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ABSTRACT 
 

Markia A. Smith: Developing methods to detect DNA repair defects in a diverse population 
(Under the direction of Melissa A. Troester and Katherine A. Hoadley) 

 

Primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma 

(CCA), is one of the fastest growing cancer types. Although HCCs and CCAs are anatomically 

co-localized, they have distinct etiologic and genomic characteristics that varies vastly in clinical 

outcome and response to therapy. The Cancer Genome Atlas (TCGA) identified a subset of HCC 

tumors with CCA genomic features, suggesting these tumors may be a separate HCC class based 

on their relatedness to CCA. While multiple groups have performed molecular characterization of 

liver tumors in an effort to identify subtypes, few have investigated beyond gene expression and/or 

mutations, in an integrated HCC and CCA analysis, or in association with outcomes and liver 

specific processes (e.g., liver regeneration). This is particularly important because DNA repair 

dysfunction and liver regeneration are tightly coupled processes implicated in impaired genomic 

integrity and hepatocarcinogenesis. Particularly, dysregulation of these pathways may be linked 

to chemoresistance. Given the lack of targeted therapeutic modalities for HCC and ongoing efforts 

to reduce recurrence, further characterizing and subdividing HCC based on multiple pathway 

interactions and identification of biomarkers that are associated with repair-mediated survival 

represents an unmet clinical need.  

To address this knowledge gap, the current body of work leveraged two TCGA studies, 

HCC and CCA, both detailed in molecular, histological, and clinical data across multiple platforms. 

Through a multi-omic approach, chapter 2 of this study characterized distinct HCC subclasses 

utilizing an integrated TCGA HCC and CCA dataset to gain insights into biology. Chapter 3 
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leveraged RNA expression profiling to investigate DNA repair in association with mitotic and 

regenerative signatures, and clinicopathologic variables in TCGA HCC study.  

This work identified three molecularly distinct HCC subclasses associated with viral 

infection and progression-free survival. In addition, RNA-based classification of DNA repair 

identified heterogeneity of repair pathways in HCC tumors, and a subset of tumors with 

substantial disrupted liver biology and poor outcomes. Collectively, this work contributes novel 

findings about HCC features and repair dysfunction that dictate prognosis, and highlights the 

importance of developing class specific biomarkers and targeted therapies.



v 

In memory of my grandmother, I could not have done this without you. You always supported 
my love of science. To all the Black disabled queers, we deserve to be here. 

 

 

 

 

 

 



vi 

ACKNOWLEDGEMENTS 

I would like to thank my mentors, Katherine Hoadley and Melissa Troester, for providing 

an inclusive welcoming environment, for nurturing my scientific curiosity through innovative and 

meaningful projects, and for their continued support and guidance. I appreciate their 

encouragement and patience throughout my journey, and this will stay with me as I continue my 

career. I would also like to thank the Hoadley and Troester Labs, both current and former, for 

their scientific contributions to these projects and personal support that helped me grow as a 

scientist and made the experience enjoyable.  

I am extremely appreciative of my committee members, Ugwuji Maduekwe, Russell 

Broaddus, and Michael Love, for their support and critical analysis over this journey.  

A special thank you to the Black science community for their camaraderie, the gripe 

sessions, accountability groups, reassurance, and cheerleading during this hard but rewarding 

journey. BlackInGenetics started out as a social media event, and now, has turned into an 

amazing community of scientific and personal support.  

Finally, I am thankful for the unending support and love from my chosen family and 

friends. To my amazing friends, I wish I had the space to name you all here. Thank you for the 

phone calls, memes, shared meals, celebrations, and trips. To my ride or die Aliyah, you’ve 

been here through everything with me and continue to stay down for me. To Bret, thanks for 

being my own personal cheerleader and staying up past your bedtime to motivate me. I will 

always unreservedly support all of your endeavors. To my sister Pern, you’ve been the constant 

source of enthusiasm and laughter. I’m glad you’ll always bring the tambourines. Thank you for 

always believing in me during whatever challenge. I love you all.



vii 

PREFACE 

Chapter 1 provides an introductory overview of DNA repair mechanisms and the role of 

DNA damage in cancer. I also provide a primer of hepatocellular carcinoma (HCC), including 

epidemiology, risk factors, pathophysiology, genetics and molecular signatures, and treatment. 

Any figures included in this section were created for the purpose of this document.  

The research presented in Chapter 2 is a published manuscript in Nature 

Communications Biology that characterized rare genomic subclasses of HCC, integrating 

across multiple datatypes – transcriptomics, mutations, copy number – to reveal underlying 

etiology. My contributions to the study include experimental design, performed experiments, 

data analysis and writing. Co-authors include Jeffrey S. Damrauer, Vonn Walter, Aatish 

Thennavan, Lisle E. Mose, Sara R. Selitsky, and Katherine A. Hoadley. Jeffrey Damrauer and 

Katherine Hoadley conceived and designed the study. Katherine Hoadley provided guidance 

and oversight throughout the study. Jeffrey Damrauer and Katherine Hoadley designed the 

experiments and contributed to writing the paper. Jeffrey Damrauer, Vonn Walter, Aatish 

Thennavan, Lisle Mose, Sara R. Selitsky performed experiments and analyzed data. All authors 

reviewed and edited the paper. Note that the text included here may slightly deviate from the 

final published version.  

The study presented in Chapter 3 is a manuscript in preparation that investigates DNA 

repair defects in The Cancer Genome Atlas (TCGA) HCC study to understand DNA repair in the 

context of liver homeostasis and how these defects may play a role in prognosis. My 

contributions to this work include experimental design, data analysis and writing of the 
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manuscript. Co-authors include Sarah C. Van Alsten, Andrea Walens, Jeffrey S. Damrauer, 

Ugwuji Maduekwe, Russell Broaddus, Michael I. Love, Melissa A. Troester, and Katherine A. 

Hoadley. Sarah Van Alsten and Andrea Walens contributed expertise in developing classifiers. 

Jeffrey Damrauer provided intellectual input and aid with accessing of publicly available data. 

Ugwuji Maduekwe and Russell Broaddus provided clinical expertise in HCC pathogenesis and 

treatment management. Michael Love contributed expertise in statistical analyses. Melissa 

Troester and Katherine Hoadley provided supervision, guidance, and scholarly input throughout 

the study.  

Chapter 4 provides an integrative summary of studies presented in Chapters 2 and 3. 

This chapter also outlines future directions for studies to further characterize hepatocellular 

carcinoma pathway interactions and the potential translational implications. Lastly, to reduce 

redundancy, a single reference list can be found at the end of this dissertation.  
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CHAPTER 1: INTRODUCTION  

1.1 Hepatocellular carcinoma  

Liver cancer remains a global health issue with an estimated incidence of >1 million 

cases by 20251,2. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, 

comprising ~90% of cases. Over 90% of HCC cases occur in the setting of chronic liver 

disease. Despite advances in the management of HCC, prognosis remains poor with a 5-year 

survival rate of 18%, largely due to higher rates of diagnosis at advanced stages3,4.  

1.1.1 Epidemiology 

The incidence of HCC in the US has tripled over the past four decades, from 14 million 

in 2012 and is expected to rise to 22 million in the next two decades5. Hepatocellular is the 5th 

most common cancer in males and the 7th in females, with 41,260 new cases diagnosed each 

year6. 80% of HCC cases occur in sub-Saharan Africa and East Asia, and the major risk factors 

are hepatitis B virus (HBV) infection and aflatoxin exposure7. Whereas, in the United States 

(US), Europe, and Japan the increasing occurrence of hepatitis C virus (HCV) infection is the 

primary risk factor. Additionally, in the US, the increased prevalence of obesity, nonalcoholic 

fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), type 2 diabetes, and the other 

elements of metabolic syndrome contribute to HCC incidence7.  

HCC incidence in the US continues to rise with a disproportionate impact on racial and 

ethnic marginalized populations. While there have been decreasing rates of HCC seen among 

Asian/Pacific Islanders, the prevalence in Black people, Hispanics, and individuals older than 65 

years remains high and continues to rise8,9. HCC incidence progressively increases as 

individuals reach above the age of 65, with the median age at diagnosis in the US between 60
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 to 65 years of age6. Incidence rates among males two to four-fold higher than rates among 

females10. In the US, the age-adjusted incidence rate among males was 14.4 per 100,000 while 

the rates among females was 5.2 per 100,0006. This sex disparity is more than likely due to the 

complex interaction from differences in behavioral risk factors, metabolic factors, tumor biology, 

and therapeutic modalities. Further characterization of mechanisms across biological, 

behavioral, socioenvironmental, and healthcare systems are necessary to reduce disparities in 

risk and improve outcomes. 

1.1.2 Risk factors 

As previously mentioned, several risk factors have been implicated in the development 

and progression of HCC. The major risk factors for HCC include Hepatitis B virus (HBV) and 

Hepatitis C virus (HCV) infection, cirrhosis, alcohol abuse, fatty liver disease, diabetes, obesity-

related non-alcoholic steatohepatitis, and exposure to aflatoxin. During the recent years, 

metabolic syndrome has become more frequent and a major cause of HCC in the US. 

Additionally, mutational signatures analyses have proven aristolochic acid and tobacco as 

pathogenic cofactors in HCC11,12. This dissertation will focus on characterizing HCC based on 

multiple pathway interactions, tumor characteristics and risk factors, as they may be reflective of 

the molecular and cellular consequences of pathway dysfunction and genetic instability that 

predict prognosis.   

1.1.2.1 HBV infection  

HBV viral load is a major contributor to the incidence of poor prognosis and existing 

disparities by race/ethnicity and sex. Over 350 million people across the world are infected with 

or have been infected with HBV, among which 75% of the infected people are Asian13. Liver 

tumors in Asians exhibit higher tumor grade, presence of macrovascular invasion, and the 

lowest fraction of differentiated samples11,14.  Approximately, 55% of HCCs are caused by HBV 

infection, with rates of incidence between 340 to 804 per 100,000 HBV positive males per year 
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and 120 to 178 per 100,000 HBV positive females13,15. HBV-related HCC is a complex, stepwise 

process that progresses over time. HBV interacts with endogenous mutagens, the inflammatory 

pathway, and environmental carcinogens, such as HCV and aflatoxin, to cause HCC 

development. HBV is DNA virus capable of integrating into the host DNA. This represents a 

crucial step in the pathogenesis of HBV-related HCC. Integration can occur at multiple or single 

sites and the inserted DNA is always alters16. Insertion of viral DNA leads to a series of genetic 

changes, including indels, repeats, and chromosomal translocations. Integration of HBV DNA 

may also alter transcriptional activity of important cellular genes13. Additionally, the HBx gene is 

often an HBV integrant that remains functionally active, inducing cellular changes31. HBx 

promotes cell cycle progression, and inhibits growth regulators and tumor suppressor genes, 

namely p5317-20. TP53 and RB1 have both been associated with poor prognosis in patients with 

HBV-associated HCC16,21. This phenomena have also translated to ethnic disparities as TP53 

and RB1 are mutated at a much higher frequency in Asian Americans than in European 

Americans (TP53: 43% vs. 21%; RB1: 19% vs. 2%)22. HBx protein causes regional 

hypermethylation of DNA that causes silencing of tumor suppressor genes, or global 

hypermethylation that leads to substantial chromosomal instability17,19. Given the role of HBV 

and its interaction with other HCC features in HCC development, it is important to understand 

how collective exposure to HBV and other risk factors contributes to tumor heterogeneity and 

disparities in clinical outcomes.  

1.1.2.2 HCV infection  

While HBV predominates over HCV as major cause of HCC in low and medium human 

development index (HDI) regions, HCV is a major cause in high HDI countries such as the US23. 

More than 120 million people in the world are chronically infected with HCV13. Almost all cases 

of HCV occur in a cirrhotic or fibrotic liver. HCV is an RNA virus that typically leads to persistent 

infection, leaving individuals susceptible to hepatic fibrosis, cirrhosis, or HCC13. The mechanistic 
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underpinnings of HCV infection to HCC remains largely unknown. Increasing evidence suggests 

the complex interplay between inflammatory response, gene activation, and viral clearance 

creates a tumorigenic environment that promotes genomic instability, resulting in HCC24. 

Moreover, HBV/HCV coinfection leads to more severe liver disease and an increased risk of 

liver cancer25.  As the incidence of HCV continues to rise in the US, and co-infection with HBV 

will inevitably increase, there is a greater need to identify genetic differences in patients with 

HBV, HCV, or HBV/HCV-associated HCC, and their interaction with other HCC features to 

improve outcomes.  

1.1.2.3 Aflatoxin  

One of the most common food-borne risk factors for HCC is aflatoxin, accounting for an 

estimated 5-28% of HCC cases26. Aflatoxins are naturally occurring toxins produced by 

Aspergillus flavus and Aspergillus parasiticus that are commonly found on staple foods, 

particularly as wheat, maize, ground nuts, and rice27. It is estimated that over 5 billion people 

globally have been exposed to these toxins27. Tropical and subtropical areas of the world have 

the highest rates of contamination, mainly sub-Saharan Africa, Eastern Asia, and parts of South 

America28. Exposure causes hepatotoxicity, teratogenicity, and immunotoxicity, leading to 

serious long-term health threats. Aflatoxin is metabolized in the liver by cytochrome p450 

enzymes into an intermediate that is highly reactive and forms derivatives with other molecules, 

and can react with the p5329. As a result, aflatoxin binds to DNA generating an aflatoxin pro-

mutagenic adduct which can then be converted to a stable adduct and lead to transversion 

mutations29.  

1.1.2.4 Metabolic syndrome  

 The incidence of obesity continues to climb at alarming rates, especially in the US. In 

most cases, obesity can be attributed to the metabolic syndrome (MetS)30. Metabolic syndrome 

is defined by having three or more of the following cardiometabolic risk factors: the presence of 
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obesity (body mass index (BMI) > 30 kg/m2 or increased waist circumference), insulin 

resistance, dyslipidemia, and hypertension31.  Paralleling this increase in obesity is the increase 

in incidence of HCC, and the growing association between the burgeoning rates of obesity and 

the striking increase in HCC tumors among the patients in the US30. It is estimated that 34% of 

the adult population (32.2% in males and 35.5% in females) in the US currently meet the 

diagnostic criteria for MetS32.  

Among patients with non-alcoholic fatty liver disease (NAFLD), MetS is strongly 

associated with features of NAFLD33. NAFLD is defined by presence of steatosis in >5% of 

hepatocytes, chronic alcohol abuse and viral hepatitis34. The risk of steatosis is greatly higher in 

individuals with MetS than individuals without non-MetS, and they’re at risk of developing 

cirrhosis and HCC. NAFLD is responsible for between 5%-20% of HCC cases in the US33. 

Individuals with non-alcoholic steatohepatitis (NASH) and cirrhosis are at an increased risk of 

developing HCC, as high as 5.29 per 1,000 persons-years35. NASH is quickly becoming one of 

the most common risk factor for HCC, with 45% of cases developing in the setting of NASH36. 

While progress has been made to understand these risk factors, much remains to be learned 

about the mechanisms by which metabolic syndrome and associated features cause HCC. It is 

clear that NASH, NAFLD, and other alterations to normal liver biology and function play central 

roles in HCC development and progression. In this work, we will use pathway level analysis to 

examine liver biological function.   

 

1.1.2.5 Alcohol overconsumption   

 

 

Alcohol abuse is more common in the US and Western Europe, and is rising in Asia7. 

Over 15 million people in American abuse alcohol, increasing risk for the development of HCC. 

Chronic alcohol use (>80 g/day) for more than 10 years increases the risk of HCC five-fold37. 

Alcohol abuse accounts for 32-45% of HCC cases in the US37. Alcohol overconsumption 

significantly increases the risk of developing HCC in patients with HBV or HCV infection as 
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compared to patients with either viral infection who did not abuse alcohol37,38. Chronic alcohol 

abuse alters genomic integrity and liver structure, leading to cirrhosis, fibrosis, and eventually, 

development of HCC.  

Collectively, hepatocellular carcinoma poses a significant health concern for Black 

people, Hispanics, and individuals > 65 years of age. HCC has a complex set of established risk 

factors, including lifestyle, occupational and environmental factors. Our work will focus on 

elucidating how these factors interact with other pathways to contribute to the initiation and 

progression of HCC.  

1.1.3 Diagnosis, prevention, and treatment  

HCC is most often diagnosed at advanced stages. The stage at diagnosis plays a crucial 

role in determining treatment management. Early diagnosis and efficacious treatment modalities 

remain a challenge. Diagnosis of HCC is typically based on non-invasive criteria, but there is 

increasing need for molecular markers for use in the clinic as some patients can be 

asymptomatic4,39. Aspirin and coffee have been implicated in preventative measures beyond 

HBV vaccination and anti-viral therapies for HBV and HCV40. The treatment management of 

HCCs have greatly improved over the last decade4. The prognosis is significantly better when 

detected early, where the primary curative option is hepatic resection or liver transplantation41. 

Despite alternatives, local ablation with radiofrequency is the mainstay of image-guided ablation 

for nonsurgical early-stage HCC42,43. Transarterial chemoembolization (TACE) is the most 

commonly used treatment and standard of care for intermediate-stage HCCs41. Advances in 

patient stratification have improved surgical outcomes and the 10-year survival rate post-

transplantation1,42. However, for the considerable majority of HCC patients, their tumors are 

detected at an advanced stage where surgical cure is no longer viable1. Most patients, 

approximately 50-60%, will require systemic therapy, including immune-checkpoint inhibitors 

(ICIs), tyrosine kinase inhibitors (TKIs), and monoclonal antibodies. Currently, the most common 
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systemic therapy is sorafenib, a multikinase inhibitor against Raf, vascular endothelial growth 

factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR) kinases44. The 

combination of atezolizumab (anti-PDL1) and bevacizumab (anti-VEGF) has more than doubled 

survival and improved patient-reported outcomes in advanced-stage HCCs45. Presently, 

sorafenib and lenvatinib remain the most effective single-agent drugs. Although targeted 

therapeutic agents, sorafenib and lenvatinib only modestly improve patient survival by 7-10 

months46-48. Additionally, the single-agent therapies regorafenib49, cabozantinib50, and 

ramucirumab51 have shown improved survival outcomes. While single-agent ICIs are proven to 

have remarkable clinical benefits in 15-20% of responders, identifying this group remains an 

issue as biomarkers have failed to detect groups52,53. Trials investigating combinatorial 

therapies, ICIs with TKIs or PD1/PDL1 with CTLA4 inhibitors, are in progress. These findings 

are projected to change HCC management at all stages. Given the success of moderate 

success of immunotherapies in HCC, further understanding the complexities of the HCC 

microenvironment has great potential to improve treatment management. To address this unmet 

need, this dissertation will further characterize signaling pathways and molecules implicated in 

HCC to identify factors influencing prognosis.  

