
CLUSTERING OF BULK RNA-SEQ DATA AND MISSING DATA METHODS IN DEEP LEARNING

David K. Lim

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Biostatistics in the Gillings School of Global Public Health.

Chapel Hill
2022

Approved by:

Naim U. Rashid

Joseph G. Ibrahim

Michael I. Love

Junier B. Oliva

Wei Sun

Di Wu

© 2022
David K. Lim

ALL RIGHTS RESERVED

ii

ABSTRACT

David K. Lim : Clustering of Bulk RNA-Seq Data and Missing Data Methods in Deep Learning
(Under the direction of Naim U. Rashid and Joseph G. Ibrahim)

Clustering is a form of unsupervised learning that aims to uncover latent groups within data based on

similarity across a set of features. A common application of this in biomedical research is in delineating novel

cancer subtypes from patient gene expression data, given a set of informative genes. However, it is typically

unknown a priori what genes may be informative in discriminating between clusters, and what the optimal

number of clusters is. In addition, few methods exist for unsupervised clustering of bulk RNA-seq samples,

and no method exists that can do so while simultaneously adjusting for between-sample global normalization

factors, accounting for potential confounding variables, and selecting cluster-discriminatory genes.

In Chapter 2, we present FSCseq (Feature Selection and Clustering of RNA-seq): a model-based

clustering algorithm that utilizes a finite mixture of regression (FMR) model and employs a quadratic penalty

method with a SCAD penalty. The maximization is done by a penalized EM algorithm, allowing us to include

normalization factors and confounders in our modeling framework. Given the fitted model, our framework

allows for subtype prediction in new patients via posterior probabilities of cluster membership.

The field of deep learning has also boomed in popularity in recent years, fueled initially by its performance

in the classification and manipulation of image data, and, more recently, in areas of public health, medicine,

and biology. However, the presence of missing data in these latter areas is very common, and involves more

complicated mechanisms of missingness than the former. While a rich statistical literature exists regarding

the characterization and treatment of missing data in traditional statistical models, it is unclear how such

methods may extend to deep learning methods.

In Chapter 3, we present NIMIWAE (Non-Ignorably Missing Importance Weighted AutoEncoder),

an unsupervised learning algorithm which provides a formal treatment of missing data in the context of

Importance Weighted Autoencoders (IWAEs), an unsupervised Bayesian deep learning architecture, in order

to perform single and multiple imputation of missing data. We review existing methods that handle up to

the missing at random (MAR) missingness, and propose methods to handle the more difficult missing not

iii

at random (MNAR) scenario. We show that this extension is critical to ensure the performance of data

imputation, as well as downstream coefficient estimation. We utilize simulation examples to illustrate the

impact of missingness on such tasks, and compare the performance of several proposed methods in handling

missing data. We applied our proposed methods to a large electronic healthcare record dataset, and illustrated

its utility through a qualitative look at the downstream fitted models after imputation.

Finally, in Chapter 4, we present dlglm (deeply-learned generalized linear model), a supervised learning

algorithm that extends the missing data methods from Chapter 3 directly to supervised learning tasks such

as classification and regression. We show that dlglm can be trained in the presence of missing data in both

the predictors and the response, and under the MCAR, MAR, and MNAR missing data settings. We also

demonstrate that the trained dlglm model can directly predict response on partially-observed samples in

the prediction or test set, drawing from the learned variational posterior distribution of the missing values

conditional on the observed values during model training. We utilize statistical simulation and real-world

datasets to show the impact of our method in increasing accuracy of coefficient estimation and prediction

under different mechanisms of missingness.

iv

This thesis, as with all that I have done and will ever do, is dedicated to Jesus Christ, my Lord and Savior. He
has dealt bountifully with me.

To Him be the glory.

v

ACKNOWLEDGEMENTS

I would like to first and foremost acknowledge my lovely wife, Grace, for sticking by my side through

the most difficult times of life, and being my constant source of help and support. I would also like to

acknowledge my loving father, mother, and brother. They have always loved and encouraged me, and they

have inspired me to challenge myself and pursue a higher education.

Next, I would like to acknowledge my co-advisors Naim Rashid and Joseph Ibrahim. They have been the

most patient, thoughtful, helpful, and supportive mentors I could have ever asked for. Thank you for helping

to develop me into a better student, researcher, and overall person.

Finally, I would like to acknowledge my dear friends who have shared life with me these past several

years. Thank you for your many words of encouragement and prayer, for the coffee breaks and food, sports,

and everything else that brought me joy throughout this journey.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xvii

CHAPTER 1: LITERATURE REVIEW . 1

1.1 Clustering of RNA-Seq Gene Expression Samples . 1

1.2 Existing Clustering Methods . 3

1.3 Deep Learning . 7

1.3.1 Unsupervised Deep Learning Architectures . 8

1.3.2 Supervised Deep Learning Architectures . 9

1.4 Missing Data in Deep Learning . 9

1.5 Existing Missing Data Methods . 11

CHAPTER 2: FSCSEQ: SIMULTANEOUS FEATURE SELECTION AND CLUSTERING
OF BULK RNA-SEQ DATA . 14

2.1 Introduction. 14

2.2 Methods . 15

2.2.1 Model likelihood . 15

2.2.2 Computation . 19

2.3 Numerical Examples . 27

2.3.1 Simulations . 27

2.3.2 Application to TCGA Breast Cancer RNA-seq dataset . 36

2.4 Discussion . 43

vii

CHAPTER 3: UNSUPERVISED DEEP LEARNING WITH MISSING DATA . 44

3.1 Methods . 44

3.1.1 Variational Autoencoder . 44

3.1.1.1 Objective Function . 45

3.1.1.2 Estimation Procedure and Use Cases. 46

3.1.2 Importance-Weighted Autoencoder . 47

3.1.3 IWAE Architecture . 48

3.1.4 Missing Data . 48

3.1.4.1 Ignorable Missingness . 49

3.1.4.2 VAEs and IWAEs with Ignorable Missingness . 50

3.1.4.3 Non-ignorable Missingness . 50

3.1.5 NIMIWAE: IWAE with Nonignorable Missingness . 51

3.1.5.1 NIMIWAE Training Algorithm . 53

3.1.5.2 Initialization, Early Stop, and Hyperparameter Tuning . 54

3.1.5.3 Multiple Imputation . 56

3.2 Numerical Results . 57

3.2.1 Simulated Data . 57

3.2.1.1 Simulation Setup . 58

3.2.1.2 Simulation Results . 62

3.2.1.3 UCI Machine Learning Datasets . 65

3.2.2 Physionet 2012 Challenge Dataset . 69

3.3 Discussion . 72

CHAPTER 4: SUPERVISED DEEP LEARNING WITH MISSING DATA. 74

4.1 Methods . 74

4.1.1 Generalized Linear Models (GLMs) . 74

4.1.2 Deeply Learned GLMs . 75

4.1.3 Missingness in GLMs . 77

viii

4.1.4 Deeply-learned GLM with Missingness (dlglm) . 78

4.1.4.1 Modeling pψ(X) with known distribution . 79

4.1.4.2 Modelling pψ(X) with VAEs and IWAEs . 80

4.1.4.3 dlglm: Modeling X in the presence of missingness . 80

4.2 Numerical Examples . 85

4.2.1 Simulated Data . 87

4.2.1.1 Simulation Setup . 87

4.2.1.2 Simulation Results . 89

4.2.2 Real Data with Simulated Missingness . 94

4.2.3 Bank Marketing Dataset . 97

4.3 Discussion . 101

BIBLIOGRAPHY . 102

ix

LIST OF TABLES

Table 1 Results of FSCseq clustering, feature selection, and prediction on subset of
combinations of simulation conditions with Ktrue = 4 true number of clusters and
β0 = 12 baseline log2mean. Clustering is measured by average optimal order (K̄∗)
and adjusted rand index (ARI). Prediction is done on an independently simulated
dataset with npred = 25 samples, and is measured by the average ARI between
predicted and simulated cluster labels, and is denoted pARI . Feature selection perfor-
mance is measured by mean true positive rate (TPR) and false positive rate (FPR) of
cluster-discriminatory gene discovery. 29

Table 2 Average obtained order K̄∗ and average ARI for competing methods with
Ktrue = 2 and Ktrue = 4 underlying groups, in the presence of simulated batch
effects γ0. We shorten notation in this table by denoting the K̄∗ value as K̄∗

2 for
Ktrue = 2, and as K̄∗

4 for Ktrue = 4. Similarly, we denote ARI as ARI2 for
Ktrue = 2, and as ARI4 for Ktrue = 4. Tabulated results are from datasets with
n/Ktrue = 50 simulated samples per cluster, with fixed LFC = 2, pDE = 0.05, and
β0 = 12, ϕ0 = 0.35. Simulated effect across batches was varied, such that γ0 = 2, 3. 35

Table 3 Selected order (K∗) and clustering concordance between compared methods and
annotated TCGA Breast Cancer subtypes. FSCseq was run with adjustment (FSCadj)
and without adjustment (FSC) for plate effect, and each of the clustering labels
were compared to annotated subtypes (anno). For each column, the value of the best
performing metric is colored in red. The values in parentheses in the column headings
represent the optimal value for that metric. For ARI and NMI, values closer to 1
indicate better clustering, and values closer to 0 indicate worse clustering. For NVI
and NID, values closer to 0 indicate better clustering, and values closer to 1 indicate
worse clustering. 37

Table 4 Selected order (K∗) and clustering concordance between compared methods and
annotated TCGA Breast Cancer subtypes. FSCseq was run with adjustment (FSCadj)
and without adjustment (FSC) for plate effect, and each of the clustering labels
were compared to annotated subtypes (anno). Results from unsupervised (SigU) and
semi-supervised (SigI) clustering from Koboldt et al. (2012) are also shown. For each
column, the best performing metric is colored in red. The value in parentheses in
the column headings represent optimal values. For ARI and NMI, values closer to 1
indicate better clustering, and values closer to 0 indicate worse clustering. For NVI
and NID, values closer to 0 indicate better clustering, and values closer to 1 indicate
worse clustering. 42

x

Table 5 Average L1 distance between true and imputed values for the masked entries in
various datasets, under different mechanisms of simulated missingness. Best imputa-
tion performance (lowest average L1) in each row is highlighted in red. Proportion
of missing entries was fixed at 50% per feature, with 50% of the features containing
missingness. We see that NIMIWAE consistently performs best in imputing MNAR
missingness, while performance of the “Ignorable” IMIWAE model is comparable
to other methods under MCAR and MAR. Although MissForest claims superiority
in MCAR and some MAR cases in the smaller datasets, it was not scalable to larger
datasets like hepmass and power. 68

Table 6 Results from prediction analyses on the Bank Marketing dataset from the UCI
Machine Learning Repository. We measured concordance between the true and pre-
dicted binary response by 4 metrics: Area Under ROC Curve (AUC), Positive Predic-
tivity (PPV), Cohen’s kappa (kappa), and F1 score. 100

xi

LIST OF FIGURES

Figure 1 Example workflow of FSCseq (left) and visualization of the mechanics of the
fusion SCAD penalty (right) imposed on β̂jk with j = 1, . . . , 4 and k = 1, . . . , 3. For
prediction, the coefficient estimates and the list of cluster-discriminatory genes obtained
from FSCseq can be used to compute posterior probabilities of cluster membership
on new samples. Importantly, the fusion penalty is imposed on each gene separately,
and clusters are fused together within each given gene separately. When all clusters
are fused together for a particular gene (j = 1, right), that gene is determined to be
nondiscriminatory across clusters. Otherwise, the gene is considered to discriminate in
expression across clusters. 15

Figure 2 Scatterplot of true positive rate (TPR) vs false positive rate (FPR) in discov-
ering cluster-discriminatory genes in simulated datasets via FSCseq. Displayed points
correspond to simulated datasets with Ktrue = 4 underlying clusters, with n = 100
(top) or 200 (bottom) and simulated LFC = 1 (‘Low’, left) or 2 (‘Moderate’, right).
Red points indicate that the correct order was uncovered (K∗ = Ktrue), and blue
points indicate that an incorrect order was uncovered. Squares, circles, and X’s indicate
low (ϕ0 = 0.15), moderate (ϕ0 = 0.35), and high (ϕ0 = 0.50) levels of overdispersion,
respectively. In general, TPR is higher for larger n and larger LFC. TPR is higher
and FPR is lower for results that yielded the correct order, or for smaller values of ϕ0.
For ease of visualization, a total of 15 outlier points (of 2400 total) were removed in
this figure with 0.015 < FPR < 0.060. 32

Figure 3 Violin plots of Order Accuracy (OA, in red) and average cluster concordance
with the truth (ARI , in blue) from simulation results with Ktrue = 2 and Ktrue = 4.
We compared performance of FSCseq (FSC), iCluster+ (iCl), hierarchical clus-
tering (HC), K-medoids (KM), NB.MClust (NBMB), and mclust on log/variance-
stabilizing/rlog transformed data (lMC/vMC/rMC). Simulated overdispersion was
varied with ϕ0 = (0.15, 0.35, 0.50) to test each method’s robustness to the magnitude
of overdispersion. Other simulation parameters were fixed at LFC = 1, pDE = 0.05,
β0 = 12, and n/Ktrue = 25 for both Ktrue = 2 (top) and Ktrue = 4 (bottom). We fix
n/Ktrue here to show the effect of varying Ktrue on performance, with a fixed number
of samples per cluster. Many methods perform competitively when Ktrue = 2, but
FSCseq attains the highest average ARI overall, and yields high performance that is
very robust to the magnitude of ϕ0. 34

Figure 4 Heatmap of the PAM50 genes included in FSCseq analyses, with row annota-
tions for feature selection and pre-filtering (left) and column annotations for clustering
labels (top). Column ordering is based on annotated subtypes, and samples are ordered
within subtypes by decreasing order of maximum posterior probability from FSCadj
results. 9 PAM50 genes did not pass the pre-filtering (PF) threshold: TMEM45B,
MDM2, FGFR4, ACTR3B, FOXC1, MIA, EGFR, CCNE1, and ORC6L. Of the 41
remaining PAM50 genes, FSC and FSCadj found 41 and 38 of the PAM50 genes
were cluster-discriminatory, respectively. Additionally, all clustering labels distinguish
well between Basal and Luminal subtypes, but FSCadj best distinguishes between
Luminal A and Luminal B samples. 39

xii

Figure 5 Gene ontology biological processes and enriched pathways of cluster discrim-
inating genes found by FSC (left) and FSCadj (right). The bars represent p-value
corrected FDR (in − log scale), and the red lines represent ratios of list genes found in
each pathway over the total number of genes in that pathway. 40

Figure 6 GSEA analyses on basalUP (basal up-regulated, top) and basalDOWN
(basal down-regulated, bottom) subsets of cluster-discriminatory genes discovered
from FSCadj . Only the top five overlapping gene sets shown. 41

Figure 7 Architecture of an importance weighted autoencoder (IWAE) in the absence
of missing data. Darkly colored nodes represent deterministic values, lightly colored
nodes represent learned distributional parameters, and outlined (in red) nodes represent
sampled values from learned distributions. Orange cells correspond to latent variables
Z. Z1, . . . ,ZK is sampled 1 time each from the variational posterior posterior distri-
bution q(Z|X). Below is the lower bound (LB), which is optimized via stochastic
gradient descent. 48

Figure 8 Architecture of proposed NIMIWAE method. Dark colored nodes represent
deterministic values, lightly colored nodes represent learned distributional parameters,
and outlined (in red) nodes represent sampled values. Orange cells correspond to latent
variables Z and Xm. Z1, . . . ,ZK and Xm

1 , . . . ,X
m
K are sampled from their respective

variational posteriors. Below is the NIMIWAE bound (LNIMIWAE
K) and the estimate

of the NIMIWAE bound (L̂NIMIWAE
K), which is optimized via SGD. 56

Figure 9 Average L1 distance between true and imputed values for missing entries (left)
and percent bias of pooled coefficient estimates (right) for p = 25 (top 4) and p = 100
(bottom 4) features, stratified by d. NIMIWAE outperforms all methods in imputing
MNAR missing values, while performing comparably to other methods in imputing
MCAR and MAR values. Here, n = 100, 000, µϕ = 5, and error bars show the
variability of each metric across 5 reps. Weights and biases were initialized by using
the default semi-orthogonal matrix method. 63

Figure 10 Average L1 distance between true and imputed values for missing entries (left)
and percent bias of pooled coefficient estimates (right) for p = 25 (top 4) and p = 100
(bottom 4) features, stratified by d. NIMIWAE outperforms all methods in imputing
MNAR missing values, while performing comparably to other methods in imputing
MCAR and MAR values. Here, n = 10, 000, µϕ = 5, and error bars show the
variability of each metric across 5 reps. Weights and biases were initialized by using
the alternative method, as described in Section 3.1.5 . 64

Figure 11 Average L1 distance between true and imputed values for missing entries
stratified by d (left), and percent bias of pooled coefficient estimates. NIMIWAE
outperforms all methods in imputing missing values that were simulated to be MNAR
when p = 25, but performs poorly under p = 100. Here, n = 10, 000, µϕ = 5, and
error bars show the variability of each metric across the 5 reps. NIMIWAE struggles to
handle the difficult MNAR missingness pattern when the sample size is smaller, while
the dimensionality of the data is large. 66

xiii

Figure 12 Average L1 distance between true and imputed values for missing entries
stratified by d (left), and percent bias of pooled coefficient estimates. NIMIWAE
was run using the alternative initialization method, as described in Section 2.3 of the
main text. Again, NIMIWAE outperforms all methods in imputing missing values that
were simulated to be MNAR. Here, n = 100, 000, µϕ = 5, and error bars show the
variability of each metric across the 5 reps. 67

Figure 13 Table of coefficient estimates (and standard errors) of covariates with the top 10
magnitudes of estimates via NIMIWAEsup, from fitting a logistic regression model
with imputed datasets from each method. Results from multiple imputation methods
NIMIWAE, IMIWAE, and MICE (first 6 columns) are based on 50 multiply imputed
datasets, and reflect pooled coefficient estimates and standard errors using Rubin’s
rules. For fair comparison, we also included results from single imputation methods
(last 5 columns). Here, IMIWAE is the ignorable version of NIMIWAE. 70

Figure 14 (left) Proportion of non-missing observations of last measurements of FiO2
(top) and RespRate (bottom) in surviving and deceased ICU patients, and (right) im-
puted values of non-missing entries by HIVAE, supervised and unsupervised versions
of the ignorable NIMIWAE (IMs, IMu), MissForest (MF), supervised and unsupervised
versions of MICE (MICEs, MICEu), MIWAE, supervised and unsupervised versions
of NIMIWAE (NIMs, NIMu), and VAEAC. The mean of the observed values is given
by the red horizontal line. 71

Figure 15 Visualization of a sample deeply-learned GLM architecture sπ,β(xi). Here,
π denotes the set of weights and biases pertaining to the portion of the architecture
from the input layer to the second to last layer (hidden layer 2). hπ(xi) is a subset of
the entire architecture, such that sπ,β(xi) = hπ(xi)β. Original artwork of a FFNN
(Dormehl, 2019) was modified to show deeply-learned GLM architecture. 76

Figure 16 Architecture of proposed dlglm method (Case x). Dark colored nodes represent
deterministic values, lightly colored nodes represent learned distributional parameters,
and outlined (in red) nodes represent sampled values. Orange cells correspond to latent
variables Z and Xm. Z1, . . . ,ZK and Xm

1 , . . . ,X
m
K are sampled from their respective

variational posteriors. 82

Figure 17 Architecture of proposed dlglm method (Case xy). Dark colored nodes represent
deterministic values, lightly colored nodes represent learned distributional parameters,
and outlined (in red) nodes represent sampled values. Orange cells correspond to
latent variables Z, Xm, and Ym. Zk, Xm

k , and Ym
k are sampled from their respective

variational posteriors for k = 1, . . . ,K. Below is the dlglm bound (LdlglmK), and the
estimated dlglm bound (L̂dlglmK), which is optimized via stochastic gradient descent. 84

Figure 18 Simulation results with n = 10, 000 and p = 50, varying d = 2 (top 4) and
d = 8 (bottom 4). In each quadrant, we measure imputation accuracy by the average
L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth
(top-right), and prediction accuracy by the average L1 distance between the predicted
and true probabilities of class 1 membership of Y using the true unmasked test set
(predC, bottom-left) and the incomplete test set (predI, bottom-right). 90

xiv

Figure 19 Simulation results with n = 100, 000 and p = 50, varying d = 2 (top 4) and
d = 8 (bottom 4). In each quadrant, we measure imputation accuracy by the average
L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth
(top-right), and prediction accuracy by the average L1 distance between the predicted
and true probabilities of class 1 membership of Y using the true unmasked test set
(predC, bottom-left) and the incomplete test set (predI, bottom-right). 91

Figure 20 Simulation results with n = 10, 000 and p = 25, varying d = 2 (top 4) and
d = 8 (bottom 4). In each quadrant, we measure imputation accuracy by the average
L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth
(top-right), and prediction accuracy by the average L1 distance between the predicted
and true probabilities of class 1 membership of Y using the true unmasked test set
(predC, bottom-left) and the incomplete test set (predI, bottom-right). 92

Figure 21 Simulation results with n = 100, 000 and p = 25, varying d = 2 (top 4) and
d = 8 (bottom 4). In each quadrant, we measure imputation accuracy by the average
L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth
(top-right), and prediction accuracy by the average L1 distance between the predicted
and true probabilities of class 1 membership of Y using the true unmasked test set
(predC, bottom-left) and the incomplete test set (predI, bottom-right). 93

Figure 22 Imputation (top row) and prediction results from predC (middle row) and predI
(bottom row) from comparative methods run on 3 large datasets from the UCI Machine
Learning Repository: DRYBEAN, LETTER, and SHUTTLE (columns, left to right).
Imputation error was measured by the average L1 distance between true and imputed
entries, with lower values indicating better performance, and prediction performance
was measured by the Cohen’s kappa metric for both predC (kappaC) and predI (kappaI),
with higher values indicating better performance. 95

Figure 23 Correlation heatmap matrix of features in the DRYBEAN dataset. Many
features in this dataset were highly correlated. 96

Figure 24 Imputation (top row) and prediction results from predC (middle row) and predI
(bottom row) from comparative methods run on 3 small datasets from the UCI Machine
Learning Repository: BANKNOTE, CAREVALUATION, and SPAM (columns, left
to right). Imputation error was measured by the average L1 distance between true
and imputed entries, with lower values indicating better performance, and prediction
performance was measured by the Cohen’s kappa metric for both predC (kappaC) and
predI (kappaI), with higher values indicating better performance. 98

xv

Figure 25 Imputation (top row) and prediction results from predC (middle row) and predI
(bottom row) from comparative methods run on 2 small datasets from the UCI Machine
Learning Repository: RED and WHITE (columns, left and right). Imputation error
was measured by the average L1 distance between true and imputed entries, with lower
values indicating better performance, and prediction performance was measured by the
Cohen’s kappa metric for both predC (kappaC) and predI (kappaI), with higher values
indicating better performance. 99

xvi

LIST OF ABBREVIATIONS

AE Autoencoder

ARI Adjusted Rand Index

BIC Bayesian Information Criterion

CDA Coordinate-wise Descent Algorithm

DL Deep Learning

EHR Electronic Health Records

ELBO Evidence Lower Bound

EM Expectation Maximization

FFNN Feed-Forward Neural Network

FPR False Positive Rate

GLM Generalized Linear Model

IRLS Iteratively Reweighted Least Squares

IWAE Importance-Weighted Autoencoder

LFC Logarithmic (base 2) Fold Change

MAR Missing at Random

MCAR Missing Completely at Random

MCMC Markov Chain Monte Carlo

MNAR Missing Not at Random

PB Percent Bias

RNA-seq RNA sequencing

SGD Stochastic Gradient Descent

TPR True Positive Rate

VAE Variational Autoencoder

xvii

CHAPTER 1: LITERATURE REVIEW

1.1 Clustering of RNA-Seq Gene Expression Samples

RNA-sequencing (RNA-seq) is the direct sequencing of transcripts using high-throughput technologies

(Zhao et al., 2014), and is a common platform for measuring gene expression. Gene expression is extremely

important in determining the unique biology of organisms, playing vital roles in almost every biological

process (Alberts et al., 2002; Tomancak et al., 2007; Wittkopp, 2007; O’Connor et al., 2010; Romero

et al., 2012; Zhang et al., 2014; Chappell et al., 2015). Importantly, RNA-seq gives a global view of the

transcriptome and its organization for different species and cell types (Wang et al., 2009), and RNA-seq has

been shown to boast prominent advantages over the previously popular DNA microarray technologies while

still being able to replicate microarray-based results (Fu et al., 2009; McGettigan, 2013; Trost et al., 2015;

Wolff et al., 2018; Rao et al., 2019).

In the context of cancer, RNA-seq has been studied extensively. Applications include discovering

mutations and how they manifest in targeted genes, and detecting gene fusion that results from genome

rearrangement in cancer (Mardis and Wilson, 2009; Robison, 2010; Li et al., 2011; McPherson et al., 2011).

Additionally, differential expression analysis can be done using RNA-seq (Robinson et al., 2009; Ramsköld

et al., 2011; Love et al., 2014), which has countless applications in the study of cancer, like analyzing the

response of lung cancer to external stimuli like smoking (Beane et al., 2011), detecting gene-level differences

for breast cancers exhibiting tamoxifen resistance (Huber-Keener et al., 2012), identification of biomarkers

for specific tumors (Seyednasrollah et al., 2015; Cui et al., 2015; Liang et al., 2015), and more (Young et al.,

2010; McCarthy et al., 2012; Jardim-Perassi et al., 2019).

A specific application of RNA-seq in cancer research is in clustering tumors based upon gene expression.

Clustering is a form of unsupervised learning that aims to uncover latent groups across subjects based on their

similarity with respect to a common set of features. A common application of clustering is in the discovery

of novel molecular subtypes in cancer based upon patient tumor gene expression data. Resulting clusters

based on gene expression have been shown to delineate samples of different tumor subtypes, which exhibit

1

different prognoses, clinical outcomes, and even treatment responses (van de Vijver et al., 2002; Sorlie et al.,

2001; Perou et al., 2000; Brannon et al., 2010; Chia et al., 2012; Mao et al., 2017). The discovery of such

subtypes therefore enable precision medicine approaches for treatment selection, where, given a patient’s

subtype information, an optimal treatment may be recommended to maximize patient clinical outcomes

based upon prior data. More generally, clustering of gene expression data has been proven to be useful for

understanding cellular processes and gene regulation (Yeung et al., 2001b), and has been used to understand

cellular processes in cancer (Liu et al., 2014; Best et al., 2015; Cima et al., 2016; Tirosh et al., 2016; Chung

et al., 2017; Murakami et al., 2018) as well as to comprehensively profile many cancer types (McLendon

et al., 2008; Muzny et al., 2012; Koboldt et al., 2012; Hammerman et al., 2012; Levine et al., 2013; Creighton

et al., 2013; Weinstein et al., 2014; Collisson et al., 2014; Bass et al., 2014; Lawrence et al., 2015; Brat et al.,

2015; Ciriello et al., 2015; Linehan et al., 2016; Zheng et al., 2016; Fishbein et al., 2017; Robertson et al.,

2017; Ricketts et al., 2018).

However, analyses of RNA-seq datasets can be confounded by technical factors, such as differences

in sequencing depth (Zyprych-Walczak et al., 2015) or batch effects (Hicks et al., 2017). Between-sample

variation due to differences in sequencing depth can cause global shifts in sample-specific read count

distributions, necessitating the use of between-sample correction methods (Li et al., 2015). Batch effects have

been known to be very strong confounders of gene expression analyses (Li et al., 2009b), requiring some

method of correction to account for these batch effects (Leek, 2014; Peixoto et al., 2015)

Gene expression via RNA-seq is quantified by aligning known genes to millions of short strings of

input RNAs called ‘reads’ (Finotello and Camillo, 2014), and quantification is done using some software

(Li et al., 2009a; Anders et al., 2014; Patro et al., 2017) to enumerate the number of reads that map to

specific protein-coding regions of the genome. In particular, software like RSEM and Salmon can handle

multimapped reads, or sequences that map to multiple regions of the genome, by estimating the uncertainty

of transcript abundance with conditional probabilities of a read being multimapped (Li et al., 2011; Patro

et al., 2017). The resulting measures from this quantification process often results in overdispersed counts, in

contrast to the Gaussian distributional assumptions made by earlier methods designed for clustering subjects

with microarray-based gene expression measurements.

This shift in distributional assumption also has practical implications. For example, due to the count nature

of RNA-seq data, the correction factors for differences in sequencing depth are often directly incorporated

into statistical modeling procedures, for example, as offset terms in negative binomial regression-based

2

differential expression methods (Robinson et al., 2009; Love et al., 2014). Correction for other confounders,

such as batch effects (Leek et al., 2010) or specific clinical variables, is done by including the relevant factors

as regression covariates. However, to the best of our knowledge no analogous approach exists to correct for

such factors in RNA-seq read count-based clustering analysis. Therefore, such an approach that can correct

for such factors may have significant utility in improving clustering performance.

Currently, few methods exist that can cluster samples whose genes (features) are measured via RNA-seq.

Also, no methods currently exist that are able to allow for direct prediction of subtype for new samples. A

method that allows for such prediction may be convenient, as one may utilize an already-trained model to

predict the subtype of new samples, rather than having to retrain the entire model. Additionally, few methods

exist that are able to select for features that discriminate in expression across subtypes while clustering.

Selecting such features may aid in the identification of driver genes that delineate the subtypes of a particular

cancer type. It can also help lead to the development of gene lists such as the PAM50 genes (Nielsen et al.,

2010), which are used to guide treatment decisions based upon subtype of cancer. We go over these existing

methods in detail in Section 1.2

1.2 Existing Clustering Methods

Current methods that seek to cluster RNA-seq data can be divided into three general classes: transforma-

tion based, count based, and nonparameteric clustering methods.

Transformation-based methods

Previous studies on microarray gene expression has assumed the data to be normally distributed (Lee

et al., 2000; Allison et al., 2002; Chu et al., 2005). As a result, many parametric clustering algorithms

designed for application to microarray-based gene expression profiles are based upon the Gaussian mixture

model (Pan et al., 2003; Ouyang et al., 2004; Qu and Xu, 2004; McNicholas and Murphy, 2010).

The mclust package is an example of one such algorithm (Fraley and Raftery, 1998; Yeung et al.,

2001a; Scrucca et al., 2016). This algorithm uses a finite mixture model such that the conditional distribution

pertaining to each of the K clusters in the model is assumed to follow a multivariate Gaussian distribution.

Maximum likelihood estimation is performed using the EM algorithm (Dempster et al., 1977; McLachlan

and Krishnan, 2008). The covariance matrix Σk for each cluster k, k = 1, . . . ,K, is specified by utilizing

an eigenvalue decomposition such that Σk = λkDkAkD
T
k , where Ak is a diagonal matrix that specifies

3

the shape of the density contours and Dk is an orthogonal matrix that determines the orientation of the

corresponding ellipsoid (Banfield and Raftery, 1993; Celeux and Govaert, 1995), and the number of estimated

parameters in the covariance is constrained by various specifications of Ak and Dk (Browne and McNicholas,

2013; Scrucca et al., 2016), performing model selection using the Bayesian Information Criterion (Schwarz,

1978), or “BIC”.

It is clear that discrete count data pertaining to RNA-seq read counts does not fit the typical Gaussian

mixture model assumption. It has been seen that non-normal count data can be made more approximately

Gaussian through the use of a transformation on the data that stabilizes the variance (Rohlf and Sokal, 1981;

Zar, 1999). One such transformation that is very simple and intuitive is the log transform. The variance-

stabilizing transform is a monotone mapping such that the variance of transformed values is approximately

independent of the mean, and it has been shown to have a straightforward application in clustering of RNA-seq

read counts (Anders and Huber, 2010). Alternatively, the regularized logarithm (rlog) transformation is

performed by fitting an intercept-only GLM on each gene, shrinking the log fold changes (LFCs) with respect

to the baseline using an empirical Bayes method (Love et al., 2014). The rlog transform additionally directly

accounts for variation in sequencing depth, although it may not preserve the ordering of genes within a

sample under large amounts of shrinkage (Love et al., 2014).

Once an appropriate transformation is applied, the application of methods developed for microarray data

(Zwiener et al., 2014) is feasible by assuming the transformed data are distributed approximately Gaussian.

However, prior work has shown that the choice of transformation can greatly influence clustering performance,

as the quality of this Gaussian approximation varies by condition, and the optimal choice may not be readily

apparent (Noel-MacDonnell et al., 2018). Additionally, studies have shown that such transformations may

not work very well for count data (O’Hara and Kotze, 2010), especially for overdispersed counts (Solomon

and Sawilowsky, 2009; Zwiener et al., 2014). From a practical standpoint, methods that directly model the

data rather than relying on transformations may also be more intuitive for inference and interpretation. Also,

these transformation-based methods are not able to directly adjust for technical variation like differences in

sequencing depth, and for confounders like batch. Additionally, in the RNA-seq context, they do not perform

automatic feature selection nor predict cluster membership for a new subject based on a fitted model.

