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ABSTRACT 
 

Marc Douglas Rudolph: Combining network neuroscience and machine learning to discover 
neurocognitive subgroups in aging individuals at risk of or diagnosed with Alzheimer’s disease 

(Under the direction of Jessica R. Cohen) 
 

Dementia is a complicated medical condition that negatively impacts an individual’s 

mental and physical well-being increasing the risk of early mortality. The risk of developing 

dementia increases with age, although rates vary according to several factors, such as sex, race, 

and genetics. While Alzheimer’s disease (AD), the most common form of dementia, is often 

associated with episodic memory impairment, individuals with AD can present with diverse 

cognitive profiles. Similarly, heterogeneous subgroups of typically aging individuals may show 

impairments in both general and specific forms of attention, memory, and/or executive 

functioning. Individual variation in cognitive impairments experienced by aging individuals, and 

resistance or resilience to cognitive decline, can be linked to functional brain network 

organization and communication capacity. This study aimed to disentangle shared and unique 

aspects of cognitive impairment and functional network topology seen in healthy aging, early-

stage or preclinical dementia, and AD. Specifically, Aim 1 sought to establish if weighted 

metrics that index redundancy in unthresholded functional brain networks, as a proxy of brain 

and cognitive reserve, support general and/or specific forms of cognition. Aim 2 sought to 

establish whether a combination of core demographic risk factors (age, sex, and education), 

cognitive measures, and weighted functional network metrics could accurately distinguish 

otherwise cognitively normal individuals (CN), from CN who will convert to AD (AD-C), and 

individuals diagnosed with AD, using supervised machine learning. Aim 3 specifically sought 
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quantify the presence of data-driven neurocognitive subgroups utilizing a combination of 

unsupervised and supervised machine learning. In the present study, redundancy-based metrics 

(global communicability and global clustering coefficient) were not predictive of overall 

cognitive functioning, nor were they the most informative predictors when attempting to 

distinguish between CN, AD-C, and AD participants using machine learning. When classifying 

older individuals with and without AD, neuropsychological measures were more informative 

than metrics assessing global network topology, including redundancy-based measures. Finally, 

while this study failed to identify cognitive subgroups previously reported in MCI and AD 

participants, AD converters correctly classified or misclassified as AD showed diverging 

neurocognitive profiles and may represent a subset of individuals with primarily executive, as 

opposed to memory-related impairments, respectively. 
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CHAPTER 1: INTRODUCTION 

Dementia is a complicated medical condition that negatively impacts an individual’s 

mental and physical well-being and increases the risk of early mortality. The risk of developing 

dementia increases with age (Jack et al., 2019; Jaul & Barron, 2017; Knopman et al., 2019) and 

is most common in individuals 65 years of age and older, although rates can vary according to 

several factors, such as sex, race, and genetic profile. The number of individuals living over the 

age of 65 is expected to double by 2050, reaching almost 1.5 billion people. The 2-fold increase 

in individuals living past the age of 65 poses substantial challenges for healthcare systems and 

social and economic infrastructures that provide sustainable living solutions to aging individuals, 

healthy or otherwise. Within the United States alone, nearly 6 million individuals are currently 

diagnosed with incurable dementia (https://population.un.org/wpp/Publications). Globally, 

approximately 50 million individuals live with some form of dementia and this number is 

expected to increase 3-fold by 2050, reaching an estimated 152 million affected persons. 

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for approximately 

60-80% of all dementia cases (Bronzuoli et al., 2016). According to recent estimates, two-thirds 

of individuals living with AD in the United States are female (“2021 Alzheimer’s Disease Facts 

and Figures,” 2021). The higher proportion of females living with AD is most often attributed 

longer average lifespans. However, the extent to which females are at a greater risk for 

developing AD compared to males remains uncertain (Beam et al., 2018). Some studies suggest 

genetics (as discussed further below) may play an integral role (Altmann et al., 2014; Ungar et 

al., 2014). Two pathological hallmarks of AD, amyloid-beta (Aβ) and tau, are present in the
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central nervous system (CNS) of otherwise healthy aging individuals, and in individuals with 

Mild Cognitive Impairment (MCI) (Okello et al., 2009), and found to correlate with both the 

likelihood and rate of conversion to AD (LaMontagne et al., 2019; Marcus et al., 2010). Further, 

the level of Aβ detected in non-demented aging individuals has been associated with cognitive 

impairment and decline in both general (e.g. fluid intelligence), and more specific aspects of 

cognitive functioning including measures of processing speed, episodic memory, and both 

executive and visuospatial functioning (Baker et al., 2017). 

As the definition of MCI has evolved, several subtypes have emerged with respect to 

specific components of cognition (del Carmen Díaz-Mardomingo et al., 2017), specifically aMCI 

(amnestic MCI), naMCI (non-amnestic MCI), dMCI (dysexecutive MCI). mxMCI (mixed or 

multi-domain MCI), exMCI (executive dysfunction-MCI), and non-exMCI (no executive 

dysfunction-MCI). Critically, these same cognitive variants have been extended to individuals 

with AD (Jellinger, 2021; Mez et al., 2016; Stuss & Alexander, 2007; Vogel & Hansson, 2022), 

with the dysexecutive subtype gaining the most recent attention (Corriveau-Lecavalier et al., 

2022; Mez et al., 2016; Townley et al., 2020). In a study by Edmonds and colleagues (2021), a 

combination of hierarchical clustering and latent-discriminant analyses were employed to 

identify and assess the validity of data-driven subgroups compared to groups defined according 

to clinical criteria (Edmonds et al., 2021). In this study, a sample of 738 individuals (CN: N = 

334; MCI: N = 404) completed a battery of neuropsychological assessments. Genetic testing 

confirmed if participants were carriers of the Apolipoprotein E (ApoE) protein e4 allele, which 

conveys an added risk of developing AD (Altmann et al., 2014; Ungar et al., 2014). Five primary 

subgroups emerged. Otherwise cognitively normal individuals (N = 334), were split into two 

groups based on average (17.6%; N = 204, Mean age = 71.77 (7.30); % e4 positive = 31%) or 
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above average (27.6% N = 130, Mean age = 71.53 (6.95); % e4 positive = 38%) cognitive 

performance. Individuals with MCI (n = 404) were clustered into amnestic (14.1%; N = 216, 

Mean age = 71.53 (7.97); % e4 positive = 41%), non-amnestic (29.3%; N = 104, Mean age = 

71.25 (7.54); % e4 positive = 33%), and mixed (global impairment; 11.4%; N = 84, Mean age = 

74.08 (8.64); % e4 positive = 43%) types. Using the data-driven groups, binary classification 

accuracy was 81.4%. Post-classification, the presence of AD-related pathology was summarized 

and compared between data-driven subgroups. AD-related pathology was more abundant in the 

mixed and amnestic MCI subgroups as compared to the non-amnestic MCI and CN groups. 

Likewise, education was lowest in the mixed MCI group, however, age was not significantly 

different between the detected clusters. 

As in MCI, several recent studies have assessed the presence and composition of data-

driven cognitive subtypes in AD. In a study by Scheltens and colleagues (2017), using 

nonnegative matrix factorization, a non-parametric clustering approach often used in image 

segmentation problems, two distinct clusters of “memory-impaired” and “memory-spared” 

individuals with probable AD were detected across four large independent cohorts (Scheltens et 

al., 2017). Here, the terms memory-impaired and memory-spared were used to distinguish data-

driven subgroups of individuals from those classified as amnestic or non-amnestic based on 

diagnostic classification. Compared to the memory-impaired groups (N = 1195, Mean age = 71.5 

(8.7); % e4 positive = 68%), the memory-spared groups (N = 787, Mean age = 70.4 (8.4); % e4 

positive = 58%) were on average comprised of more younger individuals with lower scores of 

the Mini-Mental State Exam (MMSE) (Folstein et al., 1975). Of note, across cohorts, the number 

of individuals in either group with a positive AD-biomarker status (92% positive-rate in both 

groups) did not differ. Building on these findings, Scheltens and colleagues (2018) further 
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reported that individuals who were clustered into the memory-spared group had a faster 

progression of disease and higher rates of mortality irrespective of age, sex, ApoE genotype, and 

baseline MMSE scores (Scheltens et al., 2018). The memory-spared groups from these studies 

are phenotypically similar to the established behavioral/dysexecutive subtype of AD (Mez et al., 

2016; Stuss & Alexander, 2007). Thus, multiple cognitive subtypes have been detected in both 

non-demented aging individuals and those with AD. Though speculative, memory-impaired 

subtypes of AD may have neuropathology confined to, or more prominent in the hippocampus, 

whereas memory-spared subtypes may exhibit widespread changes in large-scale networks 

involving multiple regions (Ferreira et al., 2020; Vogel & Hansson, 2022). 

Critically, however, individuals with Alzheimer’s pathology can be asymptomatic, 

showing no clinical signs of severe cognitive dysfunction, and subsequently never developing 

dementia (Driscoll & Troncoso, 2011; Gomez-Isla & Frosch, 2019; Jack et al., 2019). Further, 

not all aging individuals experience cognitive impairment (e.g. superagers) (Burke et al., 2019).  

As noted above, In addition to age, Aβ, and tau, genes that encode the ApoE protein are 

associated with different levels of risk for developing AD (Safieh et al., 2019). ApoE is a lipid 

transporter naturally occurring within astrocytes involved in clearing toxic levels of Aβ within 

the CNS. The presence of specific forms of ApoE (ε1, ε2, ε3, ε4) can lead to divergent 

trajectories of neuropathological spread in AD contributing to both white and gray matter 

pathology and cognitive dysfunction (Porrata-Doria et al., 2010; Ricciarelli & Fedele, 2017; 

Scheller et al., 2018). Existing research suggests that carriers of the ApoE-ε4 allele are at a 

greater risk of experiencing age-related cognitive dysfunction and developing dementia. 

Likewise, neuroimaging studies consistently document structural and functional differences in 

the brains of ε4 carriers versus non-carriers. Compared to non-carriers, ε4 carriers may exhibit 
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accelerated rates of cognitive decline and develop dementia at an earlier age (Reas et al., 2019; 

Scheller et al., 2018), in part, because ApoE begins to bind with Aβ, failing to clear it from post-

synaptic terminals and thus facilitating aggregation (Zilberter & Zilberter, 2017). This risk is 

two-fold for those who are homozygous for the ε4 allele (e.g. having two copies; 44). While the 

neuroprotective role of the ε3 allele remains uncertain, the ε2 allele has been considered 

protective given its demonstrated role in clearing Aβ in both human and animal models (Bu, 

2009; Conejero-Goldberg et al., 2014; Elias-Sonnenschein et al., 2018). Moreover, some studies 

suggest that older female ε4 carriers may be at a greater risk of developing AD (Altmann et al., 

2014; Ungar et al., 2014). Mechanistically, women ε4 carriers may exhibit reduced levels of 

estrogen that contribute to more significant memory-related cognitive impairments. Importantly, 

however, the degree to which age and ApoE status may confer a greater risk for developing AD 

in females can depend on additional factors, including levels of education attainment (Hasselgren 

et al., 2020) and exposure to psychosocial stress and circulating levels of pro-inflammatory 

cytokines (Au et al., 2016). 

Subtyping & Heterogeneity  

As discussed, several atypical variants of AD have been identified in both living and 

recently-deceased individuals (Ferreira et al., 2019, 2020; Geifman et al., 2018; Murray et al., 

2011; Vogel & Hansson, 2022). In a recent meta-analysis, Ferreira and colleagues (2020) 

provide a synopsis of both hypothesis- and data-driven approaches aimed  

at identifying robust biologically-based subtypes reported by clinicians (Ferreira et al., 2020). 

Across the studies reviewed, four primary subtypes of AD were commonly observed: (1) typical 

AD (55%), (2) limbic- or medial temporal lobe (MTL) predominant AD, (3) hippocampal- or 

MTL sparing AD (17%), and (4) minimal atrophy AD (15%). Whereas prototypical AD 
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neuropathology focuses on early MTL atrophy, each of these subtypes has patterns and 

trajectories of neuropathology that are distinct. Specifically, observed pathology may fall on a 

four-dimensional continuum of typicality and disease severity (see Figure 1) (Ferreira et al., 

2020).  

Vogel and colleagues (2022) expanded on the review by (Ferreira et al., 2020) to further 

categorize typical and atypical variants of neurobiologically-based AD subtypes based on  

patterns of tau pathology (Vogel & Hansson, 2022). First, even in typical late-onset AD, there is 

a good deal of heterogeneity such that not all individuals present with predominant memory 

impairments or exhibit tau deposition that is confined to the MTL. As noted by Ferreira and 

colleagues (2020), individuals with non-amnestic AD are on average younger, and more likely to 

be non-carriers (or heterozygotes) for the ApoE e4 allele (Ferreira et al., 2020). Concerning tau 

pathology, although there is some degree of overlap in cortical patterns of tau deposition 

observed across subtypes, the spatial distribution of tau appears to map onto regions that are 

associated with specific cognitive impairments (Vogel & Hansson, 2022).  
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Figure 1. Variants of AD. A four-dimensional graph depicts variants of AD on a proposed scale 
of typicality versus severity. Patterns of brain atrophy, risk factors (age, sex, education, ApoE 
status, etc.), and cognition are associated with four distinct subtypes including typical AD, 
limbic-predominant AD, hippocampal-sparing AD, and minimal atrophy AD. Figure from 
Ferreira et al., 2020. 

Specifically, consistent with prior work (Bondi et al., 2014; Edmonds et al., 2014, 2021; 

Jacobson et al., 2009; Jak et al., 2009; Scheltens et al., 2016, 2017, 2018), Vogel and colleagues 

(2022) highlight that in atypical or non-amnestic forms of AD, predominant cognitive 

impairment has been observed in the domains of visuospatial, language, and executive 

functioning, as well as a more rare behavioral version of AD (Vogel & Hansson, 2022). 

Importantly, consistent with work concerning pathological spread discussed earlier in the 

introduction (see the section Communication-Based Models of Network Spread), altered 

connectivity patterns between diverse sets of brain regions may contribute to and/or reflect 
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variation observed within and across subtypes (Figure 2). Consistent with this recent work, in the 

present study, the terms amnestic and non-amnestic are used to delineate subsets of individuals 

with and without primary memory-related cognitive impairments who may comprise one of 

several atypical variants of AD. 

 
Figure 2. AD Variants and Tau Pathology. Commonly identified subtypes of AD based on 
neurobiology and cognitive functioning are illustrated. Panels a-c show (A) regional and global 
tau deposition, (B) cognitive phenotypes, and (C) hypothesized patterns of regional and network 
vulnerability. In addition to the prototypical amnestic subtype associated with late-onset AD, 
language, visuospatial, and dysexecutive subtypes are highlighted (panel B). Abbreviations: AD, 
Alzheimer’s disease; bvAD, behavioral variant of AD; CBS, corticobasal syndrome; L temporal, 
lateral temporal; lvPPA, logopenic variant primary progressive aphasia; MTL, medial temporal 
lobe; PCA, posterior cortical atrophy. Figure taken from Vogel et al., 2022. 

Reserve, Resistance, & Resilience in Cognitive Aging 

Aging individuals experience normative cognitive decline in various cognitive domains 

including attention, memory, and executive function. Normative cognitive impairment and 

decline experienced by healthy aging individuals can negatively impact everyday functioning, 
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lowering the quality of living, and increasing the risk of developing additional mental and 

physical health ailments, including dementia. Theories and hypotheses of cognitive aging imply 

that, with age, there is (1) a general slowing of cognitive and motor processing speed, (2) 

degraded perceptual acuity and perceptual planning, (3) a decline in fluid, as opposed to 

crystallized, intelligence, and (4) impaired decision making and memory (Anderson & Craik, 

2017; Bisiacchi et al., 2008; Cabeza et al., 2009; Campbell et al., 2010; Craik & Bialystok, 2006; 

Lustig et al., 2007; Monge & Madden, 2016). Additional deficits in inhibitory control and 

resistance to distraction have been observed and may further contribute to declines in cognitive 

performance in attention, memory, and executive functioning (Campbell et al., 2010; Ziegler et 

al., 2018). Individual variation in cognitive impairments experienced by aging individuals, and 

resistance or resilience to cognitive decline, can broadly be summarized by two interrelated 

theories of cognitive aging: brain reserve and cognitive reserve. Brain reserve is conceptualized 

in terms of underlying structural neuroanatomy (“hardware”), while cognitive reserve is 

conceptualized in terms of (1) cognitive processing and (2) physiological responses encoded at 

the functional level (“software”) (Medaglia et al., 2017a; Stern, 2017; Stern et al., 2019). More 

specifically, brain reserve is the degree to which brain structure, at a microscopic level, is 

innately resilient to insult that would otherwise cause cognitive impairment. Examples of brain 

reserve include increased synaptic and neuronal density. Whereas brain reserve is a passive 

process, cognitive reserve is an active process (Medaglia et al., 2017b). Cognitive reserve 

theorizes that over time, with experience and education, individuals develop both generalized 

and specific strategies to solve complex problems (Stern, 2002). These strategies are supported 

by flexible and adaptive functional networks of interconnected brain regions (Stern, 2002; Stern 

et al., 2019). The capability of brain functional networks to adapt and reconfigure in response to 
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changing environmental and contextual demands may confer the degree to which an individual is 

more or less resilient to experiencing age- and disease-related cognitive deficits (Montine et al., 

2019). 

Educational and professional attainment are often used as indirect indicators of cognitive 

reserve. The level of education an individual receives in their lifetime is considered an indirect 

indicator of resistance to normative age-related cognitive impairment occurring later in life. A 

higher education level may also serve as a protective factor (Lövdén et al., 2020) that decreases 

the probability of developing dementia (Stern, 2017) by increasing resilience to AD pathology 

(Arenaza-Urquijo & Vemuri, 2018; Medaglia et al., 2017a; Montine et al., 2019; Stern et al., 

2019). However, this is not true for all individuals. Specifically, while higher levels of education 

may be a protective factor, research has shown that for some individuals educational attainment 

can be associated with the rate at which an individual develops more severe forms of cognitive 

impairment and dementia (Contador et al., 2017). This and other work suggest that there is a 

tipping point at which time protective factors can become disadvantageous. Thus, it is unclear 

what factors interact with education to promote resistance or resilience to AD. The development 

of more direct measures that quantify brain and/or cognitive reserve may help parse some of this 

individual heterogeneity, and provide a means to identify individuals at greater risk for 

developing AD. 

Network Neuroscience 

Cognitive dysfunction is increasingly being thought of in terms of disrupted patterns in 

both structural and functional brain connectivity (Baronchelli et al., 2013; Bressler & Tognoli, 

2006; Mill et al., 2017; Reuter-Lorenz & Park, 2014; Sporns, 2014). As a complex system, the 

brain is organized into discrete networks that communicate with each other to support flexible 
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behavior and cognition (Power et al., 2011; Singer, 2009; Sporns, 2013a). Changes in brain 

structure and function due to aging and dementia are widely distributed. With age, pathological 

markers of AD become toxic, contributing to a substantial loss of gray and white matter brain 

volume that can result in both mild and severe forms of cognitive and emotional dysfunction 

(Hardy & Higgins, 1992; Hedden et al., 2016; Ricciarelli & Fedele, 2017). Thus, mathematical 

tools based on graph theory allow researchers to move beyond examining changes in individual 

brain regions and to instead investigate patterns of change across whole-brain networks 

(Bullmore & Sporns, 2009; Hallquist & Hillary, 2018; Muldoon & Bassett, 2014; Sporns, 2013b; 

Wig, 2017) and are the optimal set of methodological tools to assess these distributed changes. 

Graph theoretical metrics can be applied to quantify the degree of network reconfiguration due to 

aging or the presence of pathology. 

Extant research shows that functional brain networks supporting higher-order cognition 

(e.g., dorsal attention network (DAN), default mode network (DMN), and frontoparietal 

cognitive control network (FPN) change with age (Cabeza et al., 2009; Chan et al., 2017; Murray 

et al., 2010; Park & Reuter-Lorenz, 2009; Sala-Llonch, BartrÃs-Faz, et al., 2015), and are altered 

in dementia (Fornito & Bullmore, 2015; Franzmeier et al., 2020; Jones et al., 2016). With age, 

there are reported decreases in functional brain signal variability, increases in task-specific 

compensatory functional activation (Betzel et al., 2014; Cabeza et al., 2009; Lee et al., 2015, 

2016; Monge et al., 2017; Petrican et al., 2017; Sala-Llonch, Bartrés-Faz, et al., 2015), and loss 

of specialization at both the regional and network-level (Chan et al., 2017; Koen & Rugg, 2019). 

This age-related dedifferentiation, or loss of specialized processing, is linked with two key 

properties of brain networks that are disrupted in aging and dementia, namely integration and 

segregation (Cao et al., 2014; Fornito et al., 2015; Koen & Rugg, 2019; Park et al., 2004; Zuo et 
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al., 2017). In general, networks reconfigure by becoming more integrated or segregated to ensure 

efficient use of neural resources supporting complex cognitive functions. Network integration 

relies on distributed neural processing between distant brain regions. Network segregation 

reflects the degree to which regions tend to cluster together to form distinct modules comprised 

of highly interconnected brain regions. To maintain an optimal balance of network integration 

and segregation, and thus strike a balance of cost and efficiency, structural and functional brain 

networks possess small-world properties (Achard & Bullmore, 2007). Small-world networks are 

comprised of distinct modules where there is both a high degree of clustering within modules 

and a greater propensity for short paths connecting regions between modules (Muldoon et al., 

2016a). Further, the ability of functional networks to reconfigure declines with age (Avelar-

Pereira et al., 2017; Chan et al., 2017; Grady, 2017) and is altered in dementia (Ferreira et al., 

2019).  

From a mechanistic perspective, the disruption of neuromodulatory systems may be a 

common thread linking cognitive impairment and decline in aging and dementia. The cholinergic 

hypothesis of aging and AD (Bartus et al., 1982) holds that a loss of cholinergic neurons in the 

basal forebrain and reduced synthesis of acetylcholine (ACh) alters ACh signaling leading to 

cognitive dysfunction. Specifically, loss of cholinergic functioning contributes to specific deficits 

in perceptual processing, selective attention, and memory encoding and recognition (Bentley et 

al., 2011). From a network neuroscience perspective, noradrenergic and cholinergic systems play 

a crucial role in maintaining a balance of network integration and segregation in the presence of 

neural noise through the coordination of excitatory and inhibitory neurons that modulate resting 

membrane potentials (Shine et al., 2016, 2018; Shine & Poldrack, 2018). Specifically, Shine 

(2018) elegantly describes how cholinergic signals emanating from the basal forebrain facilitate 
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neural gain (e.g., increasing signal-to-noise) to promote overall network segregation by 

selectively activating regions critical for a specific cognitive process (e.g., attentional selection, 

cue/target selection, visuospatial perception, etc.) (Shine et al., 2018). In contrast, 

the noradrenergic system tips the balance of functional network organization toward a more 

integrated state by coordinating activity in otherwise segregated regions (Shine et al., 2018; 

Shine & Poldrack, 2018; H. M. Snyder et al., 2017). 

In AD, and perhaps as a part of normative aging, the degree of functional system 

segregation or integration observed across studies may also depend on the complex interplay of 

Aβ and tau pathology. The amyloid cascade hypothesis posits that AD-related neuropathology 

emerges primarily due to an initial accumulation of Aβ. To date, however, there is conflicting 

evidence of whether or not the spread of tau pathology is dependent on the presence of toxic Aβ 

(Aβ-40 & Aβ-42) (Weigand et al., 2020). Post-mortem histological studies and murine models 

suggest pathological tau is initially confined to specific subcortical brain structures (entorhinal 

cortex, locus coeruleus) and only later becomes distributed across heteromodal cortices in 

individuals with Aβ pathology (Aβ+) (Braak & Braak, 1991; Franzmeier et al., 2020). With age-

related tauopathy, the aggregation of tau in healthy older individuals has been found to occur at 

non-pathological levels of Aβ (Aβ-) (Johnson et al., 2016; Sepulcre et al., 2016), challenging the 

amyloid cascade hypothesis. The network degeneration hypothesis of aging and AD posits that 

the spread of tau occurs through large-scale brain networks (Drzezga, 2018; Palop et al., 2006) 

and is supported by recent work by Sepulcre and colleagues (2016) suggesting tau deposition is 

positively correlated with the global deposition of Aβ (Sepulcre et al., 2016). Franzmeier and 

colleagues (2020) further suggest the spread of pathological tau occurs via network propagation 

(e.g., transneuronal or transsynaptic) and is thus an active, rather than a passive process of 
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diffusion (Franzmeier et al., 2020). Active network propagation implies complex spreading 

dynamics, such that pathological spreading occurs along both pathways in the brain that are 

subject to metabolic constraints or neural compensation in response to insult. That is, the 

presence of AD pathology may systematically alter the topology of brain networks to facilitate, 

rather than prevent or protect against the spread of disease (Drzezga, 2018; Lella et al., 2019; 

Lella & Estrada, 2020). 

Communication-Based Models of Network Spread 

As discussed above, network-based models can quantify shifts in structural and 

functional network topology observed over time with age and/or due to the presence of 

pathology, and elucidate how the change in topology facilitates complex patterns of network 

communication. Additional graph-theoretical metrics, based on information theory, can be used 

to describe how information “flows,” or is transmitted, amongst elements embedded within a 

complex system via direct and indirect paths. These metrics may be critically important to 

pathological aging as they can potentially be used to indicate, formally model, or predict the 

likelihood of disease spread involving multiple redundant paths, and open up new avenues for 

quantifying reserve and resilience on a neurobiological level. The concepts of redundancy and 

reserve are thought to be critical to understanding how structural and functional brain networks 

maintain a balance of cost and efficiency in health and disease. In general, greater redundancy is 

hypothesized to quantify the degree to which individuals may be more or less resistant to injury 

or insult in normative and pathological aging (Di Lanzo et al., 2012; Langella, Sadiq, et al., 

2021; Leistritz et al., 2013; Sadiq et al., 2021; Tononi et al., 1999). Thus, measures quantifying 

redundancy may be useful as markers of brain reserve. 
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Two commonly used communication-based metrics are redundancy (Di Lanzo et al., 

2012) and communicability (Crofts & Higham, 2009). In this proposal, the redundancy metric 

proposed by Di Lanzo and colleagues (2012) is here forth referred to as network redundancy, to 

distinguish between the general concept of redundancy and specific graph-theoretical metrics 

used to quantify redundant elements in a system. Network redundancy quantifies the total 

number of possible direct and indirect paths connecting a pair of regions of a given length. With 

network redundancy, self-connections are excluded such that a particular connection or node 

cannot be traversed or revisited more than once. Di Lanzo and colleagues suggest that “self-

loops” may not be biologically meaningful (Di Lanzo et al., 2012). Network redundancy is 

designed to work on sparse, binary graphs (e.g. unweighted connections) (Di Lanzo et al., 2012). 

Communicability, like network redundancy, also assesses the total number of paths connecting 

two regions. However, unlike network redundancy, communicability can be used on either 

binary or weighted graphs. In addition, nodes can be revisited more than once, and longer paths 

are down-weighted to control for redundant connections involving potentially spurious paths of 

infinite length (Crofts & Higham, 2009). 

Several recent studies have sought to formally quantify brain network redundancy in 

aging individuals with and without dementia using functional magnetic resonance imaging 

(MRI) (Langella, Mucha, et al., 2021; Langella, Sadiq, et al., 2021; Sadiq et al., 2021). Langella 

et. al. (2021) restricted analyses to the hippocampus, a region impacted early in the progression 

of AD, and reported that posterior, but not anterior, hippocampal network redundancy was 

reduced in individuals in both the early and late stages of MCI) as compared to healthy controls 

(Langella, Sadiq, et al., 2021). In a follow-study, Langella and colleagues (2021) found that 

hippocampal network redundancy mediated the association between hippocampal volume and a 
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composite memory score comprising both encoding and recall stages of memory (Langella, 

Mucha, et al., 2021). Sadiq and colleagues (2021) found that global network redundancy tended 

to increase with age up until approximately 60 years and mediated age-related declines in 

executive function measured using the color-word inhibition task as part of the Delis-Kaplan 

Executive Functioning System (Baron, 2004; Sadiq et al., 2021).  

