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ABSTRACT

Hannan Yang: Statistical Learning Methods for High-dimensional
Classification and Regression

(Under the direction of Quefeng Li and Danyu Lin)

With the recent advancement of technology, large and heterogeneous data containing enormous

variables of mixed types have become increasingly popular, great challenges in computation and

theory have arisen for classical methods in classification and regression. It is of great interest

to develop new statistical methods that are computationally efficient and theoretically sound for

classification and regression using high-dimensinoal and heterogeneous data. In this dissertation,

we specifically address the problems in the computation of high-dimensional linear discriminant

analysis, and in high-dimensional linear regression and ordinal classification with mixed covariates.

First, we propose an efficient greedy search algorithm that depends solely on closed-form formulae

to learn a high-dimensional linear discriminant analysis (LDA) rule. We establish theoretical

guarantee of its statistical properties in terms of variable selection and error rate consistency; in

addition, we provide an explicit interpretation of the extra information brought by an additional

feature in a LDA problem under some mild distributional assumptions. We demonstrate that this

new algorithm drastically improves computational speed compared with other high-dimensional

LDA methods, while maintaining comparable or even better classification performance through

extensive simulation studies and real data analysis.

Second, we propose a semiparametric Latent Mixed Gaussian Copula Regression (LMGCR)

model to perform linear regression for high-dimensional mixed data. The model assumes that the

observed mixed covariates are generated from latent variables that follow the Gaussian copula. We

develop an estimator of the regression coefficients in LMGCR and prove its estimation and variable

selection consistency. In addition, we devise a prediction rule given by LMGCR and quantify its

prediction error under mild conditions. We demonstrate that the proposed model has superior

performance in both coefficient estimation and prediction through extensive simulation studies and
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real data analysis.

Finally, we propose a semiparametric Latent Mixed Gaussian Copula Classification (LMGCC)

rule to perform classification of ordinal response using unnormalized high-dimensional data. Our clas-

sification rule learns the Bayes rule derived from joint modeling of ordinal response and continuous

features through a latent Gaussian copula model. We develop an estimator of the regression coeffi-

cients in predicting the latent response and prove its estimation and variable selection consistency.

In addition, we establish that our devised LMGCC has error rate consistency. We demonstrate that

the proposed method has superior performance in ordinal classification through extensive simulation

studies and real data analysis.
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CHAPTER 1
INTRODUCTION

Classification and regression are central statistical problems: one aims at assigning a subject to

one of several classes based on certain features, while the other attempts to find the relationship

between a response and the covariates. There are numerous real-life applications that fall in the

category of these two tasks. In genomics studies, the microarray technology has generated massive

gene expression measurements for classifying subtypes of cancers and many other diseases (Golub

et al. 1999; Gordon et al. 2002); in clinical practices of cardiology, assessments on electronic health

records may help determine the predictors for pacemaker implantation (Mazzella et al. 2021) or

understand whether political stress has any impact on arrhythmias (Rosman et al. 2020); in social

science, community level demographics help unravel the important factors for predicting crime

patterns (Buczak and Gifford 2010), general social survey (GSS) could shed light on the association

between religious practice and health (Idler et al. 2003); in the study of Alzheimer’s disease, baseline

multi-modal neuroimage provides early prediction on the disease progression (Doyle et al. 2014).

Classical methods in classification, such as linear discriminant analysis, and in regression,

such as linear or generalized linear regression model, have become widely used before the big

data era. With the emergence of large and heterogeneous data containing enormous variables

of mixed types, great challenges in computation and theory have arisen for classical methods in

classification and regression. For example, The Cancer Genome Atlas (TCGA) database integrates

clinical information with gene expressions, methylations and copy number variations; the UK

Biobank database integrates clinical information with genotyes from whole genome sequencing and

even imaging data; the Alzheimer’s Disease Neuroimaging Initiative (ADNI) integrates patient

demographics with neuroimaging measurements from multiple modalities. These databases collect

immeasurable and detailed information, which could significantly improve the prediction of certain

clinical phenotypes and help understand the mechanism behind the chronic diseases. However, such

large databases are practically imperfect for statistical tasks, as they are generally in the form with

high-dimensionality, missingness, non-normality, and heterogeneity. High-dimensionality illustrates
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the case when the number of variables exceeds the sample size, which has led to tremndous ill-posed

problems for statistical research. Modeling the missing mechanism in the data has been one central

topic in statistical research for decades, maximum likelihood approach, multiple imputation, and

Bayesian approach are well developed but generally computationally intensive. The presence of

mixed types (including continuous, binary, ordinal, and truncated) of variables is common when

integrating multiple modalities of data during classification or regression. Handling mixed data

types generally requires applying appropriate transformations before classification and regression

(Carroll and Ruppert 1988), but such transformations are usually subjective and it remains unclear

whether choosing certain transformations can correctly specify the functional form of the variables.

Currently, with the advancement of computation power, scholars have proposed viable methods in

different applications of high-dimensional data analysis. However, these methods are mostly relying

on assumptions that oversimplify the complexity of real datasets, e.g. the violation of normality

assumption, mixed types of variables, and are practically inefficient in terms of computation. Hence,

there is an urgent need to tackle more complex high-dimensional data for the study of statistical

learning methods.

It is of great interest to develop new statistical methods that are computationally efficient and

theoretically sound for classification and regression using large and heterogeneous data. In this

dissertation, we specifically address the three problems: how to efficiently solve the high-dimensional

linear discriminant analysis problem, how to unify mixed and non-normal types of covariates

in high-dimensional regression, how to unify non-normal features for high-dimensional ordinal

classification.

First, we propose an efficient greedy search algorithm that depends solely on closed-form formulae

to learn a high-dimensional linear discriminant analysis (LDA) rule. We establish theoretical

guarantee of its statistical properties in terms of variable selection and error rate consistency; in

addition, we provide an explicit interpretation of the extra information brought by an additional

feature in a LDA problem under some mild distributional assumptions. We demonstrate that this

new algorithm drastically improves computational speed compared with other high-dimensional

LDA methods, while maintaining comparable or even better classification performance through

simulation studies and a real data application to cancer genomics.

Second, we propose a semiparametric Latent Mixed Gaussian Copula Regression (LMGCR)
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model to perform linear regression for high-dimensional mixed data. The model assumes that the

observed mixed covariates are generated from latent variables that follow the Gaussian copula,

and the observed response is generated by a linear model of the latent covariates. We develop an

estimator of the regression coefficients in LMGCR and prove its estimation and variable selection

consistency. We devise an imputation procedure with closed-form formulae to recover the latent

covariates. In addition, we devise a prediction rule given by LMGCR and quantify its prediction

error under mild conditions. We demonstrate that the proposed model has superior performance in

both coefficient estimation and prediction through extensive simulation studies. We also apply the

proposed method to analyze community crimes using a crime data from the UCI Machine Learning

Repository.

Finally, we propose a semiparametric Latent Mixed Gaussian Copula Classification (LMGCC)

rule to perform multi-class classification of ordinal response using high-dimensional non-normal

data. With the latent mixed Gaussian copula model, we can jointly model the ordinal response and

the continuous features by assuming there exists some latent continuous variable generating the

response so that this latent variable and the features jointly follow a Gaussian copula. We devise the

LMGCC rule that learns the Bayes rule under our model. We prove that the regression coefficients

for predicting the latent variable has estimation and variable selection consistency, and establish

the misclassification error rate consistency of LMGCC. We demonstrate that LMGCC has superior

and robust classification performance than other multi-class classifiers through extensive simulation

studies. We apply LMGCC to classify the progression of breast cancer using a baseline FNA image

data from the UCI Machine Learning Repository.
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CHAPTER 2
LITERATURE REVIEW

In this chapter, we review some existing literature that motivated the subsequent development

of our dissertation.

2.1 High-dimensional Linear Discriminant Analysis

We consider a binary classification problem where we intend to assign a class label Y ∈ {0, 1} to

a subject given its features x. The class label has a prior distribution of P (Y = k) = πk, for k = 0, 1.

Suppose xk ∈ Rp denotes a p-dimensional vector of features from the kth class that follows a normal

distribution of N(µk,Σ), where x0 and x1 are assumed to be independent. The Bayes rule of this

classification problem under zero-one loss is given by DBayes(x) = I(δTΣ−1(x− µ) ≤ log(π1/π0)),

where δ = µ0 −µ1, µ = (1/2)(µ0 +µ1) and x is a new observation. The corresponding Bayes error

is given by RBayes = Φ(−
√

∆p/2), where ∆p = δTΣ−1δ is the Mahalanobis distance between the

centroids of the two classes and Φ is the cumulative distribution function of the standard normal

distribution. In practice, the Bayes rule is unknown. A classification rule is learned based on

the training data X = {xki; k = 0, 1; i = 1, . . . , nk}, where xki’s are independent and identically

distributed (i.i.d) samples from the kth class and nk is the sample size of the kth class with

n = n0 + n1. Then the rule is applied to classify a new observation x, which is assumed to be

independent of the training data.

The linear discriminant analysis (LDA), was widely used before the big data era (Anderson

1958). It directly learns the Bayes rule by estimating the unknown parameters involved. For the

classical LDA method, the unknown parameters in the Bayes rule are replaced with their maximum

likelihood estimators; this LDA rule has the form of

DLDA(x) = I(δ̂T Σ̂−1(x− µ̂) ≤ log(π̂1/π̂0))
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where

π̂k = nk/n, µ̂k = 1
nk

nk∑
i=1
xki, δ̂ = µ̂0 − µ̂1, (2.1.1)

µ̂ = (1/2)(µ̂0 + µ̂1), Σ̂ = 1
n

1∑
k=0

nk∑
i=1

(xki − µ̂k)(xki − µ̂k)T . (2.1.2)

But in the high-dimensional setting where p > n, the classical LDA method is no longer feasible,

as Σ̂ is not invertible. Even if we replace Σ̂−1 with a generalized matrix inverse, Bickel and Levina

(2004) showed that the resulting rule has an asymptotic misclassification error of 1/2, which is

as bad as random guessing. This is essentially due to the error accumulation in estimating those

high-dimensional parameters in the classifier. To avoid this issue in the high-dimensional setting,

many regularized methods have been proposed (Clemmensen et al. 2011; Witten and Tibshirani

2011; Shao et al. 2011; Cai and Liu 2011; Fan et al. 2012; Mai et al. 2012; Han et al. 2013). In

particular, Shao et al. (2011) proposed a sparse linear discriminant analysis (SLDA) rule

DSLDA(x) = I(δ̃T Σ̃−1(x− µ̂) ≤ log(π̂1/π̂0))

where δ̃ and Σ̃ are the thresholding estimators that δ̃ = (δ̃j) with δ̃j = δ̂jI(|δ̂j | > tδ) and δ̂j is the

jth element of δ̂, and Σ̃ = (σ̃ij) with σ̃ii = σ̂ii, σ̃ij = σ̂ijI(|σ̂ij | > tσ) for i 6= j and σ̂ij is the (i, j)th

element of Σ̂. They showed that the SLDA’s misclassification error still converges to the Bayes

error given that the thresholds tδ and tσ are chosen properly and given some sparsity conditions on

both δ and Σ. Instead of separately estimating δ and Σ, as the SLDA does, two other methods

directly estimate the slope of the Bayes rule β = Σ−1δ by solving convex optimization problems.

For example, the linear programming discriminant (LPD) method (Cai and Liu 2011) estimates β

by solving

β̂LPD = argmin
β∈Rp

‖β‖1 subject to ‖Σ̂β − δ̂‖∞ ≤ λ,

where λ is a tuning parameter and (δ̂, Σ̂) is as defined in (2.1.1) and (2.1.2). The regularized optimal

affine discriminant (ROAD) method (Fan et al. 2012) estimates β by solving

β̂ROAD = argmin
β∈Rp

(1/2)βT Σ̂β + λ‖β‖1 + (γ/2)(βT δ̂ − 1)2,
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where λ and γ are tuning parameters and (δ̂, Σ̂) is as defined in (2.1.1) and (2.1.2). Then, replacing

Σ̃−1
δ̃ in the SLDA rule with β̂LPD or β̂ROAD gives the corresponding LPD or ROAD rule. Both

papers showed that the resulting rules’ misclassification error asymptotically converges to the Bayes

error, given some sparsity condition on β.

In general, these methods showed that as long as the unknown population parameters satisfy

some sparsity assumptions, building a regularized LDA classifier accordingly can yield a consistent

classification rule, in the sense that its misclassification error converges to the Bayes error. For

example, Shao et al. (2011) showed that if the difference of population means and the covariance

matrices are sparse, utilizing thresholding estimators (Bickel and Levina 2008a) can still yield a

consistent rule. On the other hand, Cai and Liu (2011), Fan et al. (2012) and Mai et al. (2012)

separately developed distinct consistent rules while assuming the slope of the Bayes rule is sparse.

Han et al. (2013) further relaxed the normality assumption on these rules and extended them to

more general distributions by using a Gaussian copula method.

Although these rules are guaranteed to be consistent, learning the rules is computationally

difficult. For example, both SLDA and LPD need to first compute Σ̂, which requires O(np2)

operations. For SLDA, it requires additional operations to obtain the regularized estimators Σ̃ and

δ̃. Besides that, inverting Σ̃ costs another O(p2+ε) operations for some ε ∈ (0, 1], depending on

the actual algorithm used to invert a matrix. Finally, computing the product Σ̃−1
δ̃ costs O(p2)

operations. Thus the total computational cost of SLDA is at least max{O(np2), O(p2+ε)}. For

LPD, the optimization problem can be solved by the primal-dual interior-point method (Candes

et al. 2007). As shown by Candes et al. (2007), in the scenario that p� n, each iteration requires

solving an n× n linear system (O(n2)) and updating the matrix for the system (O(np2)), which

also requires evaluating Σ̂. Such an evaluation already takes O(np2) operations. Therefore, let T

be the number of iterations for the interior-point method to converge. The total computational

cost for LPD is max{O(Tnp2), O(Tn2)}. For ROAD, if one chooses to evaluate Σ̂ first and then

solve the optimization problem, the computational cost is at least O(np2). A more computationally

efficient solution is to use the fast iterative shrinkage-thresholding algorithm (FISTA) proposed

by Beck and Teboulle (2009). In each iteration of FISTA, the computational cost to compute the

gradient is O(np) and it is shown in Beck and Teboulle (2009) that FISTA needs at least O(n1/4)

iterations to converge. Thus, the total computational cost for FISTA to solve the ROAD problem is
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at least O(n5/4p). One may also choose to use the covariance-based method (Friedman et al. 2010)

to calculate the gradient. However, its efficiency depends on the choice of tuning parameters and

the initial value so that the total computational cost is hard to be quantified in general. Therefore,

for large data sets with considerably large sample size and ultra-high dimension, it takes a long

time to learn these rules, which motivates us to develop computationally more efficient algorithm

with theoretical gaurantee that can solve the high-dimensional linear discriminant analysis problem.

2.2 Copula-based Statistical Learning for Regression

Due to the semiparametric nature that the marginal transformations are unspecified, copula

model is well-known for modelling the joint distribution of continuous variables with skewed marginal

distributions. The robustness of copula model on a broad class of distributions makes it one of the

most favorable choices in statistical learning, especially regression problems with random design.

Some corresponding examples are discussed below.

2.2.1 Unsupervised Learning

For an unsupervised problem of estimating correlations among mixed variables, some recent

works have provided solutions using copula-based method (Liu et al. 2009; 2012; Fan et al. 2017;

Feng and Ning 2019; Yoon et al. 2020).

Specifically, Liu et al. (2009; 2012) proposed a Gaussian copula model to estimate correlation

among continuous variables. For a random vector z ∈ Rp, if f(z) ∼ N(0,Σ), where f = (f1, ..., fp)T ,

fj is an unspecified monotonically increasing function and Σ is a correlation matrix, then z is said

to follow a nonparanormal distribution, denoted by z ∼ NPN(0,Σ, f). Such model extends the

multivariate Gaussian distribution to Gaussian copula, but still restricts the elements of z to be all

continuous. Liu et al. (2009) proposed to estimate Σ by using the normalized score method based

on normalizing z, which required estimating the marginal transformation function f . Later Liu et al.

(2012) proposed to estimate Σ by bridging the elements of Kendall’s tau correlation matrix based

on z to elements of Σ. If we observe n i.i.d samples of variables Zj and Zk, then the Kendall’s tau

correlation estimate between Zj and Zk is given by

τ̂jk = 2
n(n− 1)

∑
1≤i<i′≤n

sgn(Zij − Zi′j)sgn(Zik − Zi′k), 1 ≤ j < k ≤ p.

Since τjk = E(τ̂jk) = 2sin−1(Σjk)/π for j 6= k, the bridged correlation estimator was given by
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Σ̂jk = sin(πτ̂jk/2) for j 6= k. Such method circumvent the estimation of f , resulting in optimal

convergence rate. This idea motivated several following methods for estimating Σ given mixed types

of variables.

Fan et al. (2017) proposed a latent Gaussian copula model to simultaneously model the joint

distribution of continuous and binary variables. They assumed that the observed variable Xj related

to the latent variable Zj based on the following transformations

Xj =


Zj , for j ∈ C;

I(Zj > Cj), for j ∈ B,

where C and B are the index sets of continuous and binary variables, (Cj)j∈B is a vector of unknown

thresholds for binary variables. The observed variable x is said to follow a latent nonparanormal

distribution, denoted by LNPN(0,Σ, f ,C). The estimation for Σ used the idea of bridging Kendall’s

tau correlation τjk based on x to Σjk, and the bridge functions are given as the following,

τjk = Fjk(Σjk) =



2sin−1(Σjk)/π, for j ∈ C, k ∈ C;

2(Φ2(∆j ,∆k,Σjk)− Φ(∆j)Φ(∆k)), for j ∈ B, k ∈ B;

4Φ2(∆k, 0,Σjk/
√

2)− 2Φ(∆k), for j ∈ C, k ∈ B;

where ∆j = fj(Cj) for j ∈ B, Φ2 is the two-dimensional standard multivariate Gaussian distribution

function. Since the parameters ∆j for j ∈ B can be estimated by some moment estimators,

∆̂j = Φ−1(1− (1/n)
n∑
i=1

Xij), for j ∈ B,

and these bridge functions are all invertible, then the estimate Σ̂jk can be obtained by solving

τ̂jk = F̂jk(Σ̂jk), which still circumvent the estimation of transformation f .

Feng and Ning (2019) generalized the latent Gaussian copula model to to handle ordinal and

categorical variables with arbitrarily many levels. They modeled an ordinal variable Xj by

Xj =
Nj∑
k=1

I(Zj > Cjk), for j ∈ O;
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where O is the index set of ordinal variables, and Cj1 < ... < CjNj (j ∈ O) are the Nj unknown

thresholds for an ordinal variable with Nj + 1 levels, and incorporated the ordinal variables to the

latent nonparanormal distribution. To estimate the latent correlation involving ordinal variables,

Feng and Ning (2019) proposed the following ensemble approach. Suppose Xj and Xk are ordinal

variables with Nj + 1 and Nk + 1 levels, then we let X(p)
ij = I(Xij ≥ p), p = 1, ..., Nj , and

X
(q)
ik = I(Xik ≥ q), q = 1, ..., Nk. With the dichotomized variables X(p)

ij and X(q)
ik , we can estimate

∆(p)
j = fj(Cjp) and ∆(q)

k = fk(Ckq) by

∆̂(p)
j = Φ−1(1− (1/n)

n∑
i=1

X
(p)
ij ), ∆̂(q)

k = Φ−1(1− (1/n)
n∑
i=1

X
(q)
ik ), for j, k ∈ O.