Count-based methods

The second class of methods directly models gene-level read counts, assuming a specific distribution on

the read counts. There have been developed a number of RNA-seq clustering methods that directly model

4

gene level read counts (Wang et al., 2013; Si et al., 2013; Silva et al., 2019), but these methods cluster genes

rather than samples.

iCluster+ (Mo et al., 2013) is an integrative method that can perform clustering analysis using

multiple datasets of different distributional assumptions. Estimation of parameters is done using a modified

Monte Carlo Newton-Raphson algorithm (Friedman et al., 2010; McCulloch, 1997). iCluster+ writes the

form of a joint log-likelihood that incorporates the information across each genomic dataset, incorporating

the L1 penalty for regularization (Tibshirani, 1996) to induce sparsity. Also, a set of multivariate standard

normal latent variables is utilized to denote underlying driving factors, and samples are drawn from the joint

posterior distribution of these latent variables using the random-walk Metropolis Hasting algorithm (Tanner

and Wong, 2010; Casella and Robert, 2010; Liu, 2008). Using K-means on the latent variables, samples

are clustered together, using a guided procedure based upon the BIC and deviance ratio for selecting the

optimal number of clusters and the optimal value for the penalty parameter (Mo and Shen, 2019). Although

iCluster+ performs feature selection and directly models counts, iCluster+ also assumes a Poisson

distribution on count data, thus ignoring potential overdispersion in counts. Additionally, the iCluster+

framework does not allow for adjustment for sequencing depth or covariates while clustering, and does not

perform prediction on new samples. Moreover, although iCluster+ provides a mode for automatic feature

selection, the manual (Mo and Shen, 2019) suggests that gene selection must be done using arbitrary cutoffs

based on quantiles of estimated parameters.

NBMB (Li et al., 2018) is a recently developed clustering method that models RNA-seq read counts using

the negative-binomial distribution. Specifically, NBMB assumes a finite mixture model on the read counts,

with a mixture of K negative binomial distributions, corresponding to the K clusters. A stochastic form of

the EM algorithm with deterministic annealing (Rose, 1998) is utilized, similar to a form proposed by Si et al.

(2013). The NBMB algorithm is initialized with equal mixing proportions and MLE estimates for the mean

and dispersion, and the algorithm iteratively estimates posterior probabilities of cluster membership (E-step),

and parameter updates (M-step). Also, separate mean and dispersion parameters are estimated for each

cluster of each gene, taking into account potentially different levels of overdispersion of gene read counts

across samples in each cluster. Although NBMB can account for overdispersed RNA-seq counts, NBMB cannot

perform feature selection like iCluster+. In addition, like iCluster+, NBMB is not able to adjust for

factors such as batch effects or differences in sequencing depth, and also does not perform prediction on new

samples.

5

Nonparametric methods

The third class of methods includes non-parameteric clustering approaches such as the average-linkage

hierarchical clustering (HC) and K-medoids (KM) (Jaskowiak et al., 2018). These algorithms have been used

heavily in practice due to their speed and simplicity, as well as ease of implementation. These clustering

methods involve using some dissimilarity measure to guide clustering, grouping together samples that show

low dissimilarity, and separating samples that show high dissimilarity.

Hierarchical agglomerative clustering (Johnson, 1967; Zhao et al., 2005; Manning et al., 2008) works in

a bottom-up approach, such that pairs of clusters are merged together iteratively based upon dissimilarity.

Typically, a linkage is specified for the particular hierarchical clustering algorithm. Single-linkage clustering

takes the dissimilarity between two clusters to be the distance between the most similar members, average-

linkage clustering takes the dissimilarity to be the average distance between all members, and complete-

linkage clustering takes the dissimilarity to be the distance between the most dissimilar members (Patel et al.,

2015). Often, the choice of dissimilarity measures and linkages is arbitrary, with the clustering performance

based upon each choice depending heavily on the dataset in question (Jaskowiak et al., 2014). Out of these

methods, Jaskowiak et al. (2018) suggests that the average-linkage hierarchical clustering algorithm provides

the best performance in clustering RNA-seq.

K-medoids (Bishop, 2006) is another nonparametric clustering algorithm, and works by partitioning

samples in a manner that is similar to the well-known K-means algorithm (Wu et al., 2008). In the K-medoids

algorithm, “medoids” are selected as objects of a cluster whose average dissimilarity to all objects in the

cluster is minimal, and partitioning is done by minimizing the average L1 distance between the each point of

a cluster and its corresponding medoid (Cao and Yang, 2010). In the Partitioning Around Medoids (PAM)

algorithm (Han and Pei, 2017), the medoids are iteratively re-assigned to improve clustering results, and each

point is assigned to clusters based on the minimum dissimilarity with the corresponding medoids. Jaskowiak

et al. (2018) showed that K-medoids, like average-linkage hierarchical clustering, performs well in recovering

clusters in RNA-seq compared to other nonparametric methods.

Although distribution-free, these nonparameteric methods are very dependent on the choices of model

specifications, like the measure of dissimilarity, and the type of linkage in hierarchical clustering. In practice,

there are numerous variants to these nonparametric methods, and their performance is highly dependent

on the context in which they are employed (Zhao et al., 2005; Müllner, 2011; Mingoti and Lima, 2006;

Nazari et al., 2015; Schubert and Rousseeuw, 2018). Also, none of these algorithms described can perform

6

feature selection to determine cluster-discriminatory genes, nor can they adjust for batch or differences in

sequencing depth. They also cannot perform prediction of subtype in new samples, and can only cluster the

initial training samples. These limit the applicability of such methods to translational settings such as cancer

subtyping based upon tumor RNA-seq data.

1.3 Deep Learning

Neural networks are networks comprised of “layers” of so-called “neurons” that are connected such that

some transformation of the values from the previous layer is applied to output values for the subsequent

layer (Taylor, 1996; Lecun et al., 1998). By combining many layers of neurons, a neural network can

perform a series of transformations such that the input data is mapped to a highly nonlinear and complicated

transformation of the input (Schmidhuber, 2015). The structure of the connections between neurons are

remarkably simple, allowing for intricate architectures that provide very powerful tools for learning even very

complicated tasks involving massive amounts of input data (Najafabadi et al., 2015).

Deep learning refers to a broad class of algorithms that utilizes neural networks to learn complex

relationships within data. These deep learning methods initially gained mass interest through their excellent

performance in classifying images (Krizhevsky et al., 2012; Szegedy et al., 2014; He et al., 2015). Such

methods took in millions of labeled images, and performed the supervised task of classifying new images

into pre-trained categories. Seeing the promising performance of such algorithms, researchers quickly began

to generalize deep learning methods to be used in various analyses in other fields, such as recommender

systems (Zhang et al., 2017), AI gaming (Silver et al., 2017), video editing (Podlesnyy, 2019), and many

more (Vankayala and Rao, 1993; Pumsirirat and Yan, 2018; Cavalcante et al., 2016; Basak et al., 2018; Suk

et al., 2013; Voulodimos et al., 2018; Almalaq and Edwards, 2017; Rawat and Wang, 2017; Ozdag, 2018;

Carrio et al., 2017; Xie et al., 2018; Zhang et al., 2018).

In particular, there has been significant interest in the application of deep learning methods to problems

in the biomedical sciences, for example to detect tumors from X-ray or MRI scans (Razzak et al., 2017;

Ausawalaithong et al., 2018; Shen and Gao, 2019). Similarly, the field of genomics has seen numerous

advances in deep learning methods for analyses of single-cell RNA-seq datasets (Way and Greene, 2018;

Lopez et al., 2018; Lotfollahi et al., 2019). In the realm of health informatics, with applications such as

cancer diagnostics, tissue classification, anomaly detection, human activity recognition, prediction of disease,

7

and air pollutant prediction (Ravi et al., 2017; Fakoor et al., 2013; Brosch et al., 2013; Sun et al., 2014; Nie

et al., 2015; Zou et al., 2016).

We introduce some common deep learning architectures for supervised and unsupervised deep learning

tasks in the next section.

1.3.1 Unsupervised Deep Learning Architectures

An autoencoder (AE) is one particular deep learning architecture that was first developed for and used

in dimension reduction (Goodfellow et al., 2016). The structure of an AE involves an encoder, which

“encodes” the data into a lower-dimensional space that captures the salient features of the data, and a decoder,

which reconstructs the original data from the lower-dimensional space (Tschannen et al., 2018). In this

way, an autoencoder simultaneously learns a lower-dimensional representation of the input data, which may

potentially be very large, and learns to reconstruct the input data from the learned representation. Such a

dimensionality reduction technique can be useful in clustering (Song et al., 2013) or for visualization of data

(Wang et al., 2016), and reconstruction of the data may be useful in de-noising or imputation of data (Vincent

et al., 2008).

The variational autoencoder (VAE) is built upon a similar encoder-decoder structure and resembles the

AE, but the VAE additionally imposes a probabilistic assumption on the lower-dimensional (or “latent”)

space (Doersch, 2016). This assumption essentially casts the autoencoder in a Bayesian framework, where

the goal is to compute the posterior of the latent variable conditioned on the observed data, given a specified

prior distribution. Traditionally in this framework, the most widely-used methods for approximate posterior

inference have been Markov Chain Monte Carlo (MCMC) sampling methods (Gelfand and Smith, 1990),

such as the Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) and Gibbs sampling (Geman and

Geman, 1984) algorithms; however, these methods may be too slow for larger and more complex datasets

(Blei et al., 2016), which may be the case for many deep learning applications.

To address this, the VAE instead utilizes variational inference, where a family of distributions is posited

to approximate the posterior, and the optimal approximation within this family is learned by minimizing

the Kullback-Leibler divergence between the true and approximate posteriors (Kingma and Welling, 2013;

Rezende et al., 2014; Blei et al., 2016). In particular, the encoder of a VAE learns the approximate posterior

of this latent variable given the input data using amortized variational inference (Gershman and Goodman,

2014), and the decoder of a VAE learns the generative distribution of the data conditioned on the latent

8

space. The VAE is typically trained by utilizing some computationally efficient and straightforward stochastic

optimization technique (Rezende et al., 2014; Kingma and Ba, 2014).

The presence of complex interactions among high-dimensional features in modern biomedical data has

motivated the use of VAEs, commonly for unsupervised learning tasks such as dimension reduction, repre-

sentational learning, and generation of synthetic data mimicking real input data, which may be unavailable,

especially in the healthcare setting, due to patient confidentiality (Shickel et al., 2018). In prior evaluations,

VAEs have shown tremendous performance in data generation and representation learning (Kingma and

Welling, 2019).

1.3.2 Supervised Deep Learning Architectures

While a number of deep learning architectures have been proposed for supervised learning, the feed

forward neural network (FFNN) is very commonly used in most architectures. In a FFNN, sequential

non-linear transformations are applied to the values of the input layer. Each value in the subsequent layer of

the FFNN is computed by applying a non-linear (or “activation”) function to the linear transformation of the

values in the previous layer, outputting a complex non-linear transformation of the input (Svozil et al., 1997).

Such networks may contain a large number of parameters and take a long time to train, so optimization is

often done via stochastic gradient descent, for scalability (Guo and Gelfand, 1990).

Such FFNNs have been utilized for tasks like regression (Tran et al., 2019) and classification (Krizhevsky

et al., 2012; Russakovsky et al., 2015), and are highly utilized for their ability to capture complex nonlinearity

between the features, as well as model nonlinear relationships between the input and the output. Additionally,

prediction models using FFNNs have generally shown very excellent performance (Szegedy et al., 2014; He

et al., 2015).

1.4 Missing Data in Deep Learning

Historically, statistical literature characterizes missingness into one of three main categories: missing

completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR) (Little and

Rubin, 2002). MCAR refers to the case where the probability of missingness is completely independent of the

observed and missing values, MAR refers to the case where the probability of missingness is dependent on

the observed values but independent of the missing values, and MNAR refers to the case where the probability

9

of missingness is dependent on the unobserved values. There is a wide array of methods on how to treat each

type of missingness in traditional statistical frameworks (Ibrahim et al., 2005; Ibrahim and Molenberghs,

2009). However, it is not clear how these methods translate into deep learning. Specifically, missing data

methods involving computationally expensive sampling steps may be intractable for adaptation into deep

learning, which typically utilizes very large volumes of data (Chen et al., 2019).

One particular application of existing deep learning methods, like AEs or VAEs, is in analyzing medical

data, such as the Electronic Health Records (EHR). Missingness of data in this domain is very common,

yielding over 80% missingness of features in some datasets (Luo et al., 2018). In addition, the missingness in

these kinds of data is typically informative, or non-ignorable (Beaulieu-Jones and and, 2016; Venugopalan

et al., 2019; Sharafoddini et al., 2019), causing methods that don’t explicitly account for this type of

missingness to yield biased estimates (Yuan and Yin, 2009).

In practice, there is a vast array of methods on handling and imputing missing values in datasets (Horton

and Kleinman, 2007), with some methods utilizing state-of-the-art machine learning techniques (Stekhoven

and Buhlmann, 2011). In deep learning, some AE methods have been used to attempt to handle missingness

in incomplete medical datasets (Beaulieu-Jones and and, 2016; Miotto et al., 2016). However, it has been

shown that VAEs may outperform AEs in learning representations on larger datasets, like EHR data (Sadati

et al., 2019). Consequently, a number of methods have been developed recently for handling missing data

in the context of VAEs (McCoy et al., 2018; Nazabal et al., 2018; Ivanov et al., 2019; Mattei and Frellsen,

2019). In Section 1.5, we review some of these existing methods of dealing with missing data, with emphasis

on the VAE methods.

Additionally, there have been some recent attempts to train supervised deep learning models for regres-

sion and classification tasks in the presence of missing features (Ipsen et al., 2021), however such methods

typically assume either MCAR or MAR missingness. Also, commonly used methods such as mean imputation

or complete case analysis in training such models have historically yielded biased results (Ibrahim and Molen-

berghs, 2009). Multiple Imputation by Chained Equations (mice) (Van Buuren and Groothuis-Oudshoorn,

2011) has also been widely employed to handle missing data in a supervised learning setting, but mice is

unable to generalize a trained imputation model to handle missingness that may exist in a separate test set

(Hoogland et al., 2020). Also, using multiple imputation approaches may not be feasible to apply when the

downstream model is computationally intensive, such as in the setting of training a deep learning neural

network, since one must train the model separately for each imputed dataset. Moreover, existing approaches

10

to handle MAR or MCAR missingness when training deep learning models for supervised learning tasks are

currently limited, and have not been sufficiently explored in the literature.

1.5 Existing Missing Data Methods

Non-deep learning methods. Traditionally, there have been several naı̈ve methods of handling missing

data. In deep learning applications, naı̈ve approaches to handling missing data, such as listwise deletion, mean

substitution, regression imputation, and last observation carried forward (Kang, 2013) have been commonly

employed.

In listwise deletion, missing observations are simply omitted from analysis, keeping just the fully-

observed cases. This is typically valid only in the MCAR setting, and results in larger standard errors, wider

confidence intervals, and lower power in testing hypotheses (Allison et al., 2010). In mean substitution, the

missing values for each feature are imputed by the average of the observed values for that feature. This is also

only valid in a strictly MCAR setting, and has been shown to give biased estimates (Haitovsky, 1968) and to

underestimate the standard errors by inflating the sample size (Kang, 2013). In regression imputation, a linear

regression is fit with observed data to impute the missing entries. Regression imputation is an improvement

from mean imputation, but most imputation-based methods of missing data tend to underestimate standard

errors and overinflate the confidence of results, since there is no way to distinguish between imputed values

and observed values (Allison et al., 2010).

Last observation carried forward (LOCF) is typically employed in the longitudinal setting, where repeated

measures for subjects are correlated. LOCF simply carries over the immediately previous measurement of a

particular feature to impute a missing measurement for that feature for the same subject (Hamer and Simpson,

2009). LOCF makes the strong and unrealistic assumption that no change in the measurement occurs across

the two time points.

missForest (Stekhoven and Buhlmann, 2011) is a regression tree-based method that has yielded

state-of-the-art results in imputation. It is related to regression imputation, utilizing a random forest on the

observed values. In particular, for one fixed variable, a random forest is fit on the observed entries, using

the observed values of the other variables pertaining to each non-missing observation in the fixed variable.

Then, after training on these non-missing observations, the trained random forest is used to predict missing

observations of the fixed variable, using the corresponding observed values of all other variables. This

11

process is repeated for all variables in the dataset, until all missing entries have been imputed. Due to the

use of regression trees, missForest can be used for datasets of mixed data types, and can handle up to

MAR missingness. Also, missForest is computationally efficient and can handle high-dimensional data

(Stekhoven and Buhlmann, 2011).

mice (Van Buuren and Groothuis-Oudshoorn, 2011) is a popular state-of-the-art method that performs

multiple imputation, and utilizes Rubin’s rules to pool coefficient estimates based upon models fit on the

multiply-imputed datasets. It uses a fully-conditional model to iteratively update the missing entries, using

chained equations. mice has been shown to perform very well under MCAR and MAR missingness in both

imputing missing values, and in analyzing downstream models using multiply-imputed datasets. However,

it cannot generalize the learned imputation model to impute missing values that may exist at test time.

Furthermore, it may not perform well when complex nonlinear interactions exist between variables of a

dataset, as it typically assumes a linear relationship between features.

Deep learning VAE methods. Deep learning VAE methods of handling missing data typically take

advantage of the encoder-decoder architecture to generate data pertaining to missing entries. One of the first

VAE methods of imputation to handle MAR missingness was proposed by Rezende et al. (2014), in which

they first train a VAE using the subset of the observations that are completely observed, or nonmissing. Upon

training the VAE, the variational posterior is assumed to be a good approximation of the true posterior. In

this setting, an imputation procedure was proposed, where missing values are initially replaced with random

values and fed into the VAE. Then, missing features are sampled from the resulting generative model. The

sampled missing features and fixed observed features are then fed into the VAE again, and this process is

repeated until the reconstruction error on observed values is small (McCoy et al., 2018). This procedure has

the advantage of being simple and straightforward, but it requires the existence of a sufficiently large set of

completely-nonmissing observations with which a VAE can be properly trained such that a good approximate

posterior can be learned. Especially in a high-dimensional setting, such a set is not guaranteed to exist,

limiting the utility of this scheme. Also, the iterative process of imputation after training the VAE can be very

time-consuming, making it impractical for larger datasets.

VAEAC (Ivanov et al., 2019) utilizes the Conditional VAE (Sohn et al., 2015), which allows for condi-

tioning on an arbitrary subset of the features. Like the scheme by Rezende et al. (2014), VAEAC is similarly

designed for datasets with a completely-observed set of observations. Specifically, they induce random

missingness on the completely-nonmissing observations to train the VAE to learn to impute these missing

12

values. They additionally condition missing values on the observed in their lower bound to impute values of

up to MAR missingness. Compared to other methods, the architecture of VAEAC is very intricate, as it was

mainly designed to process pixel data. Thus, the VAE is trained on a much fewer number of epochs than

some other VAE missing data methods.

HI-VAE (Nazabal et al., 2018) is a VAE-based method that, like VAEAC, does not require a fully-

observed training set. Instead, missing features are replaced with 0’s, and the terms in the ELBO are

calculated with respect to just the observed values. This is possible by assuming that missingness is MCAR

or MAR, such that the missingness can be considered ignorable and the missingness mechanism need not

be modelled explicitly (Rubin, 1976). Additionally HI-VAE is able to deal with heterogeneous data types,

including categorical and binary data, by casting different assumptions on the generative model for each

data type. Additionally, they include an additional latent variable to denote cluster membership, such that

one can identify underlying subgroups within data without relying upon heuristic clustering methods on the

lower-dimensional latent space.

MIWAE (Mattei and Frellsen, 2019), like HI-VAE and VAEAC, does not require a fully-observed training

set. However, MIWAE utilizes the Importance-weighted AE (IWAE) architecture (Burda et al., 2015), which

more tightly lower bounds the log marginal distribution than the traditional ELBO. Similar to HI-VAE,

MIWAE also computes the corresponding lower bound on just the observed features, thereby allowing up to

ignorable MCAR or MAR missingness. Missing features are imputed after training, using an approximate

posterior with respect to the observed values. In particular, MIWAE utilizes an importance sampling scheme

to compute the expectation of the missing features, conditional on the observed features, and uses Monte

Carlo integration to approximate the expectation using samples from the latent space.

Although the deep learning methods described in this section can perform imputation, which can aid in

downstream modelling procedures such as prediction, and can learn complex interactions between features

which may exist in real data, none of these existing methods are able to properly handle missingness that is

MNAR, and thus may yield biased results in imputation and downstream models.

Additionally, these methods are all unsupervised learning methods for imputation of missing values, and

do not contain a mode to perform supervised learning, such as prediction. Utilizing a method to impute the

training set to perform impute-then-regress modelling may not work when missingness exists in the test set.

A multiple imputation method like mice may also be impractical if the downstream model is very complex,

as this model must be fit on each of the multiply-imputed datasets.

13

CHAPTER 2: FSCSEQ: SIMULTANEOUS FEATURE SELECTION AND CLUSTERING OF BULK
RNA-SEQ DATA

2.1 Introduction

To address the issues with respect to current methods for clustering samples based on RNA-seq, we

propose FSCseq (simultaneous Feature Selection and Clustering of RNA-seq): a penalized finite mixture of

regression models that assumes negative-binomially distributed mixture components. In addition to directly

clustering samples with respect to RNA-seq gene counts, FSCseq also performs simultaneous feature selection

to select cluster-discriminatory genes during the clustering process. We achieve this via a coordinate-wise

descent within an iteratively-reweighted least squares algorithm, imposing a fusion penalty on the differences

in estimated cluster log2 mean expression on each individual gene, simultaneously shrinking the estimates

closer together while inducing sparsity on the differences across clusters. By modeling cluster means with

weighted negative binomial regression models, FSCseq can directly adjust for differences in sequencing depth

through the inclusion of size factors in a manner similar to common differential gene expression methods. It

can also correct for potential confounders such as batch effects, by including them as regression covariates.

We demonstate the utility of these features in improving clustering performance via simulation studies and a

real data application to a TCGA breast cancer RNA-seq dataset. Lastly, we illustrate how FSCseq performs

subtype prediction in new samples, given a new set of gene expression profiles and a prior fitted FSCseq

object. In all, we address critically lacking features in clustering samples whose gene expression profiles

are measured via RNA-seq, and demonstrate improved performance with respect to existing methods over a

range of conditions.

The workflow for FSCseq and an example visualization of the penalty incorporated in our framework are

given in Figure 1. Details of these are explained in Section 2.2.

14

Figure 1: Example workflow of FSCseq (left) and visualization of the mechanics of the fusion SCAD penalty (right) imposed on β̂jk

with j = 1, . . . , 4 and k = 1, . . . , 3. For prediction, the coefficient estimates and the list of cluster-discriminatory genes obtained
from FSCseq can be used to compute posterior probabilities of cluster membership on new samples. Importantly, the fusion penalty
is imposed on each gene separately, and clusters are fused together within each given gene separately. When all clusters are fused
together for a particular gene (j = 1, right), that gene is determined to be nondiscriminatory across clusters. Otherwise, the gene is
considered to discriminate in expression across clusters.

2.2 Methods

The main utility of FSCseq is two-fold: unsupervised clustering of subjects based on subject-specific

RNA-seq gene expression profiles, and simultaneous selection of cluster-discriminatory genes. Our modeling

approach can correct for sources of technical variation like sequencing depth, adjust for effects of potential

confounders during clustering such as batch effects, and directly predict discovered subtypes in new patients

based upon a previously fitted FSCseq model. We describe our model implementation below.

2.2.1 Model likelihood

Gene-level RNA-seq read counts are utilized as the basis of our model, which can be obtained from

RNA-seq gene expression quantification software such as Salmon (Patro et al., 2017). Such approaches

account for read multi-mapping and other biases and, as a result, often provide non-integer “expected read

counts” adjusting for these factors. We round these expected count values to integers, similar to previous

approaches (Love et al., 2014). Let y denote an n × G matrix of n subjects (or “samples”) and G genes

15

(or “features”), with each element yij denoting the read count of the jth gene for the ith subject, where

i = 1, . . . , n and j = 1, . . . , G.

We assume that the RNA-seq gene expression profile of subject i, yi = (yi1, . . . , yiG), can be modeled

by a mixture of K G-dimensional multivariate negative binomial regression models. The likelihood of this

mixture model may be written as

L(µ,ϕ|y) = f(y;µ,ϕ) =
n∏
i=1

K∑
k=1

πkfk(yi;µik,ϕ), (2.1)

where K is the “order” of the mixture model (i.e. the number of assumed clusters in the data), πk is the

mixture proportion pertaining to cluster k, and
∑K

k=1 πk = 1. We denote µijk as the mean of the jth gene

for the ith subject in the kth cluster, after adjusting for subject-specific sequencing depth, and we denote

ϕj as the gene-level dispersion parameter pertaining to gene j. Then, µik = (µi1k, . . . , µiGk) is the mean

expression profile pertaining to sample i and cluster k, and ϕ = (ϕ1, . . . , ϕG) is a vector of the G gene-level

dispersion parameters.

We utilize a gene-gene independence assumption, which has been successfully implemented in prior

RNA-seq read count-based clustering methods (Si et al., 2013; Mo et al., 2013; Li et al., 2018), as a reasonable

approximation to simplify (2.1). Under this assumption, fk(yi;µik,ϕ) =
∏G
j=1 fjk(yij ;µijk, ϕj), where

fjk(·) is the negative binomial probability mass function, given by

fjk(yij ;µijk, ϕj) =

(
yij + ϕ−1

j − 1

ϕ−1
j − 1

)[
1

1 + ϕjµijk

]ϕ−1
j
[

ϕjµijk
1 + ϕjµijk

]yij
,

equivalent to the “NB2” parameterization by Hilbe (2009). Although the multivariate log-normal Poisson or

multivariate negative binomial model may alternatively account for potential correlation between genes, the

specification and estimation of such a covariance structure across genes is intractable in very high dimensions

(Inouye et al., 2017).

For the jth gene, we may specify the link and variance functions with respect to µijk as

log2(µijk) =βjk +

P∑
p=1

xipγjp + si V (µijk) = µijk + ϕjµ
2
ijk, (2.2)

16

where βjk is the log base 2 (log2) mean read count for gene j and cluster k, γjp is the effect of covariate

p on the expression of gene j, and si is the log2 scaled size factor of subject i calculated by DESeq2 to

correct for subject-specific differences in sequencing depth. In other words, we model the log2 mean of the

jth gene for subjects in the kth cluster via a cluster-specific mean parameter (on the log2 scale) and a set of

P subject-level covariates (xi1, . . . , xiP), while also accounting for sequencing depth. We allow covariate

effects to be distinct across genes, similar to prior batch correction methods (Johnson et al., 2006; Leek,

2014), as, biologically, certain sets of genes may be affected differently by a particular covariate. Examples

of such covariates may include technical factors such as batch, or potential demographic variables such as age

or tumor grade. Through the inclusion of covariates in the model, we will later demonstrate FSCseq’s ability

to adjust cluster mean estimates, thus improving clustering performance in the presence of such factors.

We note that in the given parametrization, we specify gene-level dispersion parameters ϕj that are shared

across the K clusters within gene j (Robinson et al., 2009; Love et al., 2014). In contrast, NBMB (Li et al.,

2018) specifies cluster-specific dispersion parameters ϕj = (ϕj1 . . . , ϕjK) within each gene j. Conceptually,

when n is small, the estimate of each ϕjk may not be accurate due to the smaller average per-cluster sample

size (Piegorsch, 1990; Al-Khasawn, 2010). In FSCseq, we utilize gene-level dispersions as the default in

order to avoid this issue, and later show that the cluster-specific dispersion scheme by NBMB performs poorly

in clustering analyses.

FSCseq identifies cluster-discriminatory genes simultaneously during clustering. To do this, within a

given gene j, we impose the SCAD penalty (Fan and Li, 2001) on the pairwise differences between log2

cluster means, in order to induce shrinkage on these differences and enforce equality of similar group means

within gene j. That is, we introduce the penalty term

pλ(βj) =

K∑
k<l

SCADλ(|βjk − βjl|), (2.3)

where βj = (βj1, . . . , βjK), λ is a tuning parameter to control the amount of penalty that is introduced, and k

and l are cluster indices such that 1 ≤ k < l ≤ K. The explicit form of the SCAD penalty is most commonly

given by its first derivative: SCAD′
λ∗(θ) = λ∗{I(θ ≤ λ∗)+ [(aλ∗− θ)+/(aλ∗−λ∗)]I(θ > λ∗)} for a > 2,

θ > 0, and λ∗ = λα. As suggested by Fan and Li (2001), we set a = 3.7.

17

Then, we aim to maximize the penalized log-likelihood, which may be written as

log[Lp(Ψ)] = log[L(µ,ϕ|y)] + Penalty

=

n∑
i=1

log

K∑
k=1

πk

G∏
j=1

fjk(yij ; si, βjk,γj , ϕj)

+

G∑
j=1

pλ(βj),

(2.4)

after incorporating the link function in (2.2) and the SCAD penalty. Here, Ψ = (π,β,γ,ϕ) pertains to

the vector of model parameters, with π = (π1, . . . , πK), β = (β1, . . . ,βG), and γ = (γ1, . . . ,γG). Here,

γj = (γj1, . . . , γjP) denotes the regression coefficients pertaining to the P covariates in gene j, j = 1, . . . , G.

The first term of (2.4) is the log of the model likelihood in (2.1), with µijk replaced by (si, βjk,γj), since

µijk is a function of (si, βjk,γj) by (2.2).

However, because the penalty is imposed on the differences in cluster log2 mean parameters in gene j, it

is not separable in βj . As a result, the penalized log-likelihood may not converge to a stationary point during

maximization (Friedman et al., 2007; Wu and Lange, 2008). Similar to Pan et al. (2013), we address this by

introducing a new variable θj,kl = βjk−βjl for each gene j = 1, . . . , G and each pair of clusters k and l such

that 1 ≤ k < l ≤ K. We then apply the quadratic penalty method (Nocedal and Wright, 1999) leveraging

this new constraint. In particular, for a given gene j, let θj be a K ×K upper triangular matrix denoting the

pairwise differences in βj , with entries (θj)kl = θj,kl. Then, under the quadratic penalty method, (2.3) can

be rewritten as

pλ,α(βj) =
λ(1− α)

2

∑
k<l

(βjk − βjl − θj,kl)2 +
∑
k<l

SCADλα(|θj,kl|), (2.5)

where the first term is the added quadratic penalty term as described by Nocedal and Wright (1999), pertaining

to the constraint θj,kl = βjk − βjl. This first term in (2.5) is convex and differentiable, while the second

term is non-smooth, but separable and convex, and so a coordinate-wise descent algorithm is guaranteed

to converge to the global optimum (Tseng, 2001). In FSCseq, we utilize this property to implement a

coordinate-wise descent algorithm (CDA) to estimate cluster log2 means and covariate effects within each

given gene j = 1, . . . , G. We also introduce the hyperparameter α to control the balance between these two

terms. Although similar in form, we note that this is not the traditional elastic net penalty (Zou and Hastie,

18

2005). Rather, this penalty is similar to the L1 penalty with the quadratic penalty method proposed by (Pan

et al., 2013), with the L1 replaced by the SCAD penalty.

We also note that βjk − βjl → 0 as θj,kl → 0. However, similar to Pan et al. (2013), we observe that

βjk − βjl − θj,kl → 0 as λ(1− α)→∞, but βjk − βjl = 0 cannot be guaranteed. In particular, let θ̂j,kl and

β̂jk denote the estimates of θj,kl and βjk, respectively. Then, although θ̂j,kl = 0 can be attained by the SCAD

penalty, β̂jk = β̂jl cannot be guaranteed for two distinct clusters k and l. This is because the term introduced

by the quadratic penalty method (Nocedal and Wright, 1999) to enforce the constraint θj,kl = βjk − βjl is a

ridge-like term, and thus does not perform strict thresholding, much like the classic L2 penalty (Hoerl and

Kennard, 1970). Increasing the first term by increasing λ(1− α) more closely approximates equality in the

constraint, but this introduces bias in the estimation of βj (Pan et al., 2013).

In FSCseq, we address this by fusing clusters k and l together into one joint cluster for gene j if θ̂j,kl = 0,

denoting the index of this new cluster as k∗. Specifically, we estimate β̂jk∗ using data from both clusters k

and l in gene j, and we strictly enforce the quadratic penalty method constraint by setting β̂jk = β̂jl = β̂jk∗ .

If all clusters are fused together in this way for a particular gene j, then gene j is determined to be

“nondiscriminatory” across clusters. Otherwise, gene j is considered “cluster-discriminatory.” We call this

penalty the “SCAD fusion penalty”.

We select optimal values of the three tuning parameters (K, α, and λ) by searching over a grid of possible

values for α and λ with K fixed, and then repeat this procedure for every candidate value of K. We utilize

the Bayesian Information Criterion (BIC) for selection (Schwarz, 1978). Details of this tuning parameter

selection procedure is given in Section 2.2.2.

2.2.2 Computation

We maximize the penalized log-likelihood from (2.4) via a Classification Expectation-Maximization

(CEM) algorithm with simulated annealing (Celeux and Govaert, 1992) to reduce the likelihood of converging

to a local maximum. To reduce computational overhead per iteration, we also apply “mini-batching” of

genes. That is, we update the estimates of parameters pertaining to a random subset (or a ‘mini-batch’) of the

genes in the M-step, and then perform the E-step after each ‘mini-batched’ M-step. This is in contrast to the

standard EM algorithm, where we would only perform the E-step after estimating parameters for all genes in

the M-step. Thus, mini-batching allows the E-step to be updated more quickly with M-step updates from

a subset of the parameter space, similar to the multicycle ECM algorithm (Meng and Rubin, 1993) which

19

has been shown to decrease overall computation time (Meng, 1994). We show later that this mini-batching

approach works well in our simulation and real data analyses.

