

Hispanic/Latino 40 (2.0%) <10 149 (1.8%) 835 (1.9%) 67 (1.6%) 47 (2.2%) 

Unknown 62 (3.1%) 11 (3.2%) 129 (1.5%) 1,025 (2.3%) 61 (1.5%) 59 (2.7%) 

BMI (kg/m2), n 1691 280 6402 7001 3348 1449 

Mean (SD) 30.6 (8) 29.8 (8.1) 30.8 (8) 31.7 (7.8) 30.6 (7.9) 32.2 (7.8) 

Median (Q1, Q3) 29.2 (24.8, 34.9) 27.9 (24.3, 34.5) 29.3 (25.1, 35.2) 30.4 (26.2, 36.1) 29.2 (24.9, 35) 31.1 (26.7, 36.4) 

≥ 30 kg/m2* 760 (44.9%) 105 (37.5%) 2971 (46.4%) 3688 (52.7%) 1520 (45.4%) 807 (55.7%) 
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Missing 335 (16.5%) 59 (17.4%) 2,033 (24.1%) 36,749 (84.0%) 769 (18.7%) 736 (33.7%) 

Smoking status, n 1727 259 7048 8449 3481 1604 

Current* 288 (16.7%) 37 (14.3%) 1,305 (18.5%) 995 (11.8%) 588 (16.9%) 205 (12.8%) 

Former* 683 (39.5%) 133 (51.4%) 2,656 (37.7%) 3,820 (45.2%) 1,408 (40.4%) 705 (44.0%) 

Never* 678 (39.3%) 84 (32.4%) 2,850 (40.4%) 3,538 (41.9%) 1,391 (40.0%) 687 (42.8%) 

Unknown* 78 (4.5%) <10 237 (3.4%) 96 (1.1%) 94 (2.7%) <10 

Missing 299 (14.8%) 80 (23.6%) 1387 (16.4%) 35301 (80.7%) 636 (15.4%) 581 (26.6%) 

Comorbidities       

Hypertension 1440 (71.1%) 270 (79.6%) 6981 (81.6%) 38894 (88.9%) 3380 (82.1%) 1853 (84.8%) 

Diabetes 912 (45.0%) 166 (49.0%) 4055 (47.4%) 22006 (50.3%) 1980 (48.1%) 1031 (47.2%) 

Kidney disease 1210 (59.7%) 233 (68.7%) 4885 (57.1%) 27344 (62.5%) 2660 (64.6%) 1333 (61.0%) 

Ischemic Heart 
Disease 

1238 (61.1%) 235 (69.3%) 5373 (62.8%) 28481 (65.1%) 2758 (67.0%) 238 (10.9%) 

Atrial fibrillation 490 (24.2%) 107 (31.6%) 2182 (25.5%) 12163 (27.8%) 1260 (30.6%) 734 (33.6%) 

Previous stroke or 
TIA 

176 (8.7%) 46 (13.6%) 1104 (12.9%) 5819 (13.3%) 543 (13.2%) 1182 (54.1%) 

Any comorbidity  1874 (92.5%) 321 (94.7%) 8076 (94.4%) 42175 (96.4%) 3948 (95.9%) 2089 (95.6%) 

Number of 
comorbidities 

2.7 (1.4) 3.1 (1.4) 2.9 (1.4) 3.1 (1.4) 2.9 (1.4) 3.1 (1.3) 

Comorbidity Burden       

0 151 (7.5%) 18 (5.3%) 479 (5.6%) 1575 (3.6%) 169 (4.1%) 96 (4.4%) 

1 303 (15.0%) 24 (7.1%) 1104 (12.9%) 4069 (9.3%) 453 (11.0%) 269 (12.3%) 

2 406 (20.0%) 59 (17.4%) 1668 (19.5%) 8181 (18.7%) 708 (17.2%) 411 (18.8%) 

3 513 (25.3%) 100 (29.5%) 2233 (26.1%) 11944 (27.3%) 1095 (26.6%) 645 (29.5%) 

4 470 (23.2%) 82 (24.2%) 2053 (24.0%) 12250 (28.0%) 1120 (27.2%) 513 (23.5%) 

5 164 (81.0%) 49 (14.5%) 86 (1.0%) 5031 (11.5%) 482 (11.7%) 216 (9.9%) 

6 19 (0.9%) 7 (2.1%) 145 (1.7%) 744 (1.7%) 91 (2.2%) 35 (1.6%) 

Mortality       

7-day 41 (2.0%) <10 81 (1.0%) 78 (0.2%) 47 (1.1%) <10 

30-day 91 (4.5%) 12 (3.5%) 192 (2.3%) 256 (0.6%) 119 (2.9%) <10 

1-year 260 (12.8%) 41 (12.1%) 753 (8.9%) 1,515 (3.5%) 451 (11.0%) 94 (4.3%) 

Severity Indicators       

Acute on Chronic 
Exacerbation 

232 (11.5%) 49 (14.5%) 392 (4.6%) 5,785 (13.2%) 355 (8.6%) 68 (3.1%) 
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Chronic HF 99 (4.9%) 46 (13.6%) 705 (8.4%) 7,939 (18.1%) 273 (6.6%) 375 (17.2%) 

End Stage HF 0 0 <10 47 (0.1%) 0 0 

Other HF <10 0 <10 <10 <10 <10 

Unspecified HF 791 (39.0%) 85 (25.1%) 6,587 (78.1%) 23,990 (54.8%) 3,228 (78.4%) 1,505 (68.9%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement <10 <10 <10 0 <10 0 

Pacemaker 34 (1.7%) 10 (2.9%) 77 (0.9%) 1,229 (2.8%) 56 (1.4%) 98 (4.5%) 

Implantable cardiac 
defibrillator 

33 (1.6%) 11 (3.2%) 58 (0.7%) 1,345 (3.1%) 51 (1.2%) 143 (6.5%) 

BMI: body mass index. LVAD: left ventricular assist device. HF: heart failure. Asian race group includes Native Hawaiian and Pacific Islander. Unknown race includes “no 
information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific codes for 
comorbidities are listed in the Supplement. Body mass index calculated from average weight and height over multiple records for a single encounter within 1 year of case 
encounter. Weights and heights below the 1st or above the 99th percentile were excluded before calculating BMI. Sensitivity analysis limiting lookback period of 180 days and 365 
days prior to event shown in Supplement. Current smoker includes current every day smoker, current some days smoker, smoker (current status unknown), heavy smoker, and 
light smoker. Unknown smoking status includes “unknown if ever” and “no information”. Smoking status determined from the first record, when there were multiple records per 
encounter. Mortality during hospitalization includes death dates within 7 days of discharge date. 30-day and 1-year mortality calculated from discharge date. Acute on chronic HF 
defined as I50.23, I50.33, I50.43, or I50.813. End-stage HF defined as I50.84. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. Unspecified HF defined as I50.9. Other 
HF defined as I50.8. Codes for HF type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from the hospital billing or discharge list for all 
other algorithms. Heart transplant, LVAD placement, pacemaker, and implantable ICD determined from all-available lookback procedure codes prior to event. The specific codes 
used are available in the Supplement. *Percent in category calculated out of available observations.  
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Table 54. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms by Inpatient/Outpatient Setting, UNC 
Health, 2016 

Year: 2016 
Hospital Problem 

List 
Patient Problem 

List 
Any Diagnosis 

Position (Inpatient) 

Diagnosis on ≥ 2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

N 658 180 2516 11932 1210 864 

Age category       

20-34 years <10 2 (1.1%) 49 (1.9%) 163 (1.4%) 22 (1.8%) <10 

35-44 years 17 (2.6%) <10 112 (4.5%) 400 (3.4%) 37 (3.1%) 21 (2.4%) 

45-54 years 56 (8.5%) 14 (7.8%) 282 (11.2%) 1,154 (9.7%) 107 (8.8%) 96 (11.1%) 

55-64 years 108 (16.4%) 21 (11.7%) 450 (17.9%) 2,363 (19.8%) 181 (15.0%) 176 (20.4%) 

65-74 years 137 (20.8%) 39 (21.7%) 570 (22.7%) 3,296 (27.6%) 286 (23.6%) 241 (27.9%) 

75-84 years 163 (24.8%) 54 (30.0%) 586 (23.3%) 2,927 (24.5%) 306 (25.3%) 219 (25.3%) 

≥85 years 169 (25.7%) 44 (24.4%) 467 (18.6%) 1,629 (13.7%) 271 (22.4%) 102 (11.8%) 

Female 352 (53.5%) 89 (49.4%) 1,353 (53.8%) 5,891 (49.4%) 629 (52.0%) 439 (50.8%) 

Race       

White 468 (71.1%) 129 (71.7%) 1,711 (68.0%) 7,956 (66.7%) 841 (69.5%) 568 (65.7%) 

Black 151 (22.9%) 45 (25.0%) 700 (27.8%) 3,378 (28.3%) 313 (25.9%) 247 (28.6%) 

Asian <10 <10 18 (0.7%) 85 (0.7%) <10 <10 

American Indian or Alaska Native <10 <10 <10 65 (0.5%) <10 <10 

Other 14 (2.1%) <10 53 (2.1%) 239 (2.0%) 22 (1.8%) 20 (2.3%) 

Unknown 16 (2.4%) <10 27 (1.1%) 209 (1.8%) 20 (1.7%) 16 (1.9%) 

Ethnicity       

Hispanic/Latino 12 (1.8%) <10 39 (1.6%) 196 (1.6%) 16 (1.3%) 15 (1.7%) 

Unknown 24 (3.6%) <10 44 (1.7%) 268 (2.2%) 25 (2.1%) 28 (3.2%) 

Comorbidities       

Hypertension 466 (70.8%) 151 (83.9%) 1,943 (77.2%) 10,120 (84.8%) 952 (78.7%) 755 (87.4%) 

Diabetes 310 (47.1%) 87 (48.3%) 1,279 (50.8%) 6,242 (52.3%) 627 (51.8%) 422 (48.8%) 

Kidney disease 426 (64.7%) 135 (75.0%) 1,555 (61.8%) 7,755 (65.0%) 846 (69.9%) 526 (60.9%) 

Ischemic Heart Disease 438 (66.6%) 124 (68.9%) 1,691 (67.2%) 8,092 (67.8%) 875 (72.3%) 542 (62.7%) 
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Atrial fibrillation 167 (25.4%) 69 (38.3%) 739 (29.4%) 4,000 (33.5%) 411 (34.0%) 316 (36.6%) 

Previous stroke or TIA 71 (10.8%) 29 (16.1%) 377 (15.0%) 1,685 (14.1%) 180 (14.9%) 99 (11.5%) 

Any Comorbidity 618 (93.9%) 173 (96.1%) 2,354 (93.6%) 11,448 (95.9%) 1,158 (95.7%) 834 (96.5%) 

Comorbidity Burden        

0 40 (6.1%) <10 162 (6.4%) 484 (4.1%) 52 (4.3%) 30 (3.5%) 

1 91 (13.8%) 12 (6.7%) 299 (11.9%) 1,106 (9.3%) 114 (9.4%) 102 (11.8%) 

2 125 (19.0%) 27 (15.0%) 403 (16.0%) 1,963 (16.5%) 178 (14.7%) 141 (16.3%) 

3 164 (24.9%) 51 (28.3%) 607 (24.1%) 2,920 (24.5%) 308 (25.5%) 237 (27.4%) 

4 155 (23.6%) 46 (25.6%) 635 (25.2%) 3,462 (29.0%) 336 (27.8%) 226 (26.2%) 

5 73 (11.1%) 30 (16.7%) 342 (13.6%) 1,728 (14.5%) 179 (14.8%) 107 (12.4%) 

6 10 (1.5%) <10 68 (2.7%) 269 (2.3%) 43 (3.6%) 21 (2.4%) 

Severity Indicators       

Acute on Chronic Exacerbation 83 (12.6%) 29 (16.1%) 135 (5.4%) 809 (6.8%) 130 (10.7%) 21 (2.4%) 

Chronic HF 51 (7.8%) 29 (16.1%) 135 (5.4%) 1,194 (10.0%) 73 (6.0%) 119 (13.8%) 

End Stage HF 0 0 0 0 0 0 

Other HF 0 0 0 0 0 0 

Unspecified HF 253 (38.4%) 38 (21.1%) 2,277 (90.5%) 9,239 (77.4%) 1,104 (91.2%) 685 (79.3%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement 1 (0.2%) 0 1 (0.04%) 11,932 (100%) 1 (0.1%) 0 

Pacemaker <10 <10 25 (1.0%) 761 (6.4%) 16 (1.3%) 28 (3.2%) 

Implantable cardiac defibrillator 19 (2.9%) <10 29 (1.2%) 915 (7.7%) 25 (2.1%) 40 (4.6%) 

LVAD: left ventricular assist device. HF: Heart failure. Asian race group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and 
“unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the 
Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. 
Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from 
the hospital billing or discharge list for all other algorithms. Heart transplant, LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available 
lookback procedure codes prior to event. The specific codes used are available in the Appendix. 
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Table 55. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms by Inpatient/Outpatient Setting, UNC 
Health, 2017 

Year: 2017 
Hospital Problem 

List 
Patient Problem 

List 
Any Diagnosis 

Position (Inpatient) 

Diagnosis on ≥ 2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

N 541 85 1984 11583 942 544 

Age category       

20-34 years <10 <10 28 (1.4%) 147 (1.3%) <10 <10 

35-44 years 20 (3.7%) 10 (11.8%) 108 (5.4%) 318 (2.7%) 36 (3.8%) 17 (3.1%) 

45-54 years 41 (7.6%) <10 214 (10.8%) 1,029 (8.9%) 95 (10.1%) 55 (10.1%) 

55-64 years 82 (15.2%) 30 (35.3%) 375 (18.9%) 2,145 (18.5%) 156 (16.6%) 121 (22.2%) 

65-74 years 146 (27.0%) 17 (20.0%) 469 (23.6%) 3,088 (26.7%) 213 (22.6%) 163 (30.0%) 

75-84 years 133 (24.6%) 18 (21.2%) 437 (22.0%) 2,954 (25.5%) 238 (25.3%) 121 (22.2%) 

≥85 years 113 (20.9%) 18 (21.2%) 353 (17.8%) 1,902 (16.4%) 197 (20.9%) 61 (11.2%) 

Female 284 (52.5%) 44 (51.8%) 1,047 (52.8%) 5,910 (51.0%) 491 (52.1%) 265 (48.7%) 

Race       

White 382 (70.6%) 59 (69.4%) 1,411 (71.1%) 8,065 (69.6%) 683 (72.5%) 367 (67.5%) 

Black 122 (22.6%) 21 (24.7%) 488 (24.6%) 2,888 (24.9%) 214 (22.7%) 145 (26.7%) 

Asian <10 2 (2.4%) 17 (0.9%) 70 (0.6%) 11 (1.2%) <10 

American Indian or Alaska Native <10 <10 <10 54 (0.5%) <10 <10 

Other 15 (2.8%) <10 48 (2.4%) 257 (2.2%) 19 (2.0%) 13 (2.4%) 

Unknown 17 (3.1%) <10 17 (0.9%) 249 (2.1%) 13 (1.4%) 10 (1.8%) 

Ethnicity       

Hispanic/Latino 13 (2.4%) <10 38 (1.9%) 211 (1.8%) 19 (2.0%) 11 (2.0%) 

Unknown 21 (3.9%) <10 31 (1.6%) 265 (2.3%) 14 (1.5%) 10 (1.8%) 

Comorbidities       

Hypertension 386 (71.3%) 60 (70.6%) 1,629 (82.1%) 10,486 (90.5%) 779 (82.7%) 466 (85.7%) 

Diabetes 236 (43.6%) 40 (47.1%) 933 (47.0%) 5,755 (49.7%) 451 (47.9%) 260 (47.8%) 

Kidney disease 323 (59.7%) 51 (60.0%) 1,150 (58.0%) 7,334 (63.3%) 613 (65.1%) 295 (54.2%) 

Ischemic Heart Disease 301 (55.6%) 60 (70.6%) 1,255 (63.3%) 7,641 (66.0%) 617 (65.5%) 335 (61.6%) 
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Atrial fibrillation 140 (25.9%) 25 (29.4%) 501 (25.3%) 3,374 (29.1%) 281 (29.8%) 190 (34.9%) 

Previous stroke or TIA 42 (7.8%) <10 266 (13.4%) 1,574 (13.6%) 128 (13.6%) 63 (11.6%) 

Any Comorbidity 491 (90.8%) 80 (94.1%) 1,875 (94.5%) 11,202 (96.7%) 903 (95.9%) 524 (96.3%) 

Comorbidity Burden       

0 50 (9.2%) <10 109 (5.5%) 381 (3.3%) 39 (4.1%) 20 (3.7%) 

1 79 (14.6%) <10 250 (12.6%) 1,024 (8.8%) 110 (11.7%) 65 (11.9%) 

2 106 (19.6%) 20 (23.5%) 388 (19.6%) 2,100 (18.1%) 162 (17.2%) 98 (18.0%) 

3 136 (25.1%) 27 (31.8%) 501 (25.3%) 3,177 (27.4%) 231 (24.5%) 170 (31.3%) 

4 127 (23.5%) 18 (21.2%) 509 (25.7%) 3,317 (28.6%) 277 (29.4%) 125 (23.0%) 

5 37 (6.8%) <10 193 (9.7%) 1,363 (11.8%) 104 (11.0%) 58 (10.7%) 

6 <10 <10 34 (1.7%) 221 (1.9%) 19 (2.0%) <10 

Severity Indicators       

Acute on Chronic Exacerbation 63 (11.6%) 15 (17.6%) 87 (4.4%) 1,815 (15.7%) 74 (7.9%) 26 (4.8%) 

Chronic HF 23 (4.3%) 11 (12.9%) 197 (9.9%) 2,376 (20.5%) 65 (6.9%) 110 (20.2%) 

End Stage HF 0 0 0 <10 0 0 

Other HF <10 0 <10 0 1 (0.11%) 0 

Unspecified HF 215 (39.7%) 22 (25.9%) 1,489 (75.1%) 5,526 (47.7%) 746 (79.2%) 308 (56.6%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement 0 <10 <10 0 <10 0 

Pacemaker 16 (3.0%) <10 16 (0.8%) 184 (1.6%) 16 (1.7%) 30 (5.5%) 

Implantable cardiac defibrillator <10 <10 <10 198 (1.7%) <10 40 (7.4%) 

LVAD: left ventricular assist device. HF: Heart failure. Asian race group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and 
“unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the 
Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. 
Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from 
the hospital billing or discharge list for all other algorithms. Heart transplant, LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available 
lookback procedure codes prior to event. The specific codes used are available in the Appendix. 
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Table 56. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms by Inpatient/Outpatient Setting, UNC 
Health, 2018 

Year: 2018 
Hospital Problem 

List 
Patient Problem 

List 
Any Diagnosis 

Position (Inpatient) 

Diagnosis on ≥ 2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

N 441 38 1985 11092 973 442 

Age category       

20-34 years 12 (2.7%) <10 42 (2.1%) 144 (1.3%) 13 (1.3%) <10 

35-44 years 16 (3.6%) <10 94 (4.7%) 349 (3.1%) 44 (4.5%) 11 (2.5%) 

45-54 years 32 (7.3%) 11 (28.9%) 214 (10.8%) 1,011 (9.1%) 75 (7.7%) 50 (11.3%) 

55-64 years 77 (17.5%) <10 408 (20.6%) 2,083 (18.8%) 200 (20.6%) 96 (21.7%) 

65-74 years 117 (26.5%) <10 458 (23.1%) 2,980 (26.9%) 220 (22.6%) 114 (25.8%) 

75-84 years 116 (26.3%) <10 450 (22.7%) 2,810 (25.3%) 244 (25.1%) 107 (24.2%) 

≥85 years 71 (16.1%) <10 319 (16.1%) 1,715 (15.5%) 177 (18.2%) 59 (13.3%) 

Female 226 (51.2%) 21 (55.3%) 1,015 (51.1%) 5,592 (50.4%) 452 (46.5%) 226 (51.1%) 

Race       

White 310 (70.3%) 22 (57.9%) 1,302 (65.6%) 7,414 (66.8%) 657 (67.5%) 277 (62.7%) 

Black 99 (22.4%) 14 (36.8%) 567 (28.6%) 2,998 (27.0%) 268 (27.5%) 130 (29.4%) 

Asian 2 (0.5%) <10 18 (0.9%) 81 (0.7%) <10 <10 

American Indian or Alaska Native 6 (1.4%) <10 11 (0.6%) 85 (0.8%) <10 <10 

Other 10 (2.3%) <10 56 (2.8%) 251 (2.3%) 27 (2.8%) 15 (3.4%) 

Unknown 14 (3.2%) <10 31 (1.6%) 263 (2.4%) 10 (1.0%) 10 (2.3%) 

Ethnicity       

Hispanic/Latino <10 <10 44 (2.2%) 223 (2.0%) 22 (2.3%) 13 (2.9%) 

Unknown <10 <10 33 (1.7%) 279 (2.5%) 12 (1.2%) 12 (2.7%) 

Comorbidities       

Hypertension 314 (71.2%) 30 (78.9%) 1,649 (83.1%) 10,032 (90.4%) 805 (82.7%) 367 (83.0%) 

Diabetes 192 (43.5%) 21 (55.3%) 890 (44.8%) 5,512 (49.7%) 434 (44.6%) 189 (42.8%) 

Kidney disease 243 (55.1%) 25 (65.8%) 1,050 (52.9%) 6,790 (61.2%) 590 (60.6%) 208 (47.1%) 

Ischemic Heart Disease 260 (59.0%) 25 (65.8%) 1,198 (60.4%) 7,076 (63.8%) 631 (64.9%) 256 (57.9%) 



 

 

1
8
5
 

Atrial fibrillation 99 (22.4%) <10 469 (23.6%) 2,779 (25.1%) 283 (29.1%) 124 (28.1%) 

Previous stroke or TIA 36 (8.2%) <10 227 (11.4%) 1,409 (12.7%) 117 (12.0%) 45 (10.2%) 

Any comorbidity 408 (92.5%) 33 (86.8%) 1,882 (94.8%) 10,716 (96.6%) 930 (95.6%) 414 (93.7%) 

Comorbidity Burden       

0 33 (7.5%) <10 103 (5.2%) 376 (3.4%) 43 (4.4%) 28 (6.3%) 

1 70 (15.9%) <10 276 (13.9%) 1,028 (9.3%) 114 (11.7%) 63 (14.3%) 

2 100 (22.7%) <10 438 (22.1%) 2,206 (19.9%) 177 (18.2%) 92 (20.8%) 

3 108 (24.5%) 12 (31.6%) 552 (27.8%) 3,175 (28.6%) 290 (29.8%) 132 (29.9%) 

4 101 (22.9%) <10 429 (21.6%) 3,041 (27.4%) 239 (24.6%) 93 (21.0%) 

5 28 (6.3%) <10 163 (8.2%) 1,127 (10.2%) 94 (9.7%) 30 (6.8%) 

6 <10 <10 24 (1.2%) 139 (1.3%) 16 (1.6%) <10 

Severity Indicators       

Acute on Chronic Exacerbation 49 (11.1%) 4 (10.5%) 85 (4.3%) 1,668 (15.0%) 74 (7.6%) 11 (2.5%) 

Chronic HF 16 (3.6%) <10 191 (9.6%) 2,385 (21.5%) 67 (6.9%) 87 (19.7%) 

End Stage HF 0 0 <10 18 (0.2%) 0 0 

Other HF 0 0 0 <10 0 0 

Unspecified HF 178 (40.4%) 12 (31.6%) 1,436 (72.3%) 5,135 (46.3%) 698 (71.7%) 290 (65.6%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement <10 0 <10 0 <10 0 

Pacemaker <10 <10 17 (0.9%) 168 (1.5%) 14 (1.4%) 22 (5.0%) 

Implantable cardiac defibrillator <10 0 13 (0.7%) 152 (1.4%) 11 (1.1%) 42 (9.5%) 

LVAD: left ventricular assist device. HF: Heart failure. Asian race group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and 
“unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the 
Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. 
Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from 
the hospital billing or discharge list for all other algorithms. Heart transplant, LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available 
lookback procedure codes prior to event. The specific codes used are available in the Appendix. 
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Table 57. Phenotypic Characteristics of Patient Population Captured by Heart Failure Algorithms by Inpatient/Outpatient Setting, UNC 
Health, 2019 

Year: 2019 
Hospital Problem 

List 
Patient Problem 

List 
Any Diagnosis 

Position (Inpatient) 

Diagnosis on ≥ 2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

N 386 36 1950 9143 992 335 

Age category       

20-34 years <10 <10 37 (1.9%) 130 (1.4%) 13 (1.3%) <10 

35-44 years 21 (5.4%) <10 104 (5.3%) 290 (3.2%) 44 (4.4%) <10 

45-54 years 28 (7.3%) <10 202 (10.4%) 848 (9.3%) 81 (8.2%) 44 (13.1%) 

55-64 years 76 (19.7%) <10 365 (18.7%) 1,675 (18.3%) 166 (16.7%) 66 (19.7%) 

65-74 years 86 (22.3%) <10 455 (23.3%) 2,464 (26.9%) 219 (22.1%) 84 (25.1%) 

75-84 years 83 (21.5%) <10 449 (23.0%) 2,316 (25.3%) 250 (25.2%) 85 (25.4%) 

≥85 years 83 (21.5%) <10 338 (17.3%) 1,420 (15.5%) 219 (22.1%) 43 (12.8%) 

Female 188 (48.7%) 15 (41.7%) 1,034 (53.0%) 4,685 (51.2%) 506 (51.0%) 165 (49.3%) 

Race       

White 257 (66.6%) 18 (50.0%) 1,174 (60.2%) 5,999 (65.6%) 615 (62.0%) 222 (66.3%) 

Black 109 (28.2%) 13 (36.1%) 684 (35.1%) 2,618 (28.6%) 332 (33.5%) 92 (27.5%) 

Asian <10 <10 10 (0.5%) 49 (0.5%) <10 <10 

American Indian or Alaska Native <10 <10 15 (0.8%) 50 (0.5%) <10 <10 

Other <10 <10 45 (2.3%) 227 (2.5%) 22 (2.2%) <10 

Unknown <10 <10 22 (1.1%) 200 (2.2%) 11 (1.1%) <10 

Ethnicity       

Hispanic/Latino <10 <10 28 (1.4%) 205 (2.2%) 10 (1.0%) <10 

Unknown <10 <10 21 (1.1%) 213 (2.3%) 10 (1.0%) <10 

Comorbidities       

Hypertension 275 (71.2%) 29 (80.6%) 1,665 (85.4%) 8,251 (90.2%) 844 (85.1%) 264 (78.8%) 

Diabetes 173 (44.8%) 18 (50.0%) 898 (46.1%) 4,489 (49.1%) 468 (47.2%) 161 (48.1%) 

Kidney disease 218 (56.5%) 22 (61.1%) 1,061 (54.4%) 5,448 (59.6%) 611 (61.6%) 154 (46.0%) 

Ischemic Heart Disease 239 (61.9%) 26 (72.2%) 1,151 (59.0%) 5,661 (61.9%) 636 (64.1%) 199 (59.4%) 
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Atrial fibrillation 85 (22.0%) <10 445 (22.8%) 2,020 (22.1%) 284 (28.6%) 105 (31.3%) 

Previous stroke or TIA 28 (7.3%) <10 216 (11.1%) 1,166 (12.8%) 118 (11.9%) 31 (9.3%) 

Any comorbidity 358 (92.7%) 35 (97.2%) 1,854 (95.1%) 8,824 (96.5%) 957 (96.5%) 317 (94.6%) 

Comorbidity Burden       

0 28 (7.3%) <10 96 (4.9%) 319 (3.5%) 35 (3.5%) 18 (5.4%) 

1 63 (16.3%) <10 267 (13.7%) 930 (10.2%) 113 (11.4%) 39 (11.6%) 

2 75 (19.4%) <10 415 (21.3%) 1,916 (21.0%) 193 (19.5%) 79 (23.6%) 

3 105 (27.2%) 10 (27.8%) 543 (27.8%) 2,653 (29.0%) 268 (27.0%) 105 (31.3%) 

4 87 (22.5%) 10 (27.8%) 454 (23.3%) 2,410 (26.4%) 268 (27.0%) 70 (20.9%) 

5 26 (6.7%) <10 156 (8.0%) 816 (8.9%) 104 (10.5%) 22 (6.6%) 

6 <10 <10 19 (1.0%) 99 (1.1%) 11 (1.1%) <10 

Severity Indicators       

Acute on Chronic Exacerbation 37 (9.6%) <10 85 (4.4%) 1,493 (16.3%) 77 (7.8%) 10 (3.0%) 

Chronic HF <10 <10 182 (9.3%) 1,984 (21.7%) 68 (6.9%) 59 (17.6%) 

End Stage HF 0 0 0 25 (0.3%) 0 0 

Other HF <10 0 <10 <10 <10 <10 

Unspecified HF 145 (37.6%) 13 (36.1%) 1,385 (71.0%) 4,090 (44.7%) 680 (68.5%) 222 (66.3%) 

Heart transplant 0 0 0 0 0 0 

LVAD placement <10 0 <10 0 <10 0 

Pacemaker <10 0 19 (1.0%) 116 (1.3%) 10 (1.0%) 18 (5.4%) 

Implantable cardiac defibrillator <10 0 8 (0.4%) 80 (0.9%) <10 21 (6.3%) 

LVAD: left ventricular assist device. HF: Heart failure. Asian race group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and 
“unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the 
Supplement. Acute on chronic HF defined as I50.23, I50.33, I50.43, or I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. 
Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from 
the hospital billing or discharge list for all other algorithms. Heart transplant, LVAD placement, pacemaker, and implantable cardiac defibrillator determined from all-available 
lookback procedure codes prior to event. The specific codes used are available in the Appendix. 
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Table 58. Comparison of Body Mass Index Calculations for Acute Myocardial Infarction Algorithms, UNC Health, 2016-2019 

  
Problem List 

Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab or 

Procedure 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 

N 8383 9326 8549 6580 6120 

Number of BMI measurements per 
encounter, mean (SD) 

4.4 (1.5) 4.3 (1.5) 4.3 (1.5) 4.3 (1.4) 4.3 (1.4) 

Untrimmed data      

Weight measurement, n 7471 8138 7592 5790 5469 

Min, Max Value (lbs) 74.1, 535.5 73.4, 473.9 73.4, 473.9 82, 465 82, 465 

1st, 99th percentile 96.3, 324.6 96, 330 95.7, 329.4 97.3, 329 97, 362.2 

Missing 912 (10.9%) 1188 (12.7%) 957 (11.2%) 790 (12.0%) 651 (10.6%) 

Height measurement, n 7261 7834 7331 5550 5261 

Min, Max Value (inches) 2, 82 2, 80 2, 80 2, 80 2, 80 

1st, 99th percentile 57.3, 75.2 58, 76 58, 75.7 58, 76 58, 75 

Missing 1122 (13.4%) 1492 (16.0%) 1218 (14.2%) 1030 (15.7%) 859 (14.0%) 

EHR Calculated BMI (kg/m2) 6919 7510 7018 5345 5062 

Mean (SD) 33 (276.2) 32.3 (262.9) 32.5 (272) 33.7 (311.6) 33.9 (320.2) 

Median (Q1, Q3) 28.2 (24.4, 33) 28.2 (24.4, 32.9) 28.2 (24.5, 33) 28.3 (24.7, 33) 28.4 (24.8, 33) 

Min, Max 12.7, 22,807 8.2, 22807 8.2, 22807 9.6, 22807 9.6, 22807 

1st, 99th percentile 16.7, 51 16.7, 52 16.7, 51.8 16.8, 51.7 16.8, 51.7 

≥ 30 kg/m2* 2734 (39.5%) 2929 (39.0%) 2749 (39.2%) 2133 (39.9%) 2025 (40.0%) 

Missing 1464 (17.5%) 1816 (19.5%) 1531 (17.9%) 1235 (18.8%) 1058 (17.3%) 

Calculated BMI (kg/m2) 7255 7822 7322 5540 5252 

Mean (SD) 33.7 (338.6) 33.1 (324.6) 33.4 (335.5) 34.9 (385.7) 35.2 (396.1) 

Median (Q1, Q3) 28.3 (24.5, 33.1) 28.2 (24.6, 33) 28.2 (24.6, 33) 28.4 (24.8, 33.1) 28.4 (24.8, 33.1) 

Min, Max 11.9, 28,711 10.8, 28711 10.8, 28711 13.5, 28711 13.5, 28711 

1st, 99th percentile 16.6, 51.1 16.6, 52 16.6, 51.7 16.8, 51.7 16.8, 51.7 

≥ 30 kg/m2* 2884 (39.8%) 3045 (38.9%) 2861 (39.1%) 2212 (39.9%) 2102 (40.0%) 

Missing 1128 (13.5%) 1504 (16.1%) 1227 (14.4%) 1040 (15.8%) 868 (14.2%) 

Informed trimming      

Weight measurement, n 7471 8138 7592 5790 5469 

Min, Max Value (lbs) 78.3, 535.5 79.4, 473.9 79.4, 473.9 82, 465 82, 465 
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1st, 99th percentile 96.3, 324.6 96, 330 95.7, 329.4 97.4, 329 97.3, 326.2 

Missing 912 (10.9%) 1188 (12.7%) 957 (11.2%) 790 (12.0%) 651 (10.6%) 

Height, n 7257 7831 7328 5548 5259 

Min, Max Value (in) 48, 82 48, 80 48, 80 48, 80 48, 80 

1st, 99th percentile 58, 75.2 58, 76 58, 75.7 58, 76 58, 75 

Missing 1126 (13.4%) 1495 (16.0%) 1221 (14.3%) 1032 (15.7%) 861 (14.1%) 

EHR Calculated BMI (kg/m2) 6913 7505 7013 5342 5059 

Mean (SD) 29.2 (7) 29.2 (7.1) 29.3 (7.1) 29.4 (7) 29.4 (7) 

Median (Q1, Q3) 28.2 (24.4, 33) 28.2 (24.4, 32.9) 28.2 (24.5, 33) 28.3 (24.7, 33) 28.4 (24.7, 33) 

Min, Max 12.7, 78.1 12.2, 78.1 12.2, 78.1 13.1, 78.1 13.1, 78.1 

1st, 99th percentile 16.7, 50.3 16.8, 51.7 16.7, 51.3 16.8, 51.3 16.8, 51.3 

≥ 30 kg/m2* 2727 (39.4%) 2925 (39.0%) 2745 (39.1%) 2130 (39.9%) 2022 (40.0%) 

Missing 1470 (17.5%) 1821 (19.5%) 1536 (18.0%) 1238 (18.8%) 1061 (17.3%) 

Calculated BMI (kg/m2)  7251 7819 7319 5538 5250 

Mean (SD) 29.3 (6.9) 29.3 (7) 29.3 (7) 29.4 (6.9) 29.4 (6.9) 

Median (Q1, Q3) 28.3 (24.5, 33) 28.2 (24.6, 33) 28.3 (24.6, 33) 28.4 (24.8, 33) 28.4 (24.8, 33) 

Min, Max 12.7, 76.4 13.3, 78.9 13.3, 78.9 13.3, 76.4 13.3, 76.4 

1st, 99th percentile 16.8, 50.3 17.1, 51 17.1, 50.9 17.3, 50.8 17.2, 50.8 

≥ 30 kg/m2* 2872 (39.6%) 3076 (39.3%) 2891 (39.5%) 2218 (40.1%) 2108 (40.2%) 

Missing 1132 (13.5%) 1507 (16.2%) 1230 (14.4%) 1042 (15.8%) 870 (14.2%) 

Statistical Trimming      

Weight measurement, n 7391 8045 7503 5730 5412 

Min, Max Value (lbs) 97.4, 370.3 97.4, 370.3 97.4, 370.3 97.4, 370.3 97.4, 370.3 

1st, 99th percentile 103, 319.4 103.5, 322 103.6, 320.1 103.5, 319.6 103.6, 318.1 

Missing 992 (11.8%) 1281 (13.7%) 1046 (12.2%) 850 (12.9%) 708 (11.6%) 

Height, n  7210 7767 7274 5497 5214 

Min, Max Value (in) 57, 76 57, 76 57, 76 57, 76 57, 76 

1st, 99th percentile 59, 75 59, 75 59, 75 59, 75 59, 75 

Missing 1173 (14.0%) 1559 (16.7%) 1275 (14.9%) 1083 (16.5%) 906 (14.8%) 

EHR Calculated BMI (kg/m2) 6817 7406 6918 5276 4997 

Mean (SD) 29.3 (6.7) 29.3 (6.7) 29.3 (6.6) 29.4 (6.6) 29.4 (6.6) 
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Median (Q1, Q3) 28.2 (24.6, 33) 28.2 (24.6, 32.9) 28.2 (24.6, 33) 28.4 (24.8, 33) 28.4 (24.9, 33) 

Min, Max 16.9, 58.6 16.9, 58.5 16.9, 58.5 16.9, 57.8 16.9, 57.8 

1st, 99th percentile 17.9, 49.2 17.9, 49.4 18, 49.5 18.2, 49.5 18.2, 49.6 

≥ 30 kg/m2* 2712 (39.8%) 2902 (39.2%) 2724 (39.4%) 2114 (40.1%) 2008 (40.2%) 

Missing** 1566 (18.7%) 1920 (20.6%) 1631 (19.1%) 1304 (19.8%) 1123 (18.3%) 

Calculated BMI (kg/m2)  7074 7627 7143 5408 5129 

Mean (SD) 29.3 (6.7) 29.3 (6.7) 29.3 (6.7) 29.4 (6.6) 29.5 (6.6) 

Median (Q1, Q3) 28.3 (24.6, 33) 28.3 (24.7, 33) 28.3 (24.7, 33) 28.4 (25, 33.1) 28.4 (25, 33.1) 

Min, Max 13.6, 67.7 13.6, 69.2 13.6, 69.2 13.6, 66.4 13.6, 66.4 

1st, 99th percentile 17.4, 48.8 17.6, 49 17.6, 49 17.9, 48.8 17.9, 49 

≥ 30 kg/m2* 2821 (39.9%) 2977 (39.0%) 2802 (39.2%) 2162 (40.0%) 2056 (40.1%) 

Missing 1309 (15.6%) 1699 (18.2%) 1406 (16.4%) 1172 (17.8%) 991 (16.2%) 

*Percent calculated out of number of observations for that variable. Percent missing calculated out of algorithm numerator (N). Weight, height, and EHR-BMI averaged over multiple 
records from a single encounter, with BMI calculated from the average weight and height. Informed trimming excluded weights ≤75 lbs or ≥ 700 lbs, heights ≤ 48 in or ≥ 84 in, and 
EHR-BMI ≤ 11.7 or ≥ 79.6 kg/m2 (citation: Das et al). Statistical trimming excluded weights, heights, and EHR-BMI below the 1st and 99th percentile. 
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Table 59. Comparison of Body Mass Index Calculations for Heart Failure Algorithms, UNC Health, 2016-2019 

  

Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd 
Diagnosis Position 

1st or 2nd 
Diagnosis Position 

+ Lab or 
Medication 

First Diagnosis 
Position 

N 2365 52185 6302 2797 2076 1271 

Number of BMI measurements per 
encounter, mean (SD) 

1.4 (0.5) 1.1 (0.3) 1.2 (0.4) 1.2 (0.45) 1.3 (0.49) 1.3 (0.46) 

Untrimmed data       

Weight measurement, n 2082 15456 5312 2429 1869 1126 

Min, Max Value (lbs) 71.1, 515.9 69.2, 614 76, 565.9 76.1, 519.3 76.1, 519.3 76.1, 519.3 

1st, 99th percentile 91.3, 391 99, 380.7 99, 388.5 97, 389.2 95, 388.3 100, 391 

Missing 283 (12.0%) 36729 (70.4%) 990 (15.7%) 368 (13.2%) 207 (10.0%) 145 (11.4%) 

Height measurement, n 2032 13925 4994 2325 1806 1086 

Min, Max Value (inches) 42, 84 1, 81 24, 80 52, 80 52, 79 54, 78 

1st, 99th percentile 57.2, 75.1 57, 76 57, 75.1 57.3, 76 57.3, 75 58, 75 

Missing 333 (14.1%) 38260 (73.3%) 1308 (20.8%) 472 (16.9%) 270 (13.0%) 185 (14.6%) 

EHR Calculated BMI (kg/m2) 1959 13658 4855 2255 1747 1054 

Mean (SD) 31.8 (44.6) 43.3 (607.6) 31.5 (10.2) 30.9 (8.8) 30.9 (8.8) 30.8 (8.8) 

Median (Q1, Q3) 28.9 (24.4, 35.2) 29.9 (25.5, 35.9) 29.7 (25.3, 35.8) 29.4 (24.8, 35.4) 29.2 (24.7, 35) 29.2 (24.6, 34.7) 

Min, Max 11.9, 1966.1 5.2, 36,385 10.6, 374.1 11.9, 79.1 11.9, 79.1 11.9, 79.1 

1st, 99th percentile 16.7, 60.1 17.4, 59.8 17.4, 61.3 17.2, 59.8 17.2, 59.7 17.4, 59.6 

≥ 30 kg/m2* 882 (45.0%) 6806 (49.8%) 2371 (48.8%) 1063 (47.1%) 801 (45.9%) 485 (46.0%) 

Missing 406 (17.2%) 38527 (73.8%) 1447 (23.0%) 542 (19.4%) 329 (15.8%) 217 (17.1%) 

Calculated BMI from average 
weight and height (kg/m2) 

2030 13813 4970 2319 1803 1082 

Mean (SD) 30.8 (8.9) 61.7 (1687.5) 37.6 (423.5) 43.9 (619.8) 47.5 (702.9) 30.8 (9) 

Median (Q1, Q3) 28.9 (24.5, 35.1) 30 (25.5, 36) 29.8 (25.3, 35.9) 29.5 (24.9, 35.5) 29.3 (24.8, 35.5) 29.3 (24.6, 34.9) 

Min, Max 12.4, 81.6 12.4, 140,600 12.4, 29,877 12.4, 29,877 12.4, 29,877 12.4, 82.5 

1st, 99th percentile 16.7, 59.7 17.5, 60.1 17.4, 61.7 17.1, 60.7 17.1, 60.7 17.4, 61.7 

≥ 30 kg/m2* 903 (44.5%) 6904 (50.0%) 2435 (49.0%) 1087 (46.9%) 829 (46.0%) 495 (45.7%) 

Missing 335 (14.2%) 38372 (73.5%) 1332 (21.1%) 478 (17.1%) 273 (13.2%) 189 (14.9%) 

Informed trimming       

Weight measurement, n 2081 15452 5312 2429 1869 1126 
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Min, Max Value (lbs) 76.9, 515.9 75, 614 76, 565.9 79.7, 519.3 79.7, 519.3 79.7, 519.3 

1st, 99th percentile 91.4, 391 99.3, 380.7 99, 388.5 97, 389.2 95, 388.3 100, 391 

Missing 284 (12.0%) 36733 (70.4%) 990 (15.7%) 368 (13.2%) 207 (10.0%) 145 (11.4%) 

Height, n 2032 13911 4991 2325 1806 1086 

Min, Max Value (in) 54, 84 49, 81 52, 80 52, 80 52, 79 54, 78 

1st, 99th percentile 58, 75.1 57.1, 76 57, 75.1 57.7, 76 57.3, 75 58, 75 

Missing 333 (14.1%) 38274 (73.3%) 1311 (20.8%) 472 (16.9%) 270 (13.0%) 185 (14.6%) 

EHR Calculated BMI (kg/m2) 1959 13635 4848 2255 1747 1054 

Mean (SD) 30.7 (8.8) 31.4 (8.6) 31.3 (8.7) 30.9 (8.8) 30.9 (8.8) 30.7 (8.8) 

Median (Q1, Q3) 28.9 (24.4, 35.1) 29.9 (25.5, 35.8) 29.7 (25.3, 35.8) 29.4 (24.8, 35.4) 29.2 (24.7, 35) 29.2 (24.6, 34.7) 

Min, Max 12, 77.8 12, 78.6 12, 77.8 12, 78.6 12, 77.8 12, 77.8 

1st, 99th percentile 16.7, 59.7 17.5, 59.3 17.4, 59.8 17.2, 59.8 17.2, 59.7 17.4, 59.6 

≥ 30 kg/m2* 880 (44.9%) 6784 (49.8%) 2364 (48.8%) 1063 (47.1%) 801 (45.9%) 485 (46.0%) 

Missing 406 (17.2%) 38550 (73.9%) 1454 (23.1%) 542 (19.4%) 329 (15.8%) 217 (17.1%) 

Calculated BMI (kg/m2)  2029 13796 4967 2319 1803 1082 

Mean (SD) 30.6 (8.7) 31.5 (8.7) 31.4 (8.9) 30.9 (8.7) 30.8 (8.8) 30.6 (8.7) 

Median (Q1, Q3) 28.8 (24.6, 35.2) 30 (25.5, 35.9) 29.8 (25.2, 35.8) 29.3 (24.7, 35.3) 29 (24.6, 35.2) 29.1 (24.6, 34.8) 

Min, Max 13.2, 79.1 12.6, 92.2 12.8, 92.2 12.8, 79.1 12.8, 79.1 12.8, 79.1 

1st, 99th percentile 16.8, 58.9 17.5, 59.4 17.3, 60.1 17.2, 59.8 17.2, 59.3 17.2, 59.8 

≥ 30 kg/m2* 891 (43.9%) 6872 (49.8%) 2421 (48.7%) 1082 (46.7%) 821 (45.5%) 492 (45.5%) 

Missing 336 (14.2%) 38389 (73.6%) 1335 (21.2%) 478 (17.1%) 273 (13.2%) 189 (14.9%) 

Statistical Trimming       

Weight measurement, n 2036 15157 5206 2380 1832 1103 

Min, Max Value (lbs) 98, 371.5 97.6, 373 98, 373 98, 372.6 98, 369.7 98.3, 369.7 

1st, 99th percentile 100.9, 349.2 105, 346.6 103.2, 349 103.5, 350.9 103, 350.6 105.5, 343.5 

Missing 329 (13.9%) 37028 (71.0%) 1096 (17.4%) 417 (14.9%) 244 (11.8%) 168 (13.2%) 

Height, n  2017 13798 4951 2311 1795 1081 

Min, Max Value (in) 57, 76 57, 76 57, 76 57, 76 57, 76 57, 76 

1st, 99th percentile 58, 75 58, 75 58, 75 58, 75 58, 75 58, 75 

Missing 348 (14.7%) 38387 (73.6%) 1351 (21.4%) 486 (17.4%) 281 (13.5%) 190 (14.9%) 

EHR Calculated BMI (kg/m2) 1922 13408 4764 2210 1713 1035 
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Mean (SD) 30.5 (8.1) 31.2 (7.8) 31 (7.8) 30.6 (7.8) 30.5 (7.8) 30.4 (7.9) 

Median (Q1, Q3) 28.9 (24.6, 34.9) 29.9 (25.5, 35.6) 29.7 (25.3, 35.5) 29.4 (24.9, 35) 29.1 (24.7, 34.7) 29.1 (24.6, 34.4) 

Min, Max 16.9, 58.9 16.9, 58.9 16.9, 58.6 16.9, 58.2 16.9, 58.2 17.1, 58.2 

1st, 99th percentile 17.8, 54.7 18.1, 53.9 18.1, 53.7 18.1, 54.4 18.1, 54.4 18, 54.6 

≥ 30 kg/m2* 861 (44.8%) 6642 (49.5%) 2307 (48.4%) 1035 (46.8%) 780 (45.5%) 473 (45.7%) 

Missing** 443 (18.7%) 38777 (74.3%) 1538 (24.4%) 587 (21.0%) 363 (17.5%) 236 (18.6%) 

Calculated BMI (kg/m2)  1957 13403 4807 2242 1739 1045 

Mean (SD) 30.5 (8) 31.3 (7.9) 31.1 (7.9) 30.7 (7.9) 30.6 (7.9) 30.3 (7.7) 

Median (Q1, Q3) 28.9 (24.7, 34.8) 30 (25.6, 35.7) 29.7 (25.3, 35.6) 29.4 (25, 35.2) 29.2 (24.9, 35) 29.1 (24.7, 34.4) 

Min, Max 15.3, 68.3 14.6, 70.7 15.3, 69.5 15.1, 69.5 15.8, 69.5 15.1, 68.3 

1st, 99th percentile 17.6, 56.3 18.2, 54.9 17.9, 54.3 17.7, 54.8 17.7, 54.3 18.1, 53.5 

≥ 30 kg/m2* 865 (44.2%) 6659 (49.7%) 2330 (48.5%) 1039 (46.3%) 790 (45.4%) 470 (45.0%) 

Missing 408 (17.3%) 38782 (74.3%) 1495 (23.7%) 555 (19.8%) 337 (16.2%) 226 (17.8%) 

*Percent calculated out of number of observations for that variable. Percent missing calculated out of algorithm numerator (N). Weight, height, and EHR-BMI averaged over multiple 
records from a single encounter, with BMI calculated from the average weight and height. Informed trimming excluded weights ≤75 lbs or ≥ 700 lbs, heights ≤ 48 in or ≥ 84 in, and 
EHR-BMI ≤ 11.7 or ≥ 79.6 kg/m2 (citation: Das et al). Statistical trimming excluded weights, heights, and EHR-BMI below the 1st and 99th percentile. 
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Table 60. Comparison of Body Mass Index Calculations for Heart Failure Algorithms by Inpatient/Outpatient Setting, UNC Health, 2016-
2019 

  

Hospital Problem 
List 

Patient Problem 
List 

Any Diagnosis 
Position (Inpatient) 