Using the bridge functions for binary variables, we can estimate the latent correlations between

each pair of these binary variables by solving F̂jk(Σ̂
(p,q)
jk ) = τ̂

(p,q)
jk , where

τ̂
(p,q)
jk = 2

n(n− 1)
∑

1≤i<i′≤n
sgn(X(p)

ij −X
(p)
i′j )sgn(X(q)

ik −X
(q)
i′k ), p = 1...Nj , q = 1...Nk.

Finally, they proposed to use the weighted average of these latent correlations to obtain the point

estimator of the correlation between ordinal variables, which has the form of

Σ̂jk =
Nk∑
q=1

Nj∑
p=1

Σ̂(p,q)
jk w

(p,q)
jk .

If Xj is ordinal and Xk is of other types, a similar estimator can be constructed as Σ̂jk =∑Nj
p=1 Σ̂(p)

jk w
(p)
jk , for p = 1, ..., Nj , where

τ̂
(p)
jk = 2

n(n− 1)
∑

1≤i<i′≤n
sgn(X(p)

ij −X
(p)
i′j )sgn(Xik −Xi′k), and F̂jk(Σ̂

(p)
jk ) = τ̂

(p)
jk .

In the above estimators, the weights must satisfy 0 ≤ w
(p,q)
jk ≤ 1,

∑Nk
q=1

∑Nj
p=1w

(p,q)
jk = 1, and

0 ≤ w
(p)
jk ≤ 1,

∑Nj
p=1w

(p)
jk = 1. For simplicity, it suffices to use w(p,q)

jk = 1/(NjNk) and w(p)
jk = 1/Nj .

Such ensemble estimator also circumvent the estimation of f and its statistical propoerties are

similar to the estimators given in Fan et al. (2017).

Yoon et al. (2020) proposed a truncated latent Gaussian copula model to deal with truncated
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variables. They modeled a truncated variable Xj by

Xj = I(Zj > Cj)Zj , for j ∈ T ;

where T is the index set for truncated variables, CT = (Cj)j∈T is a vector of unknown thresholds

truncated variables, and incorporated the truncated variables to the latent nonparanormal distribu-

tion that contains continuous, binary and truncated variables. The estimation for Σ still used the

idea of bridging Kendall’s tau correlation τjk based on x to Σjk, and the bridge functions are given

as the following,

τjk = Fjk(Σjk) =



2(1− Φ(∆j))Φ(∆k)− 2Φ3(−∆j ,∆k, 0; Σ3a)

− 2Φ3(−∆j ,∆k, 0; Σ3b),
for j ∈ T , k ∈ B;

−2Φ2(−∆j , 0; 1/
√

2) + 4Φ3(−∆j , 0, 0; Σ3), for j ∈ T , k ∈ C;

−2Φ4(−∆j ,−∆k, 0, 0; Σ4a) + 2Φ4(−∆j ,−∆k, 0, 0; Σ4b), for j ∈ T , k ∈ T .

Σ3a =


1 −Σjk 1/

√
2

−Σjk 1 −Σjk/
√

2

1/
√

2 −Σjk/
√

2 1

 ,Σ3b =


1 0 −1/

√
2

0 1 −Σjk/
√

2

−1/
√

2 −Σjk/
√

2 1

 ,

Σ3 =


1 1/

√
2 Σjk/

√
2

1/
√

2 1 Σjk

Σjk/
√

2 Σjk 1

 ,

Σ4a =



1 0 1/
√

2 −Σjk/
√

2

0 1 −Σjk/
√

2 1/
√

2

1/
√

2 −Σjk/
√

2 1 −Σjk

−Σjk/
√

2 1/
√

2 −Σjk 1


,

Σ4b =



1 Σjk 1/
√

2 Σjk/
√

2

Σjk 1 Σjk/
√

2 1/
√

2

1/
√

2 Σjk/
√

2 1 Σjk

Σjk/
√

2 1/
√

2 Σjk 1


,

where ∆j = fj(Cj) for j ∈ B ∪ T „ Φd is the cumulative distribution function of the d-dimensional
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standard normal distribution. Since the parameters ∆j for j ∈ B ∪ T can be estimated by some

moment estimators,

∆̂j = Φ−1(1− (1/n)
n∑
i=1

Xij), for j ∈ B;

∆̂j = Φ−1(1− (1/n)
n∑
i=1

I(Xij > 0)), for j ∈ T ,

and these bridge functions are all invertible, then the estimate Σ̂jk can be obtained by solving

τ̂jk = F̂jk(Σ̂jk), which again circumvent the estimation of transformation f .

In summary, these methods assume that there exist some latent continuous variables that

generate the observed mixed variables, and the latent continuous variables follow a joint standard

normal distribution, after applying some marginal transformations. The rank-based correlation is

invariant of the transformations and could be bridged elementwisely to the latent correlation, which

circumvent the estimation of transformations. Hence copula-based methods can be applied to a

series of unsupervised learning problems with mixed data, such as graph estimation (Liu et al. 2009;

2012; Fan et al. 2017; Feng and Ning 2019), principal component analysis (Fan et al. 2017) and

canonical correlation analysis (Yoon et al. 2020).

2.2.2 Supervised Learning for Regression

In terms of the supervised learning for regression problem, a few copula-based methods have

been developed to handle the problem in the low-dimensional setting (Sungur 2005; Pitt et al. 2006;

Crane and Hoek 2008; Masarotto et al. 2012; Noh et al. 2013). For example, Masarotto et al. (2012)

proposed a general framework for the inference and model diagnosis using Gaussian copula when the

responses are dependent. Noh et al. (2013) proposed a plug-in estimator of the regression function

for a general copula regression. However, these methods only handle a low-dimensional copula

regression model. More recently, Cai and Zhang (2018) proposed a high-dimensional Gaussian copula

regression model. They assume that the response and the covariates jointly follows a Gaussian

copula. (xT , Y )T jointly follows the distribution of NPN(0, Σ̌, f̌) where f̌ = (f , f0) and Σ̌ is the

correlation matrix of (f(x)T , f0(Y ))T . This assumption implies that their regression model is

f0(Y ) = f(x)Tθ + ε, (2.2.1)
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where θ = Σ̌−1
xx Σ̌xy, ε ∼ N(0, 1− Σ̌T

xyΣ̌
−1
xx Σ̌xy) and is independent of f(x), Σ̌xy = E(f0(Y )f(x)) and

Σ̌xx = E(f(x)f(x)T ). Since both the response Y and the covariates x were restricted to continuous

variables, they developed a rank-based method using results from Liu et al. (2012) to estimate

the coefficients in their model and established the oracle properties of their proposed estimator.

Specifically, they obtained Σ̂ for Σ̌ directly using the method from Liu et al. (2012), then extract

its submatrices Σ̂xx and Σ̂xy to formulate the L1 penalized estimator θ̂

θ̂ = argmin
θ∈Rp

1
2θ

T Σ̂xxθ − θT Σ̂xy + λ‖θ‖1,

where Σ̂xx is a positive definite estimator for Σ̌xx, λ is the tuning parameter for the convex

optimization. Furthermore, they estimated the marginal transformation f and obtained the following

predictor for the response

Ŷ = f̂−1
0 (

∑
1≤j≤p

f̂j(Xj)θ̂j), (2.2.2)

where the transformation function estimates are given by

f̂j(t) = Φ−1(F̂j(t)), for j = 1, ..., p; f̂0(t) = Φ−1(F̃0(t)),

F̂j(t) is just the empirical distribution function for Xj using the training set, while F̃0(t) is the

winsorized empirical distribution function for Y using the training set with winsorization level 1/n2,

and f̂−1
0 is the generalized inverse for f̂0, defined as

f̂−1
0 (t) = inf{x ∈ R : f̂0(x) > t}.

This model has several limitations. First, x in (2.2.1) only contains continuous variables, the

corresponding theory of copula regression has never been studied in the latent Gaussian copula

model context. Secondly, in terms of prediction, the predicted value given by (2.2.2) has to be one

of the responses in the training set, since an estimator of f0 must be obtained from the training

set to predict Y . With the works shown in section 2.2.1, it is our motivation to build a regression

model based on latent Gaussian copula model for mixed types of covariates and carefully study its

theoretical properties in estimating the regression coefficients and prediction. Our prediction should
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avoid estimating the unknown transformation f0 for the response Y so that the predicted value will

not be restricted to training set.

2.3 Copula-based Statistical Learning for Classification

In terms of the supervised learning for classification problem, Han et al. (2013) proposed a

high-dimensional copula discriminant analysis rule. For a binary classification problem with class

label Y ∈ {0, 1} with equal prior probabilities, they assumed that the p-dimensional features

for each class has x0 ∼ NPN(µ0,Σ, f) and x1 ∼ NPN(µ1,Σ, f), where µ0 and µ1 are the

means for the transformed features f(x0) and f(x1), Σ is the common covariance matrix for

the transformaed features f(x) in each class. In this setting, the corresponding Bayes rule is

DBayes(x) = I((f(x)−µ)Tβ ≤ 0), where µ = (µ0 +µ1)/2, β = Σ−1δ, δ = µ0 −µ1 and x is a new

observation. Similar to ROAD introduced in section 2.1, they proposed to estimate the parameter

β by

β̂coda = argmin
β∈Rp

1
2β

T Σ̂β + ν

2 (βT δ̂ − 1)2 + λ‖β‖1, (2.3.1)

where ν is set to be n0n1/n
2, Σ̂ = n0/n · Σ̂0 + n1/n · Σ̂1, Σ̂0 and Σ̂1 are both obtained by

Σ̂ = V̂1/2R̂V̂1/2, V̂ is the diagonal matrix with variance estimates for fj(Xj), R̂ is the estimated

correlation matrix by bridging Spearman’s rho/Kendall’s tau and it has

R̂ρjk =


2sin(πρ̂jk/6), for j 6= k

1, for j = k

and R̂τjk =


sin(πτ̂jk/2), for j 6= k

1, for j = k

,

δ̂ is obtained by (2.1.1) and µ̂ is obtained by (2.1.2). Each of the marginal transformations f is

estimated by

f̂j(t) = (n0/n)̂f0j(t) + (n1/n)̂f1j(t), j = 1, ..., p

f̂0j(t) = µ̂0 + V̂
−1/2
jj Φ−1(F̃0j(t)),

f̂1j(t) = µ̂1 + V̂
−1/2
jj Φ−1(F̃1j(t))

where F̃0j and F̃1j are winsorized empirical distribution functions for Xj using samples from class 0

and from class 1 respectively, the winsorization level is set to be 1/(2n).
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So the copula discriminant analysis rule is given by

Dcoda(x) = I((f̂(x)− µ̂)T β̂ ≤ 0).

As an application, He et al. (2020) proposed an integrative copula discriminant analysis rule by

substituting the penalty in (2.3.1) with the penalty in (5) of Li and Li (2018) to make binary

classification with features from multiple genomic modalities.

This classification method has several limitations. First, discriminant analysis primarily handles

binary classification and requires further extension to multi-class classification, which commonly

appears with an ordinal response. Second, this copula discriminant analysis has strong restrictions

about the marginal transformations f . If we want the parameters Σ̂, µ and δ to be identifiable

while we do not estimate the transformations f , then f has to preserve the population means and

standard deviations

E(Xj) = E(fj(Xj)),Var(Xj) = Var(fj(Xj)), j = 1, ..., p.

Furthermore, the marginal transformations f must be in the Subgaussian Transformation Function

Class (Han et al. 2013) to obtain fast convergence rate for µ̂ and Ŷ. Although these assumptions on

f resolved the identifiability issue for µ0, µ1 and V, they cannot be verified in practice and restrict

the model to a smaller class of distributions.

Motivated by the works from sections 2.2.1 and 2.2.2, we can jointly model mixed variables by

latent Gaussian copula model, which includes the ordinal response and the continuous features.

With this motivation, we can assume that the ordinal response is generated by a latent continuous

variable so that this latent variable and the continuous features jointly follow a Gaussian copula, or

equivalently, the latent variable satisfy a regression model with the covariates being the continuous

features. The regression coefficient estimates solely relies on bridging the rank-based correlation

estimator, which has no restriction on f except monotonicity. We can derive the Bayes rule under

the joint model and devise a Fisher consistent classification rule for ordinal classification.
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CHAPTER 3
AN EFFICIENT GREEDY SEARCH ALGORITHM FOR

HIGH-DIMENSIONAL LINEAR DISCRIMINANT ANALYSIS

3.1 Introduction

Classification—assigning a subject to one of several classes based on certain features—is an

important statistical problem. However, the recent emergence of big data poses great challenges, for

it requires the efficient use of many features for classification. A simple classifier, namely, linear

discriminant analysis (LDA) was widely used before the big data era (Anderson 1958). However,

as Bickel and Levina (2004) have shown, when the number of features exceeds the sample size, a

traditional LDA is no longer applicable, owing to the accumulation of errors when estimating the

unknown parameters. To deal with the high-dimensional LDA problem, a number of regularization

methods have been proposed (Clemmensen et al. 2011; Witten and Tibshirani 2011; Shao et al. 2011;

Cai and Liu 2011; Fan et al. 2012; Mai et al. 2012; Han et al. 2013). Early works by Clemmensen

et al. (2011) and Witten and Tibshirani (2011) proposed solving the regularized Fisher’s discriminant

problem using sparsity-induced penalties. However, at that stage, there was little theory on the

statistical properties of such classifiers. These properties were subsequently studied in more detail

after additional regularized LDA classifiers (Shao et al. 2011; Cai and Liu 2011; Fan et al. 2012; Mai

et al. 2012; Han et al. 2013) had been proposed to deal with the high-dimensional LDA problem.

In general, these methods showed that as long as the unknown population parameters satisfy

some sparsity assumptions, building a regularized LDA classifier can yield a consistent classification

rule, in the sense that its misclassification error converges to the Bayes error. For example, Shao

et al. (2011) showed that if the difference between the population means and the covariance matrices

are sparse, using thresholding estimators (Bickel and Levina 2008a) can still yield a consistent rule.

On the other hand, Cai and Liu (2011), Fan et al. (2012), and Mai et al. (2012) separately developed

distinct consistent rules while assuming that the slope of the Bayes rule is sparse. Han et al. (2013)

relaxed the normality assumption on these rules, extending them to more general distributions using

a Gaussian copula method.
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Although these rules are guaranteed to be consistent, learning the rules is computationally

difficult: the rule proposed by Shao et al. (2011) must invert a high-dimensional covariance matrix,

and the other aforementioned rules must solve large-scale optimization problems. In particular,

it takes a long time to learn these rules when the dimension is ultrahigh. Therefore, we propose

a computationally efficient classifier that can be learned without needing to invert large matrices

or solve large-scale optimization problems. Our proposed classifier is based solely on closed-form

formulae.

Our method is motivated by a recent study (Li and Li 2018) on the Bayes error of the LDA

problem. Li and Li (2018) showed that the Bayes error always decreases when new features are

added to the Bayes rule, and that this decrease is fully characterized by the increment of the

Mahalanobis distance between the two classes. We therefore develop an efficient greedy search

algorithm to learn the increment of the Mahalanobis distance. Unlike many other methods, this

algorithm does not estimate all population parameters; instead, it selects discriminative features in

a sequential way, and computes the classification rule as it does so. Our method is therefore scalable

for ultrahigh-dimensional LDA problems. We show that the proposed method admits both variable

selection and error rate consistency when the classes follow some general distributions.

To prove these theoretical properties, we first establish a concentration result for the estimated

increment of the Mahalanobis distance and the true increment. This result characterizes the trade-off

between the gains of using more features for classification and the additional estimation error it

produces. We also offer an explicit interpretation of how much information a new feature adds to

the LDA problem; this interpretation holds for a general class of distributions, and is new to the

LDA literature. We then show that if the slope of the Bayes rule is exactly sparse, our method

can asymptotically recover its nonzero elements, and that our method’s misclassification error

converges to the Bayes error. These results also hold under a general class of elliptical distributions.

We demonstrate numerically that our method achieves comparable or even better classification

performance with a much shorter training time than other LDA-based methods.

The rest of the chapter is organized as follows. Section 3.2 presents our efficient greedy search

algorithm. Section 3.3 describes the statistical properties of the proposed method in terms of its

variable selection and error rate consistency. Section 3.4 relaxes the normality assumption, and shows

that the statistical properties hold for a general class of distributions. Section 3.5 presents extensive
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numerical studies that compare the proposed method with other existing methods, demonstrating

the proposed method’s superiority in terms of both computational efficiency and classification

performance under various scenarios. In Section 3.6, we apply our method to microarray data to

classify cancer subtypes, and show that our method renders a more meaningful classification rule.

All technical proofs are given in Section 3.8.

3.2 An Efficient Greedy Search Algorithm

Consider a binary classification problem where the class label Y ∈ {0, 1} has a prior distribution

of P (Y = k) = πk, for k = 0, 1. Suppose xk ∈ Rp denotes a p-dimensional vector of features from

the kth class that follows the normal distribution N(µk,Σ), where x0 and x1 are assumed to be

independent. The Bayes rule of this classification problem is given byDBayes(x) = I(δTΣ−1(x−µ) ≤

log(π1/π0)), where δ = µ0−µ1, µ = (1/2)(µ0 +µ1), and x is a new observation. The corresponding

Bayes error is given by RBayes = Φ(−
√

∆p/2), where ∆p = δTΣ−1δ is the Mahalanobis distance

between the centroids of the two classes and Φ is the cumulative distribution function of the standard

normal distribution.

In practice, the Bayes rule is unknown. A classification rule is learned from the training data

X = {xki; k = 0, 1; i = 1, . . . , nk}, where xki are independent and identically distributed (i.i.d)

samples from the kth class and nk is the sample size of the kth class, with n = n0 + n1. Then, the

rule is applied to classify a new observation x, which is assumed to be independent of the training

data. For the classical LDA method, the unknown parameters in the Bayes rule are replaced with

their maximum likelihood estimators; this LDA rule has the form

DLDA(x) = I(δ̂T Σ̂−1(x− µ̂) ≤ log(π̂1/π̂0)),

where

π̂k = nk/n, µ̂k = 1
nk

nk∑
i=1
xki, δ̂ = µ̂0 − µ̂1, (3.2.1)

µ̂ = (1/2)(µ̂0 + µ̂1), Σ̂ = 1
n

1∑
k=0

nk∑
i=1

(xki − µ̂k)(xki − µ̂k)T . (3.2.2)

However, in the high-dimensional setting, where p > n, the classical LDA method is no longer

feasible, because Σ̂ is not invertible. Even if we replace Σ̂−1 with a generalized matrix inverse,
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Bickel and Levina (2004) showed that the resulting rule has an asymptotic misclassification error

of 1/2, which is as bad as random guessing. This is essentially due to the error accumulation

when estimating the high-dimensional parameters in the classifier. To avoid this issue in the

high-dimensional setting, many regularized methods have been proposed (Clemmensen et al. 2011;

Witten and Tibshirani 2011; Shao et al. 2011; Cai and Liu 2011; Fan et al. 2012; Mai et al. 2012;

Han et al. 2013). In particular, Shao et al. (2011) proposed the sparse linear discriminant analysis

(SLDA) rule

DSLDA(x) = I(δ̃T Σ̃−1(x− µ̂) ≤ log(π̂1/π̂0)),

where δ̃ and Σ̃ are the thresholding estimators. Here, δ̃ = (δ̃j), with δ̃j = δ̂jI(|δ̂j | > tδ) and δ̂j

is the jth element of δ̂, and Σ̃ = (σ̃ij), with σ̃ii = σ̂ii, σ̃ij = σ̂ijI(|σ̂ij | > tσ), for i 6= j, and σ̂ij is

the (i, j)th element of Σ̂. They showed that the SLDA’s misclassification error still converges to

the Bayes error, given that the thresholds tδ and tσ are chosen properly and given some sparsity

conditions on both δ and Σ. Instead of separately estimating δ and Σ, as the SLDA does, two other

methods directly estimate the slope of the Bayes rule β = Σ−1δ by solving convex optimization

problems. For example, the linear programming discriminant (LPD) method (Cai and Liu 2011)

estimates β by solving

β̂LPD = argmin
β∈Rp

‖β‖1 subject to ‖Σ̂β − δ̂‖∞ ≤ λ,

where λ is a tuning parameter and (δ̂, Σ̂) is defined in (3.2.1) and (3.2.2). The regularized optimal

affine discriminant (ROAD) method (Fan et al. 2012) estimates β by solving

β̂ROAD = argmin
β∈Rp

(1/2)βT Σ̂β + λ‖β‖1 + (γ/2)(βT δ̂ − 1)2,

where λ and γ are tuning parameters and (δ̂, Σ̂) is defined in (3.2.1) and (3.2.2). Then, replacing

Σ̃−1
δ̃ in the SLDA rule with β̂LPD or β̂ROAD gives the corresponding LPD or ROAD rule. Both

papers showed that the resulting misclassification errors converge asymptotically to the Bayes error,

given some sparsity condition on β.