The complete data penalized log-likelihood, which corresponds to the penalized log-likelihood in (2.4),

can be written as

log[Lcp(Ψ)] =

n∑
i=1

K∑
k=1

zik

log(πk) + log

G∏
j=1

fjk(yij ; si, βjk,γj , ϕj)

+

G∑
j=1

pλ,α(βj),

(2.6)

where zik = I(zi = k) is the indicator of whether subject i belongs to cluster k. In this context, zik is a

latent variable denoting cluster membership of sample i in cluster k. In the standard EM algorithm, the

so-called “Q-function” is then calculated as the conditional expectation of log[Lcp(Ψ)], given the current

parameter estimates and observed data (McLachlan and Krishnan, 2008; Garcia et al., 2009). This expectation

is calculated in the E-step, and parameter estimates are updated in the M-step by maximizing the Q-function.

The rest of this section is organized as follows. To simplify the presentation of our method, we first

describe the general E and M-steps for our algorithm without mini-batching, given some fixed values of K, α,

and λ. Then, we describe the modifications of these steps to support gene mini-batching. We then show how

the FSCseq algorithm is initialized, outline convergence criteria, and describe our procedure for selecting the

optimal values of K, α and λ. We conclude this section by describing a method for subtype prediction using

the converged FSCseq model.

We first describe the E-step with no mini-batching of genes. Let m denote the current EM iteration,

Ψ̂(m) = (π̂(m), β̂(m), γ̂(m), ϕ̂(m)) denote the estimates of (π,β,γ,ϕ) in the current iteration, and ẑ(m)
ik =

E[zik | y, s, Ψ̂(m)] denote the conditional expectation of zik, given the observed data and the current

parameter estimates, where s = (s1, . . . , sn) is the vector of fixed size factor offsets calculated a priori

by DESeq2 (Love et al., 2014). Given the form of (2.6), evaluation of the Q-function requires only the

calculation of ẑ(m)
ik , which can be interpreted as the posterior probability of subject i belonging to cluster k

given the parameter estimates at the mth EM iteration. Thus, in the standard EM algorithm, the mth E-step

20

reduces to computing ẑ(m)
ik for i = 1, . . . , n and k = 1, . . . ,K by the following expression:

ẑ
(m)
ik =

π̂
(m)
k

∏G
j=1 fjk(yij ; si, β̂

(m)
jk , γ̂

(m)
j , ϕ̂

(m)
j)∑K

k′=1 π̂
(m)
k′
∏G
j=1 fjk′(yij ; si, β̂

(m)
jk′ , γ̂

(m)
j , ϕ̂

(m)
j)

. (2.7)

These posterior probabilities may then be used as cluster-specific observation weights in the M-step.

Following convergence, it is also common to assign cluster membership to a subject by determining the

cluster with the maximum posterior probability in that subject. That is, we can assign subject i to the

cluster corresponding to argmaxk(ẑik) at convergence. We note from (2.7) that the contribution of cluster-

nondiscriminatory genes cancel out in the posterior probability calculations.

However, the standard EM algorithm is known for its susceptibility to converge to a local optimum, rather

than the global optimum (Dellaert, 2002). To reduce the likelihood of convergence to a local optimum, we

modify the E-step in a manner similar to the Classification EM (CEM) algorithm with simulated annealing

(Celeux and Govaert, 1990; Si et al., 2013). In the original CEM with simulated annealing algorithm (Celeux

and Govaert, 1990), the E-step update in (2.7) is modified (denoted as the “AE-step”), and an additional

sampling step (denoted as the “C-step”) is added after the AE-step.

In the AE-step, a “temperature” term is incorporated into the E-step update, and is gradually decreased

(or “annealed”) such that the values of ẑik approach 0 or 1. The AE-step update corresponding to (2.7) is

written as

ẑ
(m)
ik =

[π̂
(m)
k

∏G
j=1 fjk(yij ; si, β̂

(m)
jk , γ̂

(m)
j , ϕ̂

(m)
j)]1/τ

(m)∑K
k′=1[π̂

(m)
k′
∏G
j=1 fjk′(yij ; si, β̂

(m)
jk′ , γ̂

(m)
j , ϕ̂

(m)
j)]1/τ

(m)
, (2.8)

where τ (m) is the temperature of annealing in the mth AE-step iteration. As τ (m) → ∞, ẑ(m)
ik → 1/K,

maximizing the entropy of the partition. As τ (m) → 0, we approach a hard partition for cluster membership

(Rose, 1998) because the elements of the vector of posterior probabilities ẑ(m)
i = (ẑ

(m)
i1 , . . . , ẑ

(m)
iK) tend to 0

or 1, and ẑik ∈ (0, 1) with
∑K

k=1 ẑ
(m)
ik = 1 for all subjects i = 1, . . . , n. Traditionally, one allows τ (m) → 0

as m → ∞ at a pre-specified annealing rate r such that 0 < r < 1 and τ (m+1) = rτ (m). In this way, the

AE-step modification allows the CEM to avoid a local optimum by gradually reducing the stochasticity

introduced by the sampling in the C-step.

In the C-step, a sample ci = (ci1, . . . , ciK) is drawn from the multinomial distribution with probabilities

equal to ẑ
(m)
i from (2.8). Then, we set ẑ(m)

i ← ci, such that the ẑ
(m)
i now specify a hard classification of

21

sample i, i.e. for a given sample i, ẑ(m)
ik is now exactly 1 for one value of k, and 0 for all other values of k.

This is repeated for all samples i = 1, . . . , n, yielding a hard classification partition of samples.

The combination of sampling in the C-step and the inclusion of annealing in the AE-step together helps

the algorithm escape potential local optima. This is achieved by initializing τ (m) to be large in the first

iterations, such that the ẑ(m)
ik from the AE-step are close to 1/K for all i and k. Then, the probability of

yielding a random partition of subjects in the C-step is high in the first iterations. By decreasing the value of

τ (m), the probability of random partitioning approaches 0. Thus, a transition corresponding to a decrease

in the objective function can be accepted with non-zero probability, and this probability approaches 0 as

the algorithm proceeds (Celeux and Govaert, 1992). This results in the useful property for the CEM of not

terminating when reaching the first local optimum.

Following the guidelines by Celeux and Govaert (1992) and Rose (1998), we set the annealing rate

r = 0.9, similar to other methods (Si et al., 2013; Li et al., 2018). It is suggested that the entropy should be

sufficiently large in early iterations, eventually shrinking to 0 in later iterations (Klein and Dubes, 1989; van

Laarhoven and Aarts, 1987; Rose, 1998). Additionally, if the initial temperature τ (1) is too small, annealing

may terminate at a suboptimal solution (Celeux and Govaert, 1992). We address this by setting the value of

τ (1) = G. We find that this works well in our simulations and real data analyses.

In the M-step, we maximize the Q-function, given the current E-step values ẑ(m) = (ẑ
(m)
1 , . . . , ẑ

(m)
n)

and some specified values of α and λ, updating the current estimates of the model parameters. From (2.6),

the estimation of πk is separable from the remaining model parameters, and the corresponding updates

for π̂ = (π̂1, . . . , π̂K) are given by π̂(m+1)
k =

∑n
i=1 ẑ

(m)
ik /n for k = 1, . . . ,K. We also observe that the

updates of the remaining model parameters are separable across genes. That is, we may obtain corresponding

estimates (β̂(m+1)
j , γ̂(m+1)

j , ϕ̂(m+1)
j) for each gene j separately of all other genes at each M-step, as these

parameters are not shared across genes. This observation also facilitates the mini-batching approach described

later in this section. First, we outline the M-step without mini-batching.

Specifically, for a given gene j, we utilize Iteratively Reweighted Least Squares (IRLS) with an embedded

Coordinate Descent Algorithm (CDA) that updates (β̂(m+1)
j , γ̂

(m+1)
j), given specified values of α, λ, ẑ(m),

and Ψ̂(m). The update scheme for a particular gene j consists of two nested loops: an inner loop corresponding

to the CDA and an outer loop corresponding to the IRLS. The IRLS weights and working responses are

updated in the outer loop, and fed into the inner loop to update the parameter estimates in a coordinate-

22

descent fashion. After convergence of IRLS, we estimate ϕ̂(m+1)
j using Newton-Raphson. The entire M-step

procedure is outlined in Algorithm 1.

Algorithm 1 M-step

1: Input ẑ(m)

2: Update π̂(m+1)

3: for j ∈ {1, . . . , G} do ▷ Cycle through all genes

4: Input (β̂(m)
j , γ̂

(m)
j , ϕ̂

(m)
j)

5: while IRLS not converged do ▷ IRLS loop

6: Compute IRLS weights and working response

7: while CDA not converged do ▷ CDA loop

8: Update θ̂j using previous CDA updates of β̂j

9: for k ∈ {1, . . . ,K} do

10: Update β̂jk

11: for p ∈ {1, . . . , P} do

12: Update γ̂jp

13: Replace (β̂
(m+1)
j , γ̂

(m+1)
j)← (β̂j , γ̂j) ▷ Final CDA updates

14: Update ϕ̂(m+1)
j ▷ via Newton-Raphson

15: Output (π̂(m+1), β̂(m+1), γ̂(m+1), ϕ̂(m+1))

β̂jk, γ̂jp, and θ̂j denote the CDA updates of βjk, γjp, and θj , respectively, and θ̂j facilitates coordinate-

wise descent updates of β̂j . Notably, the fusion SCAD penalty is imposed on the updates of β̂j , but updates

of all other parameters are not penalized.

The coordinate-wise descent algorithm (CDA) updates for (θj,kl, βjk, γjp) for each gene j = 1, . . . , G,

clusters 1 ≤ k < l ≤ K, and covariates p = 1, . . . , P are given in this section. Current estimates of

parameters are denoted by tilde, e.g. β̃jk, and the new CDA update is denoted by a hat, e.g. β̂jk. Let

(m + 1) be the current iteration index of the M-step in the EM/CEM algorithm. Then, in the first IRLS

iteration, the values of the current estimates from the previous M step update are initialized in CDA as

(β̃jk, γ̃jp) ← (β̂
(m)
jk , γ̂

(m)
jp). Subsequent CDA loops are initialized with the most recent CDA updates. For

23

clarity of notation, let vij denote the ith element of the diagonal entries of Wj for all i = 1, . . . , N with

N = n ·K. Then, the CDA update equations for fixed gene j are given as follows:

θ̂j,kl =

sgn(θ̃j,kl)

(∣∣∣θ̃j,kl∣∣∣− α

1− α

)
+

,
∣∣∣θ̃j,kl∣∣∣ ≤ λ∗

sgn(ω̃j,kl)

(
|ω̃j,kl| −

a α
1−α

a− 1− 1
λ(1−α)

)
+

, λ∗ <
∣∣∣θ̃j,kl∣∣∣ ≤ aλα

θ̃j,kl,
∣∣∣θ̃j,kl∣∣∣ > aλα

β̂jk =

1
nk

∑N
i=1 vijxikr̃ijk + λ(1− α)[

∑
l>k(β̃jl + θ̃j,kl) +

∑
l<k(β̃jl − θ̃j,lk)]

λ(1− α)(K − 1) + 1
nk

∑N
i=1 vijx

2
ik

γ̂jp =

∑N
i=1 vijxipr̃ijp∑N
i=1 vijx

2
ip

(2.9)

where (a)+ is equal to a if a > 0 and is equal to 0 otherwise, and xik is the ith row and kth column

entry of the design matrix X as defined in Section A2. The effective number of observations used for

estimation of parameters is N = n ·K, denoting each of the IRLS-weighted n samples in each of the K

clusters. The estimated number of samples in cluster k (at the current M-step) used for estimation of βjk is

nk = π̂
(m+1)
k n. Also, r̃ijk = ỹijk−

∑K
c ̸=k xicβ̃jc−

∑P
p=1 xipγ̃jp; r̃ijp = ỹijk−

∑K
c=1 xicβ̃jc−

∑P
q ̸=p xiqγ̃jq;

ω̃j,kl =
(a−1)θ̃j,kl
a−1− 1

λ(1−α)

; and λ∗ =
α

1− α
+ λα.

We iteratively update these parameters until convergence of CDA (inner loop) for fixed gene j. Then, we

recompute the IRLS weights and repeat, until the IRLS (outer loop) converges. The dispersion estimate ϕ̂j is

attained upon convergence of IRLS, as described in Section A2. Then, we output all of the final updates as the

estimates from the current (m + 1)th M step, i.e. (β̂(m+1)
jk , γ̂

(m+1)
jp , π̂

(m+1)
k , ϕ̂

(m+1)
j) ← (β̂jk, γ̂jp, π̂k, ϕ̂j).

This entire procedure is repeated for each gene j = 1, . . . , G, or if mini-batching, j ∈ minibatch(m+1),

where minibatch(m+1) is the mini-batch of genes that were selected at the current M step. We note that

estimation of π̂k is done before the IRLS, as described in Algorithm 1 of the main text.

In order to make our algorithm more scalable to large datasets and to speed up the computation time, we

mini-batch genes in the M-step, such that the parameters pertaining to only a subset of genes are estimated

during a particular M-step iteration (Neal and Hinton, 1998). Mini-batching of genes is done by randomly

drawing a prespecified proportion of the genes whose parameters are updated in that M-step iteration. By

default, we set the mini-batch size at each iteration to G/5, or 20% of the total genes. Specifically, in the

24

M-step, we run Algorithm 1 on the pre-specified subset of genes corresponding to the current mini-batch.

That is, we update π̂(m+1) as before, but we update (β̂
(m+1)
j , γ̂

(m+1)
j , ϕ̂

(m+1)
j) only if gene j is in the

mini-batch for that M step iteration. This is straightforward to implement due to the separability across genes

in parameter updates. If gene j is not in the mini-batch for the current M-step, current estimates are replaced

with the previous iteration’s estimates, i.e. (β̂(m+1)
j , γ̂

(m+1)
j , ϕ̂

(m+1)
j)← (β̂

(m)
j , γ̂

(m)
j , ϕ̂

(m)
j).

The E-step calculations are then done as before using the parameter estimates of all genes, with the

updated values pertaining to the included genes of the mini-batch. Although mini-batching requires more

CEM iterations to converge, we found that it yields slightly faster convergence than updating all genes at

every M-step.

For each candidate value of K, we initialize our algorithm with very small penalty (small values of α

and λ) from two sets of informative initial cluster labels (from naı̈ve K-means and hierarchical clustering),

and one set of random initial cluster labels drawn from the multinomial distribution with equal probabilities

for the K clusters. We run the CEM with mini-batching on these 3 initializations until convergence, and

select the converged model that yields the lowest BIC. Then, we run the standard EM algorithm from this

selected starting point to convergence. This is similar to the “xCEM-EM” strategy proposed by Biernacki

et al. (2003), using the BIC for selection rather than the log-likelihood. Then, we use the estimates and

posterior probabilities of the converged model, and perform selection of α and λ using EM. We repeat this

initialization procedure for each candidate value of K, tuning α and λ jointly given K via warm starts. This

procedure is described in more detail later in this section

The stopping criterion for both the CEM and EM algorithms is based upon a threshold on the relative

change in the Q function. Convergence is determined when
∣∣(Q(m) −Q(m−nmb))/Q(m−nmb)

∣∣ < ϵ1 where

Q(m) is the value of the total Q-function conditional on current estimates at the mth EM or CEM iteration,

and nmb is the minimum number of mini-batches that the data can be divided into (rounded up to the nearest

integer). By default, nmb = 5 (corresponding to mini-batching 20% of genes), and the left hand side (LHS)

would be interpreted as the relative change in the Q-function across 5 iterations. Without mini-batching

(nmb = 1), the LHS simplifies to the relative change in the Q-function across one iteration.

Convergence of the IRLS and CDA are determined by a threshold on the mean absolute relative

change of parameter estimates across one IRLS/CDA iteration. In particular, let (r) index the current

IRLS/CDA iteration, such that Θ̂(r)
j = (β̂

(r)
j , γ̂

(r)
j) = (β̂

(r)
j1 , . . . , β̂

(r)
jK , γ̂

(r)
j1 , . . . , γ̂

(r)
jP) denote the estimates of

the parameters βj and γj at the end of the current rth IRLS or CDA iteration. Then, for Θjt denoting the tth

25

element of Θj , convergence of the IRLS/CDA is attained when:

1

K + P

K+P∑
t=1

∣∣∣∣∣Θ̂
(r)
jt − Θ̂

(r−1)
jt

Θ̂
(r−1)
jt

∣∣∣∣∣ < ϵ2.

In FSCseq, we set ϵ1 = 10−6 and ϵ2 = 10−4 as the default convergence thresholds.

In this section, we outline how optimal values of tuning parameters are selected in FSCseq via “warm

starts” (Friedman et al., 2007, 2010). Let (K∗, α∗, λ∗) denote the optimal values of (K, α, λ), respectively.

Denote candidate values of α as (α1, . . . , αA) with α1 < · · · < αA, and candidate values of λ as (λ1, . . . , λL)

with λ1 < · · · < λL, such that there are A · L possible combinations of values for (α, λ). Also, let Ψ̂a,ℓ

denote the final estimates of the converged results pertaining to α = αa and λ = λℓ, for a given candidate

value of K. Then, the tuning parameter selection proceeds as follows. First, initialize a model with fixed

candidate value of K as described earlier, to obtain Ψ̂1,1. Then, leaving α fixed, increase λ to the next

smallest value, λ2. Next, we run the penalized EM algorithm to convergence, utilizing the prior converged

result Ψ̂1,1 as the initial value for Ψ, to obtain Ψ̂1,2. Then, we increase λ again and repeat the previous

procedure, utilizing Ψ̂1,2 as the initial value for Ψ, to obtain Ψ̂1,3. Repeat until all L candidate values of λ

are searched. Then, set α = α2 and λ = λ1, and run EM to convergence from Ψ̂1,1 to obtain Ψ̂2,1. Repeat

this process for each value of α, until all A · L combinations of λ and α are searched. Finally, we repeat this

entire procedure for each candidate value of K.

For a given combination of order K and penalty parameters (α, λ), we may calculate the Bayesian

Information Criterion (BIC) pertaining to the converged result, which has the form:

BIC = −2 log L̂+ q log(n ·G). (2.10)

Here, L̂ is the marginal likelihood given in (2.1) calculated with the estimates Ψ̂ of the converged model, and

q is the total number of estimated parameters. Let Kj denote the number of distinct cluster mean parameters

for gene j, with each fused cluster considered as one distinct cluster. Then, q = G+ (K − 1) +
∑G

j=1Kj ,

corresponding to G gene-level dispersion parameters, (K − 1) free mixing proportions (with πK = 1 −∑K−1
k=1 πk), and a total of

∑G
j=1Kj distinct log2 cluster means. It is clear that 1 ≤ Kj ≤ K for all j, since

Kj = 1 when all clusters are fused together in gene j (gene is determined to be cluster-nondiscriminatory),

and Kj = K when no pair of clusters are fused together in gene j. Additionally, given the gene-gene

26

independence assumption from Section 2.2.1, we have an effective sample size of n ·G, corresponding to the

number of entries in the gene expression matrix.

To select the optimal tuning parameter values, we calculate the BIC of each converged model using

(2.10), and select (K∗, α∗, λ∗) as the unique combination of input values of (K,α, λ) corresponding to the

converged model that yielded the lowest BIC.

FSCseq is able to perform prediction on new samples based on the converged model with input values

for (K∗, α∗, λ∗). Given the RNA-seq read counts of cluster-discriminatory genes in a new sample, we may

derive the posterior probabilities of subtype (cluster) membership for this new sample based on (2.7), where

we assign subtypes as described previously. Specifically, we calculate the posterior probability of cluster

k membership in this new sample, ẑnew,k, utilizing the estimated parameters from the converged FSCseq

model based upon the original dataset (training set). This can be useful for predicting the subtype of new

samples (prediction set) without having to re-cluster patients in future studies. We see that the contribution of

cluster-nondiscriminatory genes would cancel out in the posterior probability calculations of new samples.

However, correcting for sequencing depth in the new samples can be nontrivial, since the size factors

are specific to the training set samples used to fit the FSCseq model. To calculate the size factor of a new

sample, we compare the counts of the new sample to the geometric mean of the counts of the training set

samples, using the information in the training set as a pseudo-reference (Anders and Huber, 2010). Then, the

estimated size factor of a new sample (ŝnew) is given by:

ŝnew = median
j

[
ynew,j

(
∏ntrain
v=1 ytrainvj)1/ntrain

]
, (2.11)

where ntrain denotes the training set sample size, and ynew,j and ytrainvj denote the count of gene j for the

new sample and for training set sample v, respectively. As before, the size factors are calculated with the

DESeq2 package.

2.3 Numerical Examples

2.3.1 Simulations

To evaluate our proposed method, we simulated data across an extensive set of conditions, varying the

following factors: number of true underlying clusters (Ktrue), sample size (n), log2 fold change between

27

cluster means (LFC), proportion of cluster-discriminatory genes (pDE), baseline log2 mean count (β0) of

genes, and overdispersion (ϕ0) of counts across samples for a given gene. We fix LFC, β0, and ϕ0 to be

the same across all simulated genes in order to demonstrate the performance of FSCseq in a controlled

setting with respect to these factors. We also fixed the number of simulated genes at G = 10000. Of

these, we specified the first (pDE · G) genes to be cluster-discriminatory, and the rest of the genes to be

nondiscriminatory, and we denote the set of cluster-discriminatory genes as Gd. In cancer subtyping data, it

is common to see specific genes upregulated or downregulated for just one subtype (Yersal, 2014). Thus, for

each cluster-discriminatory gene j ∈ Gd, we randomly select one cluster k∗, 1 ≤ k∗ ≤ Ktrue, and randomly

up-regulate (βjk∗ = β0 + LFC) or down-regulate (βjk∗ = β0 − LFC) the log2 mean for that cluster, while

keeping the expression of the remaining clusters the same as the baseline (βjk′ = β0, for all k′ ̸= k∗), where

βjk denotes the log2 mean of gene j for a sample in cluster k. For each nondiscriminatory gene j /∈ Gd, we

set βjk = β0 for all k = 1, . . . ,Ktrue. In this way, each cluster-discriminatory gene is expected to have one

cluster with log2 mean different from β0, while each nondiscriminatory gene is expected to have log2 mean

equal to β0 across all clusters.

We simulated datasets with Ktrue = (2, 4) underlying groups with 25 and 50 samples per cluster,

such that n = (50, 100) for Ktrue = 2, and n = (100, 200) for Ktrue = 4. Additionally, we considered

pDE = (0.025, 0.050), β0 = (8, 12), ϕ0 = (0.15, 0.35, 0.50) and LFC = (1, 2) in our simulations. These

values were determined using RNA-seq data from the TCGA Breast Cancer project (Grossman et al., 2016).

Specifically, after removing outlier genes, we fit a negative binomial regression model to expression counts

from each gene one-by-one, utilizing log2 size factors calculated from DESeq2 as offsets and the 5 annotated

PAM50 subtypes as covariates, such that a cluster mean is estimated for each subtype. The corresponding

n × 5 design matrix (via cell-means coding) has ith row and kth column entry xik = 1 if tumor sample i

has annotated PAM50 subtype k, and xik = 0 otherwise, for i = 1, . . . , n and k = 1, . . . , 5. Based upon

the results from these models, the 50th and 75th quantiles of the estimated LFCs in the TCGA Breast

Cancer dataset were 0.875 and 1.72, and the median estimated β̂jk and ϕ̂j were 10.2 and 0.354, respectively.

These values informed our simulation parameters above. We also simulated realistic between-sample

technical variation due to sequencing depth by simulating size factors for each sample i = 1, . . . , n from

si ∼ N(1, 0.25), based upon the estimates acquired by DESeq2 on the same TCGA samples.

To prevent our simulation model from being identical to our model framework, we also introduced

Gaussian noise to the log2 expression of each count, drawn from σij ∼ N(0, 0.1) for each sample i and gene

28

j. Then, the expression of each gene j = 1, . . . , G for subjects i = 1, . . . , n in cluster k = 1, . . . ,Ktrue was

simulated from the negative binomial distribution NB(µijk, ϕ0) with mean µijk, such that

log2(µijk) = si + βjk + σij , (2.12)

and dispersion parameter ϕ0. We simulated 100 datasets for the main simulation analyses below, and 25

datasets for the rest of the analyses. In order to mimic what is done in real data in each simulated dataset,

we used thresholds on the median count and the MAD value to pre-filter low-count and low-variable genes,

respectively, keeping features that yielded median count > 100 and MAD score in the top 50th quantile.

We ran FSCseq on each dataset after pre-filtering. Optimal values for tuning parameters (K∗, α∗, λ∗)

were found by searching candidate values of K = {2, . . . , 6}; α = {0.01, 0.05, 0.10, . . . , 0.50}; and

λ = {0.25, 0.50, . . . , 5.00}, as described in Section 2.2.2.

n LFC pDE ϕ0 K̄∗ ARI pARI TPR FPR

100 1.0 0.025 0.15 4.05 0.994 0.998 0.703 0.0007
0.35 3.78 0.926 0.922 0.554 0.0012
0.50 2.28 0.233 0.196 0.077 0.0003

0.050 0.15 4.02 0.998 1.000 0.685 0.0006
0.35 4.01 0.994 0.994 0.608 0.0015
0.50 3.80 0.941 0.923 0.432 0.0013

2.0 0.025 0.15 4.06 0.996 0.999 0.780 0.0004
0.35 4.01 0.999 1.000 0.757 0.0004
0.50 4.02 0.998 1.000 0.726 0.0014

0.050 0.15 4.05 0.995 0.999 0.781 0.0012
0.35 4.04 0.997 0.999 0.747 0.0010
0.50 4.01 0.999 1.000 0.725 0.0026

200 1.0 0.025 0.15 4.17 0.988 0.993 0.741 0.0014
0.35 4.07 0.989 0.992 0.700 0.0018
0.50 3.97 0.975 0.974 0.645 0.0012

0.050 0.15 4.15 0.992 0.996 0.727 0.0017
0.35 4.04 0.997 0.997 0.700 0.0034
0.50 4.00 1.000 1.000 0.662 0.0014

2.0 0.025 0.15 4.11 0.992 0.999 0.803 0.0019
0.35 4.07 0.998 1.000 0.798 0.0004
0.50 4.09 0.995 0.999 0.782 0.0007

0.050 0.15 4.05 0.996 0.999 0.809 0.0019
0.35 4.04 0.997 0.999 0.778 0.0007
0.50 4.04 0.998 0.998 0.767 0.0005

Table 1: Results of FSCseq clustering, feature selection, and prediction on subset of combinations of simulation conditions with
Ktrue = 4 true number of clusters and β0 = 12 baseline log2 mean. Clustering is measured by average optimal order (K̄∗) and
adjusted rand index (ARI). Prediction is done on an independently simulated dataset with npred = 25 samples, and is measured by
the average ARI between predicted and simulated cluster labels, and is denoted pARI . Feature selection performance is measured
by mean true positive rate (TPR) and false positive rate (FPR) of cluster-discriminatory gene discovery.

29

In this section, we evaluate the clustering, feature selection, and prediction performance of FSCseq under

a subset of simulated conditions that most closely reflected the estimates from the TCGA data. Thus, this

subset represents conditions that are most similar to what one may expect from real data.

Accuracy of derived clustering results was measured by two metrics: optimal order obtained (K∗) and

concordance (or agreement) in cluster assignment with the truth, measured by the Adjusted Rand Index

(ARI). Feature selection performance was measured by the true positive rate (TPR) and false positive rate

(FPR) of discovering true simulated cluster-discriminatory genes. Specifically, TPR is the proportion of true

simulated cluster-discriminatory genes ({j : j ∈ Gd}) that were correctly determined to be discriminatory by

FSCseq, while FPR is the proportion of true simulated nondiscriminatory genes ({j : j /∈ Gd}) that were

incorrectly determined to be discriminatory. To assess the prediction performance of FSCseq in new data,

we also independently simulated a prediction set of npred = 25 samples for each simulated dataset, based

upon the same set of simulated conditions. We then took the estimates obtained from the converged FSCseq

model on the original simulated dataset (training set), and then applied the procedure from Section 2.2.2 to

the corresponding test set samples to obtain the predicted cluster labels for these samples. We again measured

concordance of predicted clusters with the true simulated cluster labels in the test set by ARI , and we denote

this “prediction” ARI , or pARI . In Table 1, all performance metrics are averaged across the 100 simulated

datasets, with each row denoting a unique combination of conditions. The averaged value is denoted by bar

notation, e.g. K̄∗ is the average K∗ across the 100 datasets corresponding to a particular set of simulated

conditions.

We found that the clustering performance of FSCseq was generally robust to the magnitude of ϕ0, even

when n is small (Table 1). One exception was found when n = 100, pDE = 0.025 and LFC = 1 with

Ktrue = 4, i.e. when both the proportion of discriminatory genes and the LFC across these discriminatory

genes were small. In such a case, the clusters may be poorly separated and clustering results may be

confounded by higher ϕ0, compounded by the small average per-cluster sample size (25 per cluster). We note

that none of the compared methods perform well in this case, although FSCseq yields higher mean ARI .

As n, LFC, or pDE is increased, we also found that that the sample clusters become more distinct from

one another, yielding better clustering results. Increasing n and LFC also tended to result in an increase

in TPR, reflecting the increasing sensitvity of our variable selection method under larger sample size and

fold change differences between clusters. However as ϕ0 increased, we found a decrease in the TPR, where

the higher overdispersion confounded the true differences in expression of the cluster-discriminatory genes

30

and reduced our sensitivity to select cluster discriminatory genes. Interestingly, the FPR did not vary

significantly across changes in these conditions, showing the reliability of cluster-discriminatory features

discovered by FSCseq, and the FPR was relatively low in general. Figure 2 shows a scatterplot of TPR vs

FPR from each individual simulated dataset from Table 1, stratified by simulated LFC and n. In addition

to showing that larger n or LFC and a smaller value of ϕ0 yielded higher TPR, we also show that selecting

the correct order was important in attaining both high TPR and low FPR. This is because FSCseq more

accurately selected cluster-discriminatory genes if the correct number of groups is identified.

FSCseq’s prediction performance was also found to be highly dependent on its initial clustering perfor-

mance during model training, i.e., pARI on simulated test subjects was correlated to ARI during FSCseq

training. This reflects the fact that FSCseq models that correctly clustered samples also tended to yield more

accurate parameter estimates, which allowed for more accurate prediction of cluster identity in new samples.

Since FSCseq generally yielded high ARI , we also generally found high average pARI for simulated

conditions, reflecting the accuracy of predictions via FSCseq. Overall, we found favorable performance of

FSCseq over a variable series of conditions.

We compared performance of FSCseq with 7 competing methods: iCluster+ (iCl), average-linkage

hierarchical clustering (HC), K-medoids (KM), NB.MClust (NBMB), and mclust on log, variance

stabilizing, and rlog transformations of the normalized data (lMC, vMC, and rMC). We note that KM was

also run on log-transformed data (Jaskowiak et al., 2018) as in lMC. Because there was no default method

of choosing K∗ for HC, we chose to utilize the gap statistic, as proposed by Tibshirani et al. (2001), and

implemented the order selection in this setting via the NbClust R package (Charrad et al., 2014). For KM,

we selected K∗ to be the value of K that maximized the average silhouette width (Reynolds et al., 2004). For

NBMB and the transformed MC methods, we used default selection procedures for K∗ directly available

from the respective NB.MClust and mclust R packages.

For iCluster+, we used the following automated procedure for selectingK∗. The iCluster+ paper

and manual suggest searching graphically for a plateau of the deviance ratio (% Variability Explained) as

the optimal number of clusters. Mo et al. (2013) elaborates in the manual of the iClusterPlus package

that for increased noise in the dataset, the deviance ratio will continue to increase with higher order. We

observed this pattern even at very low levels of noise, causing the highest deviance ratio to often be at the

maximum number of clusters. In searching extensive sets of simulations, it becomes infeasible to heuristically

or visually search for optimal parameters. Thus, to systemize the procedure across numerous simulation

31

Figure 2: Scatterplot of true positive rate (TPR) vs false positive rate (FPR) in discovering cluster-discriminatory genes in
simulated datasets via FSCseq. Displayed points correspond to simulated datasets with Ktrue = 4 underlying clusters, with n = 100
(top) or 200 (bottom) and simulated LFC = 1 (‘Low’, left) or 2 (‘Moderate’, right). Red points indicate that the correct order was
uncovered (K∗ = Ktrue), and blue points indicate that an incorrect order was uncovered. Squares, circles, and X’s indicate low
(ϕ0 = 0.15), moderate (ϕ0 = 0.35), and high (ϕ0 = 0.50) levels of overdispersion, respectively. In general, TPR is higher for
larger n and larger LFC. TPR is higher and FPR is lower for results that yielded the correct order, or for smaller values of ϕ0.
For ease of visualization, a total of 15 outlier points (of 2400 total) were removed in this figure with 0.015 < FPR < 0.060.

32

cases, we selected an arbitrary threshold based on the manual, such that if the percent increase in variability

explained is less than 0.05 with an added cluster, the optimal K∗ is selected as the immediately previous

value of K.

Variable selection was not compared across these methods as only FSCseq had an automated procedure

for feature (gene) selection. We note that iCluster+ does perform automatic gene selection via the L1

penalty; however, the iCluster+ manual recommends thresholding an arbitrary proportion of genes for

selection rather than utilizing its automatic feature selection process (Mo and Shen, 2019). One could

similarly perform thresholding on the estimated coefficients from the mclust or NB.MClust results, but

this would also depend on an arbitrary threshold.

We compared performance of these methods under different numbers of underlying groupsKtrue = (2, 4)

with 25 samples per cluster. We also varied ϕ0 to test each method’s robustness to the level of overdispersion.

Here, we define order accuracy (OA) as the proportion of simulated datasets (within a given simulated

condition) that yielded the correct order, such that K∗ = Ktrue.