Diagnosis on ≥2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

N 2026 339 8435 43750 4117 2185 

Number of BMI measurements per 
encounter, mean (SD) 

1.4 (0.54) 1.3 (0.51) 1.2 (0.46) 1.0 (0.11) 1.3 (0.51) 1.0 (0.12) 

Untrimmed data             

Weight measurement, n 1792 290 7010 8446 3618 1684 

Min, Max Value (lbs) 71.1, 515.9 76.9, 462.9 70.1, 614 69.2, 589.7 76.1, 565.9 76, 561 

1st, 99th percentile 93.2, 391 81.6, 394.7 96, 391.9 100.8, 370.2 96.2, 393 102.1, 382.6 

Missing 234 (11.5%) 49 (14.5%) 1,425 (16.9%) 35,304 (80.7%) 499 (12.1%) 501 (22.9%) 

Height measurement, n 1751 281 6650 7275 3483 1501 

Min, Max Value (inches) 54, 81 55.2, 84 2, 80 1, 81 24, 80 40, 79 

1st, 99th percentile 58, 75 56, 77 57.1, 76 57, 76 57, 75.1 58, 75 

Missing 275 (13.6%) 58 (17.1%) 1,785 (21.2%) 36,475 (83.4%) 634 (15.4%) 684 (31.3%) 

EHR Calculated BMI (kg/m2) 1684 275 6488 7170 3367 1478 

Mean (SD) 32.1 (48) 29.8 (8.7) 36.7 (451.4) 49.3 (720.2) 31 (10.8) 32.5 (8.5) 

Median (Q1, Q3) 29.2 (24.6, 35.3) 27.8 (24, 34.4) 29.4 (25, 35.4) 30.4 (26, 36.2) 29.2 (24.8, 35.3) 31 (26.6, 36.7) 

Min, Max 12, 1966.1 14.1, 66.6 10.6, 36385.3 5.2, 36287.6 10.6, 374.1 15.3, 92.3 

1st, 99th percentile 16.9, 60.1 14.5, 60.6 17, 61.7 17.9, 59.4 17.1, 61.8 18.6, 60 

≥ 30 kg/m2* 771 (45.8%) 111 (40.4%) 3041 (46.9%) 3765 (52.5%) 1544 (45.9%) 823 (55.7%) 

Missing 342 (16.9%) 64 (18.9%) 1,947 (23.1%) 36,580 (83.6%) 750 (18.2%) 707 (32.4%) 

Calculated BMI from average weight 
and height (kg/m2) 

1750 280 6631 7182 3479 1481 

Mean (SD) 30.9 (8.9) 29.8 (8.6) 42.9 (687.8) 79.1 (2245) 39.7 (506.1) 32.6 (8.7) 

Median (Q1, Q3) 29.2 (24.7, 35.3) 27.9 (24, 34.5) 29.4 (25.1, 35.6) 30.5 (26.1, 36.3) 29.3 (24.9, 35.5) 31.1 (26.7, 36.8) 

Min, Max 12.4, 81.6 13.9, 66.6 12.4, 47424.9 12.8, 140600 12.4, 29877 15.3, 92.2 

1st, 99th percentile 16.9, 59.7 14.5, 60.6 17.1, 61.7 17.9, 59.4 17.1, 62.7 18.6, 60.2 

≥ 30 kg/m2* 792 (45.3%) 111 (39.6%) 3108 (46.9%) 3796 (52.9%) 1602 (46.0%) 830 (56.0%) 

Missing 276 (13.6%) 59 (17.4%) 1,804 (21.4%) 36,568 (83.6%) 638 (15.5%) 704 (32.2%) 

Informed trimming             
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Weight measurement, n 1791 290 7009 8443 3618 1684 

Min, Max Value (lbs) 76.9, 515.9 76.9, 462.9 76.9, 614 75, 589.7 79.2, 565.9 76, 561 

1st, 99th percentile 93.2, 391 81.6, 394.7 97, 391.9 101, 371 96.8, 393 102.1, 382.6 

Missing 235 (11.6%) 49 (14.5%) 1,426 (16.9%) 35,307 (80.7%) 499 (12.1%) 501 (22.9%) 

Height, n 1751 281 6646 7265 3481 1500 

Min, Max Value (in) 54, 81 55.2, 84 49, 80 51, 81 52, 80 54, 79 

1st, 99th percentile 58, 75 56, 77 58, 76 57, 76 57, 75.1 58, 75 

Missing 275 (13.6%) 58 (17.1%) 1,789 (21.2%) 36,485 (83.4%) 636 (15.4%) 685 (31.4%) 

EHR Calculated BMI (kg/m2) 1684 275 6479 7156 3362 1476 

Mean (SD) 30.9 (8.9) 29.8 (8.7) 31 (8.8) 31.8 (8.3) 30.9 (8.8) 32.4 (8.3) 

Median (Q1, Q3) 29.2 (24.6, 35.3) 27.8 (24, 34.4) 29.3 (25, 35.4) 30.4 (26, 36.1) 29.2 (24.8, 35.2) 31 (26.6, 36.7) 

Min, Max 12, 77.8 14.1, 66.6 12, 78.6 12.8, 77.3 12, 77.8 15.3, 77.3 

1st, 99th percentile 16.9, 59.7 14.5, 60.6 17.1, 59.7 17.9, 58.5 17.1, 59.9 18.6, 59.3 

≥ 30 kg/m2* 769 (45.7%) 111 (40.4%) 3031 (46.8%) 3753 (52.4%) 1539 (45.8%) 821 (55.6%) 

Missing 342 (16.9%) 64 (18.9%) 1,956 (23.2%) 36,594 (83.6%) 755 (18.3%) 709 (32.4%) 

Calculated BMI (kg/m2)  1749 280 6626 7170 3477 1480 

Mean (SD) 30.8 (8.8) 29.8 (8.6) 31.1 (8.9) 31.9 (8.4) 30.9 (8.9) 32.6 (8.6) 

Median (Q1, Q3) 28.9 (24.7, 35.2) 27.7 (24.3, 34.3) 29.3 (25, 35.4) 30.5 (26.1, 36.3) 29.1 (24.7, 35.3) 31.1 (26.8, 36.8) 

Min, Max 13.2, 79.1 14, 65.7 12.6, 91.3 12.8, 92.2 12.8, 84.1 15.3, 92.2 

1st, 99th percentile 16.9, 59.2 14.4, 58.9 17.1, 60.1 18, 58.8 17.1, 60.2 18.6, 60 

≥ 30 kg/m2* 778 (44.5%) 113 (40.4%) 3085 (46.6%) 3787 (52.8%) 1587 (45.6%) 830 (56.1%) 

Missing 277 (13.7%) 59 (17.4%) 1,809 (21.4%) 36,580 (83.6%) 640 (15.5%) 705 (32.3%) 

Statistical Trimming             

Weight measurement, n 1757 279 6850 8307 3537 1659 

Min, Max Value (lbs) 98, 371.5 98.7, 371.2 98, 373 97.6, 373 98, 371.5 98, 373 

1st, 99th percentile 100.8, 350.9 106.5, 348.5 103.5, 350 106.9, 343.3 102.4, 349.7 106.5, 340 

Missing 269 (13.3%) 60 (17.7%) 1,585 (18.8%) 35,443 (81.0%) 580 (14.1%) 526 (24.1%) 

Height, n  1751 276 6854 7204 3452 1489 

Min, Max Value (in) 57, 76 57, 76 57, 76 57, 76 57, 76 57, 76 

1st, 99th percentile 58, 75 57, 76 58, 75 58, 75 58, 75 58, 75 

Missing 275 (13.6%) 63 (18.6%) 1,581 (18.7%) 36,546 (83.5%) 665 (16.2%) 696 (31.9%) 
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EHR Calculated BMI (kg/m2) 1655 267 6350 7058 3295 1459 

Mean (SD) 30.7 (8.1) 29.7 (7.9) 30.7 (7.9) 31.6 (7.7) 30.6 (7.9) 32.1 (7.6) 

Median (Q1, Q3) 29.1 (24.7, 35.1) 27.8 (24.3, 34.3) 29.3 (25, 35) 30.3 (26.1, 35.9) 29.2 (24.8, 34.9) 31 (26.6, 36.4) 

Min, Max 16.9, 58.9 17, 58.6 16.9. 58.9 17, 58.9 16.9, 58.6 17, 57.6 

1st, 99th percentile 18.1, 54.7 17.2, 54.9 18, 53.4 18.4, 54.2 17.8, 53.2 18.6, 53.9 

≥ 30 kg/m2* 753 (45.5%) 108 (40.4%) 2955 (46.5%) 3687 (52.2%) 1497 (45.4%) 806 (55.2%) 

Missing** 371 (18.3%) 72 (21.2%) 2,085 (24.7%) 36,692 (83.9%) 822 (20.0%) 726 (33.2%) 

Calculated BMI (kg/m2)  1691 280 6402 7001 3348 1449 

Mean (SD) 306 (8) 29.8 (8.1) 30.8 (8) 31.7 (7.8) 30.6 (7.9) 32.2 (7.8) 

Median (Q1, Q3) 29.2 (24.8, 34.9) 27.9 (24.3, 34.5) 29.3 (25.1, 35.2) 30.4 (26.2, 36.1) 29.2 (24.9, 35) 31.1 (26.7, 36.4) 

Min, Max 15.3, 68.3 15.6, 60.7 14.6, 70.7 15.1, 65.6 15.3, 69.5 16.4, 65.6 

1st, 99th percentile 17.6, 56 17.2, 58.6 17.8, 54.5 18.5, 55.2 17.7, 53.9 18.6, 54.5 

≥ 30 kg/m2* 760 (44.9%) 105 (37.5%) 2971 (46.4%) 3688 (52.7%) 1520 (45.4%) 807 (55.7%) 

Missing 335 (16.5%) 59 (17.4%) 2,033 (24.1%) 36,749 (84.0%) 769 (18.7%) 736 (33.7%) 

*Percent calculated out of number of observations for that variable. Percent missing calculated out of algorithm numerator (N). Weight, height, and EHR-BMI averaged over multiple 
records from a single encounter, with BMI calculated from the average weight and height. Informed trimming excluded weights ≤75 lbs or ≥ 700 lbs, heights ≤ 48 in or ≥ 84 in, and 
EHR-BMI ≤ 11.7 or ≥ 79.6 kg/m2 (citation: Das et al). Statistical trimming excluded weights, heights, and EHR-BMI below the 1st and 99th percentile. 

 



 

197 

Table 61. Comorbidity Prevalence with 180-day and 365-day Lookback by Acute Myocardial 
Infarction Algorithms, UNC Health, 2016-2019 

 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab 
or Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis Position 

+ Lab or 
Procedure 

N 8383 9326 8549 6580 6120 

180-day lookback      

Comorbidities      

Hypertension 4,638 (55.3%) 5,368 (57.6%) 4,901 (57.3%) 3,471 (52.8%) 3,233 (52.8%) 

Diabetes 3,638 (43.4%) 4,123 (44.2%) 3,780 (44.2%) 2,813 (42.8%) 2,616 (42.7%) 

Kidney disease 4,360 (52.0%) 5,009 (53.7%) 4,604 (53.9%) 3,157 (48.0%) 2,946 (48.1%) 

Heart failure 4,216 (50.3%) 4,883 (52.4%) 4,454 (52.1%) 3,102 (47.1%) 2,876 (47.0%) 

Atrial fibrillation 1,333 (15.9%) 1,619 (17.4%) 1,461 (17.1%) 1,001 (15.2%) 914 (14.9%) 

Previous stroke or TIA 988 (11.8%) 1,221 (13.1%) 1,113 (13.0%) 725 (11.0%) 680 (11.1%) 

Any comorbidity  6,658 (79.4%) 7,454 (79.9%) 6,841 (80.0%) 5,009 (76.1%) 4,671 (76.3%) 

Comorbidity Burden       

0 1,725 (20.6%) 1,872 (20.1%) 1,708 (20.0%) 1,571 (23.9%) 1,449 (23.7%) 

1 1,366 (16.3%) 1,398 (15.0%) 1,299 (15.2%) 1,088 (16.5%) 1,022 (16.7%) 

2 1,349 (16.1%) 1,435 (15.4%) 1,321 (15.5%) 1,034 (15.7%) 963 (15.7%) 

3 1,517 (18.1%) 1,646 (17.6%) 1,520 (17.8%) 1,067 (16.2%) 1,008 (16.5%) 

4 1,680 (20.0%) 2,002 (21.5%) 1,821 (21.3%) 1,263 (19.2%) 1,166 (19.1%) 

5 638 (7.6%) 829 (8.9%) 752 (8.8%) 482 (7.3%) 443 (7.2%) 

6 108 (1.3%) 144 (1.5%) 128 (1.5%) 75 (1.1%) 69 (1.1%) 

365-day lookback      

Comorbidities      

Hypertension 4,690 (55.9%) 5,422 (58.1%) 4,950 (57.9%) 3,515 (53.4%) 3,275 (53.5%) 

Diabetes 3,665 (43.7%) 4,142 (44.4%) 3,799 (44.4%) 2,829 (43.0%) 2,632 (43.0%) 

Kidney disease 4,387 (52.3%) 5,047 (54.1%) 4,637 (54.2%) 3,186 (48.4%) 2,972 (48.6%) 

Heart failure 4,243 (50.6%) 4,914 (52.7%) 4,482 (52.4%) 3,130 (47.6%) 2,901 (47.4%) 

Atrial fibrillation 1,355 (16.2%) 1,644 (17.6%) 1,484 (17.4%) 1,020 (15.5%) 932 (15.2%) 

Previous stroke or TIA 1,004 (12.0%) 1,241 (13.3%) 1,132 (13.2%) 739 (11.2%) 693 (11.3%) 

Any comorbidity 6,688 (79.8%) 7,488 (80.3%) 6,872 (80.4%) 5,038 (76.6%) 4,698 (76.8%) 

Comorbidity Burden       

0 1,695 (20.2%) 1,838 (19.7%) 1,677 (19.6%) 1,542 (23.4%) 1,422 (23.2%) 

1 1,350 (16.1%) 1,379 (14.8%) 1,280 (15.0%) 1,071 (16.3%) 1,005 (16.4%) 

2 1,350 (16.1%) 1,444 (15.5%) 1,332 (15.6%) 1,046 (15.9%) 976 (15.9%) 

3 1,526 (18.2%) 1,652 (17.7%) 1,526 (17.9%) 1,074 (16.3%) 1,015 (16.6%) 

4 1,704 (20.3%) 2,025 (21.7%) 1,839 (21.5%) 1,279 (19.4%) 1,179 (19.3%) 

5 648 (7.7%) 841 (9.0%) 764 (8.9%) 490 (7.4%) 451 (7.4%) 

6 110 (1.3%) 147 (1.6%) 131 (1.5%) 78 (1.2%) 72 (1.2%) 

TIA: transient ischemic attack. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 180 days or 365 days prior to 
event-qualifying encounter. Specific codes for comorbidities are listed in the Supplement. Comorbidity burden is the sum of the 6 
listed comorbidities.  
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Table 62. Comorbidity Prevalence with 180-day and 365-Day Lookback by Heart Failure Algorithms, UNC Health, 2016-2019 

 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Medication 

First Diagnosis 
Position 

N 2365 52185 6302 2797 2076 1271 

180-day lookback       

Comorbidities       

Hypertension 1,684 (71.2%) 45,688 (87.6%) 5,209 (82.5%) 2,243 (80.2%) 1,669 (80.4%) 1,027 (80.8%) 

Diabetes 1,066 (45.1%) 25,925 (49.7%) 3,001 (47.5%) 1,255 (44.9%) 967 (46.6%) 580 (45.6%) 

Kidney disease 1,429 (60.4%) 31,993 (61.3%) 3,810 (60.4%) 1,647 (58.9%) 1,327 (63.9%) 809 (63.7%) 

Ischemic Heart Disease 1,457 (61.6%) 33,637 (64.5%) 4,072 (64.5%) 1,714 (61.3%) 1,354 (65.2%) 807 (63.5%) 

Atrial fibrillation 594 (25.1%) 14,201 (27.2%) 1,978 (31.3%) 724 (25.9%) 602 (29.0%) 347 (27.3%) 

Previous stroke or TIA 217 (9.2%) 6,812 (13.1%) 771 (12.2%) 333 (11.9%) 257 (12.4%) 152 (12.0%) 

Any comorbidity  2,185 (92.4%) 50,102 (96.0%) 6,032 (95.5%) 2,624 (93.8%) 1,975 (95.1%) 1,198 (94.3%) 

Comorbidity Burden              

0 180 (7.6%) 2,083 (4.0%) 281 (4.5%) 173 (6.2%) 101 (4.9%) 73 (5.7%) 

1 336 (14.2%) 5,261 (10.1%) 732 (11.6%) 385 (13.8%) 241 (11.6%) 152 (12.0%) 

2 468 (19.8%) 9,881 (18.9%) 1,143 (18.1%) 531 (19.0%) 377 (18.2%) 220 (17.3%) 

3 606 (25.6%) 14,122 (27.1%) 1,738 (27.5%) 726 (26.0%) 550 (26.5%) 347 (27.3%) 

4 542 (22.9%) 14,176 (27.2%) 1,607 (25.5%) 663 (23.7%) 541 (26.1%) 330 (26.0%) 

5 209 (8.8%) 5,809 (11.1%) 691 (10.9%) 275 (9.8%) 229 (11.0%) 125 (9.8%) 

6 24 (1.0%) 853 (1.6%) 121 (1.9%) 44 (1.6%) 37 (1.8%) 24 (1.9%) 

365-day lookback       

Comorbidities             

Hypertension 1,694 (71.6%) 45,732 (87.6%) 5,221 (82.7%) 2,251 (80.5%) 1,674 (80.6%) 1,028 (80.9%) 

Diabetes 1,072 (45.3%) 25,964 (49.8%) 3,008 (47.6%) 1,262 (45.1%) 969 (46.7%) 581 (45.7%) 

Kidney disease 1,436 (60.7%) 32,053 (61.4%) 3,829 (60.7%) 1,661 (59.4%) 1,333 (64.2%) 811 (63.8%) 

Ischemic Heart Disease 1,464 (61.9%) 33,683 (64.5%) 4,082 (64.7%) 1,725 (61.7%) 1,358 (65.4%) 808 (63.6%) 

Atrial fibrillation 596 (25.2%) 14,263 (27.3%) 1,986 (31.5%) 730 (26.1%) 605 (29.1%) 349 (27.5%) 

Previous stroke or TIA 221 (9.3%) 6,847 (13.1%) 776 (12.3%) 335 (12.0%) 259 (12.5%) 153 (12.0%) 

Any comorbidity 2,190 (92.6%) 50,134 (96.1%) 6,040 (95.7%) 2,636 (94.2%) 1,981 (95.4%) 1,201 (94.5%) 

Comorbidity Burden             
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 Problem List 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Medication 

First Diagnosis 
Position 

0 175 (7.4%) 2,051 (3.9%) 273 (4.3%) 161 (5.8%) 95 (4.6%) 70 (5.5%) 

1 332 (14.0%) 5,228 (10.0%) 729 (11.5%) 384 (13.7%) 242 (11.7%) 153 (12.0%) 

2 468 (19.8%) 9,879 (18.9%) 1,137 (18.0%) 532 (19.0%) 377 (18.2%) 221 (17.4%) 

3 608 (25.7%) 14,112 (27.0%) 1,737 (27.5%) 730 (26.1%) 551 (26.5%) 347 (27.3%) 

4 544 (23.0%) 14,219 (27.2%) 1,620 (25.7%) 668 (23.9%) 543 (26.2%) 330 (26.0%) 

5 213 (9.0%) 5,832 (11.2%) 694 (11.0%) 278 (9.9%) 231 (11.1%) 126 (9.9%) 

6 25 (1.1%) 864 (1.7%) 123 (1.9%) 44 (1.6%) 37 (1.8%) 24 (1.9%) 

TIA: transient ischemic attack. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 180 days or 365 days prior to event-qualifying encounter. Specific codes for 
comorbidities are listed in the Supplement. Comorbidity burden is the sum of the 6 listed comorbidities. *Number in shaded rows represent the number of observations for each 
lookback period; percentage is percent of total using all available lookback (N). Percentages for rest of table are calculated from the number of observations for each lookback 
period (n). 
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Table 63. Comorbidity Prevalence with 180-Day and 365-Day Lookback by Heart Failure Algorithms and Patient Setting, UNC Health, 
2016-2019 

 Hospital Problem 
List 

Patient Problem 
List 

Any Diagnosis 
Position 

(Inpatient) 

Diagnosis on ≥ 2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

N 3,509 339 8,555 43,750 4,117 2,185 

180-day lookback, n (%)* 2,026 (57.7%) 339 (100.0%) 8,431 (98.6%) 43,730 (99.95%) 4,116 (99.98%) 2,184 (99.95%) 

Comorbidities             

Hypertension 1,418 (70.0%) 266 (78.5%) 6,812 (80.8%) 38,876 (88.9%) 3,351 (81.4%) 1,852 (84.8%) 

Diabetes 901 (44.5%) 165 (48.7%) 3,952 (46.9%) 21,973 (50.2%) 1,964 (47.7%) 1,031 (47.2%) 

Kidney disease 1,198 (59.1%) 231 (68.1%) 4,724 (56.0%) 27,269 (62.3%) 2,629 (63.9%) 1,179 (54.0%) 

Ischemic Heart Disease 1,225 (60.5%) 232 (68.4%) 5,215 (61.8%) 28,422 (65.0%) 2,736 (66.5%) 1,328 (60.8%) 

Atrial fibrillation 489 (24.1%) 105 (31.0%) 2,102 (24.9%) 12,099 (27.7%) 1,244 (30.2%) 733 (33.5%) 

Previous stroke or TIA 172 (8.5%) 45 (13.3%) 1,051 (12.5%) 5,761 (13.2%) 534 (13.0%) 236 (10.8%) 

Any comorbidity 1,866 (92.1%) 319 (94.1%) 7,922 (93.9%) 42,180 (96.4%) 3,934 (95.6%) 2,089 (95.6%) 

Comorbidity Burden              

0 160 (7.9%) 20 (5.9%) 513 (6.1%) 1,570 (3.6%) 183 (4.4%) 96 (4.4%) 

1 312 (15.4%) 24 (7.1%) 1,146 (13.6%) 4,115 (9.4%) 460 (11.2%) 271 (12.4%) 

2 407 (20.1%) 61 (18.0%) 1,657 (19.6%) 8,224 (18.8%) 727 (17.7%) 413 (18.9%) 

3 507 (25.0%) 99 (29.2%) 2,190 (26.0%) 11,932 (27.3%) 1,093 (26.5%) 642 (29.4%) 

4 462 (22.8%) 80 (23.6%) 1,960 (23.2%) 12,216 (27.9%) 1,092 (26.5%) 513 (23.5%) 

5 160 (7.9%) 49 (14.5%) 828 (9.8%) 4,981 (11.4%) 475 (11.5%) 216 (9.9%) 

6 18 (0.9%) <10 141 (1.7%) 712 (1.6%) 87 (2.1%) 34 (1.6%) 

365-day lookback, n (%)* 2,026 (57.7%) 339 (100.0%) 8,437 (98.6%) 43,736 (99.97%) 4,116 (99.98%) 2,184 (99.95%) 

Comorbidities             

Hypertension 1,428 (70.5%) 266 (78.5%) 6,851 (81.2%) 38,881 (88.9%) 3,363 (81.7%) 1,852 (84.8%) 

Diabetes 907 (44.8%) 165 (48.7%) 3,977 (47.1%) 21,987 (50.3%) 1,970 (47.9%) 1,032 (47.2%) 

Kidney disease 1,205 (59.5%) 231 (68.1%) 4,762 (56.5%) 27,291 (62.4%) 2,646 (64.3%) 1,181 (54.1%) 

Ischemic Heart Disease 1,232 (60.8%) 232 (68.4%) 5,243 (62.2%) 28,440 (65.0%) 2,744 (66.7%) 1,330 (60.9%) 

Atrial fibrillation 491 (24.2%) 105 (31.0%) 2,130 (25.3%) 12,133 (27.7%) 1,251 (30.4%) 734 (33.6%) 

Previous stroke or TIA 175 (8.6%) 46 (13.6%) 1,063 (12.6%) 5,784 (13.2%) 538 (13.1%) 237 (10.8%) 

Any comorbidity  1,871 (92.3%) 319 (94.1%) 7,949 (94.2%) 42,185 (96.4%) 3,942 (95.7%) 2,089 (95.6%) 
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 Hospital Problem 
List 

Patient Problem 
List 

Any Diagnosis 
Position 

(Inpatient) 

Diagnosis on ≥ 2 
Occasions 

(Outpatient) 

Any Diagnosis 
Position + Lab or 

Medication 
(Inpatient) 

Diagnosis on ≥ 2 
Occasions + 
Prescription 
(Outpatient) 

Comorbidity Burden             

0 155 (7.7%) 20 (5.9%) 486 (5.8%) 1,565 (3.6%) 175 (4.3%) 96 (4.4%) 

1 308 (15.2%) 24 (7.1%) 1,123 (13.3%) 4,105 (9.4%) 457 (11.1%) 271 (12.4%) 

2 407 (20.1%) 61 (18.0%) 1,665 (19.7%) 8,214 (18.8%) 724 (17.6%) 410 (18.8%) 

3 509 (25.1%) 99 (29.2%) 2,192 (26.0%) 11,920 (27.2%) 1,091 (26.5%) 643 (29.4%) 

4 464 (22.9%) 80 (23.6%) 1,990 (23.6%) 12,229 (28.0%) 1,104 (26.8%) 514 (23.5%) 

5 165 (8.1%) 48 (14.2%) 837 (9.9%) 4,995 (11.4%) 478 (11.6%) 216 (9.9%) 

6 18 (0.9%) <10 142 (1.7%) 722 (1.7%) 88 (2.1%) 35 (1.6%) 

TIA: transient ischemic attack. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using 180 days or 365 days prior to event-qualifying encounter. Specific codes for 
comorbidities are listed in the Supplement. Comorbidity burden is the sum of the 6 listed comorbidities. *Number in shaded rows represent the number of observations for 
each lookback period; percentage is percent of total using all available lookback (N). Percentages for rest of table are calculated from the number of observations for each 
lookback period (n). 
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Table 64. Excluded Groups from Acute Myocardial Infarction Algorithms, UNC Health, 2016-2019 

2016-2019 

Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab or 

Procedure 

Any Diagnosis 
Position without Lab 

or Procedure 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 

1st or 2nd 
Position without 
Lab or Procedure 

N 9326 8549 777 6580 6120 460 

Age, years       
Mean (SD) 68.1 (14.3) 68.1 (14.3) 67.8 (14.9) 67.1 (14.2) 67.2 (14.1) 66.4 (14.9) 

Median (Q1, Q3) 68.7 (58.2, 78.7) 68.7 (58.3, 78.6) 68.7 (57.1, 79.5) 67.5 (57.1, 77.5) 67.6 (57.3, 77.4) 66.7 (55.4, 79.0) 

Age category       

20-34 years 132 (1.4%) 117 (1.4%) 15 (1.9%) 87 (1.3%) 78 (1.3%) <10 

35-44 years 443 (4.8%) 397 (4.6%) 46 (5.9%) 351 (5.3%) 319 (5.2%) 32 (7.0%) 

45-54 years 1,189 (12.7%) 1,083 (12.7%) 106 (13.6%) 907 (13.8%) 840 (13.7%) 67 (14.6%) 

55-64 years 2,023 (21.7%) 1,868 (21.9%) 155 (19.9%) 1,504 (22.9%) 1,400 (22.9%) 104 (22.6%) 

65-74 years 2,432 (26.1%) 2,246 (26.3%) 186 (23.9%) 1,732 (26.3%) 1,628 (26.6%) 104 (22.6%) 

75-84 years 1,930 (20.7%) 1,764 (20.6%) 166 (21.4%) 1,271 (19.3%) 1,180 (19.3%) 91 (19.8%) 

≥ 85 years 1,177 (12.6%) 1,074 (12.6%) 103 (13.3%) 728 (11.1%) 675 (11.0%) 53 (11.5%) 

Female 3,979 (42.7%) 3,674 (43.0%) 305 (39.3%) 2,675 (40.7%) 2,511 (41.0%) 164 (35.7%) 

Race       

White 6,789 (72.8%) 6,223 (72.8%) 566 (72.8%) 4,830 (73.4%) 4,492 (73.4%) 338 (73.5%) 

Black 1,986 (21.3%) 1,813 (21.2%) 173 (22.3%) 1,349 (20.5%) 1,251 (20.4%) 98 (21.3%) 

Asian 73 (0.8%) 65 (0.8%) <10 55 (0.8%) 48 (0.8%) <10 

American Indian or Alaska Native 31 (0.3%) 28 (0.3%) <10 28 (0.4%) 25 (0.4%) <10 

Other 317 (3.4%) 292 (3.4%) 25 (3.2%) 229 (3.5%) 216 (3.5%) 13 (2.8%) 

Unknown 130 (1.4%) 128 (1.5%) <10 89 (1.4%) 88 (1.4%) <10 

Ethnicity       

Hispanic/Latino 250 (2.7%) 231 (2.7%) 19 (2.4%) 188 (2.9%) 177 (2.9%) 11 (2.4%) 

Unknown 157 (1.7%) 150 (1.8%) 7 (0.9%) 106 (1.6%) 102 (1.7%) <10 

Calculated BMI (kg/m2), n 7627 7143 484 5408 5129 279 

Mean (SD) 29.3 (6.7) 29.3 (6.7) 29 (6.8) 29.4 (6.6) 29.5 (6.6) 292. (6.5) 

Median (Q1, Q3) 28.3 (24.7, 33) 28.3 (24.7, 33) 28.1 (24.4, 32.1) 28.4 (25, 33.1) 28.4 (25, 33.1) 28.3 (24.4, 32.1) 

≥ 30 kg/m2* 2,977 (35.7%) 2,802 (36.3%) 175 (28.7%) 2,162 (36.5%) 2,056 (36.9%) 106 (29.9%) 

Missing 1699 (18.2%) 1406 (16.4%) 293 (37.7%) 1172 (17.8%) 991 (16.2%) 181 (39.3%) 

Smoking status, n 7514 6991 523 5281 4975 306 

Current* 1,836 (24.4%) 1,691 (24.2%) 145 (27.7%) 1,385 (26.2%) 1,284 (25.8%) 101 (33.0%) 

Former* 2,638 (35.1%) 2,457 (35.1%) 181 (34.6%) 1,780 (33.7%) 1,687 (33.9%) 93 (30.4%) 

Never* 2,819 (37.5%) 2,636 (37.7%) 183 (35.0%) 1,974 (37.4%) 1,871 (37.6%) 103 (33.7%) 

Unknown* 221 (2.9%) 207 (3.0%) 14 (2.7%) 142 (2.7%) 133 (2.7%) <10 

Missing 1812 (19.4%) 1558 (18.2%) 254 (32.7%) 1299 (19.7%) 1145 (18.7%) 154 (33.5%) 

Mortality       
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7-day 376 (4.0%) 344 (4.0%) 32 (4.1%) 201 (3.1%) 182 (3.0%) 19 (4.1%) 

30-day 730 (7.8%) 672 (7.9%) 58 (7.5%) 387 (5.9%) 355 (5.8%) 32 (7.0%) 

1-year 1,630 (17.5%) 1,512 (17.7%) 118 (15.2%) 926 (14.1%) 867 (14.2%) 59 (12.8%) 

Comorbidities       

Hypertension 5,640 (60.5%) 5,161 (60.4%) 479 (61.6%) 3,686 (56.0%) 3,442 (56.2%) 244 (53.0%) 

Diabetes 4,278 (45.9%) 3,928 (45.9%) 350 (45.0%) 2,933 (44.6%) 2,731 (44.6%) 202 (43.9%) 

Kidney disease 5,226 (56.0%) 4,807 (56.2%) 419 (53.9%) 3,316 (50.4%) 3,097 (50.6%) 219 (47.6%) 

Heart failure 5,099 (54.7%) 4,660 (54.5%) 439 (56.5%) 3,277 (49.8%) 3,043 (49.7%) 234 (50.9%) 

Atrial fibrillation 1,772 (19.0%) 1,598 (18.7%) 174 (22.4%) 1,110 (16.9%) 1,014 (16.6%) 96 (20.9%) 

Previous stroke or TIA 1,334 (14.3%) 1,217 (14.2%) 117 (15.1%) 799 (12.1%) 750 (12.3%) 49 (10.7%) 

Any comorbidity (other than IHD) 7,687 (82.4%) 7,061 (82.6%) 626 (80.6%) 5,200 (79.0%) 4,853 (79.3%) 347 (75.4%) 

Number of comorbidities 2.5 (1.7) 2.5 (1.7) 2.27 (1.8) 2.3 (1.7) 2.3 (1.7) 1.76 (2.0) 

Comorbidity Burden (Excluding 
IHD) 

      

0 1,639 (17.6%) 1,488 (17.4%) 151 (19.4%) 1,380 (21.0%) 1,267 (20.7%) 113 (24.6%) 

1 1,351 (14.5%) 1,252 (14.6%) 99 (12.7%) 1,057 (16.1%) 990 (16.2%) 67 (14.6%) 

2 1,454 (15.6%) 1,342 (15.7%) 112 (14.4%) 1,057 (16.1%) 987 (16.1%) 70 (15.2%) 

3 1,711 (18.3%) 1,584 (18.5%) 127 (16.3%) 1,126 (17.1%) 1,066 (17.4%) 60 (13.0%) 

4 2,072 (22.2%) 1,887 (22.1%) 185 (23.8%) 1,322 (20.1%) 1,221 (20.0%) 101 (22.0%) 

5 925 (9.9%) 841 (9.8%) 84 (10.8%) 544 (8.3%) 503 (8.2%) 41 (8.9%) 

6 174 (1.9%) 155 (1.8%) 19 (2.4%) 94 (1.4%) 86 (1.4%) <10 

Myocardial Infarction Severity 
Indicators       
STEMI 2,266 (24.3%) 1,857 (21.7%) 409 (52.6%) 1,931 (29.3%) 1,637 (26.7%) 294 (63.9%) 

NSTEMI 6,753 (72.4%) 6,466 (75.6%) 287 (36.9%) 4,545 (69.1%) 4,411 (72.1%) 134 (29.1%) 

Type 2 308 (3.3%) 268 (3.1%) 40 (5.1%) 133 (2.0%) 114 (1.9%) 19 (4.1%) 

Unspecified MI type 127 (1.4%) 86 (1.0%) 41 (5.3%) 67 (1.0%) 53 (0.9%) 14 (3.0%) 

Other MI type <10 <10 <10 <10 <10 0 

Recurrent MI 15 (0.2%) 13 (0.2%) <10 11 (0.2%) 10 (0.2%) <10 

Cardiogenic shock 102 (1.1%) 92 (1.1%) 10 (1.3%) 64 (1.0%) 55 (0.9%) <10 

Acute heart failure 715 (7.7%) 661 (7.7%) 54 (6.9%) 407 (6.2%) 376 (6.1%) 31 (6.7%) 

BMI: body mass index. IHD: ischemic heart disease. NSTEMI: Non-ST segment elevation myocardial infarction. STEMI: ST-segment elevation myocardial infarction. Asian race 
group includes Native Hawaiian and Pacific Islander. Unknown race includes “no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes 
using all available lookback period (maximum of 1664 days). Specific codes for comorbidities are listed in the Supplement. Body mass index calculated from average weight and 
height over multiple records for a single encounter within 1 year of case encounter. Weights and heights below the 1st or above the 99th percentile were excluded before calculating 
BMI. Sensitivity analysis limiting lookback period of 180 days and 365 days prior to event shown in Supplement. Current smoker includes current every day smoker, current some 
days smoker, smoker (current status unknown), heavy smoker, and light smoker. Unknown smoking status includes “unknown if ever” and “no information”. Smoking status 
determined from the first record, when there were multiple records per encounter. Mortality during hospitalization includes death dates within 7 days of discharge date. 30-day and 
1-year mortality calculated from discharge date. STEMI defined as codes I21.0, I21.1, I21.2, I21.3; NSTEMI defined as code I21.4; Type 2 MI defined as code I21.A1; Unspecified 
MI type defined as code I21.9; other MI type defined as I21.A9; recurrent MI defined as code I22. Cardiogenic shock defined as code R57.0. Acute heart failure defined as codes 
I50.21, I50.23, I50.31, I50.33, I50.41, I50.43, I50.811, and I50.813. MI subtype pulled from problem list at event qualifying encounter for algorithm Problem List and from the 
hospital discharge or billing list for the other algorithms. *Percent in each category calculated as percent of available observations. 
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Table 65. Excluded Groups from Heart Failure Algorithms, UNC Health, 2016-2019 

2016-2019 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab or 

Medication 

Any Diagnosis 
Position without Lab 

or Medication 

1st or 2nd 
Diagnosis Position 

1st or 2nd Diagnosis 
Position + Lab or 

Medication 

1st or 2nd 
Position without 

Lab or Medication 

N 52185 6302 45883 2797 2076 721 

Age, years           

Mean (SD) 70.3 (14.1) 70.9 (14.4) 70.2 (14.1) 69.7 (15.6) 71.4 (15.4) 66.5 (15.7) 

Median (Q1, Q3) 71.5 (61.2, 80.9) 72.2 (61.1, 82.1) 71.3 (61.1, 80.7) 71.2 (59.1, 82.2) 73.6 (60.7, 83.5) 66.8 (56.7, 78.4) 

Age category           

20-34 years 740 (1.4%) 84 (1.3%) 657 (1.4%) 53 (1.9%) 31 (1.5%) 22 (3.1%) 

35-44 years 1,775 (3.4%) 216 (3.4%) 1,560 (3.4%) 135 (4.8%) 85 (4.1%) 50 (6.9%) 

45-54 years 4,954 (9.5%) 603 (9.6%) 4,351 (9.5%) 278 (9.9%) 190 (9.2%) 88 (12.2%) 

55-64 years 9,864 (18.9%) 1,166 (18.5%) 8,702 (19.0%) 497 (17.8%) 338 (16.3%) 159 (22.1%) 

65-74 years 13,780 (26.4%) 1,543 (24.4%) 12,240 (26.7%) 629 (22.5%) 445 (21.4%) 184 (25.5%) 

75-84 years 12,929 (24.8%) 1,572 (24.9%) 11,359 (24.8%) 654 (23.4%) 520 (25.0%) 134 (18.6%) 

≥85 years 8,143 (15.6%) 1,129 (17.9%) 7,014 (15.3%) 551 (19.7%) 467 (22.5%) 84 (11.7%) 

Female 26,527 (50.8%) 3,177 (50.3%) 23,354 (50.9%) 1,411 (50.4%) 1,039 (50.0%) 372 (51.6%) 

Race           

White 35,032 (67.1%) 4,236 (67.1%) 30,802 (67.1%) 1,839 (65.7%) 1,396 (67.2%) 443 (61.4%) 

Black 14,321 (27.4%) 1,746 (27.7%) 12,580 (27.4%) 817 (29.2%) 580 (27.9%) 237 (32.9%) 

Asian 348 (0.7%) 54 (0.9%) 294 (0.6%) 27 (1.0%) 22 (1.1%) <10 

American Indian or Alaska Native 290 (0.6%) 32 (0.5%) 258 (0.6%) 13 (0.5%) <10 <10 

Other 1,176 (2.3%) 147 (2.3%) 1,029 (2.2%) 67 (2.4%) 45 (2.2%) 22 (3.1%) 

Unknown 1,018 (2.0%) 98 (1.6%) 920 (2.0%) 34 (1.2%) 25 (1.2%) <10 

Ethnicity           

Hispanic/Latino 984 (1.9%) 114 (1.8%) 870 (1.9%) 53 (1.9%) 32 (1.5%) 21 (2.9%) 

Unknown 1,154 (2.2%) 120 (1.9%) 1,034 (2.3%) 36 (1.3%) 25 (1.2%) 11 (1.5%) 

BMI (kg/m2), n 13403 4807 8606 2242 1739 503 

Mean (SD) 31.3 (7.9) 31.1 (7.9) 31.3 (7.8) 30.7 (7.9) 30.6 (7.9) 30.7 (7.7) 

Median (Q1, Q3) 30 (25.6, 35.7) 29.7 (25.3, 35.6) 30 (25.8, 35.5) 29.4 (25, 35.2) 29.2 (24.9, 35) 29.7 (25.3, 35.3) 

≥ 30 kg/m2* 6,659 (38.7%) 2,330 (42.3%) 4332 (37%) 1,039 (40.2%) 790 (41.0%) 249 (37.9%) 

Missing 38782 (74.3%) 1495 (23.7%) 37,277 (81.2%) 555 (19.8%) 337 (16.2%) 218 (30.2%) 

Smoking status, n      
     

Current* 2,300 (14.8%) 797 (15.6%) 1,507 (14.5%) 408 (17.2%) 290 (16.2%) 118 (20.1%) 

Former* 6,476 (41.8%) 2,118 (41.6%) 4,363 (41.9%) 925 (39.0%) 726 (40.6%) 199 (34.0%) 

Never* 6,388 (41.2%) 2,078 (40.8%) 4,310 (41.4%) 983 (41.4%) 729 (40.8%) 254 (43.3%) 

Unknown* 333 (2.1%) 101 (2.0%) 232 (2.2%) 58 (2.4%) 43 (2.4%) 15 (2.6%) 

Missing 36688 (70.3%) 1208 (19.2%) 35471 (77.3%) 423 (15.1%) 288 (13.9%) 135 (18.7%) 

Comorbidities           
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Hypertension 45,775 (87.7%) 5,238 (83.0%) 40,543 (88.4%) 2,258 (80.7%) 1,680 (80.9%) 578 (80.2%) 

Diabetes 25,998 (49.8%) 3,018 (47.8%) 22,986 (50.1%) 1,270 (45.4%) 974 (46.9%) 296 (41.1%) 

Kidney disease 32,143 (61.6%) 3,845 (60.9%) 28,300 (61.7%) 1,675 (59.9%) 1,339 (64.5%) 336 (46.6%) 

Ischemic Heart Disease 33,765 (64.7%) 4,099 (64.9%) 29,674 (64.7%) 1,742 (62.3%) 1,365 (65.8%) 377 (52.3%) 

Atrial fibrillation 14,327 (27.5%) 1,995 (31.6%) 12,333 (26.9%) 736 (26.3%) 607 (29.2%) 129 (17.9%) 

Previous stroke or TIA 6,920 (13.3%) 782 (12.4%) 6,139 (13.4%) 339 (12.1%) 261 (12.6%) 78 (10.8%) 

Any comorbidity 50,155 (96.1%) 6,046 (95.8%) 44,118 (96.2%) 2,640 (94.4%) 1,983 (95.5%) 657 (91.1%) 

Number of comorbidities 3.0 (1.3) 2.9 (1.4) 3.1 (1.3) 3.0 (1.4) 3.0 (1.4) 2.5 (1.4) 

Comorbidity Burden            

0 2,030 (3.9%) 267 (4.2%) 1,765 (3.8%) 157 (5.6%) 93 (4.5%) 64 (8.9%) 

1 5,180 (9.9%) 721 (11.4%) 4,460 (9.7%) 372 (13.3%) 238 (11.5%) 134 (18.6%) 

2 9,829 (18.8%) 1,123 (17.8%) 8,709 (19.0%) 529 (18.9%) 373 (18.0%) 156 (21.6%) 

3 14,128 (27.1%) 1,744 (27.6%) 12,387 (27.0%) 734 (26.2%) 552 (26.6%) 182 (25.2%) 

4 14,257 (27.3%) 1,636 (25.9%) 12,623 (27.5%) 681 (24.3%) 551 (26.5%) 130 (18.0%) 

5 5,888 (11.3%) 698 (11.1%) 5,190 (11.3%) 280 (10.0%) 232 (11.2%) 48 (6.7%) 

6 873 (1.7%) 124 (2.0%) 749 (1.6%) 44 (1.6%) 37 (1.8%) <10 

Mortality           

7-day 159 (0.3%) 48 (0.8%) 111 (0.2%) 29 (1.0%) 22 (1.1%) <10 

30-day 448 (0.9%) 124 (2.0%) 324 (0.7%) 79 (2.8%) 68 (3.3%) 11 (1.5%) 

1-year 2,268 (4.3%) 545 (8.6%) 1,723 (3.8%) 262 (9.4%) 224 (10.8%) 38 (5.3%) 

Severity Indicators           

Acute on Chronic Exacerbation 6,177 (11.8%) 423 (6.7%) 5,754 (12.5%) 211 (7.5%) 206 (9.9%) <10 

Chronic HF 8,644 (16.6%) 652 (10.3%) 7,996 (17.4%) 139 (5.0%) 76 (3.7%) 63 (8.7%) 

End Stage HF 48 (0.1%) 0 48 (0.1%) 0 0 0 

Other HF <10 <10 <10 <10 <10 0 

Unspecified HF 30,577 (58.6%) 4,736 (75.0%) 25,844 (56.3%) 2,257 (80.7%) 1,724 (83.0%) 533 (73.9%) 

Heart transplant 0 0   0 0   

LVAD placement <10 <10 0 <10 <10 0 

Pacemaker 1,306 (2.5%) 156 (2.5%) 1,152 (2.5%) 24 (0.9%) 20 (1.0%) <10 

Implantable cardiac defibrillator 1,403 (2.7%) 196 (3.1%) 1,209 (2.6%) 23 (0.8%) 21 (1.0%) <10 

BMI: body mass index. Missing: no documentation related to the variable. Unknown includes “no information”, “refused”, and “unknown”. Current smoker includes current every day smoker, current some 
days smoker, smoker (current status unknown), heavy smoker, and light smoker. Unknown includes “unknown if ever” and “no information”. Asian race group includes Native Hawaiian and Pacific Islander. 
Unknown race includes “no information”, “refused”, and “unknown”. Comorbidities defined via ICD-9-CM or ICD-10-CM codes using all available lookback period (maximum of 1664 days). Specific codes for 
comorbidities are listed in the Supplement. Body mass index calculated from average weight and height over multiple records for a single encounter within 1 year of case encounter. Weights and heights 
below the 1st or above the 99th percentile were excluded before calculating BMI. Sensitivity analysis limiting lookback period of 180 days and 365 days prior to event shown in Supplement. Current smoker 
includes current every day smoker, current some days smoker, smoker (current status unknown), heavy smoker, and light smoker. Unknown smoking status includes “unknown if ever” and “no information”. 
Smoking status determined from the first record, when there were multiple records per encounter. Mortality during hospitalization includes death dates within 7 days of discharge date. 30-day and 1-year 
mortality calculated from discharge date. Acute-on-chronic exacerbation and end-stage heart failure ascertained using all diagnosis codes for encounter of interest (or problem list, for the problem list 
algorithm). Acute on chronic HF defined as I50.23, I50.33, I50.43, or I50.813. Chronic HF defined as I50.22, I50.32, I50.42, and I50.812. End-stage HF defined as I50.84. Chronic HF defined as I50.22, 
I50.32, I50.42, and I50.812. Unspecified HF defined as I50.9. Other HF defined as I50.8. Codes for HF type pulled from the problem list at the event-qualifying encounter for Problem List algorithms and from 
the hospital billing or discharge list for all other algorithms. Heart transplant, LVAD placement, pacemaker, and implantable ICD determined from all-available lookback procedure codes prior to event. The 
specific codes used are available in the Supplement. *Percent in category calculated out of available observations. 
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Figures for Aims 1 and 2 

 

Figure 34. Percent of Heart Failure Cases Identified via Outpatient Encounters for Problem List, Any 
Diagnosis Position, and Any Diagnosis Position + Lab or Medication algorithms, UNC Health, 2016-2019. 
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Figure 35. Contribution of lab and/or procedure clinical component to 
qualifying as a case by Any Diagnosis Position + Lab or Procedure or 
1st/2nd Diagnosis Position + Lab or Procedure Acute Myocardial Infarction 
Algorithms, UNC Health, 2016-2019 

Figure 36. Contribution of lab and/or procedure clinical component over time to 
qualifying as a case by Any Diagnosis Position + Lab or Procedure Acute Myocardial 
Infarction Algorithm, UNC Health, 2016-2019 
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Figure 37. Contribution of lab and/or procedure clinical component over time to 
qualifying as a case by 1st/2nd Diagnosis Position + Lab or Procedure Acute Myocardial 
Infarction Algorithm, UNC Health, 2016-2019 

Figure 38. Contribution of lab and/or procedure clinical component to 
qualifying as a case by Any Diagnosis Position + Lab or Medication or 
1st/2nd Diagnosis Position + Lab or Medication Heart Failure Inpatient 
Algorithms, UNC Health, 2016-2019 
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Figure 39. Contribution of lab and/or medication clinical component over time to 
qualifying as a case by Any Diagnosis Position + Lab or Medication Heart Failure 
Inpatient Algorithm, UNC Health, 2016-2019 

Figure 40. Contribution of lab and/or medication clinical component over time to 
qualifying as a case by 1st/2nd Diagnosis Position + Lab or Medication Heart Failure 
Inpatient Algorithm, UNC Health, 2016-2019 
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Figure 41. Prevalence ratios for acute myocardial infarction algorithms by year, UNC 
Health, 2016-2019. 
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Figure 42. Prevalence differences for acute myocardial infarction algorithms by year, UNC 
Health, 2016-2019. 

Figure 43. Prevalence differences for heart failure algorithms by year, UNC Health, 2016-
2019. 
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Figure 45. Age-standardized prevalence estimates for acute myocardial infarction by 
algorithm 

Figure 44. Prevalence ratios for heart failure algorithms by year, UNC Health, 2016-2019. 