Although longitudinal analysis of data that includes individuals younger than 60 years of 

age is warranted to provide further support for these findings, from both a theoretical and applied 

perspective, it is unclear what neurobiological mechanisms might both promote and support the 

emergence and maintenance of multiple redundant pathways associated with increased metabolic 

cost. The routing of information via a particular pathway, or set of pathways, depends on the 

relative balance of several fundamental network properties. In structural networks, where regions 

are connected by physical white matter pathways, previous work has found that greater 

communicability is associated with emerging brain pathology (Lella & Estrada, 2020; Mišić et 

al., 2015; Stam et al., 2016). In functional networks, the presence of additional pathways may 

permit or even facilitate the spread of diffuse neural activity that is not restricted to direct 

physical connections, nor bound by geodesic distance, however, this remains to be tested.  

Further, it is unclear if various metrics that capture redundancy are associated with one 

another and/or provide unique information for distinguishing typically aging individuals, who 

have varying degrees of cognitive difficulty and AD-related pathology, from individuals who are 

at risk of converting to AD or who are clinically diagnosed with AD. 

One promising method to distinguish different groups of individuals (e.g., typically 

aging, at risk of conversion to AD, AD) based on network topology, and cognition, is to use 

machine learning. Machine learning methods are designed to uncover meaningful patterns of 



 

17 

information to discover both linear and non-linear high-dimensional relationships between 

biological and non-biological factors at the individual level. 

Machine Learning in AD 

Several recent reviews highlight the utility and efficacy of machine learning algorithms to 

detect features that best distinguish cognitively unimpaired individuals (non-demented) from 

individuals with MCI or AD (Dwyer et al., 2018; Grueso & Viejo-Sobera, 2021). To accurately 

predict group status (e.g. CN, MCI, or AD), or conversion to AD from MCI, machine learning 

approaches have incorporated a range of biological and non-biological factors (Fisher et al., 

2019). Specifically, in addition to core demographic factors such as age, sex, and education, 

other risk factors of AD assessed include markers of genetic expression (Grueso & Viejo-Sobera, 

2021) and patterns of gray and/or white matter brain atrophy (Costafreda et al., 2011; Guan et al., 

2017; Kwak et al., 2021). Other studies have assessed the utility of neuropsychiatric symptoms 

(Mallo et al., 2020), socio-demographic factors (Grassi et al., 2019), and clinical health records 

to assess diagnostic subtypes of individuals with AD (Alexander et al., 2021). As with the 

selection of predictive features, the choice of machine learning algorithm(s) used for prediction 

is also variable. Machine learning algorithms extend from simple decision trees (Ang et al., 

2019) to the use of deep learning applications based on multilayer neural networks (Gao & Lima, 

2022; Kwak et al., 2021; Liu et al., 2020; Suk & Shen, 2015) and ensemble-based approaches 

that combine several high-performing algorithms (Grassi et al., 2019; Lebedev et al., 2014; 

Naimi & Balzer, 2018).  

Several studies have used machine learning techniques to study brain morphology 

associated with the progression of AD-related pathology, such as atrophy confined to the 

hippocampus (Costafreda et al., 2011) or in specific hippocampal subfields (Kwak et al., 2022). 



 

18 

In the study by Costafreda and colleagues (2011), an accuracy of 80% was achieved when 

predicting conversion from MCI to AD (one-year from diagnosis) using patterns of hippocampal 

morphology (Costafreda et al., 2011). Using cortical surface area and subcortical volumes, Guan 

and colleagues (2017) reported accuracies of 77%, 81%, and 70% when classifying amnestic 

MCI (Mean age = 78.36) from non-amnestic MCI (Mean age = 77.76), amnestic MCI from 

healthy controls (Mean age = 77.12), and non-amnestic MCI from healthy controls respectively 

(Guan et al., 2017). Here, reductions in subcortical volumes of the hippocampus and amygdala, 

and cortical surface area of the frontal pole contributed most to classification of individuals with 

amnestic MCI. Kwak and colleagues (2021) used deep learning to classify individuals (N=489) 

with MCI (Mean age = 72.15) as either cognitively normal (Mean age = 70.98) or AD (Mean age 

= 72.91) based solely on brain atrophy patterns in gray matter (Kwak et al., 2021). Gray matter 

density in the temporal lobe (medial and lateral) most impacted model performance (Accuracy = 

93.75%). Specifically, individuals with MCI who were predicted as AD (MCI-AD), exhibited 

patterns of gray matter atrophy similar to the AD group. 

In their meta-analysis, Grueso and Viejo-Sobera (2021) found that studies that 

incorporate multimodal neuroimaging data, specifically MRI and positron emission topography 

(PET; Mean accuracy: MRI = 74.5%; PET = 76.9%; Combined = 77.5%), tended to outperform 

single modality studies on average when classifying MCI from AD (Grueso & Viejo-Sobera, 

2021). For studies that reported specific brain regions, although variable, selected features tended 

to correspond with known atrophy patterns when classifying older samples of MCI participants 

versus those with AD. For example, medial temporal regions (hippocampus, amygdala, 

entorhinal cortex), posterior cingulate gyrus, and the precuneus. Moreover, multidimensional 
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studies that combined neuroimaging data with demographic, clinical, cognitive, and other 

measures contributed to higher overall prediction rates. 

Thus, machine learning studies combining demographic, clinical, diagnostic, and/or 

neuroimaging data have been able to successfully distinguish healthy individuals from those 

diagnosed with either MCI or AD, with accuracies reported in the range of 70 – 99%. 

Importantly, as highlighted in the meta-analysis by (Grueso & Viejo-Sobera, 2021), a direct 

comparison of model accuracy is not always possible between studies. Sample size, the number 

and type of features, the age of individuals, and other factors influence classification 

performance. A model with 99.99% accuracy in one dataset may not generalize to a different 

sample of participants. Moreover, brain atrophy patterns, or structural changes, that distinguish 

non-demented individuals from those with MCI or AD may not correspond or align with 

observed cognitive impairment. For example, in the study by Kwak and colleagues (2021), 

heterogeneous patterns of cognitive impairment were observed in both MCI-CN and MCI-AD 

groups. Specifically, deficits in language and memory were most prominent overall (MCI-CN: 

32.9% and 38.6%; MCI-AD: 46.4% and 32.8% respectively), however, the MCI-CN group was 

comprised of 24.9% of otherwise unimpaired individuals. Moreover, 13.6% of individuals in the 

MCI-AD group had more prominent executive deficits. When performing a post-hoc cluster 

analysis using the neuropsychological assessments alone, four primary subgroups emerged, 

including a dysnomic (language; 37.43%), amnestic (36.63%), dysexecutive (6.95%), and 

otherwise cognitively normal (18.98%) group. Thus, there was a lack of agreement between 

groups defined by brain atrophy versus cognitive performance. As noted by the authors, further 

work is needed to better understand the link between emerging cognitive deficits and AD-related 

pathology that accounts for heterogeneity in both brain and cognition. 
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Machine Learning & Network Neuroscience 

The studies discussed above focused on core demographic risk factors, indices of brain 

atrophy (e.g., cortical thickness, whole-brain, or hippocampal volume), and biomarkers of AD 

pathology (e.g., cerebrospinal fluid (CSF) and PET-based markers of Aß load and tau deposition) 

to distinguish between individuals with MCI and AD, or between healthy controls and MCI 

and/or AD. Given the theoretical relevance of network-level dysfunction, studies have also 

utilized a combination of network metrics to distinguish between groups or predict conversion to 

AD from MCI. Specifically, differences in network topology between individuals with and 

without MCI and/or AD have been observed at global and nodal levels and used as predictive 

features in supervised classification models. These studies report classification accuracies of 

37% - 100%. Higher accuracy rates were observed when classification models compared healthy 

controls to individuals with either MCI or AD (Dyrba et al., 2015; Hojjati et al., 2017, 2019; Jie 

et al., 2014; Jitsuishi & Yamaguchi, 2022; Khazaee et al., 2015, 2016, 2017; Sun et al., 2019; 

Wang et al., 2013; Wee et al., 2012; Wei et al., 2016; Xu et al., 2020; L. Zhang et al., 2020; T. 

Zhang et al., 2021), in contrast to models that compared individuals with MCI or AD (Hojjati et 

al., 2017; Jitsuishi & Yamaguchi, 2022; Khazaee et al., 2015, 2016, 2017; Sun et al., 2019; Wei 

et al., 2016). Lower classification performance was observed for studies attempting to 

distinguish early- from late-MCI (Accuracy: 43% - 70%) (Jitsuishi & Yamaguchi, 2022) or 

stable versus progressive MCI (e.g. converters; Accuracy: 24% - 62%) (Hojjati et al., 2019). 

Concerning predictive features, global and nodal estimates of efficiency, clustering coefficient, 

and multiple measures of network centrality (e.g., betweenness centrality, eigenvector centrality, 

and page-rank centrality), were most consistently found to distinguish between healthy controls 

and individuals with MCI or AD (Dyrba et al., 2015; Hojjati et al., 2017, 2019; Jie et al., 2014; 
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Jitsuishi & Yamaguchi, 2022; Khazaee et al., 2015, 2016, 2017; Sun et al., 2019; Wang et al., 

2013; Wee et al., 2012; Wei et al., 2016; Xu et al., 2020; L. Zhang et al., 2020; T. Zhang et al., 

2021).  

Concerning methodology, additional work has assessed the predictive performance of 

various machine learning algorithms along with different cross-validation strategies, feature 

selection methods, and graph-theoretical metrics computed using either structural or functional 

imaging data (Jitsuishi & Yamaguchi, 2022; Wang et al., 2013; Xu et al., 2020; L. Zhang et al., 

2020). For example, Jie and colleagues (2014) were able to accurately classify healthy controls 

from individuals with MCI (Accuracy = 91.9%; AUC = .94) using a single weighted graph 

metric (clustering coefficient) calculated at the nodal level using resting-state fMRI (Jie et al., 

2014). Likewise, using diffusion MRI and resting-state fMRI, Wee and colleagues (2012) noted 

comparable performance using the nodal clustering coefficient (Wee et al., 2012). Wang and 

colleagues (2013) used graph metrics that were calculated on frequency-specific functional 

connectivity matrices to distinguish healthy controls (N = 47) from individuals with amnestic 

MCI (N = 37; Accuracy = 85.7%) (Wang et al., 2013).  

These studies demonstrate the predictive utility of combining machine learning and 

network neuroscience to distinguish individuals with and without MCI and/or AD. However, 

several non-trivial decision points may limit the generalizability of the reported findings and 

should be considered when drawing inferences concerning classification performance and 

forming hypotheses regarding specific features. No studies combining machine learning and 

graph theory reviewed reported metrics that quantify in-scanner micromovements (e.g., 

framewise displacement) (Ciric et al., 2017; Power et al., 2012, 2015; Satterthwaite et al., 2013). 

Thus, it is unknown if the reviewed studies had enough data (i.e., scan length) to estimate 
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functional connectivity robustly to derive graph-theoretical metrics. Half of the studies reviewed 

reported using unweighted metrics calculated on thresholded graphs to define network topology. 

As discussed earlier in the introduction, both the method and degree of thresholding applied to 

structural and functional graphs can distort differences in connectivity patterns between patient 

and non-patient groups (Garrison et al., 2015; Langer et al., 2013; van den Heuvel et al., 2017; 

Váša et al., 2018). One study directly assessed how graph thresholding impacted classification 

performance when distinguishing MCI participants from healthy controls (Zhang et al., 2020). 

Here, features included diagnostic measures (Mini-Mental State Exam, Clinical Diagnostic 

Rating scale) and global and nodal graph-theoretical metrics. The study by (Zhang et al., 2020) 

reported that classification performance fluctuated across thresholds (Accuracy = 86.3%-92.4%). 

Moreover, considering baseline classification accuracy achieved using diagnostic measures 

(Accuracy = 86.3%), the percentage increase in model performance after adding graph-

theoretical metrics fluctuated in the range of 1%-6.4%. Three studies chose to limit analyses and 

only reported model performance for a single threshold (Khazaee et al., 2015, 2017; Wei et al., 

2016).  

The number of connections retained via thresholding depends on the number of brain 

regions included in a particular brain atlas. Eight of the fifteen studies generated brain graphs 

using either 90 or 115 regions from the structurally-defined AAL atlas. Studies also show that 

structural parcellations do not adequately capture the complexity of functional connectivity, as 

observed by (Wee et al., 2012). Khazaee and colleagues (2016) directly compared atlas-based 

model performance (Khazaee et al., 2016). Model performance suffered when graph metrics 

were estimated using a structurally-defined AAL atlas (90 regions) instead of a functionally-

defined atlas consisting of 264 cortical and subcortical regions. In the studies reviewed, the 
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number of features ranged anywhere from 90 to 3773 features depending on the number of ROIs 

and graph metrics assessed. Thirteen of fifteen studies used feature selection to reduce a large 

number of potential variables (approximately one to twenty percent retained) for classification.  

Feature selection (or reduction) is standard practice in high-dimensional machine learning 

problems. It typically helps improve model performance, reduce overfitting, and improve model 

generalizability when combined with cross-validation (Hastie et al., 2013). However, many 

studies were small-sample studies having as few as 10-40 subjects per group, although a large 

range of sample sizes was observed (Average sample size across studies reviewed: Healthy 

Controls: = 40 (Min =12; Max 93); MCI (MCI-C, MCI-NC; aMCI) = 41 (Min = 12; Max = 89; 

AD). Further, 6 of 14 of the studies used leave-one-out cross-validation. It is well-established 

that leave-one-out cross-validation produces biased (overly optimistic) predictions and models 

that are more likely to overfit and poorly generalize to unseen data (Kohavi, 1995; Poldrack, 

2012). When feature selection methods are paired with leave-one-out cross-validation in small 

samples, the set of features retained for prediction might be less reliable (Kuncheva et al., 2020; 

Way et al., 2010). Lastly, studies assessing more than two groups (e.g., CN, MCI, AD, and either 

amnestic or non-amnestic subgroups) (Hojjati et al., 2017; Khazaee et al., 2015, 2016; Sun et al., 

2019; Wei et al., 2016) relied on multiple independent binary classification models. These 

models do not capture the overlap or similarity between groups. 

 In addition to the limitations described above, none of the studies combined network 

metrics and cognitive performance measures from neuropsychological assessments as predictive 

features in their machine-learning models. This limitation is critical as cognition and network 

topology are intricately linked but may be differentially impacted by aging and AD. Further, no 

studies combining machine learning and network neuroscience have addressed the presence of 
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neurocognitive subgroups in individuals with and without AD. Thus, it is uncertain if cognition 

and network topology, along with core demographic risk factors of AD (age, education, sex), can 

identify cognitively normal individuals lacking a formal diagnosis of MCI who are at a greater 

risk of converting to AD. Moreover, it is unknown if cognitive subgroups, previously identified 

in individuals with MCI and AD, emerge when cognitive assessments are combined with 

measures assessing network topology. To address these gaps, this study built upon prior 

foundational work by utilizing a large open-source dataset with exceptional imaging quality and 

combined (1) weighted and unthresholded graph-theoretical metrics constructed using a well-

validated functional atlas to capture redundancy and other critical aspects of network topology, 

(2) demographic measures and cognitive assessments evaluating attention, memory, and 

executive function, (3) and both supervised and unsupervised machine learning paired with 

repeated k-fold cross-validation to distinguish individuals with and without AD and to evaluate 

the presence of neurocognitive subgroups. 
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CHAPTER 2: PROJECT GOALS 
 

While AD is often associated with episodic memory impairment, individuals with AD or 

who are diagnosed with one of several behavioral variants of dementia (e.g. multidomain, 

dysexecutive, amnestic, etc.) show diverse cognitive profiles. Similarly, heterogeneous 

subgroups of typically aging individuals may show impairments in both general and specific 

forms of attention, memory, and/or executive functioning. As with cognition, there is overlap 

between age and AD-related changes observed at the level of functional brain networks. The 

extent to which functional brain networks are altered may be predictive of cognitive impairment 

experienced by an individual, however, this has not been tested. Thus, several questions were 

raised. First, do metrics that quantify redundancy in functional brain networks, as a proxy of 

brain and cognitive reserve, support cognition? Second, is it possible to disentangle the overlap 

of brain changes and cognitive impairment seen in aging and early-stage or preclinical dementia? 

Third, are metrics that quantify redundancy in functional brain networks more sensitive than 

other traditional network measures? Fourth, can this information be used help to identify 

individuals who are either more resistant to normative and/or disease-related cognitive decline? 

Finally, what about individuals who are at risk of converting to AD? Do these markers depend 

on other risk factors of AD such as age, sex, and education level? 

To address these questions, this study utilized an existing dataset collected as part of the 

Open Access Series of Imaging Studies (Marcus et al., 2010). The dataset was comprised of 

individuals with and without dementia who completed a series of structural and functional 

neuroimaging scans, a battery of neuropsychological assessments, and genetic testing (see 
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Methods for greater detail). As noted by Bondi and colleagues (2008), expansion beyond 

diagnostic entities enables researchers to delineate clinically-relevant subtypes based on the 

combination of multiple neuropsychological measures and rigorous statistical methodology 

(Bondi et al., 2008, 2014; del Carmen Díaz-Mardomingo et al., 2017). Data-driven statistical 

learning algorithms are designed to uncover complex high-dimensional patterns within and 

across datasets. Solutions from these predictive algorithms provide researchers with both sample- 

and cohort-specific probabilities of risk that can be used to disentangle multifaceted profiles of 

cognitive dysfunction in aging individuals with and without AD pathology. Thus, this study 

leveraged a large-open source dataset with functional imaging data of exceptional quality and 

sufficient duration to robustly estimate network properties, and multiple neuropsychological 

assessments to address the heterogeneity in individuals with and without AD using machine 

learning. 

First, in Aim 1, I sought to establish whether metrics that index redundancy in functional 

brain networks were associated with cognition. Next, in Aim 2, I conducted predictive modeling 

to establish if a combination of core demographic factors (age, sex, and education), network 

metrics, and cognitive measures could accurately distinguish CN, AD converters (AD-C), and 

AD individuals using supervised machine learning. Finally, in Aim 3, I quantified the presence 

of data-driven neurocognitive subgroups using the same combination of demographic, graph-

theoretical metrics, and neuropsychological assessments using unsupervised and supervised 

machine learning. Ultimately, this study aimed to identify a set of factors that could distinguish 

otherwise healthy aging individuals from those with or at risk of developing AD, as well as to 

identify individuals who may be at a greater risk of converting to AD using baseline assessments 

of cognition and brain network organization and communication capacity. 
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Aim 1 sought to establish whether metrics that quantify aspects of redundancy in 

weighted functional brain networks were associated with episodic memory and aspects of 

executive function, including working memory and mental flexibility. Specifically, this aim 

tested for the presence of linear relationships between global communicability and global 

clustering coefficient with performance on the (1) Logical Memory, (2) Digit Span Backward, 

and (3) Trail Making Part B tests. These assessments capture primary cognitive difficulties 

impacted by aging and AD that have previously been shown to differentially contribute to the 

detection of cognitive subtypes (Scheltens et al., 2016, 2017). 

Hypothesis: Redundancy is a measure of reserve in brain networks. Prior work has 

shown that (1) whole-brain redundancy increases with age and is associated with better executive 

functioning, and (2) higher hippocampal redundancy is associated with better memory 

performance and is reduced in individuals with MCI (Langella, Mucha, et al., 2021; Langella, 

Sadiq, et al., 2021; Sadiq et al., 2021). Building off this seminal work, I predicted that higher 

levels of whole-brain redundancy, captured by global communicability and global clustering 

coefficient, would be associated with better overall performance on neuropsychological 

assessments. However, as older individuals with AD are more likely to have impaired memory, I 

predicted that the magnitude of association between whole-brain redundancy and memory 

performance may be greater in the AD group as compared to the AD-C and CN groups (AD > 

AD-C > CN). 

Alternative Hypothesis: The magnitude of association between whole-brain redundancy 

and memory ability may not differ between groups. Specifically, this study assessed whole-brain 

redundancy, as opposed to hippocampal redundancy. As noted above, Langella and colleagues 

(2021) reported that hippocampal redundancy was positively associated with memory 
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performance (Langella, Mucha, et al., 2021; Langella, Sadiq, et al., 2021), however, Sadiq and 

colleagues (2021) found that whole-brain redundancy was positively associated with executive 

functioning (Sadiq et al., 2021). Moreover, whole-brain redundancy was found to mediate the 

negative relationship between age and executive function. Thus, whole-brain redundancy may 

equally serve as a protective mechanism against cognitive impairment in individuals with and 

without AD regardless of cognitive domain. 

Aim 2 sought to establish whether a combination of core demographic risk factors (age, 

sex, and education), cognitive measures, and weighted functional network metrics could 

accurately distinguish CN, AD-C, and AD individuals using supervised machine learning. As 

discussed in the introduction, the magnitude of cognitive impairment and decline observed in 

otherwise cognitively normal individuals, and the subsequent risk of developing dementia is 

person-specific, not all aging individuals experience cognitive impairment. Likewise, graph-

theoretical metrics describe, or summarize, particular interdependent aspects of a complex 

system. As such, it is not likely that a single brain metric can, or should, be used to predict 

dementia (Foo et al., 2021; C. Li et al., 2011; Telesford et al., 2010, 2013). Thus, in addition to 

global communicability and global clustering coefficient, network metrics that capture critical 

aspects of network topology, including measures of network integration and segregation, were 

estimated and included in the predictive models. Independently, these metrics are altered in a 

portion of individuals with AD as compared to non-demented adults (Ferreira et al., 2019; Sanz-

Arigita et al., 2010; Sun et al., 2017) and individuals with non-AD dementia, such as dementia 

with Lewy bodies (Peraza et al., 2015) 

As highlighted above, various studies have combined machine learning and network 

neuroscience to distinguish aging individuals with and without AD or MCI (see Machine 
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Learning in AD). In these studies, global efficiency, clustering coefficient, and centrality 

measures (e.g. betweenness centrality, Pagerank centrality) have most consistently been shown 

to contribute to classification performance. However, to my knowledge, no studies have 

combined network metrics, demographic factors, and cognitive performance measures to 

distinguish individuals who will convert to AD without a formal diagnosis of MCI (e.g. AD-C) 

from healthy controls and individuals already diagnosed with AD. As highlighted in the 

introduction, age, education, and sex are core demographic risk factors for AD. Older individuals 

who are less educated, and thus have lower cognitive reserve, are at a greater risk for developing 

dementia. As highlighted in the section on Reserve, Resistance, & Resilience in Cognitive Aging, 

with age and education, individuals develop both generalized and specific strategies to solve 

complex problems that are supported by adaptive networks of interconnected brain regions 

(Stern et al., 2019) captured by graph-theoretical measures. Individuals may experience variable 

forms or degrees of cognitive impairment, even when there are no detectable differences in 

network topology between groups. Moreover, as noted by Kwak and colleagues (2021), brain 

and cognitive profiles may not align when assessed independently (Kwak et al., 2021). 

Thus, this study combined summary measures of network topology with cognitive 

performance measures that broadly tap cognitive domains differentially impacted by aging and 

AD. Specifically, using baseline neuropsychological assessments and functional neuroimaging 

scans, this study aimed to address gaps in the literature to understand how both brain and 

cognition interact when attempting to understand why some individuals are more at risk of 

converting to AD. Further, this aim sought to compare the degree to which cognitive and/or 

network metrics contribute to classification. 
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Hypothesis: I predicted that the combination of core demographic risk factors, cognitive 

measures, and network metrics would be able to distinguish the CN, AD-C, and AD groups with 

moderate success. I predicted that age would be the most informative demographic feature as it is 

a primary risk factor of AD (“2021 Alzheimer’s Disease Facts and Figures,” 2021; Guerreiro & 

Bras, 2015; Jack et al., 2018; LaMontagne et al., 2019). Neuropsychological assessments are 

designed to detect broad cognitive impairments due neurodegenerative disease (Horowitz et al., 

2018; Silverstein, 2008), and are thus likely to significantly contribute to classification 

performance. However, given the older age range of the sample and greater prevalence of typical 

AD cases with predominant memory impairments, I predicted that memory-based cognitive 

metrics would be weighted more heavily than measures predominately assessing attention or 

executive function. Concerning network topology, studies combining machine learning and 

graph theory consistently find that global and nodal estimates of efficiency and clustering 

coefficient contribute to better model performance when classifying individuals with AD or MCI 

from healthy controls (Dyrba et al., 2015; Jie et al., 2014; Khazaee et al., 2015; Y. P. Li et al., 

2013; Wang et al., 2013; Wee et al., 2012). Thus, in addition to global communicability, I 

hypothesized that global efficiency and global clustering coefficient would contribute more to 

classification performance. Finally, I expected that the AD-C group was likely comprised of 

individuals who are at vastly different stages in the AD continuum (Ferreira et al., 2020). Thus, I 

further hypothesized that individuals in the AD-C group were more likely to misclassified as 

either CN or AD (Hojjati et al., 2017; Kwak et al., 2021; Pereira et al., 2017). 

Alternative Hypothesis: Whether based on cognitive performance or pathology, multiple 

subgroups have been identified in otherwise cognitively normal individuals and individuals 

diagnosed with either MCI or AD (Alexander et al., 2021; del Carmen Díaz-Mardomingo et al., 
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2017; Edmonds et al., 2021; Ferreira et al., 2020; Guan et al., 2017; Jak et al., 2009; Mez et al., 

2016; Murray et al., 2011; Scheltens et al., 2018, 2016, 2017; Vogel & Hansson, 2022). Thus, I 

hypothesized that individuals within each of the a priori groups (CN, AD-C, AD) may exhibit 

diverse neurocognitive profiles that would lead to poor overall classification performance. 

Aim 3 sought to establish whether the combination of core demographic, network 

metrics, and cognitive measures would identify data-driven neurocognitive subgroups. 

Specifically, Aim 3 specifically sought to establish if previously identified cognitive subgroups 

would emerge (Bickerton et al., 2011; del Carmen Díaz-Mardomingo et al., 2017; Edmonds et 

al., 2021; Geifman et al., 2018; Kwak et al., 2021; Scheltens et al., 2016, 2017, 2018; Vogel & 

Hansson, 2022) using unsupervised learning. 

Hypothesis: I predicted that multiple neurocognitive subgroups would emerge driven by 

greater heterogeneity in CN and AD-C participants. That is, I expected many of the AD 

participants to show more pronounced memory-related deficits, and/or exhibit impairment across 

the battery of neuropsychological assessments given the older age range of the sample. Based on 

prior work (Scheltens et al., 2017), I hypothesized that two primary groups, memory-impaired 

and memory-spared, would emerge. Prior work suggests that redundancy, as a mechanism of 

reserve, begins to decline around the age of 60 (Sadiq et al., 2021), and is reduced in individuals 

with MCI who have poorer episodic memory (Langella, Mucha, et al., 2021; Langella, Sadiq, et 

al., 2021). Additionally, typical AD is the most common biological subtype estimated to 

represent approximately 55% of all cases (Ferreira et al., 2019).  

Participants with typical AD have impaired memory that is accompanied by 

hippocampal/medial-temporal lobe atrophy (Ferreira et al., 2019; Vogel & Hansson, 2022). 

Thus, I hypothesized that the memory-impaired group would be comprised primarily of AD 
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participants, and characterized by reduced whole-brain redundancy (global communicability and 

global clustering coefficient). Within the memory-spared group, individuals may be further 

stratified by dysexecutive and mixed/global impairment subtypes (Ferreira et al., 2019; Sanz-

Arigita et al., 2010). Thus, I further hypothesized that the memory-spared group would be 

comprised of younger AD-C participants with poorer executive functioning corresponding with a 

reduction in global efficiency and global participation coefficient estimates (Avelar-Pereira et al., 

2017; Chan et al., 2017; Grady, 2017).  