However, these methods all rely on evaluating and inverting a large matrix or solving a large-scale

optimization problem. When p is huge, it can become computationally expensive to run these
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methods. Instead, we propose an efficient greedy search algorithm that does not require inverting a

matrix or solving an optimization problem. Moreover, our method does not need to evaluate the

whole sample covariance matrix in advance, but rather computes its elements as it goes, depending

on which features enter the classification rule. We compare the computational complexity of these

methods with that of ours later in this section. As shown in the numerical studies, our method has

a much shorter learning time than these methods do, and even better classification performance.

The Bayes error of the LDA problem is fully characterized by the Mahalanobis distance ∆p.

Recently, Li and Li (2018) proved that ∆p is a monotonically increasing function of p, which implies

that the Bayes error always decreases when more features are involved. Therefore, we propose

a greedy search algorithm that operates by learning the increment of the Mahalanobis distance.

At each step of our algorithm, we seek the variable that results in the largest increment of the

Mahalanobis distance. Such a variable can be regarded as the most informative, given those selected

in the previous steps. We terminate the iterations when the increment is smaller than a predefined

threshold. We show that the iterations are based on closed-form formulae, and the algorithm does

not need to compute the whole covariance matrix; therefore, it is computationally efficient.

Let S be an arbitrary subset of {1, . . . , p}, and s be the size of S. Let ∆s = δTSΣ−1
SSδS be the

Mahalanobis distance involving only variables in S, where δS is a subvector of δ and ΣSS is a

submatrix of Σ with indices in S. For an arbitrary c 6∈ S, let

∆s+1 =
(
δTS δc

)ΣSS ΣSc

ΣT
Sc σcc


−1δS

δc


be the Mahalanobis distance by adding a new variable indexed by c, and let θSc = ∆s+1 −∆s be

the increment of the Mahalanobis distance. Using an argument analogous to Proposition 1 of Li

and Li (2018), we can show that

θSc = (δc −ΣT
ScΩSSδS)2

σcc −ΣT
ScΩSSΣSc

≥ 0, (3.2.3)

where ΩSS = Σ−1
SS . A proof of (3.2.3) is given in the Appendix. Moreover, under the normality

assumption, we find that θSc has a clear interpretation. Let z = x0 − x1. Using the conditional
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distribution of the multivariate normal distribution, we can easily show that

θSc = 2{E(zc|zS = 0)}2

Var(zc|zS = 0) ,

where zc is the cth element of z and zS is the subvector of z with indices in S. This result shows

that the contribution of a new variable does not depend on its marginal difference between the two

classes (i.e., E(zc)), but rather on its effect size, conditional on other variables (i.e., the standardized

E(zc|zS = 0)). In the extreme case in which there is no difference in the cth variable between the

two classes (i.e., E(zc) = 0), adding such a variable to those in S can still reduce the Bayes error

if E(zc|zS = 0) 6= 0. This interpretation seems to be new in the LDA literature. In Section 3.4,

we show that this interpretation not only holds for the normal distribution, but also holds for all

elliptical distributions.

In practice, θSc is unknown. We propose a greedy search algorithm based on learning θSc from

the training data. From (3.2.3), if we replace δ and Σ with the corresponding estimators δ̂ and Σ̂

in (3.2.1) and (3.2.2), we can easily obtain an estimator of θSc. However, this naive method requires

the computation of all elements of Σ̂ and the inversion of its submatrices. We show that there is a

more efficient method of computing θ̂Sc that computes elements of Σ̂ as it goes, with no need to

invert a matrix.

At the initial step, we set the selected set Ŝ0 = ∅. For all 1 ≤ c ≤ p, we calculate δ̂2
c/σ̂cc, where

δ̂c is the cth element of δ̂ and σ̂cc is the (c, c)th element of Σ̂. We choose ŝ1 to be the index such that

δ̂2
c/σ̂cc is maximized, and set the selected set Ŝ1 = {ŝ1} and the candidate set Ĉ1 = {1, . . . , p}\{ŝ1}.

To simplify the calculations in the subsequent steps, we compute and store Ω̂1 = σ̂−1
ŝ1ŝ1

and the

submatrix Σ̂
Ŝ1Ĉ1

, that is, the sample covariance of the selected and candidate variables. At this

step, Ω̂1 and Σ̂
Ŝ1Ĉ1

are a scalar and a vector of p − 1 elements, respectively. As shown below,

storing these two matrices is the key to enabling a fast computation. At the kth step, we compute

θ̂
Ŝk−1c

= (δ̂c − Σ̂T
Ŝk−1c

Ω̂k−1δ̂Ŝk−1
)2(σ̂cc − Σ̂T

Ŝk−1c
Ω̂k−1Σ̂Ŝk−1c

)−1,

for all c ∈ Ĉk−1. Because δ̂c, σ̂cc, Σ̂
Ŝk−1Ĉk−1

, and Ω̂k−1 have all been stored in previous steps,

computing θ̂
Ŝk−1c

is fast. Then, we select ŝk to be the index that maximizes θ̂
Ŝk−1c

for all c ∈ Ĉk−1,
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and let Ŝk = Ŝk−1 ∪{ŝk} and Ĉk = Ĉk−1\{ŝk}. Next, we update Ω̂k, the estimated precision matrix

of all selected variables in Ŝk. Using the Woodbury matrix identity, we have

Ω̂k = Σ̂−1
ŜkŜk

=

Ω̂k−1 + α̂kρ̂kρ̂
T
k −α̂kρ̂k

−α̂kρ̂Tk α̂k

 ,

where ρ̂k = Ω̂k−1Σ̂Ŝk−1ŝk
and α̂k = (σ̂ŝk ŝk − Σ̂T

Ŝk−1ŝk
Ω̂k−1Σ̂Ŝk−1ŝk

)−1. Note that σ̂ŝk ŝk , Ω̂k−1, and

Σ̂
Ŝk−1,ŝk

can all be read directly from previously stored objects, allowing Ω̂k to be computed

efficiently. Next, we update Σ̂
ŜkĈk

by letting Σ̂
ŜkĈk

= (Σ̂
ĈkŜk−1

Σ̂
Ĉk ŝk

)T . This quantity is needed

to calculate θ̂
Ŝkc

in the next iteration. Note that Σ̂
ĈkŜk−1

is the submatrix of Σ̂
Ĉk−1Ŝk−1

without

its ŝkth row, which has been stored in the (k − 1)th iteration. Therefore, we need only compute

Σ̂
Ĉk ŝk

∈ Rp−k, which is the sample covariance between the newly selected variable ŝk and the

candidate variables in Ĉk. We calculate the number of operations computed at the kth iteration.

First, it takes O(k2(p − k + 1)) = O(k2p) operations to calculate θ̂
Ŝk−1c

. Then, we obtain Σ̂
Ĉk ŝk

at a cost of O(np) operations. Finally, we update Ω̂k at a cost of O(k2) operations. Thus, at the

kth iteration, our algorithm costs O(np) operations. Therefore, up to the kth iteration, the total

computational cost is O(knp). As discussed in Section 3.3, the total number of iterations is close

to K, which is the number of nonzero elements in β and is much smaller than n. Thus, the total

computational cost of our algorithm is O(Knp).

On the other hand, both the SLDA and the LPD need to first compute Σ̂, which requires O(np2)

operations. For the SLDA, it requires additional operations to obtain the regularized estimators Σ̃

and δ̃. Futhermore, inverting Σ̃ costs another O(p2+ε) operations for some ε ∈ (0, 1], depending

on the algorithm used to invert the matrix. Finally, computing the product Σ̃−1
δ̃ costs O(p2)

operations. Thus, the total computational cost of the SLDA is at least max{O(np2), O(p2+ε)},

which is much slower than ours when p is big. For the LPD, the optimization problem can be solved

using the primal-dual interior-point method (Candes et al. 2007). As shown by Candes et al. (2007),

when p� n, each iteration requires solving an n×n linear system (O(n2)) and updating the matrix

for the system (O(np2)), which also requires evaluating Σ̂. Such an evaluation already takes O(np2)

operations. Therefore, let T be the number of iterations for the interior-point method to converge.

The total computational cost for the LPD is max{O(Tnp2), O(Tn2)}, which is clearly slower than
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ours. For the ROAD, if one chooses to evaluate Σ̂ first and then solve the optimization problem, the

computational cost is at least O(np2). A computationally more efficient solution is to use the fast

iterative shrinkage-thresholding algorithm (FISTA) proposed by Beck and Teboulle (2009). In each

iteration of the FISTA, the cost of computing the gradient is O(np) if we use a store-and-compute

method that is more efficient than evaluating Σ̂ before the iterations start. Furthermore, Theorem

4.4 in Beck and Teboulle (2009) shows that the FISTA needs at least O(n1/4) iterations to converge.

Thus, the total computational cost for the FISTA to solve the ROAD problem is at least O(n5/4p).

Therefore, our method is still faster than the FISTA, especially when K is small. One may also

choose to use the covariance-based method (Friedman et al. 2010) to calculate the gradient. However,

its efficiency depends on the choice of the tuning parameters and the initial value, so that the total

computational cost is difficult to quantify, in general.

In conclusion, the greedy search algorithm keeps track of the index sets of selected variables Ŝk

and candidate variables Ĉk, and iteratively updates Ω̂k and Σ̂
ŜkĈk

. It does not need to compute the

whole Σ̂ in advance; instead, it computes its elements as it goes based on selected and candidate

variables. It relies solely on closed-form formulae to learn the increments of the Mahalanobis distance,

without requiring a matrix inversion or solving an optimization problem. The algorithm terminates

when no candidate variable produces an increment of the Mahalanobis distance of at least τ , which

is a predefined stopping threshold that can be regarded as a tuning parameter that must be tuned

using cross-validation. The greedy search algorithm is summarized in Algorithm 1.

Denote M̂ and Ω̂M̂ as the last Ŝk and Ω̂k, respectively, when the greedy search algorithm

terminates. We let β̂M̂ = Ω̂M̂δ̂M̂ and propose the following greedy search linear discriminant

analysis (GS-LDA) rule:

DGS-LDA(x) = I(β̂TM̂(xM̂ − µ̂M̂) ≤ log(π̂1/π̂0)),

where xM̂ and µ̂M̂ are subvectors of x and µ̂, respectively, with indices in M̂.

3.3 Theoretical Properties

Here, we give two theoretical results for the statistical properties of the GS-LDA rule. First,

we show that if β is exactly sparse, the greedy search algorithm can correctly select its nonzero

elements with high probability. Second, we show that the misclassification rate of the GS-LDA rule
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Algorithm 3.1: The greedy search algorithm.
Initialization: Compute and store δ̂ and the diagonal elements of Σ̂

using (3.2.1) and (3.2.2).
Set ŝ1 = argmaxj≤p δ̂2

j /σ̂jj , Ŝ1 = {ŝ1},
Ĉ1 = {1, . . . , p}\{ŝ1}, Ω̂1 = σ̂−1

ŝ1ŝ1
.

Compute and store Σ̂
Ŝ1Ĉ1

.
At the kth iteration:

Let θ̂
Ŝk−1c

=
(δ̂c−Σ̂

T

Ŝk−1c
Ω̂k−1δ̂

Ŝk−1
)2

σ̂cc−Σ̂
T

Ŝk−1c
Ω̂k−1Σ̂

Ŝk−1c

for all c ∈ Ĉk−1.

Set ŝk = argmax
c∈Ĉk−1

θ̂
Ŝk−1c

, Ŝk = Ŝk−1 ∪ {ŝk}, Ĉk = Ĉk−1\{ŝk},

ρ̂k = Ω̂k−1Σ̂Ŝk−1ŝk
, α̂k = (σ̂ŝk ŝk − Σ̂T

Ŝk−1ŝk
Ω̂k−1Σ̂Ŝk−1ŝk

)−1,
Σ̂
ŜkĈk

= (Σ̂
ĈkŜk−1

Σ̂
Ĉk ŝk

)T

and Ω̂k =
(

Ω̂k−1 + α̂kρ̂kρ̂
T
k −α̂kρ̂k

−α̂kρ̂Tk α̂k

)
.

Iterate until θ̂
Ŝkc

< τ for all c ∈ Ĉk, where τ is a predefined stopping
threshold.

converges asymptotically to the Bayes error.

We begin by introducing some notation. For a matrix A, a set S, and an index c, we denote

ASc as the cth column of A with row indices in S. Denote ASS as the submatrix of A with row

and column indices in S. Denote λmin(A) and λmax(A) as the minimum and maximum eigenvalues,

respectively, of A. For two sequences an and bn, we write an . bn if an ≤ Cbn for a generic

positive constant C, write an = o(bn) if an/bn → 0, and an � bn if bn = o(an). To simplify the

nonasymptotic statements, we assume throughout this paper that C0 is an arbitrarily large positive

constant and C1 is some generic positive constant, which may vary from line to line. In addition,

we assume nk/n→ ` ∈ (0, 1) for k = 0, 1, and we assume normality in this section.

We first give a concentration result of the estimated increment θ̂Sc for an arbitrary set S with s

elements and an arbitrary c 6∈ S. We introduce the following regularity conditions.

Condition 1. maxj≤p |δj | ≤M <∞.

Condition 2. 0 < m ≤ λmin(Σ) ≤ λmax(Σ) ≤M <∞.

Condition 1 requires that the elements of δ be bounded, and condition 2 requires that the

eigenvalues of Σ be bounded away from zero and ∞; these two conditions are also used in other

works (Shao et al. 2011; Cai and Liu 2011). These are mild boundedness conditions that simplify
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the nonasymptotic statement of the concentration results. Next, we give the concentration result of

θ̂Sc − θSc.

Theorem 3.1. Under Conditions 1–2 and if s2√(log p)/n = o(1), it holds that

P

(
|θ̂Sc − θSc| . s2

√
(log p)/nmax{s2

√
(log p)/n,

√
θSc, θSc}

)
≥ 1− CAp−CB ,

where CA is a generic positive constant and CB is an arbitrary large positive constant.

Theorem 3.1 shows that the concentration of θ̂Sc − θSc depends on s and θSc. It implies that

when θSc > 1, θ̂Sc − θSc = OP (s2θSc
√

(log p)/n), and when s4(log p)/n < θSc < 1, θ̂Sc − θSc =

OP (s2√θSc(log p)/n). When θSc = 0, it implies that θ̂Sc − θSc = OP (s4(log p)/n). These results

show that it is more difficult to estimate a larger θSc. In addition, when s gets larger, so does the

estimation error, owing to the accumulation of estimation errors when estimating the unknown

parameters, because when s gets larger, more parameters need to be estimated.

Theorem 3.1 is critical in studying the statistical properties of the GS-LDA rule. First, it

indicates that as long as there is a large enough gap between θSc and θSc′ for any c′ 6= c, the

indicator functions I(θ̂Sc > θ̂Sc′) = I(θSc > θSc′) hold with high probability. In other words, the

order of θ̂Sc and θ̂Sc′ reflects the true order of θSc and θSc′ . As shown below, this is the key to

guaranteeing that the greedy search algorithm reaches variable selection consistency. Theorem 3.1

also gives guidance on how to choose the stopping threshold τ . When θ̂Sc is small, it indicates

that θSc is small or equal to zero. At that stage, adding additional variables does not improve the

classification, and we should thus terminate the greedy search. More details on how to choose τ are

given in Theorem 3.2. Finally, we give a corollary for the special case of S = ∅. This result is useful

for proving the property of the initial iteration of our algorithm. Its proof follows directly from that

of Theorem 1.

Corollary 3.1. Under the conditions of Theorem 3.1, when S = ∅, it holds that

P

(
|θ̂Sc − θSc| .

√
(log p)/n

)
≥ 1− CAp−CB ,

where CA is a generic positive constant and CB is an arbitrary large positive constant.

Next, we prove that, if β is exactly sparse, in the sense that many of its elements are zero, the
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greedy search method can recover the support of β with high probability. LetM = {j : βj 6= 0} be

the support of β, K be the number of elements inM, and M̂ be as defined in Section 3.2. We have

the following variable selection consistency result.

Theorem 3.2. Under Conditions 1–2 and

Condition 3. 0 < m ≤ minS⊂Mmaxc∈M\S θSc ≤ maxS⊂Mmaxc∈M\S θSc ≤M <∞;

Condition 4. minS⊂M(maxc∈M\S θSc −maxc6∈M θSc)� K2√(log p)/n;

if K2√(log p)/n = o(1), and we choose τ � K4(log p)/n, it holds that

P
(
M̂ =M

)
≥ 1− CAKp−CB ,

where CA is a generic positive constant and CB is an arbitrary large positive constant.

Condition 3 requires that for any S ⊂ M, if we add another variable in M to those in S,

the true increment θSc should be bounded away from zero and infinity. The lower bound is mild,

because, as shown in (3.2.3), θSc is always nonnegative; because M contains all discriminative

features, the lower bound requires only that at least one additional feature inM should produce

a large enough increment of θSc to pass the threshold. The upper bound is mainly introduced

to simplify the expression. As shown in Theorem 3.1, the concentration of θ̂Sc also depends on

the magnitude of θSc, requiring all θSc to be bounded away from infinity. This enables us to

have a more succinct nonasymptotic statement in Theorem 3.2. Condition 4 requires that for any

S ⊂ M, the maximum increment produced by adding another feature in M should surpass the

increment by adding a feature outside ofM when the true θSc is known. Such a condition naturally

requires that adding a discriminative feature inM should bring more information than adding a

non-discriminative one outsideM. As shown in Theorem 3.1, the component K2√(log p)/n is the

estimation error of θ̂Sc to θSc. Thus, once Condition 4 is assumed, with high probability, we have

maxc∈M\S θ̂Sc > maxc 6∈M θ̂Sc. This is the key to ensuring that the greedy search algorithm chooses

the informative features inM. As reflected by the concentration result in Theorem 1, the choice of

τ is essentially the order of θ̂Sc when θSc = 0. This guarantees the exclusion of non-informative

features. Finally, the assumption of K2√(log p)/n = o(1) is a sparsity assumption on β, which is

similar to the condition needed for the LPD and ROAD methods; see Cai and Liu (2011) and Fan

et al. (2012).
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Given the variable selection consistency, we next establish the error rate consistency of the

GS-LDA rule. Without loss of generality, we assume that π0 = π1 = 1/2. By definition, the

misclassification error of the GS-LDA rule is

RGS-LDA(X) = (1/2)P (DGS-LDA(x) = 0|x comes from Class 1)

+ (1/2)P (DGS-LDA(x) = 1|x comes from Class 0)

= 1
2

1∑
k=0

Φ

(−1)kβ̂TM̂(µ
kM̂ − x̄kM̂)− δ̂TM̂Ω̂M̂δ̂M̂/2√

δ̂
T

M̂Ω̂M̂ΣM̂M̂Ω̂M̂δ̂M̂

 .
(3.3.1)

The following theorem establishes the error rate consistency.