1.2 Mechanisms/pathophysiology 

The pathophysiology of HCC is a complex stepwise process. The cooperation of several 

factors is responsible for the initiation of hepatocyte malignant transformation and HCC 

development. These elements include genetic predilection, joint interactions between viral and 

non-viral risk factors, the cellular and immune microenvironment, and the severity of chronic 

liver disease. The dysregulated microenvironment is vital to facilitating carcinogenesis, and it is 

well established that it participates in all stages of tumor progression. The cell of origin for HCC 

is controversial with much debate around the presence and role of stem cells in liver itself. The 

cell of origin could potentially be a hepatic stem cell, a transit amplifying cell or a mature 
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hepatocyte. Mature hepatocytes are hardy cells capable of retaining remarkable proliferative 

and regenerative capacity in response to liver injury. Multiple mouse studies substantiate that 

HCC originates in differentiated mature hepatocytes, while others purport that liver stem cells 

may be the source54,55. Paradoxically, a subset of hepatocellular carcinoma tumors display 

mixed HCC and CCA morphology, suggesting they seem to arise from mature hepatocytes and 

emphasizing the concept of transdifferentiation54,56. These observations underscore that 

phenotype and epigenetic landscape of tumors may not always directly reflect the cell of origin. 

We will study genomic alterations and dysfunction with meaningful prevalence and relevance to 

transdifferentiation of hepatocytes.   

1.2.1 Hepatocellular genetics  

Advancements in sequencing technologies have enabled the identification of key cancer 

genes in HCC. Mutations in CTNNB1 (encodes the β-catenin protein), AXIN1 or APC (inhibitors 

of WNT signaling) lead to the activation of WNT/β-catenin signaling pathway seen in 30-50% of 

HCC cases12,57. Other frequently altered mutations involved in cell cycle control are TP53, RB1, 

CCNA2, CCNE1, PTEN, ARID1A, ARID2, RPS6KA3 or NFE2L2. Also, gene variations in 

molecules involved in epigenetic regulation, oxidative stress, and the AKT-mTOR and MAPK 

pathways have been linked to HCC progression58. Moreover, frequent focal chromosome 

amplifications in CCND1, FGF19, VEGFA, MYC or MET result in the activation of oncogenic 

pathways, including tyrosine kinases59. Although, HCC is marked by few recurrent mutations 

and many occur randomly, there are specific genes and pathways associated with HCC 

molecular class, outlined in section 1.2.3. Based on standards, only 20-25% of patients have at 

least one possible actionable target12,39,60. 

Another important facet is how risk factors play a role in HCC genomics. A prime 

example of this is that HBV infection potentiates the toxic effects of aflatoxin, specifically in 

patients with null polymorphism of GSTT161,62. HBV-mediated mutagenesis is most frequently 
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mutated within the TERT promoter, resulting in overexpression of telomerase20. Aberrant 

activation of telomerase keeps cells from senescence and promotes cell transformation63. Other 

recurrent insertions associated with HBV participate in cell cycle control to activate oncogenes, 

such as CCNA2 or CCNE1. Complex rearrangements and replicative stress are induced by 

these oncogenic alterations64. Collectively, these observations emphasize that viral infection 

activates specific oncogenes that function as early mediators of hepatocyte transformation. In 

contrast, HCV infection does not appear to promote direct oncogenic effects and the induction 

of mutations in HCV-related HCCs results from oxidative stress triggered by inflammatory 

response. Additionally, the severity of NASH and HCC incidence has been identified to be 

associated with polymorphisms in PNPLA3, TM6SF2 and HSD17B13, particularly in the setting 

of chronic alcohol abuse62,65.  

1.2.2 HCC-related mutational signatures 

While much of DNA sequencing has focused on recurrent driver mutations, a new 

approach called mutational signatures allows the analysis of all the genomic aberrations which 

reflect the underlying mutational processes and dysregulated events during carcinogenesis. 

Mutational signatures are a result of genetic and environmental stimuli that leave a distinct 

fingerprint of the acquired DNA damage. The ICGC/TCGA Pan Cancer Analysis of Whole 

Genomes (PCAWG) Network66 have reported 49 mutational signatures using data from more 

than 23,000 cancer patients. Mutational signatures are pertinent to overall cancer biology, as 

they are detected in all cancer types, irrespective of the driver mutations, and appear to be 

associated with underlying etiologically relevant cellular processes and exposures66-69. 

Mutational signatures reflect genomic instability and DNA repair defects that play a role in 

molecular vulnerabilities, including chemotherapy response, and as such, mutational signatures 

can provide insights into mechanisms underlying disparities in outcomes. Throughout the 

development of cirrhosis and chronic liver disease, hepatocytes increasingly acquire numerous 
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genetic modifications and epigenetic changes. Several risk factors involved in inducing DNA 

mutations are connected with specific mutational signatures12,66,68,70. Exome sequencing of HCC 

identified single base substitution (SBS) signatures 4 and 29 with tobacco smoking and tobacco 

chewing, respectively 12,70. Interestingly, the alcohol associated signature 16 exhibited 

transcription coupled damage and was responsible for majority of CTNNB1 mutations which is 

linked with chronic alcohol consumption12,70. Signatures 22 and 24, notably in patients of Asian 

and African descent, were associated with aristocholic acid and aflatoxin B1, respectively12,70-72.  

It has been increasingly demonstrated that mutational burden and genomic instability of 

cancer are important for chemotherapeutic response73. Several mutational signatures are 

associated with distinct clinical outcomes and have emerged as potential biomarkers for novel 

targeted therapies70,74-78; many DNA repair pathways have been shown to represent molecular 

vulnerabilities that dictate chemotherapeutic response79. Some of these differences may be 

targetable. Previous studies have demonstrated that overexpression of DNA damage repair 

pathway confers resistance to radiotherapy and cisplatin80,81, and for tumors with HRD and/or 

BRCA1/2 mutations, the use of PARP inhibitors which target compensatory DNA repair 

pathways, have been shown to be extremely efficacious in overcoming chemoresistance in both 

in vitro and in vivo HCC models82-84. The potential for these observations to be translated in the 

HCC preventative and management remains to be seen. Nonetheless, these signatures 

highlight the importance of normal liver function, which when dysregulated damages 

hepatocytes leading to carcinogenesis.  

1.2.3 HCC molecular classes 

Previous studies have established molecular and immune classes defined based on 

main molecular drivers and pathways or immune status that correlate with specific genomic 

features, histology, and clinical outcomes11,39,58,85-90. HCC can be characterized by two main 

molecular groups based on transcriptomics, proliferative and non-proliferative class1,11,59,86,88-90. 
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The proliferation class, accounting for ~50%, is characterized by more clinically aggressive 

tumors with poor histological differentiation, high vascular invasion, and increased levels of α-

fetoprotein (AFP)91. This group can be further separated into two subclasses: S1 or iCluster 3 

and S2 or iCluster 111,88. S1/iCluster 3, which represents 20% of HCC cases, are marked by 

Wnt–TGFβ activation, which drives an immune-exhausted phenotype87. Whereas S2/iCluster 1, 

representing 25-30% of HCC cases59,88, are marked by progenitor-like characteristics with the 

expression of stem cell markers (CK19, EPCAM) and activated IGF2 and EPCAM signaling 

pathways91. There is an enrichment of HBV-related tumors present that activate classical cell 

cycle pathways, such as PI3K-AKT-mTOR, RAS–MAPK, MET and IGF pathways. Other key 

hallmarks of this class are high chromosomal instability, frequent TP53 mutations, amplifications 

of FGF19 or CCND1 and global hypomethylation. Conversely, the non-proliferation class11,59,88-90 

is distinguished by less aggressive tumors with hepatocyte-like histological differentiation, 

decreased vascular invasion, and lower levels of AFP91. Tumors in this class are associated 

with NASH, NAFLD, and HCV infection. Unique subclasses have been characterized within this 

class: the WNT/β-catenin CTNNB1 and the interferon subclass. The WNT/β-catenin CTNNB1 

subclass presents frequent CTNNB1 mutations, activation of the WNT/β-catenin signaling 

cascade, and extensive promoter hypermethylation (CDKN2A, CDH1), driving an immune-

excluded phenotype with low immune infiltration59,87,90. Samples classified as immune-excluded 

are suggested to be mostly resistant to ICIs92. The interferon subclass shows a very activated 

IL6-JAK-STAT pathway with a more inflammatory tumorigenic microenvironment (high T cell 

infiltrate)87. This subclass also displays chromosomal stability with frequent TERT promoter 

mutations86.  

Most studies agree on a two-classification schema for DNA repair groups, characterized 

by low or high repair expression/activity93-96. These groups found high repair associated with 

poor prognosis, and further linked the classes with distinct immune profiles, poor differentiation, 
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elevated intratumor heterogeneity and mutation burden. One other study, using a manual 

clustering analysis, identified four groups with similar outcomes based on repair expression. 

However, the combined effect of DNA repair, liver regeneration, and other HCC features on 

prognosis remains unclear. Pathway level signatures represent a method to examine molecular 

interactions occurring in HCC and interrogate if these genes may predict outcomes. This will be 

crucial for understanding heterogeneity in HCC biology and clinical outcomes.  

1.3 DNA repair mechanisms  

DNA damage has long been established as a causal factor for cancer development. 

DNA repair pathways are activated to protect genetic stability and integrity when cells are 

exposed to DNA-damaging agents. Dysregulation of DNA repair pathways facilitates the 

initiation and progression of cancer through malignant transformation of cells. In addition, 

understanding DNA repair dysfunction has the potential to contribute valuable information for 

HCC clinical decision making. Considering the lack of diagnostic and predictive biomarkers in 

HCC, the development of molecular markers will fill a substantial need in the clinical setting.   

1.3.1 DNA repair pathways and their role in cancer  

DNA repair systems are classified into the following major pathways: 1) direct reversal, 

which mainly repairs the lesion induced by alkylating agents, 2) nucleotide excision repair 

(NER), correcting bulky, helix-distorting DNA lesions, 3) base excision repair (BER), aiming at 

DNA breaks (SSBs) and non-bulky impaired DNA bases, 4) recombinational repair, which is 

further divided into homologous recombination (HR) and non-homologous end joining (NHEJ), 

primarily functioning at DNA double strand breaks, 5) mismatch repair (MMR), involved in 

replication errors, 6) alternative nonhomologous end joining (alt-NHEJ), involved in repair of 

DSBs, 7) translesion synthesis (TLS), which is more likely to be a DNA damage tolerance 

mechanism97,98 (Figure 1.1.1).  
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Numerous studies have found that certain cancers are associated with defects or 

mutations in DNA repair pathways66,75,98. For example, two important HR-related genes, BRCA1 

and BRCA2, when mutated in the germline confer genetic predisposition for breast, ovarian, and 

pancreatic cancer99. Association between homologous recombination deficiency (HRD) and 

mutational burden have been previously demonstrated in breast100, lung101, and other 

cancers102. Likewise, RAD51 is the central recombinase of the HR pathway, and therefore plays 

a role in maintaining genomic stability103. RAD51 is recruited in response to DNA double strand 

breaks or in the instance of replication fork stalling before or after DNA repair. DNA double-

strand break generation and recognition results in nuclear accumulation of RAD51, which can 

be detected at the foci103. RAD51 is responsible for stabilizing single-strand DNA by filament 

formation, searches for homologous DNA regions and mediates strand exchange104. 

Surprisingly, RAD51 mutations are rarely mutated which are associated with cancer 

predisposition103. Rather, overexpression frequently occurs in tumors, and is associated with 

worse prognosis103,105. Upregulation of RAD51 is associated with enhanced DNA repair and 

increased chemotherapeutic resistance106. Conversely, downregulation of RAD51 was noted in 

multiple tumor types due to hypoxia, implying that that the hypoxic tumor microenvironment 

suppresses the HR pathway to produce genetic instability107,108. Despite this paradox, it is clear 

RAD51 and other HR-associated genes have implications in carcinogenesis, cancer 

progression and anticancer drug resistance. Therefore, DNA repair dysfunction can contribute 

to tumor development by promoting genomic instability and aberrations. Assessment of DNA 

damage and repair dysregulation may pose another method of stratifying patients based on 

DNA repair status for improved treatment management and selection.  
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Figure 1.1.1 DNA damage and repair pathways.  

1.3.2 DNA repair pathways and cancer therapeutic resistance  

The leading cause of treatment failure is resistance to therapy. The primary anti-cancer 

therapies induce cell death by directly or indirectly causing DNA damage. DNA damage 

response dysfunction may contribute to hypersensitivity or resistance of cancers to genotoxic 

agents, and targeting the DNA repair pathway could increase tumor sensitivity to cancer 

therapeutics. For instance, it has been reported that the treatment of HCC is difficult as a result 

of properties in their DNA damage response (DDR)109. One of the most widely employed DNA-

inhibitor drugs is Cisplatin. Cisplatin-resistant tumor cells exhibited greater levels of DNA 

damage repair related genes and DNA repair capacity, and inhibition of NER pathway 

substantially enhanced the sensitivity of cells to cisplatin110,111. In triple negative breast cancer 

(TNBC) patients treated with breast-conserving surgery and radiotherapy, low expression of 

TP53BP1, a key protein in NHEJ, associated with higher local recurrence, suggesting that 

TP53BP1 may be a predictor of radio-resistance112.  
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A number of DDR inhibitors have entered the market or are undergoing development. In 

this realm, poly(adenosine 5′-diphosphate) ribose polymerase (PARP) inhibitors are a group of 

targeted cancer drugs that work by blocking enzymes involved in DNA repair mechanisms that 

cancer cells relay on to multiply. PARP inhibitors, such as olaparib, niraparib, and rucaparib,  

have been widely used in patients with BRCA1/2 germline mutations or HRD113,114. The 

OlympiAD study showed olaparib produced better progression-free survival in patients with 

germline BRCA1/2 mutations, compared to chemotherapy115. However, this improvement is 

hindered by eventual resistance in the majority of patients leading to treatment failure114. 

Additionally, upregulation of oncogenic pathways such as WNT/β-catenin pathway or DDR 

related proteins may also confer sensitivity to PARP inhibitors, supporting evidence for 

combinatorial approaches with PARP inhibitors97,116,117. Combinatorial approaches are not 

without drawbacks as they may increase the risk of mutagenic lesions in surviving cells, leading 

to the development of secondary tumors. Also, the role of DDR in immunotherapy in garnered 

much attention. Researchers have shown that DNA repair deficiencies associated with immune 

checkpoint blockade (ICB) response. For example, MMR has been described as a biomarker of 

response to immune checkpoint inhibitors (ICIs)118. 

Given the central role of genomic instability in cancer, targeting DNA repair pathways 

poses a potential treatment approach for HCC tumors. Gaining a better understanding of the 

biological underpinnings and regulatory mechanisms of DNA repair pathways could facilitate 

development of modalities for enhancing anticancer effect of DNA-damage based therapies. 

Furthermore, the identification of DNA repair classes may aid in patient stratification and 

treatment management, especially in patients who are not eligible for surgical intervention.  

1.4 Summary 

Hepatocellular carcinoma is very heterogenous disease that can be classified into two 

major molecular classes, which have differing histology, molecular features, treatment, and 
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prognosis. These differences are likely a result of multiple pathway interactions but much 

remains unclear and efforts to expand beyond the two-classification schema is made difficult the 

normal liver regenerative environment. The proposed work will focus on characterizing and 

further subdividing HCC to gain insight into heterogeneity. Our work aims to elucidate factors 

interacting with molecular and cellular pathways to contribute to the initiation and progression of 

HCC. The complex set of established risk factors play a role in genomic integrity and liver 

function58. Specifically, DNA repair pathways have been linked to producing variability in clinical 

outcomes89,119-121. DNA repair damage and repair elicits specific mutational patterns, called 

mutational signatures. Mutational signatures represent a method to detect repair deficiencies 

associated with genomic instability and risk factors, making them ideal candidates for 

biomarkers of response. The potential of matching mutational signatures with DNA repair 

signatures could help identify class-specific markers and therapies. This is particularly important 

given diagnosis of HCC typically occurs at advanced stages, making treatment options limited. 

This project will allow better identification of intermediate and advanced tumors suitable for 

targeted therapies.  

The objective of this proposed work is to characterize HCC, integrating across multiple 

platforms to evaluate how molecular and cellular pathways vary and interact to impact patient 

survival. In chapter 2, we characterize HCC subclasses utilizing an integrated TCGA HCC and 

CCA dataset to gain insights into biology. Chapter 3 extends this work to elucidate RNA-based 

DNA repair signatures. We evaluate mitotic and regenerative signatures, and clinicopathologic 

variables as mediators of HCC repair response and resistance. Our molecular classes and 

repair signatures have implications for targeted therapy, ICIs, and combination therapies. 

Advancements have been made in HCC treatment management, but identifying patients 

responsive to DNA repair targeted therapies and immunotherapies remains an issue due to lack 
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of biomarkers. The prognostic utility of single agent ICIs in HCC has only shown moderate 

improvements, as compared to the standard of care for HCC sorafenib.  

Through investigation of repair groups as mediators of HCC resistance, it is possible that 

we may identify mechanisms by which intermediate to advanced HCCs may benefit from a 

targeted, immunotherapy, or combinatorial drugs. This information will address the need for 

improved biomarkers options for poor prognosis groups in HCC. Further understanding the 

genomic underpinnings of HCC and their interactions with liver signaling pathways may help 

define features stratifying prognostic groups and facilitate the discovery of targeted therapies to 

improve outcomes. 
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CHAPTER 2: GENOMIC CHARACTERIZATION OF RARE MOLECULAR SUBCLASSES OF 
HEPATOCELLULAR CARCINOMA0F

1 

2.1 Overview 

Background: Primary liver cancer, consisting of both cholangiocarcinoma (CCA) and 

hepatocellular carcinoma (HCC), is the second leading cause of cancer deaths worldwide.  

Methods: Our goal is to genomically characterize rare HCC subclasses to provide 

insight into disease biology. Leveraging The Cancer Genome Atlas (TCGA) to perform a 

combined analysis of CCA (n=36) and HCC (n=374), we integrated multiple genomic platforms, 

to assess transcriptional profiles, mutational signatures, and copy number patterns to uncover 

underlying etiology and linage specific patterns.  