 

213 

 

 

Figure 46. Prevalence differences using acute myocardial infarction prevalence estimates age-
standardized to US 2010 Census population, by algorithm 

Figure 47. Prevalence ratios using acute myocardial infarction prevalence estimates age-
standardized to US 2010 Census population, by algorithm 
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Figure 49. Prevalence differences using heart failure prevalence estimates age-standardized 
to US 2010 Census population, by algorithm 

Figure 48. Age-standardized prevalence estimates for heart failure by algorithm and patient 
setting 
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Figure 51. Acute myocardial infarction standardized prevalence by algorithm and 
age group 

Figure 50. Prevalence ratios using heart failure prevalence estimates age-standardized to US 
2010 Census population, by algorithm 
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Figure 52. Acute myocardial infarction standardized prevalence by algorithm with 
and without clinical components 
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Figure 54. Heart failure standardized prevalence from algorithms with and 
without clinical components, by age group 

Figure 53. Heart failure standardized prevalence by algorithm and age group 
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Figure 55. Heart failure standardized prevalence from 1st or 2nd Diagnosis 
Position algorithm with and without clinical components, by age group 

Figure 56. Standardized prevalence of acute myocardial infarction by algorithm 
and sex 
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Figure 57. Standardized prevalence of acute myocardial infarction by algorithm and 
race 

Figure 58. Standardized prevalence of acute myocardial infarction by algorithm and race-sex group  
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Figure 59. Standardized prevalence of heart failure by algorithm and sex  

Figure 60. Standardized prevalence of heart failure by algorithm and race 
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Figure 61. Standardized prevalence of heart failure by algorithm and race-sex 
group 
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Figure 62. Age distribution by acute myocardial infarction algorithm, UNC Health, 2016-2019 
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Figure 63. Age distribution by heart failure algorithm, UNC Health, 2016-2019 
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Figure 65. Smoking status by acute myocardial infarction algorithm, UNC Health, 2016-2019 

Figure 64. Age distribution and mean age by HF algorithm and patient setting, UNC Health, 
2016-2019 
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Figure 66. Smoking status by heart failure algorithm, UNC Health, 2016-2019 

Figure 67. Percent of patients with obese calculated BMI by acute myocardial infarction 
algorithm and methodologic method, UNC Health, 2016-2019 
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Figure 68. Percent of patients with obese EHR BMI by acute myocardial infarction algorithm and methodologic 
method, UNC Health, 2016-2019 

Figure 69. Percent of patients with obese calculated BMI by heart failure algorithm and methodologic 
method, UNC Health, 2016-2019 
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Figure 70. Percent of patients with obese calculated BMI by heart failure algorithm, methodologic 
method, and inpatient/outpatient setting, UNC Health, 2016-2019 
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Figure 71. Percent of patients with obese EHR BMI by heart failure algorithm and methodologic method, 
UNC Health, 2016-2019 

Figure 72. Percent of patients with obese EHR BMI by heart failure algorithm, methodologic 
method, and inpatient/outpatient setting, UNC Health, 2016-2019 
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Figure 73. Comorbidity prevalence by acute myocardial infarction algorithm, UNC Health, 2016-
2019 

Figure 74. Comorbidity burden (0 to 6) by acute myocardial infarction algorithm, UNC Health, 
2016-2019 
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Figure 75. Comorbidity prevalence by heart failure algorithm, UNC Health, 2016-2019 

Figure 76. Comorbidity burden (0 to 6) by heart failure algorithm, UNC Health, 2016-2019 



 

231 

 

Figure 77. Comorbidity prevalence by heart failure and patient setting, UNC Health, 2016-2019 
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Figure 78. Comorbidity burden by heart failure algorithm and patient setting, UNC Health, 2016-
2019 

Figure 79. Prevalence of any comorbidity by MI algorithm and lookback period duration, UNC Health, 2016-
2019 
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Figure 80. Prevalence of hypertension by MI algorithm and lookback period duration, UNC Health, 2016-
2019 

Figure 81. Prevalence of diabetes by MI algorithm and lookback period duration, UNC Health, 
2016-2019 
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Figure 82. Prevalence of kidney disease by MI algorithm and lookback period duration, UNC 
Health, 2016-2019 
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Figure 83. Prevalence of heart failure by MI algorithm and lookback period duration, UNC 
Health, 2016-2019 
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Figure 84. Prevalence of atrial fibrillation by MI algorithm and lookback period duration, UNC 
Health, 2016-2019 
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Figure 85. Prevalence of ischemic stroke or transient ischemic attack (TIA) by MI algorithm and 
lookback period duration, UNC Health, 2016-2019 
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Figure 86. Prevalence of any comorbidity by heart failure (HF) algorithm and lookback period 
duration, UNC Health, 2016-2019 

Figure 87. Prevalence of hypertension by heart failure (HF) algorithm and lookback period 
duration, UNC Health, 2016-2019 

Comorbidities include hypertension, diabetes, kidney disease, ischemic heart disease, atrial fibrillation, and ischemic stroke or 
transient ischemic attack (TIA).  
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Figure 88. Prevalence of diabetes by heart failure (HF) algorithm and lookback period duration, 
UNC Health, 2016-2019 
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Figure 89. Prevalence of kidney disease by heart failure (HF) algorithm and lookback period 
duration, UNC Health, 2016-2019 

Figure 90. Prevalence of ischemic heart disease by heart failure (HF) algorithm and lookback 
period duration, UNC Health, 2016-2019 
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Figure 91. Prevalence of atrial fibrillation by heart failure (HF) algorithm and lookback period 
duration, UNC Health, 2016-2019 

Figure 92. Prevalence of ischemic stroke or transient ischemic attack (TIA) by heart failure (HF) 
algorithm and lookback period duration, UNC Health, 2016-2019 
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Figure 93. Prevalence of any comorbidity by heart failure (HF) algorithm, lookback period 
duration, and patient setting, UNC Health, 2016-2019 

Comorbidities include hypertension, diabetes, kidney disease, ischemic heart disease, atrial fibrillation, and ischemic stroke or 
transient ischemic attack (TIA). *N listed are for “all available” lookback (1664 days maximum). N for algorithms with asterisk l were 
8431, 43730, 4116, and 2184 for 180-day lookback and 8437, 43736, 4116, and 2184 for 365-day lookback. 
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Figure 94. Prevalence of hypertension by heart failure (HF) algorithm, lookback period 
duration, and patient setting, UNC Health, 2016-2019 

*N listed are for “all available” lookback (1664 days maximum). N for algorithms with asterisk l were 8431, 43730, 4116, and 
2184 for 180-day lookback and 8437, 43736, 4116, and 2184 for 365-day lookback. 
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Figure 95. Prevalence of diabetes by heart failure (HF) algorithm, lookback period duration, and 
patient setting, UNC Health, 2016-2019 

Figure 96. Prevalence of kidney disease by heart failure (HF) algorithm, lookback period 
duration, and patient setting, UNC Health, 2016-2019 

*N listed are for “all available” lookback (1664 days maximum). N for algorithms with asterisk l were 8431, 43730, 4116, and 2184 
for 180-day lookback and 8437, 43736, 4116, and 2184 for 365-day lookback. 

*N listed are for “all available” lookback (1664 days maximum). N for algorithms with asterisk l were 8431, 43730, 4116, and 2184 
for 180-day lookback and 8437, 43736, 4116, and 2184 for 365-day lookback. 
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Figure 97. Prevalence of ischemic heart disease by heart failure (HF) algorithm, lookback period 
duration, and patient setting, UNC Health, 2016-2019 

Figure 98. Prevalence of atrial fibrillation by heart failure (HF) algorithm, lookback period 
duration, and patient setting, UNC Health, 2016-2019 

*N listed are for “all available” lookback (1664 days maximum). N for algorithms with asterisk l were 8431, 43730, 4116, and 2184 
for 180-day lookback and 8437, 43736, 4116, and 2184 for 365-day lookback. 

*N listed are for “all available” lookback (1664 days maximum). N for algorithms with asterisk l were 8431, 43730, 4116, and 2184 
for 180-day lookback and 8437, 43736, 4116, and 2184 for 365-day lookback. 
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Figure 99. Prevalence of ischemic stroke or transient ischemic attack (TIA) by heart failure (HF) 
algorithm, lookback period duration, and patient setting, UNC Health, 2016-2019 

*N listed are for “all available” lookback (1664 days maximum). N for algorithms with asterisk l were 8431, 43730, 4116, and 2184 
for 180-day lookback and 8437, 43736, 4116, and 2184 for 365-day lookback. 
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Figure 101. Myocardial infarction type (STEMI vs NSTEMI) by acute myocardial infarction 
algorithm, UNC Health, 2016-2019 

Figure 100. Myocardial infarction subtype by acute myocardial infarction algorithm, UNC Health, 
2016-2019 
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Figure 102. In-hospital complications by acute myocardial infarction (MI) algorithm, UNC 
Health, 2016-2019 

Figure 103. Mortality (7-day, 30-day, and 1-year) by acute myocardial infarction (MI) algorithm, 
UNC Health, 2016-2019 
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Figure 104. Heart failure type by heart failure algorithm, UNC Health, 2016-2019 

Figure 105.  Heart failure severity indicators by heart failure algorithm, UNC Health, 2016-
2019 
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Figure 106. Heart failure type by heart failure algorithm and patient setting, UNC Health, 2016-
2019 

Figure 107. Heart failure severity indicators by heart failure algorithm and patient setting, UNC 
Health, 2016-2019 
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Figure 108. Mortality (7-day, 30-day, 1-year) by heart failure (HF) algorithm, UNC Health, 
2016-2019 

Figure 109. Mortality (7-day, 30-day, 1-year) by heart failure (HF) algorithm and patient setting, UNC Health, 
2016-2019 
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Figure 111. Missingness by heart failure (HF) algorithms, UNC Health, 2016-2019 

Figure 110. Missingness by acute myocardial infarction (MI) algorithm, UNC Health, 2016-2019 
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Figure 112. Missingness by heart failure (HF) algorithm and patient setting, UNC Health, 2016-2019 
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Figure 113. Overlap of acute myocardial infarction (MI) algorithms, UNC Health, 2016-2019  
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Figure 114. Nesting flow chart of acute myocardial infarction algorithms with I21 or I22 codes 
in hospital problem list, UNC Health, 2016-2019 
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Figure 115. Nesting flow chart of acute myocardial infarction algorithms with I21 or I22 codes in 
any diagnosis position, UNC Health, 2016-2019 
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Figure 116. Treemap of acute myocardial infarction algorithms, UNC Health, 2016-2019 
 

This treemap visually summarizes the nesting diagrams for the acute myocardial infarction algorithms. The 3 
most common acute MI algorithms were having an I21 or I22 code in the hospital problem list only, in the 1st or 
2nd diagnosis position and problem list accompanied by elevated cardiac biomarkers and/or cardiac procedure 
(px) codes, and having codes in the 1st or 2nd diagnosis position and elevated labs and/or procedure codes (but 
not in the problem list). The other algorithms had <10% of the cases.  
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Figure 117. Overlap of heart failure (HF) algorithms, UNC Health, 2016-2019  
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Figure 118. Nesting flow chart of heart failure (HF) algorithms with HF codes in hospital or 
patient problem list, UNC Health, 2016-2019 
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Figure 119. Nesting flow chart of heart failure (HF) algorithms with HF codes in any diagnosis 
position, UNC Health, 2016-2019 
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Figure 120. Treemap of heart failure (HF) algorithms, UNC Health, 2016-2019 

This treemap visually summarizes the nesting diagrams for the HF algorithms. Th majority of HF cases had 
I50, I13.0, I13.2, or I11.0 in the 3rd position or lower of their diagnosis list without elevated BNP or NT-proBNP 
or a HF-related medication.  
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Figure 121. Overlap of inpatient heart failure (HF) algorithms, UNC Health, 2016-
2019  
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Figure 122. Nesting flow chart of inpatient heart failure (HF) algorithms with HF codes in hospital 
problem list, UNC Health, 2016-2019 
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Figure 123. Nesting flow chart of inpatient heart failure (HF) algorithms with HF codes in any 
diagnosis position, UNC Health, 2016-2019 
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Figure 124. Overlap of outpatient heart failure (HF) algorithms, UNC Health, 2016-
2019  
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Figure 125. Nesting flow chart of outpatient heart failure (HF) algorithms with HF codes in patient 
problem list, UNC Health, 2016-2019 
 

Figure 126. Nesting flow chart of outpatient heart failure (HF) algorithms with HF codes on ≥ 2 
clinical encounters, UNC Health, 2016-2019 
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CHAPTER 6: RESULTS FROM AIM 3 

Introduction 

Routinely collected electronic healthcare data is increasingly being used for chronic 

disease case finding for study enrollment and for secondary research analysis.231,232,238 

Electronic phenotyping algorithms can be rule-based or use machine learning or both and may 

include structured and unstructured data elements.239 These algorithms may be used to identify 

individuals eligible for a study (case finding) or to classify exposure status, outcome status, or 

comorbidity status of individuals for secondary research. Because routinely collecting electronic 

healthcare data found in electronic health records (EHR) is not collected for the purpose of 

research, it is important to understand the limitations of the data quality and the implications on 

algorithm validity.240–243 However, while many algorithms may be commonly used, many are not 

validated or, when validation is done, accuracy measures are not always reported.244–247 

Furthermore, the accuracy of an algorithm validated in one study population may not generalize 

to a different study population.248,249 

Sensitivity, specificity, positive predictive value (PPV) and negative predictive value 

(NPV) are measures of accuracy quantifying the degree of misclassification. Prioritizing one of 

these accuracy measures over another depends on the research question at hand and on 

whether the algorithm is being used to ascertain exposure status, outcome status, or potential 

confounders such as comorbidities. 

In Chapter 5, I presented data on differing occurrence estimates for acute myocardial 

infarction (MI) and HF when applying different EHR phenotyping algorithms in EHR data derived 

from a clinical data warehouse. For the current analysis, the primary objective of this paper is to 

estimate the accuracy of these same algorithms for acute MI and heart failure using a dataset 
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containing validated cardiovascular outcomes: the Atherosclerosis Risk in Communities (ARIC) 

Study cohort surveillance dataset. This dataset contains data on cardiovascular hospitalizations 

abstracted from EHRs as well as physician-adjudicated event ascertainment, with the latter 

serving as the gold standard. A secondary objective was to replicate the analyses of Aim 2 

presented in Chapter 5 by comparing the patient and event characteristics of cases captured by 

each phenotyping algorithm.  

Methods 

Study Population 

The ARIC Study is an ongoing prospective cohort study of 15,792 individuals aged 45 – 

64 years initially recruited from 4 US communities (Forsyth County, North Carolina; Jackson, 

Mississippi; suburban Minneapolis, Minnesota; and Washington County, Maryland) between 

1987 and 1989.217 Follow-up visits occurred in 1990-1992 (visit 2), 1993-1995 (visit 3), 1996-

1998 (visit 4), 2011-2013 (visit 5), 2016-2017 (visit 6), 2018-2019 (visit 7), and 2020-2021 (visit 

8) with annual or semi-annual telephone follow-up in between visits. The study population for 

this analysis included all ARIC participants who had a hospitalization for acute MI or heart 

failure between October 1, 2015 and December 31, 2019.  

Cohort Event Identification (Gold Standard) 

Possible events are identified via participant/proxy telephone interviews and review of 

hospital discharge indices from hospitals in the area of the four ARIC communities. During 

telephone interviews, participants or proxies are asked about hospitalizations at any location 

and medical charts for those hospitalizations are then requested. Cohort participants who move 

out of the original study center area are still contacted, traced, and interviewed by study staff to 

obtain information on hospitalizations and/or death information. Every hospitalization and death 

are reported to ARIC Surveillance to initiate an investigation. If a hospitalization record contains 

ICD-10-CM diagnoses for MI or HF, additional information is extracted before undergoing review 
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by the MMCC, a physician panel of 1 or 2 physicians with additional adjudication for 

disagreement. 

Acute MI 

To identify potential acute MI hospitalizations, hospital discharge code lists are reviewed 

by trained study staff for ICD-10-CM I11, I20, I21, I22, I24, I25, I46, I47, I48, I49, I50, J81, and 

R00.1 among others, prior to full record abstraction.218,221,222 Information abstracted for potential 

hospitalized MI cases includes presence of ischemic pain, history of MI or cardiovascular 

disease, and cardiac biomarkers (e.g., troponin). Copies of up to 3 electrocardiograms (ECG) 

(first, last, and third) are obtained from each hospitalization and sent to the Wake Forest ECG 

Reading Center (EPICARE) for classification by the Minnesota coding system.223,224 A 

standardized computerized algorithm is used to classify MI as Definite MI, Probable MI, Suspect 

MI, or No MI based on the presence of chest pain, biomarker levels, and electrocardiographic 

data (Figure 127).72,225 Cases with equivocal or abnormal biomarkers are further classified as 

STEMI or NSTEMI according to the assigned ECG Minnesota code. Criteria for each of the 3 

diagnostic algorithm elements has remained constant during the study period and has been 

previously described in detail elsewhere.191 Cases then go on to MMCC for final event 

classification.  

 

 

 

 

Figure 127. Algorithm applied to ARIC data on symptoms, cardiac biomarkers, 
and electrocardiographic evidence to determine myocardial infarction 
classification. 

ECG, electrocardiographic; MI, myocardial infarction; ST-T, ST-T segment abnormality. Adapted from Figure 1 
in Rosamond et al. Am J Epidemiol 2004:160:1137-1146. 
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Heart Failure 

To identify potential HF hospitalizations, hospital discharge code lists are reviewed by 

trained study staff for ICD-10-CM I09.81, I11.0, I13.0, I26.0, I27.81, I27.9, I42.0, I42.5, I42.8, 

I42.9, I40.x, J81.0, R06.x as well as HF-related symptoms prior to full record 

abstraction.218,221,222 These HF-related symptoms include shortness of breath (new onset or 

worsening), paroxysmal nocturnal dyspnea, orthopnea, hypoxia, or mention of HF as the reason 

for hospitalization by the physician. If potential HF hospitalization records meet both discharge 

code and symptom criteria, then the full medical record is abstracted for evidence of new onset 

of symptoms, history of HF, general medical history, physical exam signs and symptoms, 

diagnostic tests including chest X-ray, echocardiogram, cardiac catheterization, coronary 

angiography, BNP and pro-BNP test results, and medications.196 All hospitalized HF cases are 

then reviewed by 2 physicians on the HF MMCC and classified as an overall heart failure 

diagnosis of Definite Acute Decompensated Heart Failure (ADHF), Possible ADHF, Chronic 

stable HF, Unlikely HF, and Unclassifiable HF.221 If a participant has multiple HF events, each is 

treated independently for event adjudication, that is, the MMCC does not have information on 

previous HF hospitalizations when determining if an individual hospitalization meets the HF 

diagnostic criteria.221 Disagreements between the 2 physicians are adjudicated by the chair of 

the HF MMCC.  

Phenotyping Algorithms 

Phenotyping algorithms for this analysis were based on the phenotyping algorithms used 

in Aims 1 and 2 and applied to the UNC CDW EHR data. However, problem list diagnoses are 

not collected in the ARIC study and thus the Problem List algorithm is not applied in this aim. 

For ARIC participants with at least one hospitalization during the period of interest (October 1, 

2015 to December 31, 2019), each hospitalization was classified using the following 

phenotyping algorithms: Any Diagnosis Position, Any Diagnosis Position + Clinical Component, 
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1st or 2nd Diagnosis Position, 1st or 2nd Diagnosis Position + Clinical Component, and for HF 

only, 1st Diagnosis Position (Table 66).  

For MI hospitalizations, the clinical component was an elevated cardiac biomarker 

(troponin I, troponin T, including high sensitivity tests, or CK-MB) and/or a cardiac procedure at 

the time of the hospitalization. For HF hospitalizations, the clinical component was inpatient 

administration of a loop diuretic and/or an elevated BNP (> 500 pg/mL) or elevated NT-proBNP 

(>900 pg/mL). Based on results from Aim 1, a post-hoc analysis decision was made to also 

classify cases as 3rd+ Diagnosis Position and 3rd+ Diagnosis Position + Clinical Component, 

representing the cases who met the criteria for Any Diagnosis Position algorithms but were 

excluded when moving to 1st or 2nd Diagnosis Position algorithms.  
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Table 66. Phenotyping algorithms for evaluation in ARIC cohort event surveillance data 
 Acute MI Heart Failure 

Any Diagnosis Position 
I21 or I22 in any position of hospital 

discharge list 

(I50, I13.0, I13.2, or I11.0) in any 

position in hospital discharge list 

Any Diagnosis Position + Clinical 

Component 

I21 or I22 in any position of hospital 

discharge list 

and elevated cardiac biomarker* 

(troponin I, troponin T, CK-MB) or 

cardiac procedure code** at time of 

event encounter 

(I50, I13.0, I13.2, or I11.0) in any 

position in hospital discharge list 

and inpatient administration of loop 

diuretic or elevated BNP (>500 

pg/mL) or NT-proBNP (>900 

pg/mL)* 

1st or 2nd Diagnosis Position  
I21 or I22 in 1st or 2nd position of 

hospital discharge list 

(I50, I13.0, I13.2, or I11.0) in 1st or 

2nd position of hospital discharge list 

1st or 2nd Diagnosis Position + 

Clinical Component 

I21 or I22 in 1st or 2nd position of 

hospital discharge list and elevated 

cardiac biomarker* (troponin I, 

troponin T, CK-MB) or cardiac 

procedure code** at time of event 

encounter 

(I50, I13.0, I13.2, or I11.0) in 1st or 

2nd position in hospital discharge list 

and inpatient administration of loop 

diuretic or elevated BNP (>500 

pg/mL) or NT-proBNP (>900 

pg/mL)* 

1st Diagnosis Position - 
(I50, I13.0, I13.2, or I11.0) in 1st 

position in hospital discharge list 

All encounters are inpatient hospitalizations. BNP: B-type natriuretic peptide, CK-MB: creatine kinase MB , NT-

proBNP: N-terminal-pro hormone BNP. *Elevated biomarker status determined using worst value recorded during 

hospitalization; **Cardiac procedures include angioplasty (percutaneous coronary intervention), atherectomy, 

coronary bypass, and/or stent placement 

 

Patient and Event Characteristics  

The second objective of this analysis is to compare patient and event characteristics 

between cases classified by each phenotyping algorithm. For this analysis, some variables were 

available from extracted EHR data, cohort visit data, or both. This section outlines the source of 

each variable. When cohort visit data were used, data were used from the visit (Visit 5, Visit 6, 

or Visit 7) closest visit prior to the hospitalization of interest. If extracted EHR data were missing, 

cohort visit data were used.  

Age at the time of the hospitalization was calculated using the event date and the 

participant’s recorded birth date and categorized as 74 – 84 years and ≥ 85 years. Sex and race 

were extracted from cohort visit data. Body mass index (BMI) was coded continuously (kg/m2) 
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and using categories. Smoking status was categorized as current, former, and never smoker. 

Hypertension from cohort visit data was defined as SBP ≥ 140 mmHg or DBP ≥ mmHg or use of 

anti-hypertensive medications. Diabetes using cohort visit data was defined as a fasting blood 

glucose ≥ 126 mg/dL or non-fasting blood glucose ≥ 200 mg/dL or use of glucose-lowering 

medications. Kidney disease (stage 3 or greater) was defined as eGFR-Cr < 60 mL/min/1.73 m2 

and an eGFR-Cr decline from baseline visit of ≥ 25% as recorded at study visits. Kidney failure 

was defined as eGFR-Cr < 15 mL/min/1.73 m2 or a hospitalization with kidney-failure related 

ICD-9-CM or ICD-10-CM codes in any position (see Supplemental Material for code list) or use 

of dialysis during the hospitalization of interest. Atrial fibrillation was defined using ECGs at 

study visits and hospital discharge records250 or using “history of AF or flutter” from 

hospitalization EHR, when available. History of stroke or transient ischemic attack (TIA) was 

defined using cohort data (via event adjudication) or using hospitalization EHR data.  

Additional comorbidities ascertained from hospitalization EHR data included history of 

percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG), and 

history of valvular disease or cardiomyopathy for MI and HF hospitalizations and history of 

chronic bronchitis or chronic obstructive pulmonary disease, history of asthma, history of 

pulmonary embolism, and history of cardiomyopathy (ischemic, idiopathic or dilated, other) for 

HF hospitalizations. Comorbidity burden was quantified by calculating the percent of participants 

with any comorbidity, as well as calculating a comorbidity burden score by summing the number 

of comorbidities. Severity indicators for MI cases included MI type (STEMI, NSTEMI, 

Unclassified, Recurrent, Other as determined by clinical classification and/or ICD-10-CM 

codes), occurrence of cardiogenic shock, acute stroke, or pulmonary embolism during 

hospitalization. Severity indicators for HF cases included left ventricular ejection fraction (EF), 

any previous cardiac procedure (previous valvular surgery, history of pacemaker or implantable 

cardioverter defibrillator implantation, previous CABG, or previous PCI) as well as previous HF 

hospitalizations or treatments. In-hospital mortality was defined using discharge disposition 
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associated with the event of interest. Otherwise, vital status was documented for all ARIC 

participants using death data from proxy report, obituary reviews, and linkage with the National 

Death Index.  

Statistical Analysis 

Accuracy measures at the event level (sensitivity, specificity, positive predictive value 

[PPV], negative predictive value [NPV]) were calculated for each phenotyping algorithm against 

the ARIC adjudicated event classification as the gold standard using generalized estimating 

equation models with binomial distribution, independent correlation structure, and logit link. 

Analyses were performed with dichotomized ARIC adjudicated event classifications 

(Definite/Probable MI, Suspect/No MI and Definite/Possible ADHF, Chronic Stable HF/Unlikely 

HF/Unclassifiable HF) as well as for each single event classifications (Definite MI, Probable MI, 

Suspect MI, Definite ADHDF, Possible ADHF, Chronic Stable HF).  Accuracy calculations were 

repeated in a sensitivity analysis using a person-based dataset restricted to the participant’s first 

event in the period of interest as a way to address potential issues of event clustering, such as 

certain participants being more likely to have multiple events, or certain participants being more 

likely to have multiple events that were more likely to be classified as a case compared to 

participants with multiple hospitalizations but fewer events classified as cases. In addition to 

calculate accuracy measures for all cases, subgroup analyses by age (74 – 84 years, ≥ 85 

years), race (Black, white), and sex (male, female) were completed to determine if accuracy 

measures varied by subgroup.  

Results 

During the period of interest, there were 1203 ARIC participants with MI hospitalizations 

and 1223 with HF hospitalizations that met the criteria for at least one phenotyping algorithm. 

The average number of events per participant was 1.9 (SD 1.4) for MI and 2.2 (SD 2) for HF.  
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Acute Myocardial Infarction 

The number of MI hospitalizations, or events, was highest with Any Diagnosis Position at 

154 events, followed by 145 events using Any Diagnosis Position with Lab or Procedure, 96 

cases using 1st or 2nd Diagnosis Position, and 93 cases using 1st or 2nd Diagnosis Position with 

Lab or Procedure (Figure 130). I also tabulated the number of events with a diagnosis position 

in the 3rd+ Diagnosis Position (e.g. events meeting Any Diagnosis Position but not 1st or 2nd 

Diagnosis Position) resulting in 58 events and 52 events when requiring a lab or procedure as 

well. For the clinical component algorithms, the percent of cases meeting each possible criteria 

differed by diagnosis position (Figure 132). For the 145 events identified using Any Diagnosis 

Position with Lab or Procedure, 53% (n=77) had an elevated cardiac biomarker only, 4.1% 

(n=6) with a cardiac procedure alone, and 43% (n=62) with both. For the 93 cases identified 

using 1st or 2nd Diagnosis Position with Lab or Procedure, 43% (n=40) had an elevated cardiac 

biomarker only, 6.5% (n=6) with a cardiac procedure alone, and 51% (n=47) with both. Lastly, 

for the 52 cases identified using 3rd+ Diagnosis Position with Lab or Procedure, 71% (n=37) had 

an elevated cardiac biomarker only, 0 with a cardiac procedure alone, and 29% (n=15) with 

both.  

In the ARIC study, the computerized algorithm classifies MI events as Definite, Probable, 

Suspect, or No MI according to cardiac biomarker, ECG, and cardiac pain evidence (see Table 

67). The percent of MI events meeting “abnormal” cardiac biomarker evidence ranged from 71% 

in the 3rd+ Diagnosis Position algorithm to 81% in the 1st or 2nd Diagnosis Position with Lab or 

Procedure algorithm (Figure 133, Table 67). The percent of MI events with “normal” cardiac 

biomarker evidence ranged from 0% in the 3rd+ Diagnosis Position algorithm and 4% in Any 

Diagnosis Position with Lab or Procedure to 9% in the 1st or 2nd Diagnosis Position. The percent 

of MI events with “evolving diagnostic” ECG evidence was highest among 1st or 2nd Diagnosis 

Position algorithms (13 – 13.5%) compared to 10% in Any Diagnosis Position algorithms and 5-

6% in 3rd+ Diagnosis Position algorithms (Figure 135, Table 67). The presence of cardiac pain 
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was also highest among 1st or 2nd Diagnosis Position algorithms (80 - 81%) compared to 66 - 

68% in Any Diagnosis Position algorithms and 41 - 44% in 3rd+ Diagnosis Position algorithms 

(Figure 134, Table 67). 

Hospitalized Heart Failure 

The number of HF cases was highest among Any Diagnosis Position at 1881 events, 

followed by 1279 events using 3rd+ Diagnosis Position, 1191 events using Any Diagnosis 

Position with Lab or Diuretic, 690 events using 3rd+ Diagnosis Position with Lab or Diuretic, Any 

Diagnosis Position with Lab or Procedure, 602 events using 1st or 2nd Diagnosis Position, and 

501 events using 1st or 2nd Diagnosis Position with Lab or Diuretic, and 435 cases using 1st 

Diagnosis Position (Figure 131, Figure 130). For the clinical component algorithms, the percent 

of events meeting each possible criteria differed by diagnosis position (Figure 137). For the 

1191 events identified using Any Diagnosis Position with Lab or Procedure, 15% (n=177) had 

an elevated biomarker only, 31% (n=365) with a diuretic alone, and 54% (n=648) with both. For 

the 501 events identified using 1st or 2nd Diagnosis Position with Lab or Procedure, 7.2% 

(n=36) had an elevated biomarker only, 24% (n=120) with a diuretic alone, and 69% (n=345) 

with both. Lastly, for the 690 events identified using 3rd+ Diagnosis Position with Lab or 

Procedure, 20% (n=141) had an elevated biomarker only, 36% (n=245) with a diuretic alone, 

and 44% (n=303) with both. 

Accuracy Measures 

Acute Myocardial Infarction 

The acute MI phenotyping algorithms were compared to binary MI ARIC event 

classifications (Definite/Probable MI vs Suspect/No MI, Table 68, Figure 136) as well as for 

separate event classifications (Definite MI, Probable MI, and Suspect MI, Table 70, Figure 138 - 

Figure 140). Compared to the adjudicated Definite/Probable MI classification, sensitivity for 

Definite/Probable MI was highest for Any Diagnosis Position algorithm at 75.5%. Restricting the 

diagnosis position to the 1st or 2nd position decreased sensitivity (~75% to ~52%) and increased 
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PPV (~80% to ~87%) compared to a diagnosis code in any position (Figure 136). Specificity and 

NPV was similarly high between the different acute MI phenotyping algorithms (Table 68, Figure 

136). Requiring clinical components did little to change sensitivity, specificity, or NPV, but 

resulted in a higher PPV (Figure 136).  

The same pattern was seen when comparing the acute MI phenotyping algorithms to 

Definite MI and Probable MI separately (Table 70, Figure 138 [Definite MI], Figure 139 

[Probable MI]). However, while sensitivity was higher for MI phenotyping algorithms when 

compared to Definite MI alone and lower for Probable MI, specificity and PPV were lower when 

using the separate MI adjudicated event classifications. Negative predictive value was slightly 

higher for the separate event classifications than when combined (Table 70).  

The main analysis used all 

hospitalized MI events an ARIC 

participants experienced between 

October 2015 and December 2019. 

In a sensitivity analysis, I restricted 

the case population to the first 

event an ARIC participant 

experienced in the period of 

interest and calculated accuracy 

measures, resulting in 28 – 35% 

fewer cases (Figure 128). 

Contingency tables and full results 

are reported in  

Table 72 - Table 75. Point 

estimates for sensitivity were 

slightly higher when using first event versus all events for all algorithms but fell within the 

Figure 128. Number of true positives using all events versus 
first events by acute myocardial infarction (MI) phenotyping 
algorithm versus Definite/Probable MI gold standard ARIC 
event classification, Oct 2015 – Dec 2019 

Percent change represents reduction in true positives using all 
events (blue) versus first events (orange) 
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confidence intervals of the all-event estimates. The pattern of accuracy measures across 

algorithms was similar to the all-event analysis when using first events only (Figure 141 

[Definite/Probable MI], Figure 142 [Definite MI]). 

Hospitalized Heart Failure 

The HF phenotyping algorithms were compared to binary acute HF ARIC event 

classifications (Definite/Possible ADHF vs Chronic Stable HF/Unlikely HF/Unclassifiable HF, 

Table 77, Figure 143) and to separate event classifications (Definite ADHF, Possible ADHF, 

Chronic Stable HF, Table 79, Figure 144 - Figure 146). Compared to the adjudicated 

Definite/Possible ADHF classification, sensitivity was highest using the Any Diagnosis Position 

algorithm at 70.5% and lowest using 1st Diagnosis Position at 32%. Restricting the diagnosis 

position to the 1st or the 1st or 2nd position decreased sensitivity and increased PPV compared to 

a diagnosis code in any position (Figure 143). Specificity was lowest for Any Diagnosis Position 

versus Definite/Possible ADHF but increased substantially with the addition of clinical 

components (32.6% versus 77.3%) and increased even more when restricting to the 1st or 1st or 

2nd diagnosis position (91 – 98.7%) (Table 77). There was a similar pattern with NPV. Requiring 

clinical components increased all accuracy measures for Any Diagnosis Position, but only 

increased PPV for 1st or 2nd Diagnosis Position (78.6% without clinical components versus 

92.2% with clinical components, Table 77).  

The same pattern was seen when comparing the HF phenotyping algorithms to Definite 

ADHF alone (Figure 144), but differed slightly when compared to Possible ADHF alone and to 

Chronic Stable HF alone (Figure 145, Figure 146). Given that researchers would likely be 

interested in the combined Definite/Possible ADHF or Definite ADHF alone, I will not elaborate 

on the results of Possible ADHF alone here but rather refer the reader to Table 79. For Chronic 

Stable HF, sensitivity was highest for Any Diagnosis Position at 71.4% (67.7%, 74.9%), 

dropping to 24% (21.3%, 26.8%) with the addition of clinical components, and to <10% when 

restricting to 1st or 1st or 2nd diagnosis position (Table 79). Specificity for Chronic Stable HF was 
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highest using 1st Diagnosis Position (74% [71.6%, 76.6]) and lowest using Any Diagnosis 

Position (32.9% [30.4%, 35.6%]). All HF phenotyping algorithms had a PPV < 50% when 

compared to Chronic Stable HF classification, and the only algorithm with NPV > 50% was Any 

Diagnosis Position at 63.1% (59.4%, 66.6%) (Table 79). 

For HF cases, restricting 

to the first event only resulted in a 

60% - 67% reduction in the 

number of ADHF cases (Figure 

129), 69% - 79% reduction in 

number of Chronic Stable HF 

cases, 0% - 33% reduction in 

Unlikely HF cases, and 30% - 

52% reduction in Unclassifiable 

HF cases (Table 80). In the 

sensitivity analysis restricting 

cases to the first event in the 

period of interest, sensitivity for ADHF was lower when using the first event compared to all 

events, while specificity was higher for Any Diagnosis Position with and without clinical 

components (Figure 147, Table 81 [contingency table], Table 82 [results]). Positive predictive 

value and NPV was similar across algorithms. These results were similar whether using 

Definite/Possible ADHF or Definite ADHF alone (Table 83 [contingency table], Table 84 

[results]). When comparing the HF phenotyping algorithms to Chronic Stable HF ARIC event 

classification, sensitivity was lower when using first event compared to using all events, while 

specificity and NPV were higher (Table 84, Figure 149). Positive predictive value was lower 

when using first event versus all events for Any Diagnosis Position with and without clinical 

components, but similar for other algorithms. 

Figure 129. Number of true positives by heart failure (HF) 
phenotyping algorithm versus Definite or Possible ADHF gold 
standard ARIC event classification, Oct 2015 – Dec 2019.  
 
Percent change represents reduction in true positives using all 
events (blue) versus first events (orange). ADHF: acute 
decompensated hear failure. 
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Subgroup Analysis 

Acute Myocardial Infarction 

Contingency tables and accuracy measures by subgroups are presented in Table 85 - 

Table 99 and shown in Figure 150 - Figure 154. The number of MI events per person during the 

period of interest ranged from 1 to 14 with an average of 1.89 (SD 1.35). The average number 

of events did not differ by subgroup, ranging from 1.7 (SD 1.1) in Black males to 2.1 (SD 1.5) in 

those 85 years or older (Table 100). 

When looking at accuracy measures across race, sex, and age subgroups, the same 

pattern was seen between algorithms, with highest sensitivity from Any Diagnosis Position, 

highest specificity from 1st or 2nd Diagnosis Position with or without clinical components, highest 

PPV from 1st or 2nd Diagnosis Position with Lab or Procedure, and highest NPV from Any 

Diagnosis Position with or without clinical components.  

However, there were some differences in terms of overall accuracy measures across all 

algorithms compared to Definite MI; for example, sensitivity was higher among females (69 – 

94%) than males (46 – 75%) (Figure 153), and PPV was higher among Black participants (79 – 

90%) than white participants (51 – 57%) (Error! Reference source not found.), though there w

as some confidence interval overlap. These differences were not seen when comparing the 

phenotyping algorithms to Definite/Probable MI together; of note, among males, 41% of the 

Definite/Probable MI cases were Definite MI cases, compared to 36% of Definite/Probable MI 

cases among females. Regarding differences by race, it is important to note that there were only 

2 Probable MI cases among Black participants, neither of which met any case criteria via 

phenotyping algorithm, and a general imbalance in cases between white participants and Black 

participants (85 versus 12 Definite MI cases, 60 versus 2 Probable MI cases, 271 versus 53 

Suspect MI cases, and 1484 versus 266 classified as No MI via ARIC criteria, respectively).  

When comparing sensitivity and PPV between participants aged < 85 years and 85 

years and older, both measures were slightly lower among the older group but with substantial 
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confidence interval overlap (Figure 150, Error! Reference source not found., Figure 155, 

Figure 157, Table 96, Table 98, Table 99). When restricting to the first event only, sensitivity 

estimates were higher for all subgroups compared to all-event estimates (Table 101 

[contingency table], Table 102 [results]) with the same pattern across algorithms as the main 

analysis. 

Hospitalized Heart Failure 

Contingency tables and accuracy measures by subgroups are presented in Table 103 - 

Table 124 and shown in Figure 155 - Figure 186. The number of hospitalized HF events per 

person during the period of interest ranged from 1 to 26, with an average of 2.23 (SD 1.99). The 

average number of events did not differ by subgroup, ranging from 2.16 (SD 1.94) among white 

males to 2.4 (SD 2.10) among Black males (Table 125). 

When looking at accuracy measures across subgroups, the same pattern was seen 

between HF phenotyping algorithms compared to Definite/Possible ADHF and Definite ADHF 

alone, with highest sensitivity from Any Diagnosis Position, highest specificity and PPV from 1st 

Diagnosis Position, and highest NPV from Any Diagnosis Position with Lab or Diuretic.  

However, there were some differences between subgroups in terms of overall accuracy. 

Sensitivity for Any Diagnosis Position with or without clinical components was higher among 

white participants (69 – 73%) than Black participants (57 – 62%) for Definite/Possible ADHF 

(Figure 155, Table 109). PPV was similar between algorithms by race subgroups except for Any 

Diagnosis Position with Lab or Diuretic, which had a lower PPV for Black participants (63.4% 

[55.7%, 70.4%]) than white participants (75.2% [72%, 78.2%]) (Figure 157, Table 109). These 

differences were not present when comparing HF phenotyping algorithms to Definite ADHF 

alone (Table 111, Table 112, Figure 163, Figure 165).  

Unlike MI events, hospitalized HF events occurred in all race-sex categories, and so I 

was able to calculate accuracy measures by race-sex subgroups. Differences in accuracy 

measures across phenotyping algorithms when compared to Definite/Possible ADHF or Definite 
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ADHF alone were more similar by race than by sex, meaning that white males had similar 

accuracy measures to white females, and Black males had similar accuracy measures to Black 

females. In the main analysis and by race or sex subgroups alone, Any Diagnosis Position with 

Lab or Diuretic had the highest NPV value among the HF phenotyping algorithms compared to 

ADHF event classifications (72% compared to 55 – 62% for other algorithms). When stratifying 

by race-sex subgroups, this relationship only remained among white males and females, with no 

statistically significant difference between NPV across algorithms among Black participants, 

regardless of sex (Figure 170, Figure 186). 

When comparing the HF phenotyping algorithms to the Chronic Stable HF gold standard 

event classification, sensitivity from Any Diagnosis Position with Lab or Diuretic was higher 

among Black participants (31%) than white participants (22%) (Figure 179, Table 111, Table 

112). Additionally, PPV from Any Diagnosis Position with and without clinical components was 

higher among Black participants (42% and 52%) than among white participants (20% and 29%) 

(Figure 181, Table 111, Table 112). Accuracy measures across other subgroups were similar by 

algorithm and event classification. 

When restricting to the first event only, the percent reduction in cases by subgroup 

reflect the pattern across algorithm and across gold standard event classification (Table 126) as 

seen in the main analysis as well as the pattern seen in average number of events by subgroup.  

Patient and Event Characteristics 

Acute Myocardial Infarction 

The average age of patients with hospitalized acute MI events was around 82 years (SD 

5 years) (Table 132). Around 50% of events across algorithms were female and 6-10% were 

Black. Mean BMI ranged from 27to 29 kg/m2 with similar median values. The percent of events 

with patients having an obese BMI ranged from 27% to 40% and the proportion of never 

smokers ranged from 33% to 37%. 
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Hypertension and atrial fibrillation were most common among events identified via 3rd+ 

Diagnosis Position (93-94% and 25-26%, respectively) and diabetes was most common among 

the 1st or 2nd Diagnosis Position cases with or without clinical components (34-35%)(Table 133, 

Figure 187). Prevalence of other comorbidities (kidney disease, kidney failure, heart failure, and 

previous stroke or TIA) was similar across algorithms (Table 133). Presence of any comorbidity 

ranged from 89% (1st or 2nd Diagnosis Position with Lab or Procedure) to 96% (3rd+ Diagnosis 

Position with Lab or Procedure).  

For Definite/Probable MI events in ARIC, MI type is classified as STEMI or NSTEMI 

using biomarker, ECG, and chest pain evidence. In addition to the ARIC classification, I 

classified events as STEMI or NSTEMI using ICD-10-CM codes present in the hospital 

discharge list. The percent of cases classified as STEMI or NSTEMI was higher using ICD-10-

CM codes than ARIC classification and followed expected distributions with around 70% of 

events classified as NSTEMI (Table 133). NSTEMI events were most common among cases 

identified via 3rd+ Diagnosis Position with Lab or Procedure at 77% and STEMI events were 

most common using 1st or 2nd Diagnosis Position at 29% (Figure 188). ICD-10-CM codes were 

also used to classify events as Type 2 MI, and events identified via 3rd+ Diagnosis Position had 

the highest percent of Type 2 MI cases, ranging from 12 – 13.5%, followed by Any Diagnosis 

Position algorithms at 5 – 6% (Figure 189). Mortality across algorithm reflects the distribution of 

comorbidities and MI subtypes, with highest 7-day mortality among cases identified using 3rd+ 

Diagnosis Position with or without clinical components (12%) and lowest among 1st or 2nd 

Diagnosis Position algorithm cases (7%) (Figure 190). Thirty-day mortality ranged from 7% to 

17% and one-year mortality ranged from 19% to 37%. 

Hospitalized Heart Failure 

The average age of participants with hospitalized HF events was 84 years (SD 5 years), 

with around 40% of patients aged 85 or older (Table 134). The percent of female participants 

ranged from 54% to 58% and around 20% of cases were Black. Mean BMI was 29 (SD 7), with 
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5-6% of events classified as Underweight (BMI < 18.5 kg/m2) and 30-36% of events classified 

as Obese (BMI ≥ 30 kg/m2)(Figure 191). The percent of past smokers ranged from 61% to 69% 

and the percent as never smokers ranged from 25% to 34% (Figure 192).  

The prevalence of hypertension was high across algorithms, ranging from 96% to 98% 

of events. History of asthma and history of COPD/bronchitis was highest among events 

classified by 3rd+ Diagnosis Position with Lab or Diuretic at 14% and 38% and lowest in the 1st 

or 2nd Diagnosis Position and 1st Diagnosis Position algorithms at 30% and 9-10% (Table 135). 

Nearly all participants with events classified by any HF algorithm had at least one comorbidity, 

with the mean number of comorbidities ranging from 3.53 – 3.67 across algorithms (Table 135). 

The prevalence of CKD 3+ was highest in 1st Diagnosis Position and lowest in 3rd+ Diagnosis 

Position at 19% and 14%, respectively, with a similar pattern across algorithms for ischemic 

heart disease/previous MI. The prevalence of any cardiomyopathy ranged from 16% to 23%. 

Multiple types of cardiomyopathies were aggregated together in the main analysis, and history 

of ischemic heart disease was combined with previous MI. The separate classifications for each 

type are shown in Table 137. 

I used ICD-10-CM codes from the hospital discharge list to classify events as Acute-on-

Chronic exacerbation, Chronic HF, End-Stage HF, or Unspecified HF. The percent of events 

with Acute-on-Chronic and Chronic HF codes was similar in Any Diagnosis Position and 3rd+ 

Diagnosis Position with Labs or Diuretic, with other algorithms having more of one type than the 

other (Figure 193). The percent of events with acute-on-chronic HF codes was highest in 1st 

Diagnosis Position (78%). The use of ICD-10-CM codes for End-Stage HF was rare, but the use 

of Unspecified HF ranged from 7% in 1st Diagnosis Position to 33% in 3rd+ Diagnosis Position 

algorithms (Table 135). Around 23 – 24% of all events had a history of pacemaker placement 

and 9 – 10% with history of an implantable cardiac defibrillator. Around 65% of events had a left 

ventricular ejection fraction (LVEF) below 50%, with a substantial proportion with LVEF < 30% 
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(45 – 54%) (Figure 194).  Across algorithms, 7-day mortality ranged from 2% to 7%, 30-day 

mortality ranged from 9% to 22%, and one-year mortality ranged from 37% to 52% (Figure 195).  

Because the EHR data in the ARIC study is not limited to structured data, there is 

information on both the occurrence of imaging procedures (ex: chest x-rays, transthoracic 

echocardiograms (TTE), transesophageal cardiograms (TEE)) and the radiologists’ 

interpretation of the images. In Table 136 and Figure 196-Figure 201, I present the percent of 

events classified by each HF algorithm who underwent an imaging procedure, and the percent 

of those events who were determined to have conditions such as pulmonary edema, 

cardiomegaly, pleural effusions, left ventricular hypertrophy, valvular regurgitation and/or 

stenosis, among other severity indicators. The majority of participants with HF events received a 

chest X-ray, ranging from 85-96%. Transthoracic echocardiograms were done for 68%-87% of 

events, lowest among 3rd+ Diagnosis Position and highest among 1st Diagnosis Position. Of 

note, TTEs were more common for algorithms with clinical components. Only about 4-5% of 

events involved TEE imaging and 10-11% underwent coronary angiography. Of those who 

underwent coronary angiography, previous CABG stents were most common among 1st 

Diagnosis Position cases (33%). In general, the presence of conditions such as pulmonary 

edema, pleural effusion, cardiomegaly (Figure 197), impaired ventricular function and dilated 

ventricles (Figure 198, Figure 199), and mitral regurgitation (Figure 201) were more common 

among cases identified via algorithms with clinical components.  

Another advantage of the ARIC data, in addition to adjudicated event data, is the 

classification of each HF hospitalization by alternate HF criteria commonly used in research, 

including the NHANES criteria, Trialist criteria, and Framingham criteria. The percent of events 

classified as HF events by NHANES and the Framingham criteria was similar across algorithms, 

but higher when using the Trialist criteria, which is not unexpected due to the latter’s inclusion of 

biomarker and imaging evidence which matches this contemporary data (Table 138, Figure 

202). The largest percent of events classified via Trialist criteria were identified by 1st Diagnosis 
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Position (74%) or 1st or 2nd Diagnosis Position with Lab or Diuretic (70%), followed by Any 

Diagnosis Position with Lab or Diuretic and 1st or 2nd Diagnosis Position both at 59% (Figure 

202).   

Discussion 

Validation of commonly used electronic phenotyping algorithms for acute MI and HF, 

applied to EHR data, are needed to verify accuracy and assess misclassification.238,240,248,251–256 

We sought to fill this gap by calculating validation measures for several electronic phenotyping 

algorithms for acute MI and HF in a US cohort study with both EHR data and event classification 

via physician review. In this analysis I calculated the accuracy measures for various EHR 

phenotyping algorithms compared to a gold standard of physician adjudicated events. For acute 

MI, the algorithm with the highest sensitivity was Any Diagnosis Position (75.5%), highest 

specificity was 1st or 2nd Diagnosis Position with or without clinical components (99%), highest 

PPV was 1st or 2nd Diagnosis Position with Lab or Procedure (88.2%), and highest NPV was 

Any Diagnosis Position with or without clinical components (98%). Requiring elevated cardiac 

biomarkers or a cardiac procedure code did little to change sensitivity, specificity, or NPV of the 

acute MI phenotyping algorithms, but did result in a higher PPV. Restricting diagnosis position 

to the 1st or 2nd position decreased sensitivity and increased PPV. 