Theorem 3.3. Under Conditions 1–4, if K2√(log p)/n = o(1) and we choose τ � K4(log p)/n, it

holds that

(a) RGS-LDA(X) = Φ(−
√

∆p/2{1 +OP (K
√

(log p)/n)})

(b) RGS-LDA(X)/RBayes − 1 = OP (
√

(log p)/n), when ∆p <∞

(c) RGS-LDA(X)/RBayes − 1 = OP (max{∆−1
p ,K2√(log p)/n})

when ∆p →∞.

Theorem 3 proves that the ratio of RGS-LDA(X)/RBayes converges to one in probability. State-

ment (a) shows that the convergence rate of RGS-LDA(X) to RBayes depends on K; for a larger K,

the convergence is slower because more parameters need to be estimated. In statements (b) and (c),

we show that the ratio of RGS-LDA(X)/RBayes converges to one in probability. Because ∆p itself

can diverge, RBayes can converge to zero. Thus, statements (b) and (c) are stronger than showing

RGS-LDA(X)−RBayes → 0 in probability. Our result indicates that RGS-LDA(X) can converge to

zero as fast as RBayes does, even when RBayes → 0. Furthermore, we show that the convergence

rates differ depending on whether ∆p is bounded. Finally, similarly to the LPD and ROAD, our

method relies on the sparsity assumption on β to reach the error rate consistency, as shown in

Theorem 3.3. This assumption is needed to avoid the accumulation of errors when estimating β

that could ruin the error rate consistency (Bickel and Levina 2004). In addition, Theorem 3.3 relies

on the variable selection consistency established in Theorem 3.2.
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3.4 Relaxation of the Normality Assumption

Although we have proved the theoretical results under the normality assumption, these results

can still hold when the two classes follow more general distributions. As discussed in Shao et al.

(2011), the Bayes rule remains the same, as long as there exists a unit vector γ such that, for any

real number t and k = 0, 1, it holds that

P (γ ′Σ−1/2(xk − µk) ≤ t) = Ψ(t),

where Ψ(t) is a cumulative distribution function with a density that is symmetric around zero and

does not depend on γ. In this case, the Bayes error is Ψ(−
√

∆p/2), which is still a decreasing function

of the Mahalanobis distance ∆p. Two key conditions for such a result are that the density function

is symmetric around zero and the two classes have an equal covariance. Distributions satisfying

this condition include the class of elliptical distributions with a density function of cp|Σ|−1/2f((x−

µ)TΣ−1(x − µ)), where f is a monotone function in [0,∞) and cp is a normalization constant.

Examples of elliptical distributions include the multivariate normal, t, and double exponential

distributions. Given such a general distributional assumption, the increment of Mahalanobis distance

still quantifies how much a new variable can reduce the Bayes error. Interestingly, for all elliptical

distributions, θSc still has the form

θSc = C{E(zc|zS = 0)}2

Var(zc|zS = 0) ,

where the positive constant C depends on the type of the distribution, and is equal to two if it is

normal. The proof uses the conditional distribution of the elliptical distributions, which is similar

to what the multivariate normal distribution admits; see Theorem 2.18 of Fang et al. (2018). Thus,

for all elliptical distributions, the contribution of a new variable to the classification depends on its

effect size, conditional on other variables (i.e., the standardized E(zc|zS = 0)).

However, under the more general distributional assumption, the convergence rates established

in Theorems 3.1–3.3 may change. A closer look at the proofs reveals that the convergence rates

depend on the tail probability, which is characterized by Ψ(−x). The tail probability is the key

to establishing the critical concentration results of δ̂ and Σ̂, upon which the proofs are built; see
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Lemma 1 in the Supplementary Material. In general, we assume that

0 < lim
x→∞

x−ω exp(−cxϕ)
Ψ(−x) <∞, (3.4.1)

where ϕ ∈ [0, 2], c ∈ (0,∞), and ω ∈ (0,∞) are some constants. In particular, when Ψ is standard

normal, (3.4.1) holds with ω = 1, c = 1/2, and ϕ = 2. Then, if Ψ satisfies (3.4.1) with ϕ = 2,

the same exponential-type concentration can be established so that all results in Theorem 3.1–3.3

remain the same. When Ψ satisfies (3.4.1) with ϕ < 2, the tail of the distribution is heavier. In

that case, if we assume the moment condition that

max
k,j≤p

E|xk,j |2ν <∞, for some ν > 0, and k = 0, 1, (3.4.2)

where xk,j is the jth element of xk, a polynomial-type concentration can be established so that

Theorems 3.1–3.3 hold with all (log p)/n terms being replaced by p4/ν/n. In this case, p is only

allowed to grow polynomially with n. These results are analogous to the discussions in Section

4 of Shao et al. (2011). To improve the convergence rates, one can replace δ̂ and Σ̂ with robust

estimators, such as the Huber estimator or the median-of-means estimator; see Avella-Medina et al.

(2018). Correspondingly, the greedy search algorithm can be built upon these robust estimators.

Once such robust estimators are used in the algorithm, even under the moment assumption in (3.4.2),

Theorems 1–3 can still hold with the same exponential rate of convergence, using the concentration

results established in Avella-Medina et al. (2018).

3.5 Simulation Studies

We investigate the numerical performance of our proposed method under four different scenarios.

In the first two scenarios, we compare the classification performance and the execution time of

the proposed GS-LDA method with those of other LDA-based methods. These include the sparse

discriminant analysis by Clemmensen et al. (2011) (SDA), the SLDA, LPD, and ROAD, and some

other well-known classifiers in machine learning, such as the support vector machine (SVM) with a

linear kernel and the logistic regression with an L1-penalty (Logistic-L1). In the other two scenarios,

we investigate the performance of the GS-LDA method for some ultrahigh-dimensional settings

that involve tens of thousands of features. In these two scenarios, most existing methods cannot
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handle such high dimensions, and we only aim at testing the viability of GS-LDA. We implement

the SDA using the sparseLDA package. We implement the SLDA using our own coding of the

algorithm given in Shao et al. (2011). We implement the LPD using the linprogPD function from

the clime package (https://github.com/rluo/clime). The implementation for the ROAD comes

from the publicly available package developed by the authors. We implement the SVM using the

e1071 package, and implement the Logistic-L1 using the glmnet package. The optimal tuning

parameters for each method are chosen using a grid search with five-fold cross-validation. The

execution time is recorded as the time taken by each algorithm on a computing cluster with an Intel

Xeon 3.4GHz CPU, with the tuning parameters fixed at their optimal values.

In the first two scenarios, we consider the following two choices of µk and Σ:

Scenario 1: µ0 = 0 and µ1 = (1, ..., 1, 0, ..., 0)T , where the first 10 elements are ones, and the rest

are zeros. Σ = (σij)p×p, where σij = 0.8|i−j|, for 1 ≤ i, j ≤ p.

Scenario 2: µ0 = 0 and µ1 = Σβ, where β = (0.25, ..., 0.25, 0, ..., 0)T , with the first 10 elements of

β equal to 0.25 and the rest zeros; Σ = (σij)p×p, where σij = 0.8|i−j|, for 1 ≤ i, j ≤ p.

For each scenario, we generate 200 training samples for each of the two classes from N(µk,Σ); we

let the dimension p vary from 500 to 2000, with an increment of 500. We independently generate

another 800 samples from each of these distributions as the test set. In Scenario 1, we set δ = µ0−µ1

to be exactly sparse. This scenario is the same as Model 3 considered in Cai and Liu (2011). In

Scenario 2, we set β to be exactly sparse because such a condition is imposed for the proposed

GS-LDA method. We use five-fold cross-validation to choose the optimal tuning parameters in all

seven methods. For each scenario, we run 100 replicates. We report the average misclassification

rates and the execution time for each classifier in Figures 3.1 and 3.2. For Scenario 2, we also report

the variable selection performance on β by the GS-LDA, ROAD, and Logistic-L1. We measure the

variable selection performance by sensitivity and specificity. Sensitivity is defined as the proportion

of nonzero elements of β that are estimated as nonzero, and specificity is defined as the proportion

of zero elements of β that are estimated as zero.

Figures 3.1 and 3.2 show that the GS-LDA has the best classification performance for all choices

of p and under both scenarios. Its computational speed is also much faster than that of the other

LDA-based classifiers, especially when the dimension p is high. It is also faster than the SVM

and Logistic-L1, implemented by the e1071 and glmnet packages, respectively, which are known
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to be computationally efficient. In both scenarios, when p = 2000, the average execution time is

around 190 seconds for the SDA, 100 seconds for the ROAD, 20 seconds for the LPD, 3 seconds

for the SVM, and 1 second for the SLDA, but only 0.05 second for the GS-LDA. The execution

time for the Logistic-L1 depends on the Hessian matrix of the likelihood and the sparsity of β. In

Scenario 1, when β is weakly sparse, the GS-LDA is still faster than the Logistic-L1. In Scenario

2, when β is exactly sparse, their computational time is comparable. This is mainly because the

glmnet package only updates nonzero components of β along its iterations. The proposed GS-LDA

method thus offers a substantial boost in computational speed over most its competitors, while

rendering an excellent classification rule. In terms of variable selection performance, in Scenario 2,

the GS-LDA has similar specificity to that of the ROAD and Logistic-L1, and better sensitivity

than the ROAD. However, owing to its lower sensitivity than the Logistic-L1, the GS-LDA has

slightly higher misclassification error than that of the Logstic-L1 in this secnario. Finally, note that

because the GS-LDA adds one variable at a time, the variation of its errors can be smaller than

that of other optimization based methods, where the numbers of variables are determined by some

tuning parameters, and small changes can result in multiple new variables being included in the

classification rule. This can be seen from Figures 3.1 and 3.2.

To further investigate how many dimensions the GS-LDA method can efficiently handle, we

simulate two additional scenarios, where we choose µk and Σ as follows:

Scenario 3: µ0 = 0 and µ1 = (1, ..., 1, 0, ..., 0)T , where the first 10 elements are ones and the rest are

zeros; Σ = Ω−1, where Ω = (ωij)p×p and ωij =
√
ij{2I(i = j 6= p) + I(i = j = p)− I(|i− j| = 1)}.

Scenario 4: µ0 = 0 and µ1 = Σβ, where β = (1, ..., 1, 0, ..., 0)T , with the first 10 elements of β

being ones and the rest being zeros; Σ is the same as in Scenario 3.

For each of these two scenarios, we generate 100 training samples for each of the two classes from

N(µk,Σ) and set the dimension p = 1 × 104, 3 × 104, 5 × 104, and 1 × 105. We independently

generate another 400 samples for each of the two classes as the test set. Scenarios 3 and 4 are

analogues to scenarios 1 and 2: δ is exactly sparse in Scenario 3, and β is exactly sparse in Scenario

4. Again, we use five-fold cross-validation to choose the optimal stopping threshold for the GS-LDA.

For each scenario, we run 100 replicates. We report the average misclassification rates and the

execution time for the GS-LDA in Figures 3 and 4.

Figures 3.3 and 3.4 show that in both scenarios the GS-LDA method still performs well when the
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Figure 3.1. Numerical performance of the seven classifiers in Scenario 1. Panel (c) is a zoomed plot
of panel (b) for the GS-LDA , SLDA, SVM, and Logistic-L1.
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Figure 3.2. Numerical performance of the seven classifiers in Scenario 2. Panel (d) is a zoomed
plot of panel (c) for the GS-LDA , SLDA, SVM, and Logistic-L1.

31



0.0

2.5

5.0

7.5

10.0

1e4 3e4 5e4 1e5
p

M
is

cl
as

si
fic

at
io

n 
E

rr
or

 (
%

)

method
GS−LDA

Misclassification Error(a)

0

10

20

30

1e4 3e4 5e4 1e5
p

E
xe

cu
tio

n 
T

im
e 

(s
)

method
GS−LDA

Execution Time(b)

Figure 3.3. Numerical performance of the GS-LDA in Scenario 3.
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Figure 3.4. Numerical performance of the GS-LDA in Scenario 4.
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dimension is ultrahigh. When the dimension p grows, the misclassification error remains stable, and

the execution time grows only moderately with p. Even when p is as big as 1× 105, the execution

time of the GS-LDA is only tens of seconds. In contrast, the SLDA, LPD, and ROAD cannot solve

such a problem within tens of hours. As a result, they are excluded from the comparison in these

two scenarios.

3.6 An Application to Cancer Subtype Classification

To further illustrate the advantage of the GS-LDA method, we apply it to microarray data for

classifying cancer subtypes. This data set contains 82 breast cancer subjects, with 41 ER-positive

and 41 ER-negative. These subjects are sequenced using the Affymetrix Human Genome U133A

Array, which measures the gene expression using 22283 probes. The raw data are available in the

Gene Expression Omnibus database with the accession name GSE22093.

We randomly split the data set into a training set of 60 samples and a test set of 22 samples,

repeating the random split 100 times. Each time, we learn the GS-LDA, SLDA, ROAD, SVM,

and Logistic-L1 from the training set, and obtain their misclassification errors by applying them

to the test set. The LPD and SDA methods are excluded from this study because they cannot

finish the training within 24 hours. The tuning parameters in these methods are chosen using

five-fold cross-validation. The misclassification errors and the execution times of these methods are

summarized in Table 3.1.

The GS-LDA method performs well for this data set, with a mean misclassification error of

only 2.4%. On average, this is less than one error among the 22 samples in a testing set. This

misclassification error is 47% better than that of the SVM, 56% better than that of the ROAD,

72% better than that of the SLDA, and equals to that of the Logistic-L1. In term of computational

speed, the GS-LDA runs for only 0.3 seconds on average, which is over 5000 times faster than the

ROAD, over 1000 times faster than the SLDA, over 10 times faster than the SVM, and close to that

of the Logistic-L1 on this data set.

Interestingly, we found that in the 100 splits of the data set, the GS-LDA method frequently

selected one particular variable: the expression of the ESR1 gene measured by probe “205225_at.”

This variable was selected 95 times by the GS-LDA. It was selected first 84 times, and was the

only variable selected 56 times. ? defined the ER status by whether the subject’s measured ESR1

expression using probe “205225_at” was higher than 10.18. In other words, the true decision rule is
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Methods Misclassification Error (%) Execution Time (s)Lower Quartile Median Upper Quartile
GS-LDA 0 0 4.55 0.30
SLDA 4.55 9.09 13.64 355
ROAD 4.55 4.55 9.09 1576
SVM 0 4.55 5.68 3.08

Logistic-L1 0 0 4.55 0.10

Table 3.1. Numerical performance of the five classifiers in classifying cancer subtypes.

Dtrue(x) = I(x205225_at > 10.18). We compare the selection frequency of the GS-LDA, ROAD and

Logistic-L1 over the 100 random splits; see Figure S1 in the Supplementary Material. Here, we find

that the GS-LDA selects the true “205225_at” probe much more often with fewer false positives

than the other two methods.

To further illustrate the merit of the GS-LDA method, we use all subjects, including both

the positive and the negative groups, for training; the resulting GS-LDA rule is DGS-LDA(x) =

I(x205225_at > 10.50), which is very close to how the ER status is defined in the original study.

When we train the ROAD, SLDA, and Logistic-L1 rules using the full data, we find that they also

include probe “205225_at,” but the ROAD includes another 15 probes, the Logistic-L1 includes

another 28 probes, and the SLDA includes all probes. It is obvious that the GS-LDA gives a rule

that is much closer to the truth.

3.7 Discussion

We have developed an efficient greedy search algorithm for performing an LDA with high-

dimensional data. Motivated by the monotonicity property of the Mahalanobis distance, which

characterizes the Bayes error of the LDA problem, our algorithm sequentially selects the features

that produce the largest increments of Mahalanobis distance. In other words, it sequentially selects

the most informative features until no additional feature can bring enough extra information to

improve the classification. Our algorithm is computationally much more efficient than existing

optimization-based or thresholding methods, because it does not need to solve an optimization

problem or invert a large matrix. Indeed, it does not even need to compute the whole covariance

matrix in advance; rather, it computes matrix elements as it goes in order to update the classification

rule. All calculations are based on some closed-form formulae. We proved that such an algorithm

results in a GS-LDA rule that is both variable selection and error rate consistent, under a mild
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distributional assumption.

In practice, our method can also be modified to yield a nonlinear classification boundary by

using nonlinear kernels or Gaussian copulas (Han et al. 2013). Our method may also be extended

to a multicategory discriminant analysis. Using similar ideas to those in Pan et al. (2016) and Mai

et al. (2019), we can translate a multicategory problem into multiple binary classification problems,

to which our method is applicable. Finally, note that our method requires the key assumption that

the two classes have the same covariance. If this is not the case, it becomes a quadratic discriminant

analysis (QDA) problem. The Bayes error of such a problem has a much more completed form (Li

and Shao 2015). We leave developing an efficient algorithm to solve the high-dimensional QDA

problem as a topic for future research.

3.8 Technical Details

3.8.1 Proofs

Proof of Theorem 3.1. It follows from Lemmas 3.1 and 3.4 that

P

(
|(σ̂cc − Σ̂T

ScΣ̂
−1
SSΣ̂Sc)− (σcc −ΣT

ScΣ−1
SSΣSc)| . s2

√
(log p)/n

)
≥ 1− CAp−CB ,

where CA only depends on C1 and C4 in Lemmas 3.1 and 3.4, and CB is an arbitrarily large constant.

Since ΣS∪{c},S∪{c} is a submatrix of Σ with row and column indices in S ∪ {c} and is positive

definite, it follows from Condition 2 and Theorem 4.3.17 of Horn and Johnson (2012) that for any

c /∈ S,

0 < m ≤ λmin(ΣS∪{c},S∪{c}) ≤ λmax(ΣS∪{c},S∪{c}) ≤M <∞.

Since σcc − ΣT
ScΣ−1

SSΣSc is the Schur complement of ΣS in ΣS∪{c},S∪{c}, it follows that σcc −

ΣT
ScΣ−1

SSΣSc ≥ m > 0 for all c 6∈ S. Then we have

P

(
|(σ̂cc − Σ̂T

ScΣ̂
−1
SSΣ̂Sc)−1 − (σcc −ΣT

ScΣ−1
SSΣSc)−1| . s2

√
(log p)/n

)
≥ 1− CAp−CB , (3.8.1)
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where CA only depends on C1 and C4, and CB is an arbitrarily large constant. On the other hand,

with probability at least 1− CAp−CB , we have

|(δ̂c − Σ̂T
ScΣ̂

−1
SS δ̂S)2 − (δc −ΣT

ScΣ−1
SSδS)2|

≤ |(δ̂c − Σ̂T
ScΣ̂

−1
SS δ̂S)− (δc −ΣT

ScΣ−1
SSδSS)|2

+ 2|(δ̂c − Σ̂T
ScΣ̂

−1
SS δ̂S)− (δc −ΣT

ScΣ−1
SSδS)| · |δc −ΣT

ScΣ−1
SSδS |

. (s2
√

(log p)/n)2 + (s2
√

(log p)/n) · |δc −ΣT
ScΣ−1

SSδS |

. (s2
√

(log p)/n) ·max(s2
√

(log p)/n,
√
θSc),

(3.8.2)

where the last inequality follows from Condition 2.