Results: We identified two molecular classes distinct from prototypical HCC tumors. The 

first, CCA-Like, although histologically indistinguishable from HCC, had enrichment of CCA 

mutations (IDH1, BAP1), mutational signatures, and transcriptional patterns (SOX9, KRT19).  

CCA-Like, however, retained a copy number landscape similar to HCC, suggesting a 

hepatocellular linage. The second, Blast-Like, is enriched in TP53 mutations, HBV infection, 

exposure related mutational signatures and transcriptionally similar to hepatoblasts. Although 

these subclasses are molecularly distinct, they both have a worse progression-free survival 

compared to classical HCC tumors, yet are clinically treated the same. 

Conclusions: The identification of and characterization of CCA-Like and Blast-Like 

subclasses advance our knowledge of HCC as well as represents an urgent need for the 

identification of class specific biomarkers and targeted therapy.  

 
1A version of this work has been previously published in Nature Communications Biology. The original 
citation is as follows: Damrauer, J.S., Smith, M.A., Walter, V. et al. Genomic characterization of rare 
molecular subclasses of hepatocellular carcinoma. Commun Biol 4, 1150 (2021). 
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2.2 Introduction 

Primary liver cancer is the 2nd and 6th leading cause of cancer death worldwide for males 

and females, respectively122. Within the United States, primary liver cancer rank as the 5th 

(males) and 7th (females) most deadly cancer123. Primary liver cancer includes both 

hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), and although they are 

anatomically co-localized, they have different etiologic and genomic features124,125. HCC is 

thought to be derived from hepatocytes and accounts for 90% of all primary liver cancer. It has 

well characterized risk factors including chronic hepatitis B/C (HBV and HCV) infection, alcohol 

abuse, diabetes, and aflatoxin exposure54.  CCA is the second most common primary liver 

cancer and stems from biliary cells. CCA risk factors include: primary sclerosing cholangitis, 

hepatobiliary flukes and biliary tract cysts126. Recent publications by The Cancer Genome Atlas 

(TCGA) identified IDH1 and IDH2 mutations, a common feature of CCA, in a subset of HCC 

samples127,128. These IDH1/2 mutant tumors showed similar gene expression patterns observed 

in CCA based on ~2,000 genes as well as displaying similar methylation patterns as other IDH 

mutant tumors. This suggests that HCC tumors may be sub-classified based on their 

relatedness to CCA. Due to the dearth of targeted treatment options for HCC, further 

subdividing and characterizing HCC, particularly additional characterization of subset set similar 

to CCA, may aid in the understanding of the disease and, in the future, lead to the identification 

of new therapeutic targets.  

Previous attempts to classify HCC tumors have identified patient populations with gene 

expression, mutational or survival differences, although few groups have done so with a 

combined HCC and CCA harmonized dataset; however, these prior studies were with a limited 

number of data types, small cohorts or within a singular ancestral or etiologic group88-90,127,129,130. 

Our work expands on the previous studies by using a large, harmonized cohort (CCA and 

HCC), with integrated multi-omic data of samples not restricted to any singular etiology. 
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Through a multi-omic approach utilizing a fully integrated CCA and HCC dataset, we define 

three distinct subpopulations of hepatocellular carcinoma tumors, CCA-Like, Blast-Like and 

HCC. We integrated these subpopulations with external datasets anchoring our data to lineage 

and cell type specific cells and indicating a derivation from a hepatocyte lineage.  

2.3 Methods 

2.3.1 Tumor Classification 

Upper quartile normalized RSEM gene expression data for TCGA was downloaded from 

the GDC legacy archive (https://portal.gdc.cancer.gov /legacy-archive/). Cholangiocarcinoma 

(CCA dataset, n=36) and Hepatocellular carcinoma (HCC dataset, n=374) samples from TCGA 

were merged, log2 transformed, and filtered for highly expressed and variably expressed genes 

(n=4035). The data was median centered across genes. The Spearman correlation to the 

median gene expression of all CCA samples was calculated to determine the per sample 

similarity for all CCA and HCC samples. Samples within (-) 1 standard deviation from the mean 

correlation of all CCA samples were classified as CCA-Like. To determine similarity to 

hepatoblast cells, we used single cell RNAseq data of hepatoblast differentiation in mice 

(GSE90047)131. HCC samples were correlated to variably expressed genes from hepatoblasts 

(E10.5) and differentiated hepatocytes (17.5, DLK+, EPCAM-) and cholangiocytes (17.5, DLK-, 

EPCAM+). HCC samples with a correlation to hepatoblasts in the upper tertile of all samples and 

not otherwise classified as CCA-Like were classified as Blast-Like. The resulting classification 

yielded, CCA (n=36), CCA-Like (n=33), Blast-Like (n=66), HCC (n=275).  

2.3.2 mRNA Analysis 

All external datasets were log2 transformed and median centered across genes. The 

Spearman correlation value was calculated between the CCA/HCC samples and the median 
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expression of the comparison classes (CCA, HCC, Normal bile duct (NBD), Liver, 

Cholangiocytes, Hepatocytes and Hepatoblasts). To compare the CCA/HCC dataset to 

microdissected normal bile duct and normal liver, the TCGA dataset was merged with 

GSE26566 by adjusting TCGA data to the median expression of GSE26566 

cholangiocarcinoma samples. The Spearman correlation was calculated as described above 

comparing the CCA and HCC cohort to microdissected normal bile duct, normal liver, and 

cholangiocarcinoma. To generate a differentiation score, the per sample correlation to Normal 

Liver was subtracted from that sample’s correlation to NBD. This was also done for correlations 

to hepatocytes and cholangiocytes. Hepatitis B virus was detected in CCA and HCC tumors 

RNAseq data via VirDetect132. To visualize gene expression patterns across known markers of 

cholangiocytes and hepatocytes, CCA/HCC samples were hierarchically clustered (Cluster3.0), 

using expression markers from Hu et. al.133. Gene Set Enrichment (GSEA) was performed one 

vs rest comparisons across classes for all HCC tumors. Significance was determined using a 

nominal p-value <0.05 and FDR <0.25. 

Hoshida and Woo subtypes were derived by extracting the respective gene signatures 

and performing ConsensusClusterPlus134 to determine the expression groups. Hierarchical 

clustering was performed using the ES1 signature from Ben-Porath et. al., the samples within 

the increased gene expression cluster were selected as ES1 enriched135. 

Variant calling on RNA-Seq data was performed by aligning RNASeq reads with 

STAR136 in two pass mode with unmapped reads assigned to the mate's position when 

possible.  Parameters outFilterScoreMinOverLread and outFilterScoreMinOverLread were set to 

0.45.  Reads were realigned using ABRA2137.  Reads were sorted and duplicates were marked 

using biobambam138 both before and after running ABRA2. Indels were called using Cadabra. 

All analysis was performed in R (Version 3.5.2) unless otherwise noted. 
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2.3.3 miRNA Analysis 

RSEM data was downloaded from the GDC legacy archive 

(https://portal.gdc.cancer.gov/legacy-archive/search/f)  and log2 transformed. To determine 

significantly differentially expressed miRNAs, t-tests were performed on a per gene basis, CCA-

Like vs. Blast-Like/HCC and CCA-Like vs. CCA. Benjamini-Hochberg adjusted p-values were 

calculated to account for multiple comparisons. 

2.3.4 Genomic Features 

Copy number and mutation data was downloaded from FireBrowse 

(http://gdac.broadinstitute.org). Lollipop plots were generated through cBioPortal.org139,140. 

Additional BAP1 alterations were determined using the de novo aligner ABRA2137. Chi-square 

and Fisher’s exact test were performed when appropriate in a pairwise manner. For mRNA 

expression, a two-sample t-test was performed to determine significance of expression with 

CCA/HCC classification classes. The biomaRt R package141 was used to identify genomic 

positions for genes. Custom R scripts based on functions in the MVisAGe R package142 were 

used to plot mean gene-level DNA copy number values in each expression subtype as well as 

differences of mean gene-level DNA copy number values between pairs of gene expression 

subtypes. 

To identify disease class specific copy number alteration (CNA) we used SWITCHplus 

(https://genome.unc.edu/SWITCHplus/)143. Fisher’s exact test was performed between paired 

comparison classes to identify class specific CNAs. Segment’s significance was assigned using 

Benjamini-Hochberg adjusted p-values <0.05.    

 

 

https://portal.gdc.cancer.gov/legacy-archive/search/f
http://gdac.broadinstitute.org/
https://genome.unc.edu/SWITCHplus/
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2.3.5 Characterizing Mutational Signatures in HCC and CHOL  

The R package SomaticSignatures was used to identify mutational signatures in 396 

TCGA HCC and CHOL whole exome sequencing samples144. Motif contributions across the 

samples were aggregated by RNA class. The R package barplot3d145 was used to generate 3D 

barplots displaying the frequency of the 96 different combinations of somatic mutations and 

trinucleotide contexts seen in this cohort. Using COSMIC mutational signatures version 366, we 

performed cosine similarity (CS) between our six signatures and the 49 Single Base Substitution 

(SBS) signatures to further characterize the mechanisms underlying our signatures. Liver 

sample motifs were correlated with our signatures to determine similarities and whether 

signatures are subtype specific, as we previously saw with the correlation to COSMIC 

mutational signatures v3.  

2.3.6 Class Prediction, Survival Analysis, And Clinical Variables 

Using the CCA/HCC as the training dataset, a gene classifier (n=150) was generated 

using ClaNC146.  Predictions were made on GSE14520 using the correlation to the training set 

centroids, and Kaplan-Meier curves were generated using the survminer package in R147. 

Univariate Cox proportional hazards models were used to determine the significance of the 

tumor classes, stage and grade. Variables significant in the univariate analysis were then 

incorporated into a multivariate model. Clinical data for TCGA was obtained from Liu et. al.148. 

Clinical data that was included in the analysis had >94% of data present across the cohort 

(race, gender, age, stage, grade, and survival).  As part of TCGA, diagnostic and frozen slides 

were reviewed by panel of pathologists with expertise in hepatobiliary cancers. The panels 

consisted of 6 pathologists for HCC127 and 5 pathologists for CCA128.  
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2.3.7 Statistics and Reproducibility 

Categorical variables were compared using Fisher's exact or chi-square test. Continuous 

variable comparisons were made using t-test or ANOVA as indicated. Correlations were 

performed using Pearson or Spearman correlation as indicated.  Multiple comparison correction 

was performed using Bonferroni correction. Survival analyses were performed using Kaplan-

Meier with log-rank tests. Statistical analyses were performed using R unless otherwise noted.   

2.3.8 Data and Code Availability 

TCGA samples were collected through an IRB-approved protocol or through a TCGA-

specific IRB waiver. Informed consent and IRB approval was obtained for all other data by the 

authors of the publications in which the original datasets were published. TCGA data is 

available through the GDC data portal,  https://portal.gdc.cancer.gov/. Expression data is 

available by download from https://www.ncbi.nlm.nih.gov/geo/ accession number: GSE14520 

(Roessler et. al.149), GSE90047 (Yang et. al.131), GSE26566 (Andersen et. al.150). All underlying 

data for figures available here: https://doi.org/10.6084/m9.figshare.15180810.v1. All code is 

available upon request. 

2.4 Results 

2.4.1 A class of hepatocellular carcinoma tumors show cholangiocarcinoma gene 

expression patterns 

To determine the similarity between TCGA hepatocellular carcinoma samples (HCC) 

and TCGA cholangiocarcinoma samples (CCA), we calculated each sample’s correlation to a 

defined CCA centroid. Thirty-three HCC samples were highly correlated to the CCA centroid 

(CCA-Like > CCA mean - 1 S.D, mean=0.75, S.D. = 0.09) and were classified as 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.6084/m9.figshare.15180810.v1
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cholangiocarcinoma-Like (CCA-Like) (Figure 2.7.1a). The rest of the HCC samples had lower 

correlations to CCA, in a similar range as the tumor adjacent normal tissues.  

As TCGA data comes from bulk specimens, we compared the CCA and HCC cohort to 

microdissected normal bile duct, normal liver, and cholangiocarcinoma from Andersen et. al.  

(Figure 2.7.1b). The CCA-Like tumors had a higher correlation to normal bile duct than normal 

liver and in similar range as the CCA samples from TCGA and Andersen cohorts. Whereas 

HCC samples more closely resembled normal liver, though with a larger range of correlation.  

We further anchored the TCGA data to single cell RNA sequencing data derived from 

fetal murine livers (embryonic day E10.5-17.5), representing hepatoblasts (E10.5), 

cholangiocytes (E17.5) and hepatocytes (E17.5) (Figure 2.7.1c). The CCA and CCA-Like 

samples were correlated to both cholangiocytes and hepatoblasts. While most HCC samples 

were only correlated to hepatocytes, we also identified a class of HCC samples with high 

correlation to the hepatoblast cells that had not been previously classified as CCA-Like, these 

sample were classified as Blast-Like (n=66).  

2.4.2 CCA-Like and CCA share genomic alterations 

To further dissect the molecular and clinical characteristics of these tumors, we 

assessed a series of clinical variables (Supplemental Table 2.8.1) as well as mutation, copy 

number and gene expression markers of classical alterations in both the CCA and HCC tumors 

(Supplemental Table 2.8.2) (Figure 2.7.2a) 127,128. As previously described, a subset of TCGA 

HCC samples had canonical IDH1/2 mutations (p.R132C/p.R172), a known hallmark of CCA 127. 

Interestingly, those mutations were almost exclusively found in the CCA-Like class, except for 

one HCC tumor with a DNA and RNA variant allele frequency of <0.1% and <0.001% 

respectively (Supplemental Figure 2.8.1a). Additionally, IDH1 gene expression was 

significantly reduced in the CCA-Like tumors compared to the Blast-Like and HCC tumors 
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(Supplemental Table 2.8.2). BAP1 has previously be shown to be frequently altered across 

both CCA and HCC127,128; however, it is almost universally altered in CCA. In the CCA-Like, 

BAP1 mutation rate was similar to CCA and copy number levels were lost significantly more 

than in HCC, yet not to the same degree as CCA (Supplemental Table 2.8.2). As compared to 

HCC, CCA-Like had a decreased mRNA and protein expression of BAP1 (Supplemental Table 

2.8.2). 

We assessed whether these shared features are due to the CCA-Like class representing 

a mixed hepatocholangiocarcinoma phenotype. TCGA’s pathology re-review identified only 7 

cases of hepatocholangiocarcinoma in the TCGA HCC cohort, five of which were in the CCA-

Like class, representing 15% of CCA-Like samples (Supplemental Table 2.8.1) the remain 

CCA-Like samples were unambiguously classified as HCC (Supplemental Figure 2.8.1b-e).  A 

recent study reported that approximately 8% of mixed tumors have ARID1A mutations151; 

however, we did not observe any ARID1A mutations in the CCA-Like group, while the other 

classes had mutation frequencies between 8-17%. 

CCA-Like was almost devoid of the prototypical hepatocellular carcinoma mutations, 

CTNNB1 and TP53 when compared to Blast-Like, and this group exhibited significantly higher 

mRNA expression of p53 when compared to HCC. Interestingly, the Blast-Like class had a 

significantly higher rate of TP53 mutation (Figure 2.7.2a), specifically truncating mutations and 

R249S mutation (Supplemental Figure 2.8.2). As HBV is a risk factor for HCC, we wanted to 

identify tumors with concurrent HBV infections. Unfortunately, not all samples had the 

corresponding clinical annotation; therefore, we identified tumors that contained RNAseq reads 

corresponding to the HBV genome. Blast-Like tumors had increased rates of HBV infection 

(Supplemental Figure 2.8.3a) as well as disproportionately high number of patients with Asian 

ancestry (Supplemental Table 2.8.1) (Figure 2.7.2a).  Regardless of tumor class, samples 
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from Asian individuals, had a significantly higher number of HBV mRNA reads (t-test p-value = 

1.8e-35) compared the CCA-Like/HCC samples. 

2.4.3 CCA-Like tumors have shared gene-expression features of CCA tumors. 

The CCA/HCC cohort was clustered using a set of genes associated with either 

hepatocytes, biliary/progenitor cells or markers of the cell cycle identified from organoid studies 

in Hu et. al. (Supplemental Figure 2.8.4a) 133. HCC tumors clustered alongside the tumor 

adjacent normal samples and had increased expression for hepatocyte markers such as ALB 

and HNF4A. CCA-Like tumors co-clustered with the CCA tumors and similarly had higher 

expression of the cell cycle and biliary markers but lower expression of hepatocyte markers. 

CCA had significantly reduced expression of the hepatocyte marker HNF4A (p=1.7e-10) 

(Figure 2.7.2b) and ALB (p=1.0e-10) (Supplemental Figure 2.8.4b) and increased expression 

of cholangiocyte marker SOX9 (p=3.6e-21) as compared to HCC tumors (Figure 2.7.2c). While 

the CCA-Like were very similar to the CCA tumors, the CCA-Like cells demonstrated higher 

gene expression of hepatoblast marker AFP (p=8.6e-9) (Figure 2.7.2d) 152. The Blast-Like 

tumors had increased expression in cell cycle markers, while displaying intermediate expression 

of both biliary and hepatocyte markers, with the exception of AFP, which was significantly higher 

in the Blast-Like tumors compared to all other classes (p<0.001 for all pairwise comparisons 

(Figure 2.7.2b-d, Supplemental Figure 2.8.4a) (Supplemental Table 2). Additionally, the 

Blast-Like tumors also had increased expression based stemness index, mRNAsi, compared to 

the other subtypes (Supplemental Figure 4c)153.  

We evaluated immune cell patterns across the classes. We visualized the Bindea gene 

signatures154 representing 24 immune cell types and found that samples with high expression of 

any immune signature were generally high for all immune signatures (Figure 2.7.2e). Samples 

were grouped by overall median immune gene signature expression and we found the high 
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immune group was associated with a lower tumor purity and an increased DNA methylation 

leukocyte faction score (Figure 2.7.2e). CAA and CCA-Like classes were enriched with immune 

signatures and grouped into the immune high set compared to HCC class (Figure 2.7.2f). 