Alternative Hypothesis: When implementing data-driven clustering of CN, MCI, and/or 

AD individuals, anywhere between two to nine subgroups have been identified. Thus, I 

hypothesized that multiple smaller subgroups may emerge where each subgroup is comprised of 

individuals with complex neurocognitive profiles that (1) do not perfectly correspond to 

previously observed subtypes, or (2) reflect diagnostic status. However, when assessing older 

individuals at a single time point, it may be difficult to capture robust and clinically meaningful 

neurocognitive subgroups over and above global cognitive impairment (Ferreira et al., 2020). In 

this instance, individuals may not be separated into distinct clusters, and/or clusters may simply 

reflect the original groups as defined by the OASIS consortium. 
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CHAPTER 3: METHODS AND MATERIALS 
 
Dataset 

Participants. This project utilized a large open-source dataset from the Open Access Of 

Imaging Series (OASIS-3) (LaMontagne et al., 2019; Marcus et al., 2010). The OASIS-3 dataset 

is comprised of community-dwelling individuals who were recruited over 15 years via the 

Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in 

St. Louis, Missouri. Approximately 84% of individuals identified as White and 15% identified as 

Black. Greater detail about the original study protocol and subject recruitment is provided 

elsewhere (LaMontagne et al., 2019). Open-source data used for the current project was 

downloaded from https://www.oasis-brains.org using the Extensible Neuroimaging Archive 

Toolkit (XNAT) (Marcus et al., 2007). Prior to analyses, participants were excluded for having a 

history of neurological disorders, seizures, stroke, drug or substance use disorders, or other 

serious medical conditions using custom-built R code (R Core Team, 2017). From the total 

sample of 1098, 37 participants were removed for having non-AD dementia (n = 7 

frontotemporal dementia, n=30 Parkinson’s disease), and 552 participants were removed for 

meeting exclusionary criteria as described above. 509 individuals were available for further 

analysis. 

Image acquisition. The OASIS-3 consortium collected several anatomical and functional 

MRI sequences. Participants were scanned while lying in the supine position and wore earplugs 

to reduce scanner noise. Foam pads were used to minimize head motion. All scans were acquired 

using a 16-channel head coil. A high-resolution T1-weighted anatomical scan (TR = 2.4 s, 
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TE = 3.08 ms, FOV = 256 × 256 mm, FA = 8°, voxel size 1 × 1 × 1 mm3), two six-minute 

functional resting-state blood oxygen level-dependent (BOLD) scans (EPI; (164 volumes per 

run), TR = 2.2 s, TE = 27 ms, FOV = 240 × 240 mm, FA = 90°, voxel size 4 × 4 × 4 mm, 36 

slices), and a PET scan were acquired. For each resting-state scan, participants were instructed to 

keep their eyes open and to lay as still and quiet as they can. PET data were acquired on a 

Siemens/CTI EXACT HR+ scanner or a Biograph 40 PET/CT scanner. Pittsburgh Compound B 

(PIB) and/or Florbetapir [18F] radiotracers were used to quantify amyloid (Aβ) levels in the 

brain. To capture the uptake window for PIB, a 60-minute dynamic PET scan (24 x 5-sec frames; 

9 x 20-second frames; 10 x 1-minute frames; 9 x 5-minute frames) was acquired starting at the 

time of intravenous administration. Florbetapir PET scans were acquired using one of two 

possible methods depending on whether or not intravenous injection was (1) administered in the 

scanner and a 70-minute dynamic PET scan was used to capture uptake (4 x 15-second frames, 8 

x 30sec frames, 9 x 1 minute, 2 x 3-minute frames, 10 x 5-minute frames) or (2) before image 

acquisition where a dynamic 20-minute scan was acquired 50-minutes after injection. All PET 

data was processed by the OASIS consortium using the PET unified pipeline. Standard uptake 

ratios (SUVR) for PIB and Florbetapir were calculated using the cerebellum as a reference 

region and normalized to a range of 0-100. For greater detail regarding PET acquisition and use 

of radiotracers see LaMontagne et al. (2019) and Marcus et al. (2010). 

Image processing. Baseline neuroimaging data were preprocessed using standard 

processing procedures with the CONN connectivity toolbox (Whitfield-Gabrieli & Nieto-

Castanon, 2012) in Matlab. Briefly, preprocessing of neuroimaging data included segmentation 

of high-resolution structural (T1-weighted) images into gray matter, white matter, and 

cerebrospinal fluid masks. Temporal and spatial artifacts were removed from the functional 
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BOLD data. Specifically, functional images underwent realignment and unwarping, slice-timing 

correction, co-registration to structural images, spatial normalization, and motion outlier 

identification. Spurious, non-neuronal noise from white-matter and CSF masks, as well as 6 

motion realignment parameters and their first-order derivatives, were used as nuisance 

regressors. Temporal band-pass filtering was employed to remove BOLD signal frequencies 

below 0.008 Hz or above 0.09 Hz. Motion artifacts were identified and removed from the 

Artifact Detection Toolbox (ART) as part of the standard CONN preprocessing pipeline. A 

combination of global BOLD signal change and framewise displacement (FD) was used to detect 

the presence of sub-millimeter movement known to negatively impact data quality and alter 

functional connectivity estimates (Dosenbach et al., 2017; Power et al., 2012). Specifically, data 

for the current project was processed using conservative motion correction criteria in which 

outlier volumes were identified if (1) global BOLD signal change (Z) was greater than 3 standard 

deviations from the global average (standard deviation units), and (2) if relative frame-to-frame 

motion (e.g., framewise displacement [FD]), in six directions (3 translations: x, y, z; 3 rotations: 

pitch, roll, yaw) was greater than .5 mm. By default in CONN, FD is calculated in reference to 

six control points placed in three-dimensional space within a bounding box surrounding the brain 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Control points are centered on each face of the 

three-dimensional bounding box. This method differs slightly from FD as originally defined by 

Power et al. (2012), in which movement is relative to displacement calculated on the surface of a 

50 mm radius sphere. Participants with less than 6 minutes of data (N=75), excluding outlier 

volumes, were removed from all analyses to ensure any findings were robust to the deleterious 

effects motion has on functional connectivity) (Birn et al., 2013; Ciric et al., 2017; Power et al., 
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2012, 2015, 2017; Satterthwaite et al., 2012). Finally, six participants were removed due to errors 

during preprocessing due to poor image quality and failed registration. 

Final Participant Sample. The final clean sample of low-motion participants who 

completed cognitive assessments within one year of their first fMRI scan (N =296) was 

comprised of cognitively normal individuals (CN; N=159), individuals who were cognitively 

normal at the time of assessment who will convert to AD at some point during the study (AD-C; 

N=51), and individuals diagnosed with AD at study onset (AD; N = 86; Table 1). All diagnoses 

were based on the Clinical Dementias Rating (CDR) scale. Global CDR scores were based on a 

scale of 0–3: no dementia (CDR = 0), questionable dementia (CDR = 0.5), mild dementia (CDR 

= 1), moderate dementia (CDR = 2), and dementia with severe cognitive impairment (CDR = 3). 

The CDR Sum of Box scores (CDR-SOB) represents a continuous measure of dementia-related 

cognitive impairment based on scores summed across specific categories that describe cognitive 

and functional impairments (Crane et al., 2012; McDougall et al., 2021; O’Bryant et al., 2008). 

The CDR-SOB was scored on a scale of 0-18 (relationship between the scales: CDR 0 = CDR-

SOB 0; CDR 0.5 = CDR-SOB 0.5-4; CDR 1 = CDR-SOB 4.5-9; CDR 2 = CDR-SOB 9.5-15.5; 

CDR 3 = CDR-SOB 16-18). Of note, the CN group, as defined by OASIS, is comprised of 

individuals who do not have dementia and have not been diagnosed with AD based on the CDR 

(Table 2). However, these individuals may still display age-related cognitive deficits on 

neuropsychological assessments. In addition to the CDR, education level (years completed) and 

performance on the MMSE (Folstein et al., 1975) were collected. The MMSE is a 16-item 

questionnaire used to assess cognitive functioning in older individuals across general domains of 

orientation, attention, memory, language, and visual-spatial skills.  
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Neuropsychological assessments were completed at different sessions than the 

neuroimaging acquisition. All participants completed neuropsychological assessments within 

one-year of their baseline functional resting-state scan. The gap between administration of 

neuropsychological assessments and baseline neuroimaging scans ranged from 237-356 days 

(CN: Mean = -42.6 days; AD-C: Mean = -43.0 days; AD = -63 days), and was not statistically 

different between groups (Table 1). 

 To permit comparisons with prior work, a breakdown of ApoE polymorphisms for this 

sample is provided in Table 3. Two participants were missing genetic testing data. From the 

sample of participants with ApoE information (N = 433), ApoE-ɛ3 (81%) was the most common 

polymorphism followed by ApoE-ɛ4 (38%). Approximately 38% of the sample was homozygous 

for the ApoE 33 polymorphism. The proportion of ApoE-ɛ4 positive individuals was greatest in 

AD participants (65%), followed by AD-C (41%), and CN (29%). 

Table 1. Participants characteristics and data availability are presented for the final 
dataset for each a priori group. 

 CN AD-C AD f/x2* p** 
Age (Years) 65.91 (10.17) 78.78 (8.05) 75.72 (8.31) 79.37 < .001 
Education (Years) a 16.23 (2.44) 15.62 (2.33) 14.45 (3.19) 76.19 < .001 
Sex (Male/Female) 126/164 27/31 34/52 .742 .690 
MMSEb 29.22 (3.31) 27.07 (3.64) 23.54 (4.20) 178.20 < .001 
CDR-SOBc 0.01 (0.07) 1.28 (1.87) 4.32 (2.64) 336.45 < .001 
Average Motion       
   Minutes Remaining 10.1 (1.37) 11.2 (.74) 10.3 (1.32) 14.31 < .001 
   Mean FD (mm) d 0.211 (.058) 0.122 (.042) 0.209 (.059) 64.574 < .001 
COG-GAP e -42.6 (102) -43 (111) -63 (73.2) 1.28 .278 
DAYS-CONV f --- 1785.11 (1197.89) --- --- --- 

 

a Education level in years [7-22] 
b MMSE: Mini Mental-State Examination [0-30] (Folstein et al., 1975) 
c CDR-SOB: Clinical dementia rating scale sum of box scores [0-30] 

d  Mean FD: Mean remaining framewise displacement (Power et al., 2012) 
e COG-GAP: Number of days in between cognitive assessment and first fMRI scan [0-365] 
f DAYS-CONV: Number of days in between first fMRI scan and final AD diagnosis 
* Chi-square (x2) tests were used to test for group differences on categorical variables (e.g. sex and CDR scores); 
Omnibus f-tests (f) were used from a one-way analysis of variance to assess group differences on continuous 
measures. 
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** Bolded values are significant at alpha = .05 (uncorrected) 
 
Table 2. Global CDR Scores. The total number of individuals for a given CDR category is 
presented. 

  Global CDR 

  0 0.5 1 2 3 
CN 290 -- -- -- -- 
AD-C 27 28 2 1 0 
AD 0 45 36 4 1 

 a CN: cognitively normal  
b AD-C: AD converters 
c AD: Alzheimer’s disease 
 
Table 3. ApoE polymorphism tally. The total number of individuals with a given ApoE 
polymorphism is displayed for each a priori group. The percentage of individuals, relative to the 
total sample with ApoE data (N=434), is provided in the parentheses. 

 22 23 24 33 34 44 

CNa 2 (.46) 30 (6.91) 9 (2.07) 164 (37.79) 73 (16.82) 12 (2.76) 

AD-Cb 1 (.23) 7 (1.61) 1 (.23) 25 (5.76) 20 (4.61) 4 (.92) 

AD-C 0 3 (.69) 1 (.23) 26 (5.99) 45 (10.37) 11 (2.53) 
a CN: cognitively normal  
b AD-C: AD converters 
c AD: Alzheimer’s disease 
 
Neuropsychological assessments 

Participants completed a battery of cognitive assessments testing general aspects of 

cognition in the domains of memory, executive function, and attention. Assessments included the 

Logical Memory Subtest (Story A) from the Wechsler Memory Scale-Revised (Wechsler, 1981), 

the Digit Symbol and Digit Span tasks from the Wechsler Adult Intelligence Scale-Revised 

(Wechsler, 1981), the Category Fluency Test (Lezak et al., 2004), the Boston Naming Test 

(Kaplan, 1983), and Trail Making Test parts A & B from the Delis-Kaplan Executive Function 

System (D-KEFS; Baron, 2004). Brief descriptions for each task are provided below. 

Logical Memory II (Story A). A measure of episodic memory that requires participants 

to recall as many details as they can from a short story read aloud to them by a qualified 

neuropsychologist. Participants must recall information after a 30-minute delay. Performance is 
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captured by the number of elements recalled from the story with scores ranging from 0 (no 

recall) to 25 (complete recall). 

WAIS-R Digit Symbol Test. A general measure of several cognitive functions including 

attention, visuoperceptual ability, and motor speed. Participants are provided a key and are 

required to match as many symbols and numbers as they can in 90 seconds. Performance is 

captured by the total number of digit symbol pairs completed in 90 seconds. 

Digit Span Test. A measure of attention and working memory that requires participants 

to repeat a series of digits either forwards or backward. In the forward-span condition, 

participants are asked to repeat a series of digits in sequential order. In the backward-span 

condition, participants are asked to repeat a series of digits in reverse sequential order. Digit span 

performance was captured by the number of trials repeated correctly for both the digit-span 

forward and digit-span backward conditions. 

Trail Making Test: The D-KEFS Trail Making Test assesses motor functioning and 

general aspects of executive functioning including inhibition and interference control. 

Participants are asked to connect a series of dots, by drawing a line, connecting numbers (1-26) 

in part A, or a series of alternating numbers and letters (1-A-2-B) in part B. Performance is 

captured by the total time taken to connect the series of dots for Part A and Part B, as well as the 

number of omission and commission (e.g. sequencing) errors for each part. 

Category Fluency. A measure of semantic memory. Participants were asked to name as 

many animals or vegetables as they could in 60 seconds. Performance was captured by the total 

number of words correctly identified for each category. 



 

40 

Boston Naming Test. A measure of verbal fluency. Participants were asked to name each 

of 60 black and white line drawings representing everyday common objects. Performance was 

captured by the total number of drawings correctly named. 

Graph Theory Metrics 

Communicability. Communicability is a decentralized measure of information transfer 

within a given system that quantifies the total number of paths, direct or indirect, that can be 

traversed by a random walker between any pair of regions (Estrada & Hatano, 2008). 

Communicability can be applied to either binary or weighted graphs. For weighted graphs, the 

communicability of a matrix is equal to the weighted connectivity matrix (W) raised to a power 

(k) defined as the degree of a given target region. Communicability is algebraically equivalent to 

taking the matrix exponential (𝑒!) of an undirected graph. Communicability, as proposed by 

Estrada and Hatano (2008), down-weights the contribution of longer walks by dividing the 

matrix exponential (Ak) by the total number of paths k! present in the network (Estrada and 

Hatano, 2008). Global communicability is derived by taking the sum of the communicability 

matrix as given by Equation 1: 

          𝐺𝑙𝑜𝑏𝑎𝑙	𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =1 (!
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Clustering Coefficient. The weighted clustering coefficient measures the degree of 

connectedness between neighboring nodes in a weighted graph (Onnela et al., 2005). It is the 

probability that two neighbors of a node are themselves connected, forming a closed triangle. 

The global clustering coefficient is the average of the clustering coefficient for all nodes in a 

network and is given by Equation 2: 

𝐺𝑙𝑜𝑏𝑎𝑙	𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 	 )",$,!	+,"$,$!,!"-
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where w is the weighted edges connecting node i to neighboring nodes j and k. Values are 

averaged across all nodes to obtain a global summary estimate of the clustering coefficient. 

Global Efficiency. Global efficiency measures the relative speed of information transfer 

across a network via shortest path routing. Shortest paths are the most direct paths connecting a 

pair of regions. Global efficiency is given by Equation 3: 

     𝐺𝑙𝑜𝑏𝑎𝑙	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 	 0
2
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where N is the number of nodes in the network, d is a geodesic distance matrix, and dij is the 

shortest weighted w path between node i and node j. 

Path Transitivity. Path transitivity measures the proportion of detours or alternate routes 

along the shortest path connecting a pair of regions (Goni et al., 2014). Global path transitivity is 

the average path transitivity for all nodes n in a graph as given by Equation 4: 

       𝐺𝑙𝑜𝑏𝑎𝑙	𝑃𝑎𝑡ℎ	𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 9
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  .         (4) 

where 𝛺 is the sequence of nodes along the shortest path connecting nodes i and j, and m is the 

matching index that describes the set of shared input and output links (e.g. detours) along the 

shortest path connecting nodes i and j. 

Eigenvector centrality. Eigenvector centrality is a centrality metric that captures the 

overall importance of highly connected and influential nodes, or vertices v, in a graph (Newman, 

2010). Nodes with high centrality are connected to other nodes with high centrality and are 

weighted more heavily. Global eigenvector centrality is the average eigenvector centrality for all 

nodes n in a graph as defined by Equation 5: 

       Global 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟	𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑖𝑡𝑦 = 0
=
Σ>∈?(@)𝑥> ,         (5) 

where n is the total number of nodes and N is the set of nodes in a network. 𝜆 = is a constant 
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term, t is a node and is connected to a set of neighboring nodes M for node v. x is a vector of 

eigenvalues that represent each nodes weighted centrality. 

Modularity. Modularity represents the degree to which a system or network can be 

partitioned into distinct communities, or modules, that contain subsets of nodes that are highly 

interconnected to one another. The Louvain algorithm (Blondel et al., 2008) from the Brain 

Connectivity Toolbox (www.brain-connectivity-toolbox.net) was applied to estimate the  

modularity quotient Q over a pre-defined set of 14 well-stablished functional networks (Seitzman 

et al., 2018). Modularity is defined by Equation 6: 
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where 𝑊$%  is an entry of the weighted connectivity matrix containing the weight of an edge 

between nodes i and j, ki and kj is the sum of the weights w of the edges attached to node i and j, m 

is the community or module to which node i or j is assigned, and l is the total number of links. δ 

is the Kronecker delta function. 

Participation Coefficient. The participation coefficient is a measure of network 

integration and represents the degree to which a brain region communicates with other regions 

outside of its own module. The global participation coefficient is the average participation 

coefficient for all nodes n in a graph and is given by Equation 7: 

 Global 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 	 0
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where ki is the sum of connection weights belonging to node i, kis is the sum of region i’s 

connection weights within its own module s, and M is the total number of modules for a given 

network partition. The participation coefficient is equal to 0 when a region communicates 

exclusively within a given module and 1 if all connections are between modules. 
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Small-World Propensity. The small-world propensity (Muldoon et al., 2016b) is a global 

measure of small-worldness (Watts & Strogatz, 1998), that captures the degree to which 

networks exhibit a balance between high clustering and short path lengths while controlling for 

network density. In general, a higher small-world propensity represents a more efficient system 

compared to random chance, and is given by Equation 8: 

Small-𝑊𝑜𝑟𝑙𝑑	𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 = 	1 − S△.
/D	△0

/

9
	,           (8) 

where C is the average clustering coefficient, and L is the average path length of a network. △E9  

and △F9 are ratios and represent the degree to which C and L deviate from lattice and random 

network models, constructed with the same number of nodes and degree distribution as the 

comparison network, respectively.  

Within-module degree. Within-module degree represents how connected a node is to all 

other nodes within its own module. The global within-module degree is the average within-

module degree for all nodes n in a graph and is given by Equation 9: 

Within-module degree =	 0
2
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$'0 	,           (9) 

where kis is the degree of node i to all other nodes within its own module (s), ksi 

is the average degree of all nodes in s. Within-module degree is a standardized measure, where 

σ"," is the standard deviation of the degree of all nodes in s. 

Machine Learning  

Random forest classification. A random forest is a collection, or ensemble, of decision 

trees. Decision trees are appropriately named for their tree-like appearance and are used to group 

similar observations into classes based on a set of descriptive features (see Figure 3). 

Observations can be people, music, movies, food, and so on. In the case of people, descriptive 
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features could include age, gender, weight, heart rate, personality traits, likes, and dislikes. Class 

labels might represent categories such as old or young, sick or healthy. As a machine learning 

tool, a decision tree is tasked with learning a set of rules that best divides a dataset into a set of 

known class labels, or into data-driven subgroups comprised of similar observations (e.g. 

individuals). In unsupervised learning problems, no class labels (e.g. CN or AD) are provided a 

priori. That is, a model is tasked with learning the degree to which individual observations 

cluster together from the data (Breiman, 2001). For both supervised and unsupervised 

classification problems, this set of rules can later be used to make predictions as to which class a 

new, unfamiliar observation object might be classified.  

Within a given decision tree, a dataset is split into branches (connections) and nodes 

(features) in a hierarchical manner. Starting at the root node (top of a tree), the data is split on a 

feature that best differentiates a set of observations. From the top of the tree, branches extend 

downward to form connections with nodes that contain other features that next best differentiate 

a set of observations. This process occurs until no more splits are possible and a decision is 

reached at a final terminal node (see Figure 3). To grasp how a decision tree works in practice, 

consider how a person may decide to go outside and exercise or stay home and read. The 

decision to go outside and exercise or not can be based on features that describe the weather, the 

person’s current mood state, health status, love of reading, and so on. In this example, the most 

obvious choice to exercise or not depends on whether or not the person is feeling ill. So, starting 

at the root node with health status the decision process begins by asking if the person sick? If 

not, is it raining? If not, is it too windy? If it is not too windy, does the person love reading too 



 

45 

much? If not, go exercise!  

To assess which factors best 

distinguish a group of cognitively 

normal individuals from those 

diagnosed with AD, decisions can be 

based on demographic, diagnostic, 

genetic, neuroimaging, or other data 

types. In Figure 3, the decision process 

begins with age, such that an individual 

may be younger (blue) or older (red) 

than 65 years of age. For the younger 

individual (blue), a higher education 

level and absence of the ApoE-e4 allele 

results in a final decision of cognitively 

normal. For the older individual (red), a 

greater abundance of Aß and observed 

memory impairment results in a final 

decision of AD. In this simple example, the final decision can only be one of two known choices 

(e.g. CN or AD) and is thus considered a form of supervised machine learning. In unsupervised 

machine learning, there are no predefined class labels. The goal of unsupervised learning is to 

identify individuals who share a common set of attributes. As discussed in the introduction, 

different forms of unsupervised learning have been used to detect subsets of individuals with and 

without AD, who were labeled as being memory-impaired or memory-spared (Scheltens et al., 

Figure 3. Simple Decision Tree. This figure 
provides a graphical representation of a decision tree 
and its constituent parts. Within a given decision 
tree, a dataset is split into branches (connections) 
and nodes (features) in a hierarchical manner. 
Starting at the root node (top of a tree), the data is 
split on a feature (Age) that best differentiates a set 
of observations. From the top of the tree, branches 
extend downward to form connections with nodes 
that contain other features that next best differentiate 
a set of observations. This process occurs until no 
more splits are possible and a decision is reached at 
a final terminal node. Abbreviations: ED = 
Education; AB = Amyloid-beta; ε4 = ApoE-ε4; 
MEM = Memory; CN = Cognitively Normal; AD = 
Alzheimer’s disease 
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2016, 2017). For an unsupervised decision tree, the final decision represents the probability that 

an observation is similar to other observations previously assessed.  

Decision trees can learn from data by revealing values for each feature that best split 

observations into their respective class. The learned values at each split in the tree are the set of 

rules that can guide future predictions. Most decision processes are not as simple as in the 

example above. Typically, decisions in classification problems involve a large number of 

features that can vary greatly across observations or individuals. Further, features may interact 

with one another in unexpected ways. This variation cannot be accounted for using a single 

decision tree with a single set of rules, or even many different trees using the same set of rules. 

To circumvent this issue, the random forest uses many decision trees. Each decision tree is 

constructed using a different, randomly selected subset of observations and features, a process 

known as bootstrapping. This process also helps to ensure that a set of decision trees are not 

correlated with one another or overly biased towards a specific item or feature within a dataset. 

The unbiased trees are then combined or aggregated (bootstrap aggregating). The most predictive 

features are those which contribute the greatest to classification across the set of decision trees. 

Random forest ensemble methods have been shown to outperform various classification 

algorithms on datasets varying in sample size and dimensionality (Briand et al., 2009). Further, 

the random forest has been found to perform well in small sample studies with at least 40 

observations per class (Feczko et al., 2018; Luan et al., 2020). 

Random forest application. The random forest is designed to handle complex high-

dimensional interactions and is well-suited for combining imaging and non-imaging metrics 

measuring function brain network organization and cognition respectively (Altman & 

Krzywinski, 2017; Breiman, 2001; Bzdok et al., 2018; Denisko & Hoffman, 2018). In the present 
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study, a combination of supervised and unsupervised classification modeling was used: (1) to 

assess if a priori defined groups (i.e., CN, AD-C, AD) could be accurately distinguished using a 

combination of nine weighted functional network metrics and nine cognitive performance 

measures (see the Neuropsychological Assessment section above for specific features), and (2) to 

identify data-driven subgroups with no a priori defined class labels based on the same 

combination of predictive features. In exploratory data analysis, Pearson’s correlation was used 

to assess multicollinearity between features. Features that were highly correlated (r > .85) were 

to be excluded from the model to eliminate redundant predictors (C. Li et al., 2011). For both 

supervised and unsupervised models, the set of decision trees is aggregated to generate forests 

that minimize a cost function, the Gini impurity index. The Gini impurity index measures how 

“pure” a set of classifications are for a decision point at each root node within a given decision 

tree and represents the probability of misclassifying new data. Minimizing the cost function 

ensures that groups are maximally separated (i.e. better classification accuracy). 

Supervised random forest. For supervised models, to assess classification performance 

repeated k-fold cross-validation was performed. K-fold cross-validation randomly partitions data 

into k independent subsamples which are then used to train and test model performance. When 

combined with the built-in bootstrapping technique (see Modeling & Prediction), cross-

validation helps to further reduce overfitting and sampling bias. This study implemented 5-fold 

cross-validation with ten repeats. With 5-fold cross-validation, a dataset is randomly partitioned 

into 5 subsamples. Within each fold, 4 of the subsamples are used to train the random forest, and 

the remaining subsample is set aside and used to test model performance. This process was 

repeated 10 times to ensure all observations were subsampled and to reduce test error (Borra & 

Di Ciaccio, 2010). The optimal set of hyperparameters, including the number of splitting 
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variables and the number of decision trees, was determined via grid search whereby cross-

validated models were fit using a combination of parameters (Combrisson & Jerbi, 2015; 

Kohavi, 1995). Parameters from the model with the lowest average out-of-sample prediction 

error were then selected to construct a final supervised model. 

Unsupervised random forest. For unsupervised random forest classification problems, no 

class labels are provided a priori. Thus, a randomly generated dataset (called a synthetic dataset) 

is created on each bootstrap iteration. Specifically, on each iteration for a given decision tree, 

data points are randomly sampled for each variable selected to split the set of observations in a 

training dataset. Observations from the true dataset are labeled 1. Observations from the 

synthetic dataset are labeled 2. The random forest then proceeds to classify observations as true 

or synthetic (Breiman, 2001; Cutler et al., 2007). From the final aggregate unsupervised random 

forest model, a proximity, or similarity matrix is generated. The proximity matrix is an N x N 

symmetrical matrix in which each cell represents the number of times a pair of true observations 

(e.g. individuals) occupies the same terminal node (e.g. prediction) across the set of decision 

trees. Random forest models, 5-fold cross-validation, and permutation tests were carried out in R 

(R Core Team, 2020) using the randomForest (Liaw & Wiener, 2002), caret (Kuhn, 2008), and 

the rfUtilities (Murphy et al., 2010) packages, respectively. The proximity matrix was visualized 

using the MDSplot function within the randomForest package (Liaw & Wiener, 2002). 