For hospitalized HF events, the algorithm with the highest sensitivity for ADHF was Any 

Diagnosis Position (70.5%), highest specificity and PPV was First Diagnosis Position (98.7% 

and 95.6%), and the highest NPV was Any Diagnosis Position with Lab or Diuretic (71.7%). For 

HF algorithms, restricting the diagnosis position to the 1st or 1st/2nd position decreased sensitivity 

and increased PPV compared to a diagnosis code in any position. Requiring administration of a 

loop diuretic or elevated NT-proBNP or BNP increased accuracy measures for Any Diagnosis 

Position but had limited effect on other algorithms. The pattern of accuracy measures across 

algorithms did not differ by race, age, or sex subgroups for either acute MI or HF.  
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Similar to findings presented in Chapter 5, there were no meaningful differences in 

demographic or clinical characteristics by algorithms, with similar patterns of event severity and 

comorbidity indicators seen across algorithms. In contrast to the study population in Chapter 5, 

the population in the current analysis is much older, which makes direct comparison of these 

patterns difficult as many of the characteristics examined are more common with older age.  

A strength of this analysis is the use of the ARIC cohort surveillance dataset which 

features physician-adjudicated hospitalization events. However, given the period of interest 

chosen for this analysis to focus on ICD-10-CM codes, the potential effect of survival bias on the 

generalizability of these results cannot be ignored. The ARIC Study began in 1987 with middle-

aged participants who, as of the beginning of this analysis’ period of interest, were at least 74 

years of age. The participants who survived to be included in this dataset may not be 

representative of other populations researchers may want to apply these validation findings to. 

Additionally, the race composition and geographic distribution of the study may also limit 

generalizability to a nationally representative sample. While the pattern of accuracy measures 

across algorithms in this analysis was similar across sex, race, and age subgroups, actual 

accuracy measures varied slightly. Ideally, these analyses would be repeated in a larger, more 

diverse dataset to determine if the small differences seen in this analysis persist. 

One advantage of repeating the characteristic comparison analysis from Chapter 5 in the 

ARIC data set was the availability of additional clinical characteristics typically stored in the EHR 

as unstructured data. For example, examining the presence of cardiac pain or evolving 

diagnostic ECG evidence by acute MI phenotyping algorithms as well as imaging evidence 

interpreted by radiologists for hospitalized HF events provides readers with more clinical 

information on the cases captured by each phenotyping algorithm. However, the generalizability 

of results from this analysis back to the estimates presented in Chapter 5 may be limited, as the 

EHR data used in this analysis was abstracted by trained abstractors, rather than extracted 

using computer programming. Extracting unstructured data elements using a computer may 
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have different results than a trained human abstractor analyzing the entirety of a participant’s 

chart, electronic or paper. 

Accuracy measures are used to quantify the degree of misclassification a phenotyping 

algorithm imposes and the choice to prioritize one accuracy measure over another depends on 

the research question at hand. High sensitivity classification algorithms are useful as an initial 

screen to pare down the potential study population prior to a more accurate but costly 

measurement tool.249 For example, researchers planning to conduct manual chart review to 

identify acute myocardial infarction (MI) patients may wish to reduce the time and cost spent 

abstracting information by first applying a highly sensitivity phenotyping algorithm. High 

sensitivity algorithms are also preferred when the researchers wish to identify every possible 

patient eligible for a research study,257 particularly if further eligibility will be confirmed at a later 

point, such as through individual phone interviews. Finally, some low sensitivity algorithms may 

have differential sensitivity depending on disease severity. Thus, it is important to use high 

sensitivity algorithms to capture a study population representative of the entire disease 

spectrum, or in other words, to improve generalizability.249,257 

Positive predictive value and NPV are related to prevalence, sensitivity, and specificity. 

When researchers are willing to miss some false negatives for the benefit of ensuring those 

included truly have the condition of interest (true positives) it is best to select an algorithm with 

both high specificity and high PPV.249 When researchers wish to exclude individuals with a 

certain condition (and thus want to be sure those included are true negatives), it would be 

important to select an algorithm for that condition with high NPV.249 The phenotyping algorithms 

used to identify hospitalized acute MI and HF events in this analysis had high specificity, PPV, 

and NPV. 

The validation results from this analysis can be used as external validation data via 

quantitative bias analysis for researchers using the same phenotyping algorithms in EHR data, 

and for algorithms lacking clinical components, administrative databases. Validation data is 
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often lacking in a comparable study population, but for those conducting analyses in the ICD-10-

CM era, validation data in general is sparse. Despite imperfect generalizability of the underlying 

study population, the accuracy measures presented are a starting point for researchers using 

ICD-10-CM codes for acute MI and HF research.165 

Conclusion 

The EHR phenotyping algorithms for acute MI and hospitalized HF had moderate 

sensitivity and high specificity, PPV, and NPV when compared to physician adjudicated event 

ascertainment, meaning that these easy-to-implement rule-based algorithms are suitable for 

research questions requiring high specificity, PPV, and NPV. When deciding on whether to 

conduct research using EHR data versus administrative data, researchers must often weigh the 

potential gain of clinical components lacking in the latter source. In this analysis, requiring 

clinical components improved accuracy for HF phenotyping algorithms but not for acute MI 

algorithms, implying that for those studying acute MI, algorithms comprised of diagnosis codes 

alone may be sufficient.
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Tables for Aim 3 

Table 67. Distribution of ARIC data for determining acute myocardial infarction classification by phenotyping algorithm 
 Any Diagnosis 

Position 

Any Diagnosis 

Position + Lab or 

Procedure 

1st or 2nd 

Diagnosis 

Position 

1st or 2nd 

Diagnosis 

Position + Lab 

or Procedure 

3rd+ Diagnosis 

Position 

3rd+ Diagnosis 

Position + Lab 

or Procedure 

N 154 145 96 93 58 52 

Biomarker Evidence       

Normal 13 (8.4%) 6 (4.1%) 9 (9.4%) 6 (6.5%) 4 (6.9%) 0 

Incomplete 0 0 0 0 0 0 

Equivocal 23 (14.9%) 23 (15.9%) 12 (12.5%) 12 (12.9%) 11 (19%) 11 (21.2%) 

Abnormal 116 (75.3%) 116 (80%) 75 (78.1%) 75 (80.7%) 41 (70.7%) 41 (78.9%) 

Missing 2 0 0 0 2 0 

ECG Evidence       

Absent or Uncodable 37 (24%) 32 (22.1%) 23 (24%) 21 (22.6%) 14 (24.1%) 11 (21.2%) 

Equivocal 48 (31.2%) 48 (33.1%) 27 (28%) 27 (29%) 21 (36.2%) 21 (40.4%) 

Evolving ST-T 34 (22.1%) 33 (22.8%) 22 (22.9%) 22 (23.7%) 12 (20.7%) 11 (21.2%) 

Diagnostic 17 (11%) 17 (11.7%) 11 (11.5%) 11 (11.8%) 6 (10.3%) 6 (11.5%) 

Evolving Diagnostic 16 (10.4%) 15 (10.3%) 13 (13.5%) 12 (12.9%) 3 (5.2%) 3 (5.8%) 

Missing 2 0 0 0 2 0 

Chest pain of cardiac origin       

Absent 51 (33.1%) 47 (32.4%) 19 (19.8%) 18 (19.4%) 32 (55.2%) 29 (55.8%) 

Present 101 (65.6%) 98 (67.6%) 77 (80.2%) 75 (80.7%) 24 (41.4%) 23 (44.2%) 

Missing 2 0 0 0 2  0 

Biomarkers include troponin I, troponin T, and CK-MB; ST-T refers to ST-segment and T-waves in ECG; ECG: electrocardiogram; chest pain of cardiac origin 

determined from downgraded chest pain symptom classification. Percentages are column percents. 
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Table 68. Contingency Table for MI Algorithms and Binary MI ARIC Classification 
  ARIC Cohort Surveillance Classification 

  Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position 

MI 120 34 

No MI 39 2040 

Any Diagnosis Position 

+ Lab or Procedure 

MI 118 27 

No MI 41 2047 

1st or 2nd Diagnosis 

Position 

MI 83 13 

No MI 76 2061 

1st or 2nd Diagnosis 

Position + Lab or 

Procedure 

MI 82 11 

No MI 77 2063 

 

Table 69. Accuracy Measures for MI Phenotyping Algorithms versus Binary ARIC MI Event Classification 
 Sensitivity Specificity PPV NPV 

Any Diagnosis Position 75.5% (66.7%, 82.5%) 98.4% (97.7%, 98.8%) 77.9% (70.7%, 83.8%) 98.1% (97.3, 98.7%) 

Any Diagnosis Position + 
Lab or Procedure 

74.2% (65.5%, 81.4%) 98.7% (98.1%, 99.1%) 81.4% (74.3%, 86.9%) 98.0% (97.2, 98.6%) 

1st or 2nd Diagnosis 
Position 

52.2% (44.1%, 60.2%) 99.4% (98.9%, 99.6%) 86.5% (78.2%, 91.9%) 96.4% (95.4, 97.2%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
51.6% (43.4%, 59.7%) 99.5% (99.0%, 99.7%) 88.2% (80.1%, 93.3%) 96.4% (95.4%, 97.2%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation with independent correlation structure to account for multiple events per person. 
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Table 70. Contingency Table for MI Algorithms and Four MI ARIC Classifications 
  ARIC Cohort Surveillance Classification 

  Definite MI Probable MI Suspect MI No MI 

Any Diagnosis Position 

MI 82 38 27 7 

No MI 15 24 297 1743 

Any Diagnosis Position 

+ Lab or Procedure 

MI 80 38 24 3 

No MI 17 24 300 1747 

1st or 2nd Diagnosis 

Position 

MI 57 26 10 3 

No MI 40 36 314 1747 

1st or 2nd Diagnosis 

Position + Lab or 

Procedure 

MI 56 26 9 2 

No MI 41 36 315 1748 
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Table 71. Accuracy Measures for MI Phenotyping Algorithms versus Four MI ARIC Event Classification 
Definite MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 84.5% (73.7%, 91.4%) 96.6% (95.7%, 97.3%) 53.3% (45.6%, 60.8%) 99.3% (98.7%, 99.6%) 

Any Diagnosis Position + 
Lab or Procedure 

82.5% (71.7%, 89.7%) 97.0% (96.1%, 97.6%) 55.2% (47.3%, 62.8%) 99.2% (98.6%, 99.5%) 

1st or 2nd Diagnosis 
Position 

58.8% (48.4%, 68.4%) 98.2% (97.5%, 98.7%) 59.4% (49.7%, 68.4%) 98.1% (97.4%, 98.7%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
57.7% (47.1%, 67.7%) 98.3% (97.6%, 98.7%) 60.2% (50.4%, 69.3%) 98.1% (97.3%, 98.6%) 

Probable MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 61.3% (47.7%, 73.3%) 94.7% (93.5%, 95.6%) 24.7% (18.3%, 32.4%) 98.9% (98.2%, 99.3%) 

Any Diagnosis Position + 
Lab or Procedure 

61.3% (47.7%, 73.3%) 95.1% (94.0%, 96.0%) 26.2% (19.5%, 34.3%) 98.9% (98.2%, 99.3%) 

1st or 2nd Diagnosis 
Position 

41.9% (30.5%, 54.3%) 96.8% (95.9%, 97.5%) 27.1% (19.2%, 36.7%) 98.3% (97.6%, 98.8%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
41.9% (30.5%, 54.3%) 96.9% (96.1%, 97.6%) 28.0% (19.9%, 37.8%) 98.3% (97.6%, 98.8%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 8.3% (5.7%, 12.0%) 93.4% (92.0%, 94.5%) 17.5% (12.3%, 24.3%) 85.7% (84.0%, 87.3%) 

Any Diagnosis Position + 
Lab or Procedure 

7.4% (5.0%, 11.0%) 93.7% (92.4%, 94.7%) 16.6% (11.4%, 23.5%) 85.6% (83.9%, 87.2%) 

1st or 2nd Diagnosis 
Position 

3.1% (1.7%, 5.7%) 95.5% (94.4%, 96.4%) 10.4% (5.8%, 18.1%) 85.3% (83.6%, 86.9%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
2.8% (1.5%, 5.3%) 95.6% (94.6%, 96.5%) 9.7% (5.2%, 17.4%) 85.3% (83.5%, 86.9%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation with independent correlation structure to account for multiple events per person. 
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Table 72. First Event Only: Contingency Table for MI Algorithms and Binary MI ARIC Classification 
  ARIC Cohort Surveillance Classification 

First Event Only  Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position MI 78 23 

No MI 21 1065 

Any Diagnosis Position + Lab or Procedure MI 77 18 

No MI 22 1070 

1st or 2nd Diagnosis Position MI 59 9 

No MI 40 1079 

1st or 2nd Diagnosis Position + Lab or Procedure MI 59 8 

No MI 40 1080 

MI: myocardial infarction 
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Table 73. First Event Only: Accuracy Measures for MI Phenotyping Algorithms versus Binary ARIC MI Event Classification 

First Event Only Sens Spec PPV NPV 

Any Diagnosis Position 78.8% (74.7%, 82.9%) 97.9% (97.4%, 98.3%) 77.2% (73.1%, 81.4%) 98.1% (97.6%, 98.5%) 

Any Diagnosis Position + Lab or Procedure 77.8% (73.6%, 82.0%) 98.3% (98.0%, 98.7%) 81.1% (77.0%, 85.1%) 98.0% (97.6%, 98.4%) 

1st or 2nd Diagnosis Position 59.6% (54.7%, 64.5%) 99.2% (98.9%, 99.4%) 86.8% (82.7%, 90.9%) 96.4% (95.9%, 97.0%) 

1st or 2nd Diagnosis Position + Lab or Procedure 59.6% (54.7%, 64.5%) 99.3% (99.0%, 99.5%) 88.1% (84.1%, 92.0%) 96.4% (95.9%, 97.0%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. 

 

Table 74. First Event Only: Contingency Table for MI Algorithms and Separate MI ARIC Classification 
  ARIC Cohort Surveillance Classification 

First Event Only  Definite MI Probable MI Suspect MI No MI 

Any Diagnosis Position MI 55 23 17 6 

No MI 7 14 149 916 

Any Diagnosis Position + Lab or Procedure MI 54 23 15 3 

No MI 8 14 151 919 

1st or 2nd Diagnosis Position MI 44 15 6 3 

No MI 18 22 160 919 

1st or 2nd Diagnosis Position + Lab or Procedure MI 44 15 6 2 

No MI 18 22 160 920 

MI: myocardial infarction 
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Table 75. First Event Only: Accuracy Measures for MI Phenotyping Algorithms versus Separate MI ARIC Event Classification 
First Event Only 

Definite MI 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 88.7% (84.7%, 92.7%) 95.9% (95.3%, 96.5%) 54.5% (49.5%, 59.4%) 99.4% (99.1%, 99.6%) 

Any Diagnosis Position + 
Lab or Procedure 

87.1% (82.8%, 91.4%) 96.4% (95.8%, 96.9%) 56.8% (51.8%, 61.9%) 99.3% (99.0%, 99.5%) 

1st or 2nd Diagnosis 
Position 

71.0% (65.2%, 76.7%) 97.9% (97.4%, 98.3%) 64.7% (58.9%, 70.5%) 98.4% (98.0%, 98.8%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
71.0% (65.2%, 76.7%) 98.0% (97.5%, 98.4%) 65.7% (59.9%, 71.5%) 98.4% (98.0%, 98.8%) 

Probable MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 62.2% (54.2%, 70.1%) 93.2% (92.5%, 94.0%) 22.8% (18.6%, 26.9%) 98.7% (98.4%, 99.1%) 

Any Diagnosis Position + 
Lab or Procedure 

62.2% (54.2%, 70.1%) 93.7% (93.0%, 94.5%) 24.2% (19.8%, 28.6%) 98.7% (98.4%, 99.1%) 

1st or 2nd Diagnosis 
Position 

40.5% (32.5%, 48.6%) 95.4% (94.8%, 96.0%) 22.1% (17.0%, 27.1%) 98.0% (97.6%, 98.4%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
40.5% (32.5%, 48.6%) 95.5% (94.9%, 96.1%) 22.4% (17.3%, 27.5%) 98.0% (97.6%, 98.5%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 10.2% (7.9%, 12.6%) 91.8% (90.9%, 92.6%) 16.8% (13.1%, 20.6%) 86.3% (85.2%, 87.3%) 

Any Diagnosis Position + 
Lab or Procedure 

9.0% (6.8%, 11.3%) 92.2% (91.3%, 93.0%) 15.8% (12.0%, 19.5%) 86.2% (85.1%, 87.2%) 

1st or 2nd Diagnosis 
Position 

3.6% (2.2%, 5.1%) 93.9% (93.2%, 94.7%) 8.8% (5.4%, 12.3%) 85.7% (84.7%, 86.7%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
3.6% (2.2%, 5.1%) 94.0% (93.3%, 94.8%) 9.0% (5.5%, 12.4%) 85.7% (84.7%, 86.8%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. 
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Table 76. Contingency Table for HF Algorithms and Binary Acute HF Classifications 
  ARIC Cohort Surveillance Classification 

  Definite or Possible ADHF 
Chronic Stable HF, Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 

HF 918 963 

No HF 384 466 

Any Diagnosis Position + Lab or 

Diuretic 

HF 866 325 

No HF 436 1104 

1st or 2nd Diagnosis Position 

HF 473 129 

No HF 829 1300 

1st or 2nd Diagnosis Position + 

Lab or Diuretic 

HF 462 39 

No HF 840 1390 

1st Diagnosis Position 

HF 416 19 

No HF 886 1410 

ADHF: acute decompensated HF; HF: heart failure. 

 
Table 77. Accuracy Measures for HF Phenotyping Algorithms versus Binary HF ARIC Event Classification 

 Sensitivity Specificity PPV NPV 

Any Diagnosis Position 70.5% (67.6%, 73.3%) 32.6% (29.8%, 35.5%) 48.8% (45.9%, 51.7%) 54.8% (51.0%, 58.6%) 

Any Diagnosis Position + 
Lab or Diuretic 

66.5% (63.6%, 69.3%) 77.3% (74.8%, 79.6%) 72.7% (69.7%, 75.6%) 71.7% (69.0%, 74.3%) 

1st or 2nd Diagnosis Position 36.3% (33.5%, 39.3%) 91.0% (89.3%, 92.4%) 78.6% (74.8%, 81.9%) 61.1% (58.6%, 63.5%) 

1st or 2nd Diagnosis Position 
+ Lab or Diuretic 

35.5% (32.7%, 38.4%) 97.3% (96.3%, 98.0%) 92.2% (89.4%, 94.3%) 62.3% (59.9%, 64.7%) 

1st Diagnosis Position 32.0% (29.2%, 34.9%) 98.7% (97.9%, 99.2%) 95.6% (93.3%, 97.2%) 61.4% (59.0%, 36.2%) 

Gold standard event classification as Definite or Possible acute decompensated HF (event) versus chronic stable HF, unlikely HF, or unclassifiable HF (no 
event). HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals 
estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 78. Contingency Table for HF Phenotyping Algorithms versus 5 HF ARIC Event Classifications 
  ARIC Cohort Surveillance Classification 

  Definite ADHF Possible ADHF Chronic Stable HF Unlikely HF Unclassifiable HF 

Any Diagnosis Position 

HF 535 383 789 89 85 

No HF 214 170 314 118 34 

Any Diagnosis Position + Lab or Diuretic 

HF 525 341 264 31 30 

No HF 224 212 839 176 89 

1st or 2nd Diagnosis Position 

HF 361 112 106 13 10 

No HF 388 441 997 194 109 

1st or 2nd Diagnosis Position + Lab or 

Diuretic 

HF 358 104 33 3 3 

No HF 391 449 1070 204 116 

1st Diagnosis Position 

HF 332 84 14 3 3 

No HF 417 469 1089 204 117 

ADHF: acute decompensated HF; HF: heart failure. 
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Table 79. Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 

Definite ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 71.4% (67.7%, 74.9%) 32.1% (29.7%, 34.6%) 28.4% (26.0%, 31.1%) 74.8% (71.3%, 78.0%) 

Any Diagnosis Position + 
Lab or Diuretic 

70.1% (66.4%, 73.5%) 66.4% (64.0%, 68.7%) 44.1% (40.9%, 47.4%) 85.5% (83.3%, 87.4%) 

1st or 2nd Diagnosis 
Position 

48.2% (44.4%, 52.0%) 87.8% (86.2%, 89.3%) 60.0% (55.7%, 64.1%) 81.8% (79.8%, 83.6%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

47.8% (44.1%, 51.6%) 92.8% (91.5%, 93.9%) 71.5% (67.2%, 75.3%) 82.5% (84.2%, 80.6%) 

1st Diagnosis Position 44.3% (40.5%, 48.3%) 94.8% (93.7%, 95.7%) 76.3% (72.0%, 80.2%) 81.8% (79.9%, 100.0%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 69.3% (64.9%, 73.3%) 31.2% (29.0%, 33.6%) 20.4% (18.5%, 22.3%) 80.0% (77.1%, 82.6%) 

Any Diagnosis Position + 
Lab or Diuretic 

61.7% (57.2%, 66.0%) 61.0% (58.5%, 63.4%) 28.6% (26.1%, 31.3%) 86.2% (84.3%, 88.0%) 

1st or 2nd Diagnosis 
Position 

20.3% (17.0%, 23.9%) 77.5% (75.3%, 79.6%) 18.6% (15.7%, 22.0%) 79.3% (77.4%, 81.0%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

18.8% (15.7%, 22.4%) 81.8% (79.7%, 83.7%) 20.8% (17.3%, 24.7%) 79.9% (81.6%, 78.1%) 

1st Diagnosis Position 15.2% (12.4%, 18.5%) 83.9% (81.9%, 85.7%) 19.3% (15.8%, 23.4%) 79.6% (77.8%, 100.0%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 71.4% (67.7%, 74.9%) 32.9% (30.4%, 35.6%) 42.0% (39.2%, 44.7%) 63.1% (59.4%, 66.6%) 

Any Diagnosis Position + 
Lab or Diuretic 

23.9% (21.3%, 26.8%) 43.1% (40.4%, 45.8%) 22.2% (19.6%, 25.0%) 45.5% (42.7%, 48.4%) 

1st or 2nd Diagnosis 
Position 

9.6% (7.9%, 11.6%) 69.5% (66.9%, 72.0%) 17.6% (14.6%, 21.1%) 53.2% (50.7%, 55.6%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

3.0% (2.1%, 4.2%) 71.3% (68.7%, 73.7%) 6.6% (4.7%, 9.2%) 52.0% (54.5%, 49.6%) 

1st Diagnosis Position 1.3% (0.8%, 2.1%) 74.1% (71.6%, 76.6%) 3.2% (1.9%, 5.3%) 52.6% (50.1%, 100.0%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 80. Percent Change in Number of HF Events Using All Events or First Event Only, ARIC Study, 2015-2019 

Definite ADHF 

Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab or 

Procedure 

1st or 2nd Diagnosis 
Position 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 

1st Diagnosis  
Position 

All Events 535 525 361 358 332 

First Event 193 193 116 116 104 

Percent Change -64% -63% -68% -68% -69% 

Possible ADHF      

All Events 383 341 112 104 84 

First Event 164 155 49 45 35 

Percent Change -57% -55% -56% -57% -58% 

Chronic Stable HF      

All Events 789 264 106 33 14 

First Event 241 75 31 9 3 

Percent Change -69% -72% -71% -73% -79% 

Unlikely HF      

All Events 89 31 13 3 3 

First Event 64 25 11 2 3 

Percent Change -28% -19% -15% -33% 0% 

Unclassifiable HF      

All Events 85 30 10 3 3 

First Event 41 17 7 2 2 

Percent Change -52% -43% -30% -33% -33% 

ADHF: acute decompensated heart failure; HF: heart failure. 
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Table 81. First Event Only: Contingency Table for HF Algorithms and Binary Acute HF Classifications 
  ARIC Cohort Surveillance Classification 

First Event Only  Definite or Possible ADHF Chronic Stable HF, Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position HF 367 346 

No HF 225 285 

Any Diagnosis Position + Lab or 

Diuretics 

HF 348 117 

No HF 244 514 

1st or 2nd Diagnosis Position HF 165 49 

No HF 427 582 

1st or 2nd Diagnosis Position + 

Lab or Diuretics 

HF 161 13 

No HF 431 618 

1st Diagnosis Position HF 139 8 

No HF 453 623 

ADHF: acute decompensated HF; HF: heart failure.  

 
Table 82. First Event Only: Accuracy Measures for HF Phenotyping Algorithms versus Binary HF ARIC Event Classification 

First Event Only Sensitivity Specificity PPV NPV 

Any Diagnosis Position 62.0% (60.0%, 64.0%) 45.2% (43.2%, 47.1%) 51.5% (49.6%, 53.3%) 55.9% (53.7%, 58.1%) 

Any Diagnosis Position + Lab or 
Diuretic 

58.8% (56.8%, 60.8%) 81.5% (79.9%, 83.0%) 74.8% (72.8%, 76.9%) 67.8% (66.1%, 69.5%) 

1st or 2nd Diagnosis Position 27.9% (26.0%, 29.7%) 92.2% (91.2%, 93.3%) 77.1% (74.2%, 80.0%) 57.7% (56.1%, 59.2%) 

1st or 2nd Diagnosis Position + Lab 
or Diuretic 

27.2% (25.4%, 29.0%) 97.9% (97.4%, 98.5%) 92.5% (90.5%, 94.5%) 58.9% (57.4%, 60.4%) 

1st Diagnosis Position 23.5% (21.7%, 25.2%) 98.7% (98.3%, 99.2%) 94.6% (92.7%, 96.4%) 57.9% (56.4%, 59.4%) 

Gold standard event classification as Definite or Possible acute decompensated HF (event) versus chronic stable HF, unlikely HF, or unclassifiable HF (no 
event). HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. 
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Table 83. First Event Only: Contingency Table for HF Phenotyping Algorithms versus 5 HF ARIC Event Classifications 
  ARIC Cohort Surveillance Classification 

First Event Only  Definite ADHF Possible ADHF Chronic Stable HF Unlikely HF Unclassifiable HF 

Any Diagnosis Position 

HF 193 164 241 64 41 

No HF 121 104 157 104 24 

Any Diagnosis Position + Lab or Diuretic 

HF 193 155 75 25 17 

No HF 121 123 323 143 48 

1st or 2nd Diagnosis Position 

HF 116 49 31 11 7 

No HF 198 229 367 157 58 

1st or 2nd Diagnosis Position + Lab or 

Diuretic 

HF 116 45 9 2 2 

No HF 198 233 389 166 63 

1st Diagnosis Position 

HF 104 35 3 3 2 

No HF 210 243 395 165 63 

ADHF: acute decompensated HF; HF: heart failure. 
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Table 84. First Event Only: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 
First Event 

Definite ADHF 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 61.5% (58.7%, 64.2%) 42.8% (41.2%, 44.4%) 27.1% (25.4%, 28.7%) 76.3% (74.4%, 78.2%) 

Any Diagnosis Position + 
Lab or Diuretic 

61.5% (58.7%, 64.2%) 70.1% (68.6%, 71.6%) 41.5% (39.2%, 43.8%) 84.0% (82.7%, 85.4%) 

1st or 2nd Diagnosis 
Position 

36.9% (34.2%, 39.7%) 89.2% (88.2%, 90.2%) 54.2% (50.8%, 57.6%) 80.4% (79.1%, 81.6%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

36.9% (34.2%, 39.7%) 93.6% (92.8%, 94.4%) 66.7% (63.1%, 70.2%) 81.1% (79.9%, 82.3%) 

1st Diagnosis Position 33.1% (30.5%, 35.8%) 95.3% (94.6%, 96.0%) 70.7% (67.0%, 74.5%) 80.5% (79.3%, 81.7%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 62.6% (59.7%, 65.5%) 43.0% (41.4%, 44.6%) 24.4% (22.8%, 26.0%) 79.6% (77.8%, 81.4%) 

Any Diagnosis Position + 
Lab or Diuretic 

55.8% (52.8%, 58.7%) 67.2% (65.7%, 68.7%) 33.3% (31.1%, 35.5%) 83.8% (82.4%, 85.1%) 

1st or 2nd Diagnosis 
Position 

17.6% (15.3%, 19.9%) 82.5% (81.3%, 83.8%) 22.9% (20.0%, 25.8%) 77.3% (76.0%, 78.6%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

16.2% (14.0%, 18.4%) 86.3% (85.2%, 87.5%) 25.9% (22.5%, 29.2%) 77.8% (76.5%, 79.1%) 

1st Diagnosis Position 12.6% (10.6%, 14.6%) 88.1% (87.1%, 89.2%) 23.8% (20.3%, 27.3%) 77.4% (76.1%, 78.7%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 60.6% (58.1%, 63.0%) 42.8% (41.1%, 44.5%) 33.8% (32.0%, 35.6%) 69.2% (67.2%, 71.3%) 

Any Diagnosis Position + 
Lab or Diuretic 

18.8% (16.9%, 20.8%) 52.7% (51.0%, 54.5%) 16.1% (14.4%, 17.8%) 57.4% (55.6%, 59.2%) 

1st or 2nd Diagnosis 
Position 

7.8% (6.4%, 9.1%) 77.8% (76.4%, 79.3%) 14.5% (12.1%, 16.9%) 63.6% (62.1%, 65.1%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

2.3% (1.5%, 3.0%) 80.0% (78.6%, 81.4%) 5.2% (3.5%, 6.9%) 62.9% (61.4%, 64.4%) 

1st Diagnosis Position 0.8% (0.3%, 1.2%) 82.5% (81.2%, 83.9%) 2.0% (0.9%, 3.2%) 63.3% (61.8%, 64.8%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. 
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Table 85. By Sex: Contingency Table for MI Algorithms and Binary MI ARIC Classifications 
  Males Females 

  Definite/Probable MI Suspect MI/No MI Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position MI 62 14 58 20 

No MI 20 1016 19 1024 

Any Diagnosis Position + Lab or Procedure MI 61 11 57 16 

No MI 21 1019 20 1028 

1st or 2nd Diagnosis Position MI 40 4 43 9 

No MI 42 1026 34 1035 

1st or 2nd Diagnosis Position + Lab or Procedure MI 39 4 43 7 

No MI 43 1026 34 1037 

MI: myocardial infarction. 

Table 86. By Sex: Accuracy Measures for MI Phenotyping Algorithms versus Binary MI ARIC Event Classification 
Males Sensitivity Specificity PPV NPV 

Any Diagnosis Position 75.6% (62.1%, 85.4%) 98.6% (97.7%, 99.2%) 81.6% (71.0%, 88.9%) 98.1% (96.6%, 98.9%) 

Any Diagnosis Position + Lab or 
Procedure 

74.4% (61.1%, 84.3%) 98.9% (98.1%, 99.4%) 84.7% (74.3%, 91.4%) 98.0% (96.5%, 98.8%) 

1st or 2nd Diagnosis Position 48.8% (37.9%, 59.8%) 99.6% (99.0%, 99.9%) 90.9% (78.1%, 96.6%) 96.1% (94.4%, 97.2%) 

1st or 2nd Diagnosis Position + 
Lab or Procedure 

47.6% (36.5%, 58.9%) 99.6% (99.0%, 99.9%) 90.7% (77.6%, 96.5%) 96.0% (94.3%, 97.2%) 

Females Sensitivity Specificity PPV NPV 

Any Diagnosis Position 75.3% (63.2%, 84.4%) 98.1% (97.0%, 98.8%) 74.4% (64.1%, 82.5%) 98.2% (97.0%, 98.9%) 

Any Diagnosis Position + Lab or 
Procedure 

74.0% (61.9%, 83.3%) 98.5% (97.4%, 99.1%) 78.1% (67.7%, 85.9%) 98.1% (98.8%, 96.9%) 

1st or 2nd Diagnosis Position 55.8% (44.0%, 67.1%) 99.1% (98.4%, 99.6%) 82.7% (70.5%, 90.5%) 96.8% (95.5%, 97.8%) 

1st or 2nd Diagnosis Position + 
Lab or Procedure 

55.8% (44.0%, 67.1%) 99.3% (98.6%, 99.7%) 86.0% (74.0%, 93.0%) 96.8% (95.5%, 97.8%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 87. By Sex: Contingency Table for MI Algorithms and Four MI ARIC Classifications 
  Males Females 

  Definite MI Probable MI Suspect MI No MI Definite MI Probable MI Suspect MI No MI 

Any Diagnosis Position 

MI 36 26 12 2 46 12 15 5 

No MI 12 8 150 866 3 16 147 877 

Any Diagnosis Position + Lab or Procedure 

MI 35 26 10 1 45 12 14 2 

No MI 13 8 152 867 4 16 148 880 

1st or 2nd Diagnosis Position 

MI 23 17 4 0 34 9 6 3 

No MI 25 17 158 868 15 19 156 879 

1st or 2nd Diagnosis Position + Lab or Procedure 

MI 22 17 4 0 34 9 5 2 

No MI 26 17 158 868 15 19 157 880 
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Table 88. By Sex, Males: Accuracy Measures for MI Phenotyping Algorithms versus Four MI ARIC Event Classification 
MALES  

Males MI 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 75.0% (57.0%, 87.2%) 96.2% (94.9%, 97.3%) 47.4% (36.1%, 58.9%) 98.8% (97.6%, 99.4%) 

Any Diagnosis Position + 
Lab or Procedure 

72.9% (55.5%, 85.4%) 96.5% (95.2%, 97.5%) 48.6% (37.2%, 60.2%) 98.8% (97.5%, 99.4%) 

1st or 2nd Diagnosis 
Position 

47.9% (34.2%, 62.0%) 98.0% (97.0%, 98.7%) 52.3% (38.4%, 65.8%) 97.7% (96.3%, 98.5%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
45.8% (31.9%, 60.5%) 98.0% (97.0%, 98.7%) 51.2% (37.2%, 64.9%) 97.6% (96.2%, 98.5%) 

Probable MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 76.5% (59.2%, 87.9%) 95.4% (93.8%, 96.6%) 34.2% (24.1%, 46.0%) 99.2% (98.5%, 99.6%) 

Any Diagnosis Position + 
Lab or Procedure 

76.5% (59.2%, 87.9%) 95.7% (94.2%, 96.9%) 36.1% (25.6%, 48.2%) 99.2% (98.5%, 99.6%) 

1st or 2nd Diagnosis 
Position 

50.0% (34.7%, 65.3%) 97.5% (96.4%, 98.3%) 38.6% (26.1%, 52.9%) 98.4% (97.5%, 99.0%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
50.0% (34.7%, 65.3%) 97.6% (96.5%, 98.4%) 39.5% (26.8%, 53.9%) 98.4% (97.5%, 99.0%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 7.4% (4.3%, 12.5%) 93.3% (91.2%, 94.9%) 15.8% (9.1%, 25.9%) 85.5% (82.9%, 87.8%) 

Any Diagnosis Position + 
Lab or Procedure 

6.2% (3.4%, 11.0%) 93.5% (91.5%, 95.0%) 13.9% (7.6%, 24.0%) 85.4% (82.8%, 87.6%) 

1st or 2nd Diagnosis 
Position 

2.5% (0.9%, 6.4%) 95.8% (94.3%, 96.9%) 9.1% (3.4%, 21.9%) 85.2% (82.6%, 87.5%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
2.5% (0.9%, 6.4%) 95.9% (94.4%, 97.0%) 9.3% (3.5%, 22.4%) 85.2% (82.7%, 87.5%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 89. By Sex, Females: Accuracy Measures for MI Phenotyping Algorithms versus Four MI ARIC Event Classification 
Females 

Definite MI 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 93.9% (82.6%, 98.0%) 97.0% (95.8%, 97.9%) 59.0% (48.7%, 68.5%) 99.7% (99.1%, 99.9%) 

Any Diagnosis Position + 
Lab or Procedure 

91.8% (80.2%, 96.9%) 97.4% (96.2%, 98.2%) 61.6% (51.0%, 71.3%) 99.6% (99.0%, 99.9%) 

1st or 2nd Diagnosis 
Position 

69.4% (55.1%, 80.7%) 98.3% (97.4%, 98.9%) 65.4% (52.0%, 76.7%) 98.6% (97.7%, 99.2%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
69.4% (55.1%, 80.7%) 98.5% (97.6%, 99.1%) 68.0% (54.4%, 79.1%) 98.6% (97.7%, 99.2%) 

Probable MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 42.9% (25.6%, 62.1%) 94.0% (92.2%, 95.4%) 15.4% (8.9%, 25.3%) 98.5% (97.3%, 99.1%) 

Any Diagnosis Position + 
Lab or Procedure 

42.9% (25.6%, 62.1%) 94.4% (92.7%, 95.8%) 16.4% (9.5%, 26.9%) 98.5% (97.3%, 99.1%) 

1st or 2nd Diagnosis 
Position 

32.1% (17.5%, 51.4%) 96.1% (94.6%, 97.1%) 17.3% (9.2%, 30.2%) 98.2% (97.1%, 98.9%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
32.1% (17.5%, 51.4%) 96.3% (94.9%, 97.3%) 18.0% (9.6%, 31.3%) 98.2% (97.1%, 98.9%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 9.3% (5.5%, 15.2%) 93.4% (91.7%, 94.9%) 19.2% (12.1%, 29.1%) 85.9% (83.4%, 88.1%) 

Any Diagnosis Position + 
Lab or Procedure 

8.6% (5.0%, 14.5%) 93.9% (92.1%, 95.2%) 19.2% (11.9%, 29.4%) 85.9% (83.4%, 88.1%) 

1st or 2nd Diagnosis 
Position 

3.7% (1.7%, 8.0%) 95.2% (93.6%, 96.4%) 11.5% (5.4%, 22.8%) 85.4% (82.9%, 87.6%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
3.1% (1.3%, 7.2%) 95.3% (93.8%, 96.5%) 10.0% (4.4%, 21.3%) 85.3% (82.8%, 87.5%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 90. By Race: Contingency Table for MI Phenotyping Algorithms versus Binary MI ARIC Event Classification 
  White Black 

  Definite/Probable MI Suspect MI/No MI Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position 

MI 109 31 11 3 

No MI 36 1724 3 316 

Any Diagnosis Position + Lab or Procedure 

MI 108 25 10 2 

No MI 37 1730 4 317 

1st or 2nd Diagnosis Position 

MI 74 12 9 1 

No MI 71 1743 5 318 

1st or 2nd Diagnosis Position + Lab or Procedure 

MI 74 10 8 1 

No MI 71 1745 6 318 

MI: myocardial infarction. 

Table 91. By Race: Accuracy Measures for MI Phenotyping Algorithms versus Binary MI ARIC Event Classification 
WHITE Sensitivity Specificity PPV NPV 

Any Diagnosis Position 75.2% (65.8%, 82.6%) 98.2% (97.5%, 98.8%) 77.9% (70.3%, 84.0%) 98.0% (97.0%, 98.6%) 

Any Diagnosis Position + Lab 
or Procedure 

74.5% (65.1%, 82.0%) 98.6% (97.9%, 99.1%) 81.2% (73.7%, 87.0%) 97.9% (96.9%, 98.6%) 

1st or 2nd Diagnosis Position 51.0% (42.5%, 59.5%) 99.3% (98.8%, 99.6%) 86.1% (77.2%, 91.8%) 96.1% (94.9%, 97.0%) 

1st or 2nd Diagnosis Position + 
Lab or Procedure 

51.0% (42.5%, 59.5%) 99.4% (98.9%, 99.7%) 88.1% (79.5%, 93.4%) 96.1% (94.9%, 97.0%) 

BLACK Sensitivity Specificity PPV NPV 

Any Diagnosis Position 78.6% (49.4%, 93.2%) 99.1% (97.1%, 99.7%) 78.6% (51.6%, 92.7%) 99.1% (97.2%, 99.7%) 

Any Diagnosis Position + Lab 
or Procedure 

71.4% (45.2%, 88.3%) 99.4% (97.5%, 99.8%) 83.3% (54.9%, 95.4%) 98.8% (96.8%, 99.5%) 

1st or 2nd Diagnosis Position 64.3% (38.5%, 83.8%) 99.7% (97.8%, 100.0%) 90.0% (52.7%, 98.6%) 98.5% (96.4%, 99.3%) 

1st or 2nd Diagnosis Position + 
Lab or Procedure 

57.1% (28.5%, 81.7%) 99.7% (97.8%, 100.0%) 88.9% (49.3%, 98.5%) 98.2% (95.5%, 99.2%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 92. By Race: Contingency Table for MI Phenotyping Algorithms and Four MI ARIC Classifications 
  White Black 

  Definite MI Probable MI Suspect MI No MI Definite MI Probable MI Suspect MI No MI 

Any Diagnosis Position MI 71 38 26 5 11 0 1 2 

No MI 14 22 245 1479 1 2 52 264 

Any Diagnosis Position + 

Lab or Procedure 

MI 70 38 23 2 10 0 1 1 

No MI 15 22 248 1482 2 2 52 265 

1st or 2nd Diagnosis Position MI 48 26 10 2 9 0 0 1 

No MI 37 34 261 1482 3 2 53 265 

1st or 2nd Diagnosis Position 

+ Lab or Procedure 

MI 48 26 9 1 8 0 0 1 

No MI 37 34 262 1483 4 2 53 265 
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Table 93. By Race, White: Accuracy Measures for MI Phenotyping Algorithms versus Four MI ARIC Event Classification 
White 

Definite MI 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 83.5% (71.6%, 91.1%) 96.2% (95.2%, 97.0%) 50.7% (42.8%, 58.6%) 99.2% (98.5%, 99.6%) 

Any Diagnosis Position + 
Lab or Procedure 

82.4% (70.4%, 90.2%) 96.5% (95.6%, 97.3%) 52.6% (44.5%, 60.7%) 99.2% (98.4%, 99.5%) 

1st or 2nd Diagnosis 
Position 

56.5% (45.4%, 67.0%) 97.9% (97.1%, 98.5%) 55.8% (45.7%, 65.5%) 98.0% (97.1%, 98.6%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
56.5% (45.4%, 67.0%) 98.0% (97.3%, 98.6%) 57.1% (46.9%, 66.8%) 98.0% (97.1%, 98.6%) 

Probable MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 63.3% (49.4%, 75.3%) 94.5% (93.2%, 95.5%) 27.1% (20.2%, 35.4%) 98.8% (98.0%, 99.2%) 

Any Diagnosis Position + 
Lab or Procedure 

63.3% (49.4%, 75.3%) 94.8% (93.6%, 95.9%) 28.6% (21.3%, 37.1%) 98.8% (98.0%, 99.2%) 

1st or 2nd Diagnosis 
Position 

43.3% (31.6%, 55.9%) 96.7% (95.8%, 97.5%) 30.2% (21.6%, 40.6%) 98.1% (97.3%, 98.7%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
43.3% (31.6%, 55.9%) 96.9% (95.9%, 97.6%) 31.0% (22.1%, 41.4%) 98.1% (97.3%, 98.7%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 9.6% (6.5%, 13.9%) 93.0% (91.5%, 94.2%) 18.6% (13.0%, 25.9%) 86.1% (84.2%, 87.8%) 

Any Diagnosis Position + 
Lab or Procedure 

8.5% (5.6%, 12.6%) 93.3% (91.8%, 94.5%) 17.3% (11.8%, 24.7%) 86.0% (84.1%, 87.7%) 

1st or 2nd Diagnosis 
Position 

3.7% (2.0%, 6.7%) 95.3% (94.2%, 96.3%) 11.6% (6.5%, 20.1%) 85.6% (83.7%, 87.3%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
3.3% (1.7%, 6.3%) 95.4% (94.3%, 96.3%) 10.7% (5.8%, 19.1%) 85.6% (83.7%, 87.3%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 94. By Race, Black: Accuracy Measures for MI Phenotyping Algorithms versus Four MI ARIC Event Classification 
Black 

Definite MI 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 91.7% (57.9%, 98.9%) 99.1% (97.1%, 99.7%) 78.6% (51.6%, 92.7%) 99.7% (97.8%, 100.0%) 

Any Diagnosis Position + 
Lab or Procedure 

83.3% (54.9%, 95.4%) 99.4% (97.5%, 99.9%) 83.3% (54.9%, 95.4%) 99.4% (97.6%, 99.8%) 

1st or 2nd Diagnosis 
Position 

75.0% (46.7%, 91.1%) 99.7% (97.8%, 100.0%) 90.0% (52.7%, 98.6%) 99.1% (97.2%, 99.7%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
66.7% (32.4%, 89.3%) 99.7% (97.8%, 100.0%) 88.9% (49.3%, 98.5%) 98.8% (96.1%, 99.6%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 1.9% (0.3%, 12.3%) 95.4% (91.6%, 97.5%) 7.1% (1.1%, 34.1%) 83.7% (78.3%, 88.0%) 

Any Diagnosis Position + 
Lab or Procedure 

1.9% (0.3%, 12.3%) 96.1% (92.8%, 97.9%) 8.3% (1.4%, 37.5%) 83.8% (78.4%, 88.0%) 

1st or 2nd Diagnosis 
Position 

16.2% (12.0%, 21.6%) 83.8% (78.4%, 88.0%) 16.2% (12.0%, 21.6%) 83.8% (78.4%, 88.0%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
16.2% (12.0%, 21.6%) 83.8% (78.4%, 88.0%) 16.2% (12.0%, 21.6%) 83.8% (78.4%, 88.0%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. Measures for Probable MI not 
calculated for Black participants due to lack of positivity across outcome categories (see contingency table). 
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Table 95. By Age: Contingency Table for MI Algorithms and Binary MI ARIC Classifications 
  74 – 84 years ≥ 85 years 

  Definite/Probable MI Suspect MI/No MI Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position 

MI 82 19 38 15 

No MI 25 1367 14 673 

Any Diagnosis Position + Lab or 

Procedure 

MI 80 14 38 13 

No MI 27 1372 14 675 

1st or 2nd Diagnosis Position 

MI 60 7 23 6 

No MI 47 1379 29 682 

1st or 2nd Diagnosis Position + Lab or 

Procedure 

MI 59 6 23 5 

No MI 48 1380 29 683 

 

Table 96. By Age: Accuracy Measures for MI Phenotyping Algorithms versus Binary MI ARIC Event Classification 
74 – 84 years Sensitivity Specificity PPV NPV 

Any Diagnosis Position 76.6% (65.2%, 85.2%) 98.6% (97.8%, 99.1%) 81.2% (72.2%, 87.8%) 98.2% (97.0%, 98.9%) 

Any Diagnosis Position + Lab or 
Procedure 

74.8% (63.5%, 83.5%) 99.0% (98.2%, 99.4%) 85.1% (76.1%, 91.1%) 98.1% (96.9%, 98.8%) 

1st or 2nd Diagnosis Position 56.1% (45.7%, 65.9%) 99.5% (98.9%, 99.8%) 89.6% (79.8%, 94.9%) 96.7% (95.4%, 97.7%) 

1st or 2nd Diagnosis Position + 
Lab or Procedure 

55.1% (44.7%, 65.2%) 99.6% (99.0%, 99.8%) 90.8% (81.1%, 95.8%) 96.6% (95.3%, 97.6%) 

≥ 85 years Sensitivity Specificity PPV NPV 

Any Diagnosis Position 73.1% (58.5%, 84.0%) 97.8% (96.4%, 98.7%) 71.7% (58.7%, 81.9%) 98.0% (96.5%, 98.8%) 

Any Diagnosis Position + Lab or 
Procedure 

73.1% (58.5%, 84.0%) 98.1% (96.8%, 98.9%) 74.5% (61.5%, 84.3%) 98.0% (96.5%, 98.8%) 

1st or 2nd Diagnosis Position 44.2% (31.4%, 57.9%) 99.1% (98.1%, 99.6%) 79.3% (61.3%, 90.3%) 95.9% (94.1%, 97.2%) 

1st or 2nd Diagnosis Position + 
Lab or Procedure 

44.2% (31.4%, 57.9%) 99.3% (98.3%, 99.7%) 82.1% (64.1%, 92.2%) 95.9% (94.1%, 97.2%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 97. By Age: Contingency Table for MI Algorithms and Four MI ARIC Classifications 
  74 – 84 years ≥ 85 years 

  Definite MI Probable MI Suspect MI No MI Definite MI Probable MI Suspect MI No MI 

Any Diagnosis Position MI 56 26 13 6 26 12 14 1 

No MI 9 16 178 1189 6 8 119 554 

Any Diagnosis Position + Lab 

or Procedure 

MI 54 26 11 3 26 12 13 0 

No MI 11 16 180 1192 6 8 120 555 

1st or 2nd Diagnosis Position MI 42 18 5 2 15 8 5 1 

No MI 23 24 186 1193 17 12 128 554 

1st or 2nd Diagnosis Position + 

Lab or Procedure 

MI 41 18 4 2 15 8 5 0 

No MI 24 24 187 1193 17 12 128 555 
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Table 98. By Age, 74 – 84 yrs: Accuracy Measures for MI Phenotyping Algorithms versus 3 MI ARIC Event Classification 
74 – 84 yrs 
Definite MI 

Sensitivity Specificity PPV NPV 

Any Diagnosis Position 86.2% (71.9%, 93.8%) 96.9% (95.7%, 97.7%) 55.5% (45.5%, 65.0%) 99.4% (98.5%, 99.7%) 