2.4.4 Shared mutational motifs and mutational signatures between CCA and CCA-Like 

Reproducible patterns of single nucleotide variants (SNVs), termed ‘mutational 

signatures’, give a snapshot of the mutational pressure cells have undergone, many of which 

associate with known mutagens66,67.  We examined our classes to determine if mutational 

patterns differ by class, particularly in the context of liver cancer which is associated with 

exposures with known mutational signatures (e.g., aristolochic acid, aflatoxin, and tobacco). 

CCA-like tumors shared a similar enrichment of C>T/G>T mutations with the CCA tumor class 

(Figure 2.7.3a-b), while Blast-Like and HCC class tumors shared similar mutational patterns, 

with decreased C>T/G>T frequency and increased A>T/T>A frequency (Figure 2.7.3c-d). All 96 

mutation contexts were hierarchically clustered to visualize the relationships among classes, 

and was consistent with our transcriptional findings that CCA-like is more related to CCA tumors 

(Supplemental Figure 2.8.5a). While the top three motifs (all nC>Tn) are shared across the 4 

classes, they are most abundant in CCA and CCA-Like. Globally, CCA and CCA-Like also have 

more diversity overall of mutation motifs as compared to Blast-Like and HCC (Supplemental 

Figure 2.8.5a). The per sample motif patterns were then compared against a list of previously 

discovered single base substitution (SBS) signatures from the COSMICv3 database66. The 

median cosine similarity (CS) for each signature within subclass was calculated and hierarchical 

clustering was performed and visualized alongside the per sample values. As with the motif 

level comparisons, CCA and CCA-Like were the most similar with Blast-Like and HCC sharing 

common feature sets (Supplemental Figure 2.8.5b). We wanted to identify de novo mutational 

patterns. Six mutational signatures (S1-S6) were identified, with S1, S2, and S4 each being 

primarily driven by a single motif, T>A-CTG, T>C-ATA C>A-GCC, respectively (Supplemental 
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Figure 5c). Signatures S3 and S5 both were driven by the presence of C>T: GCG, CCG, ACG 

motifs, with S5 having a low-level increase in broader range of additional C>T motifs 

(Supplemental Figure 5c). The S6 signature, which lacked the presence of any one given motif 

at a high frequency, had some shared motif patterns with S2 and S5. We quantified the median 

contribution of each signature for each tumor class and found statistically significant differences 

between the tumor classes (Figure 2.7.3e, Supplemental Table 2.8.4). Signatures S3 and S5 

composed the majority of contribution to CCA-Like, a shared feature with CCA, along with 

having decreased contributions of both S1, S2 and S4 (Figure 2.7.3e). There was no significant 

difference between CCA and CCA-like for signature S5; however, both classes were 

significantly enriched compared to Blast-Like (CCA p=2e-11, CCA-Like p=7e-5) and HCC (CCA 

p=2e-15, CCA-Like p=2e-6). CCA-Like had an increased prevalence of S6, as compared to 

CCA, a feature shared with the Blast-Like and HCC. Blast-Like and HCC displayed remarkable 

similarity to each other, with the exception of S4 (p=0.009), which was defining feature of Blast-

Like tumors.  

 To identify possible etiologies of these signatures, we correlated the motif signatures to 

the COSMICv3 database (Figure 2.7.3f). Signatures S1 and S6 were highly correlated to 

mutational patterns of chemical or environmental exposures: chemotherapy treatment (S1, 

SBS25 Cosine Similarity (CS)= CS=0.72), aristolochic acid (S1, SBS22 CS=0.96), tobacco (S6, 

SBS29 CS=0.83) and aflatoxin (S6, SBS24 CS=0.74). Defects in mismatch repair patterns 

defined signature S2 (SBS6 CS=0.81, SBS15 CS=0.79) except for signature SBS26, which 

defined signature S3 (CS=0.73). Base excision repair (BER) defects dominate signature S5, 

specifically signatures derived from tumors with NTHL1 (SBS30, CS=0.71) and ERCC2 (SBS5, 

CS=0.79) mutations; however, these mutations were not observed within our CCA or CCA-like 

samples where this signature was enriched. Interestingly, signature S4 defined by SBS16 and 

enriched in Blast-like currently has an unknown etiology.  
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Signatures S1 and S6, which contribute most to the liver specific subtypes (Blast-Like 

and HCC, and to a lesser extent CCA-Like), have high correlations to known liver carcinogens, 

aristolochic acid and tobacco/aflatoxin, respectively. TP53 mutations, specifically the R249S 

mutation, has been previously linked to aflatoxin exposure.  We observed that tumors with the 

TP53 R249S mutation had a significantly higher cosine similarity to the aflatoxin signature 

(SBS24) than either tumors with alternative TP53 mutations (p=0.001) or tumors WT for TP53 

(p=3e-4) (Supplemental Figure 2.8.5d), similar to what had been observed in TCGA127. The 

Blast-Like class was dominated by signature S4, which although highly correlated to SBS16 

(CS=0.74), it currently has no known etiology. Conversely, S3 and S5, are shared across CCA 

and CCA-Like classes, which lack exposure related correlations, but are enriched for mismatch 

repair signatures. These results suggest that the mutational pressures in the CCA-like are more 

similar to CCA and potentially highlighting different selective pressures than the more 

predominant exposure-based pressures observed in HCC and Blast-Like.  

2.4.5 Transdifferentiation pathways are upregulated in CCA-Like tumors 

We explored the genomic/transcriptomic features driving each tumor class to determine 

if there are signaling pathways that are shared across classes. We performed gene set 

enrichment analysis (GSEA) using the hallmark gene signature list to identify differential 

pathway signatures between CCA-Like and the other HCC tumor classes (Blast-Like and HCC) 

(Figure 2.7.4a) 155,156. Of the seven significant gene sets (nominal p-value <0.05 and 

FDR<0.25), three pathways, TGFβ, NOTCH and WNT have previously been implicated as 

drivers of Epithelial-Mesenchymal Transition (EMT) and transdifferentiation in the liver 

(Supplemental Figure 2.8.6a-c) 157-163.  TGFβ, NOTCH and WNT expression signatures were 

all significantly elevated within the CCA-Like tumors compared to the HCC classes (CCA-like vs 

HCC p<0.001) (Figure 2.7.4b-c, Supplemental Figure 2.8.6d). For these three signatures, the 

CCA-Like tumors module scores were not significantly different to those observed in CCA albeit 
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slightly reduced (TGFβ p=0.015, NOTCH p=0.70, WNT p=0.62). We further compared the CCA-

Like tumors directly to CCA samples. Four of the top five significantly enriched pathways in 

CCA-Like tumors related to liver biology (Figure 2.7.4d). We plotted the median expression of 

10 Cytochrome P450 (CYP) genes that are abundant in the liver as a surrogate for liver specific 

gene expression and found that CCA-Like tumors had significantly higher levels of expression of 

CYP genes compared to CCA tumors (t-test, p=3.23e-5). CCA-Like tumors expressed CYP at 

comparable levels to the Blast-Like tumors which was still lower than what was observed in 

HCC or adjacent normal liver tissue (Figure 2.7.4e). 

Pathway level analysis identified multiple pathways that are involved in both 

transdifferentiation as well as EMT.  miRNA expression has been shown to drive both 

processes. We performed a differential miRNA expression analysis and identified four mir-200 

family members highly enriched in both CCA and CCA-Like tumors (Figure 2.7.4f-g) compared 

to Blast-Like and HCC. Blast-Like and HCC samples had increased expression of miR-122, a 

liver specific miRNA164. Interestingly, when CCA-Like and CCA are directly compared, miR-122 

was the most enriched miRNA in the CCA-like, while the miR-200 family members were 

significantly enriched in the CCA (fold change (FC) = 3.7, FDR <0.001). Expression of one 

representative miR-220 family member, miR-200b-3p, was highest in CCA, followed by CCA-

like and lowest in HCC (Figure 2.7.4h).  

2.4.6 The CCA-Like copy number landscape resembles that of HCC 

Although the CCA-Like class tumors bear a striking transcriptional resemblance to the 

CCA class, key markers (elevated AFP/ALB and miR-122) indicate that the CCA-like tumors still 

have features shared with HCC and suggests the precursor cell likely arises from hepatocytes 

rather than a cholangiocyte/hepatocyte progenitor cell. Because copy number alterations are 
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often considered early events in transformation165, we compared the copy number landscapes 

of CCA, CCA-Like, Blast-Like and HCC to infer the shared cellular origin of the classes.  

Overall, CCA-Like, Blast-Like and HCC displayed a more similar copy number 

landscape to each other than to CCA (Figure 2.7.5a). Using SwitchDNA, we performed a 

pairwise comparison of segments comparing CCA-Like to CCA and HCC, and Blast-Like to 

CCA and HCC. CCA-Like had significantly fewer copy number differences with HCC (n=360) 

than CCA (n=1024) (p<0.0001) (Supplemental Figure 2.8.7a). There were 272 segments that 

were significant in CCA-Like in both comparisons to CCA and HCC, all of which (except one 

segment) were between 3p24.3-12.3. Located within this region is BAP1, which is almost 

universally lost in CCA. BAP1 was lost to a lesser extent in CCA-Like (45% of samples) than 

CCA (80% of samples); however, at a significantly greater frequency than HCC (12%) (p<0.05) 

(Supplemental Table 2.8.2, Figure 2.7.5b). Conversely, FOXC1 (6p25.3) and MYC (8q24.21) 

are amplified in the CCA-Like, Blast-Like, and HCC tumors (Figure 2.7.5c-d).  The CCA-Like 

and Blast-Like classes displayed numerous differences in copy number landscape frequency 

compared to CCA and HCC (Figure 2.7.5a). Blast-Like tumors had increased genomic 

instability, which resulted in a more distinct copy number landscapes, 1143 segments were 

significantly different as compared to HCC and 3489 segments as compared to CCA with 2690 

segments shared as significantly different compared to both CCA and HCC (Supplemental 

Figure 2.8.7b). The gene expression was compared to the GISTIC copy number values for 

BAP1, FOXC1 and MYC. Decreased BAP1 gene expression was correlated to a decreased to 

the copy number status for all classes (across all samples, p-value = 2.2e-16, CCA, CCA-Like, 

Blast-Like and HCC p<0.001) (Supplemental Figure 2.8.7c). Although MYC was amplified in 

CCA-Like, Blast-Like, and HCC, only in the Blast-Like and HCC classes was gene expression 

and copy number correlated (Blast-Like and HCC p-value < 1.0e-4), whereas gene expression 

and copy number were not correlated in any class for FOXC1 (Supplemental Figure 2.8.7d-e).  
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2.4.7 CCA-Like and Blast-Like have decreased progression-free survival 

Progression-free and overall survival censored at five years was compared across 

classes (Figure 2.7.6a-b) (Supplemental Table 2.8.3). Using a Cox proportional hazards 

model, Blast-Like tumors had significantly worse progression-free (Hazard Ratio [HR] 1.95, 

p<0.001) and overall (HR 3.72, p<0.001) survival comparted to HCC. CCA-Like tumors had 

worse progression-free survival compared to HCC (HR 1.68, p-value =0.04), but not overall 

survival. We also looked at models including the clinical factors stage and grade. In a univariate 

model, only stage was associated with outcomes.  When we added stage to the model with our 

subclasses, only the Blast-like class retained significance for worse progression-free and overall 

survival compared to the referent class HCC. AFP protein expression has additionally been 

shown to be a prognostic marker, as such, we performed a multivariate analysis; when 

combining AFP with subclasses, Blast-Like and CCA-Like were still significant predictors of 

worse progression free (HR=1.9, p=0.002 and HR=1.6, p=0.03, respectively) and Blast-Like was 

significant predictor of worse overall survival (HR=3.5, p=8e-10). We generated a gene 

expression classifier for our classes based on TCGA data and applied it to Roessler et. al. HCC 

cohort as a validation dataset (GSE14520)149. The five-year survival within the validation cohort 

displayed similar trends to TCGA. The Blast-Like class trended towards a worse relapse-free 

survival (HR 1.4, p-value=0.055) and had significantly worse overall survival with and without 

adjusting for stage (HR 1.9, p-value=0.006, HR 2.0, p-value=0.002, respectively) (Figure 6c-d, 

Supplemental Table 2.8.3). 

We next applied the Hoshida et. al. and Woo et. al. signatures to our TCGA dataset 

using consensus clustering. Hoshida identified 3 subclasses (S1, S2 and S3) that were 

correlated to clinical and molecular features88. Woo et. al. identified a cholangio-like group of 

tumors (CLCHCC), and then further divided the subtypes with respect to stemness129. With both 

the Hoshida and Woo subtyping strategies, the CCA-Like and Blast-Like samples were grouped 
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together within the S2 and CLCHCC classes respectively (Supplemental Figure 2.8.8a-c). The 

stem cell signature from Ben-Porath et. al.135 was applied accordingly to the Woo et. al. dataset 

and the CLCHCC class was further divided into stem cell signature positive or negative 

(Supplemental Figure 2.8.8c). Overall, all groups identify distinct subtypes with similar, but not 

completely overlapping features.  Our scheme helps solidify the classifications by anchoring 

with true CCA and incorporating microdissected and single cell data.  

Progression-free and overall survival curves were generated using TCGA data for both 

our classes as well as Hoshida and Woo classifications (Supplemental Figure 2.8.8d-i).  For 

progression-free survival, Blast-like and CCA-Like had the shortest time to progression with a 

median time of 301 days and 355 days, respectively, as compared to HCC (879 days) (p=1.2e-

9, p=0.01) (Supplemental Figure 2.8.8d). Within the Hoshida subtypes, no significant 

difference in survival was observed (Supplemental Figure 2.8.8e). The median time to 

progression for the poorest outcome CLCHCC (ES) class was 355 days (p=2.0e-4) as 

compared to CLCHCC (neg ES) and HCC (neg ES), which had median time to progression 

>700 days (Supplemental Figure 2.8.8g). Our Blast-like classification identified a subset of 

patients with poorer outcomes.  

2.5 Discussion 

In this study, we used a combined TCGA CCA/HCC dataset to characterize HCC 

samples based on their similarity to CCA and the precursor hepatoblast cell type. Previous 

studies which have noted similar transcriptional classes 127-129. Here, we have expanded on 

these classifications and used a multi-omic approach as well as using external data to 

characterize rare molecular subtypes in a fully integrated manner; the result of which is the 

identification of three distinct classes of HCC tumors: CCA-Like, Blast-Like and HCC. 
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Previous work had identified IDH1 mutant and CCA-like subclasses of tumor similar to 

the aforementioned CCA-Like. Our work is a natural extension of the groundwork laid in these 

papers. Woo et al identified a cholangiocarcinoma-like group with varying levels of embryonic 

stem (ES) cell marker expression129. Whereas the expression of ES signatures led them to 

conclude that these tumor were derived from a bi-potent progenitor cells, hepatoblast; our 

current study, with the addition of copy number data, demonstrates that the CCA-like group 

have a copy number landscape that more closely resembles HCC. This in combination with 

expression of liver specific genes, albeit at reduced levels, is an indication that the CCA-like 

class is more likely to be derived from hepatocytes that were transformed and underwent 

dedifferentiation and initiated a transdifferentiation transcriptional program in response to 

specific mutations (e.g., BAP1, IDH1/2). The Cancer Genome Project previously described 

IDH1/2 mutant HCC and presented evidence that these tumors overlapped CCA via a 

TumorMap visualization, that incorporated DNA, DNA methylation and expression features; 

however, this group was restricted to small subset with IDH1/2 mutation127. Our work expanded 

this group to include a set of transcriptionally similar tumors that includes samples with a high 

frequency of IDH1/2 mutations and alterations in BAP1, as well as linking this subclass to the 

induction of a transdifferentiation program.  

A majority of the tumors originating from liver displayed classical HCC features including 

expression of ALB and HNF4A genes as well as mutations in CTNNB1 (29%). However, Blast-

like tumors exhibited more frequent mutations in TP53 (58%) and elevated AFP expression, a 

hepatoblast marker gene. It has been previously reported that TP53 mutations, specifically 

R249S mutations, are most commonly observed in east Asian populations and are associated 

with aflatoxin exposure 166. Corroborating this R249S/Aflatoxin relationship, we saw that tumors 

with the R249S mutations also had high similarity to a previously described Aflatoxin mutational 

signature (Supplemental Figure 2.8.5d). Furthermore, the Blast-like class was enriched with 
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patients of Asian ancestry (Supplemental Table 2.8.1) as well as having a significantly higher 

rate of HBV infection (Supplemental Table 2.8.1) (Figure 2.7.2a, Supplemental Figure 

2.8.3a-b). The association between Asian ancestry and HBV+ HCC is expected, as the historic 

prevalence of HBV infection in East Asia is ~7.3% as compared to the North America at 0.3% 

167. Additionally, many of the samples of Asian ancestry within the TCGA come from Asian 

tissue source site. Current data has linked chronic HBV infection to immune induced liver 

injury168-170, this injury can result in dedifferentiation of hepatocyte171 and in turn, based on our 

data, lead to a more hepatoblast-like disease in east Asian populations.  

CCA-Like lacks prototypical mutations and risk factors associated with HCC. Hirsch et. 

al. previously described a BAP1 mutant class of tumors that lacked CTNNB1 mutation and 

canonical risk factor but has similarity to fibrolamellar tumors172. Our work builds on this group 

as CCA-Like tumors are enriched for IDH1/2 and BAP1 mutations and have transcriptional 

patterns similar to CCA. By using transcriptional patterns to define the CCA-Like class, we 

found that in addition to BAP1 mutations BAP1 copy number loss was another frequent 

mechanism for decreasing BAP1 mRNA expression levels (Supplemental Figure 2.8.7c).  

By performing mutational signature profiling we observed the CCA-Like had a more 

similar global mutational signature profile to CCA than HCC. However, CCA-Like still showed 

underlying exposure-based signatures though their overall contribution to the mutation burden 

was reduced compared to HCC (Figure 2.7.3e-f). A hepatocellular cell-of-origin is reinforced by 

the observation that the CCA-Like and HCC tumors have similar expression levels of ALB and 

AFP. The CCA-Like tumors were also classified as hepatocellular carcinomas by TCGA’s expert 

pathology re-review.  Woo et. al. has identified a similar subclass (Cholangiocarcinoma-Like), 

but as previously mentioned these authors attribute this to transformation of a progenitor 

hepatocellular cell vs a hepatocyte 129. However, the CCA-Like tumors have increased ALB 

expression and liver specific gene and miRNA expression signatures when compared to CCA, 
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suggesting still a strong linkage to hepatocytes.  More recently Wardell et. al. suggested that 

genomic features of intrahepatic CCA tumor suggest a hepatocyte cell of origin173. While our 

work is an agreement with that notion, we extend their finding through transcriptional analysis 

proposed transdifferentiation pathways. We show that CCA-Like have upregulation of NOTCH, 

WNT and TGFβ pathways as compared to Blast-like and HCC, all of which are known to be 

associated with transdifferentiation. A murine study by Sekiya and Suzuki demonstrated that 

NOTCH signaling in hepatocytes can induce the conversion of hepatocytes to biliary cells 

leading to the development of cholangiocarcinoma 159. Additionally, in NOTCH deficient mice, 

expression of TGFB allows the generation of the biliary tree from hepatocytes158.  