Cluster analysis. To determine the presence of data-driven neurocognitive subgroups, 

cluster analysis was performed on the proximity matrix using k-means clustering. The K-means 

algorithm attempts to minimize the total distance, and thus dissimilarity, between a set of data 

points in geographical space. For every cluster k, a random starting point (e.g. centroid) is 

assigned. The point of origin within a given cluster is reassigned until the mean distance between 
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all points in that cluster is minimized. The NbClust (Charrad et al., 2015) and factoextra 

(Kassambara & Mundt, 2020) packages were used to objectively select and visualize the optimal 

number of clusters. To both estimate and validate an unbiased number of optimal clusters, the 

NbClust package calculates and compares up to thirty indices most commonly applied in cluster 

optimization problems. For example, the elbow and gap statistic methods are two of the most 

widely used indices. With the elbowing method, the average distance of each data point (x-axis) 

to its nearest k neighbors (y-axis) is plotted in ascending order. The sharpest inflection point in 

the graph, where the reduction in error from adding additional clusters is minimized, is used to 

designate the optimal number of clusters. The gap statistic formally assesses variation in the 

number of clusters. Specifically, for a set of given data points, the total variation within a set of 

clusters is computed across a range of k clusters and compared to a random null distribution. The 

larger the gap statistic, the greater the difference (or dissimilarity) there is between empirically 

and randomly derived cluster solutions. Each cluster-based index provides a solution, or vote, 

with respect to the optimal number of clusters. The final number of clusters is the solution with 

the most votes across all indices.  

Cluster-based classification. Following cluster analysis, a supervised random forest was 

used to validate the data-driven clusters. Specifically, using the same approach as described 

above, a supervised random forest classification model assessed the degree to which individuals 

could be distinguished from one another using the data-driven class labels obtained via cluster 

analysis (cluster-then-predict method) (Tibshirani & Walther, 2005). Classification performance 

was assessed as described above. 

Model performance. For supervised random forest models, permutation tests were used 

to assess model significance compared to random chance. Here, the distribution of model 
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misclassification rates averaged across all independent (e.g., held out) test sets was compared to 

a random null model. To generate empirical null models derived from the data, each step in the 

random forest process was repeated and class labels (e.g. CN, AD-C, AD) were randomly 

shuffled. Variable importance scores (e.g. prediction weights), average classification accuracy, 

sensitivity and specificity, and precision and recall were reported. Additional metrics based on 

predicted class probabilities including Informedness, the No Information Rate, and Cohen’s 

Kappa were also quantified to compare performance of supervised models (Kuhn, 2008). 

Informedness represents how informed a set of predictions are relative to chance, defined as the 

difference between true and false-positive rates. Informedness values range from -1 to 1. Values 

less than chance (0) indicate a model which is strongly biased resulting in a greater proportion of 

false positive and false negative predictions. The No Information Rate (NIR) is a statistic based 

on a one-sided binomial test of proportions and was used to compare observed model accuracy to 

accuracy expected by chance given the total number of possible true cases. That is, a p-value (p-

NIR) under the specified alpha (.05) was used to indicate if cross-validated model accuracy was 

statistically significant compared to the total number of sampled cases in the majority class (e.g. 

CN). NIR was used to assess sampling bias, whereby the proportion of classes may differ across 

cross-validation folds. In addition to the NIR, Kappa was used to quantify the degree to which 

class imbalance may impact model fit. Specifically, Kappa calculates the accuracy of a model’s 

predictions while controlling for accuracy obtained via random chance. Values can be less than 

or equal to 1. Higher values suggest a better model fit. 

Class imbalance. To ensure model validity, and account for selection bias, it is important 

to ensure adequate sampling of individuals within and across groups. Machine learning 

applications make extensive use of cross-validation to build and test models on unique 
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subsamples of data. In imbalanced classification problems, one or more groups may have a 

disproportionality larger number of individuals. In such cases, model predictions are skewed to 

the larger dominant class, and simple measures of accuracy are thus biased. 

Several procedures exist that deal with class imbalance issues by either over-sampling 

from a minority class (or classes), under-sampling from the majority class, or some combination 

of over- and under-sampling during the model training phase (Altini, 2015). Synthetic minority 

oversampling technique (SMOTE) was used in the current study. SMOTE attempts to balance 

the selection of observations from minority classes (AD-C, AD), as compared to a majority class 

(CN) when constructing a training sample. Within each cross-validation fold, SMOTE is applied 

so that the randomly selected training data comprises a greater number of minority-like cases, 

using synthetically created data points. It is important to note that techniques that have been 

developed to mitigate the influence of class imbalance in machine learning models do not always 

result in improved model performance (Harrell, 2020). In addition to the magnitude of class 

imbalance, the true prevalence or proportion of instances in the population must be considered. 

Thus, to assess the degree to which class imbalance biases classification performance, supervised 

models will be generated with and without the use of subsampling. In addition, balanced 

accuracy and the F1 score will be reported for all models. Balanced accuracy and the F1 score 

are averages of sensitivity and specificity and precision and recall respectively. 

Model Comparisons. Supervised random forest models with and without SMOTE were 

assessed for their respective ability to classify individuals into either a priori (CN, AD-C, or AD) 

or data-driven neurocognitive subgroups. Models were (1) qualitatively compared using the 

performance metrics as described above, and (2) quantitively compared using the area under the 

receiver operating curve (AUROC). The AUROC is a single numerical summary describing the 
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proportion of correctly identified cases (sensitivity, or true positive rate) to those correctly 

classified as healthy controls (specificity, or precision) for a given classification model. The 

AUROC was used to compared models using the non-parametric Delong test (DeLong et al., 

1988). Pairwise comparisons were corrected for multiple comparisons via the FDR (Benjamini & 

Hochberg, 1995). ROC metrics and plots utilized the caret (Kuhn, 2008) and plotROC (Sachs, 

2017) packages in R. 

Missing Data Imputation 

Missing data was observed for the WAIS (n = 7) and Trail Making Part B scores (n = 21). 

The majority of missing values were from AD participants (WAIS: CN = 0 of 159; AD-C = 2 of 

56; AD = 5 of 81; Trail Making Part B: CN = 1 of 159; AD-C = 2 of 56; AD = 18 of 81). 

Random forest imputation was used to impute missing data. Distributions for Trail Making Part 

B scores were assessed before and after random forest imputation with a standard two-sample t-

test. No significant differences were observed between the distributions before and after missing 

data imputation in the whole sample, or when comparing scores within each a priori group for 

the WAIS (whole sample: t(582.84) = 0.251, p = .802; CN = t(316.00) = 0.00, p = .999; AD-C = 

t(107.96) = 0.043, p = .965; AD = t(154.16) = 0.055, p = .956) and Trail Making Part B (whole 

sample: t(568.76) = -1.233, p = .218; CN = t(314.97) = -0.002, p = .998; AD-C = t(128.00) = -

0.063, p = .950; AD = t(128.00) = -0.870, p = .386) assessments. 
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CHAPTER 4: RESEARCH PLAN 
 

Aim 1: Identifying relationships between functional network redundancy and 

cognitive performance. Aim 1 used a subset of individuals from the primary dataset with high-

quality neuroimaging data (N=435) who completed the neuropsychological battery within one 

year of their functional MRI scan (N=296: CN=159; AD-C=56; AD=81). Three cognitive 

metrics indexing episodic memory (Logical Memory), working memory (Digit Span Test-

Backward), and mental flexibility (Trail Making Test B), and two weighted functional 

redundancy metrics (global communicability and global clustering coefficient) were used for 

Aim 1 analyses. 

Prior to analyses, a series of quality control steps were conducted. Many 

neuropsychological measures suffer from ceiling effects and may exhibit low variance. Thus, the 

magnitude of association between network metrics and cognitive scores can be dependent on the 

relative distribution of scores across tests. Where appropriate, variables with a high degree of 

skew (e.g. log or exponentially distributed) were transformed to better approximate a normal 

distribution for linear analyses. The optimal transformation (e.g. log, boxcox, Yeo-Johnson) for a 

given variable was determined via the bestNormalize package (Peterson, 2021). For a given 

transformation algorithm, the bestNormalize function used 10-fold cross-validation with 5 

repeats to generate average estimates for each data point. The final transformation was then 

subjected to a normality significance test. Pearson’s correlation (r) was used to compare a given 

transformed variable to a standard normal distribution. The algorithm with the lowest estimated 

normality statistic (p-value corrected for the sample degrees of freedom) was selected. 
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Linear regression analyses tested for general associations between indices of cognitive 

performance and weighted functional redundancy metrics using the base R linear regression 

function (R: lm). An interaction term was specified within each independent regression model to 

test for a difference in slopes between groups. Model fit statistics, including r-squared, adjusted 

r-squared, root mean square error (RMSE), and FDR-corrected p-values, were reported. Model 

fit and coefficient estimates were considered significant if p was less than the pre-specified alpha 

level of .05. For models with a significant interaction term, diagnostic residual plots were 

assessed using base R plotting functions (R: plot) to ensure model estimates and regression 

coefficients were unbiased. Censored regression was used to assess the robustness of a 

significant interaction in the presence of either floor or ceiling effects using the censReg package 

in R (Henningsen, 2022). 

Aim 2: Assessing if AD converters can be distinguished from neurotypically aging 

individuals and individuals diagnosed with AD. Supervised classification was used to assess if 

(1) a priori-defined diagnostic groups could be accurately distinguished using a combination of 

22 predictive features, and (2) to identify the set of features that best contributed to accurate 

classification (Figure 4). Specifically, a multi-class supervised random forest was fit to the data 

to classify participants into one of three a priori groups (CN, AD-C, AD) as defined by the 

OASIS-3 consortium. Predictive features included age, education, sex, nine cognitive 

performance measures, and nine weighted functional network metrics. Specifically, cognitive 

performance measures and redundancy-based metrics described in Aim 1 (global 

communicability and global clustering coefficient) were combined with seven additional network 

metrics that assess core properties of overall functional network topology: global efficiency, 

global path transitivity, global eigenvector centrality, modularity, global participation coefficient, 
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small-world propensity, and within-module degree. These metrics were calculated to capture the 

overall importance of weight- and 

path-based functional connections, as 

well as the degree of integration and 

segregation between a set of data-

driven modules. All network metrics 

were computed on an individual’s 

unthresholded weighted correlation 

matrix (positive connections only).  

Prior to classification 

modeling, multicollinearity was 

assessed between all continuous 

features to ensure model performance 

estimates and feature importance 

rankings were not biased by 

including redundant features. No pair 

of features exhibited a Pearson’s 

correlation coefficient above .85; 

thus, no features were excluded from analyses (see the Discussion section for potential 

limitations with this approach). For supervised models, performance metrics were reported in 

table form. Demographics, neuropsychological performance, and graph-theoretical metrics were 

visualized using the R: ggplot2 package and reported in table form. In addition to 

neuropsychological performance and graph-theoretical metrics, variables not used for 

Figure 4. Analysis pipeline. (1) A supervised 
classification model is first fit to the data to identify 
features that best distinguish individuals within a priori-
defined diagnostic groups. (2) An unsupervised 
classification model is then fit to the data to generate a 
proximity matrix. Cluster analysis is then used to 
identify data-driven subgroups of individuals with 
similar neurocognitive profiles. Groups (e.g. class labels) 
identified via cluster analysis are then used to build a 
final supervised model to obtain classification 
performance metrics. Models predicting the data-driven 
subgroups will then be compared to models generated 
using the diagnostic groups as defined by the OASIS-3 
consortium. Abbreviations: CN = Cognitively Normal; 
AD-C = AD Converters; AD = Alzheimer’s disease 
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classification that inform clinical diagnosis (MMSE scores, CDR ratings) were reported and 

summarized by group. Supervised classification models were generated with and without 

controlling for class imbalance using SMOTE (see Methods). 

Aim 3. Characterizing data-driven neurocognitive profiles. Unsupervised machine 

learning was used to identify the presence and composition of data-driven neurocognitive 

subgroups using the same features described in Aim 2. Specifically, to retain both linear and 

non-linear interactions between features, an unsupervised random forest model was first applied 

to the dataset to generate a proximity matrix. Next, cluster analysis was performed on the 

resulting proximity matrix to identify data-driven neurocognitive subgroups. Finally, to formally 

assess the validity of the data-driven groups derived via unsupervised learning, a supervised 

random forest model was used generated using the data-driven clusters. Feature importance and 

model performance metrics were reported as described in Aim 2. 
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CHAPTER 5: AIM 1 RESULTS 
 

Aim 1 sought to establish if metrics that index redundancy in weighted functional brain 

networks predicted cognitive performance. Specifically, a series of linear regression analyses 

tested if, independently, global communicability and global clustering coefficient significantly 

predicted performance on cognitive measures indexing episodic memory (Logical Memory), 

working memory (Digit Span Test-Backward), and mental flexibility (Trail Making Test B). 

Additionally, linear models tested the hypothesis that redundancy-based network metrics would 

be more positively correlated with cognitive performance in the AD-C and AD groups, with the 

strongest association observed between the redundancy metrics and Logical Memory 

performance in the AD group. 

Quality Control 

Assessment of missing data and variable distributions by a priori group. Scores on 

neuropsychological assessments (Logical Memory, Digit Span Backward, Trail Making Part B) 

were non-normally distributed within the CN and AD groups (all Shapiro-Wilk’s p < .05; see 

Table 4). In the AD-C group, only Trail-Making Part B scores were non-normally distributed 

(Shapiro-Wilk’s p = .014). As hypothesized, Trail-Making Part B scores exhibited a high degree 

of skew before transformation. The high degree of skew suggested the presence of ceiling effects 

in the CN and AD-C groups. In the AD group, Trail-Making Part B scores exhibited a bimodal 

distribution indicating the presence of both floor, and ceiling effects. Assessing redundancy-

based graph-theoretical metrics, the global clustering coefficient was normally distributed across 
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groups (Shapiro-Wilk’s p > .05; see Table 4). Consistent with previous work, global 

communicability exhibited a power-law degree distribution (Betzel et al., 2016; Estrada & 

Hatano, 2008; Langella, Sadiq, et al., 2021; Mišić et al., 2015) and was thus non-normally 

distributed across groups (all Shapiro-Wilk’s p < .05) Variable distributions are shown before 

transformation in Table 4. 

Table 4. Summary statistics of cognitive performance and network topology by a priori group. 

  M SD MED MIN MAX SKEW KURT HIST p a 

Logical 
Memory 

CN 13.69 3.63 14.00 3.00 21.00 -0.35 -0.50 ▁▃▅▇▃ .004 
AD-C 11.38 4.36 12.00 0.00 20.00 -0.58 -0.19 ▂▃▇▇▂ .062 
AD 5.36 4.17 5.00 0.00 16.00 0.63 -0.43 ▇▆▃▃▁ < .001 

Digit-Span  
Backward 

CN 6.60 1.94 6.00 3.00 12.00 0.57 -0.03 ▃▇▆▂▁ < .001 
AD-C 6.04 1.87 6.00 2.00 11.00 0.28 -0.03 ▁▇▇▃▁ .095 
AD 4.67 2.20 4.00 0.00 11.00 0.50 0.09 ▇▃▇▅▃ .008 

Trail Making 
 Part B 

CN 82.16 33.92 75 36.00 300.00 2.31 10.08 ▇▃▁▁▁ .606 
AD-C 133.26 80.58 100.00 52 300.00 1.14 -0.15 ▇▃▂▁▂ .014 
AD 184.56 92.75 157.00 47.00 300.00 -0.22 -1.51 ▇▅▂▃▇ < .001 

Global 
Communicabilityc 

CN 2.26+18 2.84+19 1.68+11 2.56+8 3.58+20 12.37 152.03 ▇▁▁▁▁ < .001 
AD-C 1.48+13 5.39+13 1.05+11 2.10+8 3.60+14 5.02 27.73 ▇▁▁▁▁ < .001 
AD 7.13+13 2.94+14 1.44+11 1.90+8 1.95+15 4.70 22.79 ▇▁▁▁▁ < .001 

Global Clustering 
Coefficient 

CN .068 .011 .070 .041 .093 -0.02 -0.35 ▁▅▇▆▂ .803 
AD-C .065 .008 .060 .046 .085 0.31 -0.24 ▂▅▇▃▂ .440 
AD .065 .009 .070 .043 .097 0.37 1.22 ▂▆▇▂▁ .167 

 
Note: Statistical moments are displayed along with visual representations of raw variable 
distributions prior to transformation. Abbreviations. AD = Alzheimer’s Disease; AD-C = AD 
Converters; CN = Cognitively Normal; HIST = Histogram; KURT = Kurtosis; M = Mean; MED 
= Median; MIN = Minimum; SD = Standard Deviation. a Significance of Shapiro-Wilk’s 
normality test; b Trail Making Part B after random forest missing data imputation; c Global 
Communicability is logarithmically distributed as expected (Mišić et al., 2015). 
 
 

Data transformation to approximate a normal distribution for linear analyses. The 

Yeo-Johnson algorithm was selected as the optimal transformation for each of the cognitive 

outcome variables using the bestNormalize R package (Estimated Normality Statistics: Logical 

Memory = 1.57; Digit Span Backward = 2.57; Trail Making Part B = 1.52). To be consistent 

with prior work and not overly distort the underlying distribution, global communicability was 
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log-transformed for linear analyses (Mišić et al., 2015). Trail making part B scores were reverse 

coded with and without imputation before transformation, to be consistent with the Logical 

Memory and Digit Span Backward assessments. 

Descriptive Statistics & Group Comparisons. A priori groups were compared across the 

neuropsychological assessments and graph theoretical metrics of interest (Figure 5). Groups were 

compared across measures using a one-way analysis of variance test correcting for multiple 

comparisons with FDR (Benjamini & Hochberg, 1995). Significant group differences were 

found on the Logical Memory (CN: M = 13.69, SD = 3.63; AD-C: M = 11.38, SD = 4.36; AD: 

M = 5.36, SD = 4.17; F(2, 293) = 121.04, p < .001), Digit Span Backward (CN: M = 6.60, SD = 

1.94; AD-C: M = 6.04, SD = 1.94; AD: M = 4.67, SD = 2.20; F(2, 293) = 25.05, p < .001), and 

Trail Making Part B (CN: M = 218.83, SD = 33.81; AD-C: M = 166.77, SD = 81.11; AD: M = 

103.31, SD = 85.94; F(2, 293) = 93.57, p < .001) assessments. Exploratory post-hoc 

comparisons were conducted using an independent t-test (uncorrected). Post-hoc comparisons 

indicated that CN, AD-C, and AD participants scored significantly different from one another on 

the Logical Memory and Trail-Making Part B Assessments (CN > AD-C > AD; all p < .05). On 

the Digit Span Backward assessment, AD participants scored lower compared to AD-C (p < .05) 

and CN participants (p < .05). No significant differences were bound between CN and AD-C 

participants on the Digit Span Backward assessment (p > .05).  

With respect to the graph theoretical metrics assessed in Aim 1, global communicability, 

log-transformed, was not found to be significantly different between groups (CN: M = 27.25, SD 

= 4.43; AD-C: M = 25.61, SD = 3.43; AD: M = 25.93, SD = 3.69; F(2, 293) = 1.60, p = 0.203; 

95% CI [0.00, 1.00]). However, global clustering coefficient was significantly different between 

the CN, AD-C, and AD groups (CN: M = .068, SD = .011; AD-C: M = .065, SD = .008; AD: M 
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= .065, SD = .009; F(2, 293) = 3.71, p = 0.026; 95% CI [1.64e-03, 1.00]). Post-hoc comparisons 

indicated that CN participants had significantly higher global clustering coefficient estimates 

compared to both the CN (p < .05) and AD (p < .05) groups. CN and AD participants did not 

differ from one another (p > .05). Global communicability (log-transformed) and global 

clustering coefficient were positively correlated (Whole sample: r = .56, p < .001; CN: r = .58, p 

< .001; AD-C: r = .46, p < .001 AD: r = .52, p < .001). 

 
Figure 5. Variable distributions & group comparisons. a) Performance on the Logical Memory, 
Digit Span Backward, and Trail Making Part B assessments are displayed by a priori group. 
Logical memory, Digit Span Backward, and Trail Making Part B scores were significantly 
different across the a priori groups (all p-fdr < .05). Post-hoc comparisons (uncorrected) 
indicated that CN, AD-C, and AD participants scored significantly different from one another on 
the Logical Memory and Trail-Making Part B Assessments (CN > AD-C > AD; all p < .05). On 
the Digit Span Backward assessment, AD participants scored lower compared to AD-C (p < .05) 
and CN participants (p < .05). No significant differences were bound between CN and AD-C 
participants on the Digit Span Backward assessment (p > .05). b) Estimates of global 
communicability (log-transformed) and global clustering coefficient are displayed by a priori 
group. Global clustering coefficient (p < .05), but not log-transformed global communicability (p 
= 0.203) estimates were significantly different across the a priori groups. Post-hoc comparisons 
indicated that CN participants had significantly higher global clustering coefficient estimates 
compared to both the CN (p < .05) and AD (p < .05) groups. CN and AD participants did not 
differ from one another (p > .05). A priori groups are color-coded (CN = blue; AD-C = green; 
AD = red). Black spheres indicate group means for each of the neuropsychological assessments 
and graph theoretical metrics. Abbreviations: AD = Alzheimer’s Disease; AD-C = AD 
Converters; CN = Cognitively Normal. **** = p < .0001; *** = p < .001; ** = p < .01; * = p < 
.05 (uncorrected); ns = non-significant. 
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Linear Regression Analyses 

Primary analysis. Six independent models were estimated using ordinary least-squares 

regression, with FDR (Benjamini & Hochberg, 1995), to assess if global communicability 

(Figure 6, panel a) and/or global clustering coefficient (Figure 6, panel b) were associated with 

performance on the Logical Memory, Digit Span Backward, and Trail Making Part B 

assessments. An interaction term was specified within each model to test for a difference in 

slopes between the CN, AD-C, and AD groups. 

Global Communicability 
 

Logical Memory. The model predicting performance on the Logical Memory assessment 

from global communicability explained a statistically significant proportion of variance (R2 = 

0.45, F(5, 290) = 47.95, p-fdr = < .0001, adj. R2 = 0.44). The model's intercept, corresponding to 

log-transformed global communicability = 0 and group = CN, was equal to 0.05 (95% CI [-0.68, 

0.78], t(290) = 0.13, p = 0.894). No significant interaction effects were observed. A statistically 

significant and negative main effect of group was found for AD participants only (beta = -1.84, 

95% CI [-3.21, -0.47], t(290) = -2.64, p = 0.009; Std. beta = -1.53, 95% CI [-1.74, -1.33]). The 

main effect of log-transformed global communicability was not significant (p = .200). All model 

effects are displayed in Table 5. 

Digit Span Backward. The model predicting performance on the Digit Span Backward 

assessment from global communicability explained a statistically significant proportion of 

variance (R2 = 0.16, F(5, 290) = 10.78, p-fdr < .0001, adj. R2 = 0.14). The model's intercept, 

corresponding to global communicability (log) = 0 and group = CN, was equal to 0.08 (95% CI 

[-0.83, 0.98], t(290) = 0.17, p = 0.866). No significant interaction or main effects were observed 

(p > .05). All model effects are displayed in Table 5. 
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Trail Making Part B. The model predicting performance on the Trail Making Part B 

assessment from global communicability (log-transformed) explained a statistically significant 

proportion of variance (R2 = 0.43, F(5, 290) = 43.35, p-fdr < .001, adj. R2 = 0.42).The model's 

intercept, corresponding to log-transformed global communicability = 0 and group = CN, was 

equal to 0.62 (95% CI [-0.13, 1.36], t(290) = 1.63, p = 0.105). A significant interaction effect 

was observed (p = .001), such that the magnitude of association between log-transformed global 

communicability and Trail Making Part B performance was greater in the AD-C group as 

compared to both the CN and AD groups (see Table 5). That is, there was a significant positive 

interaction effect such that log-transformed global communicability in AD-C group predicted 

better performance on the Trail Making Part B assessment (beta = 0.11, 95% CI [0.05, 0.18], 

t(290) = 3.36, p = .0001; Std. beta = 0.46, 95% CI [0.19, 0.72]). Main effects of group were 

statistically significant and negative (AD-C: beta = -3.52, 95% CI [-5.22, -1.82], t(290) = -4.07, p 

< .001; Std. beta = -0.57, 95% CI [-0.81, -0.32]); (AD: beta = -2.45, 95% CI [-3.86, -1.05], t(290) 

= -3.44, p < .001; Std. beta = -1.45, 95% CI [-1.66, -1.24]). 

Table 5. Model coefficients from regression models predicting cognition from global 
communicability and global clustering coefficient 

a. Global Communicability 

 Logical Memory Digit Span Backward Trail Making Part B 

  Beta 95% CI1 p-value Beta 95% CI1 p-value Beta 95% CI1 p-value 

CN — —   — —   — —   

AD-C -0.36 -2.0, 1.3 .700 -0.81 -2.9, 1.2 .400 -3.52 -4.9, -1.3 <.001 

AD -1.8 -3.2, -0.47 .009 -0.64 -2.3, 1.1 .500 -2.45 -3.3, -0.34 .016 

COMM 0.02 -0.01, 0.04 .200 0.01 -0.02, 0.04 .600 0 -0.03, 0.02 .800 

AD-C * COMM 0 -0.07, 0.06 .900 0.02 -0.06, 0.10 .600 0.11 0.05, 0.18 <.001 

AD * COMM 0.01 -0.04, 0.06 .700 -0.01 -0.07, 0.05 .800 0.04 -0.02, 0.09 .200 
 
b. Global Clustering Coefficient 
 

  Logical Memory Digit Span Backward Trail Making Part B 
  Beta 95% CI1 p-value Beta 95% CI1 p-value Beta 95% CI1 p-value 
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CN — —  — —  — —  
AD-C -0.22 -1.9, 1.4 .800 -0.4 -2.4, 1.6 .700 -1.7 -3.4, -0.05 .043 
AD -2.5 -3.9, -1.0 .001 -1.1 -2.9, 0.72 .200 -2.9 -4.4, -1.4 <.001 
CC 1.2 -9.8, 12 .800 -1.4 -15, 12 .800 .55 -11, 12 .900 
AD-C * CC -3.4 -28, 21 .800 2.2 -29, 33 .900 17 -8.9, 42 .200 
AD * CC 14 -8.2, 36 .200 2.7 -25, 30 .800 22 -0.93, 44 .060 
 
Note: a) Interaction and main effects are presented for regression models assessing linear 
relationships between performance on the Logical Memory, Digit Span Backward, and Trail 
Making Part B assessments with global communicability. b) Interaction and main effects are 
presented for regression models assessing linear relationships between performance on the 
Logical Memory, Digit Span Backward, and Trail Making Part B assessments with global 
clustering coefficient. Abbreviations: AD = Alzheimer’s Disease; AD-C = AD Converters; CC = 
Global Clustering Coefficient; CI = Confidence Interval; CN = Cognitively Normal; COMM = 
Global Communicability. Bold values indicate a statistically significant effect at p < .05. 
 