Therefore, (3.8.1) and (3.8.2) together imply that, with probability at least 1−CAp−CB , we have

|θ̂Sc − θSc|

= |(δ̂c − Σ̂T
ScΣ̂

−1
SS δ̂S)2(σ̂cc − Σ̂T

ScΣ̂
−1
SSΣ̂Sc)−1 − (δc −ΣT

ScΣ−1
SSδS)2(σcc −ΣT

ScΣ−1
SSΣSc)−1|

≤ |(δ̂c − Σ̂T
ScΣ̂

−1
SS δ̂S)2 − (δc −ΣT

ScΣ−1
SSδS)2| · |(σ̂cc − Σ̂T

ScΣ̂
−1
SSΣ̂Sc)−1 − (σcc −ΣT

ScΣ−1
SSΣSc)−1|

+ |(δ̂c − Σ̂T
ScΣ̂

−1
SS δ̂S)2 − (δc −ΣT

ScΣ−1
SSδS)2|(σcc −ΣT

ScΣ−1
SSΣSc)−1

+ |(σ̂cc − Σ̂T
ScΣ̂

−1
SSΣ̂Sc)−1 − (σcc −ΣT

ScΣ−1
SSΣSc)−1|(δc −ΣT

ScΣ−1
SSδS)2

. s4(log p)/nmax(s2
√

(log p)/n,
√
θSc) + s2

√
(log p)/nmax(s2

√
(log p/n),

√
θSc)

+ s2
√

(log p)/nθSc

. s2
√

(log p)/nmax(s2
√

(log p)/n,
√
θSc, θSc).

Proof of Theorem 3.2. Let ∅ = Ŝ0 ⊂ Ŝ1 ⊂ · · · be the sequence of selected indices given by the

greedy search algorithm. The key of the proof is to show that, with high probability, Ŝk ⊂M for

all k ≤ K − 1, and M̂ = ŜK =M.

When k = 0, it follows from Corollary 3.1 and the union bound that

P

(
max
c≤p
|θ̂Sc − θSc| .

√
(log p)/n

)
≥ 1− CAp−CB , for S = ∅.
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Condition 4 implies that maxc∈M θSc − maxc 6∈M θSc � K2√(log p)/n ≥
√

(log p)/n. These two

results together imply that

P

(
max
c∈M

θ̂Sc > max
c6∈M

θ̂Sc

)
≥ 1− CAp−CB , for S = ∅.

It further implies that P
(
Ŝ1 ⊂M

)
≥ 1− CAp−CB .

When k = 1, we prove that

P

(
max

c∈M\Ŝ1

θ̂
Ŝ1c

> max
c 6∈M

θ̂
Ŝ1c

)
≥ 1− CAp−CB . (3.8.3)

This further gives P
(
Ŝ2 ⊂M

)
≥ 1− CAp−CB , where CA is treated as a generic postic constant.

Let events

E1 =
{
Ŝ1 ⊂M

}
,

A1 =
{

max
c∈M\Ŝ1

θ
Ŝ1c
−max

c 6∈M
θ
Ŝ1c
� K2

√
(log p)/n

}
,

A2 =
{

max
c∈M\Ŝ1

|θ̂
Ŝ1c
− θ

Ŝ1c
| . K2

√
(log p)/n

}
,

A3 =
{

max
c 6∈M
|θ̂
Ŝ1c
− θ

Ŝ1c
| . K2

√
(log p)/n

}
.

Note that A1 ∩A2 ∩A3 ⊂
{

max
c∈M\Ŝ1

θ̂
Ŝ1c

> maxc 6∈M θ̂
Ŝ1c

}
. Therefore,

P

(
max

c∈M\Ŝ1

θ̂
Ŝ1c

> max
c 6∈M

θ̂
Ŝ1c

)
≥ 1− P

(
A1
)
− P

(
A2
)
− P

(
A3
)
. (3.8.4)

Under Condition 4, E1 ⊂ A1, therefore, P
(
A1
)
≤ P

(
E1
)
≤ CAp

−CB . It follows from Theorem

3.1, Condition 3, and the union bound that P (A2) ≤ CAp−CB , and P (A3) ≤ C1p
−CB . These three

results, together with (3.8.4), proves (3.8.3). By the same argument, it holds that Ŝk ⊂M for all

k ≤ K with probability at least 1 − (2k − 1)CAp−CB . SinceM contains K elements, we further

have ŜK =M.

Next, we show that at the (K + 1)th iteration, the greedy search algorithm terminates with high

probability if we choose τ � K4(log p)/n. First, we show that θMc = 0 for all c 6∈M . By definition,
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θMc = ∆M∪{c} −∆M = βTM∪{c}ΣM∪{c},M∪{c}βM∪{c} − β
T
MΣMMβM = 0. Then, Theorem 3.1

implies that

P

(
max
c 6∈M
|θ̂Mc| ≤ K4(log p)/n

)
≥ 1− CAp−CB .

Hence, by choosing τ � K4(log p)/n, the greedy search program terminates with high probability,

i.e., P (M̂ = ŜK |ŜK =M) ≥ 1− CAp−CB . Then,

P
(
M̂ =M

)
= P

(
M̂ = ŜK , ŜK = M

)
= P

(
M̂ = ŜK |ŜK =M

)
P
(
ŜK =M

)
≥ (1− CAp−CB )(1− (2K − 1)CAp−CB ) ≥ 1− CAKp−CB .

Proof of Theorem 3.3. We prove the result conditioning on the event that {M̂ =M}, which

holds with probability tending to 1. We first bound δ̂TMΩ̂Mδ̂M. By Lemma 3.3, we have

δ̂
T

MΣ−1
MMδ̂M − δ

T
MΣ−1

MMδM = OP

(
K
√

(log p)/n
)
.

By Condition 3, K . ∆p = δTMΣ−1
MMδM. Therefore,

δ̂
T

MΣ−1
MMδ̂M − δ

T
MΣ−1

MMδM = OP

(
∆p

√
(log p)/n

)
. (3.8.5)

Then, by Lemma 3.4 we have

|δ̂TM(Ω̂M −Σ−1
MM)δ̂M| = OP

(
∆pK

√
(log p)/n

)
. (3.8.6)

It follows from the triangular inequality and (3.8.5) and (3.8.6) that

δ̂
T

MΩ̂Mδ̂M = ∆p

{
1 +OP (K

√
(log p)/n)

}
. (3.8.7)

Next, we bound δ̂TMΩ̂MΣMMΩ̂Mδ̂M. It follows from Lemma 3.2 that

‖Ω̂M −Σ−1
MM‖ = OP

(
K
√

(log p)/n
)
. This result, together with Condition 2, imply that ‖Ω̂M‖ =
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OP (1). Then, using the same argument as in the proof of Lemma 3.4, we have

δ̂
T

M(Ω̂MΣMMΩ̂M − Ω̂M)δ̂M = OP

(
∆pK

√
(log p)/n

)
.

This result, together with (3.8.7), gives

δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M = ∆p

{
1 +OP (K

√
(log p)/n)

}
. (3.8.8)

Then, we have

β̂
T

M(x̄1M − µ1M)√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M
= (β̂M − βM)T (x̄1M − µ1M)√

∆p{1 +OP (K
√

(log p)/n)}

+ βTM(x̄1M − µ1M)√
∆p{1 +OP (K

√
(log p)/n)}

.

Since the leading term ∆−1/2
p βTM(x̄1M − µ1M) ∼ N(0, 1/n1), we have

βTM(x̄1M − µ1M)√
∆p{1 +OP (K

√
(log p)/n)}

= OP (1/
√
n)√

1 +OP (K
√

(log p)/n)
.

Since K
√

(log p)/n ≤ K2√(log p)/n = o(1), the leading term can be simplified as

βTM(x̄1M − µ1M)√
∆p{1 +OP (K

√
(log p)/n)}

= OP (1/
√
n)(1 +OP (K

√
(log p)/n))

= OP (1/
√
n) +OP (K

√
log p/n).

Since 1/
√
n = o(

√
K/n) and K

√
log p/n = o(

√
K/n), we have

β̂
T

M(x̄1M − µ1M)√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M
= OP

(√
K/n

)
. (3.8.9)
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Then, it follows from (3.8.7), (3.8.8), and (3.8.9) that

−β̂TM(µ1M − x̄1M)− δ̂TMΩ̂Mδ̂M/2√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂MM

= −δ̂TMΩ̂Mδ̂M/2√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M
− β̂

T

M(µ1M − x̄1M)√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M

=
−∆p

(
1 +OP (K

√
(log p)/n)

)
2
√

∆p

(
1 +OP (K

√
(log p)/n)

) +OP (
√
K/n)

= −
√

∆p

(
1 +OP (K

√
(log p)/n)

)
2 +OP (

√
K/n)

= −
√

∆p

(
1 +OP (K

√
(log p)/n)

)
2 ,

(3.8.10)

where in the second-to-last equation, we use the fact that {1 + OP (K
√

(log p)/n)}−1/2 = 1 +

OP (K
√

(log p)/n), and in the last equation, we use
√
K/n = o(K{∆p(log p)/n}1/2). Using the same

argument, we also have

β̂
T

M(µ0M − x̄0M)− δ̂TMΩ̂Mδ̂M/2√
δ̂
T

MΩ̂MΣMMΩ̂Mδ̂M
= −

√
∆p

(
1 +OP (K

√
(log p)/n)

)
2 . (3.8.11)

Equations (3.8.10) and (3.8.11) together prove statement (a).

To prove (b), we use the fact that RBayes = Φ(−
√

∆p/2) and a well-known result of the normal

cumulative distribution function (Shao et al. 2011): that

x

1 + x2 e
−x2/2 ≤ Φ(−x) ≤ 1

x
e−x

2/2, for all x > 0. (3.8.12)

First, when ∆p <∞, by the Mean Value Theorem, we have

RGS-LDA(X) = RBayes + φ(x̃)OP
(
K
√

∆p(log p)/n
)

= RBayes + φ(x̃)Op(
√

(log p)/n),

where x̃ is a number between −
√

∆p/2 and −
√

∆p(1 +Op(K
√

(log p)/n))/2. In the last equation,

we use the fact that K � ∆p <∞, which is implied by Conditions 1, 2 and 4, since ∆p <∞, RBayes
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is bounded away from 0. Then, we have

RGS-LDA(X)
RBayes

= 1 + φ(x̃)
RBayes

Op(
√

(log p)/n).

Then, the boundedness of the normal density function and RBayes implies that

RGS-LDA(X)
RBayes

− 1 = Op(
√

(log p)/n).

This proves statement (b).

When ∆p → ∞, let an = K
√

(log p)/n. Noting that an = o(K2√(log p)/n) = o(1), it follows

from statement (a) and (3.8.12) that

RGS-LDA(X)
RBayes

≤
1√

∆p/2(1+Op(an))
e−(
√

∆p
2 (1+Op(an)))2/2

√
∆p/2

1+(
√

∆p/2)2 e
−(
√

∆p
2 )2/2

≤ 4 + ∆p

∆p{1 +Op(an)}e
−∆p

8 (1−(1+Op(an))2)

≤ 4 + ∆p

∆p{1 +Op(an)}e
Op(∆pan).

Since ∆pan . K2√(log p)/n = o(1), by the Taylor expansion, we have

RGS-LDA(X)
RBayes

≤ 4 + ∆p

∆p
(1 +OP (an))(1 +OP (∆pan)) ≤ 4 + ∆p

∆p
(1 +OP (∆pan))

= (1 + 4
∆p

)(1 +OP (∆pan)) ≤ 1 +OP
(
∆−1
p

)
+OP (∆pan) .

Using a similar argument, we can show that

RGS-LDA(X)
RBayes

≥ ∆p

4 + ∆p
(1 +Op(∆pan)) = (1− 4

4 + ∆p
)(1 +Op(∆pan))

≥ 1−OP
(
∆−1
p

)
−OP (∆pan) .

Combining the lower and upper bounds for RGS-LDA(X)/RBayes, we obtain

RGS-LDA(X)
RBayes

− 1 = OP
(
max{∆−1

p ,∆pan}
)

= OP

(
max{∆−1

p ,K2
√

(log p)/n}
)
.
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This proves statement (c).

Proof of (3.2.3). We use a similar argument to the proof of Proposition 1 given by Li and Li

(2018). Letting α = (σcc −ΣT
ScΣ−1

SSΣSc)−1, we have

∆s+1 =
(
δTS δc

)ΣSS ΣSc

ΣT
Sc σcc


−1δS

δc



=
(
δTS δc

)(ΣSS − σ−1
cc ΣScΣT

Sc)−1 −αΣ−1
SSΣSc

−αΣT
ScΣ−1

SS α


δS
δc

 .
By the Sherman–Morrison–Woodbury formula,

(ΣSS − σ−1
cc ΣScΣT

Sc)−1 = Σ−1
SS + αΣ−1

SSΣScΣT
ScΣ−1

SS .

Then we have

∆s+1 =
(
δTS δc

)Σ−1
SS + αΣ−1

SSΣScΣT
ScΣ−1

SS −αΣ−1
SSΣSc

−αΣT
ScΣ−1

SS α


δS
δc


= δTSΣ−1

SSδS + αδTSΣ−1
SSΣScΣT

ScΣ−1
SSδS − 2αδcΣT

ScΣ−1
SSδS + αδ2

c

= ∆s + α(δc −ΣT
ScΣ−1

SSδS)2.

Hence, we have

θSc = ∆s+1 −∆s = (δc −ΣT
ScΩSSδS)2

σcc −ΣT
ScΩSSΣSc

,

where ΩSS = Σ−1
SS . With same argument as in the proof of Theorem 3.1,

σcc −ΣT
ScΩSSΣSc > 0 for any c /∈ S. Thus, θSc ≥ 0.

3.8.2 Supporting Lemmas and their Proofs

Lemma 3.1. Under Conditions 1 and 2, there exists a constant t0 such that for all 0 < t < t0, the

following results hold.
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(a) P (maxi,j≤p |σ̂ij − σij | ≥ t) ≤ p2C1e
−C2nt2 , where C1 and C2 are some generic positive constants.

(b) P
(
maxj≤p |δ̂j − δj | ≥ t

)
≤ pC1e

−C2nt2, where C1 and C2 are some generic positive constants.

Proof of Lemma 3.1. These are standard concentration inequalities that follow from the nor-

mality assumption. The proof of (a) can be found in the proof of Lemma 3 of Bickel and Levina

(2008b), and (b) is a result obtained by applying the Chernoff method.

Lemma 3.2. Under Condition 2 and if s
√

log(p)/n = o(1), it holds that

P

(
‖Σ̂SS −ΣSS‖ . s

√
(log p)/n

)
≥ 1− C1p

−C0 ;

P

(
‖Σ̂−1

SS −Σ−1
SS‖ . s

√
(log p)/n

)
≥ 1− C1p

−C0 ,

where C1 is some generic positive constant and C0 is a sufficiently large constant.

Proof of Lemma 3.2. We have

‖Σ̂−1
SS −Σ−1

SS‖ = ‖Σ̂−1
SS(Σ̂SS −ΣSS)Σ−1

SS‖ ≤ ‖Σ̂
−1
SS‖‖Σ̂SS −ΣSS‖‖Σ−1

SS‖. (3.8.13)

First, we bound ‖Σ̂SS −ΣSS‖. By definition,

‖Σ̂SS −ΣSS‖ ≤ ‖Σ̂SS −ΣSS‖1 = max
i∈S

∑
j∈S
|σ̂ij − σij |.

Then, it follows from Lemma 3.1 that

P
(
‖Σ̂SS −ΣSS‖ ≥ t

)
≤ P

max
i∈S

∑
j∈S
|σ̂ij − σij | ≥ t

 ≤ P (max
i,j
|σ̂ij − σij | ≥ t/s

)

≤ p2C1e
−C2nt2/s2 .

(3.8.14)

Letting t = CDs
√

(log p)/n for some large generic positive constant CD and C0 = C2CD, we have

P

(
‖Σ̂SS −ΣSS‖ ≥ CDs

√
(log p)/n

)
≤ C1p

2−C2CD≤ C1p
−C0 .
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Next, we bound ‖Σ̂−1
SS‖2. Note that ‖Σ̂−1

SS‖2 = 1/λmin(Σ̂SS). By Weyl’s inequality,

λmin(ΣSS) ≤ λmin(Σ̂SS) + λmax(ΣSS − Σ̂SS) ≤ λmin(Σ̂SS) + ‖Σ̂SS −ΣSS‖

Then, it follows from Condition 2 and (3.8.14) that

P

(
λmax(Σ̂−1

SS) ≤ 1
m− C0s

√
(log p)/n

)
≥ 1− C1p

2−C2CD≥ 1− C1p
−C0 .

By Condition 2 and (3.8.13), we have

P

(
‖Σ̂−1

SS −Σ−1
SS‖ ≤

C0s
√

(log p)/n
m(m− C0s

√
(log p)/n)

)
= P

(
‖Σ̂−1

SS −Σ−1
SS‖ . s

√
(log p)/n

)
≥ 1− C1p

2−C2CD≥ 1− C1p
−C0 ,

where in the first equality, we use the fact that as s
√

(log p)/n = o(1),m−C0s
√

(log p)/n ≥ m/2.

Lemma 3.3. Under Condition 1–2, and if s
√

(log p)/n = o(1), the following results hold.

P

(
|δ̂TSΣ−1

SS δ̂S − δ
T
SΣ−1

SSδS | . s
√

(log p)/n
)
≥ 1− C3p

−C0 ,

P

(
|Σ̂T

ScΣ−1
SSΣ̂Sc −ΣT

ScΣ−1
SSΣSc| . s

√
(log p)/n

)
≥ 1− C3p

−C0 ,

P

(
|Σ̂T

ScΣ−1
SS δ̂S −ΣT

ScΣ−1
SSδS | . s

√
(log p)/n

)
≥ 1− C3p

−C0 .

where C3 is a positive constant depending on the C1, and C0 is a sufficiently large constant.

Proof of Lemma 3.3. To prove the first result, we have

δ̂
T

SΣ−1
SS δ̂S = δTSΣ−1

SSδS + 2δTSΣ−1
SS(δ̂S − δS) + (δ̂S − δS)TΣ−1

SS(δ̂S − δS).
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Then, we have

P

(
|δ̂TSΣ−1

SS δ̂S − δ
T
SΣ−1

SSδS | ≥ t
)

= P
(
|2δSTΣ−1

SS(δ̂S − δS) + (δ̂S − δS)TΣ−1
SS(δ̂S − δS)| ≥ t

)
≤ P

(
|2δTSΣ−1

SS(δ̂S − δS)|+ (δ̂S − δS)TΣ−1
SS(δ̂S − δS) ≥ t

)
≤ P

(
|2δTSΣ−1

SS(δ̂S − δS)| ≥ t/2
)

+ P
(
(δ̂S − δS)TΣ−1

SS(δ̂S − δS) ≥ t/2
)
.

By Cauchy-Schwarz inequality and Conditions 1 and 2, we have

|δTSΣ−1
SS(δ̂S − δS)| ≤ (δTSΣ−1

SSδS)1/2{(δ̂S − δS)TΣ−1
SS(δ̂S − δS)}1/2

≤ (1/m)(δTSδS)1/2{(δ̂S − δS)T (δ̂S − δS)}1/2

≤ (sM/m) max
i,j≤p

|δ̂ij − δij |.

We also have

(δ̂S − δS)TΣ−1
SS(δ̂S − δS) ≤ (s/m)(max

j≤p
|δ̂j − δj |)2.