This notion of transdifferentiation is bolstered by the finding that the copy number 

landscape of CCA-Like is more similar to HCC than CCA (Figure 2.7.5a). Copy number 

alterations are thought to be early events in tumor development; this data corroborates the 

mRNA data by suggesting CCA-Like is derived from a hepatocyte rather than a bipotent 

progenitor cell. Additionally, the CCA specific DNA alterations, IDH1/2 and BAP1, could be 

driving this transdifferentiation process in the absence of classical HCC mutations such as 

CTNNB1 and TP53. Artegiani et. al. recently reported that BAP1-/- organoids upregulated 

EPCAM while downregulating liver specific genes, consistent with our findings (Supplemental 

Figure 2.8.4a) 174.  

Prior groups have laid a strong basis for subtype classification including the identification 

of subtypes similar to the CCA-like88,128,129,172 and Blast-like88-90. We have added to this rich body 

of work with a direct comparison to true CCA and incorporated mutational signature analysis 

and copy number data to further describe the underlying biology and potential cell of origin for 

these classes. Our findings link a specific class of HCC tumors with transdifferentiation; 

however, further work will need to be done to validate this mechanistically to identify the exact 
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genomic alterations and signaling pathway changes that are necessary and sufficient to drive 

the CCA-Like tumor type. 

One limitation of our study was the partial availability of TCGA’s non-required data 

elements including: serum markers, family histories, consistently annotated risk factors and 

long-term follow up. More in-depth and standardized annotation for these clinical data elements 

will be important to better understand associations between the molecular data and etiologic risk 

factors.  

Through the integration of multiple data types, we were able to expand on prior work, 

which identified a subset of HCC tumors that resembled CCA. We identified three distinct 

classes of hepatocellular carcinoma, in which the CCA-Like class may be derived through 

initiation of a transdifferentiation process, rather than transformation of progenitor cell.  
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2.7 Figures and Tables   

  

Figure 2.7.1. Molecular classification of hepatocellular carcinoma  

(a) The Spearman correlation to the median expression of CCA tumors (n=36) was calculated 

for each TCGA CCA/HCC tumor (n=410). HCC samples within ±1 standard deviation of the 

mean CCA Spearman correlation (dashed line) were defined at CCA-Like. (b) The CCA/HCC 
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dataset was correlated to microdissected normal bile duct (NBD) (n=6) or normal liver (n=59) 

from Andersen et. al. An NBD vs. Liver score was calculated by subtracting the correlation to 

normal liver from the correlation to normal bile duct 150.  Boxes represent the IQR with median 

represented by the bolded bar. Error bars represent Q1/Q3 ± 1.5*IQR. (c) Single cell RNA seq 

data from Yang et. al. was used to correlate the CCA/HCC samples to either hepatoblasts 

(E10.5, n=54), hepatocytes (E17.5, n=34) and cholangiocytes (E17.5, n=34). PCA was 

performed on Yang et. al. to visual variance across the samples then the correlation was 

calculated between the median expression of day E10.5 and E17.5 (hepatocytes and 

cholangiocytes) samples to the CCA/HCC dataset. HCC samples in the upper tertile of 

correlation to hepatoblasts and not prior classified as CCA-Like, were defined as Blast-Like 

(n=66). Murine embryo images were obtained from 

http://repo.mouseimaging.ca/repo/4D_embryo_atlases_M_Wong/.  
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Figure 2.7.2. CCA-Like tumors are molecularly similar to CCA 

 (a) Samples are ordered by subclass and sorted by key genomic alterations. Gene expression 

data is log2 transformed and median centered. Mutations (mut) are indicated by yellow/blue 

while wildtype (WT) are indicated by black. GISTIC thresholded values were used for copy 
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number variation (CNV). (b-d) Gene expression for hepatocyte markers (HNF4A and AFP) and 

cholangiocyte marker (SOX9) are shown per CCA/HCC group.  Gene expression values 

represent the log2 transformed RSEM+1 value. One-way ANOVA p-value is displayed. Boxes 

represent the IQR with median represented by the bolded bar. Error bars represent Q1/Q3 ± 

1.5*IQR. (e) The median expression across the Bindea immune signatures were calculated and 

clustered by signatures. Samples were sorted by decreasing median expression across all the 

signature and divided into high and low expression groups. PDL1 [range= 0, 8.5], PD1 [0, 11.1] 

and CTLA4 [0, 9.9] are represented as Log2(RSEM+1 values). (f) Stacked bar plots represent 

the proportion of high and low immune expression group across the tumor classes. Fisher exact 

test p-values are shown for each comparison to HCC.  
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Figure 2.7.3. Mutational signatures of CCA and HCC reveal cross class similarity 

(a-d) The median frequency of each single nucleotide variant (SNV) per class was calculated 

and plotted by preceding and succeeding base in a Lego plot (key on bottom left). Base 

substitutions are divided into six categories to represent the six possible base changes. 

Substitutions are further divided by the 16 possible flanking nucleotides surrounding the 

mutated base as listed in the trinucleotide context legend. (e) The R package 

SomaticSignatures was used to identify de novo mutational signatures. Signature contribution 
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across samples is aggregated by class and the median contribution of each signature to the 

tumor classes is shown. (f) Cosine similarity between COSMIC v3 mutational signatures and 

each of the de novo signatures were computed. The COSMIC signatures are clustered by 

cosine similarity and ordered by signature class (S1-S6). Color key indicates the degree of 

similarity. 
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Figure 2.7.4. CCA-Like tumors display features of transdifferentiation  

(a) Gene Set Enrichment Analysis was performed 1 vs Rest (CCA-Like vs. Blast-Like and HCC) 

using the Hallmark gene sets. Seven gene sets were enriched in CCA-Like versus Blast-Like 

and HCC, and gene sets associated with transdifferentiation are noted in red. (b-c) Signature 

scores associated with transdifferentiation pathways, TGFβ and Notch are plotted by tumor 

classification. One-way ANOVA p-values are shown. (d) Gene Set Enrichment Analysis 
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comparing CCA-Like vs. CCA using the hallmark gene sets. Liver specific gene sets are noted 

in red. (e) The median expression of liver specific cytochrome P450 genes are plotted by 

subtype, *** indicates p<0.001 for two sample t-test between CCA and CCA-Like. (f-g) Volcano 

plots for fold change vs FDR; are plotted for CCA-Like vs. Blast-Like and HCC and CCA-Like 

vs. CCA respectively; genes with fold change > 2 and FDR < 0.05 are indicated in red. (h) Per 

class expression of miR-200b-3p, a representative family member of the miR-200 family is 

plotted, p-value represents ANOVA. Boxes represent the IQR with median represented by the 

bolded bar. Error bars represent Q1/Q3 ± 1.5*IQR. 
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Figure 2.7.5. Copy number landscapes show tissue specific specificity 

(a) Genome-wide copy number values are plotted for CCA (black), CCA-Like (red), Blast-Like 

(blue), and HCC (green) using the mean quantitative gene level copy measurements from 

GISTIC. (b-d) Expanded view of three chromosomes containing regions significantly differed by 

pairwise two sample t-tests (p-value <0.05) between CCA and HCC. Potential target genes in 

significant segments are noted.  
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Figure 2.7.6. Blast-Like tumors have worse progression-free and overall survival  

Kaplan-Meier curves of TCGA CCA/HCC data for (a) progression-free and (b) overall survival. 

Tumor classifications were predicted on to GSE14520 using ClaNC for (c) relapse-free and (d) 

overall survival149. All survival data was censored at 5 year and log-rank p-value was calculated.  
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2.8 Supplemental Figures and Tables   

Supplemental Figure 2.8.1. CCA-Like share CCA genomic alterations but has HCC 

histological features  

(a) Variant allele frequencies for IDH1 were calculated from both the DNA and RNA sequencing 

reads. Tumor classes are indicated by color (grey=CCA, red=CCA-Like, green=HCC). (b) 

Representative H&E slides (20x) of CCA (c) CCA-Like (d) Blast-Like (e) HCC. 

(https://cancer.digitalslidearchive.org/).  
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Supplemental Figure 2.8.2. Lollipop plots for TP53 mutations 

Lollipop plots for TP53 mutations are shown for the entire cohort and by tumor class. R249S 

mutation ratios are shown as (number of R249S mutations)/ (total number of TP53 mutations) 

per group. 
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Supplemental Figure 2.8.3. High HBV reads in Blast-like samples associates with Asian 

ancestry 

(a) Reads aligning to HBV are plotted by tumor class and (b) reported race 
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Supplemental Figure 2.8.4. CCA-Like shared gene-expression features with CCA tumors 

(a) CCA/HCC tumors and adjacent normal tissues clustered with cell type specific markers of 

hepatocytes and cholangiocytes cells and cell cycle markers from Hu et. al.133. Gene expression 

data was log2 transformed and median centered across the CCA/HCC cohort. Annotation bar 

represents sample subclasses. (b) Gene expression for ALB is shown per CCA/HCC group 

(ANOVA p=2.26e-56).  Gene expression values represent the log2 transformed RSEM+1 value. 

(c) The expression based stemness index from Malta et. al.153 was plotted by class. p-values 

represents t-test.   
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Supplemental Figure 2.8.5. CCA-like and CCA classes share mutational patterns  

The median motif frequency was hierarchically clustered by motifs for (a) classes. (b) COSMIC 

signatures were clustered by median class cosine similarity. The per sample CS was then 

similarity ordered and sorted by class. (c) The median motif frequency was hierarchically 

clustered by motifs for signatures. (d) Cosine similarity for SB24 (aflatoxin exposure) was 

plotted by TP53 mutation type (TP53 R249S, Others or WT) and pairwise t-test were performed 

to determine significance. 
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Supplemental Figure 2.8.6. CCA-like display elevated expression of transdifferentiation-

associated pathways compared to HCC classes 

(a-c) GSEA was performed comparing CCA-Like vs. Blast-Like/HCC. Plots of enrichment 

scores are shown for pathways relating to transdifferentiation. (d) Signature score associated 

with WNT pathway are plotted by class.  
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Supplemental Figure 2.8.7. CCA-like copy number landscape resembles HCC, while 

Blast-like has greater genomic instability compared to other HCC classes 

(a) Pairwise two sample t-tests were performed by segment and p-values were corrected for 

multiple comparisons. –log10 (adjusted p-value) was plotted for CCA-Like vs CCA and HCC 

and (b) Blast-Like vs. CCA and HCC. Log2 median centered gene expression was plotted 

against the GISTIC intensity values for (c) BAP1, (d) MYC and (e) FOXC1. For BAP1 mutations 

noted by symbols.  
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Supplemental Figure 2.8.8. Blast-like classification schema identified a subset of patients 

with worse outcomes 

(a-c) Hoshida et. al. and Woo et. al. subtype classifications were applied to TCGA cohorts. (d-f) 

Progression-free and (g-i) overall survival was plotted for the given tumor classifications. 

Dashed lines represent 50% survival.
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Supplemental Table 2.8.1. Clinical Characteristics of TCGA CCA and HCC datasets 

  CCA CCA-like   Blast-like HCC 

No. of Cases     

  36 33 66 272* 

Gender     

Female 20 (56%) 20 (61%)b,c 21 (32%) 80 (29%) 

Male 16 (44%) 13 (39%) 45 (68%) 192 (71%) 

Race     

African American 2 (6%) 1 (3%) 3 (5%) 13 (5%) 

Asian 3 (8%) 12 (36%) 40 (60%)e 106 (39%) 

White 31 (86%) 20 (61%) 22 (33%) 142 (52%) 

Other/NA 0 (0%) 0 (0%) 1 (2%) 11 (4%) 

Stage     

I 19 (53%)b 12 (36%) 18 (27%) 141 (52%)a,b 

II 9 (25%) 7 (21%) 22 (33%) 57 (21%) 

III 1 (3%) 10 (30%) 24 (36%) 51 (19%) 

IV 7 (19%) 0 (0%) 1 (2%) 4 (1%) 

NA 0 (0%) 4 (12%) 1 (2%) 19 (7%) 

Grade     

G1 1 (3%) 1 (3%) 5 (8%) 49 (18%)e 

G2 15 (42%) 14 (42%) 20 (30%)c 143 (53%) 

G3 18 (50%) 14 (42%) 36 (54%)c 72 (26%) 

G4 2 (5%) 3 (9%)c 5 (8%)c 4 (1%) 

NA 0 (0%) 1 (3%) 0 (0%) 4 (1%) 

ECOG Score     

0 20 (56%) 14 (42%) 17 (26%)c,d 131 (48%) 

1 9 (25%) 5 (15%) 10 (15%) 69 (25%) 

2 0 (0%)b 1 (3%) 11 (17%)c,d 14 (5%) 

3 1 (3%) 1 (3%) 6 (9%)d 5 (2%) 

4 0 (0%) 0 (0%) 3 (5%) d 0 (0%) 

NA 6 (17%) 12 (36%) 19 (29%) 53 (19%) 

Histology     

Fibrolamellar 0 (0%) 0 (0%) 1 (2%) 2 (1%) 

Hepatocellular 0 (0%) 28 (85%) 64 (97%) 269 (99%) 

Hepatocholangiocarcinoma 0 (0%)a 5 (15%)e 1 (2%) 1 (0%) 

HBV infection f     

Positive 2 (6%) 12 (36%) 44 (67%)e 97 (36%) 
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Negative 34 (94%) 21 (64%) 22 (33%) 174 (64%) 

NA 0 (0%) 0 (0%) 0 (0%) 4 (1%) 

Cirrhosis/Fibrosis     

No Fibrosis 16 (44%)e 5 (15%) 7 (11%) 62 (23%) 

Fibrosis 11 (31%) 7 (21%) 5 (8%)d 47 (17%) 

Cirrhosis 0 (0%)e 5 (15%) 10 (15%) 64 (24%) d 

NA 9 (25%) 16 (48%) 44 (67%) 99 (36%) 

a Significant as compared to CAA.Like (p<0.05) 
    

b Significant as compared to Blast.Like (p<0.05) 
    

c Significant as compared to HCC (p<0.05) 
    

d Significant as compared to CAA (p<0.05) 
    

e Significant as compared to all other groups (p<0.05) 
    

f HBV infection determined by >5 HBV reads from 
RNA-seq     
*272/275 samples had unique clinical annotation 
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Supplemental Table 2.8.2. Molecular Characteristics of TCGA CCA and HCC datasets 

  CCA CCA-like Blast-like HCC 

No. of Cases         

  36 33 66 275 

IDH         

IDH1/IDH2 mutation 6 5b,c 0 1 

IDH1 mRNA (median) f 11.63e 12.43e 12.84 13.29 

BAP1          

BAP1 mutation 10 (27%)b,c 11 (33%)b,c 5 (8%) 25 (9%) 

BAP1 copy number loss 29 (80%)e 15 (45%)c,d 17 (26%) 33 (12%) 

BAP1 mRNA (median) f 10.3 10.73 11.07 11.12 

CTNNB1         

CTNNB1 mutation 0 (0%) 1 (3%) 18 (27%)a,d 79 (29%)a,d 

CTNNB1 mRNA (median) f 11.84b,c 12.43b,c 12.6 12.44 

TP53          

TP53 mutation 5 (14%) 8 (27%) 38 (58%)e 65 (24%) 

TP53 copy number loss 13 (36%)e 23 (70%) 45 (68%) 152 (55%) 

TP53 mRNA (median) f 10.83e 10.28e 9.86 9.55 

ARID1A          

ARID1A mutation 6 (17%) 0 (0%)e 11 (17%) 23 (8%) 

ARID1A mRNA (median) f 10.43 10.68c 10.56 10.4 

ALB          

ALB mutation 3 (8%) 1 (3%) 6 (9%) 36 (13%) 

ALB mRNA (median) f 15.65 19.34 19.58 20.44 

AFP          

AFP mRNA (median) f 1.48 8.06d 12.97e 6.88d 

HNF4A         

HNF4A mRNA (median) f 9.80e 10.84e 11.69 12.42 

KRT19         

KRT19 mRNA (median) f 13.02e 11.78e 7.04 4.04 

a Significant as compared to CAA.Like (p<0.05) 
    

b Significant as compared to Blast.Like (p<0.05) 
   

c Significant as compared to HCC (p<0.05) 
   

d Significant as compared to CAA (p<0.05) 
   

e Significant as compared to all other groups (p<0.05) 
   

f mRNA expression is represented as Log2 median-centered values 
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Supplemental Table 2.8.3. Univariate and multivariate Cox regression analysis 

Univariate analysis         

TCGA 
Progression Free 

Interval 

Progression Free 

Interval 
Overall Survival Overall Survival 

Subtype (HCC ref) Hazard Ratio (95% CI) p – value Hazard Ratio (95% CI) p – value 

CCA 1.22 (0.73 - 2.02) 0.448 1.90 (1.12 -3.23) 0.017 

CCA-Like 1.68 (1.02 - 2.76) 0.04 1.45 (0.77 – 2.73) 0.245 

Blast-Like 1.95 (1.32 – 2.88) <0.001 3.72 (2.48 – 5.56) <0.001 

Stage (I ref)         

II 1.96 (1.38 – 2.77) <0.001 1.63 (1.06 – 2.50) 0.027 

III 2.35 (1.63 – 3.40) <0.001 2.56 (1.69 – 3.87) <0.001 

IV 4.28 (2.20 – 8.35) <0.001 5.26 (2.65 – 10.47) <0.001 

Grade (G1 ref)         

G2 1.44 (0.89 – 2.32) 0.133 1.34 (0.76 – 2.35) 0.316 

G3 1.55 (0.95 – 2.52) 0.078 1.39 (0.78 – 2.48) 0.259 

G4 1.51 (0.61 – 3.75) 0.775 2.46 (1.00 – 6.06) 0.05 

Multivariate analysis         

Subtype + Stage (HCC ref)  