 
Figure 6. Interaction plots assessing the influence of a priori group membership on the 
relationship between redundancy-based metrics and cognition. Interaction plots are 
presented for regression models assessing linear relationships between performance on the 
Logical Memory, Digit Span Backward, and Trail Making Part B assessments with log-
transformed global communicability (top row: panels a, b, and c) and global clustering 
coefficient (bottom row: panels d, e, and f). A significant interaction effect (p < .001) was 



 

64 

observed when predicting Trail Making Part B performance from log-transformed global 
communicability by group. Specifically, higher levels of global communicability predicted better 
Trail Making Part B performance for AD-C participants. Main effects of group indicated that 
AD-C (p < .001) and AD (p = .016) participant had performed lower on average compared to CN 
participants. No other interaction effects were observed, nor were there main effects of either 
global communicability or global clustering coefficient for any of the cognitive assessments (all 
p < .05). Additional main effects were observed on the Logical Memory and Trail Making Part B 
assessments. Specifically, AD participants scored significantly lower on both the Logical 
Memory and Trail Making Part B assessments. Abbreviations: AD = Alzheimer’s Disease; AD-
C = AD Converters; CC = Global Clustering Coefficient; CN = Cognitively Normal; COMM = 
Global Communicability. *** = p < .001; ns = non-significant. 
 
Global Clustering Coefficient 
 

Logical Memory. The model predicting performance on the Logical Memory assessment 

from global clustering coefficient explained a statistically significant proportion of variance (R2 

= 0.45, F(5, 290) = 47.61, p-fdr = < .0001, adj. R2 = 0.44). The model's intercept, corresponding 

to global clustering coefficient = 0 and group = CN, was equal to 0.43 (95% CI [-0.34, 1.19], 

t(290) = 1.10, p = 0.272). No significant interaction effects were observed (p > .05). A 

statistically significant and negative main effect of group was found for AD participants only 

(beta = -2.46, 95% CI [-3.91, -1.00], t(290) = -3.31, p = .001; Std. beta = -1.54, 95% CI [-1.74, -

1.34]). All model effects are displayed in Table 5. 

Digit Span Backward. The model predicting Digit Span Backward performance from 

global clustering coefficient explained a statistically significant proportion of variance (R2 = 

0.15, F(5, 290) = 10.57, p-fdr = < .0001, adj. R2 = 0.14). The model's intercept, corresponding to 

group = CN and global clustering coefficient = 0, was equal to 0.39 (95% CI [-0.55, 1.34], t(290) 

= 0.82, p = 0.415). No significant interaction or main effects were observed (p > .05). All model 

effects are displayed in Table 5. 

Trail Making Part B. The model predicting performance on the Trail Making Part B 

assessment from global clustering coefficient explained a statistically significant proportion of 
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variance (R2 = 0.41, F(5, 290) = 40.70, p-fdr = < .0001, adj. R2 = 0.40). The model's intercept, 

corresponding to group = CN and global clustering coefficient = 0, was equal to 0.49 (95% CI [-

0.30, 1.28], t(290) = 1.22, p = 0.222). No significant interaction effects were observed (p > .05). 

A statistically significant and negative main effect of group was found for both AD-C (beta = -

1.75, 95% CI [-3.44, -0.05], t(290) = -2.03, p = 0.043; Std. beta = -0.63, 95% CI [-0.87, -0.39]) 

and AD participants (beta = -2.89, 95% CI [-4.40, -1.38], t(290) = -3.76, p < .001; Std. beta = -

1.44, 95% CI [-1.65, -1.23]). All model effects are displayed in Table 5. 

Post-Hoc Exploratory Analyses 

Trail Making Part B. A significant group by global communicability (log-transformed) 

interaction effect was observed for the model predicting Trail Making Part B performance. To 

ensure the significant interaction effect was not due to the use of imputation or transformation, 

additional regression models were run using only observations with Trail Making Part B data, 

before and after transformation. Here, the interaction between group status and global 

communicability in the model predicting Trail Making Part B performance remained significant 

when constructed on data without missing data imputation, and both before and after 

transformation (before transformation: R2 = 0.35, F(5, 269) = 29.31, p < .001, adj. R2 = 0.34; 

after transformation: R2 = 0.36, F(5, 269) = 30.00, p < .001, adj. R2 = 0.35). Model intercepts, 

corresponding to global communicability = 0 and group = CN, were 0.52 (95% CI [-0.26, 1.30], 

t(290) = 1.31, p = 0.190) before transformation, and at 0.54 (95% CI [-0.25, 1.33], t(269) = 1.34, 

p = 0.183) after transformation. All model effects are shown in Table 6.  

Table 6. Coefficients from the post-hoc regression models predicting Trail Making Part B 
performance from global communicability and global clustering coefficient 

 
 No NA No NA + Transformed 

  Beta 95% CI p-value Beta 95% CI p-value 
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CN — —  — — — — 

AD-C -279 -416, -141 <.001 -3.6 -5.4, -1.8 <.001 

AD -194 -326, -62 .004 -2.4 -4.1, -0.65 .007 

COMM -0.30 -2.5, 1.9 .800 0 -0.03, 0.03 .800 

AD-C * COMM 8.90 3.6, 14 .001 0.11 0.04, 0.18 .001 

AD * COMM 3.50 -1.5, 8.5 .200 0.04 -0.03, 0.11 .200 
 
Note: Interaction and main effects are presented for regression models assessing linear 
relationships between performance on the Trail Making Part B assessments with global 
communicability after removing observations with missing data. Coefficients are shown for the 
models conducted without missing data imputation, before and after transformation. 
Abbreviations: AD = Alzheimer’s Disease; AD-C = AD Converters; CI = Confidence Interval; 
CC = Global Clustering Coefficient; CN = Cognitively Normal; COMM = Global 
Communicability. Bold values indicate a statistically significant effect at p < .05. 
 

Additionally, as stated in the Research Plan section, diagnostics were also inspected for 

the model with a significant interaction term. Although transformation overall resulted in 

improved residual diagnostics, the transformation may still not be accounting for floor effects 

observed in the Trail Making Part B assessment, as indicated by the vertical grouping of data 

points in the residuals vs fitted plot (Figure 7). The curvature in the residuals may also indicate 

the presence of non-linear relationships between Trail Making Part B performance and global 

communicability. Thus, a censored regression model was next fit to the data to assess if the 

significant positive relationship between global communicability in the AD-C group was robust 

to floor effects present in the data. 
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Figure 7. Diagnostic plots for the regression model predicting Trail Making Part B 
performance from global communicability before and after transformation. Model 
diagnostics were inspected to assess the robustness of the interaction effect. a) Prior to 
transformation, diagnostic plots indicate the presence of non-normally distributed residuals. b), 
after transformation, diagnostic plots indicate a relatively acceptable degree of residual 
normality. However, the model may be biased by the presence of floor effects in Trail Making 
Part B scores. 

Trail Making Part B Censored Regression Model. The censored regression model 

predicting performance on the Trail Making Part B assessment from global communicability 

(log-transformed) explained a statistically significant proportion of variance (Pseudo R2 = 0.24, 

Wald-statistic (5, 290) = 117.5, p-fdr = < .001).The model's intercept, corresponding to log-

transformed global communicability = 0 and group = CN, was equal to 0.56 (95% CI [0.14, 

0.98], t(290) = 2.64, p = 0.008). A significant interaction effect was observed (p = .01), such that 

the magnitude of association between log-transformed global communicability and Trail Making 

Part B performance was greater in the AD-C group as compared to both the CN and AD groups 

(see Table 7). That is, there was a significant positive interaction effect with log-transformed 

global communicability for the AD-C group only (beta = 0.05, 95% CI [0.11, 0.09], z(290) = 



 

68 

2.55, p = .01). A statistically significant and negative main effect was observed for the AD-C 

group only (AD-C: beta = -1.62, 95% CI [-2.63, -0.62], z(290) = -3.16, p = .001). 

Table 7. Coefficients from the post-hoc censored regression model predicting Trail Making 
Part B performance from global communicability. 

 Trail Making Part B 
  Beta 95% CI p-value 

CN — —   

AD-C -1.62 -2.63, -0.62 .002 

AD -0.77 -1,72, 0.18 .113 

COMM 0 -0.02, 0.15 .940 

AD-C * COMM 0.05 0.01, 0.09 .011 

AD * COMM 0.001 -0.34, 0.38 .924 
 
Note: a) Interaction and main effects for the censored regression model. After accounting for 
floor effects, the interaction between Trail Making Part B performance and global 
communicability remained statistically significant for the AD-C group (p = .011). A main effect 
of group for AD-C participants was also observed such that AD-C participants exhibited lower 
levels of global communicability compared to both CN and AD participants (p = .002). No main 
effect was observed for AD participants after accounting for floor effects (p = .113). 
Abbreviations: AD = Alzheimer’s Disease; AD-C = AD Converters; CI = Confidence Interval; 
CN = Cognitively Normal; COMM = Global Communicability. Bold values indicate a 
statistically significant effect at p < .05. 
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CHAPTER 6: AIM 2 RESULTS 
 

Aim 2 sought to establish whether a combination of core demographic risk factors (age, 

sex, and education), cognitive measures, and weighted functional network metrics could 

accurately distinguish CN, AD-C, and AD individuals using supervised machine learning. A 

primary goal of Aim 2 was to understand which participants may be at a greater risk of 

converting to AD using baseline assessments. 

Quality Control 

Before analyses, multicollinearity was assessed between the set of 3 demographic factors, 

9 metrics assessing cognitive performance, and 9 graph-theoretical metrics. Multicollinearity was 

assessed across the whole sample, as well as for each a priori group separately (Figure 8). No 

pair of features exhibited a positive correlation of .85 or greater (see Methods) when assessed 

across the whole sample, or within a priori groups. Thus no features were excluded prior to 

analysis. Descriptive statistics for all features used in the supervised and unsupervised learning 

models, as well as MMSE scores, and CDR-SB ratings are provided in Table 8 and Figure 9. 
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Figure 8. Feature correlation plots by a priori group. For each of the a priori defined groups 
(CN, AD-C, AD), pairwise correlations are shown for the set of 3 demographic factors, 9 metrics 
assessing cognitive performance, and 9 graph-theoretical metrics used for supervised and 
unsupervised classification. Warmer colors signify features that are more positively correlated 
with one another. Cooler colors signify features that are more negatively correlated with one 
another. The size of a circle indicates the strength of correlation between features. Abbreviations: 
AD = Alzheimer’s disease; AD-C = AD Converters; CN = Cognitively Normal; DIGIF = Digit 
Span Forward; DIGIB = Digit Span Backward; CC = Clustering Coefficient; COMM = 
Communicability; EC = Eigenvector Centrality; ED = Education; GE = Global Efficiency; 
LOGIMEM = Logical Memory; MOD = Modularity; PC = Participation Coefficient; PT = Path 
Transitivity; SWP = Small-World Propensity; TRAILA = Trail Making Test Part A; TRAILB = 
Trail Making Test Part B; VEG = Vegetable Naming (Category Fluency); WAIS = Weschler 
Adult Intelligence Scale; WMD = Within-Module Degree Z-Score. 

 
Descriptive Statistics 

Features used for supervised and unsupervised learning, and measures important for 

diagnostic classification (MMSE and CDR-SB) not used for prediction, were compared across 

the a priori groups (CN, AD-C, AD) using a one-way analysis of variance test corrected for 

multiple comparisons with FDR (Benjamini & Hochberg, 1995). Groups were significantly 

different on age (CN: M = 71, SD = 6; AD-C: M = 79, SD = 8; AD: M = 76, SD = 8; F(2, 293) = 

31.07, p-fdr < .001; Eta2 = 0.17, 95% CI [0.11, 1.00]) and education level (CN: M = 9.95, SD = 

2.58; AD-C: M = 9.64, SD = 2.36; AD: M = 8.47, SD = 3.24; F(2, 293) = 7.96, p-fdr < .001; 

Eta2 = 0.05, 95% CI [0.02, 1.00]). Sex was not significantly different between groups (CN: 
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Female = 53%, Male = 47%; AD-C: Female = 52%, Male = 48%; AD: Female = 59%, Male = 

41%; x2(2) = 7.96, p-fdr = .600). The CN, AD-C, and AD groups performed significantly 

different on the battery of neuropsychological assessments (all p-fdr < .001).  

Concerning graph-theoretical metrics, CN, AD-C, and AD participants significantly 

differed on global clustering coefficient (CN: M = .068, SD = .011; AD-C: M = .065, SD = .008; 

AD: M = .065, SD = .009; F(2, 293) = 3.71, p = 0.026; 95% CI [1.64e-03, 1.00]), global 

efficiency (CN: M = .182, SD = .014; AD-C: M = .175, SD = .012; AD: M = .176, SD = .012; 

F(2, 293) = 6.55, p-fdr = .002; Eta2 = 0.04, 95% CI [0.01, 1.00]), global path transitivity (CN: M 

= .697, SD = .020; AD-C: M = .689, SD = .019; AD: M = .690, SD = .019; F(2, 293) = 4.95, p-

fdr = 0.010; Eta2 = 0.03, 95% CI [5.10e-03, 1.00]), global modularity (CN: M = .090, SD = .021; 

AD-C: M = .096, SD = .025; AD: M = .085, SD = .019; F(2, 293) = 4.98, p-fdr = 0.01; Eta2 = 

0.03, 95% CI [5.20e-03, 1.00]), and global participation coefficient estimates (CN: M = .838, SD 

= .014; AD-C: M = .835, SD = .015; AD: M = .842, SD = .012; F(2, 293) = 5.65, p-fdr = .006; 

Eta2 = 0.04, 95% CI [7.34e-03, 1.00]). A priori groups did not significantly differ on global 

communicability (CN: M = 27.25, SD = 4.43; AD-C: M = 25.61, SD = 3.43; AD: M = 25.93, SD 

= 3.69; F(2, 293) = 1.60, p-fdr = 0.203; 95% CI [0.00, 1.00]), global eigenvector centrality (CN: 

M = 0.050, SD = 0.003; AD-C: M = 0.0523, SD = 0.003; AD: M = 0.053, SD = 0.003; F(2, 293) 

= 1.03, p-fdr = 0.400, Eta2 = 6.95e-03, 95% CI [0.00, 1.00]), within-module degree z-score (CN: 

M = -0.05, SD = 0.99; AD-C: M = 0.14, SD = 0.87; AD: M = 0.00, SD = 1.09; F(2, 293) = 0.79, 

p-fdr = 0.500, Eta2 = 5.33e-03, 95% CI [0.00, 1.00]), or small-world propensity (CN: M = 0.60, 

SD = 0.05; AD-C: M = 0.61, SD = 0.05; AD: M = 0.59, SD = 00.05; F(2, 293) = 2.86, p-fdr = 

0.071, Eta2 = 0.02, 95% CI [0.00, 1.00]). 
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Exploratory post-hoc comparisons were conducted using independent t-tests 

(uncorrected). Several significant findings were observed. AD-C participants were older on 

average (Mean age = 79) compared to both the CN (Mean age = 71; p-fdr < .001 ) and AD 

(Mean age = 76; p-fdr = .009) groups. The AD group had the lowest education levels compared 

to the CN (p-fdr < .001) and AD-C ( p-fdr = .009) groups. In addition to demographic factors, 

CN and AD participants were found to differ on all neuropsychological assessments (all p-fdr < 

.001) and graph-theoretical metrics (p < .05) except for global communicability, global 

eigenvector centrality, and within-module degree z-score (p-fdr > .05). Overall, AD-C scored 

lower than CN, but higher than AD on the battery of neuropsychological assessments (CN > AD-

C > AD-C; Table 8; Figure 8). AD-C differed significantly from CN and AD on 7 of 9 

neuropsychological assessments (Logical Memory, WAIS, Trail Making Part A, Trail Making 

Part B, Animal Naming, Vegetable Naming, Boston Naming Test; all p-fdr < .001). AD-C did 

not differ from either the CN or AD groups on the Digit Span Forward (DIGIF; p-fdr = .400) or 

Digit Span Backward (DIGIB; p-fdr = .072) assessments. 

Several patterns were observed when comparing network topology across the CN, AD-C, 

and AD a priori groups. AD-C participants had lower global clustering coefficient (p = .03), 

global efficiency (p = .003), and path transitivity (p = .008) compared to CN, and lower 

estimates of global participation coefficient as compared to AD participants (p = 001). 

Conversely, compared to AD participants only, AD-C participants had higher estimates of 

modularity (p-fdr = 002) and small-world propensity (p-fdr = 038). No significant differences 

were observed when comparing a priori groups on global communicability, global eigenvector 

centrality, or within-module degree z-score (all p-fdr > .05). MMSE scores were found to be 
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significantly lower (CN > AD-C > AD, and CDR-SB ratings significantly higher (CN < AD-C < 

AD), in the patient groups (all p-fdr = < .001). 

Table 8. General statistical comparison of features across a priori groups. 

Predictive Features CN 
N = 1591 

AD-C 
N = 561 

AD 
N = 811 STAT2 p-fdr3 

CN  
vs. 

AD-C 

CN  
vs.  
AD 

AD-C 
vs.  
AD 

Age 71 (6) 79 (8) 76 (8) 31 <.001 <.001 <.001 .009 
Education 9.95 (2.58) 9.64 (2.36) 8.47 (3.24) 8 <.001 .500 <.001 .014 
Sex -- -- -- 1 .600 .800 .400 .400 

Female 85 (53%) 29 (52%) 48 (59%) -- -- -- -- -- 
Male 74 (47%) 27 (48%) 33 (41%) -- -- -- -- -- 

Logical Memory 13.7 (3.6) 11.4 (4.4) 5.4 (4.2) 121 <.001 <.001 <.001 <.001 
WAIS 58 (11) 45 (13) 34 (15) 97 <.001 <.001 <.001 <.001 
Digit Span Forward 8.52 (2.06) 8.29 (1.69) 7.27 (1.97) 11 <.001 .400 <.001 .002 
Digit Span Backward 6.60 (1.94) 6.04 (1.87) 4.67 (2.20) 25 <.001 .072 <.001 <.001 
Trail Making Part A 149 (11) 137 (25) 120 (41) 36 <.001 .002 <.001 <.001 
Trail Making Part B 219 (34) 167 (81) 103 (86) 94 <.001 <.001 <.001 <.001 
Animal Naming 21 (5) 17 (5) 12 (5) 86 <.001 <.001 <.001 <.001 
Vegetable Naming 14.8 (4.1) 11.7 (4.1) 8.3 (3.9) 69 <.001 <.001 <.001 <.001 
Boston Naming Test 27.7 (2.4) 26.2 (3.8) 21.3 (5.8) 76 <.001 .013 <.001 <.001 

Global Communicability 26.9 (4.6) 25.8 (3.5) 26.5 (3.5) 1.6 .200 .076 .500 .300 
Global Clustering Coefficient 0.068 (0.011) 0.065 (0.009) 0.065 (0.009) 3.7 .033 .030 .028 .800 
Global Efficiency  0.182 (0.014) 0.175 (0.012) 0.176 (0.012) 6.5 .002 .002 .006 .600 
Global Path Transitivity 0.697 (0.020) 0.689 (0.019) 0.690 (0.019) 4.9 .010 .008 .018 .600 
Global Eigenvector Centrality  0.05 (0.003) 0.0523 (0.003) 0.053 (0.003) 1 .400 .500 .300 .200 
Global Modularity  0.090 (0.021) 0.096 (0.025) 0.085 (0.019) 5 .010 .067 .058 .002 
Global Participation Coefficient  0.838 (0.014) 0.835 (0.015) 0.842 (0.012) 5.7 .006 .081 .027 .001 
Within-Module Degree Z-Score -0.05 (0.99) 0.14 (0.87) 0.00 (1.09) 0.79 .500 .200 .700 .400 
Small-World Propensity 0.60 (0.05) 0.61 (0.05) 0.59 (0.05) 2.9 .071 .600 .037 .038 

MMSE† 29.1 (1.2) 27.0 (3.7) 23.7 (4.1) 98 <.001 <.001 <.001 <.001 
CDR-SB† 0.02 (0.09) 1.32 (1.88) 4.27 (2.64) 189 <.001 <.001 <.001 <.001 

 
Note: Average performance on neuropsychological assessments and estimates of graph-
theoretical metrics are compared across the a priori groups. CN and AD participants differed on 
all neuropsychological assessments and graph-theoretical metrics except for global 
communicability (COMM), global eigenvector centrality (EC), and within-module degree z-
score (WMD) (all p < .05). No differences were observed across groups for COMM, EC, or 
WMD. AD-C differed from CN and AD on all neuropsychological assessments except Digit 
Span Forward (DIGIF) and Digit Span Backward (DIGIB). AD-C participants had lower 
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estimates of global clustering coefficient (CC), global efficiency (GE), and path transitivity (PT) 
compared to CN. AD-C participants had higher estimates of modularity (MOD) and small-world 
propensity (SWP), and lower estimates of global participation coefficient (PC) compared to AD 
participants. MMSE scores were significantly lower, and CDR-SB ratings significantly higher in 
the patient groups. All significance levels are set to an uncorrected alpha of .05 for visual 
comparisons. Abbreviations: AD = Alzheimer’s disease; AD-C = AD Converters; CDR-SB = 
Clinical Dementia Rating Scale Sum of Boxes ; CN = Cognitively Normal; MMSE = Mini-
mental state examination; STAT = Test Statistic. 1Mean (SD); n (%); 2 One-way ANOVA; 
Pearson's Chi-squared test; 3False discovery rate correction for multiple testing; † Not used in 
any prediction models. Bold values indicate a statistically significant at p < .05 
 

 
Figure 9. General statistical comparison of features across a priori groups. Average 
performance on neuropsychological assessments and estimates of graph theoretical metrics are 
compared across the a priori groups. CN and AD participants differed on all neuropsychological 
assessments (p < .05) and graph theoretical metrics except for global communicability (COMM), 
global eigenvector centrality (EC), and within-module degree z-score (WMD). No differences 
were observed across groups for COMM, EC, or WMD. AD-C differed from CN and AD on all 
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neuropsychological assessments except Digit Span Forward (DIGIF) and Digit Span Backward 
(DIGIB). AD-C participants had lower global clustering coefficient (CC), global efficiency (GE), 
and path transitivity (PT) compared to CN. AD-C participants had higher estimates of modularity 
(MOD) and small-world propensity (SWP), and lower estimates of global participation 
coefficient (PC) compared to AD participants. All significance levels are set to an uncorrected 
alpha of .05 for visual comparisons. For descriptive statistics and corrected p-values, see Table 8. 
All variables have been centered and scaled for visualization purposes. Colors represent a priori 
groups an CN (blue), AD-C (green), AD (red). Abbreviations: AD = Alzheimer’s disease; AD-C 
= AD Converters; CN = Cognitively Normal; DIGIF = Digit Span Forward; DIGIB = Digit Span 
Backward; CC = Clustering Coefficient; COMM = Communicability; EC = Eigenvector 
Centrality; ED = Education; GE = Global Efficiency; LOGIMEM = Logical Memory; MOD = 
Modularity; PC = Participation Coefficient; PT = Path Transitivity; SWP = Small-World 
Propensity; TRAILA = Trail Making Test Part A; TRAILB = Trail Making Test Part B; VEG = 
Vegetable Naming (Category Fluency); WAIS = Weschler Adult Intelligence Scale; WMD = 
Within-Module Degree Z-Score. **** = p < .0001; *** = p < .001; ** = p < .01; * = p < .05 
(uncorrected); ns = non-significant. 

Supervised Learning To Classify Participants Into A Priori Groups  

Model 1: Prediction of a priori group status without subsampling. A supervised random 

forest model containing all participants comprised of 3 demographic factors (age, education, and 

sex), 9 metrics assessing cognitive performance (Logical Memory: total elements correctly 

recalled; WAIS-R Digit Symbol Test: total number of symbols correctly matched; Digit Span 

Forward: number of digits recalled in sequential order; Digit Span Backward: number of digits 

recalled in reverse order; Trail Making Test Parts A & B: total number of errors; Category 

Fluency: total animals and vegetables named; Boston Naming Test: total objects correctly 

identified), and 9 graph-theoretical metrics (global communicability, global clustering 

coefficient, global efficiency, global path transitivity, global eigenvector centrality, global 

modularity, global participation coefficient, small-world propensity, within-module degree z-

score) was used to classify participants into a priori groups (CN: N = 159; AD-C: N = 56, and 

AD: N = 81).  

Average cross-validated model accuracy was 74.4%, with an AUC of .87, sensitivity of 

.63, specificity of .84, kappa of .54, F1 score of .63, and a balanced accuracy of 73.4%. 
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Permutation testing with 1000 iterations indicated that the final model was significant compared 

to random chance (out-of-bag error: 0.253; Random model out-of-bag error: 0.507; permutation 

p < .0001). Model 1 classified 220 of 296 participants correctly: 147 of 159 CN (92.45%), 10 of 

56 AD-C (17.86%), and 63 of 81 AD (77.78%). CN participants were equally likely to be 

misclassified as either AD-C (N=5) or AD (N=7). Of the 18 AD participants misclassified, 16 

were misclassified as CN, and two were misclassified as AD-C. Here, AD-C participants were 

more likely to be misclassified as CN (N = 32) or AD (N = 14). 

The 5 highest-ranked predictors included performance on the Logical Memory (21.66%), 

WAIS (19.10%), Trail Making Part B (15.34%), and animal (18.12%) and vegetable (14.50%) 

naming (Category Fluency) assessments (Figure 10, panel a). As a multiclass classification 

problem, in addition to overall predictive performance, features are ranked by the degree to 

which they can distinguish a specific class. Assessing class-specific feature importance, features 

were best able to discriminate CN and AD participants (Average feature importance: CN = 

6.36%; AD = 4.93%). However, consistent with the low classification accuracy for AD-C 

participants (Accuracy = 17.86%), most feature importance scores were near or below 0. Thus, 

most features were not useful when attempting to distinguish AD-C from CN and/ AD 

participants (Average feature importance = 0.74%). The top-ranked predictors, specific to the 

AD-C group, were age (9.63 %), modularity (6.60%), vegetable naming (VEG; 2.58%), and 

global path transitivity (PT; 2.53%) most contributed to accurate classification of AD-C (N=10) 

participants. 
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Figure 10. Feature importance with and without subsampling. Feature importance weights 
are displayed for the supervised random forest models classifying a priori groups, before and 
after SMOTE subsampling. Feature importance is displayed here as the expected drop in 
accuracy should that feature be removed from the respective model. The mean decrease in 
accuracy (black) represents the decrease in classification accuracy averaged across classes. 
Scores are scaled by their standard deviation and thus can be negative. Class-specific feature 
importance weights are color-coded by a priori classes (CN = blue; AD-C = green, AD = red). a) 
Features are shown for Model 1 without correcting for the imbalance of observations between a 
priori groups. All features, except global communicability (COMM), had average importance 
scores above 0, and thus contributed to the classification of a priori groups. b) Feature 
importance is shown for Model 2. In Model 2, SMOTE subsampling was applied to each training 
sample during cross-validation. Adjusting for class imbalance with SMOTE, features were able 
to distinguish between all three classes with feature importance scores greater than 0.Age was 
the top-performing feature, and both global participation coefficient (PC) and modularity (MOD) 
were weighted more heavily. Abbreviations: AD = Alzheimer’s disease; AD-C = AD 
Converters; CN = Cognitively Normal; DIGIF = Digit Span Forward; DIGIB = Digit Span 
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Backward; CC = Clustering Coefficient; COMM = Communicability; EC = Eigenvector 
Centrality; ED = Education; GE = Global Efficiency; LOGIMEM = Logical Memory; MOD = 
Modularity; PC = Participation Coefficient; PT = Path Transitivity; SWP = Small-World 
Propensity; TRAILA = Trail Making Test Part A; TRAILB = Trail Making Test Part B; VEG = 
Vegetable Naming (Category Fluency); WAIS = Weschler Adult Intelligence Scale; WMD = 
Within-Module Degree Z-Score. 
 