Figure 3 shows violin plots of order accuracy OA and ARI . Here, we fixed LFC = 1, pDE = 0.05,

n/Ktrue = 25, and β0 = 12, and we varied ϕ0 = {0.15, 0.35, 0.50}. Generally, FSCseq yielded clusters

that had the highest concordance with the simulated clusters. Many of the methods performed competitively

in clustering when Ktrue = 2, but FSCseq and iCluster+ performed markedly better than competing

methods when Ktrue = 4. Throughout all conditions, iCluster+ tended to select a larger optimal order

K∗ > Ktrue, which caused performance to be significantly better under Ktrue = 4 than Ktrue = 2. KM

performed sporadically throughout, suggesting lack of robustness in clustering performance to the magnitude

of ϕ0. Generally, NBMB yielded the lowest ARI compared to all other methods. We postulate that this is

because NBMB utilizes cluster-specific dispersion parameters for each gene in their model, which may yield

unstable estimates due to smaller sample sizes in estimating each cluster-level dispersion parameter.

In general, we observed poorer clustering performance of most methods in Ktrue = 4 compared to

Ktrue = 2, with markedly lower average ARI for HC and the transformed MC runs (Figure 3). When

Ktrue is larger, there is a smaller proportion of samples within each cluster-discriminatory gene with log2

mean different from β0, since only one cluster is differentially regulated by LFC for these genes. Thus, we

generally observe a significant decrease in performance for larger Ktrue, although FSCseq’s performance is

most robust to this effect. In addition, similarly sporadic performance of HC in RNA-seq was also observed

previously (Vidman et al., 2019), suggesting unreliability of HC for clustering RNA-seq gene expression.

33

Figure 3: Violin plots of Order Accuracy (OA, in red) and average cluster concordance with the truth (ARI , in blue) from simulation
results with Ktrue = 2 and Ktrue = 4. We compared performance of FSCseq (FSC), iCluster+ (iCl), hierarchical clustering
(HC), K-medoids (KM), NB.MClust (NBMB), and mclust on log/variance-stabilizing/rlog transformed data (lMC/vMC/rMC).
Simulated overdispersion was varied with ϕ0 = (0.15, 0.35, 0.50) to test each method’s robustness to the magnitude of overdisper-
sion. Other simulation parameters were fixed at LFC = 1, pDE = 0.05, β0 = 12, and n/Ktrue = 25 for both Ktrue = 2 (top)
and Ktrue = 4 (bottom). We fix n/Ktrue here to show the effect of varying Ktrue on performance, with a fixed number of samples
per cluster. Many methods perform competitively when Ktrue = 2, but FSCseq attains the highest average ARI overall, and yields
high performance that is very robust to the magnitude of ϕ0.

34

Finally, although the MC methods performed similarly on average, the best performing method between

these three transformations varied for each set of simulation conditions, reflecting the fact that the optimal

transformation may not be known in advance.

γ0 K̄∗
2 ARI2 K̄∗

4 ARI4

FSC 2 2.00 1.000 4.16 0.971
3 2.00 1.000 4.00 0.965

iCl 2 4.68 0.450 5.00 0.779
3 3.00 0.287 4.00 0.332

HC 2 2.00 0.000 2.00 0.001
3 2.00 -0.002 2.00 -0.001

KM 2 2.00 0.989 2.00 0.002
3 2.00 -0.002 2.00 -0.001

NBMB 2 2.28 0.055 2.32 0.004
3 2.32 0.043 2.04 -0.001

lMC 2 3.92 0.498 2.00 0.001
3 4.00 0.499 2.00 -0.001

vMC 2 3.92 0.498 2.00 0.001
3 4.00 0.499 2.00 -0.001

rMC 2 2.04 0.024 2.00 0.001
3 3.36 0.368 2.00 -0.001

Table 2: Average obtained order K̄∗ and average ARI for competing methods with Ktrue = 2 and Ktrue = 4 underlying groups,
in the presence of simulated batch effects γ0. We shorten notation in this table by denoting the K̄∗ value as K̄∗

2 for Ktrue = 2,
and as K̄∗

4 for Ktrue = 4. Similarly, we denote ARI as ARI2 for Ktrue = 2, and as ARI4 for Ktrue = 4. Tabulated results are
from datasets with n/Ktrue = 50 simulated samples per cluster, with fixed LFC = 2, pDE = 0.05, and β0 = 12, ϕ0 = 0.35.
Simulated effect across batches was varied, such that γ0 = 2, 3.

We also evaluated the clustering and order selection performance of these methods in the presence of

batch effects. Here we simulate two batches in a subset of simulation conditions, where batch effects were

imposed on a subset of genes for each simulated dataset. Simulated RNA-seq read counts were generated in a

manner similar to (2.12), except now we assume log2(µijk) = si + βjk + σij + {I(j ∈ Gb) · γ0 ·Batchi},

where Gb is the set of genes that are simulated to be batch-affected, γ0 is a fixed batch effect on the log2

scale, and Batchi = {−0.5, 0.5}. We randomly assign Batchi = −0.5 or Batchi = 0.5 for i = 1, . . . n

with equal probability, and Gb is comprised of a randomly selected 50% subset of the G genes. For each

simulation we performed FSCseq with the batch variable as a covariate, and compared performance via each

method on simulation conditions with n/Ktrue = 50, LFC = 2, pDE = 0.05, β0 = 12, and ϕ0 = 0.35. We

chose this subset to isolate the confounding effect of batch, since these simulated conditions yielded good

clustering performance when batch effects were not simulated.

Results on batch-simulated datasets are shown in Table 2. FSCseq is the only method that performs

robustly to the magnitude of γ0, showing its ability to properly adjust for the confounding batch effects.

35

Although KM does not perform any correction for batch, it surprisingly performed well under Ktrue = 2 and

γ0 = 2. However, because KM does not actually correct for batch, KM performs expectedly poorly under

larger simulated batch effects γ0 = 3.

2.3.2 Application to TCGA Breast Cancer RNA-seq dataset

In this section, we compared performance of these clustering methods on the TCGA Breast Cancer

(BRCA) dataset. The dataset and annotations were obtained from the National Cancer Institute GDC Portal

(Grossman et al., 2016). Gene expression RNA-seq data was sequenced via the Illumina Hiseq 2000 platform,

and alignment and quantification were done using the GDC’s mRNA Analysis Pipeline, which can be found

in the “GDC Data User’s Guide” online (Grossman et al., 2016). The raw read counts were downloaded

using the TCGAbiolinks R package (Colaprico et al., 2015).

Subtyping was done previously using the PAM50 classifier: a set of 50 genes that has been heavily

investigated as driving genes of breast cancer subtypes (Koboldt et al., 2012). These genes are also known to

be primarily expressed in tumor cells. However, tumor bulk samples are typically comprised of heterogeneous

mixtures of cell types, and may poorly reflect the expression profile of the tumor if the sample is of low tumor

purity, i.e. if it is composed of a small proportion of tumor cells. Attempts at unsupervised clustering of

low-purity samples based on subtype may emphasize genes that are associated with purity and confound

results (Aran et al., 2015). Thus, we first included in our analysis only samples whose estimated ABSOLUTE

purity (Carter et al., 2012) was greater than 0.9. This is done in order to (1) properly cluster samples via

each compared method based upon tumor subtypes, and (2) compare each clustering method fairly with the

annotated subtypes, which are based upon tumor-intrinsic PAM50 classifier genes. We also performed our

analyses on all samples without purity filtering, and compared our results with those from Koboldt et al.

(2012), which performed similar clustering analyses on all samples.

After filtering samples by purity, we found very low incidence of the HER2-enriched and normal-like

subtypes, and thus removed these subtypes from our analysis. Then, we pre-filtered low read count genes

by low median normalized count, and low-variable genes by low MAD scores. After all filtering steps, the

dataset contained 123 samples from 3 distinct subtypes, and 4038 genes. We measured concordance with

annotated sample groupings (tumor subtypes in the TCGA BRCA dataset) by four clustering metrics: ARI,

normalized mutual information (NMI) (Strehl and Ghosh, 2003), normalized variation of information (NVI)

(Reichart and Rappoport, 2009), and normalized information distance (NID) (Vinh et al., 2010).

36

The RNA-seq experiments were performed on separate wells of multiwell plates, with multiple samples

sequenced on the same plate at different times. Therefore, samples across plates may express variability

similar to batch effects (Reese et al., 2013). We performed FSCseq analysis with (FSCadj) and without

(FSC) adjustment for this confounding effect, and compared the results with competing methods. For proper

analysis via FSCadj , we agglomerated singleton plates (plates with just one sample) into one joint plate.

For this data, we expanded the grid of candidate values of K to {2, . . . , 8}. All clustering metrics

were calculated with respect to the mRNA PAM50 subtype annotations (‘anno’) by the GDC. Potential

confounders like age, ethnicity, and tumor grade were not included here because they were not of major

interest in our analysis, but they can be incorporated as additional covariates in FSCseq. Results are given in

Table 3.

K∗ (3) ARI (1) NMI (1) NVI (0) NID (0)
anno 3
FSC 5 0.375 0.422 0.667 0.578

FSCadj 3 0.594 0.642 0.523 0.358
iCl 8 0.204 0.32 0.737 0.68
HC 2 0.481 0.476 0.559 0.524
KM 2 0.486 0.489 0.539 0.511

NBMB 4 0.447 0.461 0.658 0.539
lMC 4 0.437 0.464 0.649 0.536
vMC 4 0.428 0.465 0.65 0.535
rMC 4 0.436 0.464 0.649 0.536

Table 3: Selected order (K∗) and clustering concordance between compared methods and annotated TCGA Breast Cancer subtypes.
FSCseq was run with adjustment (FSCadj) and without adjustment (FSC) for plate effect, and each of the clustering labels were
compared to annotated subtypes (anno). For each column, the value of the best performing metric is colored in red. The values in
parentheses in the column headings represent the optimal value for that metric. For ARI and NMI, values closer to 1 indicate better
clustering, and values closer to 0 indicate worse clustering. For NVI and NID, values closer to 0 indicate better clustering, and values
closer to 1 indicate worse clustering.

FSC selected order K∗ = 5, but after adjusting for plate effects, FSCadj uncovered the true order of

K∗ = 3. Similar to the trends seen in simulations, iCluster+ selected a larger number of clusters K∗ = 8,

while HC and KM selected a smaller K∗ = 2. The transformed MC methods and NBMB selected a slightly

larger K∗ = 4. Of the competing methods, FSCadj yielded the clusters with the highest concordance with

the annotations, with an ARI of 0.594, followed by KM and HC with ARIs of 0.486 and 0.481, respectively.

FSCadj additionally yielded the best NMI , NV I , and NID.

Feature selection via FSC and FSCadj respectively determined a total of 2693 and 2238 genes to be

cluster-discriminatory, while the automatic feature selection by the L1 penalty in iCluster+ determined

37

significantly more genes (4035) to be cluster-discriminatory. Of the 41 PAM50 genes that were included

in our analysis after pre-filtering, FSC determined all 41 likely to be cluster-discriminatory, and FSCadj

determined 38 of them to be likely. This shows FSCseq’s ability to identify subtype-discriminating genes in

real cancer data, as the relevance of PAM50 genes in RNA-seq has been shown by previous studies (Picornell

et al., 2019; Raj-Kumar et al., 2019). Figure 4 shows a heatmap of the PAM50 genes with notations on

their inclusion/exclusion through the pre-filtering step, and through FSCseq’s simultaneous feature selection.

Column (samples) ordering is based on annotated subtypes, and samples are ordered within subtypes by

decreasing order of maximum posterior probability from FSCadj results. KM performs well in terms of ARI,

but it only grouped samples by basal vs. non-basal subtypes and didn’t distinguish between the Luminal A

and Luminal B subtypes. Similarly, lMC performs well in grouping basal samples, but overselected the order

(K∗ = 4) and was not able to distinguish between Luminal A and B samples. Overall, the cluster labels from

FSCadj most accurately clustered the samples according to the 3 underlying subtypes.

In addition to the PAM50 genes, other significant cluster-discriminatory genes found by both FSC

and FSCadj included genes like CDH1, which has been linked to lobular or ER+ tumor carcinomas (Yang

et al., 2015), and CHEK2, which has been studied for its association with the luminal subtypes (Huszno

and Kolosza, 2019). Additionally, we performed gene ontology analysis on the discovered sets of cluster-

discriminatory genes from both FSC and FSCadj . Enriched pathway analysis showed that genes from

both sets were involved in known key pathways associated with cancer. Such pathways included signaling

pathways like EIF2 and AHR, as well as pathways involved in mitosis and other molecular mechanisms of

cancer. Both sets of genes also contained many gene ontology (GO) biological processes pertaining to the

cell cycle, consistent with previous studies that found such enrichment in basal-like subtypes of breast cancer

(Yang et al., 2017, 2019). We further validated our results by testing for overlaps with known gene sets via

GSEA analysis (Mootha et al., 2003; Subramanian et al., 2005). We first grouped cluster-discriminatory

genes from FSCadj using MBCluster.Seq (Si et al., 2013), then separately analyzed the subset of genes

that were upregulated (basalUP), and those that were downregulated (basalDOWN) for the most distinct

basal subtype. Significantly overlapping gene sets with basalUP and basalDOWN were sets of genes

known to differentiate subtypes of breast cancer. Additionally, the top overlapping gene set for basalUP and

basalDOWN corresponded to the specific collections of genes known to be upregulated and downregulated,

respectively, in the basal subtype of breast cancer (Smid et al., 2008). Results of these gene ontology analyses

are given in Figures 5 and 6.

38

Figure 4: Heatmap of the PAM50 genes included in FSCseq analyses, with row annotations for feature selection and pre-filtering (left)
and column annotations for clustering labels (top). Column ordering is based on annotated subtypes, and samples are ordered within
subtypes by decreasing order of maximum posterior probability from FSCadj results. 9 PAM50 genes did not pass the pre-filtering
(PF) threshold: TMEM45B, MDM2, FGFR4, ACTR3B, FOXC1, MIA, EGFR, CCNE1, and ORC6L. Of the 41 remaining PAM50
genes, FSC and FSCadj found 41 and 38 of the PAM50 genes were cluster-discriminatory, respectively. Additionally, all clustering
labels distinguish well between Basal and Luminal subtypes, but FSCadj best distinguishes between Luminal A and Luminal B
samples.

39

Figure
5:G

ene
ontology

biologicalprocesses
and

enriched
pathw

ays
ofclusterdiscrim

inating
genes

found
by

F
S
C

(left)and
F
S
C

a
d
j

(right).T
he

bars
representp-value

corrected
FD

R
(in

−
lo
g

scale),and
the

red
lines

representratios
oflistgenes

found
in

each
pathw

ay
overthe

totalnum
berofgenes

in
thatpathw

ay.

40

Figure 6: GSEA analyses on basalUP (basal up-regulated, top) and basalDOWN (basal down-regulated, bottom) subsets of
cluster-discriminatory genes discovered from FSCadj . Only the top five overlapping gene sets shown.

41

We measured performance in prediction via leave-one-out cross-validation by training a model on

cluster-discriminatory genes from FSC with one sample held out, and using this model to predict the cluster

label of the held-out sample. In this way, prediction was performed on each sample once. We observed very

high overall accuracy of 0.951, showing robustness of our prediction framework in real data settings.

Finally, we also clustered the TCGA samples without pre-filtering samples for purity and including all 5

original subtypes (Ktrue = 5), as done previously by Koboldt et al. (2012). We anticipated that there would

exist a larger number of underlying groups in this dataset due to heterogeneity caused by low purity samples,

which is also reflected by the results in Koboldt et al. (2012). Thus, we expanded the search range of K to

K = {2, . . . , 15}. As expected, all methods yielded clusters of poor concordance with the annotated PAM50

subtypes, with FSC and FSCadj yielding larger orders of K∗ = 7 and K∗ = 8, respectively, and ARIs of

0.316 and 0.245, respectively. Koboldt et al. (2012) performed unsupervised clustering on the same samples

and found 13 clusters, and they performed semi-supervised clustering with an intrinsic list of significant

genes that similarly yielded 14 clusters. Their results were similarly poor in agreement with the annotated

subtypes (ARI of 0.272 and 0.258 for unsupervised and semi-supervised clusters, respectively). Compared

to these results, FSCseq was able to select K∗ that is closer to the true number of subtypes, however the

potential confounding in expression due to variable sample purity appears to cloud the ARI performance of

all methods in this setting. The results from these analyses can be found in Table 4

K∗ (5) ARI (1) NMI (1) NVI (0) NID (0)
anno 5
FSC 7 0.316 0.369 0.732 0.631

FSCadj 8 0.245 0.295 0.78 0.705
iCl 6 0.257 0.28 0.805 0.72
HC 2 0.004 0.003 0.997 0.997
KM 2 0.348 0.293 0.731 0.707

NBMB 15 -0.008 0.097 0.932 0.903
lMC 15 0.157 0.259 0.788 0.741
vMC 12 0.164 0.268 0.786 0.732
rMC 12 0.169 0.274 0.781 0.726
SigI 14 0.258 0.333 0.73 0.667

SigU 13 0.272 0.35 0.736 0.65

Table 4: Selected order (K∗) and clustering concordance between compared methods and annotated TCGA Breast Cancer subtypes.
FSCseq was run with adjustment (FSCadj) and without adjustment (FSC) for plate effect, and each of the clustering labels were
compared to annotated subtypes (anno). Results from unsupervised (SigU) and semi-supervised (SigI) clustering from Koboldt
et al. (2012) are also shown. For each column, the best performing metric is colored in red. The value in parentheses in the column
headings represent optimal values. For ARI and NMI, values closer to 1 indicate better clustering, and values closer to 0 indicate
worse clustering. For NVI and NID, values closer to 0 indicate better clustering, and values closer to 1 indicate worse clustering.

42

2.4 Discussion

Our findings from our simulations and real data applications give evidence to the utility of our method

across a varied set of conditions. In our simulations, we found very good feature selection performance

throughout simulated conditions, and FSCseq outperformed existing clustering methods for RNA-seq data. In

addition, the markedly low FPRs in gene discovery may help researchers attain a higher degree of confidence

in the discovered list of genes, while limiting expended resources on validation studies in clinical settings. In

the TCGA BRCA dataset, FSCseq clusters aligned best to previously discovered subtypes when correcting

for batch effects (plate), although differing levels of heterogeneity in samples confounded the results. The

annotated subtypes were discovered by analyzing just the genes that were clinically validated to be significant

in discriminating across breast cancer subtypes. We showed that FSCseq is able to perform comparably,

despite using no such a priori knowledge of significant genes. Moreover, of the PAM50 genes included in

our TCGA BRCA analysis, the FSCseq workflow identified most of these genes as discriminatory across

the resulting clusters. As these genes have been validated to be significant on both microarray and RNA-seq

platforms, this emphasizes FSCseq’s ability to uncover significant genes in real data settings.

43

CHAPTER 3: UNSUPERVISED DEEP LEARNING WITH MISSING DATA

Although there exist some methods to handle up to MAR missingness in the VAE setting, there is a lack

of discussion on the principled theory of missingness in conjunction with such methods. Additionally, these

methods are not able to handle MNAR missingness, where a parametric model is typically necessary for the

missingness. To address these issues, we compare performance of state-of-the-art deep learning methods

under different mechanisms of missingness, unifying these deep learning methods with a proper statistical

framework of missing data. We then propose an extension of the VAE to handle MNAR data, and show that

proper modelling of the missingness increases performance in tasks such as imputation of missing data, and

clustering of sub-populations. We demonstrate the utility of our method through imputation and clustering of

synthetic datasets with simulated missingness, and downstream prediction analysis on real datasets.

3.1 Methods

In this section, we first show the formulation of variational autoencoders (VAEs). Then, we explore

the different mechanisms of missingness as discussed thoroughly by statistical literature (Little and Rubin,

2002). We expand on the special case of MNAR missingness, where the missingness can be dependent on

the missing values themselves, and present the models that are typically employed under the MNAR case.

Finally, we look at VAEs in the context of the discussed mechanisms of missingness, and propose a novel

method using VAEs in the presence of MNAR missingness.

3.1.1 Variational Autoencoder

Let X be an n× p data matrix, where xi denotes the observation vector pertaining to the ith observation,

i = 1, . . . , n, and xij denotes the value of the jth feature in this vector, j = 1, . . . , p. In a VAE, we assume

x1, . . . ,xn are i.i.d. samples from a multivariate p.d.f or “generative model” pψ(X|Z). Here, Z is an

n× d matrix, such that Z = {z1, · · · , zn} and zi is a latent vector of length d pertaining to the ith sample

(Kingma and Welling, 2019). Typically it is assumed that d ≤ p, such that Z constitutes a lower-dimensional

44

representation of the original data X. The parameters ψ and conditional distribution pψ(X|Z) indicate how

the observed data X may be generated from Z. In this manner, a VAE aims to learn accurate representations

of high-dimensional data, and may be used to generate synthetic data with similar qualities as its training

data. These aspects are also aided through the use of embedded deep learning neural networks, for example

within pψ(X|Z), which also facilitate its applicability to larger dimensions and complex datasets.

3.1.1.1 Objective Function

Since ψ is unknown, learning is performed by maximizing the marginal log-likelihood of X with respect

to ψ, where we denote this marginal log-likelihood as

log pψ(X) = log

∫
pψ(X,Z)dZ = log

∫
pψ(X|Z)p(Z)dZ.

However, due to the integral involved, this quantity is often intractable and is difficult to maximize directly.

Therefore, VAE’s alternatively optimize the so-called “Evidence Lower Bound” (ELBO), which has the

following form (Kingma and Welling, 2019):

LELBO(θ, ψ) = EZ∼qθ(Z|X) log

[
pψ(X|Z)p(Z)
qθ(Z|X)

]
(3.13)

L̂ELBOK (θ, ψ) =
1

K

K∑
k=1

log

[
pψ(X|Z̃k)p(Z̃k)

qθ(Z̃k|X)

]
. (3.14)

Here, LELBO(θ, ψ) denotes the ELBO such that LELBO(θ, ψ) ≤ log pψ(X). Also let L̂ELBOK (θ, ψ) denote

the empirical approximation to Eq. (3.13) computed by Monte Carlo integration, such that LELBO(θ, ψ) ≈

L̂ELBOK (θ, ψ) and Z̃1, . . . , Z̃K are K samples drawn from qθ(Z|X), the variational approximation of the

true but intractable posterior pψ(Z|X), also called the “recognition model”. Furthermore, denote fψ(Z) and

gθ(X) as the decoder and encoder feed forward neural networks of the VAE, where ψ and θ are the sets of

weights and biases pertaining to each of these neural networks, respectively. Given Z, fψ(Z) outputs the

distributional parameters pertaining to pψ(X|Z). Given X, gθ(X) outputs the distributional parameters for

qθ(Z|X).

In variational inference, qθ(Z|X) is constrained to be from a class of simple distributions, or “variational

family”, to obtain the best candidate from within that class to approximate pψ(Z|X). Variational inference is

usually used in tandem with amortization of the parameters where the neural network parameters are shared

45

across observations (Gershman and Goodman, 2014), allowing for stochastic gradient descent (SGD) to be

used for optimization of Eq. (3.14) (Kingma and Welling, 2019). In practice, both qθ(Z|X) and p(Z) are

typically assumed to have simple forms, such as multivariate Gaussians with diagonal covariance structures,

and qθ(Z|X) is commonly assumed to be factorizable, such that qθ(Z|X) =
∏n
i=1 qθ(zi|xi) (Kingma and

Welling, 2019).

3.1.1.2 Estimation Procedure and Use Cases

Let (θ̂(t), ψ̂(t)) be the estimates of (θ, ψ) at update (or iteration) t. For t = 0, these values are often

initialized to small values centered around 0, although other initialization schemes may be used (Saxe et al.,

2014; Murphy, 2016). Each subsequent update t ≥ 1 consists of two general steps to maximize L(θ, ψ). First,

K samples are drawn from qθ̂(t)(Z|X) to compute the quantity in Eq. (3.14), conditional on (θ̂(t), ψ̂(t)). Then,

the so-called “reparametrization trick” is utilized to facilitate the calculation of gradients of this approximation

to obtain (θ̂t+1, ψ̂t+1) using stochastic gradient descent (Kingma and Welling, 2019). This procedure may

be repeated for a fixed number of iterations, or may be terminated early via pre-specified early stop criteria

(Prechelt, 1998). Kingma and Welling (2019) provides additional details on the maximization procedure for

VAEs. The networks fψ(Z) and gθ(X) also allow the VAE to capture complex and non-linear relationships

between features when outputting the distributional parameters for the generative and recognition models,

respectively, through the inclusion of hidden layers in each network. The number of hidden layers and nodes

per layer for each network are commonly determined via hyperparameter tuning.

After model fitting, the VAE has several useful features. First, synthetic data can be generated by

sampling from the learned generative model pψ̂(X|Z) after drawing a sample from qθ̂(Z|X) (Mattei and

Frellsen, 2019; Nazabal et al., 2018). Second, the posterior modes in the latent space Z can be determined

from qθ̂(Z|X). These posterior modes may be used for purposes such as clustering or substructure discovery

(Lim et al., 2020). In some applications, pψ̂(X|Z) may also be used to directly perform imputation (Nazabal

et al., 2018), however the statistical properties of this procedure have not been thoroughly discussed in prior

work.

46

3.1.2 Importance-Weighted Autoencoder

The IWAE (Burda et al., 2015) is a generalization of the standard VAE, where the resulting IWAE bound,

corresponding to the ELBO in Eq. (3.13), can be written as

LIWAE
K (θ, ψ) = EZk∼qθ(Z|X) log

[
1

K

K∑
k=1

pψ(X|Zk)p(Zk)
qθ(Zk|X)

]
(3.15)

L̂IWAE
K (θ, ψ) = log

[
1

K

K∑
k=1

pψ(X|Z̃k)p(Z̃k)
qθ(Z̃k|X)

]
. (3.16)

An important distinction in Eq. (3.15) from Eq. (3.13) is that a VAE assumes a single latent variable Z in Eq.

(3.13) that is sampled K times in the ELBO approximation from Eq. (3.14). In contrast, an IWAE assumes K

i.i.d. latent variables in the expression for its lower bound, where Z1, . . . ,ZK
i.i.d∼ qθ(Z|X). The contribution

of each Zk in Eq. (3.15) is weighted by p(Zk)
qθ(Zk|X) . Then, to compute its empirical approximation L̂IWAE

K ,

typically only one sample is drawn for each Zk in Eq. (3.16). For K > 1, Burda et al. (2015) showed

that log p(X) ≥ LIWAE
K+1 ≥ LIWAE

K , such that LIWAE
K → log p(X) as K → ∞ if pψ(X,Z)/qθ(Z|X) is

bounded. Thus, the IWAE bound more closely approximates the true marginal log likelihood when K > 1

(Cremer et al., 2017), at the cost of greater computational burden. IfK = 1, LIWAE
1 = LV AE , and the IWAE

corresponds exactly to the standard VAE. In this way, the IWAE can be considered to be part of the VAE

family, and we refer to methods that use either VAEs or IWAEs broadly as “VAE methods”. A visualization

of the workflow for an IWAE (without missing data) can be found in Figure 7.

47

3.1.3 IWAE Architecture

Figure 7: Architecture of an importance weighted autoencoder (IWAE) in the absence of missing data. Darkly colored nodes
represent deterministic values, lightly colored nodes represent learned distributional parameters, and outlined (in red) nodes represent
sampled values from learned distributions. Orange cells correspond to latent variables Z. Z1, . . . ,ZK is sampled 1 time each from
the variational posterior posterior distribution q(Z|X). Below is the lower bound (LB), which is optimized via stochastic gradient
descent.

VAE methods have shown excellent performance in representation learning on many types of data.

However, the presence of missingness in X presents significant challenges to the above modeling procedures

and the application of VAE methods in general.

3.1.4 Missing Data

In this section, we first introduce notation for missing data and review the different mechanisms of

missingness, as described in the statistical literature. Let the data be factored such that X = {Xo,Xm},

with Xo denoting the observed values and Xm denoting the missing values. For each observation vector

xi, denote xoi and xmi respectively to be the observed and missing features of xi. Also, let R be a matrix

of the same dimension as X, with entries rij = I(xij is observed) for the ith observation and jth feature,

where I(·) denotes the indicator function. In this way, R is the “mask” matrix pertaining to X, such that

xoi = {xij : rij = 1} and xmi = {xij : rij = 0} for all i = 1, . . . , n and j = 1, . . . , p.

48

Missingness was classified into three major categories, or mechanisms, in the seminal work by Little and

Rubin (2002). These mechanisms are missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAR), and they satisfy the following relations: (1) MCAR: p(ri|xi, zi,ϕ) =

p(ri|ϕ), (2) MAR: p(ri|xi, zi,ϕ) = p(ri|xoi ,ϕ), and (3) MNAR: p(ri|xi, zi,ϕ) = p(ri|xoi ,xmi , zi,ϕ).

Here, ϕ denotes the unknown parameters pertaining to the missingess model p(ri|xi, zi,ϕ), where ri =

{ri1, . . . , rip}. We discuss forms of this model in Section 3.1.4.3. In the presence of missingness mask R,

the marginal log-likelihood may be written as

log pψ,ϕ(X
o,R) = log

∫∫
pψ,ϕ(X

o,Xm,Z,R)dXmdZ. (3.17)

We may factor pψ,ϕ(Xo,Xm,Z,R) using the selection model factorization (Diggle and Kenward, 1994),

which is written as

pψ,ϕ(X
o,Xm,Z,R) = pψ(X

o,Xm|Z)p(Z)p(R|X,Z,ϕ),

where p(R|X,Z,ϕ) =
∏n
i=1 p(ri|xi, zi,ϕ).

3.1.4.1 Ignorable Missingness

In a likelihood-based analysis under either MCAR or MAR, the missingness mechanism is considered to

be “ignorable” such that the missingness mechanism need not be explicitly modelled in these cases (Rubin,

1976; Little and Rubin, 2002). Under ignorable missingness, the left hand side of Eq. (3.17) can be separated

into log pψ(X
o) + log pϕ(R|Xo), where pψ(Xo) is the marginal distribution of Xo. Therefore, pϕ(R|Xo)

need not be specified because inference on the parameters of interest pertaining to pψ(Xo) is independent of

pϕ(R|Xo). Then, one aims to maximize the quantity

log pψ(X
o) = log

∫∫
pψ(X

o,Xm,Z)dXmdZ = log

∫
pψ(X

o,Z)dZ. (3.18)

This quantity can be bounded below exactly as in Section 3.1.1.1, conditioning on just the observed data Xo,

rather than the full data X. Existing methods typically take advantage of this simplification, and are shown to

perform well under ignorable missingness. Details for these methods are given in the next section.

49

3.1.4.2 VAEs and IWAEs with Ignorable Missingness

There are a number of VAE/IWAE methods that have been developed to handle ignorably missing data.

VAEAC (Ivanov et al., 2019) is a method catered for datasets with complete training sets. VAEAC

can handle different types of data (continuous, categorical, or count), and additionally conditions on the

missingness mask. In training time, additional MCAR missingness is imposed on the fully-observed training

set by masking a fixed proportion of values. This trains the neural network to learn to impute missing values

accurately during testing. Missing data is imputed by values that are sampled from the generative distribution

p(Xm|Z,Xo,R). However, inducing additional missingness may be problematic for situations where there

already exists a high level of inherent missingness in the data.

HI-VAE (Nazabal et al., 2018) takes advantage of the fact that the marginal log-likelihood simplifies

to Equation (3) of the main text under ignorable missingness. Under this simplification, the new ELBO

corresponding to Equation (1) of the main text is given by

L(θ, ψ) = EZ∼qθ(Z|Xo) log

[
pψ(X

o|Z)p(Z)
qθ(Z|Xo)

]
, (3.19)

such that the training of the VAE depends only on the observed values. To preserve the length of each

observation vector, the missing features are pre-imputed by some value, typically using zero imputation.

In this setting, the standard variational approximation qθ(Z|X) is replaced by qθ(Z|Xo). This quantity

approximates p(Z|Xo) instead of p(Z|X), thus allowing the VAE to be trained with partially-observed input

data. In HI-VAE, the VAE framework is adapted to be able to deal with heterogenous data, i.e. both discrete

and continuous data. Missing data is imputed by either sampling from the generative model p(Xm|Z), or by

setting missing values equal to the corresponding means of the posterior distribution. In contrast, the MIWAE

method (Mattei and Frellsen, 2019) does not take heterogeneous data as input, but uses the IWAE framework

to create a tighter lower bound on the marginal log-likelihood. They also use a principled imputation scheme

that works up to MAR missingness, utilizing importance-weighted samples to calculate E[Xm|Xo,Z].

3.1.4.3 Non-ignorable Missingness

In contrast, non-ignorable (or MNAR) missingness refers to the case where the missingness can be

dependent on any unobserved values, including the missing entries xmi . MNAR missingness can also be

50

dependent on xoi as well as latent values like Z, and thus MNAR represents the most general and difficult

case of missingness in practice. Here, we assume that R is independent of Z, as conditioning on such latent

factors may be computationally redundant based on the assumed data generating process (Ibrahim, 2001).

In this setting, the missingness typically requires specification of a model for the missingness p(R|X,ϕ)

(Stubbendick and Ibrahim, 2003). Current VAE methods are only able to handle MCAR or MAR missingness,

and there is no method to properly deal with the more difficult MNAR case. This issue is especially

problematic because missingness in many real world applications have been posited to be non-ignorable

(Beaulieu-Jones and and, 2016; O’Shea, 2019).