CCA 1.31 (0.79 – 2.18) 0.301 2.06 (1.21 – 3.51) <0.01 

CCA-Like 1.57 (0.95 – 2.59) 0.078 1.39 (0.73 – 2.63) 0.318 

Blast-Like 1.70  (1.14 – 2.54) <0.01 3.43 (2.28 – 5.17) <0.001 

Subtype + Stage +Grade (HCC ref)  

CCA 1.25 (0.72 – 2.11) 0.403 2.12 (1.22 – 3.68) <0.01 

CCA-Like 1.15 (0.85 – 2.46) 0.171 1.27 (0.64 – 2.50) 0.496 

Blast-Like 1.62 (1.07 – 2.46) 0.023 3.30 (2.14 – 5.09) <0.001 

GSE14520         

Subtype (HCC ref)         

CCA-Like 1.49 (0.88 – 2.54) 0.142 1.60 (0.83 – 3.10) 0.161 

Blast-Like 1.56 (1.06 – 2.30) 0.025 1.97 (1.24 – 3.14) 0.004 

Stage (I ref)         

II 1.99 (1.30 – 3.05) <0.01 2.07 (1.19 – 3.61) 0.01 

III 3.17 (1.98 – 5.08) <0.001 5.10 (2.92 – 8.93) <0.001 

Multivariate analysis         

Subtype + Stage (HCC ref) 

CCA-Like 1.1 (0.63 – 1.91) 0.745 1.11 (0.56 – 2.18) 0.77 

Blast-Like 1.730 (0.87 – 1.95) 0.199 1.60 (.99 – 2.59) 0.054 
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Supplemental Table 2.8.4. Bonferroni corrected p-values of pairwise t-test between 

mutational signatures and subclasses 

  S1 S2 S3 S4 S5 S6 

CCA vs CCA-Like 1 1 1 1 0.26 0.95285 

CCA vs Blast-Like 0.002 1 0.078 0.00039 2.10E-11 0.00031 

CCA vs HCC 0.0024 1 0.093 0.16226 2.10E-15 6.40E-09 

CCA-Like vs Blast-Like 0.0696 1 0.055 0.06847 7.40E-05 0.15424 

CCA-Like vs HCC 0.1356 0.11 0.067 1 2.40E-06 0.00075 

Blast-Like vs HCC 1 1 1 0.00854 1 0.39735 

Bolded values denote p<0.05 
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CHAPTER 3: DNA DAMAGE REPAIR CLASSIFIER DEFINES DISTINCT GROUPS IN 
HEPATOCELLULAR CARCINOMA 

3.1 Overview  

Background: Hepatocellular carcinoma (HCC) prognosis remains dismal, with a 5-year 

survival rate of 18%. DNA repair pathways have been associated with variability in HCC clinical 

outcomes, but how DNA repair varies as a function of liver regeneration and other HCC 

characteristics is poorly understood.  

Methods: We curated a panel of 199 genes representing fifteen DNA repair pathways to 

identify DNA repair expression classes and evaluate their associations with differentiation, 

mitotic and regenerative signatures and clinicopathologic variables in The Cancer Genome 

Atlas (TCGA) HCC study (n=374). 

Results: We identified two groups in HCC, defined by Low or High expression across all 

repair pathways. The Low repair group had lower grade and retained expression of classical 

liver markers (ALB, CYP450), whereas the High repair group had more clinically aggressive 

features, increased p53 mutant-like gene expression, and high liver regenerative gene 

expression. These pronounced features overshadowed variation in the Low repair subset, but 

further heterogeneity was observed among Low repair samples. When considered separately, 

the Low repair group included three subgroups: L1, L2, L3. L3 had high DNA repair expression 

with worse progression-free (HR 1.24, 95% CI 0.81-1.91) and overall (HR 1.63, 95% CI 0.98-

2.71) survival. High repair outcomes were also significantly worse compared to the L1 and L2 

groups.
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Conclusions: HCCs vary in expression of DNA repair pathways, and a subset of tumors 

with high regeneration have profoundly disrupted liver biology and poor prognosis.  

3.2 Introduction 

Hepatocellular carcinoma (HCC) is a heterogeneous cancer that varies vastly in clinical 

outcome and response to therapy. Although several studies have identified important molecular 

classes in HCC, there remains uncertainty regarding their associations with outcomes and their 

complex interaction with liver regenerative processes11,87-90,93-95,119,130,175-177. Recently, our lab 

defined three distinct subpopulations of HCC tumors, HCC, Blast-Like, and CCA-Like based on 

gene expression similarity to cholangiocarcinomas and hepatoblast cells178. The HCC class has 

prototypical HCC tumor characteristics. Blast-like has enrichment of TP53 mutations and HBV 

positive status, exposure-related mutational signatures like the HCC class, and transcriptional 

patterns similar to hepatoblasts. While the CCA-Like resembles HCC histologically, but 

molecularly they looked more like cholangiocarcinomas with similar patterns of DNA mutations 

(IDH1/2, BAP1), DNA damage repair mutational signatures, and transcriptional patterns. These 

differences in key DNA-repair pathways suggest the importance of DNA repair, but exploration 

of DNA-repair specific signatures and their relationships to other cellular pathways could help 

elucidate their significance in HCC.  

Hepatocytes, the chief functional cells of the liver, are responsible for many liver 

functions, such as detoxification, carbohydrate metabolism, lipid metabolism, and protein 

synthesis. If any of the regulatory pathways supporting liver function are impeded, the liver 

becomes more susceptible to advanced liver disease, including cirrhosis, hepatitis, and 

eventually, HCC55. These changes lead to increased rates of hepatocyte proliferation and 

impaired G1/S checkpoint179,180. DNA repair plays a role in normal liver function and varies as a 
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function of the cell cycle181. Dysfunction in DNA repair pathways has been linked to many 

cancer types, but the liver’s unique capacity to regenerate adds additional complexity to HCC.  

It is well established that the liver’s regenerative capability is tightly coupled to DNA 

repair processes182-185. Upon chronic liver damage, both processes are substantially 

dysregulated and there is an increased risk of genomic instability109,180,186,187. This dysregulation 

triggers a set of DNA damage response (DDR) pathways which orchestrate hepatocyte DNA 

repair, cell cycle arrest, and cell death. Aberrations of DNA repair and associated pathways, 

such as homologous recombination (HR), mismatch repair (MMR), and nonhomologous end 

joining (NHEJ), have been implicated in impairing liver genomic integrity, leading to activation of 

hepatocarcinogenesis and HCC development188-191. Given the importance of these two 

processes, they could have a joint impact on prognosis and therapeutic response. Specifically, 

dysregulation of DDR may determine chemoresistance, as shown in other tumor types192,193.  

Here, we investigated DNA repair defects in TCGA HCC study using a selected panel of 

199 genes representative of fifteen DNA repair pathways (Figure 3.2). We sought to understand 

DNA repair in the context of liver homeostasis, including liver-specific gene expression, mitosis, 

and liver regeneration. We hypothesized that specific DNA repair patterns, along with liver 

regenerative capacity, could predict prognostic groups in HCC. Further characterizing the DNA 

repair pathways in both low and high repair HCC tumors, and integrating genomic information 

and clinical data, may help to better understand HCC heterogeneity in relation to outcomes. 
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Figure 3.2. Graphical abstract 

 

3.3 Methods 

3.3.1 Study population and datasets 

Upper quartile normalized RSEM gene expression data for TCGA Hepatocellular 

carcinoma (HCC dataset, n=374) was downloaded from the GDC legacy archive 

(https://portal.gdc.cancer.gov /legacy-archive/) and log2 transformed. The data was median 

centered across samples. 

Mutation data, including DNA variant allele frequency (VAF), was downloaded from Ellrott et 

al194 (https://gdc.cancer.gov/about-data/publications/mc3-2017). Retrieved processed RNA data 

from TCGA PanCancer (https://gdc.cancer.gov/about-data/publications/pancanatlas)195. For 

each somatic mutation in the VAF file, we calculated RNA fragment allele counts. TCGA data is 

available through the GDC data portal, https://portal.gdc.cancer.gov/. 

 

https://gdc.cancer.gov/about-data/publications/mc3-2017
https://portal.gdc.cancer.gov/
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3.3.2 Classification of DNA repair groups in RNA expression data 

We curated a list of 199 genes representing regulators of many DNA repair pathways 

(Supplemental Table 3.8.1). The panel was comprised of the following DNA repair pathways: 

Mismatch repair (MMR), Nucleotide Excision Repair (NER), Translesion Synthesis (TLS), 

Fanconi Anemia (FA), Base Excision Repair (BER), Nucleotide Metabolism, Template Switch, 

Poly ADP Ribose Polymerases (PARP), Checkpoint, DNA replication factors/Cell Cycle, 

Homologous Recombination (HR), Nonhomologous End Joining (NHEJ), Alternative End 

Joining (Alt-EJ), Cancer Testis Antigens (CTAs) [including HORMAD1 and MAGEA4, which are 

pathological cancer-specific activators of HR and TLS respectively196,197], and APOBEC cytosine 

deaminase family.  

The 199-Repair score was calculated as the median of the DNA repair genes. We 

applied the R package mclust (v5.4.7)198 to select the optimal cut-point, and based on the 

determined cut-point of 0.1, samples were classified as Low repair or High repair. Hepatitis B 

virus (HBV) was detected in HCC tumors RNAseq data via VirDetect199. Expression data was 

visualized using ComplexHeatmap (v2.8.0)200 in R. All analyses was performed using R 

Statistical Software (v4.1.0, R Core Team 2021)201 unless otherwise noted. 

3.3.3 Define mitotic and regeneration patterns in HCC  

We calculated the Mitotic index score using the median of the 10 mitotic pathway genes 

– BUB1, BUB1B, BUB3, CDC20, CDH1, ESPL1, MAD1L1, MAD2L1, PTTG1, TRIM69 – from 

the 199 DNA repair gene panel. A regeneration score from Colak et al202 was derived from their 

regeneration activation and inhibition gene sets in by multiplying activation gene expression 

values by +1 and inhibition gene expression values by -1, then combined and the median value 

calculated. We compared continuous mitotic and regeneration score components by DNA repair 

groups using Wilcoxon signed-ranked tests.  
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3.3.4. Interrogation of biological states and processes in DNA repair groups 

Gene Set Enrichment Analysis (GSEA)155,156 was performed by comparing High repair 

group vs Low repair group for all HCC tumors, significance was determined by using a nominal 

p-value <0.05 and false-discovery rate (FDR) <0.25. We utilized the MSigDB Hallmark gene set 

and excluded any genes overlapping (103 genes) with our DNA repair gene panel to control for 

the fact the groups are derived from RNA expression data. Normalized Enrichment Scores 

(NES) were plotted for Hallmark pathways identified as significant for the High Repair and Low 

Repair group. We calculated pathway scores for selected significant pathways. Hallmark 

pathway scores and liver specific markers were compared stratified by Repair groups with 

adjacent normal using pairwise t-tests to investigate liver biological function.  

3.3.5 Association of p53 and HRD  

To assess the mutational landscape across the groups, we considered only genes 

mutated in at least 5% of on cohort to avoid bias due to genes mutated in a single sample and 

compared the differentially mutated genes between the groups using fisher test, then only 

significant genes (p<0.05) implicated in HCC were selected, TP53, RB1, CTNNB1. To 

interrogate defects in liver metabolic pathways, we specifically chose liver metabolic genes 

mutated in HCC >10%, yielding two genes: APOB and ALB. HRD mutations (AXIN1, ATM, 

POLE, BRCA1, BRCA2, BARD1, BRIP1)  were chosen and examined based on the prognostic 

value in HCC identified by Chen et al120. We used a previously validated RNA signature that 

aggregates information on TP53-dependent genes to classify TP53 functional status (mutant-

like or wild-type) based on a similarity-to-centroid approach. TP53 mutational status was 

classified based on presence (TP53 mut) or absence (TP53 WT) of somatic TP53 mutations. 

We compared TP53 RNA variant allele frequency (VAF) vs DNA VAF stratified by Repair 

groups using a linear model. Homologous recombination deficiency (HRD) scores, including 
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Loss of Heterozygosity (LOH)203, large scale transitions (LST)204, and number of sub 

chromosomal regions with allelic imbalance extending to the telomere (NtAI)205, were extracted 

supplemental data from Knijnenburg et al206. Scores were dichotomized at a cut point of 20 

based on the distribution of HRD scores in liver to ensure HRD status is tissue specific similar to 

prior literature207-209.  

We estimated the relative frequency differences (RFDs), representative of the difference 

between an index group and a reference group in the proportion of individuals exhibiting a given 

clinical or demographic feature, between the High Repair/Regenerative group (index group) and 

the Low repair group (referent group). RFDs and 95% confidence intervals (CI) were estimated 

using generalized linear models with binomials distributions and identity link functions.  

3.3.6 Low Repair tumor classification  

To unmask differences in the Low repair group, we removed samples classified in the 

High Repair/Regenerative group from the TCGA HCC expression data. We performed 

clustering analysis using the R package ConsensusClusterPlus (v1.56.0)134 on the Low repair 

group to evaluate expression differences present within the Low repair group.  

3.3.7 Clinical variables and survival analysis 

We extracted TCGA clinicopathologic and survival data from Liu et. al148. Clinical data was 

filtered to samples with ≥94% of available clinical annotations across the study for race, gender, 

age, pathologic stage, pathologic primary tumor (pT), grade, and survival. AJCC TNM 

Classification 2010 (7th Edition)210 was used for pathologic primary tumor (pT) and samples 

classified by AJCC TNM Classification 6th Edition211 were converted to the 7th edition. Samples 

classified based on AJCC 4th and 5th edition TNM staging system212,213 were excluded from 

analyses due to lack of sufficient information for conversion to the 7th edition. Kaplan-Meier curves 

with log rank tests were generated using the R package survminer (v0.4.9)147. Vascular invasion 
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was grouped by presence of Univariate Cox regression was used to determine significance of 

DNA repair groups, sex, race, molecular subtype, stage, grade, and HBV status. Models were 

adjusted for pathological tumor stage and tumor grade to determine whether associations 

between repair status and survival held. Continuous variable comparisons were made by Repair 

groups using Wilcoxon signed-rank test or ANOVA as indicated. Statistical analyses were 

performed using R unless otherwise noted.  

3.4 Results 

3.4.1 HCC tumors exhibit two groups based on expression of 199 DNA repair genes 

To characterize DNA repair patterns in TCGA hepatocellular carcinoma (HCC) samples, 

we calculated an RNA-based DNA repair score based on 199 DNA repair genes and identified 

an optimal cut point to distinguish the groups. HCC tumors were classified into two groups 

based on DNA repair gene expression: Low repair (n=216) and High repair (n=158) (Figure 

3.7.1a). The High repair group includes many upregulated genes across all DNA repair 

pathway, pointing to high activity of DNA repair genes. High repair significantly associated with 

Blast-like and CCA-like molecular subtypes, Asian race, enrichment of HBV positive cases, and 

higher tumor stage, pathologic primary tumor (pT), and grade (Table 3.7.1). The median age at 

diagnosis was significantly lower in the High repair group. There were no significant differences 

in vascular invasion between the repair groups. Low repair samples represent prototypical HCC 

tumors as majority were classified in the HCC molecular subtype and were significantly enriched 

for lower stage and grade tumors.  

Based on overall high DNA repair expression seen in the High repair group, we 

hypothesized that this group may have high activity of mitotic and liver regenerative pathways. 

To investigate, we examined mitotic and liver regenerative pathway patterns stratified by the 

Repair groups. Mitotic index score and regenerative score were significantly increased in the 
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High repair group compared to the Low repair group (p<0.001, Figure 3.7.1b-c). Liver 

regeneration-associated repair patterns neglect biological heterogeneity.  

To further interrogate biological processes occurring in these groups, we performed 

gene set enrichment analysis (GSEA) using the Hallmark gene signature set to identify 

differential pathway signatures between the High and Low repair group (Supplemental Figure 

3.8.1a). The High repair group was significantly enriched for 5 pathways including cell cycle 

gene sets (G2M checkpoint, E2F targets, Mitotic spindle), spermatogenesis and MYC targets. 

The Low repair group had 8 significantly enriched pathways all related to liver biology and 

function (Adipogenesis, xenobiotic metabolism, fatty acid metabolism, coagulation, bile acid 

metabolism, oxidative phosphorylation, peroxisome, and reactive oxygen species). The 

adipogenesis and fatty acid metabolism signature scores were significantly higher in the Low 

repair but still not as high as the tumor adjacent normal tissue (p<0.001 for all pairwise 

comparisons, Supplemental Figure 3.8.1b-c). MYC target genes were significantly upregulated 

in the High repair samples compared to the Low repair (p<0.001, Supplemental Figure 3.8.1d). 

The High repair group displayed significantly higher expression of cell cycle and hepatoblast 

marker AFP compared to the Low Repair group and Tumor adjacent normal (p<0.001 for all 

pairwise comparisons, Supplemental Figure 3.8.1e). The Low repair group also had 

significantly increased expression of liver markers ALB and cytochrome P450 (CYP450), but the 

expression levels were still not as high as normal liver (p <0.01, Supplemental Figure 3.8.1f-

g). The Low repair group displays a more liver biology gene expression, while the High repair 

group shows decreased liver gene expression and increased DNA repair dysregulation. 

3.4.2 High Repair classes associate with p53 functional status and TP53 mutation status  

Given ~36% of HCC tumors have TP53 mutations and the mutual regulation between 

cell cycle and p53, we hypothesized p53 plays a vital role in liver repair dysfunction and 
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genomic instability. We assessed the mutational landscape based on the Repair groups. Of 781 

recurrently mutated genes present in at least 5% of liver samples, only TP53 and CTNNB1 were 

significantly different between the repair groups. The High repair group had a significantly higher 

rate of TP53 mutations (44.9%) compared to the Low repair group (19%, p<0.001, Table 3.7.2). 

Interestingly, CTNNB1 mutations were significantly enriched in the Low repair group (32.4%) 

compared to the High repair group (18.4%) (p<0.001). CTNNB1 mutations occur frequently in 

HCCs, leading to activation WNT/β-catenin signaling in 30-50% of HCC cases12. Another key 

liver gene ALB was more frequently mutated in the Low repair group (19.4%) than the High 

repair group (11.4%) though did not reach significance. The key HRD genes (ATM, POLE, 

BRCA1/2, BARD1, BRIP1) were less than 5% mutation rate in both groups, except for DNA 

damage response pathway gene AXIN1 which was higher in the High repair (9.5%) as 

compared to the Low Repair (6.0%). Based on the presence HRD mutated genes by repair 

groups, HRD genes were mutated at a higher frequency in the High repair (21.5%) than the Low 

repair (17.6%). 