Any Diagnosis Position + 
Lab or Procedure 

83.1% (69.3%, 91.5%) 97.2% (96.1%, 98.0%) 57.5% (47.2%, 67.1%) 99.2% (98.4%, 99.6%) 

1st or 2nd Diagnosis 
Position 

64.6% (51.3%, 76.0%) 98.3% (97.4%, 98.8%) 62.7% (50.7%, 73.3%) 98.4% (97.4%, 99.0%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
63.1% (49.3%, 75.0%) 98.3% (97.5%, 98.9%) 63.1% (50.9%, 73.8%) 98.3% (97.3%, 99.0%) 

Probable MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 61.9% (44.8%, 76.5%) 94.8% (93.4%, 96.0%) 25.7% (17.7%, 35.9%) 98.9% (98.0%, 99.4%) 

Any Diagnosis Position + 
Lab or Procedure 

61.9% (44.8%, 76.5%) 95.3% (94.0%, 96.4%) 27.7% (19.0%, 38.3%) 98.9% (98.0%, 99.4%) 

1st or 2nd Diagnosis 
Position 

42.9% (29.2%, 57.8%) 96.6% (95.5%, 97.5%) 26.9% (17.5%, 38.8%) 98.3% (97.4%, 98.9%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
42.9% (29.2%, 57.8%) 96.8% (95.7%, 97.6%) 27.7% (18.1%, 39.9%) 98.3% (97.4%, 98.9%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 6.8% (3.8%, 11.9%) 93.2% (91.6%, 94.6%) 12.9% (7.5%, 21.3%) 87.2% (85.2%, 89.0%) 

Any Diagnosis Position + 
Lab or Procedure 

5.8% (3.0%, 10.6%) 93.6% (92.1%, 94.9%) 11.7% (6.4%, 20.4%) 87.1% (85.1%, 89.0%) 

1st or 2nd Diagnosis 
Position 

2.6% (1.1%, 6.1%) 95.2% (93.9%, 96.3%) 7.5% (3.2%, 16.5%) 87.0% (84.9%, 88.8%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
2.1% (0.8%, 5.4%) 95.3% (94.0%, 96.3%) 6.2% (2.4%, 15.1%) 86.9% (84.9%, 88.7%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 99. By Age, ≥ 85 years: Accuracy Measures for MI Phenotyping Algorithms versus 3 MI ARIC Event Classification 
Age ≥ 85 years 

Definite MI 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 81.3% (61.2%, 92.3%) 96.2% (94.5%, 97.4%) 49.1% (37.5%, 60.8%) 99.1% (97.8%, 99.7%) 

Any Diagnosis Position + 
Lab or Procedure 

81.3% (61.2%, 92.3%) 96.5% (94.9%, 97.6%) 51.0% (39.2%, 62.7%) 99.1% (97.8%, 99.7%) 

1st or 2nd Diagnosis 
Position 

46.9% (31.1%, 63.3%) 98.0% (96.7%, 98.8%) 51.7% (35.9%, 67.2%) 97.6% (96.1%, 98.5%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
46.9% (31.1%, 63.3%) 98.2% (96.9%, 98.9%) 53.6% (37.4%, 69.0%) 97.6% (96.1%, 98.5%) 

Probable MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 60.0% (38.0%, 78.6%) 94.3% (92.1%, 95.9%) 22.6% (13.7%, 35.1%) 98.8% (97.7%, 99.4%) 

Any Diagnosis Position + 
Lab or Procedure 

60.0% (38.0%, 78.6%) 94.6% (92.4%, 96.2%) 23.5% (14.2%, 36.4%) 98.8% (97.7%, 99.4%) 

1st or 2nd Diagnosis 
Position 

40.0% (21.4%, 62.0%) 97.1% (95.5%, 98.1%) 27.6% (15.0%, 45.1%) 98.3% (97.1%, 99.0%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
40.0% (21.4%, 62.0%) 97.2% (95.7%, 98.2%) 28.6% (15.6%, 46.4%) 98.3% (97.1%, 99.0%) 

Suspect MI Sensitivity Specificity PPV NPV 

Any Diagnosis Position 10.5% (6.4%, 16.8%) 93.6% (91.0%, 95.5%) 26.4% (16.6%, 39.3%) 82.7% (79.3%, 85.6%) 

Any Diagnosis Position + 
Lab or Procedure 

9.8% (5.9%, 15.9%) 93.7% (91.2%, 95.6%) 25.5% (15.7%, 38.5%) 82.6% (79.2%, 85.5%) 

1st or 2nd Diagnosis 
Position 

3.8% (1.6%, 8.7%) 96.1% (94.0%, 97.4%) 17.2% (7.5%, 34.9%) 82.0% (78.6%, 85.0%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
3.8% (1.6%, 8.7%) 96.2% (94.2%, 97.5%) 17.9% (7.8%, 35.9%) 82.0% (78.6%, 85.0%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 95% confidence intervals estimated using a general 
estimating equation stratified by subgroup with independent correlation structure to account for multiple events per person. 
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Table 100. Average number of events during period of interest, MI 

 Individuals 

(N) 

Number of Events, 2015 - 2019 

Mean SD Min Max 

All 1203 1.89 1.35 1 14 

Female 613 1.86 1.31 1 9 

Male 590 1.93 1.38 1 14 

White 1004 1.94 1.38 1 14 

Black 199 1.68 1.13 1 8 

Age < 85 yrs 791 1.80 1.27 1 10 

Age ≥ 85 yrs 412 2.08 1.47 1 14 

White Male 522 1.97 1.41 1 14 

White Female 482 1.90 1.35 1 9 

Black Male 68 1.68 1.07 1 5 

Black Female 131 1.69 1.17 1 8 

Table reports average (SD) and min/max number of MI events experienced by N individuals belonging 

to each group. 
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Table 101. First Event Only, Subgroups: Contingency Table for MI Phenotyping Algorithms versus Binary ARIC MI Event Classification 
  Males Females 

  Definite/Probable MI Suspect MI/No MI Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position MI 39 11 39 12 

No MI 10 521 11 544 

Any Diagnosis Position + Lab or Procedure MI 39 8 38 10 

No MI 10 524 12 546 

1st or 2nd Diagnosis Position MI 29 2 30 7 

No MI 20 530 20 549 

1st or 2nd Diagnosis Position + Lab or Procedure MI 29 2 30 6 

No MI 20 530 20 550 

  White Black 

  Definite/Probable MI Suspect MI/No MI Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position MI 72 21 6 2 

No MI 18 879 3 186 

Any Diagnosis Position + Lab or Procedure MI 71 17 6 1 

No MI 19 883 3 187 

1st or 2nd Diagnosis Position MI 53 8 6 1 

No MI 37 892 3 187 

1st or 2nd Diagnosis Position + Lab or Procedure MI 53 7 6 1 

No MI 37 893 3 187 

  Age < 85 yrs Age ≥ 85 yrs 
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  Definite/Probable MI Suspect MI/No MI Definite/Probable MI Suspect MI/No MI 

Any Diagnosis Position MI 58 14 20 9 

No MI 13 750 8 315 

Any Diagnosis Position + Lab or Procedure MI 57 11 20 7 

No MI 14 753 8 317 

1st or 2nd Diagnosis Position MI 44 5 15 4 

No MI 27 759 13 320 

1st or 2nd Diagnosis Position + Lab or Procedure MI 44 5 15 3 

No MI 27 759 13 321 
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Table 102. First Event Only, Subgroups: Accuracy Measures for MI Phenotyping Algorithms versus Binary ARIC MI Event Classification 
Males Sensitivity Specificity PPV NPV 

Any Diagnosis Position 79.6% (73.8%, 85.3%) 97.9% (97.3%, 98.5%) 78.0% (72.1%, 83.9%) 98.1% (97.5%, 98.7%) 

Any Diagnosis Position + Lab or Procedure 79.6% (73.8%, 85.3%) 98.5% (98.0%, 99.0%) 83.0% (77.5%, 88.5%) 98.1% (97.5%, 98.7%) 

1st or 2nd Diagnosis Position 59.2% (52.2%, 66.2%) 99.6% (99.4%, 99.9%) 93.5% (89.1%, 98.0%) 96.4% (95.6%, 97.2%) 

1st or 2nd Diagnosis Position + Lab or Procedure 59.2% (52.2%, 66.2%) 99.6% (99.4%, 99.9%) 93.5% (89.1%, 98.0%) 96.4% (95.6%, 97.2%) 

Females Sensitivity Specificity PPV NPV 

Any Diagnosis Position 78.0% (72.1%, 83.9%) 97.8% (97.2%, 98.5%) 76.5% (70.5%, 82.4%) 98.0% (97.4%, 98.6%) 

Any Diagnosis Position + Lab or Procedure 76.0% (70.0%, 82.0%) 98.2% (97.6%, 98.8%) 79.2% (73.3%, 85.0%) 97.8% (97.2%, 98.5%) 

1st or 2nd Diagnosis Position 60.0% (53.1%, 66.9%) 98.7% (98.3%, 99.2%) 81.1% (74.6%, 87.5%) 96.5% (95.7%, 97.3%) 

1st or 2nd Diagnosis Position + Lab or Procedure 60.0% (53.1%, 66.9%) 98.9% (98.5%, 99.4%) 83.3% (77.1%, 89.5%) 96.5% (95.7%, 97.3%) 

White Sensitivity Specificity PPV NPV 

Any Diagnosis Position 80.0% (75.8%, 84.2%) 97.7% (97.2%, 98.2%) 77.4% (73.1%, 81.8%) 98.0% (97.5%, 98.5%) 

Any Diagnosis Position + Lab or Procedure 78.9% (74.6%, 83.2%) 98.1% (97.7%, 98.6%) 80.7% (76.5%, 84.9%) 97.9% (97.4%, 98.4%) 

1st or 2nd Diagnosis Position 58.9% (53.7%, 64.1%) 99.1% (98.8%, 99.4%) 86.9% (82.6%, 91.2%) 96.0% (95.4%, 96.7%) 

1st or 2nd Diagnosis Position + Lab or Procedure 58.9% (53.7%, 64.1%) 99.2% (98.9%, 99.5%) 88.3% (84.2%, 92.5%) 96.0% (95.4%, 96.7%) 

Black Sensitivity Specificity PPV NPV 

Any Diagnosis Position 66.7% (51.0%, 82.4%) 98.9% (98.2%, 99.7%) 75.0% (59.7%, 90.3%) 98.4% (97.5%, 99.3%) 

Any Diagnosis Position + Lab or Procedure 66.7% (51.0%, 82.4%) 99.5% (98.9%, 100.0%) 85.7% (72.5%, 98.9%) 98.4% (97.5%, 99.3%) 

1st or 2nd Diagnosis Position 66.7% (51.0%, 82.4%) 99.5% (98.9%, 100.0%) 85.7% (72.5%, 98.9%) 98.4% (97.5%, 99.3%) 

1st or 2nd Diagnosis Position + Lab or Procedure 66.7% (51.0%, 82.4%) 99.5% (98.9%, 100.0%) 85.7% (72.5%, 98.9%) 98.4% (97.5%, 99.3%) 

Age < 85 yrs Sensitivity Specificity PPV NPV 

Any Diagnosis Position 81.7% (77.1%, 86.3%) 98.2% (97.7%, 98.7%) 80.6% (75.9%, 85.2%) 98.3% (97.8%, 98.8%) 

Any Diagnosis Position + Lab or Procedure 80.3% (75.6%, 85.0%) 98.6% (98.1%, 99.0%) 83.8% (79.4%, 88.3%) 98.2% (97.7%, 98.7%) 

1st or 2nd Diagnosis Position 62.0% (56.2%, 67.7%) 99.3% (99.1%, 99.6%) 89.8% (85.5%, 94.1%) 96.6% (95.9%, 97.2%) 

1st or 2nd Diagnosis Position + Lab or Procedure 62.0% (56.2%, 67.7%) 99.3% (99.1%, 99.6%) 89.8% (85.5%, 94.1%) 96.6% (95.9%, 97.2%) 

Age ≥ 85 yrs Sensitivity Specificity PPV NPV 

Any Diagnosis Position 71.4% (62.9%, 80.0%) 97.2% (96.3%, 98.1%) 69.0% (60.4%, 77.6%) 97.5% (96.7%, 98.4%) 

Any Diagnosis Position + Lab or Procedure 71.4% (62.9%, 80.0%) 97.8% (97.0%, 98.6%) 74.1% (65.6%, 82.5%) 97.5% (96.7%, 98.4%) 

1st or 2nd Diagnosis Position 53.6% (44.1%, 63.0%) 98.8% (98.2%, 99.4%) 78.9% (69.6%, 88.3%) 96.1% (95.0%, 97.2%) 

1st or 2nd Diagnosis Position + Lab or Procedure 53.6% (44.1%, 63.0%) 99.1% (98.5%, 99.6%) 83.3% (74.5%, 92.1%) 96.1% (95.0%, 97.2%) 

PPV: Positive Predictive Value. NPV: Negative Predictive Value. Gold standard was ARIC MI event classification as “Definite MI” or “Possible MI”  
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Table 103. By Sex: Contingency Table for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classification 
  Males Females 

  
Definite or 

Possible ADHF 
Chronic Stable HF, Unlikely HF, or 

Unclassifiable HF 
Definite or 

Possible ADHF 
Chronic Stable HF, Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 

HF 412 426 506 537 

No 
HF 

168 198 216 268 

Any Diagnosis Position + Lab 
or Diuretic 

HF 391 134 475 191 

No 
HF 

189 490 247 614 

1st or 2nd Diagnosis Position 

HF 204 48 269 81 

No 
HF 

376 576 453 724 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

HF 197 13 265 26 

No 
HF 

383 611 457 779 

1st Diagnosis Position 

HF 185 7 231 12 

No 
HF 

395 617 491 793 

ADHF: acute decompensated HF. HF: heart failure 

 

Table 104. By Sex: Accuracy Measures for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classifications 
Males Sensitivity Specificity PPV NPV 

Any Diagnosis Position 71.0% (66.5%, 75.2%) 31.7% (27.6%, 36.2%) 49.2% (44.7%, 53.7%) 54.1% (48.5%, 59.6%) 

Any Diagnosis Position + Lab 
or Diuretic 

67.4% (63.0%, 71.6%) 78.5% (74.7%, 81.9%) 74.5% (69.8%, 78.7%) 72.2% (68.1%, 75.9%) 

1st or 2nd Diagnosis Position 35.2% (30.8%, 39.8%) 92.3% (89.7%, 94.3%) 81.0% (75.3%, 85.6%) 60.5% (56.7%, 64.2%) 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

34.0% (29.8%, 38.5%) 97.9% (96.5%, 98.8%) 93.8% (89.6%, 96.4%) 61.5% (57.8%, 65.1%) 

1st Diagnosis Position 31.9% (27.8%, 36.4%) 98.9% (97.7%, 99.5%) 96.4% (92.5%, 98.3%) 61.0% (57.3%, 35.5%) 

Females Sensitivity Specificity PPV NPV 

Any Diagnosis Position 70.1% (66.1%, 73.8%) 33.3% (29.6%, 37.2%) 48.5% (44.7%, 52.3%) 55.4% (50.2%, 60.4%) 

Any Diagnosis Position + Lab 
or Diuretic 

65.8% (61.9%, 69.5%) 76.3% (73.0%, 79.3%) 71.3% (67.3%, 75.1%) 71.3% (67.6%, 74.7%) 

1st or 2nd Diagnosis Position 37.3% (33.6%, 41.1%) 89.9% (87.6%, 91.9%) 76.9% (71.7%, 81.3%) 61.5% (58.2%, 64.8%) 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

36.7% (33.1%, 40.5%) 96.8% (95.2%, 97.8%) 91.1% (87.0%, 94.0%) 63.0% (59.8%, 66.2%) 

1st Diagnosis Position 32.0% (28.3%, 35.9%) 98.5% (97.4%, 99.2%) 95.1% (91.6%, 97.2%) 61.8% (58.5%, 35.0%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 105. By Sex: Contingency Table for HF Phenotyping Algorithms versus 5 HF ARIC Event Classifications 

  Males Females 

  
Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Any Diagnosis 
Position 

HF 232 180 347 40 39 303 203 442 49 46 

No 
HF 

90 78 141 42 15 124 92 173 76 19 

Any Diagnosis 
Position + Lab or 

Diuretic 

HF 229 162 114 9 11 296 179 150 22 19 

No 
HF 

93 96 374 73 43 131 116 465 103 46 

1st or 2nd 
Diagnosis Position 

HF 154 50 37 6 5 207 62 69 7 5 

No 
HF 

168 208 451 76 49 220 233 546 118 60 

1st or 2nd 
Diagnosis Position 
+ Lab or Diuretic 

HF 152 45 13 0 0 206 59 20 3 3 

No 
HF 

170 213 475 82 54 221 236 595 122 62 

1st Diagnosis 
Position 

HF 143 42 6 1 0 189 42 8 2 2 

No 
HF 

179 216 482 81 54 238 253 607 123 63 

ADHF: acute decompensated HF. HF: heart failure 
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Table 106. By Sex, Males: Contingency Table for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 
Males 

Definite ADHF 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.1% (66.5%, 77.0%) 31.3% (27.6%, 35.2%) 27.7% (24.0%, 31.7%) 75.4% (70.3%, 79.9%) 

Any Diagnosis Position + Lab or 
Diuretic 

71.1% (65.7%, 76.0%) 66.4% (62.7%, 70.0%) 43.6% (38.8%, 48.6%) 86.3% (83.1%, 89.0%) 

1st or 2nd Diagnosis Position 47.8% (42.1%, 53.6%) 88.9% (86.1%, 91.2%) 61.1% (54.3%, 67.5%) 82.4% (79.4%, 85.0%) 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

47.2% (41.6%, 52.9%) 93.4% (91.5%, 94.9%) 72.4% (65.8%, 78.1%) 82.9% (85.4%, 80.0%) 

1st Diagnosis Position 44.4% (38.9%, 50.1%) 94.4% (92.6%, 95.9%) 74.5% (67.6%, 80.3%) 82.3% (79.5%, 84.8%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 69.8% (63.2%, 75.6%) 30.4% (27.1%, 34.1%) 21.5% (18.7%, 24.5%) 78.7% (74.0%, 82.7%) 

Any Diagnosis Position + Lab or 
Diuretic 

62.8% (56.1%, 69.1%) 61.6% (57.8%, 65.3%) 30.9% (27.0%, 35.1%) 85.9% (82.8%, 88.5%) 

1st or 2nd Diagnosis Position 19.4% (14.7%, 25.1%) 78.7% (75.1%, 81.8%) 19.8% (15.4%, 25.2%) 78.2% (75.3%, 80.8%) 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

17.4% (13.1%, 22.8%) 82.6% (79.4%, 85.3%) 21.4% (16.3%, 27.6%) 78.6% (81.1%, 75.8%) 

1st Diagnosis Position 16.3% (12.1%, 21.6%) 84.1% (81.0%, 86.9%) 21.9% (16.5%, 28.4%) 78.7% (75.9%, 81.2%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.1% (66.5%, 77.0%) 31.4% (27.6%, 35.5%) 27.7% (24.0%, 31.7%) 61.5% (55.9%, 66.8%) 

Any Diagnosis Position + Lab or 
Diuretic 

23.4% (19.4%, 27.9%) 42.6% (38.4%, 46.9%) 21.7% (17.8%, 26.2%) 44.9% (40.7%, 49.2%) 

1st or 2nd Diagnosis Position 7.6% (5.4%, 10.6%) 70.0% (65.7%, 73.9%) 14.7% (10.6%, 20.0%) 52.6% (48.9%, 56.3%) 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

2.7% (1.6%, 4.5%) 72.5% (68.4%, 76.2%) 6.2% (3.6%, 10.5%) 52.2% (55.9%, 48.5%) 

1st Diagnosis Position 1.2% (0.6%, 2.7%) 74.0% (70.0%, 77.7%) 3.1% (1.4%, 6.8%) 52.4% (48.7%, 56.0%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 107. By Sex, Females: Contingency Table for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 
Females 

Definite ADHF 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 71.0% (65.8%, 75.6%) 32.7% (29.6%, 36.1%) 29.1% (25.8%, 32.5%) 74.4% (69.5%, 78.7%) 

Any Diagnosis Position + 
Lab or Diuretic 

69.3% (64.3%, 74.0%) 66.4% (63.3%, 69.3%) 44.4% (40.2%, 48.8%) 84.8% (81.8%, 87.4%) 

1st or 2nd Diagnosis 
Position 

48.5% (43.4%, 53.5%) 87.0% (84.8%, 88.9%) 59.1% (53.5%, 64.6%) 81.3% (78.6%, 83.7%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

48.2% (43.2%, 53.3%) 92.3% (90.5%, 93.7%) 70.8% (65.2%, 75.9%) 82.1% (84.5%, 79.5%) 

1st Diagnosis Position 44.3% (39.0%, 49.7%) 95.1% (93.6%, 96.2%) 77.8% (72.0%, 82.7%) 81.5% (78.8%, 83.9%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 68.8% (62.9%, 74.2%) 31.8% (28.9%, 34.9%) 19.5% (17.1%, 22.1%) 81.0% (77.2%, 84.3%) 

Any Diagnosis Position + 
Lab or Diuretic 

60.7% (54.6%, 66.4%) 60.5% (57.3%, 63.6%) 26.9% (23.6%, 30.5%) 86.5% (83.9%, 88.8%) 

1st or 2nd Diagnosis 
Position 

21.0% (16.7%, 26.1%) 76.6% (73.8%, 79.3%) 17.7% (14.0%, 22.2%) 80.2% (77.7%, 82.5%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

20.0% (15.8%, 25.0%) 81.2% (78.4%, 83.7%) 20.3% (15.9%, 25.5%) 80.9% (83.1%, 78.5%) 

1st Diagnosis Position 14.2% (10.7%, 18.7%) 83.7% (81.0%, 86.0%) 17.3% (12.9%, 22.7%) 80.3% (78.0%, 82.5%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 71.0% (65.8%, 75.6%) 34.1% (30.7%, 37.6%) 29.1% (25.8%, 32.5%) 64.3% (59.5%, 68.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

24.4% (20.9%, 28.2%) 43.4% (40.0%, 47.0%) 22.5% (19.2%, 26.2%) 46.0% (42.2%, 49.8%) 

1st or 2nd Diagnosis 
Position 

11.2% (8.9%, 14.1%) 69.2% (65.8%, 72.4%) 19.7% (15.6%, 24.6%) 53.6% (50.3%, 56.9%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

3.3% (2.1%, 5.0%) 70.3% (67.0%, 73.4%) 6.9% (4.5%, 10.5%) 51.9% (55.1%, 48.6%) 

1st Diagnosis Position 1.3% (0.7%, 2.6%) 74.2% (70.9%, 77.4%) 3.3% (1.7%, 6.4%) 52.7% (49.4%, 56.0%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 108. By Race: Contingency Table for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classification 
  White Black 

  
Definite or 

Possible ADHF 
Chronic Stable HF, Unlikely HF, or 

Unclassifiable HF 
Definite or 

Possible ADHF 
Chronic Stable HF, Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 

HF 745 758 173 205 

No 
HF 

276 334 108 132 

Any Diagnosis Position + Lab 
or Diuretic 

HF 705 232 161 93 

No 
HF 

316 860 120 244 

1st or 2nd Diagnosis Position 

HF 377 98 96 31 

No 
HF 

644 994 185 306 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

HF 370 25 92 14 

No 
HF 

651 1067 189 323 

1st Diagnosis Position 

HF 333 12 83 7 

No 
HF 

688 1080 198 330 

ADHF: acute decompensated HF. HF: heart failure 
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Table 109. By Race: Accuracy Measures for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classifications 
White Sensitivity Specificity PPV NPV 

Any Diagnosis Position 73.0% (69.7%, 76.0%) 30.6% (27.6%, 33.7%) 49.6% (46.3%, 52.8%) 54.8% (50.2%, 59.2%) 

Any Diagnosis Position + 
Lab or Diuretic 

69.1% (65.8%, 72.1%) 78.8% (76.0%, 81.2%) 75.2% (72.0%, 78.2%) 73.1% (70.1%, 76.0%) 

1st or 2nd Diagnosis 
Position 

36.9% (33.7%, 40.3%) 91.0% (89.1%, 92.7%) 79.4% (75.2%, 83.0%) 60.7% (57.8%, 63.5%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

36.2% (33.1%, 39.5%) 97.7% (96.6%, 98.5%) 93.7% (90.7%, 95.7%) 62.1% (59.3%, 64.8%) 

1st Diagnosis Position 32.6% (29.5%, 35.9%) 98.9% (98.1%, 99.4%) 96.5% (94.0%, 98.0%) 61.1% (58.3%, 36.2%) 

Black Sensitivity Specificity PPV NPV 

Any Diagnosis Position 61.6% (54.8%, 67.9%) 39.2% (32.8%, 45.9%) 45.8% (39.2%, 52.5%) 55.0% (47.9%, 61.9%) 

Any Diagnosis Position + 
Lab or Diuretic 

57.3% (50.6%, 63.7%) 72.4% (66.6%, 77.5%) 63.4% (55.7%, 70.4%) 67.0% (61.4%, 72.2%) 

1st or 2nd Diagnosis 
Position 

34.2% (28.6%, 40.2%) 90.8% (86.9%, 93.6%) 75.6% (66.3%, 83.0%) 62.3% (57.2%, 67.2%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

32.7% (27.3%, 38.7%) 95.9% (93.0%, 97.6%) 86.8% (78.1%, 92.4%) 63.1% (58.0%, 67.9%) 

1st Diagnosis Position 29.5% (23.7%, 36.1%) 97.9% (95.8%, 99.0%) 92.2% (84.7%, 96.2%) 62.5% (57.1%, 32.4%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 110. By Race: Contingency Table for HF Phenotyping Algorithms versus 5 HF ARIC Event Classifications 
  White 

  Definite ADHF Possible ADHF Chronic Stable HF Unlikely HF Unclassifiable HF 

Any Diagnosis Position 
HF 436 309 619 66 73 

No HF 159 117 225 90 19 

Any Diagnosis Position + Lab or Diuretic 
HF 427 278 184 21 27 

No HF 168 148 660 135 65 

1st or 2nd Diagnosis Position 
HF 289 88 80 10 8 

No HF 306 338 764 146 84 

1st or 2nd Diagnosis Position + Lab or Diuretic 
HF 287 83 21 2 2 

No HF 308 343 823 154 90 

1st Diagnosis Position 
HF 271 62 9 2 1 

No HF 324 364 835 154 91 

  Black 

  Definite ADHF Possible ADHF Chronic Stable HF Unlikely HF Unclassifiable HF 

Any Diagnosis Position 
HF 99 74 170 23 12 

No HF 55 53 89 28 15 

Any Diagnosis Position + Lab or Diuretic 
HF 98 63 80 10 3 

No HF 56 64 179 41 24 

1st or 2nd Diagnosis Position 
HF 72 24 26 3 2 

No HF 82 103 233 48 25 

1st or 2nd Diagnosis Position + Lab or Diuretic 
HF 71 21 12 1 1 

No HF 83 106 247 50 26 

1st Diagnosis Position 
HF 61 22 5 1 1 

No HF 93 105 254 50 26 

ADHF: acute decompensated HF. HF: heart failure 
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Table 111. By Race, White: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 
White 

Definite ADHF 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 73.3% (69.0%, 77.2%) 29.7% (27.2%, 32.4%) 29.0% (26.3%, 31.9%) 73.9% (69.7%, 77.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

71.8% (67.5%, 75.6%) 66.4% (63.7%, 69.0%) 45.6% (42.0%, 49.2%) 85.7% (83.2%, 87.9%) 

1st or 2nd Diagnosis 
Position 

48.6% (44.2%, 52.9%) 87.8% (85.8%, 89.5%) 60.8% (56.1%, 65.4%) 81.3% (79.0%, 83.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

48.2% (44.0%, 52.6%) 92.9% (91.4%, 94.1%) 72.7% (68.0%, 76.8%) 82.1% (84.1%, 79.9%) 

1st Diagnosis Position 45.6% (41.3%, 49.9%) 95.1% (93.9%, 96.1%) 78.6% (73.8%, 82.6%) 81.7% (79.5%, 83.7%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.5% (67.8%, 76.8%) 29.2% (26.8%, 31.7%) 20.6% (18.5%, 22.8%) 80.8% (77.4%, 83.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

65.3% (60.4%, 69.9%) 60.9% (58.2%, 63.6%) 29.7% (26.8%, 32.7%) 87.4% (85.2%, 89.3%) 

1st or 2nd Diagnosis 
Position 

20.7% (17.0%, 24.9%) 77.1% (74.6%, 79.4%) 18.5% (15.3%, 22.3%) 79.4% (77.2%, 81.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

19.5% (16.0%, 23.6%) 81.5% (79.2%, 83.6%) 21.0% (17.3%, 25.3%) 80.0% (82.0%, 78.0%) 

1st Diagnosis Position 14.6% (11.5%, 18.3%) 83.2% (80.9%, 85.3%) 18.0% (14.2%, 22.5%) 79.4% (77.4%, 81.3%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 73.3% (69.0%, 77.2%) 30.3% (27.6%, 33.3%) 29.0% (26.3%, 31.9%) 63.1% (58.8%, 67.2%) 

Any Diagnosis Position + 
Lab or Diuretic 

21.8% (19.0%, 24.9%) 40.7% (37.7%, 43.7%) 19.6% (16.9%, 22.7%) 43.9% (40.7%, 47.1%) 

1st or 2nd Diagnosis 
Position 

9.5% (7.6%, 11.8%) 68.9% (65.9%, 71.8%) 16.8% (13.5%, 20.8%) 53.4% (50.5%, 56.2%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

2.5% (1.6%, 3.8%) 70.5% (67.6%, 73.3%) 5.3% (3.5%, 8.1%) 52.1% (54.9%, 49.3%) 

1st Diagnosis Position 1.1% (0.6%, 2.0%) 73.5% (70.6%, 76.2%) 2.6% (1.4%, 4.9%) 52.8% (50.0%, 55.6%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 112. By Race, Black: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 
 

Black 
Definite ADHF 

Sensitivity Specificity PPV NPV 

Any Diagnosis Position 64.3% (56.4%, 71.5%) 39.9% (34.3%, 45.7%) 26.2% (20.8%, 32.4%) 77.1% (70.9%, 82.3%) 

Any Diagnosis Position + 
Lab or Diuretic 

63.6% (56.0%, 70.7%) 66.4% (61.0%, 71.4%) 38.6% (31.5%, 46.2%) 84.6% (80.2%, 88.2%) 

1st or 2nd Diagnosis 
Position 

46.8% (39.2%, 54.5%) 88.2% (84.5%, 91.0%) 56.7% (46.4%, 66.4%) 83.3% (79.2%, 86.7%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

46.1% (38.6%, 53.8%) 92.5% (89.6%, 94.6%) 67.0% (56.5%, 76.0%) 83.8% (87.1%, 79.8%) 

1st Diagnosis Position 39.6% (31.1%, 48.8%) 93.8% (91.0%, 95.7%) 67.8% (56.7%, 77.2%) 82.4% (77.9%, 86.1%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 58.3% (48.3%, 67.6%) 38.1% (32.8%, 43.7%) 19.6% (15.8%, 24.1%) 77.9% (72.0%, 82.9%) 

Any Diagnosis Position + 
Lab or Diuretic 

49.6% (39.7%, 59.5%) 61.1% (55.7%, 66.2%) 24.8% (19.7%, 30.7%) 82.4% (78.0%, 86.1%) 

1st or 2nd Diagnosis 
Position 

18.9% (12.7%, 27.3%) 79.0% (74.3%, 83.1%) 18.9% (12.6%, 27.4%) 79.0% (75.2%, 82.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

16.5% (10.6%, 24.8%) 82.7% (78.1%, 86.5%) 19.8% (12.6%, 29.8%) 79.3% (82.6%, 75.6%) 

1st Diagnosis Position 17.3% (11.5%, 25.3%) 86.2% (81.7%, 89.6%) 24.4% (16.2%, 35.2%) 80.1% (76.5%, 83.3%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 64.3% (56.4%, 71.5%) 42.1% (36.2%, 48.1%) 26.2% (20.8%, 32.4%) 62.9% (56.0%, 69.3%) 

Any Diagnosis Position + 
Lab or Diuretic 

30.9% (24.8%, 37.7%) 51.5% (45.5%, 57.5%) 31.5% (25.1%, 38.7%) 50.8% (45.3%, 56.4%) 

1st or 2nd Diagnosis 
Position 

10.0% (6.9%, 14.4%) 71.9% (66.5%, 76.7%) 20.5% (14.1%, 28.8%) 52.6% (47.5%, 57.5%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

4.6% (2.7%, 7.9%) 73.8% (68.5%, 78.5%) 11.3% (6.5%, 18.9%) 51.8% (56.7%, 46.8%) 

1st Diagnosis Position 1.9% (0.8%, 4.5%) 76.3% (70.6%, 81.2%) 5.6% (2.4%, 12.4%) 51.9% (46.8%, 57.0%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 113. By Age: Contingency Table for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classification 
 

  Age < 85 Age ≥ 85 

  Definite or Possible 
ADHF 

Chronic Stable HF, Unlikely 
HF, or Unclassifiable HF 

Definite or Possible 
ADHF 

Chronic Stable HF, Unlikely 
HF, or Unclassifiable HF 

Any Diagnosis Position 
HF 537 605 381 358 

No HF 251 316 133 150 

Any Diagnosis Position + Lab 
or Diuretic 

HF 505 212 361 113 

No HF 283 709 153 395 

1st or 2nd Diagnosis Position 
HF 268 83 205 46 

No HF 520 838 309 462 

1st or 2nd Diagnosis Position + 
Lab or Diuretic 

HF 263 31 199 8 

No HF 525 890 315 500 

1st Diagnosis Position 
HF 236 12 180 7 

No HF 552 909 334 501 

ADHF: acute decompensated HF. HF: heart failure 

Table 114. By Age: Accuracy Measures for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classifications 

Age < 85 yrs Sensitivity Specificity PPV NPV 

Any Diagnosis Position 68.2% (64.3%, 71.8%) 34.3% (30.7%, 38.1%) 47.0% (43.2%, 50.9%) 44.3% (39.8%, 48.9%) 

Any Diagnosis Position + 
Lab or Diuretic 

64.1% (60.3%, 67.7%) 77.0% (73.8%, 79.9%) 70.4% (66.2%, 74.3%) 28.5% (25.3%, 31.9%) 

1st or 2nd Diagnosis 
Position 

34.0% (30.5%, 37.8%) 91.0% (88.9%, 92.7%) 76.4% (71.4%, 80.7%) 38.3% (35.2%, 41.5%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

33.4% (29.9%, 37.0%) 96.6% (95.2%, 97.7%) 89.5% (85.1%, 92.7%) 37.1% (40.2%, 34.1%) 

1st Diagnosis Position 30.0% (26.4%, 33.7%) 98.7% (97.7%, 99.3%) 95.2% (91.7%, 97.2%) 37.8% (34.7%, 41.0%) 

Age ≤ 85 yrs Sensitivity Specificity PPV NPV 

Any Diagnosis Position 74.1% (69.3%, 78.4%) 29.5% (25.4%, 34.1%) 51.6% (47.3%, 55.8%) 47.0% (40.4%, 53.7%) 

Any Diagnosis Position + 
Lab or Diuretic 

70.2% (65.6%, 74.5%) 77.8% (73.8%, 81.3%) 76.2% (71.8%, 80.0%) 27.9% (23.9%, 32.4%) 

1st or 2nd Diagnosis 
Position 

39.9% (35.3%, 44.7%) 90.9% (87.8%, 93.4%) 81.7% (75.6%, 86.5%) 40.1% (36.3%, 44.0%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

38.7% (34.2%, 43.4%) 98.4% (96.9%, 99.2%) 96.1% (92.6%, 98.0%) 38.7% (42.4%, 35.0%) 

1st Diagnosis Position 35.0% (30.6%, 39.7%) 98.6% (97.1%, 99.3%) 96.3% (92.4%, 98.2%) 40.0% (36.4%, 43.8%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 115. By Age: Contingency Table for HF Phenotyping Algorithms versus 5 HF ARIC Event Classifications 

  Age < 85 yrs Age ≥ 85 yrs 

  
Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Any Diagnosis 
Position 

HF 302 235 485 64 56 233 148 304 25 29 

No 
HF 

133 118 211 83 22 81 52 103 35 12 

Any Diagnosis 
Position + Lab 
or Diuretic 

HF 295 210 171 22 19 230 131 93 9 11 

No 
HF 

140 143 525 125 59 84 69 314 51 30 

1st or 2nd 
Diagnosis 
Position 

HF 204 64 66 10 7 157 48 40 3 3 

No 
HF 

231 289 630 137 71 157 152 367 57 38 

1st or 2nd 
Diagnosis 
Position + Lab 
or Diuretic 

HF 204 59 27 2 2 154 45 6 1 1 

No 
HF 

231 294 669 145 76 160 155 401 59 40 

1st Diagnosis 
Position 

HF 188 48 9 2 1 144 36 5 1 1 

No 
HF 

247 305 687 145 77 170 164 402 59 40 

ADHF: acute decompensated HF. HF: heart failure 
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Table 116. By Age, <85 yrs: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 
Age < 85 yrs 

Definite ADHF 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 69.4% (64.6%, 73.9%) 34.1% (31.0%, 37.3%) 26.4% (23.3%, 29.9%) 76.5% (72.5%, 80.1%) 

Any Diagnosis Position + 
Lab or Diuretic 

67.8% (63.0%, 72.3%) 66.9% (63.8%, 69.8%) 41.1% (36.9%, 45.6%) 85.9% (83.3%, 88.2%) 

1st or 2nd Diagnosis 
Position 

46.9% (42.2%, 51.6%) 88.5% (86.4%, 90.2%) 58.1% (52.5%, 63.5%) 83.0% (80.6%, 85.2%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

46.9% (42.2%, 51.6%) 92.9% (91.3%, 94.3%) 69.4% (63.7%, 74.6%) 83.7% (85.8%, 81.3%) 

1st Diagnosis Position 43.2% (38.4%, 48.2%) 95.3% (93.9%, 96.4%) 75.8% (70.0%, 80.8%) 83.1% (80.7%, 85.3%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 66.6% (61.0%, 71.7%) 33.1% (30.1%, 36.2%) 20.6% (18.2%, 23.2%) 79.2% (75.5%, 82.4%) 

Any Diagnosis Position + 
Lab or Diuretic 

59.5% (53.8%, 64.9%) 62.6% (59.5%, 65.6%) 29.3% (25.9%, 32.9%) 85.6% (83.1%, 87.8%) 

1st or 2nd Diagnosis 
Position 

18.1% (14.3%, 22.8%) 78.8% (76.2%, 81.3%) 18.2% (14.5%, 22.7%) 78.7% (76.3%, 81.0%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

16.7% (13.1%, 21.2%) 82.7% (80.1%, 85.0%) 20.1% (15.8%, 25.2%) 79.2% (81.4%, 76.9%) 

1st Diagnosis Position 13.6% (10.3%, 17.7%) 85.3% (82.8%, 87.4%) 19.4% (14.9%, 24.8%) 79.1% (76.8%, 81.3%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 69.4% (64.6%, 73.9%) 35.1% (31.8%, 38.6%) 26.4% (23.3%, 29.9%) 62.8% (58.3%, 67.1%) 

Any Diagnosis Position + 
Lab or Procedure 

24.6% (21.2%, 28.3%) 46.1% (42.6%, 49.7%) 23.9% (20.4%, 27.7%) 47.1% (43.6%, 50.6%) 

1st or 2nd Diagnosis 
Position 

9.5% (7.5%, 11.9%) 71.9% (68.6%, 75.0%) 18.8% (15.0%, 23.3%) 53.6% (50.4%, 56.8%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
3.9% (2.7%, 5.6%) 73.6% (70.4%, 76.7%) 9.2% (6.3%, 13.2%) 52.7% (55.9%, 49.6%) 

1st Diagnosis Position 1.3% (0.7%, 2.5%) 76.4% (73.2%, 79.4%) 3.6% (1.9%, 6.8%) 53.0% (49.8%, 56.1%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 117. By Age, ≥ 85 yrs: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event Classifications 
Age ≥ 85 yrs 

Definite ADHF 
Sensitivity Specificity PPV NPV 

Any Diagnosis Position 74.2% (67.9%, 79.6%) 28.5% (24.9%, 32.5%) 31.5% (27.8%, 35.5%) 71.4% (64.8%, 77.2%) 

Any Diagnosis Position + 
Lab or Diuretic 

73.3% (67.1%, 78.6%) 65.5% (61.7%, 69.2%) 48.5% (43.8%, 53.3%) 84.7% (80.9%, 87.8%) 

1st or 2nd Diagnosis 
Position 

50.0% (43.6%, 56.5%) 86.7% (83.9%, 89.1%) 62.6% (55.9%, 68.8%) 79.6% (76.4%, 82.6%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

49.0% (42.8%, 55.4%) 92.5% (90.3%, 94.3%) 74.4% (68.1%, 79.8%) 80.4% (83.2%, 77.2%) 

1st Diagnosis Position 45.9% (39.6%, 52.3%) 93.9% (91.8%, 95.5%) 77.0% (70.3%, 82.6%) 79.6% (76.5%, 82.5%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 74.0% (67.0%, 79.9%) 28.1% (24.8%, 31.7%) 20.0% (17.3%, 23.1%) 81.6% (76.7%, 85.7%) 

Any Diagnosis Position + 
Lab or Diuretic 

65.5% (58.3%, 72.1%) 58.3% (54.3%, 62.2%) 27.6% (23.8%, 31.8%) 87.4% (84.2%, 90.0%) 

1st or 2nd Diagnosis 
Position 

24.0% (18.7%, 30.2%) 75.3% (71.5%, 78.7%) 19.1% (14.6%, 24.6%) 80.3% (77.4%, 82.9%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

22.5% (17.4%, 28.6%) 80.3% (76.7%, 83.4%) 21.7% (16.5%, 28.0%) 81.0% (83.5%, 78.2%) 

1st Diagnosis Position 18.0% (13.2%, 24.0%) 81.6% (78.1%, 84.7%) 19.3% (14.0%, 25.9%) 80.4% (77.6%, 82.9%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 74.2% (67.9%, 79.6%) 29.3% (25.3%, 33.6%) 31.5% (27.8%, 35.5%) 63.6% (57.4%, 69.4%) 

Any Diagnosis Position + 
Lab or Diuretic 

22.9% (18.9%, 27.4%) 38.1% (33.9%, 42.4%) 19.6% (16.1%, 23.8%) 42.7% (38.2%, 47.3%) 

1st or 2nd Diagnosis 
Position 

9.8% (7.0%, 13.6%) 65.7% (61.4%, 69.8%) 15.9% (11.4%, 21.9%) 52.4% (48.5%, 56.3%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

1.5% (0.7%, 3.2%) 67.3% (63.1%, 71.3%) 2.9% (1.3%, 6.2%) 50.8% (54.6%, 47.0%) 

1st Diagnosis Position 1.2% (0.5%, 2.9%) 70.4% (66.2%, 74.3%) 2.7% (1.1%, 6.2%) 51.9% (48.0%, 55.7%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 118. By Race-Sex Groups: Contingency Table for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classification 

  White males White females 

  
Definite or Possible 

ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Definite or Possible 
ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 
HF 347 360 398 398 

No HF 126 153 150 181 

Any Diagnosis Position + Lab or 
Diuretic 

HF 328 105 377 127 

No HF 145 408 171 452 

1st or 2nd Diagnosis Position 
HF 165 37 212 61 

No HF 308 476 336 518 

1st or 2nd Diagnosis Position + Lab or 
Diuretic 

HF 160 8 210 17 

No HF 313 505 338 562 

1st Diagnosis Position 
HF 148 6 185 6 

No HF 325 507 363 573 

  Black males Black females 

  
Definite or Possible 

ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Definite or Possible 
ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 
HF 65 66 108 139 

No HF 42 45 66 87 

Any Diagnosis Position + Lab or 
Diuretic 

HF 63 29 98 64 

No HF 44 82 76 162 

1st or 2nd Diagnosis Position 
HF 39 11 57 20 

No HF 68 100 117 206 

1st or 2nd Diagnosis Position + Lab or 
Diuretic 

HF 37 5 55 9 

No HF 70 106 119 217 

1st Diagnosis Position 
HF 37 1 46 6 

No HF 70 110 128 220 

ADHF: acute decompensated HF. HF: heart failure 
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Table 119. By Race-Sex Groups: Accuracy Measures for HF Phenotyping Algorithms versus Binary Acute HF ARIC Event Classifications 

White Males Sensitivity Specificity PPV NPV 

Any Diagnosis Position 73.4% (68.5%, 77.8%) 29.8% (25.6%, 34.4%) 49.1% (44.2%, 54.0%) 54.8% (48.2%, 61.3%) 

Any Diagnosis Position + 
Lab or Diuretic 

69.3% (64.5%, 73.8%) 79.5% (75.5%, 83.1%) 75.8% (70.8%, 80.1%) 73.8% (69.2%, 77.9%) 

1st or 2nd Diagnosis 
Position 

34.9% (30.0%, 40.2%) 92.8% (89.8%, 94.9%) 81.7% (75.2%, 86.8%) 60.7% (56.5%, 64.8%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

33.8% (29.1%, 38.9%) 98.4% (0.0%, 99.2%) 95.2% (90.8%, 97.6%) 61.7% (57.6%, 65.7%) 

1st Diagnosis Position 31.3% (26.7%, 36.2%) 98.8% (97.4%, 99.5%) 96.1% (91.6%, 98.2%) 60.9% (56.8%, 35.1%) 

White Females Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.6% (68.1%, 76.7%) 31.3% (27.1%, 35.7%) 50.0% (45.7%, 54.4%) 54.7% (48.5%, 60.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

68.8% (64.4%, 72.8%) 78.1% (74.3%, 81.4%) 74.8% (70.3%, 78.8%) 72.6% (68.3%, 76.4%) 

1st or 2nd Diagnosis 
Position 

38.7% (34.4%, 43.1%) 89.5% (86.7%, 91.7%) 77.7% (72.0%, 82.5%) 60.7% (56.8%, 64.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

38.3% (34.1%, 42.8%) 97.1% (0.0%, 98.2%) 92.5% (88.1%, 95.4%) 62.4% (58.6%, 66.1%) 

1st Diagnosis Position 33.8% (29.6%, 38.2%) 99.0% (97.7%, 99.5%) 96.9% (93.2%, 98.6%) 61.2% (57.5%, 35.2%) 

Black Males Sensitivity Specificity PPV NPV 

Any Diagnosis Position 60.8% (49.1%, 71.3%) 40.5% (28.4%, 54.0%) 49.6% (38.0%, 61.3%) 51.7% (40.9%, 62.4%) 

Any Diagnosis Position + 
Lab or Diuretic 

58.9% (47.5%, 69.4%) 73.9% (62.6%, 82.7%) 68.5% (54.8%, 79.6%) 65.1% (56.6%, 72.7%) 

1st or 2nd Diagnosis 
Position 

36.5% (27.4%, 46.6%) 90.1% (83.5%, 94.2%) 78.0% (64.6%, 87.3%) 59.5% (51.1%, 67.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

34.6% (25.8%, 44.6%) 95.5% (0.0%, 98.0%) 88.1% (73.0%, 95.3%) 60.2% (52.1%, 67.8%) 

1st Diagnosis Position 34.6% (25.4%, 45.1%) 99.1% (93.8%, 99.9%) 97.4% (83.0%, 99.6%) 61.1% (53.0%, 31.4%) 

Black Females Sensitivity Specificity PPV NPV 

Any Diagnosis Position 62.1% (53.7%, 69.8%) 38.5% (31.4%, 46.1%) 43.7% (35.9%, 51.9%) 56.9% (47.5%, 65.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

56.3% (48.2%, 64.2%) 71.7% (64.8%, 77.7%) 60.5% (51.2%, 69.1%) 68.1% (60.6%, 74.7%) 

1st or 2nd Diagnosis 
Position 

32.8% (26.0%, 40.3%) 91.2% (85.9%, 94.6%) 74.0% (60.9%, 83.9%) 63.8% (57.1%, 69.9%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

31.6% (25.0%, 39.0%) 96.0% (0.0%, 98.0%) 85.9% (74.0%, 92.9%) 64.6% (58.1%, 70.6%) 

1st Diagnosis Position 26.4% (19.5%, 34.8%) 97.4% (94.3%, 98.8%) 88.5% (77.2%, 94.5%) 63.2% (56.1%, 30.2%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 120. By Race-Sex Groups: Contingency Table for HF Phenotyping Algorithms versus 5 HF ARIC Event Classifications 

  White Males White Females 

  
Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Any Diagnosis 
Position 

HF 195 152 288 35 37 241 157 331 31 36 

No 
HF 

68 58 114 32 7 91 59 111 58 12 

Any Diagnosis 
Position + Lab or 

Diuretic 

HF 193 135 85 9 11 234 143 99 12 16 

No 
HF 

70 75 317 58 33 98 73 343 77 32 

1st or 2nd 
Diagnosis Position 

HF 128 37 27 5 5 161 51 53 5 3 

No 
HF 

135 173 375 62 39 171 165 389 84 45 

1st or 2nd 
Diagnosis Position 
+ Lab or Diuretic 

HF 127 33 8 0 0 160 50 13 2 2 

No 
HF 

136 177 394 67 44 172 166 429 87 46 

1st Diagnosis 
Position 

HF 119 29 6 0 0 152 33 3 2 1 

No 
HF 

144 181 396 67 44 180 183 439 87 47 

  Black Males Black Females 

  
Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Definite 
ADHF 

Possible 
ADHF 

Chronic 
Stable HF 

Unlikely 
HF 

Unclassifiable 
HF 

Any Diagnosis 
Position 

HF 37 28 59 5 2 62 46 111 18 10 

No 
HF 

22 20 27 10 8 33 33 62 18 7 

Any Diagnosis 
Position + Lab or 

Diuretic 

HF 36 27 29 0 0 62 36 51 10 3 

No 
HF 

23 21 57 15 10 33 43 122 26 14 

1st or 2nd 
Diagnosis Position 

HF 26 13 10 1 0 46 11 16 2 2 



 