There have been a number of ways to specify p(R|X,ϕ) in statistical literature. For example, Diggle

and Kenward (1994) proposes a binomial model for the missing data mechanism:

p(R|X,ϕ) =
n∏
i=1

p∏
jm=1

[p(rijm = 1|xi,ϕjm)]
rijm [1− p(rijm = 1|xi,ϕjm)]

1−rijm ,

where jm = 1, . . . , pmiss indexes the pmiss features in X that contain missingness, ϕjm is the sets of

coefficients pertaining to jthm missingness model, and p(rijm = 1|xi,ϕjm) can be modeled straightforwardly

by a logistic regression model, such that

logit[p(rijm = 1|xi,ϕjm)] = ϕ0jm + xoiϕ1jm + xmi ϕ2jm , (3.20)

where ϕ0jm is the intercept of the jthm missingness model, ϕ1jm = {ϕ1,jm,1, . . . , ϕ1,jm,pobs}T is a pobs × 1

vector of coefficients pertaining to the fully-observed features, and ϕ2jm = {ϕ2,jm,1, . . . , ϕ2,jm,pmiss}T is a

pmiss × 1 vector of coefficients pertaining to the missing features.

3.1.5 NIMIWAE: IWAE with Nonignorable Missingness

We now propose a novel method to perform statistical learning and imputation using an IWAE in the

presence of missing data (NIMIWAE), assuming missingness is nonignorable. We later show how this model

can be simplified when missingness is assumed to be ignorable (IMIWAE). First, we specify a general form

of the lower bound, in which we utilize the general IWAE framework to form a tighter bound on the marginal

log-likelihood than the VAE ELBO. Let us define qθ(Z,Xm) as the variational joint posterior pertaining

to (Z,Xm). We can factorize this variational joint posterior as qθ(Z,Xm) = qθ1(Z|Xo)qθ2(X
m|Z,Xo,R).

51

Here, for k = 1, . . . ,K, we assume Zk
i.i.d∼ qθ1(Z|Xo) similar to the traditional IWAE. We additionally

assume i.i.d. latent variables Xm
k
i.i.d∼ qθ2(X

m|Z,Xo,R) pertaining to the missing features, where each Xm
k

has dimensionality pmiss. Similar to traditional VAEs, we utilize the class of factorized variational posteriors,

except now qθ(Z,X
m) =

∏n
i=1 qθ(zi,x

m
i) and qθ(zi,xmi) = qθ1(zi|xoi)qθ2(xmi |zi,xoi , ri). Then, denoting

zik and xmik as the ith observation vectors of Zk and Xm
k , respectively, we have zi1, . . . , ziK

i.i.d∼ qθ1(zi|xoi)

and xmi1, . . . ,x
m
iK

i.i.d∼ qθ2(x
m
i |zi,xoi , ri). The form of the lower bound, which we call the NonIgnorably

Missing Importance-Weighted Auto Encoder bound, or “NIMIWAE bound”, is derived as follows:

log pψ,ϕ(X
o,R) =

n∑
i=1

log pψ,ϕ(x
o
i , ri)

=

n∑
i=1

log

[∫∫
pψ,ϕ(x

o
i ,x

m
i , ri, zi)dzidx

m
i

]

=

n∑
i=1

logE(zik,x
m
ik)∼qθ(zi,x

m
i)

[
1

K

K∑
k=1

pψ,ϕ(x
o
i ,x

m
ik, ri, zik)

qθ(zik,x
m
ik)

]

≥
n∑
i=1

E(zik,x
m
ik)∼qθ(zi,x

m
i) log

[
1

K

K∑
k=1

pψ,ϕ(x
o
i ,x

m
ik, ri, zik)

qθ(zik,x
m
ik)

]
= LNIMIWAE

K . (3.21)

As explained in Section 3.1.4, we use the selection model factorization of the joint distribution of

{xi, ri, zi}, such that pψ,ϕ(xoi ,x
m
i , ri, zi) = pψ(x

o
i ,x

m
i |zi)p(zi)pϕ(ri|xoi ,xmi). Here, ψ denotes the weights

and biases of the encoder and decoder neural networks, and ϕ denotes the weights and biases of the

missingness network that learns the parameters of the missingness model.

Applying the above factorizations to Eq. (3.21), and estimating the expectations in Eq. (3.21) by sampling

from qθ(zi,x
m
i) we obtain the estimate of the NIMIWAE bound:

L̂NIMIWAE
K =

n∑
i=1

log

[
1

K

K∑
k=1

pψ(xi|z̃ik)p(z̃ik)pϕ(ri|xoi , x̃mik)
qθ1(z̃ik|xoi)qθ2(x̃mik|z̃ik,xoi , ri)

]
, (3.22)

where {z̃ik, x̃mik} are samples of {zi,xmi } that are drawn via ancestral sampling (Bishop, 2006) from the

variational posteriors qθ1(z̃ik|xoi) and qθ2(x̃
m
ik|z̃ik,xoi , ri), respectively, and the NIMIWAE bound is optimized

using the Adam optimizer (Kingma and Ba, 2014). In NIMIWAE, we have four neural networks fψ(zi),

gθ1(x
o
i), gθ2(x

o
i , ri, zi), and hϕ(xi), which respectively output the parameters pertaining to pψ(xi|zik),

qθ1(zik|xoi), qθ2(xmik|zik,xoi , ri), and pϕ(ri|xoi ,xmik).

52

The quantity hϕ(xi), which we call the “missingness network”, outputs the distributional parameters

to the missingness model pϕ(ri|xoi , x̃mik), explicitly included in Eq. (3.22). Furthermore, by omitting this

network and its contribution to the NIMIWAE bound altogether, one can attain an ignorably-missing version

of the NIMIWAE method (IMIWAE), which would be more suitable for use under MCAR and MAR

missingness. We explore the empirical performance of each of these models under misspecification of the

missingness mechanism in Section 3.2. An illustration of hϕ(xi) is given in Figure 8.

Historically, the set of features for the pmiss logistic regression models from Eq. (3.20) need to be

carefully pre-specified, usually based upon prior information (Little and Rubin, 2002). Prior work has

shown that overparameterization of the missingness model can lead to identifiability issues and divergence in

EM-based maximization procedures (Ibrahim and Molenberghs, 2009). Our proposed method allows users to

similarly pre-specify a subset of features in the missingness network. Alternatively, when such information is

not available, we show empirically in Section 3.2 that using all p features in the missingness network can

yield reasonable performance, especially when the number of samples is large. We postulate that this may be

due to the fact that the missingness model utilizes a neural network, which has been shown to generalize well

despite severe overparameterization (Poggio et al., 2020). Still, the specification of a smaller model that is

closer to the truth may improve the accuracy of imputations, especially under smaller sample sizes (Du et al.,

2021).

3.1.5.1 NIMIWAE Training Algorithm

The training of the NIMIWAE architecture proceeds as follows:

1. The missing entries are pre-imputed to zero and appended with observed entries, and fed into the

encoder, or gθ1(x
o
i) with the missingness mask, to learn parameters of qθ1(zi|xoi). One can also specify

a mean pre-imputation, but the choice of the pre-imputation method has been shown to not significantly

affect performance in an IWAE network (Mattei and Frellsen, 2019).

2. K samples are drawn from qθ1(zi|xoi).

3. Samples from (2) are used as input for the decoder, or fψ(zi), to learn the parameters of pψ(xi|zi).

53

4. The samples from (2) are used again as input for the missing data posterior network, or gθ2(zi,x
o
i , ri),

concatenated with the observed data entries (with missing entries pre-imputed to 0) and the missingness

mask, to learn parameters of qθ2(x
m
i |zi,xoi , ri).

5. We draw samples of xmi from qθ2(x
m
i |zi,xoi , ri), and use them as input, concatenated with the fixed

observed entries xoi , into missingness network, or hϕ(xi) to learn the parameters associated with the

model of the missingness mask pϕ(ri|xi).

In NIMIWAE, the neural network that models the missingness, or hϕ(xi), contains pmiss output nodes,

and applies the Sigmoid activation function to the output node to yield probabilities of each partially-observed

feature jm being observed for the ith sample. By default, this network takes all p features as input, and the

number of hidden layers and nodes per hidden layer are tuned separately from the rest of the architecture.

Each output node in hϕ(xi) is exactly equivalent to the logistic regression model proposed by Diggle and

Kenward (1994) in Section 3.1.4.3 when hϕ(xi) contains no hidden layers, and the selection of additional

hidden layers can allow for the capturing of more complex effects.

Under simple distributional assumptions of qθ2(x
m
i |zi, ri,xoi), the sampling step in Step (4) is similar to

the sampling of the latent variable zi in Step (2), and both can be accomplished using the reparametrization

trick (Kingma and Welling, 2013).

3.1.5.2 Initialization, Early Stop, and Hyperparameter Tuning

Initialization of weights and biases in deep learning architectures can significantly affect the trained

model, especially in datasets with smaller sample sizes. By default, NIMIWAE uses the semi-orthogonal

matrix initialization (Saxe et al., 2014) for ψ, θ, and ϕ. Alternatively, we initialize weights pertaining to

the missing features in the input layer of the missingness network using values drawn from a Uniform(-2,2)

distribution. This is done in order to draw larger initial values of the effects of missing variables on the

missingness, in order to encourage the network to learn nonzero effects of these missing features. Empirically,

we found that this alternative initialization helps the network impute more accurate values in smaller sample

size settings, particularly under MNAR missingness, while maintaining similar performance in the MCAR

and MAR cases.

We also incorporate an early stop criterion (Prechelt, 1998) in order to prevent overfitting on the training

set, and to reduce computation time. Specifically, let L(τ) ≡ L̂NIMIWAE,(τ)
K,valid denote the estimated NIMIWAE

54

bound on a held-out validation set at each epoch (τ), and initialize Lopt = L(0) and E(0) = 0. Each epoch

consists of ⌈ntrain/bs⌉ updates, where ntrain is the number of observations in the training set and bs is the

mini-batch size hyperparameter, and ⌈x⌉ is the smallest integer greater than or equal to x. At each epoch,

the ntrain observations are divided into approximately equal size mini-batches of at most bs observations

each, and updates of the neural network parameters are done on by estimating the NIMIWAE bound on each

mini-batch, cycling through each mini-batch such that all observations are involved in the updates for during

each epoch. For τ ≥ 1, if L(τ) − Lopt > 0, we replace Lopt = L(τ). Also, if L(τ) − Lopt ≤ εLopt, we set

E(τ) = E(τ−1) + 1. In this way, training continues as long as the improvement in the estimated lower bound

in the validation set is greater than εLopt, but if not, training is allowed to run for a set number of epochs

before early stopping. This leeway (called “patience”) is allowed due to the properties of SGD, which may

cause L(τ) to fluctuate, especially for smaller τ . If E(τ) = patience, we save the optimal model pertaining

to Lopt, and terminate training. Here, we set patience = 50 and ε = 0.0001.

In NIMIWAE, we have several hyperparameters that need to be tuned (default values in parentheses): 1)

learning rate ({0.001, 0.01}), 2) number of hidden layers ({0, 1, 2}) and nodes per hidden layer ({64, 128}),

3) dimensionality of Z ({⌊p/12⌋, ⌊p/4⌋, ⌊p/2⌋, ⌊3p/4⌋}), where ⌊x⌋ is the largest integer less than or equal

to x. We also tune (2) separately for the missingness network ({0, 1} and {16, 32}) (hϕ(·)) vs. the rest of the

networks (fψ(·), gθ1(·), gθ2(·)). In order to find the optimal combination of values for these hyperparameters,

we perform an extensive grid search of all combinations of prespecified values for these quantities. One

may also choose to tune the number of latent variables K. In this chapter, we fix K = 5 during training for

computational ease.

55

Figure 8: Architecture of proposed NIMIWAE method. Dark colored nodes represent deterministic values, lightly colored nodes
represent learned distributional parameters, and outlined (in red) nodes represent sampled values. Orange cells correspond to
latent variables Z and Xm. Z1, . . . ,ZK and Xm

1 , . . . ,Xm
K are sampled from their respective variational posteriors. Below is the

NIMIWAE bound (LNIMIWAE
K) and the estimate of the NIMIWAE bound (L̂NIMIWAE

K), which is optimized via SGD.

3.1.5.3 Multiple Imputation

Following training, NIMIWAE can provide point estimates for E[xmi |xoi , ri], defined as the expected

value of the missing features given the observed data and the mask for the ith observation under MNAR. The

same NIMIWAE model can also perform multiple imputation of the incomplete training dataset to facilitate

fitting of downstream statistical models. We first note that

E[xmi |xoi , ri] =
∫

xmi pψ,ϕ(x
m
i |xoi , ri)dxmi

=

∫∫
xmi pψ,ϕ(x

m
i , zi|xoi , ri)dzidxmi

=

∫∫
xmi

pψ,ϕ(x
m
i ,x

o
i , zi, ri)

pψ,ϕ(x
o
i , ri)

dzidx
m
i .

Then, we may estimate this integral by self-normalized importance sampling. We utilize the proposal density

qθ1(zi|xoi)qθ2(xmi |zi,xoi , ri), and define the quantities

wik =
sik

si1 + . . .+ siK
, and sik =

pψ(xi|z̃ik)p(z̃ik)pϕ(ri|xoi , x̃mik)
qθ1(z̃ik|xoi)qθ2(x̃mik|z̃ik,xoi , ri)

56

for k = 1, . . . ,K, with 1 sample drawn from the variational posterior of each latent variable zik and xmik to

compute sik, where wik is defined as standardized “importance weights” (Mattei and Frellsen, 2019). Using

these weights we may compute E[xmi |xoi , ri] ≈
∑K

k=1wikx̃
m
ik. Then, the process can be repeated for each

observation i = 1, . . . , n.

In the MCAR or MAR case, one can similarly estimate E[xmi |xoi] using the fitted IMIWAE model.

By following a similar derivation using the proposal density qθ1(zi|xoi)qθ2(xmi |zi,xoi), we obtain the same

approximation E[xmi |xoi] ≈
∑K

k=1wikx̃
m
ik, with wik defined as before, but with a slightly different form for

sik:

sik =
pψ(xi|z̃ik)p(z̃ik)

qθ1(z̃ik|xoi)qθ2(x̃mik|z̃ik,xoi)
.

Given these weights wik, we may now also produce Q multiply-imputed datasets using the sampling

importance resampling (SIR) algorithm (Smith and Gelfand, 1992). We first construct a set of K candidate

draws and corresponding weights using the procedure described above (default K = 10×Q draws), and

then perform a weighted resample of size Q with replacement from this set of draws to obtain approximate

draws from pψ(x
m
i |xoi , ri), for each observation i = 1, . . . , n. We may then use techniques such as “Rubin’s

rules” (Rubin, 2004) to pool the estimates obtained from a candidate regression model fit on each imputed

dataset, and obtain pooled point estimates and standard errors that account for the uncertainty due to the

imputation. In our analyses, we used NIMIWAE to construct Q = 50 multiply-imputed datasets by drawing

K = 500 times from qθ2(x
m
i |zi,xoi , ri) for each i = 1, . . . , n after the model was trained.

3.2 Numerical Results

3.2.1 Simulated Data

We utilize statistical simulation to evaluate the imputation performance of our proposed NIMIWAE

method under the assumption of MCAR, MAR, and MNAR missingness. We also compared this performance

to state-of-the-art missing data methods in machine learning that claim to handle ignorable missingness

patterns: HIVAE (Nazabal et al., 2018), VAEAC (Ivanov et al., 2019), MIWAE (Mattei and Frellsen, 2019),

in addition to the popular MICE method (Van Buuren and Groothuis-Oudshoorn, 2011) and a naı̈ve mean

imputation method. We also included MissForest (Stekhoven and Buhlmann, 2011) in analyses where the

model could be fit in a CPU with 32 GB of memory. For all simulations, we divided the full data into

57

training and validation sets with ratio 8:2. For methods that require hyperparameter tuning, each method

was trained on the training set for a given set of hyperparameters, the performance of this model was then

evaluated on the validation set, and finally the training set was imputed using the model pertaining to the

optimal set of hyperparameters (based up on validation set performnance). For methods that required no

hyperparameter tuning, we directly imputed just the training set, for consistency across all methods. In

Sections 3.2.1.1-3.2.1.2, we evaluate performance on fully synthetic data. Then, in Section 3.2.1.3, we

simulate missingness into existing UCI datasets to preserve non-linearity and interactions between features

previously observed. The simulation setup and performance criteria are described in the subsequent sections.

3.2.1.1 Simulation Setup

We first evaluate the performance of each method on completely synthetic data. Here we assume X

is generated such that X = ZW +B, where W and B and are matrices of dimensions d × p and n × p,

respectively, Z ∼ Nd(0, I), Wlj ∼ N(0, 0.5), and Bij ∼ N(0, 1) for i = 1, . . . , n, j = 1, . . . , p, and

l = 1, . . . , d.

We then simulate the missingness mask matrix R such that 30% of features are partially observed, and

50% of the observations for each of these features are missing. We generate rij from the Bernoulli distribution

with probability equal to p(rijm = 1|xi,ϕ), such that logit[p(rijm = 1|xi,ϕ)] = ϕ0 +ϕ1x
o
i +ϕ2x

m
i . Here,

we assume that jm = 1, . . . , pmiss index the missing features, ϕ1 = {ϕ11, . . . , ϕ1,pobs} are the coefficients

pertaining to the fully observed features, and ϕ2 = {ϕ21, . . . , ϕ2,pmiss} are those pertaining to the partially

observed features, and pobs and pmiss are the total number of features that are fully and partially observed,

respectively. We set pmiss = ⌊0.3 ∗ p⌋ and pobs = p− pmiss. We drew nonzero values of ϕ1 and ϕ2 from

the log-normal distribution with mean µϕ = 5, with log standard deviation σϕ = 0.2.

To evaluate the impact of the misspecification of the missingness mechanism on model performance,

rijm was simulated under each mechanism as follows: (1) MCAR: {ϕ1,ϕ2} = 0, (2) MAR: Same as MCAR

except ϕ1jo ̸= 0 for one randomly selected completely-observed feature jo where jo = pmiss + 1, . . . , p, and

(3) MNAR: Same as MCAR except ϕ2jm ̸= 0. In this way, for each MAR or MNAR feature, the missingness

is dependent on just one feature. In each case, we used ϕ0 to control for an expected rate of missingness

of 50% in each feature. We note that for each these simulations, we utilize all features in NIMIWAE’s

missingness network, although only one feature is involved under the true missingness model.

58

Lastly, we simulated a binary response variable assuming Pr(y = 1|X) = Sigmoid(β0 +Xβ), where y

is a binary response variable, β = {β1, . . . , βp} are the set of regression coefficients, and β0 is the intercept.

In many applications, it is of interest to use the features in X to predict some outcome variable y when X is

only partially observed. Therefore, the ability accurately estimate β is also of importance in the presence

of missingness. Multiple imputation methods like mice can be used to perform coefficient estimation by

using Rubin’s rules to pool the coefficient estimates from logistic regression models fitted on each individual

multiply-imputed dataset. We similarly perform coefficient estimation using multiply-imputed datasets from

the SIR algorithm within NIMIWAE, allowing for direct comparisons with MICE in estimating β.

We vary n, p, and d such that n = {10, 000, 100, 000}, p = {25, 100} features, and d = {2, 8}. We

simulated 5 datasets per simulation condition, spanning various missingness mechanisms and values for

{n, p, d}. We fix the values of β at 0.25 for each feature, and adjusted β0 to ensure equal proportions for

the two binary classes in Y. We measured imputation performance by calculating the average L1 distance

between true and imputed masked values in X. Letting X̂m denote the imputed masked values of the true

Xm values of the missing entries, we denote the average L1 distance is simply |X̂m−Xm|
Nmiss

, where Nmiss is

the total number of missing entries in the dataset. To assess the ability of multiple imputation methods in

performing coefficient estimation, we reported the percent bias (PB) of these pooled estimates compared to

the truth, averaged across the p features, i.e. PB = 1
p

∑p
j=1

|βj−β̂j |
|βj | .

Below, we summarize the combinations of hyperparameter values that were searched. For each method

and dataset, we searched over combinations of two different values for each hyperparameter that was tuned.

We tuned several hyperparameters for each method: number of nodes per hidden layer (h), number of nodes

per hidden layer in the missingness network (hr) , number of hidden layers (nhl), number of hidden layers

in the missingness network (nhlr), dimensionality of latent space (dz), and learning rate (lr). For HI-VAE,

nhl was not able to be varied. Therefore, we fixed nhl and tuned the dimensionality of the y latent variable

(dy) instead. Hyperparameters nhlr and hr were applicable only to NIMIWAE, so they were tuned only for

NIMIWAE. Hyperparameters batch size (bs) and maximum number of epochs (epochsmax) were fixed in our

analyses. Below are the searched values of the hyperparameters for all of the datasets we analyzed in Section

3.2.1:

• p = (25, 100) Simulated data with n = (10, 000; 100, 000)

– h = {128, 64}, hr = {16, 32}

59

– lr = {0.001, 0.01}

– dz = {⌊3 ∗ p/4⌋, ⌊p/2⌋, ⌊p/4⌋, 8}

– nhl = {0, 1, 2}

– nhlr = {0, 1}

– bs = 1, 000 for n = 10, 000 and bs = 10, 000 for n = 100, 000, epochsmax = 2002

• banknote

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {1, 2, 3}

– nhl = {0, 1, 2}

– nhlr = {0, 1}

– bs = 200, epochs = 2002

• concrete

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {2, 4, 6}

– nhl = {0, 1, 2}

– nhlr = {0, 1}

– bs = 200, epochs = 2002

• hepmass

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {5, 10, 15}

– nhl = {0, 1, 2}

60

– nhlr = {0, 1}

– bs = 10, 000, epochsmax = 2002

• power

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {1, 3, 4}

– nhl = {0, 1, 2}

– nhlr = {0, 1}

– bs = 10, 000, epochsmax = 2002

• red

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {2, 5, 8}

– nhl = {0, 1, 2}

– nhlr = {0, 1}

– bs = 200, epochsmax = 2002

• white

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {2, 5, 8}

– nhl = {0, 1, 2}

– nhlr = {0, 1}

– bs = 200, epochsmax = 2002

• Physionet 2012 Challenge data

61

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {8, 28, 57, 85}

– nhl = {0, 1, 2}

– nhlr = {0, 1, 2}

– bs = 1, 000, epochsmax = 2002

3.2.1.2 Simulation Results

Figure 9 shows the results pertaining to n = 100, 000. Error bars represented the variability in perfor-

mance across 5 simulations. Despite the overparameterized missingness model, NIMIWAE consistently

yields improved imputation performance compared to other methods under MNAR missingness, while

yielding an average L1 that is comparable to other methods in the MCAR and MAR cases, under these

conditions assuming large sample sizes. This can be exceptionally useful for many real data applications,

where the true covariates of the missingness model may not be known a priori. In estimating β, we see

that NIMIWAE yields a lower average percent bias under MNAR missingness, while MICE, IMIWAE, and

NIMIWAE perform similarly under MCAR or MAR missingness.

Figure 10 shows the results pertaining to n = 10, 000 utilizing the alternative initialization method

described in Section 3.1.5, due to the smaller sample size in this setting. We see that NIMIWAE performs

best in imputing MNAR values, and in estimating the coefficients under MNAR missingness, and still

performs comparably well to other methods in the MCAR and MAR cases. We found that the default method

initialized weights for missing features too small for the network to recover in the MNAR case, under the

lower sample size and high dimensionality setting. Based upon these results, we recommend the alternative

weight initialization for smaller sample sizes (n ≤ 10, 000) with large dimensionality (p ≥ 100), while

the default initialization may suffice when the sample size is large, or if the dimensionality of the data is

smaller. Alternatively, one may greatly improve imputation performance by narrowing down the features

that are input into the missingness network using some prior knowledge or assumptions on the mechanism

of missingness. In practical applications, it is unknown which mechanism may truly underly the data, and,

as usual, sensitivity analyses, where one varies the assumed mechanism, is still important. For example,

imputing data via IMIWAE may be helpful and be more efficient under MCAR or MAR than via NIMIWAE.

62

Figure 9: Average L1 distance between true and imputed values for missing entries (left) and percent bias of pooled coefficient
estimates (right) for p = 25 (top 4) and p = 100 (bottom 4) features, stratified by d. NIMIWAE outperforms all methods in imputing
MNAR missing values, while performing comparably to other methods in imputing MCAR and MAR values. Here, n = 100, 000,
µϕ = 5, and error bars show the variability of each metric across 5 reps. Weights and biases were initialized by using the default
semi-orthogonal matrix method.

63

Figure 10: Average L1 distance between true and imputed values for missing entries (left) and percent bias of pooled coefficient
estimates (right) for p = 25 (top 4) and p = 100 (bottom 4) features, stratified by d. NIMIWAE outperforms all methods in imputing
MNAR missing values, while performing comparably to other methods in imputing MCAR and MAR values. Here, n = 10, 000,
µϕ = 5, and error bars show the variability of each metric across 5 reps. Weights and biases were initialized by using the alternative
method, as described in Section 3.1.5

64

Overall, these simulations confirm that existing methods can impute MCAR and MAR missingness with

a reasonable degree of accuracy, but they break down under MNAR missingness. Our NIMIWAE method is

able to adequately impute MNAR missing values, while still imputing MCAR and MAR missing values with

a comparable degree of accuracy as existing methods geared specifically towards the ignorable mechanisms

of missingness. Additionally, we note that MissForest was able to be run to the n = 10, 000 and p = 25

simulation case only due to memory constraints, and yielded very poor imputation performance in the MNAR

case, like the other ignorably-missing methods.

Figure 11 shows results from the simulation setup with n = 10, 000, and Figure 12 shows results from

the alternate setup with n = 100, 000, varying p = {25, 100} and d = {2, 8} in each case. As in all deep

learning algorithms, NIMIWAE performs best under larger sample sizes, and this aspect is especially important

given the additional task in NIMIWAE of narrowing down relevant features in a potentially overspecified

missingness model. When a large number of samples is not readily available, and the dimensionality of the

data is very large, one can either utilize an alternative method of weight initialization for the missing features

in the missingness network, as seen in Section 3.1 of the main text, or narrow down the number of features

that are included in NIMIWAE’s missingness network using some prior knowledge on the dependencies of the

features with the missingness. We found that under the large sample size setting (n = 100, 000), imputation

performance was generally robust to the method of initialization, as shown in Figure 12. We additionally

found that having fewer unnecessary features in the missingness model greatly increased the performance of

both imputation and coefficient estimation under MNAR, as one would expect. However, omitting a feature

that is truly relevant to the missingness may cause very poor performance in both imputation and downstream

coefficient estimation, and in practice, determining which features are relevant to the missingness may be

nontrivial. One may utilize a priori knowledge about the data in order to inform a decision on which features

are significant in the missingness model, but such decisions may not be able to be made with a high levels of

certainty.

3.2.1.3 UCI Machine Learning Datasets

Next, we analyzed how accurately these methods can impute missing values that may be present in

real data, preserving non-linearity and interactions that may exist in these datasets, while controlling the

mechanism of simulated missingness. Since we are unable to obtain the true missing values in real datasets,

we took 6 different completely-observed datasets from the UCI Machine Learning Repository, and simulated

65

Figure 11: Average L1 distance between true and imputed values for missing entries stratified by d (left), and percent bias of pooled
coefficient estimates. NIMIWAE outperforms all methods in imputing missing values that were simulated to be MNAR when p = 25,
but performs poorly under p = 100. Here, n = 10, 000, µϕ = 5, and error bars show the variability of each metric across the 5 reps.
NIMIWAE struggles to handle the difficult MNAR missingness pattern when the sample size is smaller, while the dimensionality of
the data is large.

66

Figure 12: Average L1 distance between true and imputed values for missing entries stratified by d (left), and percent bias of pooled
coefficient estimates. NIMIWAE was run using the alternative initialization method, as described in Section 2.3 of the main text.
Again, NIMIWAE outperforms all methods in imputing missing values that were simulated to be MNAR. Here, n = 100, 000,
µϕ = 5, and error bars show the variability of each metric across the 5 reps.

67

missingness according to each mechanism as in the fully synthetic datasets. Here, we masked half of the

features, such that pmiss = floor(0.5 ∗ p).

Dataset HIVAE Mean MICE MissForest MIWAE VAEAC NIMIWAE IMIWAE
banknote MCAR 1.62 2.00 1.63 0.95 1.37 1.32 1.49 1.19
n = 1372 MAR 2.00 2.27 2.43 1.88 2.90 1.76 1.89 1.96

MNAR 3.39 3.92 3.78 3.18 3.10 3.46 1.46 3.30
concrete MCAR 47.54 51.28 29.97 25.57 40.53 33.03 42.12 33.69
n = 1030 MAR 67.37 60.00 44.77 53.19 66.35 61.09 55.82 57.56

MNAR 59.48 95.85 68.24 79.87 76.79 70.12 47.46 74.44
hepmass MCAR 0.75 0.82 0.74 NA 0.80 0.68 0.78 0.69
n = 525, 123 MAR 0.76 0.84 0.75 NA 0.84 0.72 0.72 0.71

MNAR 1.41 1.54 1.40 NA 1.36 1.30 0.99 1.36
power MCAR 0.54 0.66 0.50 NA 0.59 0.48 0.56 0.49
n = 1, 000, 000 MAR 0.61 0.75 0.56 NA 0.67 0.54 0.78 0.57

MNAR 0.75 1.14 0.84 NA 0.86 0.79 0.73 0.79
red MCAR 1.15 1.64 1.04 0.86 1.10 1.10 1.08 0.98
n = 1599 MAR 1.23 1.67 1.16 0.98 1.30 1.29 1.09 1.06

MNAR 2.12 3.24 2.46 2.06 1.87 2.73 0.90 1.74
white MCAR 2.14 2.61 1.97 1.60 2.18 1.93 2.16 1.88
n = 4898 MAR 2.28 2.63 1.99 1.69 2.15 2.11 1.89 1.89

MNAR 4.42 5.36 4.21 4.27 4.46 4.10 3.47 4.70

Table 5: Average L1 distance between true and imputed values for the masked entries in various datasets, under different mechanisms
of simulated missingness. Best imputation performance (lowest average L1) in each row is highlighted in red. Proportion of missing
entries was fixed at 50% per feature, with 50% of the features containing missingness. We see that NIMIWAE consistently performs
best in imputing MNAR missingness, while performance of the “Ignorable” IMIWAE model is comparable to other methods under
MCAR and MAR. Although MissForest claims superiority in MCAR and some MAR cases in the smaller datasets, it was not
scalable to larger datasets like hepmass and power.

Table 5 shows the average L1 distance between true and imputed missing values for each of the 6

UCI datasets, with each simulated mechanism of missingness. We see that NIMIWAE again performs best

across all methods in accurately imputing MNAR missing values. Overall, MissForest performed best in

imputing MCAR missing values in the smaller UCI datasets, but this method was too memory-consuming to

be trained on the significantly larger hepmass and power datasets. As in the simulated data, mean imputation

is consistently one of the least accurate methods of imputation. Also, whereas MICE performed very well

under MCAR and MAR in the simulated data, deep learning methods like VAEAC and IMIWAE consistently

yield more accurate imputations here. This may be due to the fact that MICE uses a fully-conditional linear

model for imputation, it may therefore perform suboptimally when the true relationships between features

are non-linear. Also, we see that NIMIWAE imputes values slightly less accurately than IMIWAE when the

missingness is MCAR or MAR, since in these cases NIMIWAE explicitly estimates the missingness network

when it is not necessary.

68

3.2.2 Physionet 2012 Challenge Dataset

Finally, we analyzed the Physionet 2012 Challenge data using each of the compared methods. Namely,

we perform a qualitative analysis of each imputed dataset, highlighting differences between results from

assuming non-ignorable (NIMIWAE) and ignorable (IMIWAE) missingness (Ibrahim et al., 2005; Ibrahim

and Molenberghs, 2009). This is because, in contrast to our simulations, the true values of the missing

entries are not available to directly assess imputation performance. Additionally, the missingness mechanism

itself is generally not “testable” by the observed data in practice (Ibrahim et al., 1999). Here, we used the

alternative initialization scheme of NIMIWAE, due to the limited sample size and large dimension of the data.

Additionally, we added a “supervised” and “unsupervised” version of NIMIWAE, IMIWAE, and MICE, so

that these multiple imputation methods can also leverage the response variable in imputing missing entries

(supervised setting), and also perform Rubin’s rules to pool the estimates, and compute standard errors across

imputations.

Based on the imputed datasets from these methods, we fit a logistic regression model with post-baseline

mortality as the binary response, with the baseline features of this dataset as the covariates. We report details

of the covariates with the top 10 largest effects on mortality when using the multiply imputed datasets from

the supervised non-ignorably missing NIMIWAE model in Table 13. We found some significant differences

in the results of the logistic regression based on the different imputed datasets. For example, we found

that NIMIWAEsup uncovered a stronger effect of the variables Temp highest, K last and Gender

compared to other methods. These factors have been studied for their association with mortality in ICU

patients. Specifically, gender has been studied for having a potentially significant effect on mortality in

critically-ill patients (Mahmood et al., 2012; Larsson et al., 2019). Additionally, body temperature (Schell-

Chaple et al., 2015) and irregular potassium levels (Tongyoo et al., 2018) have both been known to be

associated with an increased risk of in-hospital mortality.