To further consider the role of master regulator TP53, we used a previously validated 

RNA signature to classify tumor for p53 functional status (mutant-like/Wild-Type [WT]) 214. 

Patterns of expression for the p53 gene signature are shown across the HCC tumors in Figure 

3.7.2a. Two groups are evident: one enriched for p53 mutant-like and the other enriched for 

p53-Wild-Type (WT). The High Repair group was significantly enriched for tumors classified as 

p53 mutant-like, accounting for 75% of the p53 mutant-like HCC samples (p<0.001, 

Supplemental Table 3.8.2).  

We evaluated whether p53 status (RNA), TP53 mutational status (DNA), HRD and HBV 

status were associated with the DNA Repair groups. The High Repair group had enrichment for 

p53 mutant-like status (RNA), TP53 mutation status (DNA), HRD High status and HBV positive 

status (Figure 3.7.2b, Supplemental Table 3.8.2). In the High repair group, the mutant p53 
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signature (RFD: 66.5%, 95% CI 58.5-73.5) was even more prevalent than TP53 DNA mutation 

status (RFD: 26.0%, 95% CI 16.6-35.2) (Supplemental Figure 3.8.2a). Increased HBV positive 

status tracks with the correlation of increased TP53 mutations in HBV+ HCC tumors. High repair 

tumors had significantly higher HRD scores than Low repair tumors (p<0.001). HRD high tumors 

were unequally distributed between Low repair and High repair tumors (RFD: 34%, 95% CI 

24.2-44.0) (Supplemental Figure 3.8.2b). High repair samples are more likely to be p53 

mutant-like as well as high DNA variant allele frequency (VAF) suggesting mutation and single 

copy loss or loss of heterozygosity and high RNA expression of the mutant allele 

(Supplemental Figure 3.8.2c). These results imply there is strong TP53 dysfunction in the High 

repair group. Differences in p53 mutant status underscores the importance of p53 in liver tissue 

homeostasis. 

3.4.3 Clustering analysis reveals three subgroups within Low repair groups 

The overall, general high expression of DNA repair genes in the High 

repair/Regenerative group may mask heterogeneity within the Low Repair group. To assess 

this, we performed consensus clustering in only the samples classified as Low repair. The 

clustering analysis revealed three subgroups – L1, L2, L3, with increased heterogeneity across 

the DNA repair genes (Figure 3.7.3a). L1 was significantly decreased for DNA repair activity 

compared to L2 and L3, but L3 showed greater similarities to the higher repair activity seen in 

the High repair group (Figure 3.7.3b, L1 vs rest p<0.001). L1 and L3 were defined by higher 

expression of homologous recombination (HR) related genes (BRIP1, BRCA2, BARD1, 

RAD51AP1). L2 and L3 were characterized by higher expression of cell cycle and mitotic 

checkpoint genes (BUB1 and BUB1B). L2 showed higher expression of replication factors 

(POLD1, RB1, and HORMAD1). When we examined associations with clinicopathological 

feature and risks between the subgroups, only race, grade, and HBV status were significant 

(Table 3.7.3). L1 was associated with lower grade while L2 and L3 were significantly enriched 
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for higher grade tumors (p<0.001). Asian ancestry and HBV positive status was increased in L2 

and L3 compared to L1 (p=0.002 [p-value based on Asian vs White], p=0.001). There were no 

associations with pathologic tumor stage, pathologic primary tumor stage (pT), or vascular 

invasion across the Low repair groups. We assessed differences in TP53 functional status, 

TP53 mutational status, and HRD status in the Low repair subgroups (Supplemental Table 

3.8.3). L2 and L3 were significantly enriched for p53 mutant-like (57.8% and 42.2%, 

respectively) and TP53 mutations (29.3% and 61.0%, respectively) which were mostly lacking in 

L1 (p53 mutant-like 0%, TP53 mutation 9.7%, p<0.001). Also, L2 and L3 had significantly higher 

HRD scores than L1 (p<0.001).  

3.4.4 High Repair group has worse overall survival and progression-free survival  

We investigated progression-free and overall survival differences between the repair 

groups. Clinical outcomes were similar for L1 and L2 and were combined for analyses. (Figure 

3.7.4). High repair samples have significantly worse progression-free (Hazard Ratio [HR] 1.78, 

95% CI 1.26-2.49) and overall (HR 1.97, 95% CI 1.29-2.99) survival compared to L1+L2 tumors. 

Similarly, the L3 group has significantly worse than progression-free (HR 1.24, 95% CI 0.81-1.91) 

and overall (HR 1.63, 95% CI 0.98-2.71) survival outcomes. Both L3 and High repair tumors 

retained significance for worse overall survival, but only the High repair tumors retained 

significance for worse progression free survival when pathologic stage and grade were included 

in the model. 

3.5 Discussion 

We used a curated gene panel to identify DNA repair expression classes in TCGA HCC 

tumors. We identified two DNA repair groups (Low repair and High repair/Regenerative) with 

distinct biological patterns. The Low repair group was characterized by classical HCC tumor 

features and lower grade, while the High repair group had high expression of all DNA repair 
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genes, associated with Blast-like and CCA-like molecular subtypes, higher stage, Asian race, and 

worse prognosis. The High repair group overshadowed subtleties in the Low repair, and therefore, 

clustering solely in the Low repair group elucidated three subgroups: L1, L2, L3. The L1 and L2 

subgroups were characterized by liver pathways and lacked regenerative processes associated 

with the High repair group. L3 retained expression of liver-related genes, but was more similar to 

DNA repair expression and survival outcomes of the High repair group potentially representing a 

transitory state that could shift to a High repair phenotype. 

Previous studies have detected similar molecular classes, most studies emphasized two 

main groups based on DNA repair RNA expression93-96. Three previous studies identified two 

DNA repair groups: Oshi et al. found a low and high repair group based on a gene set that 

included 150 genes94, P. Lin et al. classified a DNA repair activated and suppressed group 

using 276 genes95, and Chen et al. found a low and high risk DNA repair group based on 23 

DDR-related gene pairs96. Across these studies, similar to our results the high repair activated 

samples were associated with worse survival, and these authors further found high repair/DDR-

activated samples were associated with distinct immune profiles, poor differentiation, elevated 

intratumor heterogeneity and mutation burden. Of these three studies, gene overlap with our 

199-gene set varied (Overlap was 26, 122, and 11 genes for Oshi, P. Lin, and Chen, 

respectively). The similarities observed across these studies, despite the different number of 

overlapping genes, underscores that these high repair patterns are robust and can be detected 

with few features. One advantage of our gene list, which covers many DNA repair pathways, 

was that we included several essential DNA repair genes such as BUB1, BUB1B, RAD51AP1, 

RB1, and HORMAD1 that are known to have significant clinical relevance215-220 and helped us to 

define the heterogeneity among the low DNA repair group. Mitotic and replicative factors, along 

with HR expression, helped to distinguish low repair groups. While there is agreement among 

groups on the two-classification schema, extending beyond two groups has proven more difficult 
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with little resolution. For example, one lab found four groups using a combination of manual and 

cluster-based methods. Whereas we used a data-driven clustering approach, and while both 

studies found four groups, there were different gene sets utilized and the groups varied greatly. 

It is clear regardless of the size of the gene set, we can identify the High repair groups, but more 

resolution is needed to identify the low repair samples.  

Liver regeneration is a key liver feature that plays a role in HCC development by 

supporting a tumorigenic environment221,222. We found elevated expression of liver regeneration 

signatures in the High repair group.  High repair/regenerative tumor phenotypes were related to 

high grade and Blast-like molecular subtype. Samples classified within the High repair group 

showed increased wound healing (i.e., increased mitotic activity), increased regenerative activity, 

increased p53 dysfunction, indicating these processes act in tandem. Many of these pathways 

have been implicated in micrometastases and de novo cancers following surgical resection for 

liver diseases and HCC221,223-225, emphasizing that these pathways are interconnected and 

necessary for liver homeostasis.  

We further contextualized DNA repair in association with other established pathways in 

implicated in HCC (p53, HBV status, liver inflammation) to reveal underlying dysregulation. 

Prevalent p53 dysfunction is a hallmark of the High repair group. While TP53 mutations were 

enriched in this group, an RNA signature of pathway dysfunction was observed in almost every 

single High repair sample. Due to p53s role in mediating senescence post liver injury, it is 

responsible for regulation of fibrosis and may prevent deterioration to HCC226. In addition, mitotic 

activity is tightly and negatively controlled by p53227, mitotic dysregulation is strongly associated 

with improper cell division and aneuploidy64, and may promote inflammatory environments228-230.  

With respect to HBV, the TCGA includes representation from Southeast Asian patients 

where a main risk factor for HCC is HBV infection. HBV subverts DNA damage repair (DDR) 
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pathways creating an inflammatory environment that promotes hepatocarcinogenesis and HCC 

development. Data has linked chronic HBV infection to immune induced liver injury168-170, this 

injury can result in hyperactive DDR, and in turn lead to a more aggressive chemo-resistant 

unresectable liver cancer. We also found that HBV positive HCC tumors associated with 

increased expression of cell cycle and mitotic genes. While viral hepatitis vs nonviral classification 

paradigm is an important clinical distinction and we do observe enrichment of HBV infection status 

in the High Repair group, there still was  heterogeneity in the DNA repair groups across HCC and 

outcomes may not be solely driven by HBV infection status. We also had limited information for 

risk factors such as nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis 

(NASH).  This emphasizes the importance of integration of risk factors and molecular features 

versus stratification by risk factors.  

The major advance of our work was in showing that separating high repair/regenerative 

tumors allowed improved characterization of heterogeneity among Low repair HCCs. This helped 

identify the L3 tumor group, which has some preserved liver biology-related gene expression, but 

higher HRD and DNA repair dysfunction. L3 also had higher frequency of samples with a p53 

mutant-like call and TP53 mutations. While the L2 group was enriched with tumors that were 

higher grade and patients with Asian ancestry and HBV infection compared to L1, there were no 

differences in survival outcomes between the groups. By stratifying on repair status, we identified 

classes that predict outcomes. Regardless of grade and stage, L3 and High repair had worse 

prognosis compared to the L1 and L2 tumors. TCGA has a short length of follow-up and lack of 

liver disease scoring (Child-Pugh classification, Ishak fibrosis stage) and treatment data, limiting 

our ability to investigate the role of our DNA repair classifiers in evaluating extent of liver damage 

and HCC patient therapy. More comprehensive and standardized annotation for clinical data 

elements will be essential to better understand associations between DNA repair defects, liver 

regenerative mechanisms, and risk factors in HCC.  
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In summary, this work expands on prior studies to identify four DNA repair classes in HCC 

(L1, L2, L3, and High repair/Regenerative) that are associated distinct biology and clinical 

prognosis. Our data suggests that DNA repair and liver regeneration work in tandem to define 

HCC heterogeneity. Future work should evaluate heterogeneity in DNA repair in association with 

specific chemotherapeutic regimens to address the need for improved treatment strategies for 

this poor prognosis cancer type. 

3.6 Acknowledgements  

We thank the members of the K.A.H. and M.A.T laboratories for useful discussions. Figure 

3.2 was created in biorender.com. This work was supported by National Institutes of Health Grant 

5 U24 CA210988 (to K.A.H) and UNC-CH Cancer Control Education Program (T32CA057726, to 

A.W.).  

  



78 

3.7 Figures and Tables 

Figure 3.7.1. HCC tumors separate into two distinct groups based on DNA repair pathway 

gene expression 

(a) Expression heatmap of 199 DNA repair genes ordered by Repair groups. The heatmap 

scale is low expression (light blue) to high expression (yellow). Rows represent DNA repair 

genes and columns samples. Annotation tracks show molecular subtype, race, HBV status, and 

Repair groups. Violin plot of (b) mitotic index score and (c) regeneration score by Repair groups, 

Low repair (blue) and High repair (red), p-value for Wilcoxon test between groups.
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Figure 3.7.2. High Repair classes associate with dysfunctional p53 functional status and 

TP53 mutation status 

(a) Expression patterns of p53 gene signature with samples ordered by p53 score and sorted by 

p53 mutant-like genes. The heatmap scale is low expression (green) to high expression (red). 

Rows are DNA repair genes and columns are samples. Annotation tracks show HRD score, 

Repair groups, TP53 mutation status, and p53 score. (b) Relative Frequency Difference (RFD) 

analysis of features in High group compared to Low Repair group. Features include p53 mutant 

status, TP53 mutation status, HRD status, and HBV status. 95% confidence intervals (CI) are 

included for each measure.
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Figure 3.7.3. DNA repair pathway gene expression heterogeneity within the Low repair 

group  

(a) Heatmap DNA repair signatures in Low repair group. The heatmap scale is low expression 

(light blue) to high expression (yellow). Rows are DNA repair genes and columns are samples. 

Annotation track shows clusters: L1 (light green), L2 (turquoise), L3 (purple). Major gene 

pathways in each gene cluster are annotated on the rows: APOBEC (pink), Cell cycle/mitosis 

(green), HR (gold), NHEJ (plum), Replication (navy).  

(b) Repair gene score identifies distinct features across early and advanced HCC tumors. Violin 

plot of repair score by repair groups, **** indicates p<0.0001 for two sample t-test between High 

expression group and L1.  
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Figure 3.7.4. Low repair subgroups L1 and L2 have better progression-free and overall 

survival 

Kaplan-Meier curves of TCGA HCC data for (a) progression-free and (b) overall survival. All 

survival data was censored at 5 year, and hazard ratios, 95% CI, and log-rank p-values were 

calculated for each measure. 
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Table 3.7.1. Overall patient characteristics of TCGA HCC study, overall and stratified by 

199-Repair groups. 

 

  Overall Low High 
p-

value 
RFD [95% CI] 

n 374 216 158     

Age at diagnosis         

Mean ± SD 59.48 (13.47) 60.74 (± 13.89) 57.75 (± 12.71) 0.034  - 

Sex           

Female 121 (32.4) 65 (30.1) 56 (35.4) 0.327 REF 

Male 253 (67.6) 151 (69.9) 102 (64.6)    -5.35 [-15.0 – 4.3] 

Racea           

White 185 (51.1) 117 (57.1) 68 (43.3) 0.025 REF 

Asian 160 (44.1) 78 (38.0) 82 (52.2)   14.2 [3.92 – 24.4] 

Black 17 (4.7) 10 (4.9) 7 (4.5)    -0.42 [-4.79 – 3.95] 

Molecular Subtype         

HCC 275 (73.5) 198 (91.7) 77 (48.7) <0.001 REF 

Blast-Like 66 (17.6) 9 (4.2) 57 (36.1)   31.9 [24.0 – 39.9] 

CCA-Like 33 (8.8) 9 (4.2) 24 (15.2)   11.0 [4.82 – 17.2]  

AJCC Pathologic Tumor Stageb       

I 173 (49.4) 116 (57.7) 57 (38.3) 0.001 REF 

II 87 (24.9) 44 (21.9) 43 (28.9)   6.97 [-2.28 – 16.2] 

III/IV 90 (25.7) 41 (20.4) 49 (32.9)   12.5 [3.11 – 21.9] 

AJCC Pathologic Primary Tumor (pT)c       

T1 178 (51.4) 120 (61.9) 58 (38.2) <0.001 REF 

T2 88 (25.4)  40 (20.6) 48 (31.6)   11.0 [1.68 – 20.3] 

T3/T4 80 (23.1) 34 (17.5) 46 (30.3)   12.7 [3.74 – 21.9] 

Graded           

G1/G2 233 (62.3) 155 (73.1) 78 (49.7) <0.001 REF 

G3/G4 136 (36.4) 57 (26.9) 79 (50.3)   23.4 [13.6 – 33.3] 

Cirrhosis/Fibrosise         

None 75 (34.9) 49 (36.6) 26 (32.1) 0.604 REF 

Cirrhosis/Fibrosis 140 (65.1) 85 (63.4) 55 (67.9)  4.47 [-8.56 – 17.5] 

HBV infectionf           

Negative 217 (59.0) 146 (68.9) 71 (45.5) <0.001 REF 

Positive 151 (41.0) 66 (31.1) 85 (54.5)   23.4 [13.4 – 33.4] 

Vascular invasiong         

None 208 (65.4) 115 (65.0) 93 (66.0) 0.948 REF 

Micro/Macro 110 (34.6) 62 (35.0) 48 (34.0)   0.98 [-9.57 – 11.4] 
a Excludes samples noted as other and NA (n=12)       
b Excludes samples without pathologic stage annotation (n=24)       
c Excludes samples based on AJCC 4th and 5th edition and noted as NA (n=28)     
d Excludes samples without grade annotation (n=5)       
e Excludes samples without annotation (n=159)       
f HBV infection determined by >5 HBV reads from RNA-seq       
g Excludes samples without annotation (n=56) 
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Table 3.7.2. Overall mutation rate for frequently mutated, liver metabolic and DNA repair 

genes in HCC stratified by 199 Repair groups  

Frequently mutated genes 

Gene Low Repair (n=216) High Repair (n=158)   

TP53 41 (19.0%) 71 (44.9%) *** 

CTNNB1 70 (32.4%) 29 (18.4%) *** 

Liver metabolic mutated genes 

ALB 42 (19.4%) 18 (11.4%)  ns 

HRD mutated genes 

AXIN1 13 (6.00%) 15 (9.50%) ns 

ATM 7 (3.24%) 7 (4.43%) ns 

POLE 4 (1.85%) 1 (0.63%) ns 

BRCA1 4 (1.85%) 1 (0.63%) ns 

BRCA2 6 (2.80%) 2 (1.30%) ns 

BARD1 2 (0.93%) 5 (3.20%) ns 

BRIP1 3 (1.40%) 3 (1.90%) Ns 

*** indicate p<0.001   
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Table 3.7.3. Clinicopathological features and risk factors of 3 subgroups in the Low 

Repair group 

    L1 L2 L3 p-value 
n 86 56 74   

Age          

Mean (± SD) 60.30 (± 15.04) 58.23 (± 13.84) 63.15 (± 12.23) 0.126 

Gender         

Female 24 (36.9) 18 (27.7) 23 (35.4) 0.843 

Male 62 (41.0) 38 (25.2) 51 (33.8)   