Then, we have

P

(
|δ̂TSΣ−1

SS δ̂S − δ
T
SΣ−1

SSδS | ≥ t
)

≤ P
(

(sM/m) max
j≤p
|δ̂j − δj | ≥ t/4

)
+ P

(
(s/m)(max

j≤p
|δ̂j − δj |)2 ≥ t/2

)
.

Letting t = C0s
√

(log p)/n for some large enough constant C0, then it follows from Lemma 3.1 that

P

(
|δ̂TSΣ−1

SS δ̂S − δ
T
SΣ−1

SSδS | . s
√

(log p)/n
)
≥ 1− C3p

−C0 ,

where C3 is some positive constant depending on the C1.

To prove the second result, note that

Σ̂T
ScΣ−1

SSΣ̂Sc = ΣT
ScΣ−1

SSΣSc + 2ΣT
ScΣ−1

SS(Σ̂Sc −ΣSc) + (Σ̂Sc −ΣSc)TΣ−1
SS(Σ̂Sc −ΣSc).
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Then, we have

P
(
|Σ̂T

ScΣ−1
SSΣ̂Sc −ΣT

ScΣ−1
SSΣSc| ≥ t

)
≤ P

(
|2ΣT

ScΣ−1
SS(Σ̂Sc −ΣSc)|+ |(Σ̂Sc −ΣSc)TΣ−1

SS(Σ̂Sc −ΣSc)| ≥ t
)

≤ P
(
|ΣT

ScΣ−1
SS(Σ̂Sc −ΣSc)| ≥ t/4

)
+ P

(
|(Σ̂Sc −ΣSc)TΣ−1

SS(Σ̂Sc −ΣSc)| ≥ t/2
)
.

By Cauchy-Schwarz inequality and Condition 2,

|ΣT
ScΣ−1

SS(Σ̂Sc −ΣSc)| ≤ (ΣT
ScΣ−1

SSΣSc)1/2{(Σ̂Sc −ΣSc)TΣ−1
SS(Σ̂Sc −ΣSc)}1/2

≤ (1/m)(ΣT
ScΣSc)1/2{(Σ̂Sc −ΣSc)T (Σ̂Sc −ΣSc)}1/2

≤ (sM/m) max
i,j≤p

|σ̂ij − σij |,

where in the last inequality, we use the fact that |σij | ≤
√
σii
√
σjj ≤ λmax(Σ) ≤M , for all i, j ≤ p.

Also under Condition 2, we have

(Σ̂Sc −ΣSc)TΣ−1
SS(Σ̂Sc −ΣSc) ≤ (s/m)(max

j≤p
|σ̂j − σj |)2.

Then we have

P
(
|Σ̂T

ScΣ−1
SSΣ̂Sc −ΣT

ScΣ−1
SSΣSc| ≥ t

)
≤ P

(
(sM/m) max

i,j≤p
|σ̂ij − σij | ≥ t/4

)
+ P

(
(s/m)(max

i,j≤p
|σ̂ij − σij |)2 ≥ t/2

)
.

Letting t = C0s
√

(log p)/n, for some large constant C0. Then, it follows from Lemma 3.1 that

P

(
|Σ̂T

ScΣ−1
SSΣ̂Sc −ΣT

ScΣ−1
SSΣSc| . s

√
(log p)/n

)
≥ 1− C3p

−C0 ,

where C3 is some positive constant depending on the C1 .

To prove the third result, note that

Σ̂T
ScΣ−1

SS δ̂S

= ΣT
ScΣ−1

SSδS + δTSΣ−1
SS(Σ̂Sc −ΣSc) + ΣT

ScΣ−1
SS(δ̂S − δS) + (Σ̂Sc −ΣSc)TΣ−1

SS(δ̂S − δS).
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Then, we have

P
(
|Σ̂T

ScΣ−1
SS δ̂S −ΣT

ScΣ−1
SSδS | ≥ t

)
≤ P

(
|δTSΣ−1

SS(Σ̂Sc −ΣSc)| ≥ t/3
)

+ P
(
|ΣT

ScΣ−1
SS(δ̂S − δS)| ≥ t/3

)
+ P

(
|(Σ̂Sc −ΣSc)TΣ−1

SS(δ̂S − δS)| ≥ t/3
)
.

By Cauchy-Schwarz inequality and Conditions 1 and 2, we have

|δTSΣ−1
SS(Σ̂Sc −ΣSc)| ≤ (sM/m) max

i,j≤p
|σ̂ij − σij |;

|ΣT
ScΣ−1

SS(δ̂S − δS)| ≤ (sM/m) max
j≤p
|δ̂j − δj |;

(Σ̂Sc −ΣSc)TΣ−1
SS(δ̂S − δS) ≤ (s/m)(max

i,j≤p
|σ̂ij − σij |)(max

j≤p
|δ̂j − δj |).

Then, we have

P
(
|Σ̂T

ScΣ−1
SS δ̂S −ΣT

ScΣ−1
SSδS | ≥ t

)
≤ P

(
(sM/m) max

i,j≤p
|σ̂ij − σij | ≥ t/3

)
+ P

(
(sM/m) max

j≤p
|δ̂j − δj | ≥ t/3

)
+ P

(
(s/m)(max

i,j≤p
|σ̂ij − σij |)(max

j≤p
|δ̂j − δj |) ≥ t/3

)
≤ P

(
(sM/m) max

i,j≤p
|σ̂ij − σij | ≥ t/3

)
+ P

(
(sM/m) max

j≤p
|δ̂j − δj | ≥ t/3

)
+ P

(
max
i,j≤p

|σ̂ij − σij | ≥
√
mt/(3s)

)
+ P

(
max
j≤p
|δ̂j − δj | ≥

√
mt/(3s)

)
.

Letting t = C0s
√

(log p)/n for some large constant C0, it follows from Lemma 3.1 that

P

(
|Σ̂T

ScΣ−1
SS δ̂S −ΣT

ScΣ−1
SSδS | . s

√
(log p)/n

)
≥ 1− C3p

−C0 ,

where C3 is some positive constant depending on the C1.
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Lemma 3.4. Under Condition 1–2 and if s
√

(log p)/n = o(1), the following results hold.

P

(
|δ̂TS Σ̂−1

SS δ̂S − δTSΣ−1
SSδS | . s2

√
(log p)/n

)
≥ 1− C4p

−C0 ;

P

(
|Σ̂T

ScΣ̂
−1
SSΣ̂Sc −ΣT

ScΣ−1
SSΣSc| . s2

√
(log p)/n

)
≥ 1− C4p

−C0 ;

P

(
|Σ̂T

ScΣ̂
−1
SS δ̂S −ΣT

ScΣ−1
SSδS | . s2

√
(log p)/n

)
≥ 1− C4p

−C0 ;

where C4 is some positive constant depending on the C1 and C3 and C0 is a sufficiently large

constant.

Proof of Lemma 3.4. By definition,

|δ̂TS (Σ̂−1
SS −Σ−1

SS)δ̂S | ≤ ‖Σ̂
−1
SS −Σ−1

SS‖δ̂
T

S δ̂S

≤ ‖Σ̂−1
SS −Σ−1

SS‖{δ
T
SδS + 2(δ̂S − δS)TδS + (δ̂S − δS)T (δ̂S − δS)}.

By Condition 1, δTSδS = O(s). It follows from Lemma 3.1 that (δ̂S − δS)TδS = oP (s) and

(δ̂S − δS)T (δ̂S − δS) = oP (s). Then, it follows from Lemma 3.2 that

P

(
|δ̂TS (Σ̂−1

SS −Σ−1
SS)δ̂S | . s2

√
(log p)/n

)
≥ 1− C4p

−C0 .

This result, together with Lemma 3.3 and the triangular inequality, prove the first result. The other

two results can be proved by a similar argument, noting that ΣT
ScΣSc = O(s).

3.8.3 Additional Results in Cancer Subtype Analysis

Figure 3.5 shows the variable selection performance of the GS-LDA, ROAD and Logistic-L1 in

cancer subtype analysis.
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Figure 3.5. Variable selection performance of the three classifiers in classifying cancer subtypes:
panel (a) for the GS-LDA; panel (b) for the ROAD; and panel (c) for the Logistic-L1.
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CHAPTER 4
HIGH-DIMENSIONAL SEMIPARAMETRIC LATENT GAUSSIAN

COPULA REGRESSION FOR MIXED DATA

4.1 Introduction

Regression analysis, finding the relationship between a response and the covariates, is a central

statistical problem. Among all regression models, the linear regression model is the most popular

one to deal with continuous response. With the emergence of big data containing enormous variables

of mixed types, it poses great challenges on how to handle high dimensionality, non-normality, and

heterogeneity of the data. To deal with high-dimensional linear regression model, a number of

regularization methods (Tibshirani 1996; Fan and Li 2001; Zou and Hastie 2005; Negahban et al. 2012)

have been proposed to yield sparse models and their theoretical properties have been well studied.

To deal with non-normality of covariates, transformations, such as the Box-Cox transformation,

Fisher’s z-transformation and variance stablizing transformation, have been frequently applied to

overcome potential violations of model assumptions (Carroll and Ruppert 1988). To handle variables

of mixed types in the linear regression, the common practice would apply certain transformations

on continuous and truncated covariates, and create dummy variables for categorical or ordinal

variables. However, the choices of transformations could be subjective. It also remains unclear if

applying these transformations can gaurantee to resolve non-normality and heterogeneity issues.

Moreover, in some applications, the non-continuous, e.g. binary, ordinal, and truncated, variables

can be generated from some latent continuous variables subject to unknown thresholds or detection

limit. In these applications, it can be of interest to assess the association between the continuous

response and the latent continuous variables behind the observed mixed variables. Above all, it is

desirable to have a unified framework to solve this problem.

For an unsupervised problem of estimating correlations among mixed variables, some recent

works proposed copula-based methods (Liu et al. 2009; 2012; Fan et al. 2017; Feng and Ning

2019; Yoon et al. 2020). Specifically, Liu et al. (2009; 2012) proposed a Gaussian copula model to

estimate correlations among continuous variables. Fan et al. (2017) proposed a latent Gaussian
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copula model to simultaneously handle continuous and binary variables. Feng and Ning (2019)

generalized the latent Gaussian copula model to handle ordinal and categorical variables. Yoon et al.

(2020) proposed a truncated latent Gaussian copula model to handle truncated variables. These

methods assume that there exists some latent continuous variables that generate the observed mixed

variables, and the latent continuous variables follow a standard multivariate normal distribution,

after applying some transformations. These methods propose to use rank-based quantities to

estimate the correlations. They can be applied to a series of unsupervised learning problems, such

as graph estimation, principal component analysis and canonical correlation analysis.

A few copula-based methods have also been developed to handle the supervised learning problem

in the low-dimensional setting (Sungur 2005; Pitt et al. 2006; Crane and Hoek 2008; Masarotto et al.

2012; Noh et al. 2013). For example, Masarotto et al. (2012) proposed a general framework for

the inference and model diagnosis using Gaussian copula when the responses are dependent. Noh

et al. (2013) proposed a plug-in estimator of the regression function for a general copula regression.

However, these methods only handle low-dimensional copula regression models. Recently, Cai and

Zhang (2018) proposed a high-dimensional Gaussian copula regression model. They assume that the

response and the covariates follow a Gaussian copula and developed a rank-based method to estimate

the corresponding coefficients and established the oracle properties of their proposed estimator.

However, all these works only allow continuous variables. There still lack unified approaches to

handle high-dimensional mixed variables in a regression problem.

To this end, we propose a semiparametric latent Gaussian copula regression model to study

the association between a continuous response variable with high-dimensional mixed covariates.

The main contributions of the paper are as follows. First, our model gives a unified framework to

handle mixed variables in a linear regression model. Second, we develop an imputation procedure

to recover the latent variables in the test set to perform prediction with our model. The imputation

procedure only depends on some closed-form formula. Finally, we quantify the prediction error

of our method and compare it with the naive method that directly regresses the response on the

observed covariates.

The rest of the chapter is organized as the following. Section 4.2 provides background and

details on the proposed latent mixed Gaussian copula regression model. Section 4.3-4.4 describes the

estimation of regression coefficients and investigates its statistical properties in terms of estimation
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and variable selection consistency. Section 4.5 provides details on the prediction of our method, and

studies the corresponding prediction error with a comparison to that of the naive method. Section

4.6 presents extensive simulation studies to compare the proposed method with the naive method,

demonstrating the superiority of the proposed method in terms of both estimation and prediction

accuracy. Section 4.7 compares the prediction performances of the proposed method with the naive

method using a communities crime data set from the UCI machine learning repository. All technical

proofs are given in Section 4.8.

4.2 Latent Gaussian Copula Regression Model

We first introduce some notations. For a vector a ∈ Rp, let ‖a‖∞ = max1≤j≤p |aj |, ‖a‖1 =∑p
j=1 |aj |, ‖a‖2 = (

∑p
j=1 a

2
j )1/2 denote its max, L1-, and Euclidean norms. For a matrix A = (aij) ∈

Rp×p, let ‖A‖max = maxi,j |aij |, ‖A‖∞ = maxi
∑

1≤j≤p |aij |, λmin(A) and λmax(A) be the minimum

and maximum eigenvalues of A. For a symmetric matrix Σ, we write Σ > 0 if λmin(Σ) > 0. For

any two sequences an and bn, we write an . bn if there exists a constant c > 0 such that an ≤ cbn.

an � bn if an . bn and bn . an.

First we review the Gaussian copula models proposed by Liu et al. (2009; 2012); Fan et al.

(2017); Yoon et al. (2020); Feng and Ning (2019). For a random vector z ∈ Rp, if f(z) ∼ N(0,Σ),

where f = (f1, ..., fp)T , fj is a monotonically increasing function and Σ is a correlation matrix, then

z is said to follow a nonparanormal distribution, denoted by z ∼ NPN(0,Σ, f). We assume that

the observed variable Xj relates to the latent variable Zj based on the following transformations:

Xj =



Zj , for j ∈ C;

I(Zj > Cj), for j ∈ B;
∑Nj
k=1 I(Zj > Cjk), for j ∈ O;

I(Zj > Cj)Zj , for j ∈ T ;

where C, B, O, T are the index sets of continuous, binary, ordinal and truncated variables,

CB∪T = (Cj)j∈B∪T is a vector of unknown thresholds for binary and truncated variables, and

Cj1 < ... < CjNj are theNj unknown thresholds for an ordinal variable. We call that x follows a latent

mixed nonparanormal distribution, denoted by x ∼ LMNPN(0,Σ, f ,C,N), where C = (CB∪T ,CO)

is a list of thresholds for binary, truncated, and ordinal variables, N = (Nj)j∈O is the number of
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thresholds for ordinal variables. We remark that the binary variable can be treated as a special

case of ordinal variable with Nj = 1. The nonparanormal distribution was first studied by Liu et al.

(2009; 2012) for continuous variables. Fan et al. (2017) extended it to include binary variables. With

the same spirit, Yoon et al. (2020) and Feng and Ning (2019) further incorporated truncated and

ordinal variables into the framework.

Different from these works that study the correlations in x, our goal is to quantify the association

between x and a continuous response Y . We assume x follows LMNPN(0,Σ, f ,C,N), Y is

observable and follows the Latent Mixed Gaussian Copula Regression model that

Y = β∗0 + f(z)Tβ∗ + ε, (4.2.1)

where ε has zero mean, finite variance, and E{ε|f(z)} = 0.

A similar Gaussian copula regression problem was studied by Cai and Zhang (2018). Different

from (4.2.1), they assumed that (xT , Y )T ∼ NPN(0, Σ̌, f̌) where f̌ = (f , f0) and Σ̌ is the correlation

matrix of (f(x)T , f0(Y ))T . This assumption implies that f0(Y ) = f(x)Tθ + ε, where θ = Σ̌−1
xx Σ̌xy,

ε ∼ N(0, 1− Σ̌T
xyΣ̌

−1
xx Σ̌xy) and independent of f(x), Σ̌xy = E(f0(Y )f(x)) and Σ̌xx = E(f(x)f(x)T ).

There are some critical differences between our model and the model in Cai and Zhang (2018).

First, the response in our model is observable but not in their model because f0 is unknown.

Second, our model allows mixed covariates while theirs only allow continuous covariates. Third,

our model relaxes normality assumption on (f(z)T , Y )T , while they required that (f(x)T , f0(Y ))T

are jointly normal. Consequently, the noise in our model can depend on the latent covariates and

follow non-normal distributions, while the noise in their model should be normally distributed

and independent of the covariates. The most important difference is that their predicted value

has to be one of the responses in the training set. In fact, the predicted value of Y given by Cai

and Zhang (2018) has the form of f̂−1
0 (f̂(x)T θ̂), where f̂ and θ̂ are estimators of f and θ, and

f̂−1
0 (t) = inf{x ∈ R : F̃0(x) ≥ Φ(t)} with F̃0 being the winsorized empirical distribution function of

training responses and Φ being the distribution function of the standard normal distribution. Since

F̃0 is a step function that increments only at the training responses, it restricts the predicted value

to be one of them. On the contrary, our model does not have such a big restriction on prediction.

In summary, compared with Cai and Zhang (2018), our model is more flexible to handle mixed
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variables, allows heteroscedastic errors, and does not restrict predicted values to be subsets of the

training responses.

4.3 Estimation

A natural estimator of β∗0 is β̂0 = (1/n)
∑n
i=1 Yi. Let δ = E(f(z)Y ). Since δ = Σβ∗, it can be

seen that β∗ = argminβ∈Rp βTΣβ/2− δTβ. Then, if we have estimators (Σ̂, δ̂) for (Σ, δ), we can

estimate β∗ by solving

β̂ = argmin
β∈Rp

1
2β

T Σ̂β − δ̂Tβ + λ‖β‖1, (4.3.1)

where ‖β‖1 is an L1-penalty function, and λ is a tuning parameter, which can be chosen by cross-

validation. The problem in (4.3.1) is a convex optimization problem, which can be solved by the

proximal gradient descent algorithm (Boyd and Vandenberghe 2004). We summarize its details in

Algorithm 4.1. Next, we discuss how to obtain Σ̂ and δ̂ based on observed data.

Algorithm 4.1: The proximal gradient algorithm for solving (4.3.1).

Initialization: Set β̂(0) ∈ Rp and t = 0.8/λmax(Σ̂) ∈ R.
At the kth iteration, let

β̂
(k) = proxtg

[
β̂

(k−1) − t∇L{β̂(k−1)}
]

= s
(
β̂

(k−1) − t{Σ̂β(k−1) − δ̂}, λ1t

)
,

where s(x, λ) = sgn(x)(|x| − λ)+ is the soft-thresholding function.
Iterate until ‖β̂(k) − β̂(k−1)‖2 ≤ ρ, where ρ is a user-specified stopping threshold.

The estimation of Σ using observed mixed variables has been studied by Fan et al. (2017), Yoon

et al. (2020), and Feng and Ning (2019). They propose to first obtain the Kendall’s tau correlation

between Xj and Xk, and rely on bridge functions to map it to the correlation between latent fj(Zj)

and fk(Zk), which is defined as Σ̃jk. The estimated Kendall’s tau correlation between Xj and Xk is

given by

τ̂jk = 2
n(n− 1)

∑
1≤i<i′≤n

sgn(Xij −Xi′j)sgn(Xik −Xi′k), 1 ≤ j, k ≤ p.

Fan et al. (2017) derived the bridge functions for pairwise correlations among binary and continuous

variables. Yoon et al. (2020) further derived bridge functions between truncated and continu-

ous/binary variables. A complete list of these bridge functions is shown in Section 4.8. Let F̂jk be

one of the bridge functions. Then, Σ̃jk can be obtained by solving F̂jk(Σ̃jk) = τ̂jk. Fan et al. (2017)
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and Yoon et al. (2020) have proved that all these bridge functions are invertible.