Figure 14 shows the imputed values of two example variables that had significantly different missingness

rates in surviving vs deceased patients, FiO2 last and RespRate last. Imputed values from each of the

methods are shown in the boxplots on the right, and the rates of missingness in the deceased vs. surviving

patients for each variable are shown on the left. We found that a larger proportion of entries of FiO2 last

and a smaller proportion of entries of RespRate last were observed in the surviving patients than in the

deceased patients. Of the methods we used to impute values of FiO2 last, we found that NIMIWAEsup

69

Figure
13:Table

ofcoefficientestim
ates

(and
standard

errors)ofcovariates
w

ith
the

top
10

m
agnitudes

ofestim
ates

via
N
I
M

I
W

A
E

s
u
p ,from

fitting
a

logistic
regression

m
odelw

ith
im

puted
datasets

from
each

m
ethod.R

esults
from

m
ultiple

im
putation

m
ethods

N
IM

IW
A

E
,IM

IW
A

E
,and

M
IC

E
(first6

colum
ns)are

based
on

50
m

ultiply
im

puted
datasets,and

reflectpooled
coefficientestim

ates
and

standard
errors

using
R

ubin’s
rules.Forfaircom

parison,w
e

also
included

results
from

single
im

putation
m

ethods
(last5

colum
ns).H

ere,
IM

IW
A

E
is

the
ignorable

version
ofN

IM
IW

A
E

.

70

Figure 14: (left) Proportion of non-missing observations of last measurements of FiO2 (top) and RespRate (bottom) in surviving
and deceased ICU patients, and (right) imputed values of non-missing entries by HIVAE, supervised and unsupervised versions of
the ignorable NIMIWAE (IMs, IMu), MissForest (MF), supervised and unsupervised versions of MICE (MICEs, MICEu), MIWAE,
supervised and unsupervised versions of NIMIWAE (NIMs, NIMu), and VAEAC. The mean of the observed values is given by the
red horizontal line.

71

andNIMIWAEunsup imputed values were generally smaller than those from other methods. We also found

that the supervised and unsupervised IMIWAE models yielded similar values to HIV AE, MIWAE, and

MICE. These are all ignorably-missing methods, and may not impute accurate values when the missingness

is MNAR. MissForest and VAEAC imputed values of FiO2 that were significantly higher than the observed

mean, and values of RespRate that were significantly lower than the observed mean. Some studies have

shown that abnormally high or low respiratory rates may be associated with higher mortality in critically-ill

patients (Strauß et al., 2014; Ljunggren et al., 2016), suggesting that the missing values of RespRate last,

which were more prevalent in deceased patients, may have truly been further away from the normal range of

12-20. Additionally, Esteban (2002) found that higher levels of administered FiO2 were associated linearly

with higher mortality. Thus, the missing values of FiO2 last, which were more prevalent in surviving

patients, may have been lower than the observed values. This suggests that the mechanism of missingness of

FiO2 last and RespRate last may be non-ignorable, since NIMIWAE imputed more realistic values

for these variables according to the mortality rates of patients with missingness in these variables.

3.3 Discussion

In this chapter we introduce NIMIWAE, one of the first methods to handle up to MNAR patterns of

missingness in the VAE/IWAE class of methods, to address complex patterns of missingess observed in the

Physionet EHR data. Using statistical simulations, we show that NIMIWAE performs well in imputing missing

features under MNAR, and has reasonable performance under the MCAR or MAR settings. Performance

in imputing MCAR and MAR missingness can be further improved in NIMIWAE by using the ignorable

version of this model (IMIWAE), where we omit the missingness network. We also found that the results of

the analysis on the Physionet data are highly dependent on the choice of missingness model, which specifies

the assumption of the missingness mechanism. However, NIMIWAE is able to impute missing values well

in simulations regardless of the underlying missingness mechanism, flexibly modelling the mechanism

using a deeply-learned neural network. The NIMIWAE-imputed dataset resulted in more realistic imputed

values with respect to what we may expect in the Physionet Challenge patients, since NIMIWAE takes

into account possible non-ignorable missingness in the data. Additionally, the IWAE architecture learns a

lower-dimensional representation of the data, which can be used for further tasks, such as patient subgroup

identification or visualization of data.

72

Learning algorithms that can be applied to EHR data like the Physionet Challenge dataset can be valuable

tools that clinicians can use to aid decisions in hospital settings and understand patterns within these health

records. For example, properly handling missingness in EHRs when imputing the missing entries can improve

the performance of prediction algorithms that can assess risk of death or other outcomes of interest, like

disease. Informative missingness is a common problem in analyzing EHR data, and accounting for such

missingness can be helpful in obtaining accurate, unbiased estimates of the true missing values. We note that

although we have used our NIMIWAE method primarily to analyze the Physionet 2012 Challenge dataset,

it can more generally be applied to settings where one wishes to train a VAE when missingness is present

among input features.

73

CHAPTER 4: SUPERVISED DEEP LEARNING WITH MISSING DATA

In the previous chapter, we discussed NIMIWAE, a novel method to handle different mechanisms

of missing data for the purposes of unsupervised learning, like imputation, dimension reduction, and

representation learning using an IWAE. In this chapter, we present dlglm: a deep generalized linear model

(GLM) for probabilistic supervised learning in the presence of missing input features and/or response

variables across a variety of missingness patterns. Our proposed method utilizes variational inference to learn

approximate posterior distributions for the missing variables, and replaces missing entries with samples from

these distributions during maximization. In this way, dlglm can perform regression and classification tasks in

the presence of missingness in both the features and the response of interest among the training samples. We

also incorporate a model for the missingness, which can take into account MNAR patterns of missingness,

even at training time. Through neural networks, dlglm is able to model complex non-linear relationships

between the input features and the response, and is scalable to large quantities and dimensionality of data.

After training the dlglm architecture, prediction can be perfomed on fully- or partially-observed test samples

using the trained model, without requiring separate imputation of the missing values.

4.1 Methods

Here we first discuss the formulation of the generalized linear model (GLM) in Section 4.1.1, and then

introduce the deeply-learned GLM in Section 4.1.2. We then discuss missingness in the context of GLMs

in Section 4.1.3, and lastly propose a novel deep learning architecture dlglm in Section 4.1.4 to fit deeply

learned GLMs in the presence of missingness.

4.1.1 Generalized Linear Models (GLMs)

Let X be the n × p matrix of covariates (input features) with observation vectors xi, where each

corresponding entry xij denotes the value of the ith observation of the jth feature for i = 1, . . . , n and

j = 1, . . . , p. Also, let Y = {y1, . . . , yn} be the vector of univariate responses where yi is the response

74

pertaining to the ith observation. We note that yi may also be assumed to be multivariate; however, we focus

specifically on the case of univariate response to simplify the discussion, and discuss extensions to the setting

of multivariate response in Section 4.3. Then, denote η = Xβ, where β is a vector of regression coefficients

and η is the linear predictor. Also define µ = {µ1, . . . , µn} with µi = E(yi|xi) and link function g(·) such

that g(µi) = ηi = xiβ. We assume that the conditional distribution p(yi|xi) is a member of the exponential

family of distributions (McCullagh and Nelder, 2019), such that p(yi|xi) can be written as

p(yi|xi) = exp
[
yiΘi − b(Θi)

a(α)
+ c(yi, α)

]
,

with canonical parameter Θi, dispersion parameter α, and some functions a(·), b(·), and c(·). Here, we

further assume g(·) is a canonical link function such that g(µi) = Θi. With the appropriate specification of

the canonical link g(·) and variance function Vα(·), we obtain the formulation of a GLM.

GLMs were first motivated by the limitations of the traditional linear model, which imposed strict

assumptions of linearity between µ and X and of normality of errors with fixed variance. GLMs instead

utilize specific link and variance functions, allowing for model fitting on types of response data that may

violate these assumptions, such as count or categorical outcomes, without having to rely on heuristic

transformations of the data (Nelder and Wedderburn, 1972). Typically, GLMs are estimated by utilizing

iteratively re-weighted least squares in lower dimensions (Holland and Welsch, 1977), with extensions to the

higher dimensional case via penalized likelihood (Friedman et al., 2010).

4.1.2 Deeply Learned GLMs

The traditional GLM assumes g(µi) is a linear function of xi, i.e. g(µi) = xiβ. In many modern

applications, one may wish to model g(µi) as a non-linear function of xi or capture complex interactions

between features to predict response (Qi and Wu, 2003). In such cases, we may generalize the GLM to a

deeply-learned GLM (Tran et al., 2019) with the following expression: g(µi) = ηi = hπ(xi)β, where hπ(·)

denotes the output of a series of non-linear transformations applied to the input X by a neural network, with

weights and bias parameters denoted by π. In addition, ηi can alternatively be expressed ηi = sπ,β(xi),

where sπ,β(·) is a neural network where β denotes the weights and bias associated with the output (last) layer

of sπ,β(·). This formulation allows for the traditional interpretation of β as the coefficients pertaining to a

transformed version of the input covariates. Figure 15 shows an illustration of this architecture.

75

Figure 15: Visualization of a sample deeply-learned GLM architecture sπ,β(xi). Here, π denotes the set of weights and biases
pertaining to the portion of the architecture from the input layer to the second to last layer (hidden layer 2). hπ(xi) is a subset
of the entire architecture, such that sπ,β(xi) = hπ(xi)β. Original artwork of a FFNN (Dormehl, 2019) was modified to show
deeply-learned GLM architecture.

Let nHL denote the number of hidden layers in sπ,β(·). We note that if nHL = 0, then hπ(xi) = xi and

sβ(xi) = xiβ, reducing to the traditional GLM. In this setting, β pertains to the intercept and regression

coefficients. Deeply learned GLMs and other neural networks are often maximized using stochastic gradient

descent (Bottou, 2012).

In most deep learning architectures, stochastic gradient descent (SGD) is the favored algorithm of

optimization, as it is very scalable to higher dimensions. A typical SGD algorithm proceeds as follows: let

Q be an objective function to be maximized and let Ω denote the collection of all parameters one wishes to

maximize over. Also let Q(t) denote the value of the objective function and Ω̂(t) denoting the estimate of Ω at

update step t. Then, one can optimize Ω with respect to Q by some update rule Ω̂(t+1) = Ω̂(t) + δ∇ΩQ
(t),

where δ is the step size which controls how large of a change is applied to the update, and the gradient ∇ is

taken with respect to each parameter in Ω. In this way, Ω is updated at each step t such that Q(t) is increased,

and the magnitude of the change in Ω̂(t) is mediated by δ. There are many variants of SGD, including ADAM

(Kingma and Ba, 2014), ADMM (Boyd et al., 2011), Adagrad (Lydia and Francis, 2019), and more, as well

76

as a natural gradient variational approximation with factor covariance method as discussed by Tran et al.

(2019). In this chapter, we utilize ADAM as the default optimizer.

4.1.3 Missingness in GLMs

Modern biomedical datasets often contain complex forms of missingness (Ghorbani and Zou, 2018).

In GLMs, missingness can exist in either X or Y. Therefore, we specify three cases of missingness in this

context: missing covariates with fully-observed response (Case x), missing response with fully-observed

covariates (Case y), and missing covariates and missing response (Case xy). Let R = {RX ,RY }, such

that RX and RY denote the missingness mask of X and Y. Additionally, let R = {r1, . . . , rn} with

ri = {rXi , rYi } = {rXi1 , . . . , rXip , rYi }, RX = {rX1 , . . . , rXn }, and RY = {rY1 , . . . , rYn } with elements rXi

and rYi pertaining to the missingness of the ith observation of X and Y, respectively. Then, X and Y can

be factored into the unobserved and observed entries {Xm,Xo} and {Ym,Yo}, respectively, such that

Xm = {X : RX = 0} with xmi = {xi : rXi = 0}, Xo = {X : RX = 1} with xoi = {xi : rXi = 1}, and

Ym = {Y : RY = 0} and Yo = {Y : RY = 1}, with ymi = {yi : rYi = 0} and yoi = {yi : rYi = 1}.

Missingness was classified into three primary mechanisms in the seminal work by Little and Rubin

(2002): missing completely at random (MCAR), missing at random (MAR), and missing not at random

(MNAR). They satisfy similar relations to the missingness in Section 3.1.4:

• MCAR: p(ri|xi, yi,ϕ) = p(ri|ϕ)

• MAR: p(ri|xi, yi,ϕ) = p(ri|xoi , yoi ,ϕ)

• MNAR: p(ri|xi, yi,ϕ) = p(ri|xoi ,xmi , yoi , ymi ,ϕ),

where ϕ denotes the collection of parameters for the model of the missingness mask ri. In the presence of

missingness, the marginal log-likelihood can generally be written as

log pα,β,π,ψ,ϕ(X
o,Yo,R) = log

∫∫
pα,β,π,ψ,ϕ(X,Y,R)dXmdYm

= log

∫∫
pα,β,π(Y|X)pψ(X)pϕ(R|X,Y)dXmdYm, (4.23)

Under MNAR, it is not possible to remove pϕ(R|X,Y) from the integral, since R can depend on

{Xm,Ym}. The binomial model for this missing data mechanism discussed in Section 3.1.4.3 can be

77

updated in the GLM context as

p(R|X,Y,ϕjm) =
n∏
i=1

pmiss∏
jm=1

[p(rijm = 1|xi, yi,ϕjm)]
rijm [1− p(rijm = 1|xi, yi,ϕjm)]

1−rijm ,

where jm = 1, . . . , pmiss indexes the pmiss features in {X,Y} that contain missingness. Here pmiss =

pXmiss + pYmiss, where pXmiss is the total number of features containing missingness in X, and pYmiss is 1 if

Y contains missingness (0 otherwise). Also, ϕjm is the set of coefficients pertaining to the missingness

model of the jthm missing variable, and p(rijm = 1|xi, yi,ϕjm) can be modeled straightforwardly by a logistic

regression model, such that

logit[p(rijm = 1|xi, yi,ϕjm)] = ϕ0jm + yiϕ1jm + xoiϕ2jm + xmi ϕ3jm ,

where ϕ0jm is the intercept of the jthm missingness model, ϕ1jm is the coefficient pertaining to the response

variable Y, and ϕ2jm = {ϕ2,jm,1, . . . , ϕ2,jm,pXobs}
T and ϕ3jm = {ϕ3,jm,1, . . . , ϕ3,jm,pXmiss

}T are the sets of

coefficients of the jthm variable’s missingness model pertaining to the effects of the observed and missing

features on the missingness, respectively, with pXobs and pXmiss denoting the number of completely-observed

and partially observed features in X, respectively.

When the missingness is ignorable, the marginal log-likelihood can again be factored similarly as before,

such that log pα,β,π,ψ,ϕ(Xo,Yo,R) = log pα,β,π,ψ(X
o,Yo)+ log pϕ(R|Xo,Yo). Equation (4.23) can then

be simplified as

log pα,β,π,ψ(X
o,Yo) = log

∫∫
pα,β,π,ψ(X,Y)dXmdYm = log pα,β,π,ψ(X

o,Yo). (4.24)

This simpler form does not involve R, as in the ignorable version in 3.1.4.1, since the missingness is ignorable

and the mask need need not be explicitly modelled.

4.1.4 Deeply-learned GLM with Missingness (dlglm)

In this section, we propose an algorithm for training deeply-learned GLMs in the presence of MCAR,

MAR, and MNAR missingness. Before discussing this model, we first discuss the specification of the so-

called covariate distribution pψ(X) introduced in Equations 4.23 and 4.24, which is critical for maximizing

the marginal log-likelihood in either setting. In Sections 4.1.4.1-4.1.4.2, we discuss two different models for

78

pψ(X), and then in Section 4.1.4.3 we propose a novel method to handle missingness using a deeply-learned

GLM architecture with an Importance-Weighted Autoencoder (IWAE) covariate structure. To simplify the

discussion, we narrow the scope of our discussion to the Case x setting, where only X contains missingness,

but note that the proposed methodology naturally extends to Case y and Case xy settings as well.

4.1.4.1 Modeling pψ(X) with known distribution

Given Eq. 4.23, we must model X with some assumed covariate distribution pψ(X). Care must be

taken in specifying this distribution, as improper specification may reduce the accuracy of estimation of the

parameters of interest β (Lipsitz and Ibrahim, 1996). For example, we may assume pψ(X) follows some

known multivariate distribution such as the multivariate normal, where X ∼ Np(µ,Σ) and ψ = {µ,Σ}.

Here, ψ can be optimized jointly with the rest of the parameters {α,β, π, ϕ} that are involved in the marginal

log-likelihood. However, this assumption may not be applicable in many instances such as in the case when

X contains mixed data types, where both continuous and discrete features may be correlated and a joint

distribution may be difficult to specify in closed form. In certain cases, it may be beneficial to model pψ(X)

flexibly, such that no strong prior assumptions need to be made on the form of this distribution. To address

this, a sequence of 1-D conditionals have previously been proposed to model the covariate distribution (Lipsitz

and Ibrahim, 1996), but such a model may be computationally intractable when the number of covariates

is very large. Still, if an explicit form for the covariate distribution can be specified, a lower bound of the

marginal log-likelihood in the presence of missingness, as introduced in Section 4.1.3, can be derived. In this

special case, a lower bound on the marginal log-likelihood in the presence of missingness can be computed

under MNAR. This quantity, which we call LdlglmXK , can be derived as

logpα,β,π,ψ,ϕ(X
o,Y,RX) =

n∑
i=1

log pα,β,π,ψ,ϕ(x
o
i , yi, r

X
i)

=

n∑
i=1

log

[∫
pα,β,π,ψ,ϕ(x

o
i ,x

m
i , yi, r

X
i)dx

m
i

]

=

n∑
i=1

logExm
ik∼qθ(x

m
i |xo

i ,r
X
i ,yi)

[
1

K

K∑
k=1

pψ(x
o
i ,x

m
ik)pα,β,π(yi|xoi ,xmik)pϕ(rXi |xoi ,xmik, yi)

qθ(x
m
ik|xoi , rXi , yi)

]

≥
n∑
i=1

Exm
ik∼qθ(x

m
i |xo

i ,r
X
i ,yi)

log

[
1

K

K∑
k=1

pψ(x
o
i ,x

m
ik)pα,β,π(yi|xoi ,xmik)pϕ(rXi |xoi ,xmik, yi)

qθ(x
m
ik|xoi , rXi , yi)

]
= LdlglmXK .

79

Here, we assume xmi1, . . . ,x
m
iK

i.i.d∼ qθ(x
m
i |xoi , rXi , yi), except now we have just the latent variables pertaining

to the missing data, the weights and biases of the neural network that learns the variational posterior is now

{θ1, θ2} → θ, and we need not specify a form for either the prior p(zik) or the variational joint posterior

which includes the the latent variables pertaining to the lower-dimensional representation zi1, . . . , ziK .

Instead, we assume an explicit covariate distribution pψ(xoi ,x
m
ik), which is indexed by some parameters ψ.

For example, if pψ(xoi ,x
m
ik) is assumed to be distributed multivariate normal with an independent covariance

structure, then ψ = {µ,Σ}, where µ is a mean vector of length p, and Σ is a p× p covariance matrix. One

can then optimize values of ψ in conjunction with the weights and biases of the neural network architecture

via stochastic gradient descent during training.

Under ignorable missingness, the analogous lower bound can be obtained by assuming independence

between the missing values Xm and the missingness mask RX :

LidlglmXK =
n∑
i=1

Exm
ik∼qθ(x

m
i |xo

i ,yi)
log

[
1

K

K∑
k=1

pψ(x
o
i ,x

m
ik)pα,β,π(yi|xoi ,xmik)pϕ(rXi |xoi , yi)

qθ(x
m
ik|xoi , yi)

]
.

4.1.4.2 Modelling pψ(X) with VAEs and IWAEs

Alternatively, one can approximately learn pψ(X) from the training data by using an IWAE neural

network architecture. In Section 3.1, we discussed in-depth the general form of the variational autoencoder

(VAE) and IWAE in the case of completely-observed data X. By having a VAE/IWAE structure for the

covariate distribution, we allow for flexible modelling of this distribution, as no closed-form assumption

is imposed on p(X). Additionally, we allow for X to contain features of mixed data types, capturing the

correlation across the different features via the learned latent structure in a VAE/IWAE. We apply the IWAE

covariate structure to the deeply-learned GLM setting in Section 4.1.4.3 and show how this representation

naturally extends to the case where MCAR, MAR, or MNAR missingness is observed in X when training

deeply-learned GLMs.

4.1.4.3 dlglm: Modeling X in the presence of missingness

Now, we extend the above framework to the deeply-learned GLM framework, where features within X

are partially observed during training. We formally introduce the dlglm model to handle MNAR missingness

80

in the context of deeply-learned GLMs, as well as a variant of dlglm to specifically handle MCAR and MAR

missingness.

Let us define qθ(Z,Xm) as the variational joint posterior pertaining to (Z,Xm). We can factor this

variational joint posterior as qθ(Z,Xm) = qθ1(Z|Xo)qθ2(X
m|Z,Xo,R). Here, for k = 1, . . . ,K, we

assume Zk
i.i.d∼ qθ1(Z|Xo) similar to an IWAE, and additionally assume Xm

k
i.i.d∼ qθ2(X

m|Z,Xo,R),

where each Xm
k has dimensionality pXmiss. We utilize the class of factored variational posteriors, such that

qθ(Z,X
m) =

∏n
i=1 qθ(zi,x

m
i) and qθ(zi,xmi) = qθ1(zi|xoi)qθ2(xmi |yi, zi,xoi , rXi), with θ = {θ1, θ2}. Then,

denoting zik and xmik as the ith observation vectors of Zk and Xm
k , respectively, we have zi1, . . . , ziK

i.i.d∼

qθ1(zi|xoi) and xmi1, . . . ,x
m
iK

i.i.d∼ qθ2(x
m
i |yi, zi,xoi , rXi). In this case, the lower bound, which we call the

“dlglm bound”, can be derived as follows:

log pα,β,π,ψ,ϕ(X
o,Y,RX) =

n∑
i=1

log pα,β,π,ψ,ϕ(x
o
i , yi, r

X
i)

=

n∑
i=1

log

[∫∫
pα,β,π,ψ,ϕ(x

o
i ,x

m
i , yi, r

X
i , zi)dzidx

m
i

]

=

n∑
i=1

logE(zik,x
m
ik)∼qθ(zi,x

m
i)

[
1

K

K∑
k=1

pα,β,π,ψ,ϕ(x
o
i ,x

m
ik, yi, r

X
i , zik)

qθ(zik,x
m
ik)

]

≥
n∑
i=1

E(zik,x
m
ik)∼qθ(zi,x

m
i) log

[
1

K

K∑
k=1

pα,β,π,ψ,ϕ(x
o
i ,x

m
ik, yi, r

X
i , zik)

qθ(zik,x
m
ik)

]
= LdlglmK , (4.25)

Here, {ψ,β, π, ϕ, θ} are the weights and biases associated with the neural networks that output the

parameters of the distributions that are involved, α is the dispersion parameter associated with the vari-

ance function of Y, and z̃ik and x̃mik are the samples drawn from qθ1(zi|xoi), and qθ2(x
m
i |zi,xoi , yi, rXi),

respectively.

Again, we use the selection model factorization of the complete data log-likelihood, such that

pα,β,π,ψ,ϕ(x
o
i ,x

m
i , yi, r

X
i , zi) = pα,β,π(yi|xi)pψ(xi|zi)p(zi)pϕ(rXi |xi, yi).

Applying this factorization to (4.25), we obtain the form of the estimate of the “dlglm bound”, where the

integral is estimated via Monte Carlo integration:

L̂dlglmK =
n∑
i=1

log

[
1

K

K∑
k=1

pα,β,π(yi|xoi , x̃mik)pψ(xi|z̃ik)p(z̃ik)pϕ(rXi |yi,xoi , x̃mik)
qθ1(z̃ik|xoi)qθ2(x̃mik|z̃ik,xoi , yi, rXi)

]
, (4.26)

81

Figure 16: Architecture of proposed dlglm method (Case x). Dark colored nodes represent deterministic values, lightly colored
nodes represent learned distributional parameters, and outlined (in red) nodes represent sampled values. Orange cells correspond to
latent variables Z and Xm. Z1, . . . ,ZK and Xm

1 , . . . ,Xm
K are sampled from their respective variational posteriors.

We see that this quantity closely resembles the lower bound of an IWAE, and, similar to traditional

VAEs, we utilize neural networks fψ(zi), gθ1(x
o
i), gθ2(zi,x

o
i , r

X
i , yi), sβ,π(xi), and hϕ(xi, yi) to learn the

values of the parameters of pψ(xi|zi), qθ1(zi|xoi), qθ2(xmi |zi,xoi , rXi , yi), pα,β,π(yi|xi), and pϕ(rXi |xi, yi).

The associated weights and biases of the neural networks {β, π, ψ, ϕ}, as well as the dispersion parameter α

pertaining to pα,β,π(Y|X) are updated using stochastic gradient descent via the ADAM optimizer (Kingma

and Ba, 2014). The architecture of dlglm can be found in Figure 16.

The training of the dlglm architecture proceeds as follows:

1. The missing entries are pre-imputed to zero and appended with observed entries, and fed into gθ1(x
o
i),

to learn parameters of qθ1(zi|xoi).

2. K samples are drawn from qθ1(Z|Xo,R).

3. Samples from (2) are used as input for fψ(zi), to learn the parameters of pψ(xi|zi).

4. The samples from (2) are used again as input for gθ2(zi, r
X
i ,x

o
i , yi), concatenated with the observed

data entries (with pre-imputed missing entries) the missingness mask, and the response to learn

parameters of qθ2(x
m
i |zi,xoi , rXi , yi).

82

5. We draw samples of xmi from qθ2(x
m
i |zi,xoi , rXi , yi), and use them as input, concatenated with the

response yi and the fixed observed entries xoi , into hϕ(xi, yi) (or the mask decoder network) to learn

the parameters associated with the model of the missingness mask pϕ(rXi |xi, yi).

6. We use the samples of xmi from (5), concatenated with the observed variables xoi as input into sβ,π(xi)

to output parameters of pα,β,π(yi|xi). The dispersion parameter α is additionally learned via stochastic

gradient descent, along with the all of the weights and biases of the entire architecture.

Under simple distributional assumptions of qθ2(x
m
i |zi, rXi ,xoi , yi), the sampling step in Step (5) is similar to

the sampling of the latent variable Z in Step (2), and both can be accomplished using the reparametrization

trick (Kingma and Welling, 2013). These steps outline the case where RX is independent on Z.

We can obtain a variant of this method, which we call ignorably-missing dlglm (idlglm), by assuming

independence between Xm and R by omitting rXi from Equation 4.25, and removing pϕ(rXi |yi,xoi , x̃mik)

and letting pϕ(x̃mik|z̃ik,xoi , yi, rXi)→ pϕ(x̃
m
ik|z̃ik,xoi , yi) in Equation 4.26. Whereas dlglm is better suited to

handle MNAR, idlglm may be more appropriate for the MCAR or MAR settings, where a missingness model

need not be specified. This is analogous to IMIWAE and NIMIWAE from Section 3.1.

We limited our discussion in this chapter to Case x, where missingness exists only in X but not in Y;

however, the lower bound for dlglm can similarly be derived for the more general Case xy as well. In this

case, one must additionally learn an approximate posterior distribution of the missing response Ym. The

dlglm bound can be derived similarly to the Case x missingness as follows:

log pα,π,ψ,ϕ(X
o,Yo,R) =

n∑
i=1

log pα,π,ψ,ϕ(x
o
i , y

o
i , ri)

=
n∑
i=1

log

[∫∫∫
pα,π,ψ,ϕ(x

o
i ,x

m
i , y

o
i , y

m
i , r

X
i , r

Y
i , zi)dzidx

m
i dy

m
i

]

=

n∑
i=1

logE(zik,x
m
ik,y

m
ik)∼qθ(zi,x

m
i ,y

m
i)

[
1

K

K∑
k=1

pα,π,ψ,ϕ(x
o
i ,x

m
ik, y

o
i , y

m
ik , r

X
i , r

Y
i , zik)

qθ(zik,x
m
ik, y

m
ik)

]

≥
n∑
i=1

E(zik,x
m
ik,y

m
ik)∼qθ(zi,x

m
i ,y

m
i) log

[
1

K

K∑
k=1

pα,π,ψ,ϕ(x
o
i ,x

m
ik, y

o
i , y

m
ik , r

X
i , r

Y
i , zik)

qθ(zik,x
m
ik, y

m
ik)

]

= LdlglmK , (4.27)

83

where now, we modify the factorization of the joint posterior as

qθ(Z,X
m,Ym) = qθ1(Z|Xo)qθ2(X

m|Z,Xo,R)qθ3(Y
m|Xo,Xm,R).

Then, the estimated dlglm bound is

L̂dlglmK =
n∑
i=1

log

[
1

K

K∑
k=1

pα,ψ(yi|xoi , x̃mik)pπ(xi|z̃ik)p(z̃ik)pϕ1(ri|yoi , ỹmik ,xoi , x̃mik)
qθ1(z̃ik|xoi)qθ2(x̃mik|z̃ik,xoi , yoi , ri)qθ3(ỹmik |xoi , x̃mik, yoi , ri)

]
. (4.28)

A visualization of the dlglm architecture in Case xy can be found in Figure 17.

Figure 17: Architecture of proposed dlglm method (Case xy). Dark colored nodes represent deterministic values, lightly colored
nodes represent learned distributional parameters, and outlined (in red) nodes represent sampled values. Orange cells correspond
to latent variables Z, Xm, and Ym. Zk, Xm

k , and Ym
k are sampled from their respective variational posteriors for k = 1, . . . ,K.

Below is the dlglm bound (Ldlglm
K), and the estimated dlglm bound (L̂dlglm

K), which is optimized via stochastic gradient descent.

In this chapter, we are primarily interested in supervised learning. However, following training, dlglm

and idlglm can also perform imputation as in the unsupervised learning architecture for handling missingness,

as proposed in Section 3.1, although such imputation is not necessary for training, coefficient estimation, or

prediction. Following training, dlglm can perform single imputation of missing values by obtaining point

estimates for E[xmi |xoi , yi, rXi], defined as the expected value of the missing features given the observed data

84

and the mask for the ith observation under MNAR. We note that imputation is not the main focus of this

chapter, as it is primarily an unsupervised task, but it may be of interest in some settings to obtain these

imputed values for downstream analyses. To do this, we first note that

E[xmi |xoi , yi, rXi] =
∫

xmi pα,β,π,ψ,ϕ(x
m
i |xoi , yi, rXi)dxmi

=

∫∫
xmi pα,β,π,ψ,ϕ(x

m
i , zi|xoi , yi, rXi)dzidxmi

=

∫∫
xmi

pα,β,π,ψ,ϕ(x
m
i ,x

o
i , zi, yi, r

X
i)

pψ,ϕ(x
o
i , yi, r

X
i)

dzidx
m
i .

Then, we can estimate this integral by self-normalized importance sampling. We utilize the proposal density

qθ1(zi|xoi)qθ2(xmi |zi,xoi , yi, rXi), and define the quantities

wik =
sik

si1 + . . .+ siK
, and sik =

pα,β,π(yi|xoi , x̃mi)pψ(xi|z̃ik)p(z̃ik)pϕ(rXi |xoi , x̃mik, yi)
qθ1(z̃ik|xoi)qθ2(x̃mik|z̃ik,xoi , rXi , yi)

for k = 1, . . . ,K, with 1 sample drawn from the variational posterior of each latent variable zik and xmik to

compute sik, where wik is defined as standardized “importance weights” (Mattei and Frellsen, 2019). Using

these weights we may estimate E[xmi |xoi , yi, rXi] ≈
∑K

k=1wikx̃
m
ik. Then, the process can be repeated for

each observation i = 1, . . . , n.

In the MCAR or MAR case, one can similarly estimate E[xmi |xoi , yi] using the fitted idlglm model. By

following a similar derivation using the proposal density qθ1(zi|xoi)qθ2(xmi |zi,xoi , yi), we obtain the same

approximation E[xmi |xoi , yi] ≈
∑K

k=1wikx̃
m
ik, with wik defined as before, but with a slightly different form

for sik:

sik =
pα,β,π(yi|xoi , x̃mi)pψ(xi|z̃ik)p(z̃ik)
qθ1(z̃ik|xoi)qθ2(x̃mik|z̃ik,xoi , yi)

.

4.2 Numerical Examples

In this section, we evaluate the performance of dlglm and idlglm to analyze each method’s performance

in imputation, coefficient estimation, and prediction tasks on simulated datasets under MCAR, MAR, and

MNAR missingness in Section 4.2.1. We also compare our methods to two commonly used approaches

for modeling missing data in the supervised setting, mean imputation and the mice method for multiple

imputation (Van Buuren and Groothuis-Oudshoorn, 2011). To account for potential non-linearity and complex

85

relationships between features, in Section 4.2.2, we mask completely-observed datasets obtained from the

UCI Machine Learning Repository with varying mechanisms of missingness on the predictors. Finally, in

Section 4.2.3, we perform prediction on the Bank Marketing dataset, which inherently contains missingness

in the predictors.