Assessing characteristics of AD-C participants who were classified correctly to those 

misclassified as CN or AD. After supervised random forest modeling, AD-C participants who 

were correctly classified (AD-C) were compared to those who were misclassified as CN (AD-C–

CN) or AD (AD-C–AD) on demographic, neuropsychological, and graph-theoretical metrics 

used for classification, as well as the MMSE and CDR-SB. Omnibus tests were conducted using 

a one-way analysis of variance corrected for multiple comparisons using the false-discovery rate 

(Benjamini & Hochberg, 1995). AD-C participants correctly classified or misclassified as either 

CN or AD differed significantly on age and across the battery of neuropsychological assessments 

(all p-fdr < .05; Table 9). AD-C participants correctly classified or misclassified as either CN 

(AD-C–CN) or AD (AD-C–AD) did not significantly differ on education (AD-C–CN: M = 

10.09; SD = 2.22; AD-C: M = 9.00; SD = 1.63; AD-C–AD: M = 9.07; SD = 2.97; F(2, 53) = 

1.38, p-fdr = 0.400; Eta2 = 0.05, 95% CI [0.00, 1.00]) or sex (AD-C–CN: Female = 56%; Male = 

44%; AD-C: Female = 50%; Male = 50%; AD-C–AD: Female = 43%; Male = 57%; x2(2) = 

0.72, p-fdr = .900). 

Exploratory follow-up comparisons were conducted using pairwise t-tests (uncorrected). 

Compared to AD-C participants who were misclassified as CN (AD-C–CN), participants 

correctly classified (AD-C) were on average older (AD-C: M = 83; SD = 6; AD-C–CN: M = 77; 

SD = 8; t(19.81) = 2.75, p = 0.019), and scored lower on three out of nine neuropsychological 

assessments (Table 9; Figure 11, panel a). Specifically, AD-C participants who were correctly 

classified had poorer attention, executive functioning, and semantic fluency as assessed by the 
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WAIS (AD-C: M = 36; SD = 8; AD-C–CN: M = 53; SD = 11; t(19.88) = 5.02, p < .001), Trail 

Making Part B (AD-C: M = 144; SD = 72; AD-C–CN: M = 210; SD = 45; t(19.88) = 5.02, p = 

.005), and animal naming (Category Fluency) (AD-C: M = 15.1; SD = 3.0; AD-C–CN: M = 

19.5; SD = 4.6; t(23.48) = 3.54, p = .004) assessments.  

Compared to those misclassified as CN (AD-C–CN), AD-C participants misclassified as 

AD (AD-C–AD) were older (AD-C–AD: M = 82; SD = 7; AD-C–CN: M = 77; SD = 8; t(28.28) 

= 2.23, p = .033) and performed significantly worse on all neuropsychological assessments (all p 

< .05; Table 9). Additionally, compared to correctly classified AD-C participants, AD-C 

participants misclassified as AD (AD-C–AD) performed worse on the Logical Memory (AD-C: 

M = 11.8; SD = 4.0; AD-C–AD: M = 6.9; SD = 4.4; t(20.76) = -2.82; p < .002), Trail Making 

Part B (AD-C: M = 144; SD = 72; AD-C–AD: M = 85; SD = 86; t(21.35) = -1.80; p < .028), 

vegetable naming (Category Fluency) (AD-C: M = 12.2; SD = 3.1 AD-C–AD: M = 8.7; SD = 

4.1; t(21.89) = -2.38; p < .032), and Boston Naming (AD-C: M = 27.1; SD = 3.3; AD-C–AD: M 

= 22.4; SD = 5.1; t(21.87) = -2.76; p < .001) assessments. 

No omnibus group differences were observed for any of the graph-theoretical metrics 

assessed (all p-fdr > .05; (Table 9; Figure 11, panel b). In exploratory post-hoc comparisons, 

compared to AD-C misclassified as CN (AD-C–CN), correctly classified AD-C participants 

exhibited significant reductions in global clustering coefficient (AD-C: M = .060; SD = .007; 

AD-C–CN: M = .067; SD = .009; t(19.30) = -2.50, p = .028) and global efficiency (AD-C: M = 

.168; SD = .014; AD-C–CN: M = .178; SD = .011; t(12.49) = -2.15, p = .017). Additionally, AD-

C participants misclassified as AD (AD-C–AD), exhibited reductions in global path transitivity 

compared to AD-C misclassified as CN (AD-C–CN) (AD-C–CN: M = .694; SD = .021; AD-C–

AD: M = .681; SD = .014; t(38.97) = -2.39, p = .047). No significant pairwise differences were 
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observed for any of the graph metrics assessed between correctly classified AD-C participants 

and those misclassified as AD (all p > .05).  

Concerning diagnostic variables not used for prediction, no significant group differences 

were observed on either the MMSE (AD-C–CN: M = 27.19; SD = 2.46; AD-C: M = 25.60; SD = 

7.14; AD-C–AD: M = 27.71; SD = 2.37; F(2, 52) = 1.02, p-fdr = 0.500; Eta2 = 0.04, 95% CI 

[0.00, 1.00]) or CDR-SB (AD-C–CN: M = 1.22; SD = 1.52; AD-C: M = 1.60; SD = 3.18; AD-

C–AD: M = 1.36; SD = 1.56; F(2, 53) = 0.15, p-fdr = 0.900; Eta2 = 5.79e-03, 95% CI [0.00, 

1.00]). All statistical comparisons are reported in Table 9. 

Table 9. Comparing AD-C participant characteristics correctly classified as AD-C or 
misclassified as CN or AD. 

Predictive Features AD-C–CN 
N = 321 

AD-C 
N = 101 

AD-C–AD, 
N = 141 STAT2 p-fdr3 

AD-C–
CN  
vs.  

AD-C 

AD-C–
CN  
vs.  

AD-C–
AD 

AD-C  
vs. 

AD-C–
AD 

Age 77 (8) 83 (6) 82 (7) 4.2 .049 .019 .033 .700 
Education 10.09 (2.22) 9.00 (1.63) 9.07 (2.97) 1.4 .400 .200 .200 >.900 
Sex     .900 .700 .400 .700 

Female 18 (56%) 5 (50%) 6 (43%)      
Male 14 (44%) 5 (50%) 8 (57%)      

Logical Memory 13.2 (2.9) 11.8 (4.0) 6.9 (4.4) 15 <.001 .300 <.001 .002 
WAIS 53 (11) 36 (8) 35 (9) 20 <.001 <.001 <.001 .700 
Digit Span Forward 8.8 (1.6) 8.0 (1.5) 7.2 (1.5) 5.45 .018 .140 .002 .200 
Digit Span Backward 6.53 (1.85) 6.10 (1.45) 4.86 (1.75) 4.4 .047 .500 .005 .094 
Trail Making Part A 146 (11) 132 (22) 121 (39) 6.1 .015 .092 .001 .300 
Trail Making Part B 210 (45) 144 (72) 85 (86) 20 <.001 .005 <.001 .028 
Animal Naming 19.5 (4.6) 15.1 (3.0) 13.1 (3.0) 14 <.001 .004 <.001 .200 
Vegetable Naming 12.8 (3.9) 12.2 (3.1) 8.7 (4.1) 5.8 .016 .600 .001 .032 
Boston Naming Test 27.6 (1.8) 27.1 (3.3) 22.4 (5.1) 14 <.001 .700 <.001 <.001 
Global Communicability4 25.8 (3.7) 26.6 (2.7) 25.2 (3.8) 0.46 0.7 .500 .600 .300 
Global Clustering Coefficient 0.067 (0.009) 0.060 (0.007) 0.062 (0.008) 3.2 .092 .028 .088 .500 
Global Efficiency  0.178 (0.011) 0.168 (0.014) 0.173 (0.012) 3.3 .092 .017 .200 .300 
Global Path Transitivity 0.694 (0.021) 0.681 (0.016) 0.682 (0.013) 3.2 .092 .054 .047 .900 
Global Eigenvector Centrality  0.052 (0.004) 0.052 (0.003) 0.053 (0.002) 0.53 .700 >.900 .300 .500 
Global Modularity  0.099 (0.025) 0.100 (0.021) 0.087 (0.025) 1.3 .400 >.900 .130 .200 
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Global Participation Coefficient  0.833 (0.015) 0.832 (0.015) 0.840 (0.015) 1 .500 .900 .200 .200 
Within-Module Degree Z-Score 0.01 (1.10) 0.19 (0.66) -0.15 (1.00) 0.33 .800 .600 .600 .400 
Small-World Propensity 0.62 (0.06) 0.59 (0.05) 0.59 (0.04) 2.7 .130 .100 .054 >.900 

MMSE† 27.19 (2.46) 25.60 (7.14) 27.71 (2.37) 1 .500 .200 .700 .200 
CDR-SB† 1.22 (1.52) 1.60 (3.18) 1.36 (1.56) 0.15 .900 .600 .800 .800 

 
Note: A supervised random forest model was used to classify participants into a priori groups 
based on the combination of demographic, neuropsychological, and graph-theoretical metrics. 
Post-hoc analyses assessed if AD-C participants who were correctly classified (AD-C), differed 
from those misclassified as CN (AD-C–CN) or AD (AD-C–CN) across the set of features used 
for classification. Groups were also compared on the MMSE and CDR-SB. Overall, the 
predicted groups significantly differed on the battery neuropsychological assessments. In 
contrast, groups were found to have similar network topology on average. However, post-hoc 
comparisons suggested that the predicted groups may exhibit different levels of global clustering 
coefficient and global efficiency. The predicted AD-C groups were not found to differ on either 
the MMSE or CDR-SB assessments. Abbreviations: AD = Alzheimer’s disease; AD-C = AD 
Converters; CDR-SB = Clinical Dementia Rating Scale Sum of Boxes ; CN = Cognitively 
Normal; MMSE = Mini-mental state examination; STAT = Test Statistic. 1Mean (SD); n (%); 
2One-way ANOVA; Pearson's Chi-squared test; 3False discovery rate correction for multiple 
testing; 3 Global Communicability was log-transformed before calculation of descriptive 
statistics; † Not used in any prediction models. Bold values indicate a statistically significant at 
p < .05. 
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Figure 11. Supervised random forest classification of AD-C participants. a) AD-C participants correctly 
classified (AD-C; N = 10; 17.86%), are compared to AD-C classified as CN (AD-C–CN; N = 30; 53.57%), or 
AD (AD-C–AD; N = 16; 28.57%) on neuropsychological assessments. b) AD-C participants correctly 
classified as CN, are compared to AD-C classified as CN (AD-C–CN) or AD (AD-C–AD) on graph-theoretical 
metrics. No omnibus group differences were observed for any of the graph-theoretical metrics assessed. 
However, post-hoc comparisons suggest that AD-C participants exhibit reductions in global clustering 
coefficient and global efficiency compared to AD-C classified as CN (AD-C–CN), and that AD-C–CN 
participants have increased small-world propensity and global path transitivity compared to AD-C participants 
who were classified correctly of as AD (AD-C–AD). All variables have been centered and scaled for 
visualization purposes. Colors represent the a priori group an AD-C participant was classified as. In the 
legend, AD-C classified as CN (AD-C–CN) are colored blue, AD-C correctly classified in green, and AD-C 
classified as AD (AD-C–AD) in red. Abbreviations: AD = Alzheimer’s disease; AD-C = AD Converters; AD-
C–CN = AD-C Classified as Cognitively Normal; AD-C–AD = AD-C Classified as AD; CN = Cognitively 
Normal; DIGIF = Digit Span Forward; DIGIB = Digit Span Backward; CC = Clustering Coefficient; COMM 
= Communicability; EC = Eigenvector Centrality; ED = Education; GE = Global Efficiency; LOGIMEM = 
Logical Memory; MOD = Modularity; PC = Participation Coefficient; PT = Path Transitivity; SWP = Small-
World Propensity; TRAILA = Trail Making Test Part A; TRAILB = Trail Making Test Part B; VEG = 
Vegetable Naming (Category Fluency); WAIS = Weschler Adult Intelligence Scale; WMD = Within-Module 
Degree Z-Score. 
 

 

a. Neuropsychological Assessments

b. Graph Theoretical Metrics

ST
AN

DA
RD

IZ
ED

  S
CO

RE
S

ST
AN

DA
RD

IZ
ED

  M
ET

RI
CS

BOSTONANIMALS DIGIB LOGIMEMDIGIF TRAILB WAISVEGTRAILA

COMMCC MODGE SWPPTEC PC WMD



 

83 

Model 2. Prediction of a priori group status with subsampling to account for class 

imbalance. As in Model 1, a supervised random forest model, comprised of 3 demographic 

factors, 9 metrics assessing cognitive performance, and 9 graph-theoretical metrics was used to 

classify participants into a priori groups (CN: N = 159; AD-C: N = 56, and AD: N = 8181). 

Here, to address the imbalance between classes, SMOTE subsampling was performed on each 

training sample during cross-validation. With SMOTE resampling, the minority class (AD-C) 

was over-sampled using synthetic data. Model 2 classified 89.5% of participants correctly (152 

of 159 CN (92.12%); 154 of 168 AD-C (91.67%); 45 of 59 (76.27%) AD). Average cross-

validated model accuracy was 69.6% with an AUC of .86, sensitivity of .65, specificity of .84, 

kappa of .50, F1 score of .65, and a balanced accuracy of 75%. 

From the cross-validated model, consisting of both real and synthetic observations, a final 

model was tested on the full sample of observed participants in the CN, AD-C, and AD groups. 

Final model performance achieved an accuracy of 89.5% (95% CI: 86.10% - .92.40%), with an 

average sensitivity 0f .87, average specificity of .94, kappa of .83, and balanced accuracy of 

90%. Class-specific model performance metrics are shown in Table 10 for both Model 1 and 

Model 2 before and after SMOTE subsampling. The 5 highest-ranked predictors included age 

(26.21%), performance on the WAIS (23.45%), animal naming test (Category Fluency; 23.31%), 

Trail Making Test Part B (22.56%), and Logical Memory (22.20%; Figure 11, panel b). 

Permutation testing with 1000 iterations indicated that the final model was significant compared 

to random chance (out-of-bag error: 0.247; Random model out-of-bag error: 0.503; permutation 

p < .0001). 

Table 10. Class-specific model performance metrics before and after accounting for class 
imbalance when classifying participants into a priori groups. 

 Model 1 Model 2 (SMOTE) 
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Performance Metric CN AD-C AD CN AD-C AD 
Sensitivity 0.9245 0.17857 0.7778 0.9212 0.9167 0.7627 
Specificity 0.6496 0.97083 0.9023 0.9339 0.9018 0.988 
Precision 0.7538 0.58824 0.75 0.9102 0.875 0.9184 
Recall 0.9245 0.17857 0.7778 0.9212 0.9167 0.7627 
F1 Score 0.8305 0.27397 0.7636 0.9157 0.8953 0.8333 
Positive Predictive Value 0.7538 0.58824 0.75 0.9102 0.875 0.9184 
Negative Predictive Value 0.8812 0.83513 0.9151 0.9422 0.9352 0.9592 
Detection Rate 0.4966 0.03378 0.2128 0.3878 0.3929 0.1148 
Balanced Accuracy  0.7871 0.5747 0.8401 0.9276 0.9092 0.8753 
 
Note: Predictions for individual classes are shown for Models 1 and 2, before and after SMOTE 
subsampling. Relative to Model 1, SMOTE subsampling (Model 2) balanced predictions and 
improved control of true positive and false negative rates across classes. In Model 2, with 
SMOTE subsampling, detection rates (within-class predictions) were close to the true proportion 
of cases used to train the models during cross-validation. Abbreviations: AD = Alzheimer’s 
disease; AD-C = AD Converters; CN = Cognitively Normal; SMOTE = Synthetic Minority 
Oversampling Technique. 
 
 

Model Comparisons. To further compare model performance with and without SMOTE 

subsampling, AUROC curves were compared across models for each respective class using 

Delong’s test (see Methods). Significant differences were found when comparing the AUROC of 

CN vs. AD, and AD-C vs. AD models with and without SMOTE subsampling. Specifically, 

classification performance was significantly better for the model with SMOTE (CN vs. AD: D = 

10.457, p < .0001; AD-C vs AD: D = 4.910, p < .0001). No significant difference was found 

when comparing the AUROC of CN vs. AD-C with and without SMOTE subsampling (D = 

0.359, df = 466.59, p = 0.720). 
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CHAPTER 7: AIM 3 RESULTS 
 

Aim 3 sought to establish whether the combination of core demographic, cognitive 

measures, and network metrics could identify data-driven neurocognitive subgroups. Aim 3 

specifically sought to establish if cognitive subgroups previously identified in the literature (e.g. 

memory-impaired, memory-spared, dysexecutive) emerge using unsupervised learning. First, an 

unsupervised random forest model was used to generate a proximity matrix of scores that 

indicate how similar participants are to one another, as compared to random chance. Next, 

cluster analysis was used to determine the presence and number of data-driven groups in the 

data. Finally, cluster-based prediction was performed. Specifically, a supervised random forest 

was used to classify participants into the data-driven clusters to determine the overall fit of the 

clusters to the data. 

Unsupervised Random Forest To Assess The Presence Of Data-Driven Subgroups 

Unsupervised Random Forest. An unsupervised random forest model comprised of the 

same observations and set of features used for supervised modeling (Aim 2), was used to 

generate a proximity matrix for cluster analysis. To qualitatively assess the presence of data-

driven groups before formal cluster analysis, the proximity matrix was visualized in two-

dimensional space using multidimensional scaling (MDS) and principal components analysis 

(PCA; Figure 12, panels a & b). Low-dimensional representations of the data indicated a high 

degree of overlap between participants across a priori groups. Overall, a greater degree of 

separation was observed between the CN and AD groups. AD-C participants were again 
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interspersed among CN and/or AD participants with respect to a priori groups. Qualitatively, 

these observations suggested the presence of two large clusters, where AD-C participants were 

more likely to be assigned to clusters comprised of either CN or AD participants similar to the 

supervised classification model in Aim 2. From the unsupervised random forest model, the 

relative contribution of features used to separate true versus synthetic data points is visualized in 

Figure 12, panels a & b, are displayed in Figure 12, panel c. Overall, neuropsychological 

assessments were relatively matched on average feature importance (Neuropsychological 

assessments: Mean = 16.06; SD = 2.83); Graph-theoretical metrics: Mean = 14.75; SD = 3.93). 

The top 5 features consisted of performance on the Trail Making Test Part B (19.69%), small-

world propensity (19.45%), performance on the WAIS (19.43%), global participation coefficient 

(19.03%), and modularity (18.28%). 
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Figure 12. Unsupervised random forest to assess the presence of data-driven subgroups. An 
unsupervised random forest model was used to generate a proximity matrix that described the 
degree of similarity between participants based on high-dimensional interactions between the set 
of demographic, neuropsychological, and graph-theoretical features. a) A multi-dimensional 
scaling plot (MDS) visualizes the distance between data points in two-dimensional space 
computed directly from the proximity matrix. Here, data points are color-coded by their a priori 
classes (CN, AD-C, AD). b) Principal components analysis (PCA) was used to reduce the 
dimension of the data and assess the amount of variance explained by the set of features in two 
dimensions. Data points are outlined by their a priori classes (CN, AD-C, AD). The width and 
length of a line represent the amount of variance explained by a given predictor for a given 
dimension. c) Unsupervised random forest feature importance scores are ranked from left to 
right. Here, variable importance represents the mean decrease in Gini importance (i.e. the 
average decrease in node purity for splitting data) when classifying real versus synthetic data 
points. Abbreviations: DIGIF = Digit Span Forward; DIGIB = Digit Span Backward; CC = 
Clustering Coefficient; COMM = Communicability; EC = Eigenvector Centrality; ED = 
Education; GE = Global Efficiency; LOGIMEM = Logical Memory; MDS = Multidimensional 
Scaling; MOD = Modularity; PC = Participation Coefficient; PCA = Principle Components 
Analysis; PT = Path Transitivity; SWP = Small-World Propensity; TRAILA = Trail Making Test 
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Part A; TRAILB = Trail Making Test Part B; VEG = Vegetable Naming (Category Fluency); 
WAIS = Weschler Adult Intelligence Scale; WMD = Within-Module Degree Z-Score. 

 
Cluster analysis. K-means clustering, implemented via the NbClust R package (Charrad 

et al., 2015), was used to determine the optimal number of clusters that could be derived from the 

proximity matrix. The majority voting procedure selected a two cluster solution (Charrad et al., 

2015). Ten out of twenty-three cluster optimization indices voted for a two-cluster solution 

(43.5%). Of note, eight indices (34.8%) voted for a three-cluster solution. Thus, a two-cluster 

solution was selected. However, the three-cluster solution was selected for follow-up exploratory 

analyses. 

Two-cluster solution. Concerning a priori groups, Cluster 1 was comprised of 13% CN 

(N = 12), 23% AD-C (N = 21), and 64% AD (N = 59). Cluster 2 was 72% CN (N = 147), 17% 

AD-C (N = 35), and 11% AD (N = 22). Independent two-sided t-tests, corrected for multiple 

comparisons, found that Clusters 1 and 2 were significantly different (all p-fdr < .05) on all 

measures assessed except sex, global communicability, and within-module degree z-score (p-fdr 

> .05; Table 11). Participants assigned to Cluster 1 were on average older (Cluster 1: M = 78.68; 

SD = 7.0; Cluster 2: M = 71.71; SD = 7.1; t(177.81) = 7.95, p-fdr < .001) and less educated 

(Cluster 1: M = 8.47; SD = 3.1; Cluster 2: M = 9.95; SD = 2.5; t(149.91) = -4.04, p-fdr = < .001). 

Participants assigned to Cluster 1 scored lower on all neuropsychological assessments (all 

p-fdr < .001; Figure 13, panel a). With respect to network topology (Figure 13, panel b), Cluster 

1 exhibited reduced global clustering coefficient (t(224.27) = -3.38, p-fdr = .003), global 

efficiency (t(187.29) = -4.69, p-fdr = .003), global path transitivity (t(181.80) = -4.42, p-fdr < 

.001), modularity (t(195.16) = -4.42, p-fdr < .001), and small-world propensity (t(205.19) = -

5.73, p-fdr < .001). Cluster 1 had higher estimates of global eigenvector centrality (t(213.77) = 

5.63, p-fdr = .002) and global participation coefficient (t(213.77) = 5.63, p-fdr < .001). No 
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between-cluster differences were observed for global communicability or within-module-degree-

zscore (p-fdr > .05). Additionally, Cluster 1 had significantly lower MMSE scores (p-fdr < .001) 

and higher CDR-SB ratings (p-fdr < .001). All statistical comparisons, along with means and 

standard deviations are shown in Table 11. Clusters are visualized in Figure 14. 

Table 11. Participant characteristics for the two-cluster solution. 

Characteristic Cluster 1 
N = 921 

Cluster 2 
N = 2041 Statistic2 p-fdr3 

Age 78.68 (7.0) 71.71 (7.1) 7.9 <.001 
Education 8.47 (3.1) 9.95 (2.5) -4.0 <.001 
Sex -- -- 0.01 >.900 

Female 50 (54%) 112 (55%) -- -- 
Male 42 (46%) 92 (45%) -- -- 

Logical Memory 6.21 (4.9) 13.12 (3.9) -12 <.001 
WAIS 31.49 (12.5) 56.55 (11.1) -17 <.001 
Digit Span Forward 6.88 (1.7) 8.70 (1.9) -8.2 <.001 
Digit Span Backward 4.35 (1.8) 6.69 (1.9) -10 <.001 
Trail Making Test Part A 115.86 (40.0) 148.81 (9.7) -7.8 <.001 
Trail Making Test Part B 86.52 (79.1) 218.34 (30.2) -15 <.001 
Animal Naming  11.83 (4.3) 20.55 (5.4) -15 <.001 
Vegetable Naming  8.15 (3.9) 14.40 (4.1) -13 <.001 
Boston Naming Test 21.04 (5.5) 27.72 (2.2) -11 <.001 
Global Communicability4 26.26 (3.67) 26.72 (4.30) -0.95 .400 
Global Clustering Coefficient 0.064 (0.008) 0.068 (0.010) -3.4 .002 
Global Efficiency 0.174 (0.013) 0.181 (0.014) -4.7 <.001 
Path Transitivity 0.686 (0.019) 0.697 (0.020) -4.4 <.001 
Eigenvector Centrality 0.054 (0.002) 0.052 (0.003) 3.7 .002 
Modularity 0.081 (0.019) 0.094 (0.021) -5.1 <.001 
Participation Coefficient 0.845 (0.011) 0.836 (0.014) 5.6 <.001 
Within-Module Degree Z-Score 0.000 (0.000) 0.000 (0.000) -0.61 .500 
Small-World Propensity 0.577 (0.043) 0.610 (0.051) -5.7 <.001 
MMSE† 23.92 (4.4) 28.67 (1.9) -9.8 <.001 
CDR-SB† 3.38 (3.0) 0.55 (1.4) 8.6 <.001 
 
Note: On average, clusters were significantly different on all demographic, neuropsychological, 
and network-based metrics assessed except for sex, communicability, and within-module-degree-
zscore. Cluster 1 was comprised of participants who, on average, (1) have higher scores across 
all neuropsychological assessments, and (2) exhibit lower scores on all graph-theoretical metrics 
assessed, except global eigenvector centrality and global participation coefficient. Abbreviations: 
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CDR-SB = Clinical Dementia Rating Scale Sum of Boxes; MMSE = Mini-mental state 
examination. 1 n (%); Mean (SD); 2 Two Sample t-test; Pearson's Chi-squared test; 3 False 
discovery rate correction for multiple testing; 4 Global Communicability was log-transformed 
before calculation of descriptive statistics; † Not used in prediction analyses. 
 

 
Figure 13. Predictive Features Summarized by Cluster. In panel a, distributions for 
neuropsychological assessments are displayed by cluster. In panel b, distributions for graph-
theoretical metrics are displayed cluster. Cluster 1 is comprised of participants who, on average, 
(1) have higher scores across all neuropsychological assessments (all p-fdr < .05), and (2) exhibit 
lower estimates of global clustering coefficient, global efficiency, modularity, global path 
transitivity, and small-world propensity (all p-fdr < .05), and higher estimates of global 
eigenvector centrality and global participation coefficient (p-fdr > .05). Clusters did not 
significantly differ on global communicability (COMM; p-fdr > .05) or within-module-degree-
Zscore (WMD; p-fdr > .05). Abbreviations: CC = Clustering Coefficient; COMM = 
Communicability; EC = Eigenvector Centrality; ED = Education; GE = Global Efficiency; 
LOGIMEM = Logical Memory; MOD = Modularity; PC = Participation Coefficient; PT = Path 
Transitivity; SWP = Small-World Propensity; TRAILA = Trail Making Test Part A; TRAILB = 
Trail Making Test Part B; VEG = Vegetable Naming (Category Fluency); WAIS = Weschler 
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Adult Intelligence Scale; WMD = Within-Module Degree Z-Score. **** = p < .0001; *** = p < 
.001; ** = p < .01; * = p < .05 (uncorrected); ns = non-significant. 

 
Figure 14. Visualizing the two-cluster solution. a) Clusters are depicted in two-dimensional 
space where dimensions represent principle components. Participants are shown in proximity to 
the center of their respective cluster assignment. Observations that are closer to the center of a 
given cluster are more representative of that cluster. Data points are represented by shapes and 
color-coded by a priori group (CN, AD-C, AD). Two components explain 41.7% of the data, and 
clusters are best distinguished by the first principle component. b) A silhouette plot is used to 
visualize and quantify the distance for each observation to the center of a cluster (average of all 
distances). Observations with higher values are more representative of that cluster. An average 
silhouette width <= .2 is considered a poor fit such that observations within a cluster are not 
homogenous and there is a high degree of variability within the clusters. Clusters are depicted in 
grayscale. 