 

3
3
6
 

No 
HF 

33 35 76 14 10 49 68 157 34 15 

1st or 2nd 
Diagnosis Position 
+ Lab or Diuretic 

HF 25 12 5 0 0 46 9 7 1 1 

No 
HF 

34 36 81 15 10 49 70 166 35 16 

1st Diagnosis 
Position 

HF 24 13 0 1 0 37 9 5 0 1 

No 
HF 

35 35 86 14 10 58 70 168 36 16 

ADHF: acute decompensated HF. HF: heart failure 
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Table 121. By Race-Sex Groups, White Males: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event 
Classifications 

White Males 
Definite ADHF 

Sensitivity Specificity PPV NPV 

Any Diagnosis Position 74.1% (68.0%, 79.5%) 29.2% (25.5%, 33.2%) 27.6% (23.6%, 32.0%) 75.6% (69.6%, 80.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

73.4% (67.3%, 78.7%) 66.8% (62.7%, 70.7%) 44.6% (39.2%, 50.1%) 87.3% (83.8%, 90.2%) 

1st or 2nd Diagnosis 
Position 

48.7% (42.2%, 55.2%) 89.8% (86.7%, 92.2%) 63.4% (55.8%, 70.4%) 82.8% (79.5%, 85.6%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

48.3% (42.0%, 54.7%) 94.3% (92.2%, 95.9%) 75.6% (68.5%, 81.6%) 83.4% (86.1%, 80.2%) 

1st Diagnosis Position 45.3% (39.1%, 51.5%) 95.2% (93.2%, 96.6%) 77.3% (69.8%, 83.3%) 82.7% (79.5%, 85.5%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.4% (65.2%, 78.6%) 28.5% (25.1%, 32.1%) 21.5% (18.5%, 24.8%) 79.2% (73.8%, 83.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

64.3% (56.9%, 71.1%) 61.6% (57.5%, 65.6%) 31.2% (27.0%, 35.7%) 86.4% (83.0%, 89.3%) 

1st or 2nd Diagnosis 
Position 

17.6% (12.7%, 24.0%) 78.7% (74.8%, 82.2%) 18.3% (13.6%, 24.2%) 77.9% (74.7%, 80.9%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

15.7% (11.2%, 21.6%) 82.6% (79.1%, 85.7%) 19.6% (14.3%, 26.4%) 78.4% (81.2%, 75.2%) 

1st Diagnosis Position 13.8% (9.6%, 19.6%) 83.9% (80.4%, 86.8%) 18.8% (13.4%, 25.9%) 78.3% (75.1%, 81.1%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 74.1% (68.0%, 79.5%) 28.3% (24.3%, 32.6%) 27.6% (23.6%, 32.0%) 59.1% (52.7%, 65.3%) 

Any Diagnosis Position + 
Lab or Diuretic 

21.1% (17.2%, 25.7%) 40.4% (35.9%, 45.1%) 19.6% (15.7%, 24.2%) 42.7% (38.1%, 47.4%) 

1st or 2nd Diagnosis 
Position 

6.7% (4.4%, 10.2%) 70.0% (65.3%, 74.4%) 13.4% (8.9%, 19.6%) 52.2% (48.1%, 56.3%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

2.0% (1.0%, 3.9%) 72.6% (68.0%, 76.8%) 4.8% (2.4%, 9.3%) 51.8% (55.9%, 47.7%) 

1st Diagnosis Position 1.5% (0.7%, 3.3%) 74.7% (70.2%, 78.7%) 3.9% (1.8%, 8.4%) 52.4% (48.3%, 56.5%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 122. By Race-Sex Groups, White Females: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event 
Classifications 

White Females 
Definite ADHF 

Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.6% (66.5%, 78.0%) 30.2% (26.7%, 33.9%) 30.3% (26.6%, 34.3%) 72.5% (66.4%, 77.9%) 

Any Diagnosis Position + 
Lab or Diuretic 

70.5% (64.5%, 75.8%) 66.0% (62.5%, 69.4%) 46.4% (41.6%, 51.3%) 84.3% (80.6%, 87.3%) 

1st or 2nd Diagnosis 
Position 

48.5% (42.7%, 54.4%) 85.9% (83.4%, 88.1%) 59.0% (52.8%, 64.9%) 80.0% (76.7%, 82.9%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

48.2% (42.4%, 54.1%) 91.6% (89.4%, 93.3%) 70.5% (64.2%, 76.0%) 80.9% (83.7%, 77.8%) 

1st Diagnosis Position 45.8% (39.9%, 51.8%) 95.1% (93.4%, 96.4%) 79.6% (73.3%, 84.7%) 80.8% (77.7%, 83.5%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.7% (66.3%, 78.3%) 29.9% (26.6%, 33.4%) 19.7% (16.9%, 22.9%) 82.2% (77.8%, 85.9%) 

Any Diagnosis Position + 
Lab or Diuretic 

66.2% (59.7%, 72.2%) 60.4% (56.6%, 64.0%) 28.4% (24.5%, 32.6%) 88.3% (85.4%, 90.7%) 

1st or 2nd Diagnosis 
Position 

23.6% (18.6%, 29.5%) 75.6% (72.3%, 78.7%) 18.7% (14.5%, 23.7%) 80.7% (77.8%, 83.3%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

23.2% (18.2%, 29.0%) 80.6% (77.3%, 83.4%) 22.0% (17.1%, 27.9%) 81.6% (84.1%, 78.8%) 

1st Diagnosis Position 15.3% (11.2%, 20.6%) 82.7% (79.5%, 85.4%) 17.3% (12.5%, 23.4%) 80.5% (77.7%, 83.0%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 72.6% (66.5%, 78.0%) 32.1% (28.3%, 36.2%) 30.3% (26.6%, 34.3%) 66.5% (60.7%, 71.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

22.4% (18.5%, 26.8%) 40.9% (36.9%, 44.9%) 19.6% (16.1%, 23.8%) 44.9% (40.5%, 49.5%) 

1st or 2nd Diagnosis 
Position 

12.0% (9.2%, 15.4%) 67.9% (63.9%, 71.6%) 19.4% (14.9%, 24.9%) 54.5% (50.5%, 58.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

2.9% (1.7%, 5.1%) 68.8% (64.8%, 72.5%) 5.7% (3.3%, 9.8%) 52.3% (56.2%, 48.4%) 

1st Diagnosis Position 0.7% (0.2%, 2.1%) 72.6% (68.6%, 76.2%) 1.6% (0.5%, 4.7%) 53.1% (49.3%, 56.9%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 

 



 

 

3
3
9
 

Table 123. By Race-Sex Groups, Black Males: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event 
Classifications 

Black Males 
Definite ADHF 

Sensitivity Specificity PPV NPV 

Any Diagnosis Position 62.7% (49.1%, 74.6%) 40.9% (30.5%, 52.1%) 28.2% (19.4%, 39.2%) 74.7% (64.5%, 82.8%) 

Any Diagnosis Position + 
Lab or Diuretic 

61.0% (48.3%, 72.4%) 64.8% (55.3%, 73.3%) 39.1% (28.4%, 51.1%) 81.8% (74.2%, 87.5%) 

1st or 2nd Diagnosis 
Position 

44.1% (31.9%, 57.0%) 84.9% (77.9%, 90.0%) 52.0% (36.4%, 67.3%) 80.4% (73.3%, 85.9%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

42.4% (30.8%, 54.9%) 89.3% (83.9%, 93.1%) 59.5% (43.1%, 74.1%) 80.7% (86.1%, 73.7%) 

1st Diagnosis Position 40.7% (28.5%, 54.2%) 91.2% (85.5%, 94.8%) 63.2% (45.5%, 77.9%) 80.6% (73.9%, 85.8%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 58.3% (42.2%, 72.8%) 39.4% (29.3%, 50.6%) 21.4% (14.6%, 30.2%) 77.0% (67.4%, 84.4%) 

Any Diagnosis Position + 
Lab or Diuretic 

56.3% (40.2%, 71.1%) 61.8% (51.5%, 71.1%) 29.4% (20.1%, 40.7%) 83.3% (76.2%, 88.7%) 

1st or 2nd Diagnosis 
Position 

27.1% (16.7%, 40.7%) 78.2% (69.7%, 84.9%) 26.0% (15.8%, 39.7%) 79.2% (72.7%, 84.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

25.0% (15.0%, 38.6%) 82.4% (74.5%, 88.2%) 28.6% (16.7%, 44.5%) 79.6% (84.7%, 73.3%) 

1st Diagnosis Position 27.1% (16.7%, 40.7%) 85.3% (76.5%, 91.2%) 34.2% (20.1%, 51.8%) 80.6% (74.4%, 85.5%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 62.7% (49.1%, 74.6%) 45.5% (35.0%, 56.4%) 45.0% (33.8%, 56.8%) 69.0% (56.6%, 79.1%) 

Any Diagnosis Position + 
Lab or Diuretic 

33.7% (22.7%, 46.8%) 52.3% (41.1%, 63.2%) 31.5% (20.4%, 45.2%) 54.8% (45.3%, 63.9%) 

1st or 2nd Diagnosis 
Position 

11.6% (6.6%, 19.6%) 69.7% (60.0%, 77.9%) 20.0% (11.3%, 32.9%) 54.8% (45.9%, 63.4%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

5.8% (2.6%, 12.7%) 72.0% (62.4%, 79.9%) 11.9% (4.7%, 27.0%) 54.0% (62.4%, 45.4%) 

1st Diagnosis Position NE NE NE NE 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 124. By Race-Sex Groups, Black Females: Accuracy Measures for HF Phenotyping Algorithms versus 3 HF ARIC Event 
Classifications 

Black Females 
Definite ADHF 

Sensitivity Specificity PPV NPV 

Any Diagnosis Position 65.3% (55.5%, 73.9%) 39.3% (33.0%, 46.1%) 25.1% (18.7%, 32.8%) 78.4% (70.2%, 84.9%) 

Any Diagnosis Position + 
Lab or Diuretic 

65.3% (55.5%, 73.9%) 67.2% (60.6%, 73.2%) 38.3% (29.2%, 48.2%) 86.1% (80.3%, 90.4%) 

1st or 2nd Diagnosis 
Position 

48.4% (38.8%, 58.1%) 89.8% (85.5%, 93.0%) 59.7% (46.3%, 71.9%) 84.8% (79.6%, 88.9%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

48.4% (38.8%, 58.1%) 94.1% (90.5%, 96.4%) 71.9% (58.0%, 82.5%) 85.4% (89.4%, 80.3%) 

1st Diagnosis Position 39.0% (27.9%, 51.3%) 95.1% (91.8%, 97.1%) 71.2% (56.5%, 82.4%) 83.3% (77.1%, 88.1%) 

Possible ADHF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 58.2% (45.5%, 69.9%) 37.4% (31.6%, 43.6%) 18.6% (14.3%, 23.9%) 78.4% (70.7%, 84.6%) 

Any Diagnosis Position + 
Lab or Diuretic 

45.6% (33.5%, 58.1%) 60.8% (54.5%, 66.7%) 22.2% (16.6%, 29.1%) 81.9% (76.1%, 86.6%) 

1st or 2nd Diagnosis 
Position 

13.9% (7.3%, 24.9%) 79.4% (73.5%, 84.3%) 14.3% (7.5%, 25.7%) 79.0% (74.0%, 83.2%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

11.4% (5.4%, 22.5%) 82.9% (77.0%, 87.5%) 14.1% (6.6%, 27.6%) 79.2% (83.3%, 74.3%) 

1st Diagnosis Position 11.4% (5.8%, 21.3%) 86.6% (81.2%, 90.6%) 17.3% (8.8%, 31.2%) 79.9% (75.3%, 83.8%) 

Chronic Stable HF Sensitivity Specificity PPV NPV 

Any Diagnosis Position 65.3% (55.5%, 73.9%) 40.1% (33.3%, 47.3%) 25.1% (18.7%, 32.8%) 59.5% (50.8%, 67.6%) 

Any Diagnosis Position + 
Lab or Diuretic 

29.5% (22.6%, 37.4%) 51.1% (44.1%, 58.0%) 31.5% (24.1%, 39.9%) 48.7% (41.8%, 55.7%) 

1st or 2nd Diagnosis 
Position 

9.3% (5.5%, 15.0%) 73.1% (66.7%, 78.7%) 20.8% (12.6%, 32.3%) 51.4% (45.2%, 57.5%) 

1st or 2nd Diagnosis 
Position + Lab or Diuretic 

4.1% (2.0%, 8.2%) 74.9% (68.5%, 80.4%) 10.9% (5.5%, 20.6%) 50.6% (56.7%, 44.5%) 

1st Diagnosis Position 2.9% (1.2%, 6.6%) 79.3% (72.5%, 84.8%) 9.6% (4.3%, 20.3%) 51.7% (45.3%, 58.1%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Accuracy measure point estimates and 
95% confidence intervals estimated using a general estimating equation with independent correlation structure to account for multiple events per person. 
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Table 125. Average Number of Events During Period of Interest, Heart Failure  

 Individuals 

(N) 

Number of Events, 2015 - 2019 

Mean SD Min Max 

All 1223 2.23 1.99 1 26 

Female 676 2.26 2.01 1 26 

Male 547 2.20 1.97 1 21 

White 964 2.19 1.96 1 26 

Black 259 2.39 2.09 1 16 

Age < 85 yrs 708 2.25 1.91 1 16 

Age ≥ 85 yrs 515 2.21 2.11 1 26 

White Male 456 2.16 1.94 1 21 

White Female 508 2.22 1.98 1 26 

Black Male 91 2.40 2.10 1 12 

Black Female 168 2.38 2.10 1 16 

Table reports average (SD) and min/max number of HF events experienced by N individuals belonging 

to each group. 
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Table 126. Average Percent Reduction in HF Cases from All-Events to First Event Only Analysis, ARIC Study 

Averages by Phenotyping Algorithm All Male Female White Black Age < 85 yrs Age ≥ 85 yrs 

Any Diagnosis Position -55.1% -53.6% -55.5% -53.5% -59.1% -55.6% -47.5% 

Any Diagnosis Position + Lab or 
Diuretic 

-52.0% -51.2% -52.8% -50.6% -55.9% -54.5% -48.1% 

1st or 2nd Diagnosis Position -50.9% -47.6% -51.4% -48.9% -63.7% -50.5% -53.5% 

1st or 2nd Diagnosis Position + Lab 
or Diuretic 

-54.8% -42.0% -56.0% -51.3% -64.9% -60.8% -44.3% 

First Diagnosis Position -50.9% -40.8% -49.1% -43.5% -51.9% -48.7% -40.1% 

Averages By Gold Standard Event 
Classification 

All Male Female White Black Age < 85 yrs Age ≥ 85 yrs 

Definite/Possible ADHF -63.3% -59.9% -66.1% -60.2% -74.3% -62.8% -60.1% 

Definite ADHF -66.3% -62.1% -69.4% -63.6% -77.8% -69.2% -62.5% 

Possible ADHF -56.6% -54.5% -57.6% -52.6% -68.4% -57.5% -54.0% 

Chronic Stable HF -72.6% -68.7% -75.5% -74.6% -68.8% -74.0% -71.5% 

Unlikely HF -19.2% -13.3% -16.0% -10.3% -38.8% -23.1% -12.1% 

Table shows average percent reduction in the number of HF cases when using an all-event approach versus a first event approach only, with percent changes 
averaged across algorithms (top) and across event classifications (bottom). For example, among all ARIC participants, the number of cases going from all-
events to first event only was reduced, on average, by 55% for cases identified via Any Diagnosis Position compared to 47.5% for cases identified with First 
Diagnosis Position. Among male participants, the number of cases going from all-events to first event only was reduced on average by 60% for 
Definite/Possible ADHF cases compared to 66% among female participants. Number of events per algorithm and event classification shown in tables below for 
subgroups and in Table 80 for all participants.  
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Table 127. By Sex: Percent Change of HF Events When Using All Events versus First Event Only Approach, ARIC Study 
 Males Females 

Definite/ 
Possible 

ADHF 

Any 
Diagnosis 
Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + 

Lab or 
Procedure 

1st 
Diagnosis 
Position 

Any 
Diagnosis 
Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + 

Lab or 
Procedure 

1st 
Diagnosis 
Position 

All Events 412 391 204 197 185 506 475 269 265 231 

First Event 177 166 79 75 71 190 182 86 86 68 

Percent 
Change 

-57% -58% -61% -62% -62% -62% -62% -68% -68% -71% 

Definite 
ADHF 

                    

All Events 232 229 154 152 143 303 296 207 206 189 

First Event 93 93 56 56 51 100 100 60 60 53 

Percent 
Change 

-60% -59% -64% -63% -64% -67% -66% -71% -71% -72% 

Possible 
ADHF 

                    

All Events 180 162 50 45 42 203 179 62 59 42 

First Event 84 73 23 19 20 90 82 26 26 15 

Percent 
Change 

-53% -55% -54% -58% -52% -56% -54% -58% -56% -64% 

Chronic 
Stable HF 

                    

All Events 347 114 37 13 6 442 150 69 20 8 

First Event 105 37 11 4 2 136 38 20 5 1 

Percent 
Change 

-70% -68% -70% -69% -67% -69% -75% -71% -75% -88% 

Unlikely 
HF 

                    

All Events 40 9 6 0 1 49 22 6 3 2 

First Event 29 7 5 0 1 35 18 6 2 2 

Percent 
Change 

-28% -22% -17% 0% 0% -29% -18% 0% -33% 0% 

Unclassifia
ble HF 

                    

All Events 39 11 5 0 0 46 19 5 3 2 

First Event 18 6 4 0 1 23 11 3 2 2 

Percent 
Change 

-54% -45% -20% 0% 0% -50% -42% -40% -33% 0% 
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Table 128. By Race: Percent Change in HF Events When Using All Events versus First Event Only Approach, ARIC Study 
 White Black 

Definite/ 
Possible 

ADHF 

Any 
Diagnosis 
Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + 

Lab or 
Procedure 

1st 
Diagnosis 
Position 

Any 
Diagnosis 
Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + 

Lab or 
Procedure 

1st 
Diagnosis 
Position 

All Events 745 705 377 370 333 173 161 96 92 83 

First Event 314 299 143 149 121 53 49 22 21 18 

Percent 
Change 

-58% -58% -62% -60% -64% -69% -70% -77% -77% -78% 

Definite 
ADHF 

                    

All Events 436 427 289 287 271 99 98 72 71 61 

First Event 170 170 100 100 92 23 23 16 16 12 

Percent 
Change 

-61% -60% -65% -65% -66% -77% -77% -78% -77% -80% 

Possible 
ADHF 

                    

All Events 309 278 88 83 62 74 63 24 21 22 

First Event 144 129 43 40 29 30 26 6 5 6 

Percent 
Change 

-53% -54% -51% -52% -53% -59% -59% -75% -76% -73% 

Chronic 
Stable HF 

                    

All Events 619 184 80 21 9 170 80 26 12 5 

First Event 188 49 23 4 2 53 26 8 5 1 

Percent 
Change 

-70% -73% -71% -81% -78% -69% -68% -69% -58% -80% 

Unlikely 
HF 

                    

All Events 66 21 10 2 2 23 10 3 1 1 

First Event 48 18 9 2 2 16 7 2 0 1 

Percent 
Change 

-27% -14% -10% 0% 0% -30% -30% -33% -100% 0% 

Unclassifia
ble HF 

                    

All Events 73 27 9 2 1 12 3 2 1 1 

First Event 35 15 6 1 1 6 2 1 1 1 

Percent 
Change 

-52% -44% -33% -50% 0% -50% -33% -50% 0% 0% 
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Table 129. By Age: Percent Change in HF Events When Using All Events versus First Event Only Approach, ARIC Study 
 Age < 85 yrs Age ≥ 85 yrs 

Definite/ 
Possible 

ADHF 

Any 
Diagnosis 
Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + 

Lab or 
Procedure 

1st 
Diagnosis 
Position 

Any 
Diagnosis 
Position 

Any 
Diagnosis 
Position + 

Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + 

Lab or 
Procedure 

1st 
Diagnosis 
Position 

All Events 537 505 268 263 236 381 361 205 199 180 

First Event 293 183 87 85 72 164 155 78 76 67 

Percent 
Change 

-45% -64% -68% -68% -69% -57% -57% -62% -62% -63% 

Definite 
ADHF 

                    

All Events 302 295 204 204 188 233 230 157 154 144 

First Event 101 101 59 59 54 92 92 57 57 50 

Percent 
Change 

-67% -66% -71% -71% -71% -61% -60% -64% -63% -65% 

Possible 
ADHF 

                    

All Events 235 210 64 59 48 148 131 48 45 36 

First Event 102 92 28 26 18 72 63 21 19 17 

Percent 
Change 

-57% -56% -56% -56% -63% -51% -52% -56% -58% -53% 

Chronic 
Stable HF 

                    

All Events 485 171 66 27 9 304 93 40 6 5 

First Event 148 49 20 8 1 93 26 11 1 2 

Percent 
Change 

-69% -71% -70% -70% -89% -69% -72% -73% -83% -60% 

Unlikely 
HF 

                    

All Events 64 22 10 2 2 25 9 3 1 1 

First Event 43 17 9 1 2 21 8 2 1 1 

Percent 
Change 

-33% -23% -10% -50% 0% -16% -11% -33% 0% 0% 

Unclassifia
ble HF 

                    

All Events 56 19 7 2 1 29 11 3 1 1 

First Event 21 10 5 1 1 20 7 2 1 1 

Percent 
Change 

-63% -47% -29% -50% 0% -31% -36% -33% 0% 0% 
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Table 130. First Event Only, Subgroups: Contingency Table for HF Phenotyping Algorithms versus Binary HF ARIC Event 
Classifications 

  Males Females 

  
Definite or Possible ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Definite or Possible 
ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 
HF 177 152 190 194 

No HF 99 119 126 166 

Any Diagnosis Position + Lab or 
Diuretic 

HF 166 50 182 67 

No HF 110 221 134 293 

1st or 2nd Diagnosis Position 
HF 79 20 86 29 

No HF 197 251 230 331 

1st or 2nd Diagnosis Position + Lab or 
Diuretic 

HF 75 4 86 9 

No HF 201 267 230 351 

1st Diagnosis Position 
HF 71 3 68 5 

No HF 205 268 248 355 

  White Black 

  
Definite or Possible ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Definite or Possible 
ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 
HF 314 271 53 75 

No HF 168 211 57 74 

Any Diagnosis Position + Lab or 
Diuretic 

HF 299 82 49 35 

No HF 183 400 61 114 

1st or 2nd Diagnosis Position 
HF 143 38 22 11 

No HF 339 444 88 138 

1st or 2nd Diagnosis Position + Lab or 
Diuretic 

HF 140 7 21 6 

No HF 342 475 89 143 

1st Diagnosis Position 
HF 121 5 18 3 

No HF 361 477 92 146 

  Age < 85 yrs Age ≥ 85 yrs 

  
Definite or Possible ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Definite or Possible 
ADHF 

Chronic Stable HF, 
Unlikely HF, or 

Unclassifiable HF 

Any Diagnosis Position 
HF 203 212 164 134 

No HF 148 193 77 92 

Any Diagnosis Position + Lab or 
Diuretic 

HF 193 76 155 41 

No HF 158 329 86 185 

1st or 2nd Diagnosis Position 
HF 87 34 78 15 

No HF 264 371 163 211 

HF 85 10 76 3 
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1st or 2nd Diagnosis Position + Lab or 
Diuretic 

No HF 266 395 165 223 

1st Diagnosis Position 
HF 72 4 67 4 

No HF 279 401 174 222 
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Table 131.  First Event Only, Subgroups: Accuracy Measures for HF Phenotyping Algorithms versus Binary ARIC Acute HF Event 
Classification  

Male Sensitivity Specificity PPV NPV 

Any Diagnosis Position 64.1% (61.2%, 67.0%) 43.9% (40.9%, 46.9%) 53.8% (51.1%, 56.5%) 54.6% (51.2%, 58.0%) 

Any Diagnosis Position + 
Lab or Procedure 

60.1% (57.2%, 63.1%) 81.5% (79.2%, 83.9%) 76.9% (74.0%, 79.7%) 66.8% (64.2%, 69.4%) 

1st or 2nd Diagnosis 
Position 

28.6% (25.9%, 31.3%) 92.6% (91.0%, 94.2%) 79.8% (75.8%, 83.8%) 56.0% (53.7%, 58.4%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
27.2% (24.5%, 29.9%) 98.5% (97.8%, 99.3%) 94.9% (92.5%, 97.4%) 57.1% (54.8%, 59.3%) 

1st Diagnosis Position 25.7% (23.1%, 28.4%) 98.9% (98.3%, 99.5%) 95.9% (93.7%, 98.2%) 56.7% (54.4%, 58.9%) 

Female Sensitivity Specificity PPV NPV 

Any Diagnosis Position 60.1% (57.4%, 62.9%) 46.1% (43.5%, 48.7%) 49.5% (46.9%, 52.0%) 56.8% (54.0%, 59.7%) 

Any Diagnosis Position + 
Lab or Procedure 

57.6% (54.8%, 60.4%) 81.4% (79.3%, 83.4%) 73.1% (70.3%, 75.9%) 68.6% (66.4%, 70.9%) 

1st or 2nd Diagnosis 
Position 

27.2% (24.7%, 29.7%) 91.9% (90.5%, 93.4%) 74.8% (70.7%, 78.8%) 59.0% (56.9%, 61.1%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
27.2% (24.7%, 29.7%) 97.5% (96.7%, 98.3%) 90.5% (87.5%, 93.5%) 60.4% (58.4%, 62.4%) 

1st Diagnosis Position 21.5% (19.2%, 23.8%) 98.6% (98.0%, 99.2%) 93.2% (90.2%, 96.1%) 58.9% (56.9%, 60.9%) 

White Sensitivity Specificity PPV NPV 

Any Diagnosis Position 65.1% (63.0%, 67.3%) 43.8% (41.5%, 46.0%) 53.7% (51.6%, 55.7%) 55.7% (53.1%, 58.2%) 

Any Diagnosis Position + 
Lab or Procedure 

62.0% (59.8%, 64.2%) 83.0% (81.3%, 84.7%) 78.5% (76.4%, 80.6%) 68.6% (66.7%, 70.5%) 

1st or 2nd Diagnosis 
Position 

29.7% (27.6%, 31.7%) 92.1% (90.9%, 93.3%) 79.0% (76.0%, 82.0%) 56.7% (54.9%, 58.5%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
29.0% (27.0%, 31.1%) 98.5% (98.0%, 99.1%) 95.2% (93.5%, 97.0%) 58.1% (56.4%, 59.9%) 

1st Diagnosis Position 25.1% (23.1%, 27.1%) 99.0% (98.5%, 99.4%) 96.0% (94.3%, 97.8%) 56.9% (55.2%, 58.6%) 

Black     

Any Diagnosis Position 48.2% (43.4%, 52.9%) 49.7% (45.6%, 53.8%) 41.4% (37.1%, 45.8%) 56.5% (52.2%, 60.8%) 

Any Diagnosis Position + 
Lab or Procedure 

44.5% (39.8%, 49.3%) 76.5% (73.0%, 80.0%) 58.3% (53.0%, 63.7%) 65.1% (61.5%, 68.7%) 

1st or 2nd Diagnosis 
Position 

20.0% (16.2%, 23.8%) 92.6% (90.5%, 94.8%) 66.7% (58.5%, 74.9%) 61.1% (57.8%, 64.3%) 
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1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
19.1% (15.3%, 22.8%) 96.0% (94.4%, 97.6%) 77.8% (69.8%, 85.8%) 61.6% (58.4%, 64.8%) 

1st Diagnosis Position 16.4% (12.8%, 19.9%) 98.0% (96.8%, 99.1%) 85.7% (78.1%, 93.4%) 61.3% (58.2%, 64.5%) 

Age < 85 yrs     

Any Diagnosis Position 57.8% (55.2%, 60.5%) 47.7% (45.2%, 50.1%) 48.9% (46.5%, 51.4%) 56.6% (53.9%, 59.3%) 

Any Diagnosis Position + 
Lab or Procedure 

55.0% (52.3%, 57.6%) 81.2% (79.3%, 83.2%) 71.7% (69.0%, 74.5%) 67.6% (65.4%, 69.7%) 

1st or 2nd Diagnosis 
Position 

24.8% (22.5%, 27.1%) 91.6% (90.2%, 93.0%) 71.9% (67.8%, 76.0%) 58.4% (56.5%, 60.4%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
24.2% (21.9%, 26.5%) 97.5% (96.8%, 98.3%) 89.5% (86.3%, 92.6%) 59.8% (57.9%, 61.7%) 

1st Diagnosis Position 20.5% (18.4%, 22.7%) 99.0% (98.5%, 99.5%) 94.7% (92.2%, 97.3%) 59.0% (57.1%, 60.9%) 

Age≥ 85 yrs     

Any Diagnosis Position 68.0% (65.0%, 71.1%) 40.7% (37.4%, 44.0%) 55.0% (52.2%, 57.9%) 54.4% (50.6%, 58.3%) 

Any Diagnosis Position + 
Lab or Procedure 

64.3% (61.2%, 67.4%) 81.9% (79.3%, 84.4%) 79.1% (76.2%, 82.0%) 68.3% (65.4%, 71.1%) 

1st or 2nd Diagnosis 
Position 

32.4% (29.4%, 35.4%) 93.4% (91.7%, 95.0%) 83.9% (80.1%, 87.7%) 56.4% (53.9%, 59.0%) 

1st or 2nd Diagnosis 
Position + Lab or 

Procedure 
31.5% (28.5%, 34.5%) 98.7% (97.9%, 99.4%) 96.2% (94.1%, 98.4%) 57.5% (55.0%, 60.0%) 

1st Diagnosis Position 27.8% (24.9%, 30.7%) 98.2% (97.4%, 99.1%) 94.4% (91.6%, 97.1%) 56.1% (53.6%, 58.6%) 

ADHF: acute decompensated HF. HF: heart failure. PPV: Positive Predictive Value. NPV: Negative Predictive Value. Gold standard classification of acute HF 
used was “Definite ADHF” or “Probable ADHF”. 
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Table 132. Demographic Characteristics of Hospitalized MI Events across MI Phenotyping Algorithms, ARIC Study, 2015-2019 
 Any Diagnosis 

Position 
Any Diagnosis 

Position + Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab or 
Procedure 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab or 

Procedure 

N 154 145 96 93 58 52 

Age, years       

Mean (SD) 82.4 (5.3) 82.5 (5.3) 81.7 (5.3) 81.8 (5.3) 83.5 (5) 83.8 (5.1) 

Median (Q1, Q3) 82 (77.9, 86.5) 82.3 (77.9, 86.5) 81.5 (76.8, 86) 81.5 (76.9, 86) 82.9 (79.8, 87.6) 83.2 (80.5, 87.9) 

Age category       

74 – 84 years 101 (65.6%) 94 (64.8%) 67 (69.8%) 65 (69.9%) 34 (58.6%) 29 (55.8%) 

85 years and over 53 (34.4%) 51 (35.2%) 29 (30.2%) 28 (30.1%) 24 (41.4%) 23 (44.2%) 

Female 78 (50.6%) 73 (50.3%) 52 (54.2%) 50 (53.8%) 26 (44.8%) 23 (44.2%) 

Race       

White 140 (90.9%) 133 (91.7%) 86 (89.6%) 84 (90.3%) 54 (93.1%) 49 (94.2%) 

Black 14 (9.1%) 12 (8.3%) 10 (10.4%) 9 (9.7%) 4 (6.9%) 3 (5.8%) 

Race-Gender       

White Men 72 (46.8%) 69 (47.6%) 41 (42.7%) 41 (44.1%) 31 (53.4%) 28 (53.8%) 

White Women 68 (44.2%) 64 (44.1%) 45 (46.9%) 43 (46.2%) 23 (39.7%) 21 (40.4%) 

Black Men 4 (2.6%) 3 (2.1%) 3 (3.1%) 2 (2.2%) 1 (1.7%) 1 (1.9%) 

Black Women 10 (6.5%) 9 (6.2%) 7 (7.3%) 7 (7.5%) 3 (5.2%) 2 (3.8%) 

Center       

Forsyth Co., NC 22 (14.3%) 22 (15.2%) 16 (16.7%) 16 (17.2%) 6 (10.3%) 6 (11.5%) 

Minneapolis, MN 46 (29.9%) 43 (29.7%) 29 (30.2%) 28 (30.1%) 17 (29.3%) 15 (28.8%) 

Jackson, MS 14 (9.1%) 12 (8.3%) 10 (10.4%) 9 (9.7%) 4 (6.9%) 3 (5.8%) 

Washington Co., MD 72 (46.8%) 68 (46.9%) 41 (42.7%) 40 (43.0%) 31 (53.4%) 28 (53.8%) 

BMI       

Mean (SD) 28.3 (5.4) 28.4 (5.4) 28.9 (5.6) 28.9 (5.6) 27.3 (4.9) 27.4 (4.8) 

Median (Q1, Q3) 28.1 (24, 32) 28.1 (24, 31.8) 28.7 (24.4, 32.8) 28.7 (24.4, 32.8) 27 (23.7, 30.7) 27 (23.7, 30.5) 

BMI ≥ 30 54 (35.1%) 51 (35.2%) 38 (39.6%) 37 (39.8%) 16 (27.6%) 14 (26.9%) 

Smoking status       

Never 54 (35.1%) 49 (33.8%) 35 (36.5%) 32 (34.4%) 19 (32.8%) 17 (32.7%) 

Current 11 (7.1%) 11 (7.6%) 7 (7.3%) 7 (7.5%) 4 (6.9%) 4 (7.7%) 

Former 72 (46.8%) 68 (46.9%) 43 (44.8%) 43 (46.2%) 29 (50.0%) 25 (48.1%) 
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BMI: body mass index. Q1, Q3: quartile 1, quartile 3. BMI determined from closest ARIC visit prior to event (Visit 5, 6, or 7). Smoking status ascertained from medical chart 

abstraction but when not available, information from closest previous ARIC visit used.  
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Table 133. Clinical Characteristics of Hospitalized MI Events by MI Phenotyping Algorithm, ARIC Study, 2015-2019 

 
Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab or 
Procedure 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab or 
Procedure 

N 154 145 96 93 58 52 

Mortality*       

7-day 14 (9.1%) 13 (9.0%) 7 (7.3%) 7 (7.5%) 7 (12.1%) 6 (11.5%) 

30-day 17 (11.0%) 16 (11.0%) 7 (7.3%) 7 (7.5%) 10 (17.2%) 9 (17.3%) 

1-year 39 (25.3%) 37 (25.5%) 18 (18.8%) 18 (19.4%) 21 (36.2%) 19 (36.5%) 

Comorbidities       

Hypertension 137 (89.0%) 130 (89.7%) 83 (86.5%) 81 (87.1%) 54 (93.1%) 49 (94.2%) 

Diabetes 50 (32.5%) 47 (32.4%) 34 (35.4%) 32 (34.4%) 16 (27.6%) 15 (28.8%) 

CDK 3+ 12 (7.8%) 11 (7.6%) 8 (8.3%) 8 (8.6%) 4 (6.9%) 3 (5.8%) 

Kidney Failure 3 (1.9%) 3 (2.1%) 1 (1.0%) 1 (1.1%) 2 (3.4%) 2 (3.8%) 

Heart failure 1 (0.6%) 1 (0.7%) 96 (100%) 93 (100%) 1 (1.7%) 1 (1.9%) 

Atrial fibrillation 28 (18.2%) 26 (17.9%) 13 (13.5%) 13 (14.0%) 15 (25.9%) 13 (25.0%) 

Previous stroke or TIA 9 (5.8%) 8 (5.5%) 6 (6.3%) 5 (5.4%) 3 (5.2%) 3 (5.8%) 

Any comorbidity ** 141 (91.6%) 133 (91.7%) 86 (89.6%) 83 (89.2%) 55 (94.8%) 50 (96.2%) 

Comorbidity Burden**       

0 13 (8.4%) 12 (8.3%) 10 (10.4%) 10 (10.8%) 3 (5.2%) 2 (3.8%) 

1 62 (40.3%) 59 (40.7%) 39 (40.6%) 38 (40.9%) 23 (39.7%) 21 (40.4%) 

2 60 (39.0%) 56 (38.6%) 35 (36.5%) 33 (35.5%) 25 (43.1%) 23 (44.2%) 

3 18 (11.7%) 17 (11.7%) 12 (12.5%) 12 (12.9%) 6 (10.3%) 5 (9.6%) 

4 1 (0.6%) 1 (0.7%) 12 (12.5%) 12 (12.9%) 1 (1.7%) 1 (1.9%) 

Myocardial Infarction 
Severity Indicators 

      

STEMI (ARIC) 12 (7.8%) 12 (8.3%) 12 (12.5%) 12 (12.9%) 0 0 

STEMI ICD-10-CM codes 34 (22.1%) 31 (21.4%) 28 (29.2%) 27 (29.0%) 6 (10.3%) 4 (7.7%) 

NSTEMI (ARIC) 103 (66.9%) 103 (71.0%) 67 (69.8%) 67 (72.0%) 36 (62.1%) 36 (69.2%) 

NSTEMI ICD-10-CM 
codes 

111 (72.1%) 106 (73.1%) 68 (70.8%) 66 (71.0%) 43 (74.1%) 40 (76.9%) 

Unspecified MI Type 1 (0.6%) 0 0 0 1 (1.7%) 0 

Type 2 MI 8 (5.2%) 8 (5.5%) 1 (1.0%) 1 (1.1%) 7 (12.1%) 7 (13.5%) 

Recurrent MI 2 (1.3%) 2 (1.4%) 1 (1.0%) 1 (1.1%) 1 (1.7%) 1 (1.9%) 
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Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab or 
Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab or 
Procedure 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab or 
Procedure 

Other MI Type 1 (0.6%) 0 0 0 1 (1.7%) 0 

Cardiogenic Shock 11 (7.2%) 11 (7.6%) 9 (9.4%) 9 (9.7%) 2 (3.6%) 2 (3.8%) 

Acute HF during 
hospitalization 

21 (13.6%) 20 (13.8%) 9 (9.4%) 8 (8.6%) 12 (20.7%) 12 (23.1%) 

CKD 3+: chronic kidney disease stage III or more. HF: heart failure. MI: myocardial infarction. NSTEMI: Non-ST segment elevation myocardial infarction. STEMI: ST-segment 
elevation myocardial infarction. TIA: transient ischemic stroke. Presence of comorbidities determined from medical chart abstraction; when not available, information from closest 
previous ARIC visit (Visit 5, 6, or 7) used except for CKD 3+ and kidney failure which was only determined through visit or cohort surveillance. STEMI and NSTEMI determined via 
ARIC algorithm – numbers may not add up to total in the column as STEMI and NSTEMI determination only done for Definite/Probable MI. Using diagnosis codes, STEMI defined 
as codes I21.0, I21.1, I21.2, I21.3 and NSTEMI defined as code I21.4. Type 2 MI defined as code I21.A1; Unspecified MI type defined as code I21.9; other MI type defined as 
I21.A9; recurrent MI defined as code I22. Cardiogenic shock determined from medical chart abstraction. Acute HF during hospitalization determined via ICD-10-CM codes I50.21, 
I50.23, I50.31, I50.33, I50.41, I50.43, I50.811, and I50. 813.  *Mortality calculated from discharge date. **Presence of “any comorbidity” included listed comorbidities (hypertension, 
diabetes, chronic kidney disease kidney failure, heart failure, atrial fibrillation, or previous stroke or TIA). Comorbidity burden calculated as the total number of 6 listed comorbidities 
(patients with kidney disease could have CKD3+ or kidney failure).  
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Table 134. Demographic Characteristics of Hospitalized HF Events by HF Phenotyping Algorithms, ARIC Study, 2015-2019 

 
Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab 
or Diuretic 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab 
or Diuretic 

First Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 
or Diuretic 

N  1,881 1,191 602 501 435 1,279 690 

Age, years        

Mean (SD) 83.6 (5.2) 83.6 (5.3) 84 (5.2) 84 (5.3) 84.2 (5.2) 83.3 (5.2) 83.4 (5.3) 

Median (Q1, Q3) 83.4 (79.5, 87.8) 83.5 (79.6, 88) 84 (80, 88.2) 84.1 (79.9, 88.3) 84.2 (80.3, 88.5) 83.1 (79.3, 87.5) 83.2 (79.3, 87.8) 

Age category        

74 – 84 years 1,142 (60.7%) 717 (60.2%) 351 (58.3%) 294 (58.7%) 248 (57.0%) 791 (61.8%) 423 (61.3%) 

85 years and over 739 (39.3%) 474 (39.8%) 251 (41.7%) 207 (41.3%) 187 (43.0%) 488 (38.2%) 267 (38.7%) 

Female 1,043 (55.4%) 666 (55.9%) 350 (58.1%) 291 (58.1%) 243 (55.9%) 693 (54.2%) 375 (54.3%) 

Race        

White 1,503 (79.9%) 937 (78.7%) 475 (78.9%) 395 (78.8%) 345 (79.3%) 1,028 (80.4%) 542 (78.6%) 

Black 378 (20.1%) 254 (21.3%) 127 (21.1%) 106 (21.2%) 90 (20.7%) 251 (19.6%) 148 (21.4%) 

Race-Gender        

White Men 707 (37.6%) 433 (36.4%) 202 (33.6%) 168 (33.5%) 154 (35.4%) 505 (39.5%) 265 (38.4%) 

White Women 796 (42.3%) 504 (42.3%) 273 (45.3%) 227 (45.3%) 191 (43.9%) 523 (40.9%) 277 (40.1%) 

Black Men 131 (7.0%) 92 (7.7%) 50 (8.3%) 42 (8.4%) 38 (8.7%) 81 (6.3%) 50 (7.2%) 

Black Women 247 (13.1%) 162 (13.6%) 77 (12.8%) 64 (12.8%) 52 (12.0%) 170 (13.3%) 98 (14.2%) 

Center        

Forsyth Co., NC 371 (25.7%) 244 (27.0%) 136 (28.3%) 116 (29.0%) 103 (29.7%) 235 (24.4%) 128 (25.3%) 

Minneapolis, MN 449 (31.1%) 267 (29.5%) 163 (34.0%) 134 (33.5%) 124 (35.7%) 286 (29.6%) 133 (26.3%) 

Jackson, MS 214 (14.8%) 138 (15.2%) 71 (14.8%) 56 (14.0%) 47 (13.5%) 143 (14.8%) 82 (16.2%) 

Washington Co., 
MD 

411 (28.4%) 256 (28.3%) 110 (22.9%) 94 (23.5%) 73 (21.0%) 301 (31.2%) 162 (32.1%) 

BMI (kg/m2)        

Mean (SD) 28.8 (6.7) 28.7 (6.6) 28.7 (6.8) 28.5 (6.8) 28.3 (6.9) 28.9 (6.6) 28.7 (6.5) 

Median (Q1, Q3) 27.8 (23.9, 32.7) 27.7 (23.8, 32.2) 27.5 (23.7, 32.8) 27.4 (23.6, 32) 27.1 (23.4, 31.5) 28 (24, 32.7) 27.9 (23.9, 32.2) 

BMI Category        

Underweight 93 (4.9%) 64 (5.4%) 28 (4.7%) 24 (4.8%) 25 (5.7%) 65 (5.1%) 40 (5.8%) 

Healthy 544 (28.9%) 338 (28.4%) 174 (28.9%) 144 (28.7%) 130 (29.9%) 370 (29.0%) 194 (28.1%) 

Overweight 568 (30.2%) 380 (31.9%) 193 (32.1%) 170 (33.9%) 149 (34.3%) 375 (29.3%) 210 (30.4%) 



 

 

3
5
5
 

 
Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab 
or Diuretic 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab 
or Diuretic 

First Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 
or Diuretic 

Obesity 675 (35.9%) 409 (34.3%) 207 (34.4%) 163 (32.5%) 131 (30.1%) 468 (36.6%) 246 (35.7%) 

Smoking status        

Never 313 (30.5%) 186 (28.6%) 115 (34.0%) 92 (32.9%) 78 (31.7%) 198 (28.8%) 94 (25.3%) 

Current 54 (5.3%) 33 (5.1%) 16 (4.7%) 13 (4.6%) 12 (4.9%) 38 (5.5%) 20 (5.4%) 

Former 658 (64.2%) 432 (66.4%) 207 (61.2%) 175 (62.5%) 156 (63.4%) 451 (65.6%) 257 (69.3%) 

BMI: body mass index. Q1, Q3: quartile 1, quartile 3. BMI from hospitalization discharge used when available, otherwise data from closest previous ARIC visit 
(Visit 5, 6, or 7) used. BMI values for categories as follows: Underweight (< 18.5 kg/m2) , Healthy (18.5 – 24.9 kg/m2) , Overweight (25 – 29.9 kg/m2) , Obesity (≥ 
30 kg/m2). Smoking status determined from closest ARIC visit prior to event.  
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Table 135. Clinical Characteristics of Hospitalized HF Events by HF Phenotyping Algorithms, ARIC Study, 2015-2019 

 
Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab 
or Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab 
or Procedure 

First 
Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 
or Procedure 

N (%) 1881 1191 602 501 435 1279 690 

Mortality*        

7-day 89 (4.7%) 62 (5.2%) 15 (2.5%) 12 (2.4%) 10 (2.3%) 74 (5.8%) 50 (7.2%) 

30-day 259 (13.8%) 195 (16.4%) 51 (8.5%) 45 (9.0%) 43 (9.9%) 208 (16.3%) 150 (21.7%) 

1-year 783 (41.6%) 555 (46.6%) 223 (37.0%) 197 (39.3%) 181 (41.6%) 560 (43.8%) 358 (51.9%) 

Comorbidities        

Hypertension 1,811 (96.3%) 1,149 (96.5%) 588 (97.7%) 490 (97.8%) 425 (97.7%) 1,223 (95.7%) 659 (95.5%) 

Diabetes 904 (48.1%) 564 (47.4%) 297 (49.3%) 240 (47.9%) 210 (48.3%) 607 (47.5%) 324 (47.0%) 

CKD 3+ 277 (14.7%) 190 (16.0%) 102 (16.9%) 96 (19.2%) 83 (19.1%) 175 (13.7%) 94 (13.6%) 

Kidney Failure**        

Ischemic Heart 
Disease or Previous 
MI 

1,173 (64.2%) 744 (64.5%) 397 (68.0%) 335 (69.1%) 296 (69.6%) 776 (62.5%) 409 (61.1%) 

Atrial fibrillation 784 (41.7%) 505 (42.4%) 251 (41.7%) 216 (43.1%) 190 (43.7%) 533 (41.7%) 289 (41.9%) 

Previous stroke or TIA 531 (28.2%) 329 (27.6%) 162 (26.9%) 131 (26.1%) 118 (27.1%) 369 (28.9%) 198 (28.7%) 

History of any 
cardiomyopathy 

312 (16.6%) 234 (19.7%) 110 (18.3%) 102 (20.4%) 98 (22.5%) 202 (15.8%) 132 (19.2%) 

Chronic bronchitis or 
COPD 

613 (32.6%) 419 (35.2%) 174 (28.9%) 159 (31.7%) 134 (30.8%) 439 (34.4%) 260 (37.7%) 

Asthma 217 (11.5%) 145 (12.2%) 61 (10.1%) 51 (10.2%) 40 (9.2%) 156 (12.2%) 94 (13.6%) 

History of pulmonary 
embolism 

77 (4.1%) 45 (3.8%) 17 (2.8%) 17 (3.4%) 14 (3.2%) 60 (4.7%) 28 (4.1%) 

Any Comorbidity*** 1,874 (99.6%) 1,187 (99.7%) 601 (99.8%) 501 (100%) 435 (100%) 1,273 (99.5%) 686 (99.4%) 

Mean (SD) 3.54 (1.4) 3.6 (1.5) 3.57 (1.4) 3.64 (1.4) 3.67 (1.4) 3.53 (1.4) 3.59 (1.5) 

Comorbidity Burden***        

0 6 (0.3%) 4 (0.3%) 1 (0.2%) 17 (3.5%) 11 (2.6%) 5 (0.4%) 4 (0.6%) 

1 100 (5.5%) 60 (5.2%) 24 (4.1%) 87 (17.9%) 83 (19.5%) 76 (6.1%) 43 (6.4%) 

2 319 (17.5%) 202 (17.5%) 106 (18.2%) 137 (28.2%) 113 (26.6%) 213 (17.2%) 115 (17.2%) 

3 529 (29.0%) 310 (26.9%) 166 (28.4%) 114 (23.5%) 99 (23.3%) 363 (29.3%) 173 (25.9%) 

4 433 (23.7%) 269 (23.3%) 148 (25.3%) 84 (17.3%) 77 (18.1%) 285 (23.0%) 155 (23.2%) 
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Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab 
or Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab 
or Procedure 

First 
Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 
or Procedure 

5 271 (14.8%) 194 (16.8%) 89 (15.2%) 34 (7.0%) 30 (7.1%) 182 (14.7%) 110 (16.5%) 

6 121 (6.6%) 79 (6.9%) 38 (6.5%) 12 (2.5%) 12 (2.8%) 83 (6.7%) 45 (6.7%) 

7 40 (2.2%) 29 (2.5%) 12 (2.1%) 12 (2.5%) 12 (2.8%) 28 (2.3%) 17 (2.5%) 

8 6 (0.3%) 6 (0.5%) 12 (2.1%) 12 (2.5%) 12 (2.8%) 6 (0.5%) 6 (0.9%) 

Severity Indicators        

Acute on Chronic HF 
Exacerbation 

614 (32.6%) 588 (49.4%) 365 (60.6%) 362 (72.3%) 340 (78.2%) 249 (19.5%) 226 (32.8%) 

Chronic HF 574 (30.5%) 230 (19.3%) 89 (14.8%) 36 (7.2%) 13 (3.0%) 485 (37.9%) 194 (28.1%) 

End-stage HF 6 (0.3%) 5 (0.4%) 3 (0.5%) 2 (0.4%) 3 (0.7%) 3 (0.2%) 3 (0.4%) 

Unspecified HF 497 (26.4%) 230 (19.3%) 79 (13.1%) 45 (9.0%) 32 (7.4%) 418 (32.7%) 185 (26.8%) 

LVEF (%)        

Mean (SD) 46.7 (14.8) 45.5 (15) 45.1 (15) 44.5 (15) 43.7 (15.4) 47.6 (14.5) 46.3 (15) 

Median (Q1, Q3) 50 (35, 60) 50 (35, 55) 50 (34, 55) 50 (30, 55) 50 (30, 55) 52 (35, 60) 50 (35, 60) 

LV EF < 50% 1,279 (68.0%) 766 (64.3%) 396 (65.8%) 320 (63.9%) 278 (63.9%) 883 (69.0%) 446 (64.6%) 

LV EF < 30% 1,011 (53.7%) 556 (46.7%) 294 (48.8%) 228 (45.5%) 195 (44.8%) 717 (56.1%) 328 (47.5%) 

Any cardiac 
procedure**** 

834 (47.3%) 553 (49.6%) 288 (50.3%) 249 (52.3%) 210 (50.7%) 546 (45.8%) 304 (47.6%) 

HF diagnosis on 
record prior to index 
hospitalization 

1,532 (82.2%) 923 (78.1%) 487 (81.6%) 399 (80.4%) 346 (80.5%) 1,045 (82.5%) 524 (76.4%) 

Previous HF 
hospitalization prior to 
index hospitalization 

604 (63.7%) 429 (62.1%) 250 (69.1%) 223 (69.9%) 197 (70.4%) 354 (60.4%) 206 (55.4%) 

HF treatment 
documented prior to 
index hospitalization 

1,364 (79.7%) 842 (76.1%) 452 (80.0%) 379 (80.0%) 330 (79.9%) 912 (79.6%) 463 (73.3%) 

HF: heart failure. LV EF: left ventricular rejection fraction.  CKD 3+: chronic kidney disease stage III or more. HF: heart failure. LV EF: left ventricular ejection fraction. MI: 
myocardial infarction. TIA: transient ischemic stroke. Presence of comorbidities determined from medical chart abstraction; when not available, information from closest previous 
ARIC visit (Visit 5, 6, or 7). CKD 3+ defined at cohort visits as eGFR-Cr <60 mL/min/1.73 m2 with a 25% or greater decline from baseline eGFR and/or US Renal Data System 
(USRDS)-identified end-stage kidney disease events or hospitalization with kidney disease related ICD-9-CM or ICD-10-CM related codes in any position. *Mortality calculated from 
discharge date. **Kidney failure defined via cohort ascertainment of USRDS-identified end stage kidney disease, eGFR-Cr <15 mL/min/1.73 m2 at a study visit, or a hospitalization 
with kidney-failure related ICD-9-CM or ICD-10-CM codes in any position or documented medical history of dialysis extracted from hospitalization records.   ***Presence of “any 
comorbidity” includes hypertension, diabetes, chronic kidney disease or kidney failure, previous MI or ischemic heart disease, atrial fibrillation, previous stroke or TIA, COPD or 
bronchitis, history of any cardiomyopathy, asthma). Comorbidity burden calculated as the total number comorbidities listed in previous statement (patients with kidney disease could 
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Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab 
or Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab 
or Procedure 

First 
Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 
or Procedure 

have CKD3+ or kidney failure). ****Previous cardiac procedures included coronary artery bypass grafting, percutaneous coronary intervention, previous valvular surgery, procedure 
to implant a defibrillator, or pacemaker placement. 