Below, we summarize the combinations of hyperparameter values that were searched by dlglm and

idlglm. For each dataset, we searched over combinations of two different values for each hyperparameter that

was tuned. We tuned 4 different hyperparameters for each method: number of nodes per hidden layer (h),

number of nodes per hidden layer in the missingness network (hr) , number of hidden layers (nhl), number

of hidden layers in the sβ,π(xi) network (nhly), number of hidden layers in the missingness network (nhlr),

dimensionality of latent space (dz), and learning rate (lr). For idlglm, nhlr = 0 and hr = 0 were fixed (since

these are omitted in the idlglm architecture). Below are the searched values of the hyperparameters for each

dataset in our analyses:

• Simulated Data (p = {25, 50} features)

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {⌊3 ∗ p/4⌋, ⌊p/2⌋, ⌊p/4⌋, ⌊p/12⌋}

– nhl = {0, 1, 2}

– nhly = 0

– nhlr = {0, 1}

– bs = 1, 000, epochsmax = 2002

• All UCI (including Banknote) datasets (p features)

– h = {128, 64}, hr = {16, 32}

– lr = {0.001, 0.01}

– dz = {⌊3 ∗ p/4⌋, ⌊p/2⌋, ⌊p/4⌋, 8}

– nhl = {0, 1, 2}

– nhly = {0, 1, 2}

86

– nhlr = {0, 1}

– bs = 1000, epochsmax = 2002

4.2.1 Simulated Data

4.2.1.1 Simulation Setup

We first utilized completely synthetic data to evaluate the performance of each. Here, X is generated

such that X = normalize(ZW +B) + B0, where normalize(·) takes an input matrix and standardizes

each column to mean 0 and standard deviation 1, and W and B and are matrices of dimensions d × p

and n × p, respectively, Z ∼ Nd(0, I), and Wlj ∼ N(0, 0.5) and Bij ∼ N(0, 1) for i = 1, . . . , n,

p = 1, . . . , p, and l = 1, . . . , d, and B0 = 2 is fixed. We also generated a binary response variable Y such

that Pr(Y = 1|X) = β0 + βX, where β are drawn randomly from {−1
4 ,

1
4}, and β0 is chosen such that

approximately half of the sample are in either class. Values of Y are drawn from Bernoulli(Pr(Y = 1|X)).

We then simulate the missingness mask matrix RX such that 50% of features in X are partially observed,

and 30% of the observations for each of these features are missing. We generate rij from the Bernoulli

distribution with probability equal to p(rijm = 1|xi, yi,ϕ), such that

logit[p(rijm = 1|xi, yi,ϕ)] = ϕ0 + ϕ1yi + ϕ2x
o
i + ϕ3x

m
i ,

where jm = 1, . . . , pXmiss index the missing features, ϕ1 is the coefficient pertaining to the response, ϕ2 =

{ϕ21, . . . , ϕ2,pXobs} are the coefficients pertaining to the observed features, and ϕ3 = {ϕ31, . . . , ϕ3,pXmiss
}

are those pertaining to the missing features, where pXobs and pXmiss are the total number of features that are

observed and missing, respectively, with pXmiss = floor(0.5 ∗ p) and pXobs = p − pXmiss. Here, we fixed

ϕ1 = 0, and drew nonzero values of {ϕ2,ϕ3} from the log-normal distribution with mean µϕ = 5, with log

standard deviation σϕ = 0.2.

To evaluate the impact of the misspecification of the missingness mechanism on model performance, rijm

was simulated under each mechanism as follows: (1) MCAR: {ϕ1,ϕ2,ϕ3} = 0 (2) MAR: Same as MCAR

except ϕ2jo ̸= 0 for one completely-observed feature jo (3) MNAR: Same as MCAR except ϕ3jm ̸= 0 for

one missing feature jm. In this way, for each MAR or MNAR feature, the missingness is dependent on

just one feature. In each case, we used ϕ0 to control for an expected rate of missingness of 30% in each

87

partially-observed feature. We note that for each these simulations, we utilize all features in X as well as the

response Y as input into dlglm’s missingness network, although only one feature is involved under the true

missingness model.

We vary n and d such that n = {10, 000, 100, 000} and d = {2, 8}, and fix p = 50. We simulated 5

datasets per simulation condition, spanning various missingness mechanisms and values for {n, d}. We fix

the values of β at 0.25 for each feature, and adjusted β0 to ensure equal proportions for the binary class

response Y. For each simulation case, we partitioned the data into training, validation, and test sets with ratio

8:1:1. For mice imputation, we averaged across 500 multiply-imputed datasets to obtain a single imputed

dataset. We note that we generated Y by a linear transformation of X in these simulations in order to facilitate

fair comparisons with mice, which cannot account for non-linear relationships between the features and the

response. Because no hyperparameter tuning is required, the validation set is not utilized for mice and mean

imputation.

We measured the performance of each method with respect to three different tasks: imputation of missing

values, coefficient estimation, and prediction. Imputation performance was measured with respect to the truth

on a single imputed dataset by mean, dlglm and idlglm imputation, and on an average of multiply-imputed

datasets by mice. Coefficient estimation for mean and mice were based on downstream fitted GLM(s) on

these imputed dataset(s), where estimates were pooled using Rubin’s rules (Rubin, 2004) for mice. For dlglm

and idlglm, we estimated the coefficients by the weights and bias β of the last layer of the sβ,π(·) trained

neural network. Here, we fixed the number of hidden layers in sβ,π(·) to 0 to allow for direct comparison

with the other methods. A more complex prediction model via a neural network can be learned by simply

incorporating additional hidden layers in sβ,π(·). We note that dlglm and idlglm can estimate β without

having to perform multiple imputation and downstream modelling like mice, where fitting complex methods

such as neural networks each of the multiply-imputed datasets separately may be computationally prohibitive.

After obtaining the coefficient estimates and trained models, we performed prediction on the test set in

two ways: 1) using the incomplete (predI) test set, where the true values of Xm are not known at prediction

time, and 2) using the complete (predC) test set, where the true simulated values of Xm are known at

prediction time. These two ways reflect the two realistic cases in which (1) missingness is present during

training time but complete data is available at prediction time, and (2) missingness is present during both

training and prediction time. For predI, mice and mean imputation require an additional imputation step on

the test set before predicting Y; for dlglm and idlglm, we simply input the incomplete test set into the trained

88

model without needing to separately impute the test set, and we predict using the trained model. That is, mice

and mean imputation cannot generalize the trained model to impute the test set, dlglm and idlglm provide

a seamless framework to utilize the already-trained model to impute and predict on a held-out test set. For

predC, we use the underlying true values of Xm to predict on the test dataset.

Imputation error was measured by the average L1 distance between true and imputed masked values in

X. Letting X̂m denote the imputed masked values of the true Xm values of the missing entries, we denote

the average L1 distance is simply |X̂m−Xm|
Nmiss

, where Nmiss is the total number of missing entries in the dataset.

Performance in coefficient estimation was measured by the average percent bias (PB) of the coefficient

estimates compared to the truth, averaged across the p features, i.e. PB = 1
p

∑p
j=1

|βj−β̂j |
|βj | . Finally, predC

and predI prediction error was measured by the average L1 distance between predicted and true values of the

probabilities of class membership Pr(Y = 1|X) in the test set.

4.2.1.2 Simulation Results

Figures 18 and 19 illustrate the simulation results pertaining to imputation accuracy, coefficient esti-

mation, and prediction accuracy for the condition p = 50. We see that across all combinations of {n, d}

and mechanisms of missingness, mean imputation consistently performs poorly in imputation, coefficient

estimation, and prediction, while mice and idlglm perform comparably in these metrics. Also, we note that

under MNAR missingness, dlglm generally yields the lowest imputation and prediction error, as well as

percent bias across all simulation cases. Under MAR missingness, dlglm performs comparably to idlglm

and mice. This shows the ability of dlglm to learn an accurate model of the missingness, even under severe

overparametrization of the missingness model (model need not be specified for ignorable missingness).

However, due to the complexity of the model, we see that dlglm does generally perform poorly compared to

idlglm and mice under MCAR missingness, when n = 10, 000, although it still performs comparably to other

methods when the sample size is very large (n = 100, 000). As one may expect, prediction performance

using the incomplete data (predI) was poorer than prediction performance using the complete data (predC)

for all methods.

Figures 20 and 21 show the results of the imputation, coefficient estimation, and prediction performance

on simulated data with p = 25 fixed. Overall, we found that dlglm performed best under MNAR missingness,

and comparably to idlglm and mice under MCAR and MAR missingness.

89

Figure 18: Simulation results with n = 10, 000 and p = 50, varying d = 2 (top 4) and d = 8 (bottom 4). In each quadrant, we
measure imputation accuracy by the average L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth (top-right), and prediction accuracy by the
average L1 distance between the predicted and true probabilities of class 1 membership of Y using the true unmasked test set (predC,
bottom-left) and the incomplete test set (predI, bottom-right).

90

Figure 19: Simulation results with n = 100, 000 and p = 50, varying d = 2 (top 4) and d = 8 (bottom 4). In each quadrant, we
measure imputation accuracy by the average L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth (top-right), and prediction accuracy by the
average L1 distance between the predicted and true probabilities of class 1 membership of Y using the true unmasked test set (predC,
bottom-left) and the incomplete test set (predI, bottom-right).

91

Figure 20: Simulation results with n = 10, 000 and p = 25, varying d = 2 (top 4) and d = 8 (bottom 4). In each quadrant, we
measure imputation accuracy by the average L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth (top-right), and prediction accuracy by the
average L1 distance between the predicted and true probabilities of class 1 membership of Y using the true unmasked test set (predC,
bottom-left) and the incomplete test set (predI, bottom-right).

92

Figure 21: Simulation results with n = 100, 000 and p = 25, varying d = 2 (top 4) and d = 8 (bottom 4). In each quadrant, we
measure imputation accuracy by the average L1 distance between imputed vs true values in X (top-left), coefficient estimation
accuracy by the average percent bias (PB) of the estimates β̂ compared to the truth (top-right), and prediction accuracy by the
average L1 distance between the predicted and true probabilities of class 1 membership of Y using the true unmasked test set (predC,
bottom-left) and the incomplete test set (predI, bottom-right).

93

4.2.2 Real Data with Simulated Missingness

Next, we analyzed 3 completely-observed, large datasets from the UCI Machine Learning Repository

(Dua and Graff, 2017) that contained a specific response variable of interest, in order to preserve non-linearity

and interactions between observed features. The DRYBEAN dataset contains 16 features describing 13,611

images of dry beans taken with a high-resolution camera, and the response variable of interest was the type of

dry bean each image represents, with 7 different possible types of beans. The LETTER dataset contains 16

attributes of 20,000 black-and-white pixel images, each displaying one English letter (A to Z). Finally, the

SHUTTLE dataset contains 9 numerical attributes pertaining to 58,000 shuttle stat logs (observations), which

are classified into 7 different categories. Due to a low sample size in 4 of the 7 categories, we pre-filtered

the observations pertaining to these categories out of the dataset, and the resulting dataset contained 57,756

observations of 3 categories. In each of these datasets, the response variable was multi-category.

We then simulated the missingness mask RX with MCAR, MAR, and MNAR patterns of missingness

in the manner described in Section 4.2.1.1. We split the samples in each dataset by a similar 8:1:1 ratio of

training/validation/test samples. In the test set samples, we then imputed the missing values and predicted the

response variables with each method in a manner similar to Section 4.2.1.1. For dlglm and idlglm, We account

for potential nonlinear relationships between the covariates and response by allowing the number of hidden

layers in sβ,π(·) to be nonzero in hyperparameter tuning. Then, we compared imputation and prediction

accuracy on each dataset, under each mechanism of missingness. Since the underlying true probabilities of

class membership were unavailable, we measured prediction accuracy by the Cohen’s kappa metric on the

complete (kappaC) and incomplete (kappaI) test set. This metric measures how accurately a binary class

variable was predicted, with a value of -1 indicating worst possible performance, and a value of 1 indicating

perfect concordance with the truth.

Results from the imputation and prediction analyses on these datasets can be found in Figure 22. We

found that, as in the simulations, mean imputation performed most poorly in both imputation and downstream

prediction, while dlglm tended to perform best in the MNAR cases, and performed comparably to mice and

idlglm under the MCAR and MAR cases. This further validates our claims under a more realistic setting,

where the true data generation mechanism may be unknown. We also see that under both MCAR and MAR

missingness, mice performed worse than idlglm in prediction on the LETTER and SHUTTLE datasets. This

is particularly interesting since mice is a widely-used algorithm that has been shown to perform well under

94

Fi
gu

re
22

:I
m

pu
ta

tio
n

(t
op

ro
w

)a
nd

pr
ed

ic
tio

n
re

su
lts

fr
om

pr
ed

C
(m

id
dl

e
ro

w
)a

nd
pr

ed
I(

bo
tto

m
ro

w
)f

ro
m

co
m

pa
ra

tiv
e

m
et

ho
ds

ru
n

on
3

la
rg

e
da

ta
se

ts
fr

om
th

e
U

C
IM

ac
hi

ne
Le

ar
ni

ng
R

ep
os

ito
ry

:D
RY

B
EA

N
,L

ET
TE

R
,a

nd
SH

U
TT

LE
(c

ol
um

ns
,l

ef
tt

o
rig

ht
).

Im
pu

ta
tio

n
er

ro
rw

as
m

ea
su

re
d

by
th

e
av

er
ag

e
L1

di
st

an
ce

be
tw

ee
n

tru
e

an
d

im
pu

te
d

en
tri

es
,w

ith
lo

w
er

va
lu

es
in

di
ca

tin
g

be
tte

rp
er

fo
rm

an
ce

,a
nd

pr
ed

ic
tio

n
pe

rf
or

m
an

ce
w

as
m

ea
su

re
d

by
th

e
C

oh
en

’s
ka

pp
a

m
et

ri
c

fo
rb

ot
h

pr
ed

C
(k

ap
pa

C
)a

nd
pr

ed
I(

ka
pp

aI
),

w
ith

hi
gh

er
va

lu
es

in
di

ca
tin

g
be

tte
rp

er
fo

rm
an

ce
.

95

Figure 23: Correlation heatmap matrix of features in the DRYBEAN dataset. Many features in this dataset were highly correlated.

ignorable missingness (Van Buuren and Groothuis-Oudshoorn, 2011). However, the mice model has been

known to break down under nonlinear relationships between the features (Van Buuren, 2018), as may be the

case in many real-world datasets like these. Using neural networks to model the data generation process

allows idlglm to better model potential nonlinear relationships between features, allowing for more accurate

prediction.

Interestingly, all of the algorithms performed similarly in prediction on the DRYBEAN dataset. However,

we found that this dataset contained extremely high levels of correlation between the variables, as shown in

Figure 23. Highly-correlated features may cause some missing features to be redundant in the prediction

model, thus reducing the importance of an accurate method to properly account for the missingness. Intuitively,

when features containing missingness are highly correlated to other fully-observed features, such missingness

may not truly reflect the MNAR scenario (Hapfelmeier et al., 2012). This is because there exist fully-observed

features that are highly correlated with the missing features, and ignorably-missing data methods like idlglm

96

may gather information about the missing entries from these correlated, fully-observed features without

having to explicitly model the mechanism of missingness. Still, idlglm and dlglm imputed missing entries

much more accurately than mean and mice under MAR and MNAR. Interestingly, we also see that idlglm

performed similarly to dlglm under MNAR in this dataset.

We additionally performed similar analyses on 5 other smaller UCI datasets (BANKNOTE, CAREVAL-

UATION, SPAM, RED, WHITE), and these results can be found in Figures 24 and 25. In general, we

see that dlglm still performs best in imputation and prediction under MNAR missingness, although idlglm

performs slightly better in the BANKNOTE dataset. In lower sample size settings, dlglm may not perform

optimally, due to the more complex architecture and the additional task of learning a missingness model.

We also note that for these missingness models in dlglm, as in the main text, we included all of the features

in X as well as the response variable Y as covariates, although only one feature in X is involved in the

simulation of missingness in each incomplete feature. Selecting important features from an overparameterized

missingness model may be very difficult, and thus we recommend dlglm to be used with a sample size of at

least n = 10000.

4.2.3 Bank Marketing Dataset

Finally, we performed prediction on the Bank Marketing dataset from the UCI Machine Learning

Repository. This dataset contained 41,188 observations of 20 different attributes that were obtained based on

direct phone calls from a Portuguese banking institution as part of a promotion campaign for a term deposit

subscription (Moro et al., 2014). The response variable of interest was a fully-observed binary measure of

whether the client subscribed a term deposit. Of the 20 attributes, we removed 1 attribute as directed from

the manual due to perfect correlation with the response variable, and removed 3 other attributes that were

deemed irrelevant to the prediction task: month of contact, day of contact, and communication type (cell

phone or telephone).

Missingness was present in 8 of the 16 attributes: type of job, marital status, level of education, whether

the client had a credit in default, whether the client had a housing loan, whether the client had a personal

loan, number of days since the client was contacted in a previous campaign, and outcome of the previous

campaign. The remaining 8 attributes were fully-observed: age of client, number of contacts during this

campaign, number of contacts before this campaign, employment variation rate, consumer price index,

consumer confidence index, euribor 3 month rate, and employee number. The global rate of missingness

97

Figure
24:Im

putation
(top

row
)and

prediction
results

from
predC

(m
iddle

row
)and

predI(bottom
row

)from
com

parative
m

ethods
run

on
3

sm
alldatasets

from
the

U
C

IM
achine

L
earning

R
epository:B

A
N

K
N

O
T

E
,C

A
R

E
VA

L
U

A
T

IO
N

,and
SPA

M
(colum

ns,leftto
right).Im

putation
errorw

as
m

easured
by

the
average

L
1

distance
betw

een
true

and
im

puted
entries,w

ith
low

ervalues
indicating

betterperform
ance,and

prediction
perform

ance
w

as
m

easured
by

the
C

ohen’s
kappa

m
etric

forboth
predC

(kappaC
)and

predI(kappaI),w
ith

highervalues
indicating

betterperform
ance.

98

Figure 25: Imputation (top row) and prediction results from predC (middle row) and predI (bottom row) from comparative methods
run on 2 small datasets from the UCI Machine Learning Repository: RED and WHITE (columns, left and right). Imputation error
was measured by the average L1 distance between true and imputed entries, with lower values indicating better performance, and
prediction performance was measured by the Cohen’s kappa metric for both predC (kappaC) and predI (kappaI), with higher values
indicating better performance.

99

was about 13.3%. The response variable of interest was collected by additional follow-up calls to confirm

whether the client subscribed to the product.

This type of dataset reflects the most realistic situation in practice, where missingness exists in a dataset

and one has no prior knowledge of either the relationships between the features and the response, or the

underlying mechanism of the missingness. We divided the dataset into the 8:1:1 training, validation, and test

set ratio, and performed prediction as before. Because neither the data nor the missingness was simulated, we

compared just the predI prediction performance across the methods.

AUC PPV kappa F1
dlglm 0.88 0.481 0.445 0.516
idlglm 0.779 0.446 0.411 0.488
mean 0.769 0.448 0.385 0.46
mice 0.771 0.455 0.396 0.471

Table 6: Results from prediction analyses on the Bank Marketing dataset from the UCI Machine Learning Repository. We measured
concordance between the true and predicted binary response by 4 metrics: Area Under ROC Curve (AUC), Positive Predictivity
(PPV), Cohen’s kappa (kappa), and F1 score.

Table 6 shows the results from these prediction analyses. We measured prediction performance of the

binary response variable by 4 metrics: Area Under the ROC Curve (AUC), Positive Predictivity (PPV),

Cohen’s kappa (kappa), and the F1 metric. For each metric, a larger value represents greater concordance

between the true and predicted response. We see that dlglm yielded a significantly greater performance in

prediction via all metrics, which suggests that the missingness present in this dataset may be MNAR, as dlglm

is the only method that accounts for MNAR missingness. This is in line with previous studies on missingness

in survey data, which researchers have oftentimes considered MNAR (de Leeuw, 2001)

Also, we note that predictions via idlglm yielded slightly greater AUC, F1, and Cohen’s kappa than

mice imputation, but slightly lower PPV. This is reflective of the properties seen in the simulations, where

idlglm performed comparably to mice in each simulated mechanism of missingness. Since these are both

methods catered to handle ignorably-missing data, they would likely yield biased models under MNAR

missingness, as may be the case in this dataset. Additionally, we see that mice and mean imputation yielded

similar performance via all metrics. This may be due to the fact that these methods are impute-then-regress

methods, unlike dlglm and idlglm, and thus downstream prediction performance may be less affected by the

method of imputation employed (Le Morvan et al., 2021).

100

4.3 Discussion

In this chapter, we introduced a novel deep learning method called Deeply-learned Generalized Linear

Model with Missing Data (dlglm), which is able to perform coefficient estimation and prediction in the

presence of missing not at random (MNAR) data. dlglm utilizes a deep learning neural network architecture

to model the generation of the data matrix X, as well as the relationships between the response variable Y

and X and between the missingness mask R and X. In this way, we are able to (1) generalize the traditional

GLM to account for complex nonlinear interactions between the features, and (2) account for ignorable and

non-ignorable forms of missingness in the data. We also showed through simulations and real data analyses

that dlglm performs better in coefficient estimation and prediction in the presence of MNAR missingness

than other impute-then-regress methods, like mean and mice imputation. Furthermore, we found that dlglm

was generally robust to the mechanism of missingness, performing comparably well to mice and idlglm under

MCAR and MAR settings. Still, it is recommended to utilize idlglm when the missingness is ignorable, as

the missingness model that is learned in dlglm is not necessary in the ignorable missingness setting.

A supervised learning algorithms such as dlglm and idlglm can be particularly useful in analyzing real-life

data in the presence of missingness. In reality, the mechanism underlying missing values cannot be known or

tested, however a flexible algorithm like dlglm that can be relatively robust to severe overparameterization of

the missingness model can be pivotal to unbiased results. Furthermore, whereas impute-then-regress methods

may typically require fully-observed observations at test time for prediction, dlglm and idlglm can predict the

response of interest using partially-observed observations. This provides a convenient workflow, where a user

need not separately re-impute the prediction set at test time.

In this chapter, we focused specifically on the case of univariate response Y. dlglm and idlglm can be

generalized to the multivariate Y case by (1) including Y in the existing IWAE structure and (2) expanding

the neural network sβ,π(xi) to account for all q responses in Y, and utilizing samples of Z as additional

input into this network such that sβ,π(xi) → sβ,π(xi, zi). By doing this, we account for multivariate

Y, outputting additional parameters pertaining to the newly-specified distribution of pβ,π(yi|xi, zi) and

modelling correlation of Y by the learned latent structure. We leave this as an extension of our method.

101

BIBLIOGRAPHY

Al-Khasawn, M. F. (2010). Estimating the negative binomial dispersion parameter. Asian Journal of
Mathematics & Statistics, 3(1):1–15.

Alberts, B., Bray, D., and Lewis, J. (2002). Molecular Biology of the Cell. Taylor & Francis.

Allison, D. B., Gadbury, G. L., Heo, M., Fernández, J. R., Lee, C.-K., Prolla, T. A., and Weindruch, R. (2002).
A mixture model approach for the analysis of microarray gene expression data. Computational Statistics
& Data Analysis, 39:1–20.

Allison, P. D. et al. (2010). Missing data, volume 200210. Sage Thousand Oaks, CA.

Almalaq, A. and Edwards, G. (2017). A review of deep learning methods applied on load forecasting. 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 511–516.

Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology,
11(10):R106.

Anders, S., Pyl, P. T., and Huber, W. (2014). HTSeq–a python framework to work with high-throughput
sequencing data. Bioinformatics, 31(2):166–169.

Aran, D., Sirota, M., and Butte, A. J. (2015). Systematic pan-cancer analysis of tumour purity. Nature
Communications, 6(1).

Ausawalaithong, W., Marukatat, S., Thirach, A., and Wilaiprasitporn, T. (2018). Automatic Lung Can-
cer Prediction from Chest X-ray Images Using Deep Learning Approach. arXiv e-prints, page
arXiv:1808.10858.

Banfield, J. D. and Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics,
49(3):803.

Basak, S., Sengupta, S., and Dubey, A. (2018). Mechanisms for Integrated Feature Normalization and Remain-
ing Useful Life Estimation Using LSTMs Applied to Hard-Disks. arXiv e-prints, page arXiv:1810.08985.

Bass, A., Thorsson, V., Shmulevich, I., and et al. (2014). Comprehensive molecular characterization of gastric
adenocarcinoma. Nature, 513(7517):202–209.

Beane, J., Vick, J., Schembri, F., Anderlind, C., Gower, A., Campbell, J., Luo, L., Zhang, X. H., Xiao, J.,
Alekseyev, Y. O., Wang, S., Levy, S., Massion, P. P., Lenburg, M., and Spira, A. (2011). Characterizing
the impact of smoking and lung cancer on the airway transcriptome using RNA-seq. Cancer Prevention
Research, 4(6):803–817.

Beaulieu-Jones, B. K. and and, J. H. M. (2016). Missing Data Imputation in the Electronic Health Record
Using Deeply Learned Autoencoders. In Biocomputing 2017. WORLD SCIENTIFIC.

Best, M. G., Sol, N., Kooi, I., Tannous, J., Westerman, B. A., Rustenburg, F., Schellen, P., Verschueren, H.,
Post, E., Koster, J., Ylstra, B., Ameziane, N., Dorsman, J., Smit, E. F., Verheul, H. M., Noske, D. P.,
Reijneveld, J. C., Nilsson, R. J. A., Tannous, B. A., Wesseling, P., and Wurdinger, T. (2015). RNA-seq
of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer
diagnostics. Cancer Cell, 28(5):666–676.

102

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for the EM algorithm for
getting the highest likelihood in multivariate gaussian mixture models. Computational Statistics & Data
Analysis, 41(3-4):561–575.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag New York Inc.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2016). Variational Inference: A Review for Statisticians.
arXiv e-prints, page arXiv:1601.00670.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436.
Springer.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends® in Machine
learning, 3(1):1–122.

Brannon, A. R., Reddy, A., Seiler, M., Arreola, A., Moore, D. T., Pruthi, R. S., and et al. (2010). Molecular
stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and
survival patterns. Genes & Cancer, 1(2):152–163.

Brat, D. J., Verhaak, R. G., Aldape, K. D., and et al. (2015). Comprehensive, integrative genomic analysis of
diffuse lower-grade gliomas. New England Journal of Medicine, 372(26):2481–2498.

Brosch, T., , and Tam, R. (2013). Manifold learning of brain MRIs by deep learning. In Advanced Information
Systems Engineering, pages 633–640. Springer Berlin Heidelberg.

Browne, R. P. and McNicholas, P. D. (2013). Estimating common principal components in high dimensions.
Advances in Data Analysis and Classification, 8(2):217–226.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance Weighted Autoencoders. arXiv e-prints,
page arXiv:1509.00519.

Cao, D. and Yang, B. (2010). An improved k-medoids clustering algorithm. In 2010 The 2nd International
Conference on Computer and Automation Engineering (ICCAE). IEEE.

Carrio, A., Sampedro, C., Rodriguez-Ramos, A., and Campoy, P. (2017). A review of deep learning methods
and applications for unmanned aerial vehicles. Journal of Sensors, 2017:1–13.

Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., Zack, T., Laird, P. W., Onofrio, R. C.,
Winckler, W., Weir, B. A., Beroukhim, R., Pellman, D., Levine, D. A., Lander, E. S., Meyerson, M.,
and Getz, G. (2012). Absolute quantification of somatic DNA alterations in human cancer. Nature
Biotechnology, 30(5):413–421.

Casella, G. and Robert, C. (2010). Monte Carlo Statistical Methods. Springer New York.

Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., and Oliveira, A. L. (2016). Computational
intelligence and financial markets: A survey and future directions. Expert Systems with Applications,
55:194–211.

Celeux, G. and Govaert, G. (1990). Stochastic algorithms for clustering. In Momirović, K. and Mildner, V.,
editors, Compstat, pages 3–8, Heidelberg. Physica-Verlag HD.

Celeux, G. and Govaert, G. (1992). A classification EM algorithm for clustering and two stochastic versions.
Computational Statistics & Data Analysis, 14(3):315–332.

103

Celeux, G. and Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recognition, 28(5):781–
793.

Chappell, J., Watters, K. E., Takahashi, M. K., and Lucks, J. B. (2015). A renaissance in RNA synthetic
biology: new mechanisms, applications and tools for the future. Current Opinion in Chemical Biology,
28:47–56.

Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A. (2014). NbClust: AnRPackage for determining the
relevant number of clusters in a data set. Journal of Statistical Software, 61(6).

Chen, D., Liu, S., Kingsbury, P., Sohn, S., Storlie, C. B., Habermann, E. B., and et al. (2019). Deep learning
and alternative learning strategies for retrospective real-world clinical data. npj Digital Medicine, 2(1).

Chia, S. K., Bramwell, V. H., Tu, D., Shepherd, L. E., Jiang, S., and et al., T. V. (2012). A 50-gene intrinsic
subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clinical Cancer
Research, 18(16):4465–4472.

Chu, W., Ghahramani, Z., Falciani, F., and Wild, D. L. (2005). Biomarker discovery in microarray gene
expression data with gaussian processes. Bioinformatics, 21(16):3385–3393.

Chung, W., Eum, H. H., Lee, H.-O., Lee, K.-M., Lee, H.-B., Kim, K.-T., and et al. (2017). Single-cell
RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature
Communications, 8(1).

Cima, I., Kong, S. L., Sengupta, D., Tan, I. B., Phyo, W. M., Lee, D., and et al. (2016). Tumor-derived
circulating endothelial cell clusters in colorectal cancer. Science Translational Medicine, 8(345):345ra89–
345ra89.

Ciriello, G., Gatza, M. L., Beck, A. H., Wilkerson, M. D., Rhie, S. K., Pastore, A., and et al. (2015).
Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 163(2):506–519.

Colaprico, A., Silva, T. C., Olsen, C., Garofano, L., Cava, C., Garolini, D., and et al. (2015). TCGAbiolinks:
an r/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Research, 44(8):e71–
e71.

Collisson, E., Campbell, J., Brooks, A., and et al. (2014). Comprehensive molecular profiling of lung
adenocarcinoma. Nature, 511(7511):543–550.

Creighton, C., Morgan, M., Gunaratne, P., and et al. (2013). Comprehensive molecular characterization of
clear cell renal cell carcinoma. Nature, 499(7456):43–49.

Cremer, C., Morris, Q., and Duvenaud, D. (2017). Reinterpreting Importance-Weighted Autoencoders. arXiv
e-prints, page arXiv:1704.02916.

Cui, W., Qian, Y., Zhou, X., Lin, Y., Jiang, J., Chen, J., and et al. (2015). Discovery and characterization
of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative
analysis of RNA-seq data. BMC Genomics, 16(Suppl 7):S3.

de Leeuw, E. D. (2001). Reducing missing data in surveys: An overview of methods. Quality and Quantity,
35(2):147–160.

Dellaert, F. (2002). The expectation maximization algorithm. Technical report, Georgia Institute of Technol-
ogy.

104

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via
theEMAlgorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22.

Diggle, P. and Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics,
43(1):49.

Doersch, C. (2016). Tutorial on Variational Autoencoders. arXiv e-prints, page arXiv:1606.05908.

Dormehl, L. (2019). What is an artificial neural network? here’s everything you need to know.

Du, H., Enders, C., Keller, B. T., Bradbury, T. N., and Karney, B. R. (2021). A bayesian latent variable
selection model for nonignorable missingness. Multivariate Behavioral Research, pages 1–49.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Esteban, A. (2002). Characteristics and outcomes in adult patients receiving mechanical ventilation. a 28-day
international study. JAMA, 287(3):345.

Fakoor, R., Ladhak, F., Nazi, A., and Huber, M. (2013). Using deep learning to enhance cancer diagnosis and
classification. In Proceedings of the international conference on machine learning, volume 28, pages
3937–3949. ACM, New York, USA.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96(456):1348–1360.

Finotello, F. and Camillo, B. D. (2014). Measuring differential gene expression with RNA-seq: challenges
and strategies for data analysis. Briefings in Functional Genomics, 14(2):130–142.

Fishbein, L., Leshchiner, I., Walter, V., Danilova, L., Robertson, A. G., Johnson, A. R., and et al. (2017).
Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell,
31(2):181–193.

Fraley, C. and Raftery, A. E. (1998). How many clusters? which clustering method? answers via model-based
cluster analysis. The Computer Journal, 41(8):578–588.

Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals
of Applied Statistics, 1(2):302–332.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1).

Fu, X., Fu, N., Guo, S., Yan, Z., Xu, Y., Hu, H., and et al. (2009). Estimating accuracy of RNA-seq and
microarrays with proteomics. BMC Genomics, 10(1):161.

Garcia, R. I., Ibrahim, J. G., and Zhu, H. (2009). Variable selection in the cox regression model with
covariates missing at random. Biometrics, 66(1):97–104.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities.
Journal of the American Statistical Association, 85(410):398–409.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6):721–741.

Gershman, S. J. and Goodman, N. D. (2014). Amortized inference in probabilistic reasoning. In CogSci.

105

Ghorbani, A. and Zou, J. Y. (2018). Embedding for informative missingness: Deep learning with incomplete
data. In 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 437–445. IEEE.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Grossman, R. L., Heath, A. P., Ferretti, V., Varmus, H. E., Lowy, D. R., Kibbe, W. A., and Staudt, L. M. (2016).
Toward a shared vision for cancer genomic data. New England Journal of Medicine, 375(12):1109–1112.

Guo, H. and Gelfand, S. B. (1990). Analysis of gradient descent learning algorithms for multilayer feedfor-
ward neural networks. In 29th IEEE Conference on Decision and Control, pages 1751–1756. IEEE.

Haitovsky, Y. (1968). Missing data in regression analysis. Journal of the Royal Statistical Society. Series B
(Methodological), 30(1):67–82.

Hamer, R. M. and Simpson, P. M. (2009). Last observation carried forward versus mixed models in the
analysis of psychiatric clinical trials.

Hammerman, P., Lawrence, M., Voet, D., and et al. (2012). Comprehensive genomic characterization of
squamous cell lung cancers. Nature, 489(7417):519–525.

Han, J. and Pei, M. K. J. (2017). Data Mining: Concepts and Techniques. Elsevier LTD, Oxford.

Hapfelmeier, A., Hothorn, T., Ulm, K., and Strobl, C. (2012). A new variable importance measure for random
forests with missing data. Statistics and Computing, 24(1):21–34.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv
e-prints, page arXiv:1512.03385.