For ordinal variables, Feng and Ning (2019) proposed to dichotomize them into multiple

binary variables. Suppose Xj and Xk are ordinal variables with Nj + 1 and Nk + 1 levels. Let

X
(p)
ij = I(Xij ≥ p), for p = 1, ..., Nj , and X(q)

ik = I(Xik ≥ q), for q = 1, ..., Nk. Then, the thresholds

∆(p)
j = fj(Cjp) and ∆(q)

k = fk(Ckq) can be estimated by

∆̂(p)
j = Φ−1(1− (1/n)

n∑
i=1

X
(p)
ij ), ∆̂(q)

k = Φ−1(1− (1/n)
n∑
i=1

X
(q)
ik ), for j, k ∈ O. (4.3.2)

Using the bridge function for binary variables, the latent correlation between each pair of these

binary variables can be obtained by solving F̂jk(Σ̃
(p,q)
jk ) = τ̂

(p,q)
jk , where

τ̂
(p,q)
jk = 2

n(n− 1)
∑

1≤i<i′≤n
sgn(X(p)

ij −X
(p)
i′j )sgn(X(q)

ik −X
(q)
i′k ), p = 1...Nj , q = 1...Nk.

Finally, Σ̃jk can be calculated by Σ̃jk =
∑Nk
q=1

∑Nj
p=1 Σ̃(p,q)

jk w
(p,q)
jk . If Xj is ordinal and Xk is of other

types, a similar estimator can be constructed as Σ̃jk =
∑Nj
p=1 Σ̃(p)

jk w
(p)
jk , for p = 1, ..., Nj , where

τ̂
(p)
jk = 2

n(n− 1)
∑

1≤i<i′≤n
sgn(X(p)

ij −X
(p)
i′j )sgn(Xik −Xi′k), and F̂jk(Σ̃

(p)
jk ) = τ̂

(p)
jk .

In these estimators, the weights must satisfy 0 ≤ w(p,q)
jk ≤ 1,

∑Nk
q=1

∑Nj
p=1w

(p,q)
jk = 1, and 0 ≤ w(p)

jk ≤

1,
∑Nj
p=1w

(p)
jk = 1. For simplicity, we use w(p,q)

jk = 1/(NjNk) and w(p)
jk = 1/Nj .

Fan et al. (2017), Yoon et al. (2020), and Feng and Ning (2019) proved that Σ̃ is consistent to Σ;

see Lemma 4.1 in Section 4.8. To be used in (4.3.1), we require the estimator to be positive definite.

Then, we project Σ̃ into the cone of positive definite matrices by solving Σ̂ = argminΣ>0‖Σ̃−Σ‖max.

Such a problem can be solved by Zhao et al. (2014).

To estimate δ, we need to develop new bridge functions. We propose to bridge δj with E(fj(Xj)Y )

for j ∈ C; with E(XjY ) for j ∈ B; and with E(I(Xj > 0)fj(Xj)Y ) for j ∈ T . We summarize these

bridge functions in Theorem 4.1.

Theorem 4.1. Suppose x ∼ LMNPN(0,Σ, f ,C,N) and Y follows (4.2.1). Then the bridge
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functions of δ are given by

Fj(δj) =



E(fj(Xj)Y ) = δj , for j ∈ C;

E(XjY ) = β∗0(1− Φ(∆j)) + φ(∆j)δj , for j ∈ B;

E(I(Xj > 0)fj(Xj)Y ) = β∗0φ(∆j) + C(∆j)δj , for j ∈ T ,

where ∆j = fj(Cj), C(∆j) = E(I(fj(Zj) > ∆j)fj(Zj)2) = ∆jφ(∆j) + 1− Φ(∆j).

These bridge functions are all linear in δj , thus they are invertible. Using Theorem 4.1, we

propose the following plug-in estimator of δ.

δ̂j =



n−1∑n
i=1 f̂j(Xij)Yi, for j ∈ C;

φ(∆̂j)−1(n−1∑n
i=1XijYi − β̂0(1− Φ(∆̂j))), for j ∈ B;

∑Nj
p=1w

(p)
j φ(∆̂(p)

j )−1[n−1∑n
i=1X

(p)
ij Yi − β̂0{1− Φ(∆̂(p)

j )}], for j ∈ O;

C(∆̂j)−1(n−1∑n
i=1 I(Xij > 0)̂fj(Xij)Yi − β̂0φ(∆̂j)), for j ∈ T .

In the above formulae, for j ∈ C ∪ T , we estimate fj(t) by

f̂j(t) = Φ−1(F̃j(t)), (4.3.3)

where F̃j(t) is the winsorized empirical cumulative distribution function defined on t ∈ R for j ∈ C

and t > Cj for j ∈ T . It has the form of

F̃j(t) = ϕnI(F̂j(t) < ϕn) + F̂j(t)I(ϕn ≤ F̂j(t) ≤ 1− ϕn) + (1− ϕn)I(F̂j(t) > 1− ϕn),

where F̂j(t) = (1/n)
∑n
i=1 I(Xij ≤ t) and ϕn is often chosen to be 1/(2n). For j ∈ B ∪ T , we

estimate ∆j by

∆̂j =


Φ−1(1− n−1∑n

i=1Xij), for j ∈ B;

Φ−1(1− n−1∑n
i=1 I(Xij > 0)), for j ∈ T .

(4.3.4)

For j ∈ O, ∆̂(p)
j is given by (4.3.2). Next, we show that δ̂ is consistent to δ.

Theorem 4.2. Suppose the following conditions hold.
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Condition 1. ‖ε‖ψ2 < M for some M > 0, where ‖ε‖ψ2 = supp≥1 p
−1/2(E |ε|p)1/p.

Condition 2. ‖β∗‖1 < M for some M > 0.

Condition 3. maxj∈B∪T |∆j | ≤M and maxj∈O,p=1,...,Nj
∣∣∆(p)

j

∣∣ ≤M for some M > 0.

If p = O(nξ) for an arbitrary ξ > 0, it holds that

‖δ̂ − δ‖∞ = Op

(
(log p)1/2(logn)1/4

n1/4

)
.

Condition 1 requires ε to follow the sub-Gaussian distribution. Condition 2 requires ‖β∗‖1 to

be bounded. Condition 3 requires the thresholds to be bounded. In Cai and Zhang (2018), they

needed to estimate Σ̌xy = E(f0(Y )f(x)). They proposed to estimate the jth element of Σ̌xy by

Σ̂jy = sin(πτ̂jy/2), where τ̂jy is the Kendall’s tau estimator for correlation between Y and Xj . They

proved that the resulting estimator Σ̂xy has ‖Σ̂xy − Σ̌xy‖∞ = Op(
√

log p/n). However, this method

requires normality assumption on (f(z)T , f0(Y )), and it only applies to continuous variables.

In summary, compared to Cai and Zhang (2018), our estimator does not require the normality

assumption on (f(z)T , Y ) or (f(z)T , f0(Y )). Without these assumptions, we have to pay the price of

estimating fj for j ∈ C ∪ T , which makes our convergence rate of ‖δ̂ − δ‖∞ to be slower than theirs,

even though our estimator remains consistent when p = O(nξ) for any arbitrary ξ > 0. On the

other hand, even with normality assumption, their method needs to estimate f0 to predict Y . Thus,

their predicted values must be subsets of training responses, which is another strong restriction.

4.4 Statistical Properties

We rely on the general M-estimation theory (Negahban et al. 2012) to study the statistical

properties of β̂. We defineM = {j : β∗j 6= 0} and s = ‖M‖0 =
∑p
j=1 I(β∗j 6= 0). Theorem 4.3 gives

the upper bounds of the estimation errors and Theorem 4.4 proves the variable selection consistency.

Theorem 4.3. Suppose Conditions 1–3 and the following conditions hold.

Condition 4. max1≤j<k≤p |Σjk| ≤ 1− δ for some δ > 0.

Condition 5. m ≤ λmin(Σ) ≤ λmax(Σ) ≤M for some m and M > 0.

If s
√

(log p)/n = o(1), p = O(nξ) for an arbitrary ξ > 0,
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and λ = C(log p)1/2(logn)1/4n−1/4 for some sufficiently large constant C, then

‖β̂ − β∗‖2 = Op

(
s1/2(log p)1/2(logn)1/4

n1/4

)
,

‖β̂ − β∗‖1 = Op

(
s(log p)1/2(logn)1/4

n1/4

)
.

Theorem 4.4. Suppose Conditions 1–5 and the following conditions hold.

Condition 6. ‖Σ−1
MM‖∞ ≤M for some M > 0.

Condition 7. ‖ΣMcMΣ−1
MM‖∞ ≤ (1− α)(1− ε) for some α > 0 and ε > 0.

Condition 8. minj∈M |β∗j | � ((log p)(logn)1/2n−1/2)γ/2 for some 0 < γ < 1.

If s2√(log p)/n = o(1), p = O(nξ) for an arbitrary ξ > 0,

and λ = C((log p)1/2(logn)1/4n−1/4)γ, where 0 < γ < 1 and C is some sufficiently large constant,

then with probability tending to 1, we have ‖β̂M − β∗M‖∞ . λ and M̂ =M.

Condition 4 aims to avoid multicolinearity among latent variables. Condition 5 is a technical

condition needed in the proof. Condition 6 requires that ΣMM is invertible and assumes that

the sup-norm of its inverse is bounded by a constant. Condition 7 is a standard irrepresentable

condition that requires the important and unimportant variables cannot be highly correlated. It is

well known that such a condition is needed for the variable selection consistency of the L1-penalized

methods. Condition 8 is a beta-min condition requiring that the minimal signal to be bounded away

from zero. Given these conditions, Theorem 4.4 shows that β̂ is variable selection consistent and

gives uniformly consistent estimators of the nonzero components of β∗.

4.5 Prediction

4.5.1 Imputation of Latent Variables

Let xtest be a new sample. If xtest contains binary, ordinal or truncated variables, the correspond-

ing latent variables are not observable. Thus, we propose a method to impute them based on the

observed variables. Let û be the imputed value for the latent variable f(ztest). Then, the prediction

is given by Ŷ = β̂0 + ûT β̂ = β̂0 + ûT
M̂
β̂M̂. We will compare the Mean Squared Prediction Error

(MSPE) of our method with that of the oracle method, which assumes that β∗0 , β∗, f , and ztest are

all observed. In the oracle setting, we define the prediction of the response as Y ∗ = β∗0 + f(ztest)Tβ∗.

We will show that the MSPE of Ŷ can converge to the MSPE of Y ∗ up to a non-vanishing term
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due to the imputation error of latent variables behind binary, ordinary and truncated variables.

For these variables, the truncation always leads to the loss of information, which cannot be fully

recovered. Besides, we will also compare the MSPE of our method with that of a naive method,

which regresses the response directly on the observed mixed variables.

First, we discuss how to impute latent variables if f , C and Σ are known. We denote such an

imputed value of f(ztest) as ũ. We describe the imputation for each type of variables. For j ∈ C,

since Xtest,j = Ztest,j , ũj = fj(Xtest,j) is the imputed value for fj(Ztest,j). For j ∈ B ∪O, we propose

to impute fj(Ztest,j) by its expectation conditional on its observed value and other continuous

variables. That is, ũj = E{fj(Ztest,j)|vtest,I}, where vtest,I = (Vtest,k), Vtest,k = fk(Xtest,k) for k ∈ C,

and Vtest,k = Xtest,k for k /∈ C. We discuss in Proportion ?? how to choose a proper set I to

condition on. For j ∈ T , we impute fj(Ztest,j) depending on whether Xtest,j = 0. When Xtest,j > 0,

Xtest,j = Ztest,j . Therefore, the imputed value is ũj = fj(Xtest,j). When Xtest,j = 0, we propose to

impute it by ũj = E{fj(Ztest,j)|vtest,I}. We define the Mean Squared Imputation Error (MSIE) of

ũj by MSIE(ũj ; I) = E[ũj − fj(Ztest,j)]2.

Proposition 4.1. For j ∈ B and any C̃ ⊂ C, it holds that

(1− ξ̃j)
[
1− ELj

{
φ(Lj)2

Φ(Lj)(1− Φ(Lj))

}]
= MSIE(ũj ; C̃ ∪ {j}) < MSIE(ũj ; C̃) = 1− ξ̃j ,

where ξ̃j = ΣT
C̃j

Σ−1
C̃C̃

ΣC̃j, Lj ∼ N(∆j/(1− ξ̃j)1/2, ξ̃j/(1− ξ̃j)), and ∆j = fj(Cj).

Proposition 4.1 indicates that, to impute the latent variables behind binary variables, conditioning

on its observed value and other observed continuous variables guarantees to have smaller MSIE

than solely conditioning on continuous variables. Besides, through numerical experiments we find

that the MSIE decreases as ξ̃j increases. It was proved in Proposition 1 of Li and Li (2018) that

if there is a sequence C̃1 ⊂ . . . ⊂ C̃k ⊂ C̃k+1 ⊂ · · · ⊂ C, ξ̃j increases as k increases. In other words,

the more continuous variables we condition on, the larger ξ̃j is. These two results together indicate

that we should condition on all continuous variables. On the other hand, if we condition on other

observed binary, ordinal, or truncated variables, it needs to evaluate multiple integrals which can be

computationally prohibitive. Besides, it is unclear if conditioning on these variables can further
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reduce the MSIE. Considering all these aspects, we choose I = {j} ∪ C. Then,

ũj =



fj(Xtest,j), for j ∈ C;√
1− ξj{I(Xtest,j = 0)−φ(lj)

Φ(lj)
+ I(Xtest,j = 1) φ(lj)

1− Φ(lj)
}

+ ηTj fC(xtest,C),
for j ∈ B;

√
1− ξj{

Nj∑
k=0

I(Xtest,j = k)
φ(ljk)− φ(lj(k+1))
Φ(lj(k+1))− Φ(ljk)

}

+ ηTj fC(xtest,C),
for j ∈ O;

fj(Xtest,j)I(Xtest,j > 0)

+ {−
√

1− ξjφ(lj)
Φ(lj)

+ ηTj fC(xtest,C)}I(Xtest,j = 0),
for j ∈ T ,

(4.5.1)

where ξj = ΣT
CjΣ−1

CCΣCj , ηj = Σ−1
CCΣCj ; for j ∈ B ∪ T ,

lj = (∆j − ηTj fC(xtest,C))/
√

1− ξj and ∆j = fj(Cj); for j ∈ O,

ljk = (∆(k)
j − ηTj fC(xtest,C))/

√
1− ξj and ∆(k)

j = fj(Cjk). The expression of MSIE(ũj , I) is given

in Theorem 4.6 in Section 4.8.

In practice, we need to estimate parameters in (4.5.1) using training data. For fj , we estimate it

by f̂j as defined in (4.3.3). For ∆j of j ∈ B ∪ T , we estimate it by (4.3.4); for ∆(k)
j of j ∈ O, we

estimate it by (4.3.2). For ηj , we propose to estimate it by solving

η̂j = argmin
ηj

(1/2)ηTj Σ̂CCηj − ηTj Σ̂Cj + λ2‖ηj‖1, (4.5.2)

where Σ̂CC and Σ̂Cj are submatrices of Σ̂, and we impose an L1-penalty on ηj to regulate the

problem. We assume ηj is weakly sparse in the sense that ηj ∈ Bq(Rq) = {θ ∈ Rp1 :
p1∑
j=1
|θj |q < Rq}

for j ∈ B ∪ O ∪ T , where q ∈ (0, 1], and p1 = ‖C‖0. The problem (4.5.2) can also be solved by the

proximal gradient descent algorithm. Moreover, ξj can be estimated by ξ̂j = η̂Tj Σ̂Cj . Plugging all

these estimators into (4.5.1) gives the imputed value û. Finally, we remark that we only need to

perform such imputations for j ∈ M̂.

4.5.2 Prediction Error

We define the Mean Squared Prediction Error (MSPE) of our method asMSPE = (1/ntest)
∑ntest
i=1 (Ŷi−

Y ∗i )2. In the rest of this section, our arguments are conditioning on the event that {M̂ =M}. The
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MSPE can be decomposed as

MSPE = (β̂0 − β∗0)2 + β∗TM

{
1

ntest

ntest∑
i=1

(ûiM − ũiM)⊗2
}
β∗M

+ β∗TM

{
1

ntest

ntest∑
i=1

(ũiM − f(ztest,i)M)⊗2
}
β∗M

+ (β̂M − β∗M)T
{

1
ntest

ntest∑
i=1

f(ztest,i)⊗2
M

}
(β̂M − β∗M) +R

(4.5.3)

where the first term is due to the estimation error of β̂0, the second term is due to the estimation

error of û to ũ, the third term is due to imputation error by ũM, the fourth term is due to

estimation error of β̂, and R represents the cross-product and higher-order remainder terms. Among

them, only the third term does not vanish since it does not depend on training samples. All the

rest terms vanish when the training sample size divergences. Letting A = (B ∪ O ∪ T ) ∩M and

sA = ‖A‖0 =
∑
j∈B∪O∪T I(β∗j 6= 0), Theorem ?? quantifies the MSPE.

Theorem 4.5. Suppose Conditions 1–8 hold and Rq <∞. If p = O(nξ) for an arbitrary ξ > 0 and

s2√log p/n = o(1), λ1 � aγ/2n for some 0 < γ < 1, λ2 �
√

log p/n, it follows that

MSPE =


β∗

T

A (E(u∗A − f(ztest)A)⊗2)β∗A +Op(
√
san ∨

√
sAbn), when A 6= ∅;

Op(san), when A = ∅,

where an = (log p)(logn)1/2n−1/2 and bn = (log p/n)1−qr for some r ∈ (0, 1).

Theorem 4.5 shows that when A = ∅, the MSPE converges to 0 in a rate of OP (san). This

is because the response only associates with some continuous variables whose MSIEs are zero;

see Theorem 4.6. As such, the convergence rate is dominated by the estimation error of β̂M.

When A 6= ∅, since the MSIE of binary, ordinary and truncated variables cannot vanish, there is a

non-vanishing term of β∗TA (E(u∗A− f(ztest)A)⊗2)β∗A. The term of OP (√san) is due to the estimation

error of β̂M. The term of OP (
√
sAbn) is due to the estimation error of û to ũ. They both vanish as

n→∞. This shows that up to a non-vanishing error that can never be recovered from the training

data, our method can accurately predict the response when the training size is large enough.
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4.5.3 Comparison with a Naive Method

We compare our method’s prediction error with a naive method. We assume the true model

follows (4.2.1). Let xaug = (1,xT )T , f(z)aug = (1, f(z)T )T , and β∗aug = (β∗0,β∗
T )T . The naive

method regresses Y directly on the observed xaug and estimates γ∗, where

γ∗ = argmin
γ∈Rp+1

E(Y − xTaugγ∗)2 = Hβ∗aug, (4.5.4)

and H = E(xaugxTaug)−1E(xaugf(z)Taug). However, in the true model E{Y |xaug} is a nonlinear

function of xaug but the naive method mistakenly treats it as a linear function. By (4.2.1),

E{Y |z} = f(z)Taugβ∗aug. Thus, we can view the naive method as imputing f(z)aug by HTxaug. We

define the oracle predictions of our and naive methods by Ŷora = ũTβ∗+β∗0 , and Ŷ naive
ora = xTaugγ∗ =

ũTnaiveβ∗ + β∗0 , where ũ is given by (4.5.1) and

ũnaive = E(f(z)xT )E(xxT )−1
{

x− 1− E(x)TE(xx)−1x
1− E(x)TE(xx)−1E(x)E(x)

}
. (4.5.5)

In such definitions, we assume that all parameters are known and highlight that x and f(z) in (4.5.5)

do not contain the intercept. ũnaive can be treated as an imputation of f(z) by regressing it on x

using a linear model. Since f(z) is not a linear function of x, such a naive method is subject to

serious model mis-specification error and ũnaive generally has larger MSIE than ũ.