Racea         

White 56 (47.9) 21 (17.9) 40 (34.2) 0.002* 

Asian 21 (26.9) 29 (37.2) 28 (35.9)  
Black 5 (50.0) 0 (0.0) 5 (50.0)   

Molecular subtype       

HCC 81 (40.9) 50 (25.3) 67 (33.8) 0.192 

Blast-Like 1 (11.1) 5 (55.6) 3 (33.3)   

CCA-Like 4 (44.4) 1 (11.2) 4 (44.4)   

AJCC Pathologic Tumor Stageb     

I 45 (38.8) 27 (23.3) 44 (37.9) 0.446 

II 17 (38.6) 16 (36.4) 11 (25.0)   

III/IV 16 (39.0) 12 (29.3) 13 (31.7)   

AJCC Pathologic Primary Tumor (pT)c     

T1 48 (64.0) 26 (54.2) 46 (64.8) 0.691 

T2 15 (20.0) 13 (27.1) 12 (16.9)   

T3/T4 12 (16.0) 9 (18.8) 13 (18.3)   

Graded         

G1/G2 74 (47.7) 33 (21.3) 48 (31.0) <0.001 

G3/G4 10 (17.5) 23 (40.4) 24 (42.1)   

Cirrhosis/Fibrosise       

Cirrhosis/Fibrosis 31 (36.5) 20 (23.5) 34 (40.0) 0.028 

No 27 (55.1) 13 (26.5) 9 (18.4)   

HBV statusf         

Negative 69 (47.3) 30 (20.5) 47 (32.2) 0.001 

Positive 15 (22.7) 26 (39.4) 25 (37.9)   

Vascular invasiong       

None 21 (29.6) 18 (39.1) 23 (38.3) 0.46 

Micro/Macro 50 (70.4) 28 (60.9) 37 (61.7)   
a Excludes samples noted as other and NA (n=9)       
b Excludes samples without pathologic stage annotation (n=15)     
c Excludes samples based on AJCC 4th and 5th edition and noted as NA (n=22) 

d Excludes samples without grade annotation (n=4)     
e Excludes samples without annotation (n=82)       
f HBV infection determined by >5 HBV reads from RNA-seq     
g Excludes samples without annotation (n=39)     
*p-value based on Asian vs white people     
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3.8 Supplemental Figures and Tables 

Supplemental Figure 3.8.1. Low repair samples display expression of genes involved in 

liver function 

(a) Gene Set Enrichment Analysis was performed Low Repair (blue) vs High Repair (red) using 

the Hallmark gene sets. Significant pathways were plotted by normalized enrichment score 

(NES). One-way ANOVA p-value is displayed. (b) Adipogenesis, (c) Fatty acid metabolism, and 

(d) MYC target pathway scores are plotted by Repair groups and Tumor adjacent normal. (e-g) 

Gene expression for hepatoblast marker AFP, hepatocyte markers ALB, and liver metabolomic 

marker CYP450 are shown by Repair group. For pairwise comparisons between groups, ns 

indicates not significant, *** indicates p<0.001 and **** indicates p<0.0001 for all pairwise t-test.  
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Supplemental Figure 3.8.2. TP53 dysfunction and high HRD are defining features of High 

repair tumors 

(a) Violin plot of p53 score by Repair groups. Points are colored by TP53 mutation status, Low 

repair (blue) and High repair (red); p < 2.2e-16 for Wilcoxon test between repair groups.  

(b) Violin plot of HRD score by Repair groups. Points are colored by TP53 mutation status, Low 

(blue) and High (red); p < 2.2e-16 for Wilcoxon test between repair groups. 

(c) Variant allele frequencies for TP53 were calculated from the RNA and DNA sequencing reads. 

Repair groups are indicated by point color (blue=Low and red=High/Regenerative). Regression 

lines are plotted and colored according to Repair group.
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Supplemental Table 3.8.1. DNA repair genes by pathway 

 

 

 

Pathway
Error 

Propensity
Genes 

Mismatch Repair Low EXO1, MLH1, MLH3, MSH2, MSH3, MSH6, PMS2

Nucleotide Excision Repair Low 
ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, LIG1, LIG3, 

RAD23B, XPA, XPC, XRCC1

Trans-Lesion Synthesis Low 
MAD2L2, POLH, POLI, POLK, RAD18, REV1, UBE2A, UBE2B, 

USP7

Fanconi Anemia Low

BTBD12, C17orf70, C1orf86, FANCA, FANCB, FANCC, FANCD2, 

FANCE, FANCG, FANCI, FANCL, FANCM, MTMR15, PALB2, 

UBE2T, USP1

Base Excision Repair Low APEX1, FEN1, NEIL1, NEIL2, NEIL3, OGG1, PCNA, PNKP

Nucleotide metabolism Low RNASEH1, RNASEH2B, RRM1, RRM2, RRM2B, TK1

Template Switch Low SHPRH, ZRANB3

Poly ADP Ribose Polymerases Low C12orf48, PARP1, PARP2, PARP3, PARP4, PARP9

Checkpoint High
ATM, ATR, CHEK1, CHEK2, CLSPN, HUS1, HUS1B, MDC1, RAD1, 

RAD9A, RAD9B, RAD17, TIMELESS, TIPIN

DNA replication factors/Cell Cycle High

AURKA, AURKB, CCNA1, CCNA2, CCNB1, CCND1, CCND2, 

CCND3, CCNE1, CDC25A, CDC25B, CDC25C, CDC45, CDC6, 

CDKN1A, CDKN1B, CDKN2A, CDT1, DDB1, DDB2, E2F1, E2F2, 

E2F3, E2F4, E2F5, E2F6, E2F7, GMNN, MAX, MCM10, MCM7, 

MYC, PHB, PLK1, POLD3, POLD4,  POLE4, PPP1R12A, RB1, RBL1, 

RBL2, RFC2, RFC3, RFC4, RFC5, RPA1, RPA2, RPA3, WEE1

Homologous Recombination High

BARD1, BLM, BRCA1, BRCA2, BRIP1, DNA2, FAM175A, FBXO5, 

MUS81, RAD51, RAD51AP1, RAD51C, RAD51L1, RAD51L3, 

RAD54B, RAD54L, RAD54L2, RBBP8, RNF138,  TOP3A, TOP3B, 

TOPBP1, UIMC1, XRCC2

Nonhomologous End Joining High

DCLRE1C, DNTT, LIG4, MRE11A, NBN, NHEJ1, POLB, POLL, 

POLM, POLQ, RAD50, RIF1, RNF168, RNF169, RNF8, TP53BP1, 

XRCC4, XRCC5, XRCC6

Mitosis/Spindle Assembly Checkpoint High
BUB1, BUB1B, BUB3, CDC20, CDH1, ESPL1, MAD1L1, MAD2L1, 

PTTG1, TRIM69

Repair/Replication DNA Polymerases High POLD1, POLE

APOBEC
APOBEC1, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, 

APOBEC3F, APOBEC3G, APOBEC3H

Cancer Testes Antigens HORMAD1, MAGEA1, MAGEA4, MAGEA6, MAGEA10
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Supplemental Table 3.8.2. p53 and HRD-related features in HCC stratified by 199-Repair 

groups  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1 - Low 2 - High p-value 
n 216 158   

p53 status       

p53 mutant 45 (24.6) 138 (75.4) <0.001 

WT 171 (89.5) 20 (10.5)   

TP53 mutation status       

TP53 mutation 41 (36.6) 71 (63.4) <0.001 

WT 175 (66.8) 87 (33.2)   

HRD status       

HRD High 48 (36.1) 85 (63.9) <0.001 

HRD Low 153 (71.5) 61 (28.5)   

HBV status       

Negative 146 (67.3) 71 (32.7) <0.001 

Positive 66 (43.7) 85 (56.3)   
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Supplemental Table 3.8.3. p53 and HRD-related features in HCC by Low repair subgroups 

 

 

 

 

 

 

 

 

 

 

 

  L1 L2 L3 p-value 
n 86 56 74   

p53 status         

p53 mutant 0 (0.0) 26 (57.8) 19 (42.2) <0.001 

WT 86 (50.3) 30 (17.5) 55 (32.2)   

TP53 mutation status 

TP53 mut 4 (9.7) 12 (29.3) 25 (61.0) <0.001 

WT 82 (46.9) 44 (25.1) 49 (28.0)   

HRD status         

HRD High 8 (16.7) 18 (37.5) 22 (45.8) 0.002 

HRD Low 69 (45.1) 35 (22.9) 49 (32.0)   
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CHAPTER 4: CONCLUSIONS 

4.1 Summary 

Primary liver cancer includes both hepatocellular carcinoma (HCC) and 

cholangiocarcinoma (CCA), despite them having distinct etiologic and genomic features. This 

work presents a more focused analysis on characterizing HCC to gain an understanding of 

biological heterogeneity. We have identified, using multiple genomic platforms, two molecular 

classes (CCA-like and Blast-like) separate from prototypical hepatocellular carcinoma tumors 

that are associated with distinct genomic patterns, clinical factors, and survival. These 

differences are likely due to several pathway interactions. Particularly, DNA repair pathways 

have been implicated in producing clinical variability in HCC outcomes89,119-121.  

DNA damage and repair pathways generate characteristic mutational signatures. These 

mutational signatures may result from endogenous mutagenic processes (e.g., DNA repair 

dysfunction) or exogenous processes (e.g., environmental carcinogens). Mutational signatures 

provide a method to directly measure repair deficiencies associated with genetic and epigenetic 

defects. We discovered that the types of mutational signatures and their prevalence varied 

across the HCC subclasses. CCA-like tumors had specific associations with DNA repair 

mutational signatures, such as mismatch repair (MMR), similar to CCAs. Whereas Blast-like 

tumors were associated with exposure-related signatures, such as liver toxin aflatoxin, parallel 

to HCC. Matching mutational signatures to DNA repair defects has the potential to uncover 

class-specific targeted therapies. Therefore, further evaluating RNA-based DNA repair 

signatures, in association with liver regeneration and HCC characteristics, is a promising 

strategy for establishing the etiology of these signatures, and their significance in HCC tumor 
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progression. This would allow discovery of biomarkers candidates for patients with intermediate 

and advanced HCC, for which treatment options are limited. 

We identified two major repair classes in HCC characterized by low or high repair 

expression across all repair pathways similar to other studies93-96. However, the subset of 

samples with pronounced high repair expression across the board masked heterogeneity in the 

low repair samples. When we considered the low repair tumors separately, we identified three 

subgroups, L1, L2, L3. Overall, DNA repair expression varied across HCC tumors with a subset 

of high repair/regenerative tumors marked by substantial disrupted liver biology expression, p53 

mutant expression, and poor outcomes. These results indicate that there is a dynamic balance 

between liver regeneration and DNA repair signals. Dysregulation in these processes promotes 

a pro-tumorigenic microenvironment that facilitates tumor progression and alters cells malignant 

potential causing further disrupted liver function. Interestingly, most of the CCA-like and Blast-

like tumors associated with High repair/Regeneration, suggesting a link between repair 

dysfunction, mutational signatures, and outcomes. Our observations support the idea that repair 

signatures can be biomarkers for specific HCC characteristics and may bear clinical value as 

predictors of survival. The proposed method identifies additional biological heterogeneity 

beyond other two-class DNA repair schemas and the HCC tumor grading system alone.  

4.2 Significance and Translational Implications 

The prognostic ability of our molecular classes and DNA repair signatures poses the 

potential for them to be clinically relevant. Our current study evaluated this potential in HCC; 

however, future work should focus on evaluating DNA repair classes as prognostic and 

diagnostic signatures for predicting outcomes and patient classification Additional work to 

further delineate the important signaling pathway to better understand pathways required to 

drive malignant transformation of hepatocytes.  
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Although we are beginning to understand transdifferentiation and its role in HCC, much 

remains unknown. Our DNA repair signature strongly associates with the molecular subtype 

classes, with higher DNA repair correlating with more dedifferentiated classes Blast-like and 

CCA-like. CCA-like exhibited similar mutational patterns to CCA, reduced exposure-related 

mutational signatures compared to HCC, and upregulation of transdifferentiation pathways 

NOTCH, WNT and TGFβ. Mutational signatures provide a new way to examine exogenous and 

endogenous factors that have influenced cancer development. By examining mutational 

signatures and integrating them with our repair classes, we may reveal factors affecting 

prognosis in HCC tumors. Repair dysfunction in HCC tumors may interact with multiple 

signaling pathways to derive CCA-like and Blast-like tumors. Understanding these pathways 

could provide insight on progression and recurrence mechanisms, which is of significant 

importance since ~70% of all HCC cases recur even those with lower grade7. 

One major obstacle is high recurrence after surgical resection (up to 70% at 5 years, 

even at very early stage, single nodule ≤2cm)1. A second obstacle is ~90% of cases present in 

the setting of chronic liver damage, thereby limiting therapeutic options due to the patient’s 

overall health condition7. Liver regeneration following chronic liver damage or surgical treatment 

has been implicated in stimulating tumor progression and micrometastases through activation of 

cellular signaling pathways, particularly DNA damage and repair pathways225.  

To extend our current work, our DNA repair signatures could be applied to HCC tumors 

treated with curative resection and/or systemic targeted agent, followed by evaluation of 

distinguishing features for groups and outcome measures. Due to the high proliferation 

associated with liver regeneration, tumors treated with surgery would be expected to display 

high repair/regenerative signatures with greater genomic instability. In addition, the past 

classification of viral and nonviral may not be sufficient to explain HCC biological and clinical 

heterogeneity. Similarly, other risk factors including non-alcoholic fatty liver disease (NAFLD) 
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and non-alcoholic steatohepatitis (NASH) could also affect HCC heterogeneity and may be 

related to differences in DNA damage and response.  

Recent discoveries of molecular alterations underlying cancer has allowed for targeted 

treatments that are more selective and better against more aggressive malignancies86,192,231,232. 

Approximately 25% of HCCs have clinically actionable targets, yet none have been translated 

into the clinic86. This is complicated by the fact that the prevalence of most mutations is <10%11. 

We noted significant differences in prevalence of recurrent key drivers for HCC, namely TP53 

and CTNNB1, by molecular class and repair groups. Blast-like tumors exhibited an increased 

frequency of TP53 mutations. Repair high and L3 samples showed an enrichment of TP53 

mutations and p53 dysfunction, whereas the L1 and L2 repair tumors showed increased 

CTNNB1 mutations. Indeed, our results highlight the importance of these drivers and pathway 

dysregulation in HCC heterogeneity. To date, targeted therapies to TP53 and CTNNB1 remain 

difficult but the repair signatures reveal other pathways involved that could guide biomarker and 

treatment development86. This is important because the main curative option remains surgical 

intervention. Additionally, as this disease typically is diagnosed at advanced stages, most 

patients present with unresectable tumors so they must undergo systemic therapies.  

The DNA repair signatures have incorporated the unique properties of the liver, and with 

the incorporation of treatment data may elucidate biomarkers of response. Moreover, Immune 

checkpoint inhibitors have shown limited success in HCCs mediated in part by the 

immunosuppressive tumor microenvironment (TME)233. Combining ICIs with TKIs or VEGF 

inhibitors resulted in double response rates and survival benefits compared with single 

agents234. This could be advantageous in Blast-like and High repair samples where there are 

higher rates of chronic HBV infection, since HBV mediates immunosuppression and tumors tend 

to display increased genomic instability. Therapeutic agents that reverse immunosuppressive 
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nature of HCC tumors, alone or in combination with other therapies, are essential for improving 

outcomes for HCC patients.  

Moreover, our results revealed several potential biomarkers, such as HRD, repair 

dysfunction, and p53 dysfunction, that are representative of HCC heterogeneity. Homologous 

recombination deficiency (HRD) is a promising biomarker for immunotherapy. HRD has a 

substantial influence on genomic stability and tumorigenesis. It can cause increased sensitivity 

to PARP inhibitors and platinum-based therapy. The high repair dysfunction and high HRD seen 

in our High repair and L3 tumors suggests targeting with PARP inhibitors or platinum-based 

therapies may improve outcomes for HCC patients with high HRD. High HRD score is 

associated with worse prognosis and has been shown to be predictive of clinical benefit with 

PARP inhibitors120,208,209,235. The development of DNA targeted therapies and immunotherapies 

for intermediate to high repair samples of utmost importance as they are higher grade samples 

for which there are limited treatment options, compared to low repair tumors. However, if future 

research shows that these signatures do not specifically predict response to these therapies, it 

is also possible that these signatures might guide surgical decision making, providing clinicians 

with insights as to the extent of resection needed for best prognosis. 

4.3 Future Directions and Conclusions 

There are questions that must be addressed to translate these findings to the clinic: 

First, can these signatures be adapted to a clinically-relevant platform applicable in diverse 

populations and second, how we can exploit genomic differences between the DNA repair 

classes for the development of targeted therapies or treatment decision making?  Clinical 

biopsies often have limited material and require more accessible molecular platforms. Many 

molecular study cohorts contain are predominantly white participants; therefore, there is a great 

need for better representation of historically excluded populations. This is particularly important 

as these populations tend to present with more clinically aggressive phenotypes. The first step 
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to addressing health inequities in precision medicine is increasing availability of genomic data 

from diverse populations and more dedicated initiatives to studying the clinical implications of 

variants in these patient populations. However, it can be challenging to apply these signatures 

broadly to diverse populations because RNA may be limited, RNA sequencing costs are high, 

and access to care for diverse and medically underserved populations (i.e., lower diversity at 

tissue procurement sites).  

One option is to transition the RNA repair signature to the NanoString platform, which is 

the basis for the FDA approved Prosigna assay for breast cancer236,237, since it provides 

accurate quantification of gene expression for formalin fixed paraffin embedded (FFPE) 

samples, as well as fresh frozen tumors. The development and validation of signatures in 

NanoString could address knowledge gaps such as the ability of the signature to assess overall 

prognosis and determine correlations between DNA repair expression and response to therapy 

in diverse clinical settings.  

Validation of these repair signatures in multiple cohorts and in association with 

therapeutic regimens would result in better classification and prognostication of HCC tumors. 

This would allow for the use of differential repair patterns to inform treatment options. Differing 

contributions of exposure-related and DNA repair mutational signatures to CCA-like and Blast-

like tumors demonstrates clinical relevance that may also translate to other tumor types. The 

largest limitation of many current studies is the lack of available clinical and treatment data . As 

more therapeutic data and clinical annotations becomes available, these questions can be 

addressed. 
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