Hicks, S. C., Townes, F. W., Teng, M., and Irizarry, R. A. (2017). Missing data and technical variability in
single-cell RNA-sequencing experiments. Biostatistics, 19(4):562–578.

Hilbe, J. M. (2009). Modeling Count Data. Cambridge University Press.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67.

Holland, P. W. and Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares.
Communications in Statistics - Theory and Methods, 6(9):813–827.

Hoogland, J., Barreveld, M., Debray, T. P. A., Reitsma, J. B., Verstraelen, T. E., Dijkgraaf, M. G. W., and
Zwinderman, A. H. (2020). Handling missing predictor values when validating and applying a prediction
model to new patients. Statistics in Medicine, 39(25):3591–3607.

Horton, N. J. and Kleinman, K. P. (2007). Much ado about nothing. The American Statistician, 61(1):79–90.

Huber-Keener, K. J., Liu, X., Wang, Z., Wang, Y., Freeman, W., Wu, S., and et al. (2012). Differential gene
expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-seq
data. PLoS ONE, 7(7):e41333.

106

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Huszno, J. and Kolosza, Z. (2019). Molecular characteristics of breast cancer according to clinicopathological
factors. Molecular and Clinical Oncology.

Ibrahim, J. G. (2001). Missing responses in generalised linear mixed models when the missing data mechanism
is nonignorable. Biometrika, 88(2):551–564.

Ibrahim, J. G., Chen, M.-H., Lipsitz, S. R., and Herring, A. H. (2005). Missing-data methods for generalized
linear models. Journal of the American Statistical Association, 100(469):332–346.

Ibrahim, J. G., Lipsitz, S. R., and Chen, M.-H. (1999). Missing covariates in generalized linear models
when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(1):173–190.

Ibrahim, J. G. and Molenberghs, G. (2009). Missing data methods in longitudinal studies: a review. TEST,
18(1):1–43.

Inouye, D. I., Yang, E., Allen, G. I., and Ravikumar, P. (2017). A review of multivariate distributions for count
data derived from the poisson distribution. Wiley Interdisciplinary Reviews: Computational Statistics,
9(3):e1398.

Ipsen, N. B., Mattei, P.-A., and Frellsen, J. (2021). not-miwae: Deep generative modelling with missing not
at random data.

Ivanov, O., Figurnov, M., and Vetrov, D. (2019). Variational autoencoder with arbitrary conditioning. In
International Conference on Learning Representations.

Jardim-Perassi, B. V., Alexandre, P. A., Sonehara, N. M., de Paula-Junior, R., Júnior, O. R., Fukumasu, H.,
and et al. (2019). RNA-seq transcriptome analysis shows anti-tumor actions of melatonin in a breast
cancer xenograft model. Scientific Reports, 9(1).

Jaskowiak, P. A., Campello, R. J., and Costa, I. G. (2014). On the selection of appropriate distances for gene
expression data clustering. BMC Bioinformatics, 15(S2).

Jaskowiak, P. A., Costa, I. G., and Campello, R. J. (2018). Clustering of RNA-seq samples: Comparison
study on cancer data. Methods, 132:42–49.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3):241–254.

Johnson, W. E., Li, C., and Rabinovic, A. (2006). Adjusting batch effects in microarray expression data using
empirical bayes methods. Biostatistics, 8(1):118–127.

Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of Anesthesiology,
64(5):402.

Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv e-prints, page
arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv e-prints, page
arXiv:1312.6114.

Kingma, D. P. and Welling, M. (2019). An Introduction to Variational Autoencoders. arXiv e-prints, page
arXiv:1906.02691.

107

Klein, R. W. and Dubes, R. C. (1989). Experiments in projection and clustering by simulated annealing.
Pattern Recognition, 22(2):213–220.

Koboldt, D. C., Fulton, R. S., McLellan, M. D., Schmidt, H., KalickiVeizer, J., and et al., J. F. M. (2012).
Comprehensive molecular portraits of human breast tumours. Nature, 490(7418):61–70.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

Larsson, E., Lindström, A.-C., Eriksson, M., and Oldner, A. (2019). Impact of gender on post- traumatic
intensive care and outcomes. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine,
27(1).

Lawrence, M., Sougnez, C., Lichtenstein, L., and et al. (2015). Comprehensive genomic characterization of
head and neck squamous cell carcinomas. Nature, 517(7536):576–582.

Le Morvan, M., Josse, J., Scornet, E., and Varoquaux, G. (2021). What’sa good imputation to predict with
missing values? Advances in Neural Information Processing Systems, 34.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, M.-L. T., Kuo, F. C., Whitmore, G. A., and Sklar, J. (2000). Importance of replication in microarray gene
expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proceedings
of the National Academy of Sciences, 97(18):9834–9839.

Leek, J. T. (2014). svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic
Acids Research, 42(21):e161–e161.

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., and et al. (2010).
Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews
Genetics, 11(10):733–739.

Levine, D. A., Getz, G., Gabriel, S., and et al. (2013). Integrated genomic characterization of endometrial
carcinoma. Nature, 497(7447):67–73.

Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A., and Dewey, C. N. (2009a). RNA-seq gene expression
estimation with read mapping uncertainty. Bioinformatics, 26(4):493–500.

Li, J., Bushel, P. R., Chu, T.-M., and Wolfinger, R. D. (2009b). Principal variance components analysis:
Estimating batch effects in microarray gene expression data. In Batch Effects and Noise in Microarray
Experiments, pages 141–154. John Wiley & Sons, Ltd.

Li, P., Piao, Y., Shon, H. S., and Ryu, K. H. (2015). Comparing the normalization methods for the differential
analysis of illumina high-throughput RNA-seq data. BMC Bioinformatics, 16(1).

Li, Q., Noel-MacDonnell, J. R., Koestler, D. C., Goode, E. L., and Fridley, B. L. (2018). Subject level
clustering using a negative binomial model for small transcriptomic studies. BMC Bioinformatics, 19(1).

Li, Y., Chien, J., Smith, D. I., and Ma, J. (2011). FusionHunter: identifying fusion transcripts in cancer using
paired-end RNA-seq. Bioinformatics, 27(12):1708–1710.

108

Liang, J., Lv, J., and Liu, Z. (2015). Identification of stage-specific biomarkers in lung adenocarcinoma based
on RNA-seq data. Tumor Biology, 36(8):6391–6399.

Lim, K.-L., Jiang, X., and Yi, C. (2020). Deep clustering with variational autoencoder. IEEE Signal
Processing Letters, 27:231–235.

Linehan, W. M., Spellman, P. T., Ricketts, C. J., and et al. (2016). Comprehensive molecular characterization
of papillary renal-cell carcinoma. New England Journal of Medicine, 374(2):135–145.

Lipsitz, S. R. and Ibrahim, J. G. (1996). A conditional model for incomplete covariates in parametric
regression models. Biometrika, 83(4):916–922.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. John Wiley & Sons, Inc.

Liu, J. S. (2008). Monte Carlo Strategies in Scientific Computing. Springer.

Liu, Y., Noon, A. P., Cabeza, E. A., Shen, J., Kuk, C., Ilczynski, C., and et al. (2014). Next-generation RNA
sequencing of archival formalin-fixed paraffin-embedded urothelial bladder cancer. European Urology,
66(6):982–986.

Ljunggren, M., Castrén, M., Nordberg, M., and Kurland, L. (2016). The association between vital signs
and mortality in a retrospective cohort study of an unselected emergency department population.
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24(1).

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep generative modeling for
single-cell transcriptomics. Nature Methods, 15(12):1053–1058.

Lotfollahi, M., Wolf, F. A., and Theis, F. J. (2019). scGen predicts single-cell perturbation responses. Nature
Methods, 16(8):715–721.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology, 15(12).

Luo, Y., Cai, X., ZHANG, Y., Xu, J., and xiaojie, Y. (2018). Multivariate time series imputation with
generative adversarial networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R., editors, Advances in Neural Information Processing Systems 31, pages 1596–1607.
Curran Associates, Inc.

Lydia, A. and Francis, S. (2019). Adagrad—an optimizer for stochastic gradient descent. Int. J. Inf. Comput.
Sci, 6(5):566–568.

Mahmood, K., Eldeirawi, K., and Wahidi, M. M. (2012). Association of gender with outcomes in critically ill
patients. Critical Care, 16(3):R92.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to information retrieval. Cambridge
university press.

Mao, J.-H., van Diest, P. J., Perez-Losada, J., and Snijders, A. M. (2017). Revisiting the impact of age and
molecular subtype on overall survival after radiotherapy in breast cancer patients. Scientific Reports,
7(1).

Mardis, E. R. and Wilson, R. K. (2009). Cancer genome sequencing: a review. Human Molecular Genetics,
18(R2):R163–R168.

109

Mattei, P.-A. and Frellsen, J. (2019). MIWAE: Deep generative modelling and imputation of incomplete data
sets. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 4413–4423,
Long Beach, California, USA. PMLR.

McCarthy, D. J., Chen, Y., and Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-seq
experiments with respect to biological variation. Nucleic Acids Research, 40(10):4288–4297.

McCoy, J. T., Kroon, S., and Auret, L. (2018). Variational autoencoders for missing data imputation with
application to a simulated milling circuit. IFAC-PapersOnLine, 51(21):141–146.

McCullagh, P. and Nelder, J. A. (2019). Generalized linear models. Routledge.

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models. Journal of
the American Statistical Association, 92(437):162–170.

McGettigan, P. A. (2013). Transcriptomics in the RNA-seq era. Current Opinion in Chemical Biology,
17(1):4–11.

McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Extensions, 2E. John Wiley & Sons, Inc.

McLendon, R., Friedman, A., Bigner, D., and et al (2008). Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature, 455(7216):1061–1068.

McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of microarray expression data via latent
gaussian mixture models. Bioinformatics, 26(21):2705–2712.

McPherson, A., Hormozdiari, F., Zayed, A., Giuliany, R., Ha, G., Sun, M. G. F., and et al. (2011). deFuse:
An algorithm for gene fusion discovery in tumor RNA-seq data. PLoS Computational Biology,
7(5):e1001138.

Meng, X.-L. (1994). On the rate of convergence of the ecm algorithm. The Annals of Statistics, 22(1):326–339.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general
framework. Biometrika, 80(2):267–278.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092.

Mingoti, S. A. and Lima, J. O. (2006). Comparing SOM neural network with fuzzy c-means, k-means and
traditional hierarchical clustering algorithms. European Journal of Operational Research, 174(3):1742–
1759.

Miotto, R., Li, L., Kidd, B. A., and Dudley, J. T. (2016). Deep patient: An unsupervised representation to
predict the future of patients from the electronic health records. Scientific Reports, 6(1).

Mo, Q. and Shen, R. (2019). iClusterPlus: Integrative clustering of multi-type genomic data. R package
version 1.20.0.

Mo, Q., Wang, S., Seshan, V. E., Olshen, A. B., Schultz, N., and et al., C. S. (2013). Pattern discovery and
cancer gene identification in integrated cancer genomic data. Proceedings of the National Academy of
Sciences, 110(11):4245–4250.

110

Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P.,
Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub,
T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D., and Groop, L. C.
(2003). PGC-1-responsive genes involved in oxidative phosphorylation are coordinately downregulated
in human diabetes. Nature Genetics, 34(3):267–273.

Moro, S., Cortez, P., and Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing.
Decision Support Systems, 62:22–31.

Müllner, D. (2011). Modern hierarchical, agglomerative clustering algorithms. arXiv e-prints, page
arXiv:1109.2378.

Murakami, N., Okuno, Y., Yoshida, K., Shiraishi, Y., Nagae, G., Suzuki, K., and et al. (2018). Integrated
molecular profiling of juvenile myelomonocytic leukemia. Blood, 131(14):1576–1586.

Murphy, J. (2016). An overview of convolutional neural network architectures for deep learning. Microway
Inc, pages 1–22.

Muzny, D., Bainbridge, M., Chang, K., and et al. (2012). Comprehensive molecular characterization of
human colon and rectal cancer. Nature, 487(7407):330–337.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and Muharemagic, E. (2015).
Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1).

Nazabal, A., Olmos, P. M., Ghahramani, Z., and Valera, I. (2018). Handling Incomplete Heterogeneous Data
using VAEs. arXiv e-prints, page arXiv:1807.03653.

Nazari, Z., Kang, D., Asharif, M. R., Sung, Y., and Ogawa, S. (2015). A new hierarchical clustering algorithm.
In 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE.

Neal, R. and Hinton, G. E. (1998). A view of the em algorithm that justifies incremental, sparse, and other
variants. In Learning in Graphical Models, pages 355–368. Kluwer Academic Publishers.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical
Society. Series A (General), 135(3):370–384.

Nie, L., Wang, M., Zhang, L., Yan, S., Zhang, B., and Chua, T.-S. (2015). Disease inference from health-
related questions via sparse deep learning. IEEE Transactions on Knowledge and Data Engineering,
27(8):2107–2119.

Nielsen, T. O., Parker, J. S., Leung, S., Voduc, D., Ebbert, M., Vickery, T., Davies, S. R., Snider, J., Stijleman,
I. J., Reed, J., et al. (2010). A comparison of pam50 intrinsic subtyping with immunohistochemistry
and clinical prognostic factors in tamoxifen-treated estrogen receptor–positive breast cancerpam50 in
er-positive breast cancer. Clinical cancer research, 16(21):5222–5232.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer.

Noel-MacDonnell, J. R., Usset, J., Goode, E. L., and Fridley, B. L. (2018). Assessment of data transformations
for model-based clustering of RNA-seq data. PLOS ONE, 13(2):e0191758.

O’Hara, R. B. and Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology and Evolution,
1(2):118–122.

O’Shea, R. (2019). Interpreting Missing Data Patterns in the ICU. arXiv e-prints, page arXiv:1912.08612.

111

Ouyang, M., Welsh, W. J., and Georgopoulos, P. (2004). Gaussian mixture clustering and imputation of
microarray data. Bioinformatics, 20(6):917–923.

Ozdag, M. (2018). Adversarial attacks and defenses against deep neural networks: A survey. Procedia
Computer Science, 140:152–161.

O’Connor, C. M., Adams, J. U., and Fairman, J. (2010). Essentials of cell biology. Cambridge, MA: NPG
Education, 1:54.

Pan, W., Lin, J., and Le, C. T. (2003). A mixture model approach to detecting differentially expressed genes
with microarray data. Functional & integrative genomics, 3(3):117–124.

Pan, W., Shen, X., and Liu, B. (2013). Cluster analysis: Unsupervised learning via supervised learning with a
non-convex penalty. Journal of Machine Learning Research, 14.

Patel, S., Sihmar, S., and Jatain, A. (2015). A study of hierarchical clustering algorithms. In 2015 2nd
International Conference on Computing for Sustainable Global Development (INDIACom), pages
537–541.

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017). Salmon provides fast and
bias-aware quantification of transcript expression. Nature Methods, 14(4):417–419.

Peixoto, L., Risso, D., Poplawski, S. G., Wimmer, M. E., Speed, T. P., Wood, M. A., and Abel, T. (2015).
How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex
datasets. Nucleic Acids Research, 43(16):7664–7674.

Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., and et al., C. A. R. (2000). Molecular
portraits of human breast tumours. Nature, 406(6797):747–752.

Picornell, A. C., Echavarria, I., Alvarez, E., López-Tarruella, S., Jerez, Y., Hoadley, K., Parker, J. S., del
Monte-Millán, M., Ramos-Medina, R., Gayarre, J., Ocaña, I., Cebollero, M., Massarrah, T., Moreno, F.,
Saenz, J. A. G., Moreno, H. G., Ballesteros, A., Borrego, M. R., Perou, C. M., and Martin, M. (2019).
Breast cancer PAM50 signature: correlation and concordance between RNA-seq and digital multiplexed
gene expression technologies in a triple negative breast cancer series. BMC Genomics, 20(1).

Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter.
Biometrics, 46(3):863.

Podlesnyy, S. (2019). Towards Data-Driven Automatic Video Editing. arXiv e-prints, page arXiv:1907.07345.

Poggio, T., Banburski, A., and Liao, Q. (2020). Theoretical issues in deep networks. Proceedings of the
National Academy of Sciences, 117(48):30039–30045.

Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55–69.
Springer.

Pumsirirat, A. and Yan, L. (2018). Credit card fraud detection using deep learning based on auto-encoder and
restricted boltzmann machine. International Journal of Advanced Computer Science and Applications,
9(1).

Qi, M. and Wu, Y. (2003). Nonlinear prediction of exchange rates with monetary fundamentals. Journal of
Empirical Finance, 10(5):623–640.

112

Qu, Y. and Xu, S. (2004). Supervised cluster analysis for microarray data based on multivariate gaussian
mixture. Bioinformatics, 20(12):1905–1913.

Raj-Kumar, P.-K., Liu, J., Hooke, J. A., Kovatich, A. J., Kvecher, L., Shriver, C. D., and Hu, H. (2019).
PCA-PAM50 improves consistency between breast cancer intrinsic and clinical subtyping reclassifying
a subset of luminal a tumors as luminal b. Scientific Reports, 9(1).

Ramsköld, D., Kavak, E., and Sandberg, R. (2011). How to analyze gene expression using RNA-sequencing
data. In Next Generation Microarray Bioinformatics, pages 259–274. Humana Press.

Rao, M. S., Vleet, T. R. V., Ciurlionis, R., Buck, W. R., Mittelstadt, S. W., Blomme, E. A. G., and Liguori,
M. J. (2019). Comparison of RNA-seq and microarray gene expression platforms for the toxicogenomic
evaluation of liver from short-term rat toxicity studies. Frontiers in Genetics, 9.

Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., and Yang, G.-Z. (2017). Deep
learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1):4–21.

Rawat, W. and Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehen-
sive review. Neural Computation, 29(9):2352–2449.

Razzak, M. I., Naz, S., and Zaib, A. (2017). Deep learning for medical image processing: Overview,
challenges and the future. In Lecture Notes in Computational Vision and Biomechanics, pages 323–350.
Springer International Publishing.

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson, E. J., Vachon, C. M., de Andrade, M., Kocher, J.-P. A.,
and Eckel-Passow, J. E. (2013). A new statistic for identifying batch effects in high-throughput genomic
data that uses guided principal component analysis. Bioinformatics, 29(22):2877–2883.

Reichart, R. and Rappoport, A. (2009). The nvi clustering evaluation measure. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning, CoNLL ’09, pages 165–173,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Reynolds, A. P., Richards, G., and Rayward-Smith, V. J. (2004). The application of k-medoids and pam to
the clustering of rules. In Intelligent Data Engineering and Automated Learning - IDEAL 2004, 5th
International Conference, pages 173–178.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation and Approximate
Inference in Deep Generative Models. arXiv e-prints, page arXiv:1401.4082.

Ricketts, C. J., Cubas, A. A. D., Fan, H., Smith, C. C., Lang, M., Reznik, E., and et al. (2018). The
cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Reports,
23(1):313–326.e5.

Robertson, A. G., Kim, J., Al-Ahmadie, H., Bellmunt, J., Guo, G., and et al., A. D. C. (2017). Comprehensive
molecular characterization of muscle-invasive bladder cancer. Cell, 171(3):540–556.e25.

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2009). edgeR: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26(1):139–140.

Robison, K. (2010). Application of second-generation sequencing to cancer genomics. Briefings in Bioinfor-
matics, 11(5):524–534.

Rohlf, F. J. and Sokal, R. R. (1981). Biometry: the principles and practice of statistics in biological research.
Freeman New York.

113

Romero, I. G., Ruvinsky, I., and Gilad, Y. (2012). Comparative studies of gene expression and the evolution
of gene regulation. Nature Reviews Genetics, 13(7):505–516.

Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression, and related
optimization problems. Proceedings of the IEEE, 86(11):2210–2239.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.

Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys, volume 81. John Wiley & Sons.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252.

Sadati, N., Zafar Nezhad, M., Babu Chinnam, R., and Zhu, D. (2019). Representation Learning with Autoen-
coders for Electronic Health Records: A Comparative Study. arXiv e-prints, page arXiv:1908.09174.

Saxe, A. M., Mcclelland, J. L., and Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of learning
in deep linear neural network. In In International Conference on Learning Representations.

Schell-Chaple, H. M., Puntillo, K. A., Matthay, M. A., and and, K. D. L. (2015). Body temperature and
mortality in patients with acute respiratory distress syndrome. American Journal of Critical Care,
24(1):15–23.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61:85–117.

Schubert, E. and Rousseeuw, P. J. (2018). Faster k-Medoids Clustering: Improving the PAM, CLARA, and
CLARANS Algorithms. arXiv e-prints, page arXiv:1810.05691.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464.

Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2016). mclust 5: Clustering, classification and
density estimation using gaussian finite mixture models. The R journal, 8:289–317.

Seyednasrollah, F., Rantanen, K., Jaakkola, P., and Elo, L. L. (2015). ROTS: reproducible RNA-seq biomarker
detector—prognostic markers for clear cell renal cell cancer. Nucleic Acids Research, 44(1):e1–e1.

Sharafoddini, A., Dubin, J. A., Maslove, D. M., and Lee, J. (2019). A new insight into missing data in
intensive care unit patient profiles: Observational study. JMIR Medical Informatics, 7(1):e11605.

Shen, Y. and Gao, M. (2019). Brain Tumor Segmentation on MRI with Missing Modalities. arXiv e-prints,
page arXiv:1904.07290.

Shickel, B., Tighe, P. J., Bihorac, A., and Rashidi, P. (2018). Deep EHR: A survey of recent advances in
deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and
Health Informatics, 22(5):1589–1604.

Si, Y., Liu, P., Li, P., and Brutnell, T. P. (2013). Model-based clustering for RNA-seq data. Bioinformatics,
30(2):197–205.

Silva, A., Rothstein, S. J., McNicholas, P. D., and Subedi, S. (2019). A multivariate poisson-log normal
mixture model for clustering transcriptome sequencing data. BMC Bioinformatics, 20(1).

114

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and Hassabis, D.
(2017). Mastering the game of go without human knowledge. Nature, 550(7676):354–359.

Smid, M., Wang, Y., Zhang, Y., Sieuwerts, A. M., Yu, J., Klijn, J. G., Foekens, J. A., and Martens, J. W.
(2008). Subtypes of breast cancer show preferential site of relapse. Cancer Research, 68(9):3108–3114.

Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian statistics without tears: A sampling–resampling
perspective. The American Statistician, 46(2):84–88.

Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation using deep conditional
generative models. In Advances in neural information processing systems, pages 3483–3491.

Solomon, S. R. and Sawilowsky, S. S. (2009). Impact of rank-based normalizing transformations on the
accuracy of test scores. Journal of Modern Applied Statistical Methods, 8(2):448–462.

Song, C., Liu, F., Huang, Y., Wang, L., and Tan, T. (2013). Auto-encoder based data clustering. In Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pages 117–124. Springer
Berlin Heidelberg.

Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., and et al. (2001). Gene expression
patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of
the National Academy of Sciences, 98(19):10869–10874.

Stekhoven, D. J. and Buhlmann, P. (2011). MissForest–non-parametric missing value imputation for mixed-
type data. Bioinformatics, 28(1):112–118.

Strauß, R., Ewig, S., Richter, K., König, T., Heller, G., and Bauer, T. T. (2014). The prognostic significance
of respiratory rate in patients with pneumonia. Deutsches Ärzteblatt international.

Strehl, A. and Ghosh, J. (2003). Cluster ensembles — a knowledge reuse framework for combining multiple
partitions. J. Mach. Learn. Res., 3:583–617.

Stubbendick, A. L. and Ibrahim, J. G. (2003). Maximum likelihood methods for nonignorable missing
responses and covariates in random effects models. Biometrics, 59(4):1140–1150.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., and et al. (2005).
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression
profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550.

Suk, H.-I., , Lee, S.-W., and Shen, D. (2013). Latent feature representation with stacked auto-encoder for
AD/MCI diagnosis. Brain Structure and Function, 220(2):841–859.

Sun, L., Jia, K., Chan, T.-H., Fang, Y., Wang, G., and Yan, S. (2014). DL-SFA: Deeply-learned slow feature
analysis for action recognition. In 2014 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE.

Svozil, D., Kvasnicka, V., and Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks.
Chemometrics and intelligent laboratory systems, 39(1):43–62.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., and et al. (2014). Going Deeper with
Convolutions. arXiv e-prints, page arXiv:1409.4842.

115

Tanner, M. A. and Wong, W. H. (2010). From EM to data augmentation: The emergence of MCMC bayesian
computation in the 1980s. Statistical Science, 25(4):506–516.

Taylor, G. J. (1996). Neural Networks and Their Applications. John Wiley & Sons, Inc., USA, 1st edition.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288.

Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of clusters in a data set via the gap
statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2):411–423.

Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J., and et al. (2016).
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science,
352(6282):189–196.

Tomancak, P., Berman, B. P., Beaton, A., Weiszmann, R., Kwan, E., Hartenstein, V., and et al. (2007). Global
analysis of patterns of gene expression during drosophila embryogenesis. Genome Biology, 8(7):R145.

Tongyoo, S., Viarasilpa, T., and Permpikul, C. (2018). Serum potassium levels and outcomes in critically ill
patients in the medical intensive care unit. Journal of International Medical Research, 46(3):1254–1262.

Tran, M.-N., Nguyen, N., Nott, D., and Kohn, R. (2019). Bayesian deep net GLM and GLMM. Journal of
Computational and Graphical Statistics, 29(1):97–113.

Trost, B., Moir, C. A., Gillespie, Z. E., Kusalik, A., Mitchell, J. A., and Eskiw, C. H. (2015). Concordance
between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and
quiescent fibroblasts. Royal Society Open Science, 2(9):150402.

Tschannen, M., Bachem, O., and Lucic, M. (2018). Recent Advances in Autoencoder-Based Representation
Learning. arXiv e-prints, page arXiv:1812.05069.

Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of Optimization Theory and Applications, 109(3):475–494.

Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.

Van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in
r. Journal of statistical software, 45(1):1–67.

van de Vijver, M. J., He, Y. D., van 't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., and et al. (2002). A
gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine,
347(25):1999–2009.

van Laarhoven, P. J. M. and Aarts, E. H. L. (1987). Simulated annealing. In Simulated Annealing: Theory
and Applications, pages 7–15. Springer Netherlands.

Vankayala, V. S. S. and Rao, N. D. (1993). Artificial neural networks and their applications to power
systems—a bibliographical survey. Electric Power Systems Research, 28(1):67–79.

Venugopalan, J., Chanani, N., Maher, K., and Wang, M. D. (2019). Novel data imputation for multiple
types of missing data in intensive care units. IEEE Journal of Biomedical and Health Informatics,
23(3):1243–1250.

116

Vidman, L., Källberg, D., and Rydén, P. (2019). Cluster analysis on high dimensional RNA-seq data with
applications to cancer research - an evaluation study. PLOS ONE, 14(12):e0219102.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning,
pages 1096–1103.

Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for chance. J. Mach. Learn. Res., 11:2837–2854.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep learning for computer
vision: A brief review. Computational Intelligence and Neuroscience, 2018:1–13.

Wang, N., Wang, Y., Hao, H., Wang, L., Wang, Z., Wang, J., and Wu, R. (2013). A bi-poisson model for
clustering gene expression profiles by RNA-seq. Briefings in Bioinformatics, 15(4):534–541.

Wang, Y., Yao, H., and Zhao, S. (2016). Auto-encoder based dimensionality reduction. Neurocomputing,
184:232–242.

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-seq: a revolutionary tool for transcriptomics. Nature
Reviews Genetics, 10(1):57–63.

Way, G. P. and Greene, C. S. (2018). Extracting a biologically relevant latent space from cancer transcriptomes
with variational autoencoders. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
23:80–91.

Weinstein, J., Akbani, R., Broom, B., and et al. (2014). Comprehensive molecular characterization of
urothelial bladder carcinoma. Nature, 507(7492):315–322.

Wittkopp, P. J. (2007). Variable gene expression in eukaryotes: a network perspective. Journal of Experimental
Biology, 210(9):1567–1575.

Wolff, A., Bayerlová, M., Gaedcke, J., Kube, D., and Beißbarth, T. (2018). A comparative study of RNA-seq
and microarray data analysis on the two examples of rectal-cancer patients and burkitt lymphoma cells.
PLOS ONE, 13(5):e0197162.

Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. The Annals of
Applied Statistics, 2(1):224–244.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., and et al. (2008). Top 10 algorithms in
data mining. Knowledge and information systems, 14(1):1–37.

Xie, Y., Le, L., Zhou, Y., and Raghavan, V. V. (2018). Deep learning for natural language processing. In
Handbook of Statistics, pages 317–328. Elsevier.

Yang, F., Ding, P., and Huang, R. (2015). Clinicopathological significance and potential drug target of CDH1
in breast cancer: a meta-analysis and literature review. Drug Design, Development and Therapy, page
5277.

Yang, K., Gao, J., and Luo, M. (2019). Identification of key pathways and hub genes in basal-like breast
cancer using bioinformatics analysis. OncoTargets and Therapy, Volume 12:1319–1331.

Yang, L., Shen, Y., Yuan, X., Zhang, J., and Wei, J. (2017). Analysis of breast cancer subtypes by AP-ISA
biclustering. BMC Bioinformatics, 18(1).

117

Yersal, O. (2014). Biological subtypes of breast cancer: Prognostic and therapeutic implications. World
Journal of Clinical Oncology, 5(3):412.

Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E., and Ruzzo, W. L. (2001a). Model-based clustering and
data transformations for gene expression data. Bioinformatics, 17(10):977–987.

Yeung, K. Y., Haynor, D. R., and Ruzzo, W. L. (2001b). Validating clustering for gene expression data.
Bioinformatics, 17(4):309–318.

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq:
accounting for selection bias. Genome Biology, 11(2):R14.

Yuan, Y. and Yin, G. (2009). Bayesian quantile regression for longitudinal studies with nonignorable missing
data. Biometrics, 66(1):105–114.

Zar, J. H. (1999). Biostatistical analysis. Pearson Education India.

Zhang, Q., Yang, L. T., Chen, Z., and Li, P. (2018). A survey on deep learning for big data. Information
Fusion, 42:146–157.

Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E., and Hogenesch, J. B. (2014). A circadian gene
expression atlas in mammals: Implications for biology and medicine. Proceedings of the National
Academy of Sciences, 111(45):16219–16224.

Zhang, S., Yao, L., Sun, A., and Tay, Y. (2017). Deep Learning based Recommender System: A Survey and
New Perspectives. arXiv e-prints, page arXiv:1707.07435.

Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K., and Liu, X. (2014). Comparison of RNA-seq and
microarray in transcriptome profiling of activated t cells. PLoS ONE, 9(1):e78644.

Zhao, Y., Karypis, G., and Fayyad, U. (2005). Hierarchical clustering algorithms for document datasets. Data
mining and knowledge discovery, 10(2):141–168.

Zheng, S., Cherniack, A. D., Dewal, N., Moffitt, R. A., Danilova, L., Murray, B. A., and et al. (2016).
Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell, 29(5):723–
736.

Zou, B., Lampos, V., Gorton, R., and Cox, I. J. (2016). On infectious intestinal disease surveillance using
social media content. In Proceedings of the 6th International Conference on Digital Health Conference -
DH '16. ACM Press.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(2):301–320.

Zwiener, I., Frisch, B., and Binder, H. (2014). Transforming RNA-seq data to improve the performance of
prognostic gene signatures. PLoS ONE, 9(1):e85150.

Zyprych-Walczak, J., Szabelska, A., Handschuh, L., Górczak, K., Klamecka, K., Figlerowicz, M., and
Siatkowski, I. (2015). The impact of normalization methods on RNA-seq data analysis. BioMed
Research International, 2015:1–10.

118

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: LITERATURE REVIEW
	Clustering of RNA-Seq Gene Expression Samples
	Existing Clustering Methods
	Deep Learning
	Unsupervised Deep Learning Architectures
	Supervised Deep Learning Architectures

	Missing Data in Deep Learning
	Existing Missing Data Methods

	CHAPTER 2: FSCSEQ: SIMULTANEOUS FEATURE SELECTION AND CLUSTERING OF BULK RNA-SEQ DATA
	Introduction
	Methods
	Model likelihood
	Computation

	Numerical Examples
	Simulations
	Application to TCGA Breast Cancer RNA-seq dataset

	Discussion

	CHAPTER 3: UNSUPERVISED DEEP LEARNING WITH MISSING DATA
	Methods
	Variational Autoencoder
	Objective Function
	Estimation Procedure and Use Cases

	Importance-Weighted Autoencoder
	IWAE Architecture
	Missing Data
	Ignorable Missingness
	VAEs and IWAEs with Ignorable Missingness
	Non-ignorable Missingness

	NIMIWAE: IWAE with Nonignorable Missingness
	NIMIWAE Training Algorithm
	Initialization, Early Stop, and Hyperparameter Tuning
	Multiple Imputation

	Numerical Results
	Simulated Data
	Simulation Setup
	Simulation Results
	UCI Machine Learning Datasets

	Physionet 2012 Challenge Dataset

	Discussion

	CHAPTER 4: SUPERVISED DEEP LEARNING WITH MISSING DATA
	Methods
	Generalized Linear Models (GLMs)
	Deeply Learned GLMs
	Missingness in GLMs
	Deeply-learned GLM with Missingness (dlglm)
	Modeling p(X) with known distribution
	Modelling p(X) with VAEs and IWAEs
	dlglm: Modeling X in the presence of missingness

	Numerical Examples
	Simulated Data
	Simulation Setup
	Simulation Results

	Real Data with Simulated Missingness
	Bank Marketing Dataset

	Discussion

	BIBLIOGRAPHY