 

Table 136. Severity Indicators Determined by Imaging and Procedures for Hospitalized HF Events, ARIC Study, 2015-2019 

 
Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab 

or Diuretic 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab 
or Diuretic 

First Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 

or Diuretic 

N 1881 1191 602 501 435 1279 690 

Chest X-Ray 1,632 (86.8%) 1,141 (95.8%) 545 (90.5%) 480 (95.8%) 419 (96.3%) 1,087 (85.0%) 661 (95.8%) 

Alveolar 
pulmonary 
edema 

272 (16.7%) 248 (21.7%) 103 (18.9%) 101 (21.0%) 85 (20.3%) 169 (15.5%) 147 (22.2%) 

Interstitial 
pulmonary 
edema 

439 (26.9%) 369 (32.3%) 160 (29.4%) 154 (32.1%) 133 (31.7%) 279 (25.7%) 215 (32.5%) 

Cardiomegaly 927 (56.8%) 731 (64.1%) 374 (68.6%) 345 (71.9%) 312 (74.5%) 553 (50.9%) 386 (58.4%) 

Cephalization 10 (0.6%) 7 (0.6%) 2 (0.4%) 2 (0.4%) 2 (0.5%) 8 (0.7%) 5 (0.8%) 

Pleural effusion 723 (44.3%) 608 (53.3%) 270 (49.5%) 259 (54.0%) 232 (55.4%) 453 (41.7%) 349 (52.8%) 

Pulmonary 
vascular 
congestion 

501 (30.7%) 451 (39.5%) 216 (39.6%) 207 (43.1%) 179 (42.7%) 285 (26.2%) 244 (36.9%) 

TTE 1,353 (71.9%) 961 (80.7%) 487 (80.9%) 428 (85.4%) 378 (86.9%) 866 (67.7%) 533 (77.2%) 

LV hypertrophy 732 (62.7%) 533 (64.2%) 267 (65.8%) 238 (66.9%) 214 (67.5%) 465 (61.0%) 295 (62.2%) 

Pulmonary 
hypertension 

708 (84.1%) 529 (86.3%) 277 (87.1%) 252 (89.4%) 223 (89.6%) 431 (82.3%) 277 (83.7%) 

Dilated LV 204 (15.1%) 161 (16.8%) 81 (16.6%) 77 (18.0%) 72 (19.0%) 123 (14.2%) 84 (15.8%) 

Dilated RV 313 (23.1%) 226 (23.5%) 123 (25.3%) 114 (26.6%) 107 (28.3%) 190 (21.9%) 112 (21.0%) 

Diastolic 
dysfunction 

451 (33.3%) 313 (32.6%) 168 (34.5%) 142 (33.2%) 134 (35.4%) 283 (32.7%) 171 (32.1%) 

Impaired LV 
systolic function 

485 (39.0%) 366 (41.5%) 179 (41.4%) 163 (43.2%) 150 (44.9%) 306 (37.6%) 203 (40.2%) 
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Any Diagnosis 

Position 

Any Diagnosis 
Position + Lab 

or Diuretic 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab 
or Diuretic 

First Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 

or Diuretic 

Impaired RV 
systolic function 

216 (19.2%) 164 (20.4%) 83 (21.6%) 78 (22.9%) 74 (24.8%) 133 (18.0%) 86 (18.5%) 

Aortic 
regurgitation 

368 (33.5%) 267 (34.5%) 133 (35.0%) 116 (35.3%) 107 (36.9%) 235 (32.8%) 151 (33.9%) 

Aortic stenosis 295 (25.7%) 209 (25.6%) 102 (25.6%) 90 (25.8%) 84 (26.8%) 193 (25.7%) 119 (25.4%) 

Tricuspid 
regurgitation 

1,017 (82.0%) 734 (83.5%) 369 (83.9%) 332 (86.2%) 291 (85.6%) 648 (81.0%) 402 (81.4%) 

Mitral 
regurgitation 

952 (75.9%) 696 (77.9%) 364 (81.3%) 325 (82.5%) 289 (83.5%) 588 (72.9%) 371 (74.3%) 

Mitral stenosis 91 (8.6%) 65 (8.7%) 32 (8.5%) 27 (8.2%) 22 (7.5%) 59 (8.6%) 38 (9.0%) 

TEE 81 (4.3%) 54 (4.5%) 21 (3.5%) 18 (3.6%) 17 (3.9%) 60 (4.7%) 36 (5.2%) 

Dilated LV 4 (4.9%) 4 (7.4%) 1 (4.8%) 1 (5.6%) 1 (5.9%) 3 (5.0%) 3 (8.3%) 

Dilated RV 7 (8.6%) 6 (11.1%) 2 (9.5%) 1 (5.6%) 1 (5.9%) 5 (8.3%) 5 (13.9%) 

Impaired LV 
systolic function 

34 (47.2%) 23 (51.1%) 10 (55.6%) 7 (46.7%) 6 (42.9%) 24 (44.4%) 16 (53.3%) 

Impaired RV 
systolic function 

15 (28.3%) 13 (36.1%) 3 (20.0%) 2 (16.7%) 2 (18.2%) 12 (31.6%) 11 (45.8%) 

Coronary 
angiography 
performed 

186 (9.9%) 121 (10.2%) 64 (10.6%) 52 (10.4%) 45 (10.3%) 122 (9.5%) 69 (10.0%) 

Previous CABG 
grafts present* 

42 (22.6%) 29 (24%) 15 (23.4%) 15 (28.8%) 15 (33.3%) 27 (22.1%) 14 (20.3%) 

Number of 
occluded grafts* 

       

0 19 (45.2%) 13 (44.8%) 7 (46.7%) 7 (46.7%) 7 (46.7%) 12 (44.4%) 6 (42.9%) 

1 14 (33.3%) 9 (31.0%) 6 (40.0%) 6 (40.0%) 6 (40.0%) 8 (29.6%) 3 (21.4%) 

2 8 (19.0%) 6 (20.7%) 2 (13.3%) 2 (13.3%) 2 (13.3%) 6 (22.2%) 4 (28.6%) 

3 1 (2.4%) 1 (3.4%) 2 (13.3%) 2 (13.3%) 2 (13.3%) 1 (3.7%) 1 (7.1%) 

LV: left ventricle; RV: right ventricle; TEE: transesophageal echocardiogram; TTE: transthoracic echocardiogram. For TTE and TEE, percentages for items in 
italic were calculated using the number of participants who received the test (shaded rows). Additionally, some conditions were categorized as “moderate”, 
“mild”, “present”, and “severe”; these categories were all considered as a positive indication, these conditions include LV hypertrophy, pulmonary 
hypertension, impaired LV or RV systolic function, regurgitation, and stenosis *Among those who underwent coronary angiography who had previous CABG 
grafts present 
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Table 137. Details of Aggregated Characteristics for Hospitalized HF Events, ARIC Study, 2015-2019 

 
Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab 
or Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 
Position + Lab 
or Procedure 

First Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 
or Procedure 

N (%) 1881 1191 602 501 435 1279 690 

Any cardiac 
procedure** 

834 (47.3%) 553 (49.6%) 288 (50.3%) 249 (52.3%) 210 (50.7%) 546 (45.8%) 304 (47.6%) 

Previous CABG 25 (1.5%) 17 (1.6%) 5 (0.9%) 4 (0.9%) 4 (1.0%) 20 (1.8%) 13 (2.1%) 

Previous PCI 464 (24.7%) 320 (26.9%) 175 (29.1%) 148 (29.5%) 123 (28.3%) 289 (22.6%) 172 (24.9%) 

Previous Valvular 
Surgery 

206 (11.0%) 137 (11.5%) 72 (12.0%) 67 (13.4%) 54 (12.4%) 134 (10.5%) 70 (10.1%) 

Pacemaker 427 (22.7%) 273 (22.9%) 144 (23.9%) 120 (24.0%) 106 (24.4%) 283 (22.1%) 153 (22.2%) 

Implantable 
Defibrillator 

162 (8.6%) 111 (9.3%) 54 (9.0%) 49 (9.8%) 43 (9.9%) 108 (8.5%) 62 (9.0%) 

History of any 
cardiomyopathy 

312 (16.6%) 234 (19.7%) 110 (18.3%) 102 (20.4%) 98 (22.5%) 202 (15.8%) 132 (19.2%) 

Ischemic 
cardiomyopathy 

265 (14.1%) 194 (16.3%) 86 (14.3%) 80 (16.0%) 76 (17.5%) 179 (14.0%) 114 (16.5%) 

Idiopathic or dilated 
cardiomyopathy 

63 (3.4%) 52 (4.4%) 32 (5.3%) 29 (5.8%) 28 (6.4%) 31 (2.4%) 23 (3.3%) 

Ischemic Heart 
Disease or Previous 
MI 

1,173 (64.2%) 744 (64.5%) 397 (68.0%) 335 (69.1%) 296 (69.6%) 776 (62.5%) 409 (61.1%) 

Ischemic Heart 
Disease 

923 (53.8%) 580 (54.2%) 306 (57.3%) 253 (57.8%) 222 (57.7%) 617 (52.2%) 327 (51.7%) 

Previous MI 798 (42.4%) 507 (42.6%) 273 (45.3%) 231 (46.1%) 205 (47.1%) 525 (41.0%) 276 (40.0%) 

CABG: coronary artery bypass grafting. MI: myocardial infarction. PCI: percutaneous coronary intervention.  
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Table 138. Classification of Hospitalized HF Events by Alternate HF Criteria, ARIC Study, 2015-2019 
 

Any Diagnosis 
Position 

Any Diagnosis 
Position + Lab 
or Procedure 

1st or 2nd 
Diagnosis 
Position 

1st or 2nd 
Diagnosis 

Position + Lab 
or Procedure 

First Diagnosis 
Position 

3rd+ Diagnosis 
Position 

3rd+ Diagnosis 
Position + Lab 
or Procedure 

N (%) 1881 1191 602 501 435 1279 690 

NHANES Criteria 492 (26.2%) 417 (35.0%) 174 (28.9%) 168 (33.5%) 147 (33.8%) 318 (24.9%) 249 (36.1%) 

Trialist Criteria 722 (38.4%) 707 (59.4%) 354 (58.8%) 352 (70.3%) 322 (74.0%) 368 (28.8%) 355 (51.4%) 

Framingham Criteria  500 (26.6%) 434 (36.4%) 193 (32.1%) 187 (37.3%) 164 (37.7%) 307 (24.0%) 247 (35.8%) 

Gothenburg Criteria        

Absent 120 (6.4%) 48 (4.0%) 29 (4.8%) 18 (3.6%) 16 (3.7%) 91 (7.1%) 30 (4.3%) 

Latent 242 (12.9%) 146 (12.3%) 69 (11.5%) 52 (10.4%) 49 (11.3%) 173 (13.5%) 94 (13.6%) 

Manifest 654 (34.8%) 418 (35.1%) 232 (38.5%) 197 (39.3%) 167 (38.4%) 422 (33.0%) 221 (32.0%) 

Grade 3 471 (25.1%) 340 (28.5%) 152 (25.2%) 139 (27.7%) 119 (27.4%) 319 (25.0%) 201 (29.1%) 

HF Death 8 (0.4%) 8 (0.7%) 2 (0.3%) 2 (0.4%) 2 (0.5%) 6 (0.5%) 6 (0.9%) 

Unknown 385 (20.5%) 231 (19.4%) 118 (19.6%) 93 (18.6%) 82 (18.9%) 267 (20.9%) 138 (20.0%) 

HF: heart failure. NHANES: National Health and Nutrition Examination Study. NHANES criteria published in Shocken et al 1992. Trialist criteria published in Zannad et la,. 2008 and 
Loehr et al 2013. Framingham criteria published in Ho et al. 1993. Gothenburg criteria published in Eriksson et al 1987. 
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Figures for Aim 3 

 

 

Figure 130. Number of ARIC hospitalizations classified by each acute myocardial infarction 
phenotyping algorithm, ARIC cohort surveillance, Oct 2015 – Dec 2019 

Figure 131. Number of ARIC hospitalizations classified by each heart failure phenotyping 
algorithm, ARIC cohort surveillance, Oct 2015 – Dec 2019 
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Figure 132. Contribution of lab and/or procedure clinical components to qualifying as a case via 
acute myocardial infarction (MI) algorithms, ARIC Study, Oct 2015 – Dec 2019 
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Figure 133. Percent of acute myocardial infarction (MI) cases meeting cardiac biomarker 
evidence used to classify cases in ARIC study, Oct 2015 – Dec 2019. 
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Figure 134. Percent of acute myocardial infarction (MI) cases with cardiac pain by phenotyping 
algorithm, ARIC study, Oct 2015 – Dec 2019. 

Figure 135. Percent of acute myocardial infarction (MI) cases meeting different grades of ECG 
evidence used to classify cases in ARIC study, Oct 2015 – Dec 2019. 
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Figure 137. Contribution of lab and/or procedure clinical components to qualifying as a case 
via heart failure (HF) algorithms, ARIC Study, Oct 2015 – Dec 2019 

Figure 136. Accuracy measures comparing acute myocardial infarction (MI) phenotyping 
algorithms to binary ARIC MI adjudicated event classification (gold standard), ARIC Study, 
Oct 2015 – Dec 2019 
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Figure 138. Accuracy measures comparing acute myocardial infarction (MI) phenotyping 
algorithms to “Definite MI” ARIC MI adjudicated event classification (gold standard), ARIC 
Study, Oct 2015 – Dec 2019 
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Figure 139. Accuracy measures comparing acute myocardial infarction (MI) phenotyping 
algorithms to “Probable MI” ARIC MI adjudicated event classification (gold standard), ARIC 
Study, Oct 2015 – Dec 2019 
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Figure 140. Accuracy measures comparing acute myocardial infarction (MI) phenotyping 
algorithms to “Suspect MI” ARIC MI adjudicated event classification (gold standard), ARIC 
Study, Oct 2015 – Dec 2019 
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Figure 141. Accuracy measures using all MI events versus first event only, comparing acute 
myocardial infarction (MI) phenotyping algorithms to “Definite MI” or “Probable MI” ARIC MI 
adjudicated event classification (gold standard), ARIC Study, Oct 2015 – Dec 2019 
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Figure 142. Accuracy measures using all MI events versus first event only, comparing acute 
myocardial infarction (MI) phenotyping algorithms to “Definite MI”” ARIC MI adjudicated event 
classification (gold standard), ARIC Study, Oct 2015 – Dec 2019 
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Figure 143. Accuracy measures comparing inpatient heart failure (HF) phenotyping algorithms 
to “Definite ADHF” or “Possible ADHF” ARIC HF adjudicated event classification (gold 
standard), ARIC Study, Oct 2015 – Dec 2019.  ADHF: acute decompensated heart failure. 
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Figure 144. Accuracy measures comparing inpatient heart failure (HF) phenotyping algorithms to 
“Definite ADHF” ARIC HF adjudicated event classification (gold standard), ARIC Study, Oct 2015 
– Dec 2019.  

ADHF: acute decompensated heart failure. 
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Figure 145. Accuracy measures comparing inpatient heart failure (HF) phenotyping algorithms 
to “Possible ADHF” ARIC HF adjudicated event classification (gold standard), ARIC Study, Oct 
2015 – Dec 2019.  

ADHF: acute decompensated heart failure. 
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Figure 146. Accuracy measures comparing inpatient heart failure (HF) phenotyping algorithms 
to “Chronic Stable HF” ARIC HF adjudicated event classification (gold standard), ARIC Study, 
Oct 2015 – Dec 2019.  
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Figure 147. Accuracy measures using all HF events versus first event only, comparing heart 
failure (HF) phenotyping algorithms to “Definite ADHF” or “Possible ADHF” ARIC HF 
adjudicated event classification (gold standard), ARIC Study, Oct 2015 – Dec 2019.  

ADHF: acute decompensated heart failure. 
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Figure 148. Accuracy measures using all HF events versus first event only, comparing 
heart failure (HF) phenotyping algorithms to “Definite ADHF” ARIC HF adjudicated event 
classification (gold standard), ARIC Study, Oct 2015 – Dec 2019.  

ADHF: acute decompensated heart failure. 
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Figure 149. Accuracy measures using all HF events versus first event only, comparing heart 
failure (HF) phenotyping algorithms to “Chronic Stable HF” ARIC HF adjudicated event 
classification (gold standard), ARIC Study, Oct 2015 – Dec 2019.  
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Figure 150. By Subgroups: Sensitivity of different acute myocardial infarction (MI) phenotyping 
algorithms compared to binary Definite/Probable MI event classification, ARIC Study, Oct 2015 - 
Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. 
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Figure 151. By Subgroups: Specificity of different acute myocardial infarction (MI) 
phenotyping algorithms compared to binary Definite/Probable MI event classification, 
ARIC Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. 



 

381 

 

Figure 152. By Subgroups: Negative predictive value of different acute myocardial 
infarction (MI) phenotyping algorithms compared to binary Definite/Probable MI event 
classification, ARIC Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. 
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Figure 153. By Subgroups: Sensitivity of different acute myocardial infarction (MI) 
phenotyping algorithms compared to binary Definite MI event classification, ARIC Study, Oct 
2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. 
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Figure 154. By Subgroups: Negative predictive value of different acute myocardial infarction 
(MI) phenotyping algorithms compared to binary Definite MI event classification, ARIC Study, 
Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. 
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Figure 155. By Subgroups: Sensitivity of different heart failure (HF) phenotyping algorithms 
compared to Definite or Possible ADHF HF event classification, ARIC Study, Oct 2015 - Dec 
2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. 
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Figure 156. By Subgroups: Specificity of different heart failure (HF) phenotyping algorithms 
compared to Definite or Possible ADHF HF event classification, ARIC Study, Oct 2015 - Dec 
2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. 
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Figure 157. By Subgroups: Positive predictive value (PPV) of different heart failure (HF) 
phenotyping algorithms compared to Definite or Possible ADHF HF event classification, ARIC 
Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 158. By Subgroups: Negative predictive value (NPV) of different heart failure (HF) 
phenotyping algorithms compared to Definite or Possible ADHF HF event classification, ARIC 
Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 159. By Race-Sex Groups: Sensitivity of different heart failure (HF) phenotyping 
algorithms compared to Definite or Possible ADHF HF event classification, ARIC Study, Oct 
2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 160. By Race-Sex Groups: Specificity of different heart failure (HF) phenotyping 
algorithms compared to Definite or Possible ADHF HF event classification, ARIC Study, Oct 
2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 161. By Race-Sex Groups: Positive predictive value (PPV) of different heart failure (HF) 
phenotyping algorithms compared to Definite or Possible ADHF HF event classification, ARIC 
Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 162. By Race-Sex Groups: Negative predictive value (NPV) of different heart failure 
(HF) phenotyping algorithms compared to Definite or Possible ADHF HF event 
classification, ARIC Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 163. By Subgroups: Sensitivity of different heart failure (HF) phenotyping 
algorithms compared to Definite ADHF HF event classification, ARIC Study, Oct 2015 - 
Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 164. By Subgroups: Specificity of different heart failure (HF) phenotyping algorithms 
compared to Definite ADHF HF event classification, ARIC Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 165. By Subgroups: Positive predictive value (PPV) of different heart failure (HF) 
phenotyping algorithms compared to Definite ADHF HF event classification, ARIC Study, 
Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 166. By Subgroups: Negative predictive value (NPV) of different heart failure (HF) 
phenotyping algorithms compared to Definite ADHF HF event classification, ARIC Study, 
Oct 2015 - Dec 2019.. 

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 167. By Race-Sex Groups: Sensitivity of different heart failure (HF) phenotyping 
algorithms compared to Definite ADHF HF event classification, ARIC Study, Oct 2015 - Dec 
2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events 
in parentheses. ADHF: acute decompensated HF. 
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Figure 168. By Race-Sex Groups: Specificity of different heart failure (HF) phenotyping 
algorithms compared to Definite ADHF HF event classification, ARIC Study, Oct 2015 - Dec 
2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of 
events in parentheses. ADHF: acute decompensated HF. 
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Figure 169. By Race-Sex Groups: Positive predictive value (PPV) of different heart failure (HF) 
phenotyping algorithms compared to Definite ADHF HF event classification, ARIC Study, Oct 
2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 170. By Race-Sex Groups: Negative predictive value (NPV) of different heart failure 
(HF) phenotyping algorithms compared to Definite ADHF HF event classification, ARIC 
Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 171. By Subgroups: Sensitivity of different heart failure (HF) phenotyping algorithms 
compared to Possible ADHF HF event classification, ARIC Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 172. By Subgroups: Specificity of different heart failure (HF) phenotyping 
algorithms compared to Possible ADHF HF event classification, ARIC Study, Oct 2015 - 
Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 173. By Subgroups: Positive predictive value (PPV) of different heart failure (HF) 
phenotyping algorithms compared to Possible ADHF HF event classification, ARIC 
Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of 
events in parentheses. ADHF: acute decompensated HF. 
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Figure 174. By Subgroups: Negative predictive value (NPV) of different heart failure (HF) 
phenotyping algorithms compared to Possible ADHF HF event classification, ARIC Study, 
Oct 2015 - Dec 2019.  
Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 175. By Race-Sex Groups: Sensitivity of different heart failure (HF) phenotyping 
algorithms compared to Possible ADHF HF event classification, ARIC Study, Oct 2015 - 
Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 176. By Race-Sex Groups: Specificity of different heart failure (HF) phenotyping 
algorithms compared to Possible ADHF HF event classification, ARIC Study, Oct 2015 - Dec 
2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 177. By Race-Sex Groups: Positive predictive value (PPV) of different heart failure (HF) 
phenotyping algorithms compared to Possible ADHF HF event classification, ARIC Study, Oct 
2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 178. By Race-Sex Groups: Negative predictive value (NPV) of different heart failure 
(HF) phenotyping algorithms compared to Possible ADHF HF event classification, ARIC 
Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 179. By Subgroups: Sensitivity of different heart failure (HF) phenotyping algorithms 
compared to Chronic Stable HF event classification, ARIC Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 180. By Subgroups: Specificity of different heart failure (HF) phenotyping 
algorithms compared to Chronic Stable HF event classification, ARIC Study, Oct 2015 - 
Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 181. By Subgroups: Positive predictive value (PPV) of different heart failure (HF) 
phenotyping algorithms compared to Definite or Possible ADHF HF event classification, 
ARIC Study, Oct 2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 

 
 
 



 

411 

 

Figure 182. By Race-Sex Groups: Sensitivity of different heart failure (HF) phenotyping 
algorithms compared to Chronic Stable HF event classification, ARIC Study, Oct 2015 - Dec 
2019.  

*For 1st Diagnosis Position (Black Males) not present due to lack of sample size. Numbers listed below x-
axis subgroup are the number of individuals, followed by the number of events in parentheses. ADHF: 
acute decompensated HF. 
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Figure 183. By Subgroups: Negative predictive value (NPV) of different heart failure (HF) 
phenotyping algorithms compared to Chronic Stable HF event classification, ARIC Study, Oct 
2015 - Dec 2019.  

Numbers listed below x-axis subgroup are the number of individuals, followed by the number of events in 
parentheses. ADHF: acute decompensated HF. 
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Figure 184. By Race-Sex Groups: Specificity of different heart failure (HF) phenotyping 
algorithms compared to Chronic Stable HF event classification, ARIC Study, Oct 2015 - Dec 
2019.  

*For 1st Diagnosis Position (Black Males) not present due to lack of sample size. Numbers listed below x-axis 
subgroup are the number of individuals, followed by the number of events in parentheses. ADHF: acute 
decompensated HF. 
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Figure 185. By Race-Sex Groups: Positive predictive value (PPV) of different heart failure 
(HF) phenotyping algorithms compared to Chronic Stable HF event classification, ARIC 
Study, Oct 2015 - Dec 2019.  

*For 1st Diagnosis Position (Black Males) not present due to lack of sample size. Numbers listed below x-
axis subgroup are the number of individuals, followed by the number of events in parentheses. ADHF: 
acute decompensated HF. 
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Figure 186. By Race-Sex Groups: Negative predictive value (NPV) of different heart failure (HF) 
phenotyping algorithms compared to Chronic Stable HF event classification, ARIC Study, Oct 
2015 - Dec 2019.  

*For 1st Diagnosis Position (Black Males) not present due to lack of sample size. Numbers listed below x-axis 
subgroup are the number of individuals, followed by the number of events in parentheses. ADHF: acute 
decompensated HF. 
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Figure 187. Prevalence of 6 comorbidities by acute myocardial infarction (MI) phenotyping 
algorithm, ARIC Study, Oct 2015-2019.  
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Figure 188. Distribution of STEMI vs NSTEMI subtype by acute myocardial infarction (MI) 
phenotyping algorithm, ARIC Study, Oct 2015-2019.  

Classified using ICD-10-CM codes in the hospital discharge list. Dx: diagnosis, Px: procedure. 
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Figure 189. Acute myocardial infarction (MI) subtype by MI phenotyping algorithm, 
ARIC Study, Oct 2015-2019.  

Figure 190. Mortality by acute myocardial infarction (MI) phenotyping algorithm, ARIC Study, 
Oct 2015-2019.  
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Figure 191. Percent of hospitalized heart failure (HF) events classified with Underweight BMI 
(<18.5 kg/m2) or Obese BMI (≥ 30 kg/m2) by HF phenotyping algorithm, ARIC Study, 2015-
2019.  
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Figure 192. Distribution of smoking status by heart failure (HF) phenotyping algorithm, ARIC 
Study, 2015-2019.  

Figure 193. Percent of hospitalized heart failure (HF) events with acute-on-
chronic exacerbation or chronic HF ICD-10-CM codes by HF phenotyping 
algorithm, ARIC Study, 2015-2019.  
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Figure 194. Severity indicators for hospitalized heart failure (HF) events by phenotyping 
algorithms ARIC Study, 2015-2019. LVEF: left ventricular ejection fraction.  

Figure 195. Mortality by heart failure (HF) phenotyping algorithm, ARIC Study, Oct 2015-2019.  
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Figure 196. Percent of hospitalized heart failure (HF) events that involved imaging (chest X-ray, 
transthoracic echocardiogram [TTE], transesophageal echocardiogram [TEE]) or coronary 
angiography by HF phenotyping algorithm, ARIC Study, Oct 2015-Dec 2019. 

Dx: Diagnosis. Algorithms without clinical components shown in lighter colors; algorithms with clinical 
components shown in darker colors. First diagnosis position algorithm shown in gray. 
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Figure 197. Severity indicators determined by chest X-ray by heart failure (HF) phenotyping 
algorithm, ARIC Study, Oct 2015-Dec 2019.  

Dx: Diagnosis. Algorithms without clinical components shown in lighter colors; algorithms with clinical 
components shown in darker colors. First diagnosis position algorithm shown in gray. Numbers next to 
algorithm names in legend show (n with procedure results)/(N meeting algorithm criteria)  
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Figure 198. Severity indicators as determined by transesophageal echocardiogram (TEE) by 
heart failure (HF) phenotyping algorithm, ARIC Study, Oct 2015-Dec 2019. 

Dx: Diagnosis. Algorithms without clinical components shown in lighter colors; algorithms with clinical 
components shown in darker colors. First diagnosis position algorithm shown in gray. Numbers next to 
algorithm names in legend show (n with procedure results)/(N meeting algorithm criteria)  
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Figure 199. Severity indicators as determined by transthoracic echocardiogram (TTE) by 
heart failure (HF) phenotyping algorithm, ARIC Study, Oct 2015-Dec 2019.  

Dx: Diagnosis. Algorithms without clinical components shown in lighter colors; algorithms with clinical 
components shown in darker colors. First diagnosis position algorithm shown in gray. Numbers next to 
algorithm names in legend show (n with procedure results)/(N meeting algorithm criteria)  
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Figure 200. Left ventricular (LV) hypertrophy, pulmonary hypertension, and diastolic dysfunction as 
determined by transthoracic echocardiogram (TTE) by heart failure (HF) phenotyping algorithm, 
ARIC Study, Oct 2015-Dec 2019.  

Dx: Diagnosis. Algorithms without clinical components shown in lighter colors; algorithms with clinical 
components shown in darker colors. First diagnosis position algorithm shown in gray. Numbers next to 
algorithm names in legend show (n with procedure results)/(N meeting algorithm criteria) 
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Figure 201. Heart valve regurgitation and stenosis as determined by transthoracic 
echocardiogram (TTE) by heart failure (HF) phenotyping algorithm, ARIC Study, Oct 2015-Dec 
2019.  

Dx: Diagnosis. Algorithms without clinical components shown in lighter colors; algorithms with clinical 
components shown in darker colors. First diagnosis position algorithm shown in gray. Numbers next to 
algorithm names in legend show (n with procedure results)/(N meeting algorithm criteria) 
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Figure 202. Classification of hospitalized heart failure (HF) events by alternate criteria, ARIC 
study, 2015-2019.  
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CHAPTER 7: CONTRIBUTIONS TO THE FIELD 

Summary of Findings 

The overarching research question for this dissertation was: To what degree do various 

methodologic decisions in using EHRs affect the application of EHR-based methods to 

epidemiologic research on CVD? The methodologic decisions explored included choice of 

phenotyping algorithm - varying in diagnosis code position and inclusion of clinical components 

such as lab results, procedure codes, and medications - as well as the effect of lookback period 

on comorbidity prevalence, choice of EHR-derived BMI versus calculated BMI, choice of vital 

data timing when multiple data points were available for a single encounter, and finally, the use 

of all available events to calculate accuracy measures or limiting analysis to a person-based 

dataset to reduce the effect of clustering within individuals. While the primary methodologic 

decision to explore in this dissertation was choice of phenotyping algorithm, as evidenced by the 

list in the previous statement, there are many challenges when using EHR data for 

epidemiologic research, with most if not all challenges arising from the fact that EHR data is 

intended to inform clinical practice and that diagnosis codes are used for billing estimates, not 

research. 

The first aim of this dissertation sought to describe whether acute MI and HF prevalence 

differed by choice of phenotyping algorithm. The crude and age-standardized prevalence 

estimates did differ statistically by algorithm, though these statistical differences were small. 

However, given the underlying prevalence of these 2 cardiovascular conditions in the US, the 

resulting differences in prevalence estimates when using one phenotyping algorithm over 

another, at a national projection level, numbered in the 100,000s with average healthcare costs 

differing by billions of dollars. The second aim involved describing the underlying patient 
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population captured by each algorithm, with hypotheses that algorithms with codes in the 1st or 

2nd position and algorithms requiring clinical components would capture a more severe patient 

population. Notably, these hypotheses were not clearly supported in this analysis, likely due to 

the nature of the dataset, that is, data collected for healthcare and not for research. As such, the 

data available on each patient is subject to the dynamic nature of the clinical diagnosis and 

treatment process, including feedback loops where lab results, procedures, and treatments 

influence both the true patient state, the patient EHR, and subsequent care decisions 

made.238,254 For HF, it is logical to hypothesize that HF patients captured via inpatient 

encounters may be more severe than those captured via outpatient encounter. However, results 

from this analysis did not find clear evidence supporting this hypothesis. Furthermore, some 

researchers may feel that capturing cases from an outpatient setting may provide additional 

data on patient characteristics - such as race, ethnicity, smoking status, and BMI - that may be 

missing from inpatient encounters. In this analysis I found the opposite, that these variables 

were more likely to be missing for outpatient than inpatient HF cases. This finding may or may 

not be limited to the UNC Health system patient population. While these cohort-building 

hypotheses may seem less important than main research questions, it is important that 

researchers should seek answers to questions such as these in their own datasets so that their 

cohort-building decisions are supported by data rather than theory. 

A post-hoc analysis came out of Aim 2 after discovering that there was substantial 

overlap in patient populations between phenotyping algorithms. While the primary analysis 

focused on comparing patients captured by Any Diagnosis Position to those captured by 1st or 

2nd Diagnosis Position, for example, the post-hoc analysis focused on comparing the subset 

within Any Diagnosis Position: those captured in the 3rd+ Diagnosis Position (and thus not 

qualifying for the 1st or 2nd Diagnosis Position) and the subsets excluded when moving from 

Any Diagnosis Position to Any Diagnosis Position with Clinical Component (and likewise for 1st 

or 2nd Diagnosis Position). For acute MI cases, those that were excluded based on clinical 
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components were less likely to be an NSTEMI, and for HF cases, some patient characteristics 

and event characteristics differed based on clinical component inclusion, but not in a systematic 

way. The takeaway from this post-hoc analysis is that the choice to require clinical components 

in an effort to improve the accuracy of a phenotyping algorithm may affect the characteristics of 

the patient population captured. 

For the third aim, I applied the acute MI and HF phenotyping algorithms from Aim 1 to 

events the ARIC study dataset and calculated accuracy measures for each algorithm against 

the gold standard of physician-adjudicated hospitalization events. I found that these 

phenotyping algorithms had moderate sensitivity and high specificity, PPV, and NPV. Sensitivity 

was highest for acute MI and HF when using Any Diagnosis Position algorithms. In general, 

requiring clinical components increased PPV for acute MI algorithms with little effect on other 

accuracy measures. For HF algorithms, requiring a loop diuretic or elevated lab result only 

increased accuracy measures for Any Diagnosis Position and not other algorithms. Considering 

the post-hoc analysis discussed in the previous paragraph, requiring a clinical component to 

improve the accuracy of the Any Diagnosis Position HF algorithm may affect patient or event 

characteristics of the underlying patient population. Researchers should consider using this 

algorithm both with and without clinical components to determine if the population captured 

differs significantly and if that difference impacts the research question. 

Public Health Significance 

The public health significance of this research is two-fold in its influence on CVD 

research and its contribution to the methodologic field. Cardiovascular disease is the #1 cause 

of death in the US169 and understanding progress towards reducing the burden of CVD requires 

understanding which research methods work best to capture individuals with CVD. The 

secondary use of EHR data for research is a cost-effective resource for a variety of research 

questions and domains, from surveillance to comparative effectiveness research to traditional 

risk factor epidemiology. While EHR data could, in theory, be used as the data source behind a 
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national cardiovascular surveillance system to systematically study the nationwide burden of 

CVD, the sudden emergence of such a system soon is unlikely. As such, efforts at estimating 

CVD burden will remain with cohort studies like ARIC, with national surveys such as NHANES, 

with health encounter data such as the National Inpatient Sample, and with networks like 

PCORnet that pull EHR data from health systems across the nation.  

The results from this dissertation can be used by researchers using EHR data for a 

variety of reasons, including those mentioned in the previous paragraph, from informing their 

own analytic decisions to validating their study findings. These results can also be used by 

public health officials looking for disease estimates to guide CVD programs and policies aimed 

at improving America’s health. The continued use of EHR data for research requires 

transparency to facilitate reproducibility as well as studies such as this dissertation focused on 

practical questions to alleviate concerns about what we are actually measuring when using EHR 

data for epidemiology. These methodologic efforts, whether originating in a public health 

capacity or not, will be invaluable to any efforts at quantifying progress towards reducing the #1 

cause of death in the United States: heart disease. 

Future Directions 

The impact of phenotyping algorithm choice on acute MI occurrence and HF prevalence 

needs to be explored in EHR datasets with well-enumerated patient populations or in EHR 

datasets linked with claims data, in order to capture all possible events. Any efforts to explore 

the accuracy of these algorithms to determine incidence (i.e. new cases) of acute MI or HF 

would certainly require such datasets, as the importance of lookback period duration pales in 

comparison to the ability to ascertain whether patient has experienced an event or not – an 

ability hampered by data fragmentation common in the US healthcare system without cross-

institution EHR linkage. 

The impact of phenotyping algorithm choice on prevalence estimates and accuracy 

measures may differ when applying these algorithms in specific patient populations. For 
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example, if exploring the risk of MI or HF among atrial fibrillation patients or measuring these 

CVD conditions as comorbidities rather than outcomes. 

The validation results from Aim 3 of this dissertation can serve as external validation 

data for researchers conducting quantitative bias analysis with acute MI and HF phenotyping 

algorithms – a valuable resource given the paucity of ICD-10-CM era validation data in the 

cardiovascular field. However, additional validation should be done in a nationally representative 

population to confirm the results. 

Conclusion 

EHR phenotyping is an important step in epidemiology, public health, and health 

economics and outcomes research. This dissertation found that the choice of diagnosis code 

position and inclusion of clinical components in acute MI and HF phenotyping algorithms can 

affect the resulting occurrence estimates and the demographic and event characteristics of the 

captured patient population. Furthermore, these phenotyping algorithm choices may also 

influence the accuracy of the algorithms when compared to physician-adjudicated 

hospitalization events. EHR researchers should consider the results of this dissertation in light 

of their research question, particularly the purpose of their phenotyping algorithm. 
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APPENDIX A: TABLES 

Table 139. Epic Go-Live Dates at UNC Health Hospitals 
 2014 2015 2016 2017 2018 2019 2020 

UNC Medical Center        

UNC Hillsborough        

Chatham Hospital        

UNC Rex        

Caldwell Memorial        

Pardee Hospital        

High Point Regional*        

Johnston Health        

UNC Lenoir        

UNC Rockingham**        

Wayne UNC Health        

Nash UNC Health        

Onslow Memorial        

*High Point Regional no longer UNC-owned; **UNC Rockingham includes physician billed information only. 
Adapted from UNC CDW-H SharePoint site, adding UNC Lenoir and Onslow Memorial dates. 
https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-availability-and-date-ranges.aspx 

 

https://adminliveunc.sharepoint.com/sites/tracsinformatics/SitePages/Data-availability-and-date-ranges.aspx
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Appendix A1: Annual and Semi-Annual Follow-Up in ARIC 

Information for event status and history of cardiovascular conditions among ARIC participants is 

collected via annual and semi-annual telephone calls. The following tables describe how that 

information is asked of the participant and what data is collected. 

Table 140. Annual Follow-Up Form (AFU3.0) for Atherosclerosis Risk in Communities Study 
Identifier Form: Annual Follow-Up Form (AFU3.0)  

D Cardiovascular Events  

36 Since we last contacted you, has a doctor said you had a heart attack? Yes/No (go to 40) 

37 Were you hospitalized at that time? Yes/No (go to 40) 

38 Hospital Information for Heart Attack Hospital Name, City, 
State and month/year of 
hospitalization 

39 Second hospitalization information, if applicable Hospital Name, City, 
State and month/year of 
hospitalization 

40 Since we last contacted you, has a doctor said you had angina, angina pectoris, or chest pain due to 
heart disease? 

Yes/No 

 Heart failure questions moved to Medical Condition Update form (MCU)  

48 Since we last contacted you, has a doctor said you had a stroke, slight stroke, transient ischemic attack, 
or TIA? 

Yes/No (go to 51) 

49 Were you hospitalized for this stroke, slight stroke, transient ischemic attack, or TIA? Yes/No (go to 51) 

50 Hospitalization for Stroke or TIA Hospital Name, City, 
State and month/year of 
hospitalization 

E Admissions  

51 Since our last contact, were you hospitalized or did you stay in a hospital observation unit for any reason 
that you have not yet mentioned? 

Yes/No (Go to 57) 

52 - 56 Hospitalization for other reason Reason, Hospital Name, 
City, State and 
month/year of 
hospitalization 

57 Were you seen at an emergency room or medical facility for outpatient treatment since our last contact? Yes/No (Go to 60) 

58 Was this related to a heart problem or difficulty breathing? Yes/No (Go to 60) 

59 Emergency Room/Facility Information Facility Name, City, 
State, and month/year 

F Invasive Procedures 
“Next I am going to ask about various types of surgery and medical procedures. We are interested in 

those that occurred in the hospital or as an outpatient.” 

 

62 Since we last contacted you, have you had any surgery on your heart, or the arteries of your neck or 
legs, not counting surgery for varicose veins? 

Yes/No (Go to 64) 

63 Did you have… 
Coronary bypass? 
Other heart procedure? (specify) 
Carotid endarterectomy? (site) 
Another arterial revascularization? (specify) 
Any other type of surgery on your heart or the arteries of your neck or legs? 

 

64 Since we last contacted you have you had a balloon angioplasty or stent on the arteries of your heart, 
neck, or legs? 
 
[If Yes] Did you have: 
Angioplasty or stent of the coronary arteries of your heart? 
Angioplasty or stent in the arteries of your neck? 
Angioplasty or stent of the lower extremity arteries? 

Yes/No (Go to 65) 
 
If yes: Angioplasty or 
stent facility information 
and approximate date 

G Interview  

65 Did you take any prescription medications in the 
past 4 weeks? 
 
[If Yes] Did you take any prescribed medications 
for: 
High blood pressure or hypertension 
High blood cholesterol 
Diabetes or high blood sugar 
Heart failure 
Asthma 

[continued] 
Chronic bronchitis or emphysema 
Chest pain or angina 
Abnormal heart rhythm 
Blood thinning 
Stroke 
Mini-stroke or TIA 
Leg pain while walking or claudication 
Depression 

Yes/No (go to 66) 

69 Do you now smoke cigarettes? Yes/No 

Adapted from Annual Follow-Up Form (AFU), Version 3.0 (5-21-2020) and Instructions for the AFU Version 3 and Participant Tracing Reports QxQ 
(5-21-2020). 
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Table 141. Medical Conditions Update Form (MCU2.0) for Atherosclerosis Risk in Communities 
Study 

Identifier Medical Conditions Update Form (MCU2.0)  

6 Since we last contacted you, has a doctor said that you had heart failure or 
congestive heart failure? 

Yes (Go to 7a)/No 

7 Since we last contacted you, has a doctor said that your heart is weak, or 
does not pump as strongly as it should, or that you had fluid on the lungs? 
 
If yes, Date: [7a] 

Yes/No (Go to 12) 

8 Doctor information for heart failure/weak heart (to send physician survey) Name, Address, Approximate Date 

9 Consent to contact doctor regarding heart failure  

10 At that time [when you were told you had heart failure], were you 
hospitalized or did you stay in a hospitalization unit? 

Yes/No (Go to 12) 

11 Hospitalization for heart failure Hospital Name, City, State and month/year of 
hospitalization 

12 Since we last contacted you, has a doctor said you had an irregular 
heartbeat called atrial fibrillation, or atrial fibrillation on a heart scan or 
electrocardiogram tracing? 
 
If yes, Date: [12a] 

Yes/No (go to 13a) 

Adapted from Medical Conditions Update Form (MCU) Version 2.0, 7-30-2014 and MCU QxQ (5-10-2019). 
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Table 142. Semi-Annual Follow-Up Core Questions (SAF3.0) for Atherosclerosis Risk in 
Communities Study 

Identifier Form: Semi-Annual Follow-Up Core Questions (SAF3.0)  

C Cardiovascular Events  

10 Since we last contacted you, has a doctor said you had a heart attack? Yes/No (go to 14) 

11 Were you hospitalized at that time? Yes/No (go to 14) 

12 Hospital Information for Heart Attack Hospital Name, City, State and month/year of 
hospitalization 

13 Second hospitalization information, if applicable Hospital Name, City, State and month/year of 
hospitalization 

14 Since we last contacted you, has a doctor said you had angina, angina 
pectoris, or chest pain due to heart disease? 

Yes/No 

 Heart failure questions moved to Medical Condition Update form (MCU)  

16 Since we last contacted you, has a doctor said you had a stroke, slight 
stroke, transient ischemic attack, or TIA? 

Yes/No (go to 19) 

17 Were you hospitalized for this stroke, slight stroke, transient ischemic 
attack, or TIA? 

Yes/No (go to 19) 

18 Hospitalization for Stroke or TIA Hospital Name, City, State and month/year of 
hospitalization 

D Other Admissions  

19 Since our last contact, were you hospitalized or did you stay in a hospital 
observation unit for any reason that you have not yet mentioned? 

Yes/No (Go to 25) 

20 Hospitalization for other reason Reason, Hospital Name, City, State and 
month/year of hospitalization 

25 Were you seen at an emergency room or medical facility for outpatient 
treatment since our last contact? 

Yes/No (Go to 28) 

26 Was this related to a heart problem or difficulty breathing? Yes/No (Go to 28) 

27 Emergency Room/Facility Information Facility Name, City, State, and month/year 

E Invasive Procedures 
“Next I am going to ask about various types of surgery and medical 
procedures. We are interested in those that occurred in the hospital or as 
an outpatient.” 

 

30 Since we last contacted you, have you had any surgery on your heart, or 
the arteries of your neck or legs, not counting surgery for varicose veins? 

Yes/No (Go to 32) 

31 Did you have… 
Coronary bypass? 
Other heart procedure? (specify) 
Carotid endarterectomy? (site) 
Another arterial revascularization? (specify) 
Any other type of surger4y on your heart or the arteries of your neck or 
legs? 

 

32 Since we last contacted you have you had a balloon angioplasty or stent on 
the arteries of your heart, neck, or legs? 
 
[If Yes] Did you have: 
Angioplasty or stent of the coronary arteries of your heart? 
Angioplasty or stent in the arteries of your neck? 
Angioplasty or stent of the lower extremity arteries? 

Yes/No (Go to 33) 
 
If yes: Angioplasty or stent facility information and 
approximate date 

Adapted from Semi-Annual Follow-up Core Questions (SAF Form), Version 3.0, Date 4-30-2018 and Instructions for the Semi-Annual Follow-Up 
Core Questions (SAF QxQ, 5-22-2019). 
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Appendix A2: MMCC Cohort Final Diagnosis Forms 

Events identified in the ARIC study go on to adjudication by the MMCC for hospitalized MI and 

HF. The diagnosis forms completed by the physicians on the MMCC are included in this section 

along with additional information on how decisions are made within these categories.  