Three-cluster solution. One-way analysis of variance tests, corrected for multiple 

comparisons, found that Clusters significantly differed on all neuropsychological measures 

assessed (all p-fdr < .001; Figure 15, panel a), as well as all graph-theoretical metrics (all p-fdr < 
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.001; Figure 15, panel b) except within-module degree z-score (F(2, 293) = 0.57, p-fdr = 0.600; 

Eta2 = 3.90e-03, 95% CI [0.00, 1.00]) (Table 12). Concerning a priori groups, Cluster 1 was 

comprised primarily of AD participants, and Cluster 2 and 3 were comprised primarily of CN 

participants. Specifically, Cluster 1 (N = 70) was comprised of 0.6% CN (N = 4), 15.7% AD-C 

(N = 11), and 78.6% AD (N = 55). Cluster 2 (N = 132) was comprised of 71.2% CN (N = 94), 

18.2% AD-C (N = 24), and 10.6% AD (N = 14). Cluster 3 (N = 94) was comprised of 64.9% CN 

(N = 61), 22.3% AD-C (N = 21), and 12.8% AD (N = 12). Participants assigned to Cluster 1 

were on average older and less educated compared to Clusters 2 and 3 (all p-fdr < .001). The 

proportion of males and females was again not significantly different across the clusters (p-fdr = 

.400). Additionally, Cluster 1 had significantly lower MMSE scores (p-fdr < .001) and higher 

CDR-SB ratings (p-fdr < .001) compared to Cluster 2 and Cluster 3. All comparisons are shown 

in Table 12. 

Post-hoc two-sided t-tests (uncorrected) found that Cluster 1 (78.6% AD) scored 

significantly lower on all neuropsychological assessments compared to Clusters 2 and 3 (all p < 

.05). Clusters 2 and 3 did not significantly differ on any of the neuropsychological assessments 

(all p > .05; Table 12). With respect to network topology, Cluster 1 exhibited reduced modularity 

compared to Cluster 2 (t(140.11) = -2.16, p = 0.035). Cluster 1 and Cluster 2 did not significantly 

differ on any of the other graph-theoretical metrics assessed (p > .05). Conversely, Clusters 2 and 

3 significantly differed on all graph-theoretical metrics (all p < .001) except for within-module 

degree z-score (t(217.91) = -1.10, p = 0.300). Compared to Cluster 3, Cluster 2 had reduced 

estimates on six of the nine graph theoretical metrics assessed (all p < .001), including global 

communicability, global clustering coefficient, global efficiency, global path transitivity, 

modularity and small-world propensity. Global eigenvector centrality and global participation 
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coefficient were significantly higher in Cluster 2 (Global eigenvector centrality: t(213.77) = 5.63, 

p-fdr = .002; global participation coefficient: t(213.77) = 5.63, p-fdr < .001). Clusters are 

visualized in (Figure 16). 

Table 12. Participant characteristics for the three-cluster solution. 

Characteristic Cluster 1 
N = 701 

Cluster 2 
N = 1321 

Cluster 3 
N = 941 STAT2 p-fdr3 

Cluster 1 
vs 

Cluster 2 

Cluster 1 
vs.  

Cluster 3 

Cluster 2 
vs.  

Cluster 3 

Age 78.89 (7.1) 72.03 (6.9) 72.73 (7.8) 22 <.001 <.001 <.001 .500 

Education 8.07 (2.9) 10.26 (2.5) 9.46 (2.7) 15 <.001 <.001 .001 .027 

Sex    1.9 .400    

   Female 41 (59%) 75 (57%) 46 (49%)      

   Male 29 (41%) 57 (43%) 48 (51%)      

Logical Memory 5.09 (4.5) 12.81 (4.1) 12.77 (4.0) 92 <.001 <.001 <.001 >.900 

WAIS 28.61 (11.8) 54.47 (11.8) 55.77 (12.1) 132 <.001 <.001 <.001 .400 

Digit Span Forward 6.83 (1.7) 8.67 (2.0) 8.35 (1.8) 22 <.001 <.001 <.001 .200 

Digit Span Backward 4.00 (1.7) 6.55 (1.9) 6.61 (2.0) 51 <.001 <.001 <.001 .800 

Trail Making Test Part A 108.76 (43.2) 147.81 (10.0) 147.78 (10.8) 78 <.001 <.001 <.001 >.900 

Trail Making Test Part B 61.99 (69.5) 212.64 (37.4) 213.76 (35.9) 281 <.001 <.001 <.001 .900 

Animal Naming  10.80 (4.2) 20.20 (5.3) 19.77 (5.6) 85 <.001 <.001 <.001 .500 

Vegetable Naming  7.39 (3.8) 14.31 (3.9) 13.63 (4.4) 73 <.001 <.001 <.001 .200 

Boston Naming Test 19.64 (5.4) 27.47 (2.3) 27.55 (2.5) 148 <.001 <.001 <.001 .900 

Global Communicability4 25.224 (3.437) 24.572 (2.379) 30.395 (3.889) 100 <.001 0.2 <.001 <.001 

Global Clustering Coefficient 0.064 (0.008) 0.063 (0.009) 0.073 (0.009) 37 <.001 0.6 <.001 <.001 

Global Efficiency 0.175 (0.013) 0.174 (0.011) 0.189 (0.012) 49 <.001 0.7 <.001 <.001 

Path Transitivity 0.687 (0.020) 0.687 (0.016) 0.708 (0.018) 45 <.001 0.8 <.001 <.001 

Eigenvector Centrality 0.054 (0.002) 0.054 (0.002) 0.050 (0.004) 67 <.001 0.15 <.001 <.001 

Modularity 0.081 (0.020) 0.088 (0.020) 0.100 (0.021) 19 <.001 0.035 <.001 <.001 

Participation Coefficient 0.845 (0.012) 0.842 (0.011) 0.830 (0.014) 35 <.001 0.076 <.001 <.001 

Within-Module Degree Z-Score 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.57 .600 >.900 .400 .300 

Small-World Propensity 0.578 (0.043) 0.572 (0.026) 0.654 (0.038) 175 <.001 .200 <.001 <.001 

MMSE† 23.40 (4.1) 28.22 (2.7) 28.56 (2.3) 74 <.001 <.001 <.001 .400 

CDR-SB† 3.84 (3.0) 0.70 (1.8) 0.65 (1.4) 65 <.001 <.001 <.001 .900 
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Note: A series of independent one-way analysis of variance tests found that clusters significantly 
differed on age (p-fdr = < .001) and education level (p-fdr = < .001). The proportion of males 
and females was not significantly different across clusters (p-fdr = .400). Additionally, clusters 
significantly differed on all neuropsychological measures assessed (all p-fdr < .05). Post-hoc t-
tests found that Cluster 1 (5.7% CN; 15.7% AD-C; 78.6% AD) scored significantly lower on all 
neuropsychological assessments (all p < .05) compared to Cluster 2 (71.2% CN; 18.2% AD-C; 
10.6% AD) and Cluster 3 (64.9% CN; 22.3% AD-C; 12.8% AD). Conversely, Clusters 2 and 3 
did not significantly differ on any of the neuropsychological assessments (all p > .05). In panel b, 
distributions for graph-theoretical metrics are displayed by cluster. Except for within-module 
degree z-score (WMD; p-fdr = .600), clusters significantly differed on the set of graph-
theoretical metrics assessed (all p-fdr < .001). Post-hoc t-tests found that modularity was 
significantly lower in Cluster 1 compared to Cluster 2 (p = .035). No other significant differences 
were observed between Cluster 1 and 2 (all p > .05). Cluster 3 had significantly higher estimates 
of global communicability (COMM), global clustering coefficient (CC), global efficiency (GE), 
global path transitivity (PT), modularity, (MOD), and small-world propensity (SWP) as 
compared to both Cluster 1 and Cluster 2 (all p < .05). Conversely, global eigenvector centrality 
(EC) and global participation coefficient (PC) were significantly lower in Cluster 3 compared to 
Cluster 1 and 2 (p < .05). Abbreviations: CDR-SB = Clinical Dementia Rating Scale Sum of 
Boxes; MMSE = Mini-Mental State Exam; STAT = Test Statistic. 1Mean (SD); n (%); 2One-way 
ANOVA; Pearson's Chi-squared test; 3False discovery rate correction for multiple testing;  4 

Global Communicability was log-transformed before calculation of descriptive statistics † Not 
used in any prediction models. Bold values indicate a statistically significant at p < .05. 
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Figure 15 . Predictive features summarized by cluster. In panel a, distributions of 
neuropsychological assessments are displayed by cluster. Clusters significantly differed on all 
neuropsychological measures assessed via a series of independent one-way analysis of variance 
tests (all p-fdr < .001). Post-hoc t-tests found that Cluster 1 (5.7% CN; 15.7% AD-C; 78.6% AD) 
scored significantly lower on all neuropsychological assessments (all p < .05). Conversely, 
Cluster 2 (71.2% CN; 18.2% AD-C; 10.6% AD) and Cluster 3 (64.9% CN; 22.3% AD-C; 12.8% 
AD) did not significantly differ on any of the neuropsychological assessments (all p > .05). In 
panel b, distributions for graph-theoretical metrics are displayed by cluster. Except for within-
module degree z-score (WMD; p-fdr = .600), clusters significantly differed on the set of graph-
theoretical metrics assessed (all p-fdr < .001). Post-hoc t-tests found that Cluster 3 had 
significantly higher estimates of most graph-theoretical metrics assessed compared to both 
Clusters 1 and 2 (all p < .001). Conversely, eigenvector centrality (EC; p < .001) and 
participation coefficient (PC; p < .001) were significantly lower in Cluster 3 compared to 
Clusters 1 and 2. Only modularity was significantly different between Clusters 1 and 2 (p = 
.035). Abbreviations: CC = Clustering Coefficient; COMM = Communicability; EC = 
Eigenvector Centrality; GE = Global Efficiency; LOGIMEM = Logical Memory; MOD = 
Modularity; PC = Participation Coefficient; PT = Path Transitivity; SWP = Small-World 
Propensity; TRAILA = Trail Making Test Part A; TRAILB = Trail Making Test Part B; VEG = 
Vegetable Naming (Category Fluency); WAIS = Weschler Adult Intelligence Scale; WMD = 
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Within-Module Degree Z-Score. **** = p < .0001; *** = p < .001; ** = p < .01; * = p < .05 
(uncorrected); ns = non-significant (p > .05). 

 
Figure 16. Visualizing the three-cluster solution. a) Clusters are depicted in two-dimensional 
space where dimensions represent principle components. Participants are shown in proximity to 
the center of their respective cluster assignment. Observations that are closer to the center of a 
given cluster are more representative of that cluster. Data points are represented by shapes and 
color-coded by a priori group (CN, AD-C, AD). Two components explain 41.7% of the data, and 
clusters are best distinguished by the first principle component. b) A silhouette plot is used to 
visualize and quantify the distance for each observation to the center of a cluster (average of all 
distances). Observations with higher values are more representative of that cluster. An average 
silhouette width <= .2 is considered a poor fit such that observations within a cluster are not 
homogenous and there is a high degree of variability within the clusters. Clusters are depicted in 
grayscale. 

 
Cluster-Based Prediction 

Two-cluster solution. Following unsupervised classification analysis, a supervised 

random forest classification model was used to generate estimates of model accuracy to 

quantify how well the data-driven clusters fit the data using cross-validation. Overall, the cluster-

based prediction model produced highly accurate and balanced predictions. The supervised 
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model correctly classified 280 of 296 cases (Cluster 1: 77 of 92; Cluster 2: 201 of 204). Average 

cross-validated model accuracy was 94.1%, with an AUC of .99, sensitivity of .85, specificity of 

.98, kappa of .86, F1 score of .90, and a balanced accuracy of 91.1%. In addition, the detection 

rate of 26.7% is close to the true prevalence of cases in the positive class (Cluster 1: N = 92 of 

296; 31.1%), further suggesting the model is capturing cases in the minority class (cluster 1). The 

final model was significant compared to random chance (out-of-bag error: 0.064; Random model 

out-of-bag error: 0.338; permutation p < .0001). Performance estimates are based on assigning 

cluster one as the positive class (case) and cluster 2 as the negative class (control). Overall, 

neuropsychological measures contributed more to model performance (Feature importance: 

Mean = 15.33; SD = 3.86) than graph-theoretical metrics (Feature importance: Mean = 10.41; 

SD = 3.81) as displayed in Figure 17 (panel a). Trail Making Test Part B (20.70%), WAIS 

(19.95%), Boston Naming Test (17.49%), and the animal naming condition (16.30) from the 

Category Fluency assessment were the top 5 ranked measures. Small-world propensity (8.59%) 

was the highest-ranked graph-theoretical metric, although it was ranked ninth overall and lower 

than eight of the nine neuropsychological assessments. 

Three-cluster solution. As an exploratory analysis, a multiclass supervised random forest 

classification model was used to generate estimates of model accuracy to quantify how well the 

three-cluster solution fit the data using cross-validation. Overall, the three-cluster-based 

prediction model produced highly accurate and balanced predictions. The supervised model 

correctly classified 274 of 296 cases (Cluster 1: 60 of 70; Cluster 2: 129 of 132; Cluster 3: 85 of 

94). Average cross-validated model accuracy was 92.6%, with an AUC of .99, sensitivity of .92, 

specificity of .96, kappa of .88, F1 score of .92, and balanced accuracy of 93.7%. The final 

model was significant compared to random chance (out-of-bag error: 0.078; Random model out-
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of-bag error: 0.605; permutation p < .0001). Performance estimates are based on assigning 

Cluster 1 as the positive class (case) and Cluster 2 and 3 as the negative classes (control). 

Detection rates approached the true prevalence of cases in each class (Cluster 1: N = 92 of 296; 

31.1%) suggesting the model is capturing cases in both the majority (Cluster 2) and minority 

classes (Cluster 1 and Cluster 3). Overall, neuropsychological measures contributed more to 

model performance (Feature importance: Mean = 13.74; SD = 1.55) than graph-theoretical 

metrics (Feature importance: Mean = 11.59; SD = 8.16) as displayed in Figure 17 (panel b). 

Small-world propensity (27.53), Trail Making Test Part B (21.11%), eigenvector centrality 

(18.51%), Boston Naming Test (17.12%), and the WAIS (16.61) were the top 5 ranked 

measures. Small-world propensity was again the highest-ranked graph-theoretical metric, 

although here it was the top-ranked feature overall. 

 
Figure 17. Cluster-based prediction feature importance. Feature importance represents the 
expected decrease in average classification accuracy should a given feature be removed from the 
model. a) Features are ranked by the degree to which they contribute to classification 
performance for the two-cluster solution. Numerically, neuropsychological measures contributed 
more to model performance (Feature importance: Mean = 15.33; SD = 3.86) than graph-
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theoretical metrics (Feature importance: Mean = 10.41; SD = 3.81). b) Features are ranked by the 
degree to which they contribute to classification performance for the three-cluster solution. 
Numerically, neuropsychological measures contributed more overall to model performance 
(Feature importance: Mean = 15.33; SD = 3.86), than graph-theoretical metrics (Feature 
importance: Mean = 15.33; SD = 3.86). Of note, however, small-world propensity was the top-
ranked feature. Abbreviations: AD = Alzheimer’s disease; AD-C = AD Converters; CN = 
Cognitively Normal; DIGIF = Digit Span Forward; DIGIB = Digit Span Backward; CC = 
Clustering Coefficient; COMM = Communicability; EC = Eigenvector Centrality; ED = 
Education; GE = Global Efficiency; LOGIMEM = Logical Memory; MDS = Multidimensional 
Scaling; MOD = Modularity; PC = Participation Coefficient; PCA = Principle Components 
Analysis; PT = Path Transitivity; SWP = Small-World Propensity; TRAILA = Trail Making Test 
Part A; TRAILB = Trail Making Test Part B; VEG = Vegetable Naming (Category Fluency); 
WAIS = Weschler Adult Intelligence Scale; WMD = Within-Module Degree Z-Score. 
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CHAPTER 8: DISCUSSION 
 

This study aimed to disentangle shared and unique aspects of cognitive impairment and 

functional network topology seen in healthy aging, early-stage or preclinical dementia, and AD. 

Specifically, Aim 1 sought to establish if weighted metrics that index redundancy in 

unthresholded functional brain networks, as a proxy of brain and cognitive reserve, support 

general and/or specific forms of cognition. Aim 2 sought to establish whether a combination of 

core demographic risk factors (age, sex, and education), cognitive measures, and weighted 

functional network metrics could accurately distinguish CN, AD-C, and AD individuals using 

supervised machine learning. Aim 3 specifically sought to quantify the presence of data-driven 

neurocognitive subgroups utilizing a combination of demographic, graph-theoretical metrics, and 

neuropsychological assessments using both unsupervised and supervised machine learning. 

Contrary to the proposed hypotheses, redundancy-based metrics (global communicability and 

global clustering coefficient) were not predictive of overall cognitive functioning, nor were they 

the most informative predictors when attempting to distinguish between CN, AD-C, and AD 

participants using machine learning.  

In Aim 1, performance on the Trail Making Test Part B was positively associated with 

global communicability in the AD-C group only. No associations were observed between the 

redundancy-based metrics and either Logical Memory or Digit Span Backward performance. In 

Aim 2, using machine learning, a combination of core demographic risk factors of AD, metrics 

assessing cognitive performance, and graph-theoretical metrics assessing network topology were 
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able to accurately distinguish between healthy controls and individuals with AD. However, the 

AD-C group was more challenging to classify as predicted. AD-C participants were correctly 

classified as AD converters or misclassified as cognitively normal or AD. Neuropsychological 

assessments were overall more predictive than graph-theoretical metrics that summarize global 

network topology when distinguishing between CN and AD participants. The top predictive 

neuropsychological features were the Logical Memory (total elements correctly recalled), Trail 

Making Part B (total number of sequence and set loss errors), and WAIS Digit Symbol (total 

number of symbols correctly matched) assessments. Among the graph metrics assessed, 

modularity, global participation coefficient, and global efficiency were the most predictive. 

Global communicability and global clustering coefficient were not among the top-ranked  

predictive features as predicted. In Aim 3, unsupervised learning produced two large clusters as 

hypothesized; however, the detected clusters did not represent amnestic versus non-amnestic 

subtypes as predicted. Instead, participants were stratified into groups of high- and low-cognitive 

performers irrespective of the cognitive domain. The cluster comprised of low-performers 

(Cluster 1) was predominantly AD (64%) and AD-C (23%), with only 13% CN. Conversely, the 

cluster comprised of high-performers (Cluster 2) was predominantly CN (72%) and AD-C 

(17%), with only 11% AD. Network topology was also significantly different between Clusters 1 

and 2. Consistent with the supervised classification model, AD-C participants were distributed 

between Clusters 1 and 2, primarily comprised of either AD or CN participants, respectively. 

In the following paragraphs, I discuss the results for each aim in greater detail. I then 

provide a final synopsis and address the study's limitations before concluding with a general 

statement of significance. 
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Aim 1 

Aim 1 sought to establish whether metrics that quantify redundancy in weighted 

functional brain networks are associated with attention, memory, and aspects of executive 

function. Specifically, three cognitive metrics indexing episodic memory (Logical Memory), 

working memory (Digit Span Test-Backward), and mental flexibility (Trail Making Test B), and 

two weighted functional redundancy metrics (global communicability and global clustering 

coefficient) were used for Aim 1 analyses. Global communicability and global clustering 

coefficient were found to be positively correlated. A significant positive association was 

observed regardless of whether metrics were computed for the entire sample or within the a 

priori groups. Thus, to a moderate degree, both metrics capture similar but not identical aspects 

of redundancy in weighted functional networks at the global level. Comparing levels of 

redundancy across a priori groups, global communicability was numerically but not significantly 

reduced in AD converters compared to CN and AD participants. Global clustering coefficient 

was significantly reduced in both the AD-C and AD groups compared to CN participants. The 

reduction in global clustering coefficient is consistent with prior work finding that redundancy is 

reduced in individuals with both early- and late-MCI compared to healthy controls (Langella, 

Mucha, et al., 2021; Langella, Sadiq, et al., 2021). The lack of difference observed between 

groups in levels of global communicability was unexpected. 

Numerically, CN and AD participants had higher levels of global communicability 

compared to AD-C participants. Prior work estimating communicability on structural networks 

(e.g., white matter) has suggested that individuals with AD have increased levels of 

communicability (Lella et al., 2019; Lella & Estrada, 2020; Mišić et al., 2015). From this point 

of view, individuals in advanced stages of AD may have higher levels of whole-brain 
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redundancy estimated as estimated by global communicability that facilitates rather than 

prevents the further spread of pathology (Franzmeier et al., 2020; Hoenig et al., 2018; Vogel et 

al., 2019). Importantly, however, this has not been established in functionally-defined brain 

networks and may not be biologically plausible. However, persistent functional 

hyperconnectivity between brain regions is metabolically costly and may leave brain networks 

more vulnerable to pathology, as suggested above (Hillary & Grafman, 2017). Thus, while CN 

and AD had numerically similar levels of global communicability, the degree to which higher 

levels of communicability can be interpreted as a protective marker is uncertain. Future work 

will be required to test how communicability, estimated from weighted networks, changes over 

time in individuals at risk for developing AD. Further, as discussed below, redundancy-based 

metrics may be equated at the global level but likely diverge at the node or network levels. 

Overall, the weighted redundancy-based metrics (global communicability and global 

clustering coefficient) were not predictive of overall cognitive ability as hypothesized. Moreover, 

neither global communicability nor global clustering coefficient was more strongly associated 

with memory performance in the AD group as predicted. However, global communicability (log-

transformed) was significantly positively associated with performance on the Trail Making Part 

B assessment in the AD-C group. That is, higher levels of redundancy, as captured by global 

communicability, were associated with Trail Making Part B performance in the AD-C group.  

As suggested by Sadiq and colleagues (2021), whole-brain redundancy may be a marker 

of age-related cognitive impairment in specific components of executive functioning  (Sadiq et 

al., 2021). In (Sadiq et al., 2021), whole-brain redundancy was associated with better color-word 

inhibition performance but not verbal fluency. Inhibition, cognitive flexibility/task-

switching/shifting, and working memory/updating are core components of executive function 
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(Miyake et al., 2000; H. R. Snyder et al., 2015). Verbal and category fluency measures may 

invoke executive operations but also involve language and memory components. Thus these are 

broad measures of general cognitive functioning (Gustavson et al., 2019; Kesler et al., 2017; 

Whiteside et al., 2015). However, compared to verbal fluency, the Trail Making Part B 

assessment is more closely aligned with executive processes. Thus, the finding that redundancy, 

here measured by global communicability, is specific to trail-making performance and therefore 

executive functioning, may be consistent with the results reported by (Sadiq et al., 2021). 

However, this effect may also be specific to a subset of converters as discussed further below. 

Aim 2 

Aim 2 sought to establish whether a combination of core demographic risk factors of AD 

(age, sex, and education), nine cognitive measures, and nine weighted functional network metrics 

could accurately distinguish CN, AD-C, and AD individuals using supervised machine learning. 

Average cross-validated model accuracy for the multiclass model was 74.4%, with an AUC of 

.87, indicating a moderate level of classification performance. The top predictive features 

included performance on the Logical Memory, WAIS, and Trail Making Part B assessments. 

Among the graph metrics assessed, modularity, global participation coefficient, and global 

efficiency were the most predictive. Although, as noted above, neuropsychological assessments 

were more predictive overall than graph metrics.  

Prior studies combining machine learning and network neuroscience to distinguish 

healthy controls from MCI or AD participants have reported model accuracies in the range of 47-

100% (Dyrba et al., 2015; Hojjati et al., 2017, 2019; Jie et al., 2014; Jitsuishi & Yamaguchi, 

2022; Khazaee et al., 2015, 2016, 2017; Sun et al., 2019; Wang et al., 2013; Wee et al., 2012, 

2013; Wei et al., 2016; Xu et al., 2020; L. Zhang et al., 2020). As discussed in the Machine 
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Learning and AD section, several factors contribute to classification performance, including 

sample size, use of two-class versus multiclass classification, method of cross-validation, and use 

of feature selection. The most successful classification models compared healthy controls to AD 

participants (Khazaee et al., 2015). In the study by Khazaee and colleagues (2015), 100% 

accuracy was reported when classifying a small sample of healthy controls (N = 20) against AD 

participants (N = 20) (Khazaee et al., 2015). Although CN and AD participants were not 

classified separately from converters in the present study, average cross-validated model 

accuracy was approximately 87.5% when considering CN and AD participants only. 

Regardless, the use of multiclass classification also permits a comprehensive comparison 

of individuals who were misclassified. AD converters, who at the time of study were considered 

cognitively normal, to CN and AD participants. As predicted, participants in the AD-C group 

were more challenging to classify. Specifically, AD-C participants were just as likely to be 

classified as CN (N = 32) as either AD-C (N = 10) or AD (N = 14). Interestingly, compared to 

AD-C classified as CN (AD-C–CN), correctly classified converters were older and exhibited 

more impaired executive functioning. These individuals had comparable scores to the CN group 

on the Logical Memory, Boston Naming Test, and vegetable naming (Category Fluency) 

assessments. These tests primarily assess memory recall, phonetic and semantic fluency, and 

semantic memory, respectively, which are cognitive functions most impacted in typical and late-

onset AD. Interestingly, AD-C individuals misclassified as AD (AD-C–AD) exhibited more 

memory-related impairments than those misclassified as CN, with lower performance on the 

Logical Memory, Boston Naming Test, and vegetable naming (Category Fluency) assessments.  

Concerning graph-theoretical metrics, AD-C misclassified as CN (AD-C–CN) had higher 

estimates of global path transitivity and small-world propensity compared to those misclassified 
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as AD (AD-C–AD). AD-C who were correctly classified, exhibited lower estimates of global 

clustering coefficient and global efficiency when compared to individuals predicted as CN (AD-

C–CN). However, AD-C participants correctly classified did not significantly differ from those 

misclassified as AD (AD-C–AD) on any of the graph-theoretical metrics assessed. These 

findings suggest that AD-C participants who were correctly classified had similar network 

topology to AD participants but presented with different cognitive profiles.  

The subset of AD-C participants correctly classified may be more likely to be diagnosed 

with a dysexecutive subtype of AD (once they convert) (Corriveau-Lecavalier et al., 2022; Mez 

et al., 2016; Townley et al., 2020; Vogel & Hansson, 2022), whereas those misclassified as AD 

more closely resemble typical AD participants with primary memory impairments. While non-

memory-related impairments are more common in early-onset AD, late-onset non-amnestic cases 

are not uncommon (Harrington et al., 2013; Mez et al., 2016; Vogel & Hansson, 2022). An 

alternative interpretation is that, regardless of age, the small subset of AD-C participants 

correctly classified are just at an earlier stage in their trajectory toward developing typical AD. 

Though rare, cases where executive function deficits proceed memory impairment have been 

reported in individuals eventually diagnosed with typical AD (Harrington et al., 2013). 

Moreover, AD converters misclassified as CN (AD-C–CN) may represent a set of cases 

with AD pathology in the absence of severe cognitive impairment (Roe et al., 2007; Santacruz et 

al., 2011; Visser & Tijms, 2017). Concerning diagnostic measures (not used for prediction), 

neither MMSE scores nor CDR-SB ratings were significantly different between AD-C 

participants correctly or incorrectly classified. Thus it is uncertain if the MMSE and CDR-SB 

can aid in predicting when and why otherwise cognitively normal individuals will convert to AD. 
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Critically, future work assessing AB and tau-related pathology will be required to test these 

assumptions and confirm diagnoses. 

As noted above, classification was highly accurate for CN and AD participants. Thus, 

given the limited number of CN and AD participants misclassified, the differences reported are 

qualitative. As such, CN participants were equally likely to be misclassified as either AD-C 

(N=5) or AD (N=7). The predicted CN groups did not differ numerically in MMSE scores or 

CDR-SB ratings. Numerically, CN misclassified as AD-C or AD were older, less educated, and 

exhibited lower estimates of modularity and small-world propensity and higher estimates of 

participation coefficient. Of the 18 AD participants misclassified, 16 were misclassified as CN, 

and two were misclassified as AD-C. AD-C misclassified as CN were younger and had better 

performance across the battery of assessments, had higher MMSE scores, lower CDR-SB 

ratings, and exhibited network topology more similar to CN participants. Additional work will be 

required to validate the diagnosis of these individuals based on currently established biological 

criteria (Jack et al., 2018). 

Addressing class-imbalance. Cognitively normal individuals were over-represented in the 

current dataset. Thus the predictions above may be overly biased toward correctly classifying CN 

participants. SMOTE resampling was used to oversample observations from the minority classes 

to account for this bias. As expected, SMOTE resampling improved overall classification 

performance. The final model shows that applying parameters learned during cross-validation to 

the total sample produced balanced predictions across a priori classes. Features were ranked 

relatively consistently between classification models with and without SMOTE resampling. 

However, with SMOTE resampling, age was the most predictive feature, and Trail Making Part 

B was ranked higher in importance than Logical Memory. This result is not unexpected. AD-C 
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participants were the oldest participants on average, and as described above, a subset of 

participants appeared to have more pronounced executive impairments. Likewise, in Aim 1, the 

interaction between Trail Making Part B performance and redundancy was specific to the AD-C 

group. 

In addition, when artificially balancing the dataset, metrics including modularity, global 

participation coefficient, and small-world propensity contributed more to classification 

performance. As highlighted in the introduction, both aging and AD have been associated with 

distributed changes in functional brain network organization that can be linked to neural 

dedifferentiation, including (1) reduced clustering, (2) disrupted network integration and 

segregation, and (3) loss of small-world properties, each of which contributes to a less efficient 

system. Although global clustering coefficient was significantly lower, on average, in the AD-C 

and AD groups, it did not contribute to classification of participants into their a priori groups. 

Moreover, global communicability and global efficiency were not overall critical to model 

performance as hypothesized.  

Caution is warranted, however, when interpreting model performance using SMOTE 

resampling. Resampling techniques may lead to biased prediction at the participant level. If one 

is interested in assessing participant-level predictions (e.g., predicted probabilities), additional 

work will be necessary to ensure models are adequately calibrated (Steyerberg et al., 2010) and 

validated out-of-sample, particularly if models are to be used for risk assessment (Goldstein et 

al., 2020). Notably, the AD-C group does not represent a single diagnostic entity. Participants in 

the AD-C group are progressively at risk because individuals will knowingly convert to AD at 

different times. Here, multiclass modeling without subsampling (Model 1) permits a targeted and 

unbiased investigation of why specific individuals may be classified into distinct classes. 
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Additionally, results may further highlight that cognitive impairment observed in otherwise 

cognitively normal individuals, who will convert to AD, is not restricted to memory deficits 

common in typical AD. 

Aim 3 

Aim 3 sought to establish whether combining core demographic factors, network metrics, 

and cognitive measures could identify data-driven neurocognitive subgroups using unsupervised 

learning. In the unsupervised random forest, neuropsychological assessments and graph-

theoretical metrics equally differentiated the sample of participants from synthetic data. 

Applying cluster analysis to the proximity matrix, a two-cluster solution was voted most optimal, 

receiving 10 of 23 votes. Contrary to hypotheses, the derived clusters did not correspond to 

amnestic and non-amnestic cognitive subtypes. Rather, the sample was simply stratified into two 

groups of low (Cluster 1) and high (Cluster 2) cognitive performers.  

Cluster 1 also had significantly lower MMSE scores and higher CDR-SB ratings. Cluster 

1 was 13% CN (N = 12), 23% AD-C (N = 21), and 64% AD (N = 59). Cluster 2 was 72% CN (N 

= 147), 17% AD-C (N = 35), and 11% AD (N = 22). Following cluster analysis, post-hoc 

comparisons found that Clusters 1 and 2 significantly differed on all neuropsychological 

assessments and most graph-theoretical metrics (no differences on either global communicability 

(log-transformed) or within-module degree Z-score were observed). This finding, although 

contrary to hypotheses informed by prior work (Ferreira et al., 2019; Kwak et al., 2021; 

Scheltens et al., 2016, 2017, 2018; Vogel & Hansson, 2022), is not unexpected. That is, with 

respect to the a priori groups, AD participants exhibited more global than domain-specific 

cognitive impairment and scored significantly lower on all cognitive assessments. Cognitive 

performance was more heterogeneous among AD-C participants who were evenly split across 



 

110 

the detected clusters. Overall, AD-C (and CN) assigned to Cluster 1 are participants whose 

cognitive ability and network topology more closely resemble AD participants on average.  

While the two-cluster solution was voted most optimal (10 of 23 votes), a three-cluster 

solution was a close second (8 of 23 votes). Since there are three a priori groups, exploratory 

analyses were conducted using the three-cluster solution. As with the two-cluster solution, 

Cluster 1 was again comprised primarily of AD participants (79%; N = 55). Consistent with both 

supervised and unsupervised models, AD-C participants were distributed across clusters. 

However, here, CN participants were split between Clusters 2 and 3. Cluster 1 (N = 70) was 

comprised of 5.7% CN (N = 4), 15.7% AD-C (N = 11), and 78.6% AD (N = 55). Cluster 2 (N = 

132) was comprised of 71.2% CN (N = 94), 18.2% AD-C (N = 24), and 10.6% AD (N = 14). 

Cluster 3 (N = 94) was comprised of 64.9% CN (N = 61), 22.3% AD-C (N = 21), and 12.8% AD 

(N = 12). Cluster 1 was defined by lower scores across the battery of neuropsychological 

assessments. Clusters 2 and 3 were not significantly different on any cognitive assessments. 

Conversely, Clusters 1 and 2 had similar estimates of network topology and differed only on 

modularity (Cluster 2 higher). Numerically, Cluster 3 had higher estimates for all graph-

theoretical metrics, except for the global participation coefficient. Of note, higher estimates of 

redundancy (e.g., global clustering coefficient and communicability) were also observed in 

Cluster 3. 

The two- and three-cluster solutions are thus capturing different subsets of CN and AD-C 

participants who (1) are most similar to AD across the set of demographic, cognitive, and 

network features, or (2) may have similar cognitive profiles but differing network topology. 

Some AD-C participants showed cognitive impairment and altered network topology using 

baseline assessments consistent with the supervised model. Conversely, different subsets of AD-
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C and CN participants show altered network topology without severe cognitive impairment that 

may impact daily functioning. When matched on cognitive performance as in Clusters 2 and 3, 

differences in network topology helped distinguish a subset of AD-C and CN participants.  

As noted above, Cluster 2 had lower estimates for most graph-theoretical measures, 

including redundancy-based metrics. However, it is unclear if Cluster 2 contains a subset of non-

demented participants with altered network topology at a higher risk of experiencing future 

cognitive impairment. Longitudinal work will be required to assess if the observed patterns track 

and or predict conversion to AD in these individuals. Recent work conducted in a sizeable cross-

cohort study of older cognitively unimpaired participants (N = 1325; 7 Cohorts) found that CN, 

positive for both Aß and tau (biomarker levels determined via PET imaging), are at a greater risk 

for converting to MCI and potentially AD over a 3-5-year period (Ossenkoppele et al., 2022). 

Thus, future work can assess if functional network topology, can help distinguish and/or predict 

if non-demented CN and AD-C participants who have a positive biomarker status will progress 

to MCI or AD. Modularity, global participation coefficient, and to an extent small-world 

propensity, may be particularly important. 

As highlighted in the introduction, with age, functional networks tend to become more 

integrated (e.g. less modular). This increase in functional network integration maybe 

compensatory, enabling efficient use of available neural resources when confronted with 

challenging cognitive demands (Avelar-Pereira et al., 2017; Chan et al., 2017; Grady, 2017). The 

ability to maintain an optimal balance of network integration and segregations, further 

compromised in AD, is mechanistically tied to the disruption of neuromodulatory systems (e.g. 

cholinergic hypothesis of AD). As discussed further below, AD converters exhibited higher 
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levels of modularity and levels of global participation coefficient, which was the opposite pattern 

found in AD participants. 

General Conclusion 

Consistent with prior work combining machine learning and network neuroscience, 

classification models accurately distinguished cognitively normal aging individuals from those 

with AD. However, neuropsychological assessments were more predictive than graph-theoretical 

metrics assessing global aspects of network topology. As hypothesized, AD participants 

exhibited the most significant memory-related impairments (Logical Memory; memory recall). 

However, AD participants scored significantly lower on all neuropsychological assessments 

administered by the OASIS-3 consortium. Thus, in AD participants, a pattern of global rather 

than domain-specific (e.g., memory) cognitive impairment was observed. This result may not be 

all that unexpected, as neuropsychological assessments are designed to detect more broad and 

severe forms of cognitive impairment due to neurodegenerative disease (Horowitz et al., 2018; 

Silverstein, 2008). In typical AD and amnestic MCI, memory-related cognitive impairments are 

often detected earlier and tend to decline faster (Caselli et al., 2020; Mistridis et al., 2015; 

Wilson et al., 2011). The average age of participants included in this study was 74. Participants 

in the AD-C and AD groups were older than CN on average (CN: M = 71, SD = 6; AD-C: M = 

79, SD = 8; AD = 76, SD = 8). With older age and in advanced stages of dementia due to AD, 

global cognitive impairment is more common (Amieva et al., 2014; Ferreira et al., 2020; Qiu et 

al., 2019; Wilson et al., 2011). 

Critically, although both supervised and unsupervised classification models could 

distinguish CN from AD participants, non-demented individuals who will convert to AD were 

more challenging to classify. Approximately half of the AD-C participants were misclassified as 
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CN, while the remaining half were classified correctly as converters or misclassified as AD. 

Although the current study did not uncover any of the cognitive subtypes previously identified in 

either CN or AD participants, one subset of AD converters may resemble the non-

amnestic/dysexecutive subtype of AD (Corriveau-Lecavalier et al., 2022; Mez et al., 2016; 

Townley et al., 2020), while another subset may be best defined by typical amnestic AD. 

Specifically, correctly classified AD-C participants were the oldest participants and showed more 

significant impairments in executive functioning and other related cognitive processes (attention, 

processing speed). This subset of AD-C participants showed comparable performance to AD-C 

classified as CN (AD-C–CN) on most memory- and fluency-based assessments. Conversely, AD 

converters misclassified as AD (AD-C–AD) exhibited more significant memory-related 

impairments and network topology more similar to AD participants. Critically, AD-C 

participants classified correctly versus incorrectly did not statistically differ in the number of 

days between their cognitive assessment and first fMRI scan. Thus, whether AD-C participants 

were correctly or incorrectly classified cannot be attributed to differences in time of assessment. 

Concerning network topology, in classification analyses, modularity and global 

participation coefficient were consistently more predictive than other graph-theoretical metrics 

assessed. Moreover, when comparing general patterns of network topology across the CN, AD-

C, and AD groups, post-hoc analyses identified several unique patterns. In general, compared to 

the CN group, AD-C and AD participants exhibited reduced small-world properties, including 

reduced levels of clustering coefficient and global efficiency consistent with prior work (Dyrba 

et al., 2015; Hallquist & Hillary, 2018; Khazaee et al., 2015; Y. P. Li et al., 2013; Sanz-Arigita et 

al., 2010; Wang et al., 2013; Zhao et al., 2012). In the current study, network topology was more 

segregated and less efficient in the AD-C group when compared to CN participants. 
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Interestingly, the overall pattern of increased network segregation in older AD-C 

participants is inconsistent with aging studies that find greater functional network integration in 

older non-demented adults (Bagarinao et al., 2019; Foo et al., 2021; Madden et al., 2020; 

Stumme et al., 2020; Voss et al., 2013) that support compensatory cognitive processes (Chan et 

al., 2017; Fornito et al., 2015; Meunier et al., 2014; Sala-Llonch, BartrÃs-Faz, et al., 2015). On 

the other hand, consistent with aging studies, AD participants exhibited greater network 

integration overall (lowest estimates of modularity, highest estimates of global participation 

coefficient) compared to the AD-C group and reduced clustering and global efficiency compared 

to CN participants. The contrasting patterns of network integration/segregation in the AD-C and 

AD groups may reflect the presence and or magnitude of pathological burden. Specifically, as 

highlighted in the introduction, the spread of pathological tau is activity-dependent (e.g., neural 

activation). Prior work suggests that early Aß deposition is associated with an initial stage of 

hyperconnectivity in specific association networks (e.g., default mode, salience, dorsal attention), 

followed by periods of hypoconnectivity in these same networks due to increasing levels of 

subcortical and neocortical tau (Jones et al., 2016; Keller & Christopher, 2017; Schultz et al., 

2017). Thus, differences in network topology between AD-C and AD participants may represent 

a biologically plausible reorganization of functional brain networks attributed to the dynamic 

interplay of AD pathology. Knowledge of biomarker status (e.g., AB+/tau+; AB-/tau+, etc.) can 

help test these assumptions systematically. Importantly, however, differences in network 

topology observed between groups (a priori [Aim 2] or data-driven [Aim 3]) were small in 

magnitude. Moreover, graph-theoretical metrics did not significantly contribute to classification 

performance. Thus caution is warranted when interpreting differences in network topology 

between the a priori [Aim 2] or data-driven [Aim 3] groups.  
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Overall, findings may suggest that estimates of global network topology derived using 

functional MRI may not be informative when diagnosing AD or identifying cognitively normal 

individuals who will convert to AD in older cohorts. This finding may be relevant to clinicians 

and researchers alike as MRI scans are costly and time-consuming. Here, neuropsychological 

assessments may be sufficient if the goal is to diagnose AD in older participants. However, an 

additional consideration is that global estimates of network topology may obscure regional and 

network-level changes that track with pathology. Prior work combining machine learning and 

graph theory found that regional metrics may be more sensitive when classifying individuals 

with and without AD (Hojjati et al., 2019; Khazaee et al., 2015, 2017; Xu et al., 2020) or 

predicting conversion from MCI to AD (Hojjati et al., 2017; Sun et al., 2019; Wei et al., 2016; T. 

Zhang et al., 2021). Future work can expand these analyses to combine global and nodal graph-

theoretical metrics as in previous work. However, it will be critical that such studies incorporate 

multiple measures of cognitive functioning capable of capturing divergent neurocognitive 

profiles and heterogeneous disease pathways that may or may not correspond with established 

biologically-based subtypes of AD. Thus more work is needed to understand how network 

metrics impact prediction and subgroup detection, especially at an earlier age and in earlier 

stages of the disease process before the cumulative impacts of aging and AD-related pathology 

have sufficiently altered network topology. 

Interestingly, global communicability, global clustering coefficient, and education level 

did not significantly contribute to classification performance. As discussed in the introduction, 

some individuals are more resilient to AD pathology. Thus, markers of brain and cognitive 

reserve (e.g., redundancy, education level, etc.) may also be more discriminative at earlier points 

in time before the cumulative effects of age- and AD-related pathologies have reached a point of 
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criticality. As discussed above, although graph-theoretical metrics were not as informative as 

neuropsychological assessments in this sample, altered network topology observed in AD-C and 

AD participants can theoretically be linked to the opposing effects of Aß and tau. The utility of 

subtle but specific changes in network topology may be essential for classifying converters that 

do not necessarily conform to any of the previously identified subtypes or resemble the typical 

amnestic form of AD. Additionally, the present study focused on cognitive functioning and 

global network topology. Thus, more work is needed to tease apart how differences in functional 

network topology, observed at the regional, network, and global levels, are associated with 

pathological change and emerging cognitive impairment. Finally, it will also be critical to 

consider additional factors that can shape the trajectory and rate of cognitive decline in otherwise 

cognitively normal individuals at risk of developing AD, such as vascular and metabolic risk 

factors (diabetes, high blood pressure, obesity, etc.) (Hughes & Craft, 2016; MacIntosh et al., 

2020; Perera et al., 2020). 

Limitations and Future Directions 

A fundamental limitation of this study is the lack of participants under the age of 65 with 

cognitive and neuroimaging data. Except for a small subset of AD-C participants, as discussed 

above, there was no clear indication that participants could be stratified into any of the 

previously defined cognitive subgroups. Participants with atypical and/or non-amnestic subtypes 

of AD are, on average younger individuals with early-onset dementia (<60 years of age) 

(Townley et al., 2020; Vogel & Hansson, 2022). Thus the ability to detect cognitive subgroups 

may have been impacted by the older age range of the sample. Moreover, the current study took 

exceptional care to exclude individuals without a primary diagnosis of AD and without 

additional comorbidities. The extent to which this impacted results is unclear. 
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Analytically, the number of subgroups detected may depend not only on the age or size of 

the sample but also on the number and scope of cognitive assessments administered, choice of 

statistical analysis (parametric, non-parametric), and whether or not the groups have been cross-

validated (Ferreira et al., 2020). The lack of correspondence to previous work may be due to 

differing methodology. The unsupervised random forest attempts to best partition a dataset with 

respect to randomly generated synthetic data. The two-cluster solution simply maximized 

differences across the full set of features. Thus, with a limited number of features and clear set of 

[cognitive] patterns between groups, the random forest-based approach may not be optimal. In 

future work, cluster analysis can be performed directly on the raw data consistent with prior 

studies (Kwak et al., 2021; Scheltens et al., 2016, 2017, 2018). The resulting clusters can then be 

compared with the proximity-based approach taken here to assess the robustness and clinical 

utility of the derived solutions more formally. 

Likewise, in the present study, 31 of 56 AD-C participants had global CDR scores of .5 

or higher and would thus likely be diagnosed with MCI if using currently established thresholds. 

Although neither global CDR scores or CDR-SB ratings were different between the predicted 

AD-C groups, future work can assess the degree to which a formal diagnosis of MCI impacts 

classification of non-demented individuals who convert to AD. However, as discussed in the 

introduction, caution may be warranted with relying on traditional diagnostic criteria that are 

susceptible to false-positives to define MCI (Bondi et al., 2008, 2014; Edmonds et al., 2015, 

2021; Jacobson et al., 2009). More comprehensive approaches that combine neuropsychological 

scores, assessment of daily-functioning activities, and biological data are more likely to yield 

improved early identification of impaired individuals, particularly those who do not conform to 
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conventional or typical subtypes of either MCI or AD (Edmonds et al., 2015, 2021; Ferreira et 

al., 2020; Jellinger, 2021). 

Further, as previously discussed, neuropsychological assessments are designed to detect 

broad, non-specific cognitive impairments and simultaneously tap multiple executive and non-

executive processes. Such assessments are also prone to floor and ceiling effects that can distort 

the true nature and magnitude of cognitive impairment detected between healthy participants and 

individuals with or at risk of developing AD (Duff, 2012; Duff et al., 2011). Gomez-Isla and 

colleagues (2019) noted that while the diagnosis of AD has become more reliant on biomarkers, 

several studies have failed to find consistent associations between markers of AD pathology and 

cognitive impairment or decline (Gomez-Isla & Frosch, 2019). Although several health-related 

factors may contribute to the lack of association, the non-specific nature and lack of sensitivity of 

standard neuropsychological assessments may also limit their predictive utility in younger, more 

diverse samples. Thus, future work should consider cognitive assessments that permit assessing 

specific subcomponents of cognition and allow for a deconstruction of performance based on 

accuracy and response time distributions. Moving the focus beyond single summary scores that 

describe gross characteristics of cognitive functioning may enable researchers to capture both 

general and specific cognitive impairments earlier in the time course of AD. In this study, 54% 

of AD converters were classified as CN; thus, more sensitive cognitive measures may be needed 

to capture the emergence of cognitive impairment and to help identify individuals at greater risk 

of developing dementia. 

In Aim 1, linear models did not control for in-scanner motion or core demographic risk 

factors (age, sex, education). Future work can formally assess if linear relationships between 

weighted redundancy-based metrics and cognition are dependent on these factors. In the present 
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sample, the number of timepoints remaining after motion censoring (see Image Processing) was 

well beyond guidelines that recommend an average of 5-7 minutes (minimum) when estimating 

functional connectivity (Birn et al., 2013). Regardless, a priori groups differed on average in-

scanner motion, driven by lower motion in the AD-C group. No motion-related differences were 

observed between CN and AD participants. Additional work may thus be needed to understand if 

motion effects before and after motion correction contribute to null findings in the CN and AD 

groups. Importantly, core demographic risk factors are respectively associated with the 

progression of AD pathology, aging and AD-related cognitive decline, and general prevalence of 

AD in the population. As noted above, education level and sex were not overall important for 

classifying individuals with or without AD. However, this may be attributed to several factors 

including, but not limited to the older age of the sample and the cross-sectional nature of the 

analyses as discussed above. Education level and sex may be particularly important for 

predicting risk of AD when both the onset and progression of additional health-related risk 

factors (e.g., cardiometabolic disease, etc.) can be accounted for (Altmann et al., 2014; 

Hasselgren et al., 2020; Letenneur et al., 1999). An additional consideration is that controlling 

for many influential variables associated with heterogeneous disease processes such as AD may 

lead to biased inference. To better account for omitted variable bias, measures that quantify 

pathology need to be explicitly modeled via additional interaction terms. In such cases, path-

based (e.g., Structural-Equation Modeling) analyses, non-parametric models, or machine 

learning algorithms (e.g., random forest) that handle higher-order interaction terms may be most 

appropriate. Specifically, in addition to assessing the influence of individual covariates in a null 

hypothesis testing framework, higher-order interactions in machine learning models can be 

further investigated, as can marginal effects using partial dependence, automated local effects, 
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and individual conditional expectation analyses (Hastie et al., 2013; Henninger et al., 2022; 

Welchowski et al., 2022). In classification problems, these methods quantify the probability that 

an observation will be assigned to a given class at specific values for a given pair of features. In 

addition, model-based feature selection or reduction methods (see the Machine Learning in AD 

section) can be applied during cross-validation to eliminate features that do not consistently 

contribute to model performance, subsequently reducing the number of possible interactions to 

explore. 

 In addition to age, sex, and education, Aβ, tau, and genes encoding the ApoE protein 

interact to determine an individual's level of risk for developing AD (Safieh et al., 2019). 

Compared to non-carriers, ε4 carriers may exhibit accelerated rates of cognitive decline and 

develop dementia at an earlier age (Reas et al., 2019; Scheller et al., 2018). This risk is two-fold 

for individuals homozygous for the ε4 allele (e.g., having two copies; 44). More work is thus 

needed to understand how pathological AD markers, including ApoE status, interact with 

demographic risk factors, cognitive performance, and network topology to predict conversion in 

non-demented individuals. Moreover, the OASIS dataset is 84.3% white non-Hispanic. Black 

and other non-white individuals are at an increased risk of developing AD due to cardiovascular 

complications and comorbid pathologies (diabetes, obesity, etc.) (Lockhart et al., 2022), as well 

as other non-biological factors, including lack of health care access and social support structures 

(“2021 Alzheimer’s Disease Facts and Figures,” 2021; Barnes & Bennett, 2014; Chin et al., 

2011). Future work should strive to ensure samples are representative of the population and that 

any proposed subtypes of AD, defined biologically and/or cognitively, capture variation due to 

race and ethnicity. 
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As noted above, future work can incorporate graph-theoretical metrics estimated at the 

nodal level to account for regional differences associated with the spread of pathology. Related, 

communicability and network redundancy are edgewise metrics, meaning there is an estimate of 

redundancy for every connection within a given graph. Though correlated at the global level, 

metrics that quantify redundancy in functional networks may not equally weight individual nodes 

or regions. Thus, global descriptions of redundancy, which take the sum or average overall 

connections, may distort the true variability present across regions and networks that track 

specific cognitive functions impacted by aging and AD. Furthermore, global summary scores of 

edgewise metrics may be highly correlated with average network strength (e.g., weighted degree) 

and/or mean estimates of functional connectivity. That is, while communicability in particular 

attempts to reduce bias driven by high-degree nodes (Andreotti et al., 2014; Estrada & Hatano, 

2008), summing across connections, including the diagonal entries of the communicability 

matrix containing estimates of node centrality, may negate any degree-based normalization 

(Oldham et al., 2019). 

Related, the present study strategically analyzed weighted graph-theoretical metrics to 

circumvent density-related issues with graph thresholding, as described in the introduction. 

However, an additional concern is that fully weighted unthresholded matrices contain noisy, 

potentially spurious connections (van den Heuvel et al., 2017). Future work can assess if 

weighted graph-theoretical metrics found to differ between patient and non-patient groups are 

robust to estimation on graphs with and without the use of thresholding. Here, single-

thresholding methods, such as the minimal spanning tree (Dimitriadis et al., 2017), may be 

preferred over traditional thresholding approaches (e.g., absolute and proportional thresholding) 

that require multiple statistical comparisons. 
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As data-driven models, informed by theory, grow in complexity, it will be increasingly 

important to evaluate if models generalize out-of-sample. In the review by Grueso and 

colleagues (2021), only 3 of 234 studies using machine learning to predict conversion to AD (see 

the Machine Learning & AD section) were able to validate their models in a completely 

independent external dataset (Grueso & Viejo-Sobera, 2021). Although the current study utilized 

repeated 5-fold cross-validation to assess average classification performance and improve model 

generalizability, models were not externally validated. For prediction models to be clinically 

useful, they must be deployed and validated in independent and diverse datasets. 

Concerning feature importance, the cutoff used to identify highly correlated variables was 

chosen somewhat arbitrarily given no single optimal threshold exists. The chosen threshold may 

thus be too lenient. In random forest classification, subsets of features are randomly selected and 

used for splitting a pair of observations at each node within a given decision tree (see Random 

Forest Application). Given the lack of correlation between decision trees in a random forest 

ensemble, classification performance is relatively robust to the presence of correlated features 

(Breiman, 2001). However, given the limited number of features included in the present 

analyses, feature importance rankings may be impacted (Genuer et al., 2010; Strobl et al., 2008). 

Thus, future work can ensure feature importance scores are robust to multicollinearity problems 

by testing a range of exclusionary thresholds (.75-.95) commonly used in the machine learning 

literature (Dormann et al., 2013). 

Likewise, exploratory post-hoc analyses were not corrected for multiple comparisons to 

facilitate discovery of general trends emerging in secondary analyses (Murray et al., 2011; 

Scheltens et al., 2017). Thus it is uncertain if any inferences from the present results generalize 

to independent data, and caution is warranted with overinterpretation of mean differences 



 

123 

reported between predicted groups. Finally, the random forest is one of several versatile and 

robust machine learning algorithms. Future work can assess how different machine learning 

algorithms may boost prediction performance and improve early detection of individuals at a 

higher risk of converting to AD later in life. 

In conclusion, this project aimed to identify and assess markers of reserve and resilience 

in functional brain networks that can help differentiate typical from atypical age-related 

cognitive impairment. Analyses sought to illuminate high-dimensional relationships between 

metrics that capture functional brain network topology and multiple cognitive domains using a 

large-high-quality open-access neuroimaging dataset. Here, weighted redundancy-based graph-

theoretical metrics did not represent general markers of reserve and were not overall associated 

with cognitive functioning. The combination of demographic factors, cognitive performance 

measures, and graph-theoretical metrics summarizing global network topology could accurately 

distinguish CN from AD participants. However, overall classification performance was modest 

given that the AD-C group did not represent a single diagnostic entity. When classifying older 

individuals with and without AD, neuropsychological measures were more informative than 

metrics assessing global network topology, including redundancy-based measures. Among the 

graph-theoretical metrics assessed, modularity, global participation coefficient, and small-world 

propensity measures were most predictive and helped distinguish AD-C participants correctly 

classified or misclassified as either CN or AD. Importantly, in AD converters (AD-C), functional 

network redundancy was predictive of better executive functioning. Further, AD converters 

classified correctly exhibited reduced redundancy on average compared to converters 

misclassified as either CN or AD. Finally, while this study failed to identify cognitive subgroups 

previously reported in MCI and AD participants, AD converters correctly classified or 
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misclassified as AD show diverging neurocognitive profiles and may represent a subset of 

individuals with primarily executive, as opposed to memory-related impairments, respectively. 

Future longitudinal work incorporating pathological markers of AD will be required however to 

assess the robustness of these findings. 

Ultimately, it is hoped that future extensions of this work will contribute to early-

detection research and facilitate the discovery of neurocognitive profiles that better capture 

individuals at risk of experiencing mild to more severe forms of cognitive impairment who are at 

greater risk of developing dementia.  
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