Table 143. Mortality and Morbidity Classification Committee Final Diagnosis Forms for Myocardial 
Infarction (CDX), Atherosclerosis Risk in Communities Study. 

Identifier MMCC Cohort Final Diagnosis Form (CDX)  

B Review of Computer’s Diagnosis  

3 ARIC Cardiac Pain Criterion Present (P), Absent (A) 

4 ARIC ECG Criterion Evolving Diagnostic (A), Diagnostic (B) 
Evolving ST-T (C), Equivocal (D) 
Absent, Uncodable, or other (E) 

5 ARIC Enzyme Criterion Abnormal (A), Equivocal (E), Incomplete 
(I), Normal (N) 

6 Assign an overall MI Diagnosis using ARIC algorithm Definite MI (D), Probable MI (P), Suspect 
MI (S), No MI (N) 

7a Do you agree with the ARIC algorithm MI diagnosis? Yes (go to 7c)/No 

7a1 If no, please indicate reason for disagreement  

7a2 If no, cite relevant Case Law  

7b If no, assign letter from Item 6 that corresponds to preferred diagnosis Definite MI (D), Probable MI (P), Suspect 
MI (S), No MI (N) 

7c Was this event a death? Yes (go to 8)/No (stop) 

C Classification of Type of Death  

8 Is there evidence of non-atherosclerotic or non-cardiac process that was probably 
the cause of death? 

Yes/No (go to 9) 

9 Was there a definite MI within 4 weeks of death? Yes/No 

10 Was there chest pain within 72 hours of death (out-of-hospital death) or cardiac 
pain (in-hospital death) 

Yes/No 

11 Is there a history of ever having had chronic ischemic heart disease such as MI, 
coronary insufficiency, or angina pectoris? 

Yes/No 

12 Is the underlying cause of death included in ICD-10 Code: I11, I20, I21, I22, I23, 
I24, I25, I46, I51.6, I51.9, R99? * 

Yes/No 

13 Assign Death Classification using ARIC algorithm† Definite fatal MI (A), Definite fatal CHD (B) 
Possible fatal CHD (C), Non-CHD Death 
(D), Unclassifiable (E) 

14a Do you agree with the algorithm classification? Yes (go to 15a)/No 

14a1 If no, please indicate reason for disagreement  

14a2 If no, cite relevant Case Law  

14b If no, assign letter from Item 13 that corresponds to preferred diagnosis Definite fatal MI (A), Definite fatal CHD (B) 
Possible fatal CHD (C), Non-CHD Death 
(D), Unclassifiable (E) 

15a Is the response to Item 13 or 14b “A”, “B”, or “C” and the type of event out-of-
hospital death? 

Yes (go to 15b)/ No (stop) 

15b Time to death from onset of acute symptoms (or time to death since decedent was 
last known to be alive and free of acute symptoms). Circle the letter corresponding 
to shortest interval known to be true 

Instantaneous (A), 5 minutes or less (B) 
1 hour or less (C), 24 hours or less (D) 
More than 24 hours (E), Unknown (U) 

*I11 – hypertensive heart disease with or without congestive heart failure; I20 – angina pectoris; I21 – acute myocardial infarction; I22 – subsequent 
myocardial infarction; I23 – certain current complications following acute myocardial infarction; I24 – other acute ischemic heart disease; I25 – 
chronic ischemic heart disease; I46 – cardiac arrest; I51.6 – cardiovascular disease, unspecified; I51.9 – heart failure, unspecified; R99 – other ill-
defined and unspecified causes of mortality 
†Determination made in order of A through E, selecting diagnosis that meets criteria indicated. Definite Fatal MI (Item 8 = N and Item 9 = Y); 
Definite fatal CHD (Item 8 = N, Item 10 = Y, and/or Item 11 = Y); Possible fatal CHD (Item 8 = Y); Non=-CHD Death (Item 8 = N and Item 12 = N); 
Unclassifiable (Item 8 = N and Item 12 = N). Adapted from MMCC Cohort Final Diagnosis Form (CDX), Version J, 7-11-2017. 
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Table 144. Morbidity and Mortality Classification Committee Heart Failure Diagnosis Form (HDX), 
Atherosclerosis Risk in Communities Study. 

Identifier MMCC Heart Failure Diagnosis Form (HDX)  

B Review of Computer’s Diagnosis  

4 Is there evidence of (past or present) *  

4a Abnormal LV systolic function? † Yes/No/Unknown  

4b Abnormal RV systolic function? § Yes/No/Unknown  

4c LV diastolic dysfunction? ¶ Yes/No/Unknown  

5 Estimate LVEF (worst; related to current hospitalization) ** ≥ 50% (a) 
35-49% (b) 
<35% (c) 
Unknown (d) 

6 Assign an overall heart failure diagnosis based on your clinical 
judgment 
 
If A or B:  
Was definite or probable decompensated heart failure present at 
admission? (Y/N/U) 

Definite decompensated heart failure (A) 
Possible decompensated heart failure (B) 
Chronic stable heart failure (C, skip to 8) 
Heart failure unlikely (D, skip to 8) 
Unclassifiable (E, skip to 8) 

7 Was this event fatal? Yes/No (skip to 8) 

7a Was decompensated heart failure the primary cause of death? Yes/No/Unknown 

8 Comments  

*Borderline normal = normal; borderline abnormal = abnormal, and “borderline” (not otherwise specified) = abnormal. †Estimated 
LVEF ≤ 50% sufficient to define LV systolic dysfunction but if LVEF is recorded without supporting documents then record 
Unknown because confirmation of LV systolic dysfunction should be documented by an official report to differentiate historical 
diagnosis versus objectively documented diagnosis. See general algorithm in following table for HDXA4A. §To select Yes for 

Abnormal RV systolic function, there must be documented description of right ventricular function or contraction is decreased 
(dilated right ventricle alone is not sufficient). If the only description of the RV is normal and no mention of its function then select 
U. ¶Diastolic dysfunction must be explicitly described or documented in order to select Y. If LV compliance or relaxation is 

normal, code N (NO). A clinical description of diastolic dysfunction or diastolic heart failure is sufficient to select Yes unless the 
clinical diagnosis is questionable., An echo report ore other imaging report that describes diastolic function outranks a clinical 
description of diastolic dysfunction. See general algorithm in following table for HDXA4C. ** The most current echocardiogram 
with the lowest LVEF from the hospitalization should be used, but requires documentation. LVEF documented in 3 months prior 
to hospitalization can be used as long as there was no intervening event that could have altered LVEF. If LVEF is described as 
normal and no percentage is given then record A (≥ 50%). Adapted from Heart Failure Diagnosis Form (HDX) Version D, 7-11-
2017. 
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Table 145. Guidance for Heart Failure diagnosis for Mortality and Morbidity Classification 
Committee, Atherosclerosis Risk in Communities Study. 

General Algorithm for Determining Abnormal LV 
Systolic Function (HDXA4A) 

General Algorithm for Determining 
Abnormal LV Diastolic Function (HDXA4C) 

Clinical history of 
reduced LVEF or of 
systolic heart failure 

Systolic function on 
current 
echocardiogram 

Abnormal 
LV systolic 
function 
(HDXA4A) 

Clinical 
history of 
diastolic 
dysfunction or 
diastolic HF 

Diastolic function on 
current 
echocardiogram 

Abnormal 
LV diastolic 
function 
(HDXA4C) 

+ Unknown Y + Unknown Y 

+ Normal Y + Normal N 

+ Reduced Y + Diastolic 
dysfunction 

Y 

Normal EF Unknown N -/U Unknown U 

Normal EF Normal N -/U Normal N 

Normal EF Reduced Y -/U Diastolic 
dysfunction 

Y 

U Unknown U    

U Normal N    

U Reduced Y    

LV, left ventricular; EF, ejection fraction; LVEF, left ventricular ejection fraction; HF, heart failure; HDXA, Heart Failure diagnosis 
form for ARIC MMCC; U, unknown; Y, Yes; N, No; +, present; -, not present. Adapted from Question-by-Question Instructions for 
MMCC Heart Failure Final Diagnosis Form (HDX), Version A, 10-16-2017, pages 3 and 4. 
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Appendix A3: Information on Data to Be Requested from UNC CDW-H 

This section includes specific codes for data I requested from the UNC CDW-H.  

Table 146. LOINC® Codes for Requested Lab Tests 
Lab test LOINC® Codes 

Creatine kinase-MB 12189-7, 72564-8, 12187-1, 72563-0, 2154-3, 83092-7, 2158-4, 50757-4, 20569-0, 
49136-5, 13969-1, 32673-6, 38482-6, 49551-5 

BNP 30934-4, 42637-9, 47092-2 

NT-proBNP 71425-3, 77621-1, 77622-9, 83107-3, 83108-1, 33762-6, 33763-4 

Troponin I 49563-0, 76399-5, 10839-9, 42757-5 

hs-Troponin I 89578-9, 89579-7 

Troponin T 33204-9, 48425-3, 48426-1, 6597-9, 6598-7 

hs-Troponin T 67151-1, 89575-5 

Bold indicates most common LOINC® codes. NT-proBNP: Natriuretic peptide B prohormone N-terminal; BNP: natriuretic peptide 
B; hs: high sensitivity 
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Table 147. Procedure codes for Requested Cardiac Procedures 
Procedure Pacemaker placement or removal 

ICD-9-CM 00.53, 37.7, 37.8, V45.01, V53.31, 89.45, 89.46, 89.47, 89.48 

ICD-10-PCS  0JH634Z, 0JH635Z, 0JH636Z, 0JH637Z, 0JH604Z, 0JH605Z, 0JH606Z, 0JH607Z 

ICD-10-CM Z95.0, Z45.01, Z45.010, Z45.018 

CPT® 0024T, 00530, 0388T, 33200, 33201, 33206, 33207, 33208, 33210, 33212, 33213, 33214, 33215, 
33216, 33217, 33218, 33219, 33220, 33221, 33222, 33224, 33225, 33227, 33228, 33229, 33232, 
33233, 33234, 33235, 33236, 33237, 71090, 93279, 93280, 93281, 93286, 93288, 93293, 93294, 
93296, 93650, 93724, 93731, 93732, 93733, 93734, 93735, 93736 

Procedure Implantable Cardioverter-Defibrillator placement or removal 

ICD-9-CM 00.50, 00.51, 00.54, V45.02, V53.32, 89.49 

ICD-10-PCS  0JH60FZ, 0JH608Z, 0JH609Z, 0JH638Z, 0JH639Z, 0JH63FZ 

ICD-10-CM Z45.02, Z95.810 

CPT® 00534, 0294T, 0319T, 0320T, 0321T, 0322T, 0323T, 0324T, 0325T, 0326T, 0327T, 0328T, 33215, 
33216, 33217, 33218, 33220, 33223, 33224, 33225, 33230, 33231, 33240, 33241, 33242, 33243, 
33244, 33245, 33246, 33247, 33248, 33249, 33262, 33263, 33264, 33270, 33271, 33272, 4470F, 
93282, 93283, 93284, 93287, 93289, 93292, 93295, 93296, 93640, 93641, 93642, 93644, 93737, 
93738, 93741, 93742, 93743, 93744, 93745 

Procedure LVAD 

ICD-9-CM 37.6, V43.21, 97.44 

ICD-10-PCS  02HA4QZ 

ICD-10-CM Z95.811 

CPT® 33990, 33991, 33992, 33993 

Procedure Heart transplant 

ICD-9-CM 33.6, 37.51, V42.1 

ICD-10-PCS  02YA0Z 

ICD-10-CM Z94.1, Z94.3, T86.2, T86.3, Z48.21, Z48.28, Z94.1, Z94.3 

CPT® 00580, 33935, 33945 

Procedure PCI (Percutaneous transluminal coronary angioplasty [PTCA] or coronary atherectomy) 

ICD-9-CM 00.66, 36.01, 36.02, 36.05, 36.06†, 36.07†, V45.82 

ICD-10-PCS  02103*, 02104*, 02113*, 02114*, 02123*, 02124*, 02133*, 02134* 

ICD-10-CM - 

CPT® 92920, 92921, 92982, 92984, 92994, 92996 

Procedure CABG 

ICD-9-CM 36.10, 36.11, 36.12, 36.13, 36.14, 36.15, 36.16, 36.17, 36.19, V45.81 

ICD-10-PCS  02100*, 02110*, 02120*, 02130* 

ICD-10-CM§ I25.70, I25.71, I25.72, I25.73, I25.79, I25.810, T82.2, T82.21 

CPT® 33510, 33511, 33512, 33513, 33514, 33516, 33533, 33534, 33535, 33536, 33517, 33518, 33519, 
33521, 33522, 33523 

Procedure Cardiac Angiography†† 

ICD-9-CM 88.5 

ICD-10-PCS  B2000ZZ, B2001ZZ, B200YZZ, B2060ZZ, B2061ZZ, B206YZZ, B2100ZZ, B2101ZZ, B210YZZ, 
B2110ZZ, B2111ZZ, B211YZZ, B2120ZZ, B2121ZZ, B212YZZ, B2130ZZ, B2131ZZ, B213YZZ, 
B2160ZZ, B2161ZZ, B216YZZ, B2170ZZ, B2171ZZ, B217YZZ, B2180ZZ, B2181ZZ, B218YZZ, 
B21F0ZZ, B21F1ZZ, B21FYZZ, B5080ZZ, B5081ZZ, B508YZZ, B5090ZZ, B5091ZZ, B509YZZ, 
B5180ZZ, B5181ZZ, B518YZZ, B5190ZZ, B5191ZZ, B519YZZ, B2040ZZ, B2041ZZ, B204YZZ, 
B2140ZZ, B2141ZZ, B214YZZ, B2050ZZ, B2051ZZ, B205YZZ, B2150ZZ B2151ZZ, B215YZZ, 
B2010ZZ, B2011ZZ, B201YZZ, B201YZZ, B210010, B210110, B210Y10, B211010, B211110, 
B211Y10, B212010, B212110, B212Y10, B213010, B213110, B213Y10, 

ICD-10-CM - 

CPT® - 

†PCI codes for stent insertion; *ICD-10-PCS codes will start with these numbers, for example: 02104* includes 02104J3, 

02104J8, etc. §ICD-10-CM codes for CABG are atherosclerosis of CABG graft, indicating previous graft. †† Cardiac angiography 

ICD-9 and ICD-10-PCS codes match ARIC Cohort Surveillance screening codes 
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Table 148. Medication Rx Concept Unique Identifiers (RxCUI) for RxNorm system 
Medication RxCUI Medication RxCUI 

Angiotensin Converter Enzyme (ACE) Inhibitors 

Perindopril 54552 Quinapril 35208 

Captopril 1998 Moexipril 30131 

Enalapril 3827 Fosinopril 50166 

Lisinopril 29046 Enalaprilat 3829 

Ramipril 35296 Benazepril 18867 

Angiotensin II Receptor Blockers (ARBs) 

Candesartan 214354 Eprosartan 83515 

Valsartan 69749 Irbesartan 83818 

Losartan 52175  Olmesartan 321064 

Azilsartan medoxomil 1091642 Telmisartan 73494 

Angiotensin Receptor Neprilysin Inhibitors (ARNIs) 

Sacubitril-valsartan 1656339   

Beta blockers 

Carvedilol 20352 Carteolol 2116 

Acebutolol 149 Ivabradine 1649480 

Metoprolol 6918 Labetalol 6185 

Bisoprolol 19484 Nadolol 7226 

Atenolol 1202 Pindolol 8332 

Betaxolol 1520 Propranolol 8787 

Timolol 10600   

IV or Oral Diuretics* 

Furosemide†  4603 Ethacrynic acid  4109 

Torsemide†  38413 Hydrochlorothiazide 5487 

Bumetanide†  1808   

Oral Diuretics** 

Spironolactone§ 9997 Hydroflumethiazide 5495 

Eplerenone§ 298869 Indapamide 5764 

Acetazolamide 167 Mannitol 6628 

Amiloride 644 Methyclothiazide 6860 

Bendroflumethiazide 1369 Metolazone 6916 

Chlorthalidone 2409 Polythiazide 8565 

Chlorothiazide 2396 Triamterene 10763 

Dichlorphenamide 3353 Trichlormethiazide 10772 

Ethacrynate 62349 Quinethazone 59743 

*Diuretics for inpatient algorithm could be administered orally or intravenously; †Loop Diuretic; § Potassium sparing diuretic 
(aldosterone blockers); ** Outpatient oral medications; Outpatient medication codes should be associated with a heart 
failure diagnosis code (ICD-10-CM I50, I13.0, I13.2, I11.0). RxCUI codes retrieved from RxNav www.mor.nlm.nih.gov/RxNav 
 

http://www.mor.nlm.nih.gov/RxNav
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Table 149. ICD-9-CM and ICD-10-CM Codes for Comorbidities 
Comorbidities ICD-9-CM ICD-10-CM 

Hypertension* 362.11, 401 – 405, 437.2 in any position on 1 
inpatient or 2 outpatient 

H35.0x, I10, I12, I13, I15, I67.4, N26.2 in any position on 
1 inpatient or 2 outpatient 

Type 2 Diabetes 250.00, 250.02, 250.10, 250.12, 250.20, 
250.22, 250.30, 250.32, 250.40, 250.42, 
250.50, 250.52, 250.60, 250.62, 250.70, 
250.72, 250.80, 250.82, 250.90, 250.92 

E11 

Type 1 Diabetes 250.01, 250.03, 250.11, 250.13, 250.21, 
250.23, 250.31, 250.33, 250.41, 250.43, 
250.51, 250.53, 250.61, 250.63, 250.71, 
250.73, 250.81, 250.83, 250.91, 250.93 

E10 

Kidney disease DX 016.00, 016.01, 016.02, 016.03, 016.04, 
016.05, 016.06, 095.4, 189.0, 189.9, 223.0, 
236.91, 249.40, 249.41, 250.40, 250.41, 
250.42, 250.43, 271.4, 274.10, 283.11, 
403.01, 403.11, 403.91, 404.02, 404.03, 
404.12, 404.13, 404.92, 404.93, 440.1, 
442.1, 572.4, 580.0, 580.4, 580.81, 580.89, 
580.9, 581.0, 581.1, 581.2, 581.3, 581.81, 
581.89, 581.9, 582.0, 582.1, 582.2, 582.4, 
582.81, 582.89, 582.9, 583.0, 583.1, 583.2, 
583.4, 583.6, 583.7, 583.81, 583.89, 583.9, 
584.5, 584.6, 584.7, 584.8, 584.9, 585.1, 
585.2, 585.3, 585.4, 585.5, 585.6, 585.9, 
586, 587, 588.0, 588.1, 588.81, 588.89, 
588.9, 591, 753.12, 753.13, 753.14, 753.15, 
753.16, 753.17, 753.19, 753.20, 753.21, 
753.22, 753.23, 753.29, 794.4 in any position 
on 1 inpatient or 2 outpatient  

A18.11, A52.75, B52.0, C64.1, C64.2, C64.9, C68.9, 
D30.00, D30.01, D30.02, D41.00, D41.01, D41.02, 
D41.10, D41.11, D41.12, D41.20, D41.21, D41.22, 
D59.3, E08.21, E08.22, E08.29, E08.65, E09.21, 
E09.22, E09.29, E10.21, E10.22, E10.29, E10.65, 
E11.21, E11.22, E11.29, E11.65, E13.21, E13.22, 
E13.29, E74.8, I12.0, I12.9, I13.0, I13.10, I13.11, I13.2, 
I70.1, I72.2, K76.7, M10.30, M10.311, M10.312, 
M10.319, M10.321, M10.322, M10.329, M10.331, 
M10.332, M10.339, M10.341, M10.342, M10.349, 
M10.351, M10.352, M10.359, M10.361, M10.362, 
M10.369, M10.371, M10.372, M10.379, M10.38, 
M10.39, M32.14, M32.15, M35.04, N00.0, N00.1, N00.2, 
N00.3, N00.4, N00.5, N00.6, N00.7, N00.8, N00.9, 
N01.0, N01.1, N01.2, N01.3, N01.4, N01.5, N01.6, 
N01.7, N01.8, N01.9, N02.0, N02.1, N02.2, N02.3, 
N02.4, N02.5, N02.6, N02.7, N02.8, N02.9, N03.0, 
N03.1, N03.2, N03.3, N03.4, N03.5, N03.6, N03.7, 
N03.8, N03.9, N04.0, N04.1, N04.2, N04.3, N04.4, 
N04.5, N04.6, N04.7, N04.8, N04.9, N05.0, N05.1, 
N05.2, N05.3, N05.4, N05.5, N05.6, N05.7, N05.8, 
N05.9, N06.0, N06.1, N06.2, N06.3, N06.4, N06.5, 
N06.6, N06.7, N06.8, N06.9, N07.0, N07.1, N07.2, 
N07.3, N07.4, N07.5, N07.6, N07.7, N07.8, N07.9, N08, 
N13.1, N13.2, N13.30, N13.39, N14.0, N14.1, N14.2, 
N14.3, N14.4, N15.0, N15.8, N15.9, N16, N17.0, N17.1, 
N17.2, N17.8, N17.9, N18.1, N18.2, N18.3, N18.4, 
N18.5, N18.6, N18.9, N19, N25.0, N25.1, N25.81, 
N25.89, N25.9, N26.1, N26.9, Q61.02, Q61.11, Q61.19, 
Q61.2, Q61.3, Q61.4, Q61.5, Q61.8, Q62.0, Q62.2, 
Q62.10, Q62.11, Q62.12, Q62.31, Q62.32, Q62.39, 
R94.4 in any position on 1 inpatient or 2 outpatient 

Coexisting 
cardiovascular 
disease 

ICD-9-CM ICD-10-CM 

Heart failure* 398.91, 402.01, 402.11, 402.91, 404.01, 
404.03, 404.11, 404.13, 404.91, 404.93, 
428.0, 428.1, 428.20, 428.21, 428.22, 
428.23, 428.30, 428.31, 428.32, 428.33, 
428.40, 428.41, 428.42, 428.43, 428.9 any 
position on at least 1 inpatient or outpatient 
encounter 

I09.81, I11.0, I13.0, I13.2, I50.1, I50.20, I50.21, I50.22, 
I50.23, I50.30, I50.31, I50.32, I50.33, I50.40, I50.41, 
I50.42, I50.43, I50.810, I50.811, I50.812, I50.813, 
I50.814, I50.82, I50.83, I50.84, I50.89, I50.9 any position 
on at least 1 inpatient or outpatient encounter 

Atrial fibrillation* 427.31 in 1st or second position on 1 inpatient 
or 2 outpatient 

I48.0, I48.1, I48.11, I48.19, I48.2, I48.20, I48.21, I48.91 
in 1st or second position on 1inpatient or 2 outpatient 

Stroke or TIA* 430, 431, 433.01, 433.11, 433.21, 433.31, 
433.81, 433.91, 434.00, 434.01, 434.10, 
434.11, 434.90, 434.91, 435.0, 435.1, 435.3, 
435.8, 435.9, 436, 997.02 in any position on 
1 inpatient or 2 outpatient encounters but 
exclude if 800, 804.9, 850, 854.1 are in any 
position or V57xx is principal code 

G45.0, G45.1, G45.2, G45.8, G45.9, G46.0, G46.1, 
G46.2, G46.3, G46.4, G46.5, G46.6, G46.7, G46.8, 
G97.31, G97.32, I60.00, I60.01, I60.02, I60.10, I60.11, 
I60.12, I60.20, I60.21, I60.22, I60.30, I60.31, I60.32, 
I60.4, I60.50, I60.51, I60.52, I60.6, I60.7, I60.8, I60.9, 
I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, I61.9, 
I63.00, I63.02, I63.011, I63.012, I63.013, I63.019, 
I63.02, I63.031, I63.032, I63.039, I63.09, I63.10, 
I63.111, I63.112, I63.119, I63.12, I63.131, I63.132, 
I63.139, I63.19, I63.20, I63.211, I63.212, I63.213, 
I63.219, I63.22, I63.231, I63.232, I63.233, I63.239, 
I63.29, I63.30, I63.311, I63.312, I63.313, I63.319, 
I63.321, I63.322, I63.323, I63.329, I63.331, I63.332, 
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I63.333, I63.339, I63.341, I63.342, I63.343, I63.349, 
I63.39, I63.40, I63.411, I63.412, I63.413, I63.419, 
I63.421, I63.422, I63.423, I63.429, I63.431, I63.432, 
I63.433, I63.439, I63.441, I63.442, I63.443, I63.449, 
I63.49, I63.50, I63.511, I63.512, I63.513, I63.519, 
I63.521, I63.522, I63.523, I63.529, I63.531, I63.532, 
I63.533, I63.539, I63.541, I63.542, I63.543, I63.549, 
I63.59, I63.6, I63.8, I63.9, I66.01, I66.02, I66.03, I66.09, 
I66.11, I66.12, I66.13, I66.19, I66.21, I66.22, I66.23, 
I66.29, I66.3, I66.8, I66.9, I67.841, I67.848, I67.89, 
I97.810, I97.811, I97.820, I97.821 in any position on 1 
inpatient or 2 outpatient encounters but exclude if 
S01.90XA, S02, S06 in any position or Z51.89 as 
principal code 

Old MI 412 I25.2 

Cardiovascular 
procedures 

Procedure codes in Table 147 Procedure codes in Table 147 

Acute MI (2015) * 410 in 1st or 2nd position of inpatient  

Ischemic Heart 
Disease* 

410.00, 410.01, 410.02, 410.10, 410.11, 
410.12, 410.20, 410.21, 410.22, 410.30, 
410.31, 410.32, 410.40, 410.41, 410.42, 
410.50, 410.51, 410.52, 410.60, 410.61, 
410.62, 410.70, 410.71, 410.72, 410.80, 
410.81, 410.82, 410.90, 410.91, 410.92, 
411.0, 411.1, 411.81, 411.89, 412, 413.0, 
413.1, 413.9, 414.00, 414.01, 414.02, 
414.03, 414.04, 414.05, 414.06, 414.07, 
414.12, 414.2, 414.3, 414.4, 414.8, 414.9 in 
any position on at least 1 inpatient or 
outpatient encounter 

I20.0, I20.1, I20.8, I20.9, I21.01, I21.02, I21.09, I21.11, 
I21.19, I21.21, I21.29, I21.3, I21.4, I21.A1, I21.A9, I22.0, 
I22.1, I22.2, I22.8, I22.9, I23.0, I23.1, I23.2, I23.3, I23.4, 
I23.5, I23.6, I23.7, I23.8, I24.0, I24.1, I24.8, I24.9, 
I25.10, I25.110, I25.111, I25.118, I25.119, I25.2, I25.3, 
I25.41, I25.42, I25.5, I25.6, I25.700, I25.701, I25.708, 
I25.709, I25.710, I25.711, I25.718, I25.719, I25.720, 
I25.721, I25.728, I25.729, I25.730, I25.731, I25.738, 
I25.739, I25.750, I25.751, I25.758, I25.759, I25.760, 
I25.761, I25.768, I25.769, I25.790, I25.791, I25.798, 
I25.799, I25.810, I25.811, I25.812, I25.82, I25.83, 
I25.84, I25.89, I25.9 in any position on at least 1 
inpatient or outpatient encounter 

*Algorithm based on Centers for Medicare and Medicaid Chronic Condition Warehouse Condition Algorithms 
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Table 150. ICD-10-CM Codes to Describe Severity of Events 
Severity indicators ICD-10-CM 

Myocardial Infarction  

STEMI I21.0 – I21.3 

NSTEMI I21.4 

Type 2 MI I21.A1 

Unspecified MI Type I21.9 

Cardiogenic shock R57.0 

Acute heart failure I50.21, I50.23, I50.31, I50.33, I50.41 I50.43, I50.811, I50.813 

Recurrent MI  I22 

Heart Failure  

Heart transplant Procedure codes in Table 147 

LVAD placement Procedure codes in Table 147 

Acute on chronic HF I50.23, I50.33, I50.43, I50.813 

End-stage HF I50.84 

ICD-9-CM codes are not listed because no events were identified in the pre-ICD-10-CM era, in contrast to collecting comorbidity 
data in 6 months prior to any events occurring in the first half of 2016 
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Table 151. Data Sources for Independent Measures (Manuscript 1) 

Study measure Source in CDW-H 

Age (years) Calculated in EHR from date of birth to date of encounter 

Gender 
Women, men 

Self-report in EHR 

Race/ethnicity  

White, Black, Asian, Other Self-report in EHR 

Hispanic/Latino Self-report in EHR 

Body mass index (kg/m2) Calculated in EHR 

Smoking status 
Current, former, never, unknown, 
missing  

From patient social history in EHR, recorded by medical staff at 
encounter 

Comorbidities  

Hypertension, diabetes, Kidney 
disease, chronic Kidney failure 

ICD-9-CM and ICD-10-CM codes in patient problem list 

Coexisting cardiovascular disease  

Heart failure, atrial fibrillation, previous 
stroke or TIA, previous MI 

ICD-9-CM, ICD-10-CM, ICD-10-PCS, CPT® codes in patient problem 
list or documented at encounters prior to event 

Previous cardiac procedure ICD-10-PCS, CPT® codes in patient problem list or documented at 
encounters prior to event 

Severity indicators  

STEMI, NSTEMI, Unspecified MI type ICD-10-CM codes at time of event encounter 

Type 2 MI ICD-10-CM codes at time of event encounter 

Recurrent MI ICD-10-CM codes at time of event encounter 

LVAD placement 
Heart transplant 

ICD-10-CM, ICD-10-PCS, CPT® codes at time of event encounter or 
after 

End-stage heart failure ICD-10-CM codes at time of event encounter 

Acute on chronic heart failure 
hospitalization 

ICD-10-CM codes at time of event encounter 

Medications 
ACE inhibitors, ARBs, β blockers, loop 
diuretics, antiplatelets, anticoagulants, 
calcium channel blockers, sodium 
channel blockers, potassium channel 
blockers 

RxNorm codes at event encounter 
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Appendix A4: ARIC Cohort and Surveillance References 

Table 152. Variables and Datasets for Applying MI Phenotyping Algorithms in the ARIC Study Data 
 Item Variable Dataset Description 

ARIC 
Classification 

Definite, Probable, 
Suspect, No MI 

CMIDX C18EVT1 Final MI classification by MMCC or computer 
algorithm if MMCC review not required 

ECG evidence CECGDXX C18OCC1 1 = absent, Uncodable, other; 2 = equivocal; 
3 = evolving ST-T; 4 = diagnostic; 5 = 
evolving diagnostic 

Biomarker evidence CENZDX2 C18OCC1 Downgraded; 1 = normal; 2 = incomplete; 3 = 
equivocal, 4 = abnormal 

Chest pain symptoms CPAINDX2 C18OCC1 Downgraded; 1 = pain is absent or pain is 
present and of non-cardiac origin; 2 = pain of 
cardiac origin 

Algorithm 2A (I21 or I22) in any 
position in hospital 
discharge list 

CELB10A 
through 
CELB10Z3 

C18CELB1 All discharge diagnoses from hospitalization 
recorded 

Algorithm 2B (I21 or I22) in primary or 
secondary position in 
hospital discharge list 

CELB10A, 
CELB10B 

C18CELB1 Primary and secondary discharge codes 

Algorithm 3A (I21 or I22) in any 
position in hospital 
discharge list 
AND  

CELB10A 
through 
CELB10Z3 

C18CELB1 All discharge diagnoses from hospitalization 
recorded 

Elevated cardiac 
biomarker (troponin I, 
troponin T, CK-MB) 

HRAA20E3 C18HRMA1 Cardiac enzymes above normal limit 

CENZDX2=4 C18OCC1 Downgraded to account for other reasons for 
elevated cardiac enzymes 

OR cardiac procedure 
during hospitalization 

HRAA29C C18HRMA1 Coronary angioplasty 

HRAA29C2 C18HRMA1 Coronary atherectomy 

HRAA29F C18HRMA1 Coronary CT 

HRAA29P1 C18HRMA1 Coronary stent 

Algorithm 3B (I21 or I22) in primary or 
secondary position in 
hospital discharge list 
AND 

CELB10A, 
CELB10B 

C18CELB1 Primary and secondary discharge codes 

Elevated cardiac 
biomarker (troponin I, 
troponin T, CK-MB) 

HRAA20E3 C18HRMA1 Cardiac enzymes above normal limit 

CENZDX2=4 C18OCC1 Downgraded to account for other reasons for 
elevated cardiac enzymes 

OR cardiac procedure 
during hospitalization 

HRAA29C C18HRMA1 Coronary angioplasty 

HRAA29C2 C18HRMA1 Coronary atherectomy 

HRAA29F C18HRMA1 Coronary CT 

HRAA29P1 C18HRMA1 Coronary stent 
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Table 153. Variables and Datasets for Applying Heart Failure Phenotyping Algorithms in the ARIC 
Study Data 

 Item Variable Dataset Description 

ARIC 
Classification 

Definite ADHF (A), probable 
ADHF (B), chronic stable HF 
(C), unlikely HF (D), 
unclassifiable (E) 

CHFDIAG HFC18OCC1 MMCC adjudicated HF diagnosis 

Definite or probable AHDF (A 
or B), Chronic stable HF (C), 
Unlikely or unclassifiable (D or 
E) 

CHFIDAG3 HFC18OCC1 Values 1 = A or B, 2 = C, 3 = D or E 

Other HF 
Criteria 

Framingham Criteria FRAMINGHAM HFC18OCC1 NPR (not present); PRS (HF present) 

Gothenburg Criteria GOTHENBURG HFC18OCC1 
0 (absent) 1 (latent) 2 (manifest) 3 (grade 
3) 4 (hf death) 5 (unknown) 
 

Modified Boston Criteria MBOSTON HFC18OCC1 
DEF (definite), POS (Possible), UNLK 
(unlikely) 

NHANES Criteria NHANES HFC18OCC1 NPR (not present); PRS (HF present) 

Trialist Criteria TRIALISTHF HFC18OCC1 0, 1 

Algorithm 2A 
(I50, I13.0, I13.2, or I11.0) in 
any position in hospital 
discharge list 

CELB10A 
through 
CELB10Z3 

C18CELB1 
All discharge diagnoses from 
hospitalization recorded 

Algorithm 2B 
(I50, I13.0, I13.2, or I11.0) in 
primary or secondary position 
in hospital discharge list 

CELB10A, 
CELB10B 

C18CELB1 Primary and secondary discharge codes 

Algorithm 3A 

(I50, I13.0, I13.2, or I11.0) in 
any position in hospital 
discharge list 
AND  

CELB10A 
through 
CELB10Z3 

C18CELB1 
All discharge diagnoses from 
hospitalization recorded 

inpatient administration of IV 
diuretics  

HFAA73B C18HFAA1  

OR (elevated BNP >500 pg/mL  

HFAA39A C18HFAA1 Worst BNP value 

HFAA39B C18HFAA1 Last BNP value during hospitalization 

HFAA39C 
 

C18HFAA1 BNP test upper limit normal (reference) 

or elevated NT-proBNP >450 
pg/mL or >900 pg/mL for those 
<50 years* and ≥ 50 years, 
respectively) 

HFAA40A C18HFAA1 Worst NT-proBNP value 

HFAA40B C18HFAA1 
Last NT-proBNP value during 
hospitalization 

HFAA40C C18HFAA1 
NT-proBNP test upper limit normal 
(reference) 

Algorithm 3B 

(I50, I13.0, I13.2, or I11.0) in 
primary or secondary position 
in hospital discharge list 

CELB10A, 
CELB10B 

C18CELB1 Primary and secondary discharge codes 

inpatient administration of IV 
diuretics  

HFAA73B C18HFAA1  

OR (elevated BNP >500 pg/mL  

HFAA39A C18HFAA1 Worst BNP value 

HFAA39B C18HFAA1 Last BNP value during hospitalization 

HFAA39C C18HFAA1 BNP test upper limit normal (reference) 

or elevated NT-proBNP >450 
pg/mL or >900 pg/mL for those 
<50 years* and ≥ 50 years, 
respectively) 

HFAA40A C18HFAA1 Worst NT-proBNP value 

HFAA40B C18HFAA1 
Last NT-proBNP value during 
hospitalization 

HFAA40C C18HFAA1 
NT-proBNP test upper limit normal 
(reference) 

ADHF: acute decompensated heart failure; HF: heart failure 
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Table 154. Codes for Incident Chronic Kidney Disease Stage 3+ (Definition 2), The ARIC Study 
ICD-9-code Description ICD-10-code 

582 Chronic glomerulonephritis N03 

583 Nephritis and nephropathy  

585, 585.x where x≥3 Chronic kidney disease N18, N18.x where x≥3 

586 Kidney failure N19 

587 Kidney sclerosis N26 

588 Disorders resulting from impaired Kidney function N25 

403 Hypertensive chronic kidney disease I12 

404 Hypertensive heart and kidney disease I13 

593.9 Unspecified disorder of the kidney and ureter  

250.4 Diabetes with Kidney complications E10.2, E11.2, E13.2 

V42.0 Kidney replaced by transplant Z94.0 

55.6 Transplant of kidney  

996.81 Complications of transplanted kidney  

V45.1 Kidney dialysis status Z99.2 

V56 Admission for dialysis treatment or session Z49 

39.95 Hemodialysis  

54.98 Peritoneal dialysis  

 Encounter for adjustment and management of vascular access device Z45.2 

*Codes in gray rows counted as incident kidney disease only if a concomitant acute kidney injury code (ICD-9: 584.x, ICD-10-: 
N17) is not present 
Source: Derived and Incident Kidney Disease Documentation (Section V), The ARIC Study, Updated January 18 2019. 
 
 

Table 155. Codes for Incident Kidney Failure, The ARIC Study 
ICD-9-code Description ICD-10-code 

V42.0 Kidney replaced by transplant Z94.0 

55.6 Transplant of kidney  

996.81 Complications of transplanted kidney  

V45.1 Kidney dialysis status Z99.2 

V56 Admission for dialysis treatment or session Z49 

39.95 Hemodialysis  

54.98 Peritoneal dialysis  

 Encounter for adjustment and management of vascular access device Z45.2 

585.5 Chronic kidney disease stage 5 N18.5 

585.6 End stage Kidney disease N18.6 

586 Kidney failure N19 

403.01 Hypertensive chronic kidney disease, malignant, with CKD 5 or ESRD  

403.91 Hypertensive chronic kidney disease, with CKD 5 or ESRD I12.0 

*Codes in gray rows not counted as incident kidney failure if for hospitalizations a concurrent AKI code (ICD-9: 584.x, ICD-10-: 
N17) is present or for deaths, a concurrent AKI code is present without a concurrent CKD code. 
Source: Derived and Incident Kidney Disease Documentation (Section VI), The ARIC Study, Updated January 18 2019. 
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Table 156. Data Sources for MI Phenotyping Algorithm versus ARIC Classification Phenotypic 
Comparisons  

Item Variable Dataset Description 

Age, years CEVTDAT3 C18EVT1 Calculated: event date – date of birth 

DOB C18CELB1  

Women SEX C18OCC1 Gender associated with hospitalization 

GENDER71 DERIVE71 Gender recorded at visit 1 

Race Race1 C18OCC1 Race associated with hospitalization 

RACEGRP71 DERIVE71 Race group recorded at visit 1 

Center CENTER C18EVT1  

CENTER DERIVE71 Should match Center in C18EVT1 

Smoking status HRAA21D C18HRMA1 Smoking status as recorded at hospitalization 

CURSMK72, FORSMK72, 
EVRSMK72, CIGT72 

DERIVE71 Smoking status recorded at visit 7 

BMI BMI71 DERIVE71 From visit 7 

Comorbidities 

Hypertension HRAA38 C18HRMA1 History of hypertension recorded at hospitalization 

HYPERT75 DERIVE71 SBP ≥ 140 or DBP ≥ 90 or anti-hypertension 
medication recorded at visit 7 

Diabetes HRAA38B C18HRMA1 Recorded at hospitalization 

DIABTS75 DERIVE71 Fasting blood glucose ≥ 126 mg/dL or non-fasting 
glucose ≥ 200 mg/dL or using medication for 
diabetes at visit 7 

Kidney disease Inc_ckd_defy_vx INC_CKD_BY## Incident CKD definition y between visit x and year 
## 

EGFRCR71 DERIVE71 eGFR-Cr measured at visit 7 (<60) 

Kidney failure Inc_kf_vx INC_KF_BY## Incident kidney failure from visit X through year ## 

EGFRCR71 DERIVE71 eGFR-Cr measured at visit 7 (<15) 

Mortality DATED18 
CEVTDAT3 
C7_DATEMI 

INCBY18 
C18EVT1 
INCBY18 

Death date 
MI date 
MI date 

Coexisting Cardiovascular Disease 

Heart failure C7_INCHF_P_V5 INCBY18 Hospitalized HF with V5 as baseline 

C7_DATE_INCHF_P_V5 INCBY18 Date of first incident heart failure post visit 5 

C7_INCHF18 INCBY18 Incident HF (or death due to HF) by ICD code and 
no prevalent HF at visit 1 

C7_DATE_INCHF18 INCBY18 Date of first incident heart failure 

PREVHF01 INCBY18 Prevalent heart failure at visit 1 

Incident heart failure 
following MI 

C7_INCHF_P_MI INCBY18 Missing if MI before incident HF 

C7_DATE_INCHF_P_MI INCBY18 Date of first incident heart failure post MI 

Atrial fibrillation INCSELFREPAF 
INCSELFREPAF_DATE 

STATUS7# Where # = version number 
Self-report AF date or last FU date prior to end of 
visit 7 

Stroke/TIA HRAA39 C18HRMA1 History of stroke noted in medical record 

TIAB01 INCBY18 History of stroke or TIA reported at visit 1 

C7_IN18ISC 
 

INCBY18 Definite or probable incident ischemic stroke 
before CENSDAT7; use C7_ED18ISC (date of 
stroke admission) and EVTDAT (MI date) 

C7_ED18ISC INCBY18 Hospital admission date for stroke or censoring 
date for non-incident events  

PRVSTR71 DERIVE71 Prevalent stroke by end of visit 7 

Severity Indicators 

STEMI CSTEMI C18EVT1  

NSTEMI CNSTEMI C18EVT1  

Unclassified MI Type MI3, CSTEMI, CNSTEMI C18EVT1 MI3 = 1 and CSTEMI = 0 and CNSTEMI = 0 

Cardiogenic Shock HRAA28a C18HRMA1  

MI within 28 days of 
previous event 

C_LINK C18OCC1 C_link = 1 if MI occurrence is linked with another 
MI occurrence within 28 days 

Acute stroke during 
hospitalization 

HRAA28G C18HRMA1  

Acute HF during 
hospitalization 

HRAA28B C18HRMA1  
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Table 157. Data Sources for HF Phenotyping Algorithm versus ARIC Classification Phenotypic 
Comparisons 

Item Variable Dataset Description 

Age HFEVTDATE HFC18OCC1 Calculated: event date – date of birth 

DOB C18CELB1 recorded at hospitalization 

Gender SEX HFC18OCC1 Gender associated with hospitalization 

GENDER71 DERIVE71 Gender recorded at visit 1 

Race Race1 HFC18OCC1 Race associated with hospitalization 

RACEGRP71 DERIVE71 Race group recorded at visit 1 

Center CENTER HFC18OCC1 recorded at hospitalization 

CENTER DERIVE71 Should match Center in HFC18OCC1 
 

BMI BMI71 DERIVE71 From visit 7 

BMI HFC18OCC1 BMI at discharge 

Smoking status CURSMK72, FORSMK72, 
EVRSMK72, CIGT72 

DERIVE71 Smoking status recorded at visit 7 

Comorbidities 

Hypertension HFAA11J C18HFAA1 History of hypertension recorded at 
hospitalization 

HYPERT75 DERIVE71 SBP ≥ 140 or DBP ≥ 90 or anti-hypertension 
medication recorded at visit 7 

Diabetes HFAA12A C18HFAA1 Recorded at hospitalization 

DIABTS75 DERIVE71 Fasting blood glucose ≥ 126 mg/dL or non-
fasting glucose ≥ 200 mg/dL or using medication 
for diabetes at visit 7 

Kidney disease Inc_ckd_defy_vx INC_CKD_BY## Incident CKD definition y between visit x and 
year ## 

EGFRCR71 DERIVE71 eGFR-Cr measured at visit 7 (<60) 

Kidney failure Inc_kf_vx INC_KF_BY## Incident kidney failure from visit X through year 
## 

EGFRCR71 DERIVE71 eGFR-Cr measured at visit 7 (<15) 

HFAA13A C18HFAA1 
 

Dialysis at hospitalization 

Chronic bronchitis or 
COPD 

HFAA10B C18HFAA1 recorded at hospitalization 

Asthma HFAA10A C18HFAA1 

History of pulmonary 
embolism 

HFAA10D C18HFAA1 

Mortality DATED18 

HFEVTDATE 
C7_DATEINCHF18 

INCBY18 

HFC18OCC1 
INCBY18 

Death date 

HF date 

HF date 

Coexisting Cardiovascular Disease 

Previous MI HFAA11K C18HFAA1 recorded at hospitalization 

CHD ever HFAA11H C18HFAA1 

Ischemic 
Cardiomyopathy 

HFAA6A C18HFAA1 

Idiopathic or dilated 
cardiomyopathy 

HFAA6B C18HFAA1 

Other cardiomyopathy HFAA6I C18HFAA1 

Atrial fibrillation INCSELFREPAF 

INCSELFREPAF_DATE 

STATUS7# Where # = version number 

Self-report AF date or last FU date prior to end 
of visit 7 

HFAA11B1 C18HFAA1 Atrial fibrillation or flutter recorded at 
hospitalization 

Stroke/TIA HFAA14A C18HFAA1 Recorded at hospitalization 

TIAB01 INCBY18 History of stroke or TIA reported at visit 1 

C7_IN18ISC INCBY18 Definite or probable incident ischemic stroke 
before CENSDAT7; use C7_ED18ISC (date of 
stroke admission) and EVTDAT (MI date) 

C7_ED18ISC INCBY18 Hospital admission date for stroke or censoring 
date for non-incident events  

PRVSTR71 DERIVE71 Prevalent stroke by end of visit 7 
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Item Variable Dataset Description 

Severity Indicators 

Ejection Fraction (%) LVEF_CUR HFC18OCC1 Current EF 

Ejection Fraction < 50% LVEF_CUR_LOW HFC18OCC1 Current EF categorized as < 50 or ≥50 

Ejection Fraction < 30% Calculated HFC18OCC1 recorded at hospitalization 

Previous CABG HFAA11E1 C18HFAA1 

Previous PCI HFAA11E2 C18HFAA1 

Previous Valvular 
Surgery 

HFAA11E3 C18HFAA1 

Pacemaker HFAA11E4 C18HFAA1 

Implantable Defibrillator HFAA11E5 C18HFAA1 

HF diagnosis on record 
prior to index 
hospitalization 

HFAA7A C18HFAA1 

Previous HF 
hospitalization prior to 
index hospitalization 

HFAA7B C18HFAA1 

HF treatment 
documented prior to 
index hospitalization 

HFAA7C C18HFAA1 
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APPENDIX B: FIGURES 

 

 

Figure 203. Counties used to compare UNC Health patient population with the non-UNC Health 
patient population.  

Figure 204. Percent of the North Carolina Population 65 years or older by county and 
UNC catchment area. Data source: US Census Bureau 

Gray counties (Mecklenburg and Cabarrus) represent Greater Charlotte, the yellow county (Cumberland) 

represents the Sandhills, and the dark purple counties (Carteret and Camden) represent the Outer Banks. 
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Figure 205. Percent non-Hispanic white residents in the North Carolina population 
by county and UNC catchment area. Data source: US Census Bureau 

Figure 206. Proportion white and black residents in North Carolina counties. Source: 
Carolina Demography, Carolina Population Center. https://bit.ly/30dxQYH 
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Figure 207. Percent non-Hispanic black residents in the North Carolina population 
by county and UNC catchment area. Data source: US Census Bureau 

Figure 208. Percent Hispanic/Latino residents in the North Carolina population 
by county and UNC catchment area. Data source: US Census Bureau 
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Figure 209. Proportion American Indian and Asian residents in North Carolina counties. 
Source: Carolina Demography, Carolina Population Center. https://bit.ly/30dxQYH 
 

Figure 210. Percent persons 65 years of age and younger without health 
insurance in North Carolina population by county and UNC catchment area. 
Data source: US Census Bureau 
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Figure 211. Median household income in the North Carolina population by 
county and UNC catchment area. Data source: US Census Bureau 

Figure 212. Percent persons in poverty North Carolina population by county 
and UNC catchment area. Data source: US Census Bureau 
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Figure 213. Percent persons 65 years of age or younger with a disability in 
the North Carolina population by county and UNC catchment area. Data 
source: US Census Bureau 

Figure 214. Percent persons at least 16 years of age and employed in the 
North Carolina population by county and UNC catchment area. Data source: 
US Census Bureau 
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Figure 215. Percent persons 25 years of age or older with a high school 
degree or higher education in the North Carolina population by county and 
UNC catchment area. Data source: US Census Bureau 

Figure 216. Percent persons 25 years of age or older with a Bachelor’s degree 
or higher education in the North Carolina population by county and UNC 
catchment area. Data source: US Census Bureau 
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Figure 217. Percent of households with a computer in the North Carolina 
population by county and UNC catchment area. Data source: US Census 
Bureau 

Figure 218. Percent of households with a broadband internet subscription in 
the North Carolina population by county and UNC catchment area. Data 
source: US Census Bureau 
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Figure 219. Percent of persons reporting a language other than English spoken 
at home in the North Carolina population by county and UNC catchment area. 
Data source: US Census Bureau 
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