Next, we compare the predictions of these two methods by taking parameter estimation into

account. Let Y ∈ Rn, Xaug = (1,X) ∈ Rn×(p+1) and f(Z)aug = (1, f(Z)) ∈ Rn×(p+1) be the

response, observed and latent variables in the training set, and xtest,aug = (1,xTtest)T ∈ Rp+1. For

simplicity, we assume p < n. For the naive method, we consider estimating γ∗ by the Ordinary

Least Squares estimator γ̂OLS = (XT
augXaug)−1XT

augY . Then, its prediction error is given by

Ŷ naive = ûTnaiveβ∗ + β∗0 + xTtest,aug(XT
augXaug)−1XT

augε, (4.5.6)

where

ûnaive = 1− ν1
n− ν2

f(Z)T1 + f(Z)TX(XTX)−1
{

xtest −
1− ν1
n− ν2

XT1
}
,

ν1 = 1TX(XTX)−1xtest, and ν2 = 1TX(XTX)−1XT1. Comparing Ŷ naive with Ŷ naive
ora , we can find

62



that estimating γ∗ leads to an estimation error in ûnaive and an extra term of

xTtest,aug(XT
augXaug)−1XT

augε, which converges to zero. Even if ûnaive converges to ũnaive when

sample size diverges, it still suffers from model misspecification. On the other hand, our method’s

prediction is ûT β̂ + β̂0. Comparing it with Ŷ naive, we find that even though û is better than ûnaive

in terms of imputing latent variables, our method’s prediction needs to account for estimation errors

in β̂0 and β̂, while Ŷ naive in (4.5.6) only contain the true parameters β∗0 and β∗. This suggests that

when the improvement in imputation error surpasses the estimation errors of β̂0 and β̂, our method

has advantage over the naive method. In empirical studies, we find that when the latent continuous

variables are highly skewed, our method performs better than the naive method. In Section 4.6, we

use simulation studies to further illustrate this point.

4.6 Simulations

We conduct simulation studies to compare our method with the naive method. We simulate for

three scenarios. We set training and test set sizes to be n = 500 and ntest = 1000, and consider

p = 100 and p = 500. In all scenarios, the errors are independent of covariates. The setup of

the scenarios are as follows. Scenario 1: Let B1 = diag(D, I5) and Σ = diag(B1,B1, I10, ..., I10),

where D = (dij), dii = 1 for i = 1, ..., 5, dij = 0.3 for 1 ≤ i 6= j ≤ 5, and I5 is a five-dimensional

identity matrix. We generate f(z) from N(0,Σ) and choose fj(Zj) = Z3
j for 1 ≤ j ≤ p. The observed

variables are generated by

Xj =


I(Zj > Cj), for j = 1 + 10t, and 0 ≤ t ≤ p/10− 1;

Zj , otherwise,

where Cj = −0.3(1/3). The response is generated by Y = 5
∑5
j=1 fj(Zj) + 5

∑15
j=11 fj(Zj) + ε, where

ε ∼ N(0, 1).

Scenario 2: We choose Σ = (σij), where σij = 0.3|i−j| for 1 ≤ i, j ≤ p, and fj(Zj) = log(Zj) for

1 ≤ j ≤ p. The observed variables are generated by

Xj =


I(Zj > Cj), for j = 1 + 10t, and 0 ≤ t ≤ p/10− 1;

Zj , otherwise,
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where Cj = exp(−0.3). The response is generated the same as in Scenario 1.

Scenario 3: We choose Σ the same as in Scenario 1 and two marginal transformation functions.

We choose either fj(Zj) = Z3
j or fj(Zj) = log(Zj) for all 1 ≤ j ≤ p. The observed variables are

generated by

Xj =



∑2
k=1 I(fj(Z)j > ∆(k)

j ), for j = 1 + 20t, and 0 ≤ t ≤ p/20− 1;

ZjI(fj(Z)j > ∆j), for j = 11 + 20t, and 0 ≤ t ≤ p/20− 1;

Zj , otherwise,

where ∆(1)
j = fj(Cj1) = −0.1 and ∆(2)

j = fj(Cj2) = 0.1 for j ∈ O, and ∆j = fj(Cj) = 0.1 for j ∈ T .

The response is generated by Y = 5
∑5
j=1 fj(Zj) + 5

∑15
j=11 fj(Zj) + ε, where ε ∼ Uniform[−1, 1].

For each scenario, we independently generate n samples for the training set and ntest samples for

the test set. For our method, we obtain the estimators of regression coefficients by solving (4.3.1)

and the imputed latent variables by using methods described in Section 4.5.1. We compare it with

two oracle-like methods. For the first “Oracle-impute” method, it imputes the latent variables using

(4.5.1) where the parameters therein are assumed to be known and estimates regression coefficients

from (4.3.1). We define its prediction by β̂0 + ũT
M̂
β̂M̂. For the second “Oracle-beta” method, it

assumes β∗0 and β∗ are known and imputes the latent variables by û. We define its prediction by

β∗0 + ûTMβ
∗
M. We also involve two naive methods into the comparison. The naive methods directly

regress the response on the observed variables by solving penalized Least Squares problems with

either an L1 or an elastic-net penalty. We refer to them as “Naive-LASSO” and “Naive-ENET”. For

each scenario, we repeat simulations for 100 times and report the estimation errors of regression

coefficients, variable selection performance, and MSPEs.

It is seen from Figure 4.1 that, our method has clear advantage over Naive-LASSO and Naive-

ENET in Scenario 1. It has much smaller estimation errors. In term of In variable selection, even

though the sensitivity of the three methods are comparable, our method has better specificity. Finally,

the MSPE of our method is smaller than that of Naive-LASSO and Naive-ENET, and comparable

to the MSPE of the Oracle-impute method, suggesting that estimating unknown parameters in

the imputation formulae does not worsen the MSPE. This agrees with Theorem 4.5. However, our

method’s MSPE is worse than that of the Oracle-beta method. One reason is due to the estimation
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Figure 4.1. Estimation error, variable selection performance, and MSPEs for the five competitors in
Scenario 1.
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Figure 4.2. Estimation error, variable selection performance, and MSPEs for the five competitors in
Scenario 2.
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Figure 4.3. MSPEs for the five competitors in Scenario 3.

error in β̂. Another reason is that our method selects some false positives, which also need to be

imputed. That could enlarge the MSPE. Finally, we emphasize that these two oracle-like methods

are not feasible in practice. We only use them as benchmarks to evaluate the prediction performance

of the our method.

We can draw similar conclusions from Figure 4.2. Indeed, the advantage of our method becomes

more apparent in Scenario 2 than in Scenario 1. The main reason is because the transformation

functions in Scenario 2 are logarithmic functions, which are more skewed than the cubic transfor-

mations in Scenario 1. As discussed in Section 4.5.3, the naive method can be viewed as imputing

latent variables by linear combinations of observed variables. When the transformation is non-linear,

the naive method has larger mis-specification error, which gives the our method more advantage.

Scenario 3 involves more types of variables. Since it involves ordinal variables with three levels,

the naive method’s regression coefficients have different dimensions. Thus, we cannot compare their

coefficient estimation errors and the variable selection performance with ours. However, Figure 4.3

demonstrates that our method has much better prediction. The advantage is more apparent when

the transformation functions are more skewed.

We further compare our method with another two commonly-used naive methods in the following

scenario, where we set n = 3000, ntest = 6000, and p = 100.

Scenario 4: Let B1 = diag(D, I18) and Σ = diag(B1,B1,B1,B1,B1), where D = (dij), dii = 1

for i = 1, ..., 2, dij = 0.8 for 1 ≤ i 6= j ≤ 2, and I18 is an eighteen-dimensional identity matrix. We
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generate f(z) from N(0,Σ) and choose fj(Zj) = log(Zj). The observed variables are generated by

Xj =


∑2
k=1 I(Zj > Cjk), for j = 1 + 20t, and 0 ≤ t ≤ p/20− 1;

Zj , otherwise,

where Cj1 = exp(−0.5) and Cj2 = exp(0.5) for j = 1 + 20t, and 0 ≤ t ≤ p/20− 1. The response is

generated by Y =
∑4
j=0 10f1+20j(Z1+20j) + ε, where ε ∼ N(0, 1).

We consider two naive methods. The first one (Naive-1) treats the ordinal variables as if they are

continuous. The second one (Naive-2) creates dichotomized dummy variables for ordinal variables.

Then, they both apply inverse normal transformation to all continuous variables as shown in (4.3.3)

and run the regression. These two naive methods are widely used when handling ordinal variables

in a linear regression problem. We run 100 simulations for Scenario 4 and compare the MSPEs

given by our, Oracle-beta, and these two naive methods; see Figure 4.4. As been discussed in

Section 4.5.3, the differences between the two naive methods and the Oracle-beta method reflect the

model misspecification errors of the naive methods in imputing the latent variables. The difference

between our and the Oracle-beta methods reflects the estimation errors of regression coefficients.

Since the model misspecification errors of the naive methods are larger than the estimation errors

of our method, we have much better prediction than the two naive methods in this scenario. Figure

4.4 also reveals that dichotomizing ordinal variables or treating them as continuous gives similar

prediction performance.
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66
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Figure 4.4. MSPEs for the four competitors in Scenario 4.
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4.7 Real Data Analysis

The Communities and Crime Unnormalized Data from the UCI Machine Learning Repository

contains records for 2215 communities with 147 variables about socio-economic information from the

1990 census and other surveys. We propose to predict the number of theft-related crimes, including

larcenies, burglaries and auto-thefts, using the community characteristics.

We removed all variables that have missing values and screened out highly correlated variables.

After screening, there are 34 variables left including one ordinal variable with three-levels (urbaniza-

tion level of a community), one truncated variable (the number of people in homeless shelters), and

32 continuous variables.

We use these them to predict the number of three theft-related crimes: larcenies, burglaries and

auto-thefts. A natural log transformation is applied to the three outcomes before further analysis.

There are 2212 samples for all three responses. We compare our method with the Naive-LASSO

in predicting the three crimes. For both methods, the optimal tuning parameters are chosen by

five-fold cross-validation. We randomly split the full data into a training dataset with 1000 samples

and a test set with the remaining samples. We repeat the random split 100 times. The MSPEs of

these two methods are shown in Figure 4.5. It is seen that our method has much better prediction.
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Figure 4.5. Prediction of Theft-Related Crime Responses by our and Naive-LASSO methods.

Finally, we investigate the most frequently selected covariates by both methods; see Figure 4.6

in Section 4.8. In all runs for the three kinds of crimes, our method selects land area, population

density, inter-quartile range of housing rent, the number of people in homeless shelters and the

percentage of kids born to never married. These selected variables are meaningful for all theft-related

crimes. Larger land area and higher population density can have higher number of thefts. The

inter-quartile range of housing rent can be an indicator of social disparity. More people in homesless
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shelters and higher percentage of kids born to never married can relate to increased number of

crimes. On the contrary, the variables selected by the Naive-LASSO method vary in different runs

and the frequencies for the meaningful variables are relatively low.

4.8 Technical Details

4.8.1 Bridge Functions and Estimation of Σ

The pairwise bridge functions for binary, continuous and truncated variables were given in Fan

et al. (2017); Yoon et al. (2020); Feng and Ning (2019), and summarized in below.

F̂jk(r) =



2sin−1(r)/π, for j ∈ C, k ∈ C;

2(Φ2(∆̂j , ∆̂k, r)− Φ(∆̂j)Φ(∆̂k)), for j ∈ B, k ∈ B;

4Φ2(∆̂k, 0, r/
√

2)− 2Φ(∆̂k), for j ∈ C, k ∈ B;

2(1− Φ(∆̂j))Φ(∆̂k)− 2Φ3(−∆̂j , ∆̂k, 0; Σ3a)

− 2Φ3(−∆̂j , ∆̂k, 0; Σ3b),
for j ∈ T , k ∈ B;

−2Φ2(−∆̂j , 0; 1/
√

2) + 4Φ3(−∆̂j , 0, 0; Σ3), for j ∈ T , k ∈ C;

−2Φ4(−∆̂j ,−∆̂k, 0, 0; Σ4a) + 2Φ4(−∆̂j ,−∆̂k, 0, 0; Σ4b), for j ∈ T , k ∈ T .

Σ3a =


1 −r 1/

√
2

−r 1 −r/
√

2

1/
√

2 −r/
√

2 1

 ,Σ3b =


1 0 −1/

√
2

0 1 −r/
√

2

−1/
√

2 −r/
√

2 1

 ,

Σ3 =


1 1/

√
2 r/

√
2

1/
√

2 1 r

r/
√

2 r 1

 ,

Σ4a =



1 0 1/
√

2 −r/
√

2

0 1 −r/
√

2 1/
√

2

1/
√

2 −r/
√

2 1 −r

−r/
√

2 1/
√

2 −r 1


,Σ4b =



1 r 1/
√

2 r/
√

2

r 1 r/
√

2 1/
√

2

1/
√

2 r/
√

2 1 r

r/
√

2 1/
√

2 r 1


,
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where Φd is the cumulative distribution function of the d-dimensional standard normal distribution,

and

∆̂j =


Φ−1(1− (1/n)

∑n
i=1Xij), for j ∈ B,

Φ−1(1− (1/n)
∑n
i=1 I(Xij > 0)), for j ∈ T .

Lemma 4.1. (Uniform Convergence for Σ̃ (Fan et al. 2017; Yoon et al. 2020; Feng and Ning

2019)) Suppose Conditions 3 and 4 hold. It follow that

P (‖Σ̃−Σ‖max ≥ C
√

log p/n) ≤ C1p
2−C2C ,

where C1 and C2 are generic positive constants and C is a sufficiently large constant.

4.8.2 Mean Squared Imputation Error of ũ

Theorem 4.6. For I = C ∪ {j}, it holds that

MSIE(ũj ; I) =



0, for j ∈ C;

(1− ξj)(1− ELj (
φ(Lj)2

Φ(Lj)(1−Φ(Lj)))), for j ∈ B;

(1− ξj)(1−
∑Nj
k=0 E( (φ(Ljk)−φ(Lj(k+1)))2

Φ(Lj(k+1))−Φ(Ljk) )), for j ∈ O;

Φ(∆j)ξj(1− ξj) + (1− ξj)2(Φ(∆j)−∆jφ(∆j))

− (1− ξj)ELj (
φ(Lj)2

Φ(Lj)
),

for j ∈ T ,

where Lj ∼ N(∆j/(1− ξ̃j)1/2, ξ̃j/(1− ξ̃j)) for j ∈ B ∪ T ,

and Ljk ∼ N(∆(k)
j /(1− ξ̃j)1/2, ξ̃j/(1− ξ̃j)) for j ∈ O, and the expectation is taken with respect to

Ljk and Lj(k+1).

Proof of Theorem 4.6. For j ∈ C, since ũj = fj(Xj) and Xj = Zj , we have MSIE(ũj) = E(ũj −

fj(Zj))2 = E(fj(Xj)− fj(Zj))2 = 0. We derive the the MSIEs for ordinal and truncated variables.

The MSIE for binary variables will be derived in the proof of Proposition 4.1.

For j ∈ O, we have

ũj =
√

1− ξj


Nj∑
k=0

I(Xj = k)
φ(Ljk)− φ(Lj(k+1))
Φ(Lj(k+1))− Φ(Ljk)

+ ηTj fC(zC) = A+ ηTj fC(zC),
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where A denotes the first summand. Hence,

MSIE(ũj ; I) = E(A2) + E((ηTj fC(zC)− fj(Zj))2) + 2E(A(ηTj fC(zC)− fj(Zj))),

where E(A2) = (1− ξj)
∑

0≤k≤Nj E((φ(Ljk)− φ(Lj(k+1)))2/(Φ(Lj(k+1))− Φ(Ljk))) and

E(A(ηTj fC(zC)− fj(Zj))) = −(1− ξj)
Nj∑
k=0

E
(

(φ(Ljk)− φ(Lj(k+1)))2

Φ(Lj(k+1))− Φ(Ljk)

)
.

Then, we have

MSIE(ũj ; I) = (1− ξj)

1−
Nj∑
k=0

E
(

(φ(Ljk)− φ(Lj(k+1)))2

Φ(Lj(k+1))− Φ(Ljk)

) , for j ∈ O.
For j ∈ T , we have

ũj = fj(Zj)I(Xj > 0) +
(
−
√

1− ξjφ(Lj)
Φ(Lj)

+ ηTj fC(zC)
)
I(Xj = 0).

Then, its MSIE has

MSIE(ũj ; I) = E

I(Xj = 0)
(
−
√

1− ξjφ(Lj)
Φ(Lj)

+ ηTj fC(zC)− fj(Zj)
)2


= E

I(Zj ≤ Cj)
(
−
√

1− ξjφ(Lj)
Φ(Lj)

+ ηTj fC(zC)− fj(Zj)
)2


= E(I(Zj ≤ Cj)(ηTj fC(zC))2) + E(I(Zj ≤ Cj)fj(Zj)2)

− 2E(I(Zj ≤ Cj)ηTj fC(zC)fj(Zj))− (1− ξj)ELj (
φ(Lj)2

Φ(Lj)
).

By some algebra, we have

E(I(Zj ≤ Cj)(ηTj fC(zC))2) = Φ(∆j)ξj(1− ξj) + ξ2
j (Φ(∆j)−∆jφ(∆j)),

E(I(Zj ≤ Cj)fj(Zj)2) = Φ(∆j)−∆jφ(∆j),

E(I(Zj ≤ Cj)ηTj fC(zC)fj(Zj)) = ξj(Φ(∆j)−∆jφ(∆j)).
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Hence,

MSIE(ũj ; I) = Φ(∆j)ξj(1− ξj) + ξ2
j (Φ(∆j)−∆jφ(∆j))

+ (Φ(∆j)−∆jφ(∆j))− 2ξj(Φ(∆j)−∆jφ(∆j))− (1− ξj)ELj

(
φ(Lj)2

Φ(Lj)

)

= Φ(∆j)ξj(1− ξj) + (1− ξj)2(Φ(∆j)−∆jφ(∆j))− (1− ξj)ELj

(
φ(Lj)2

Φ(Lj)

)
.

4.8.3 Variable Selection Results for Real Data Analysis
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Figure 4.6. Most Frequently Selected Variables by Our and Naive Methods for Predicting Theft-
Related Crimes.

A dictionary of variable names in Figure 4.6

hispPerCap: per capita income for people with hispanic heritage (continuous)

landArea: land area in square miles (continuous)

medRentpctHousInc: median gross rent as a percentage of household income (continuous)

medYrHousBuilt: median year housing units built (continuous)

pct12to21: percentage of population that is 12–21 in age (continuous)

pctAsian: percentage of population that is of asian heritage (continuous)

pctFgnImmig10: percentage of immigrants who immigated within last 10 years (continuous)
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pctHousOccup: percent of housing occupied (continuous)

pctKidsBornNevrMarr: percentage of kids born to never married (continuous)

pctMaleNevMar: percentage of males who have never married (continuous)

pctNotSpeakEng: percent of people who do not speak English well (continuous)

pctSameHouse5: percent of people living in the same house as in 1985 (continuous)

pctUsePubTrans: percent of people using public transit for commuting (continuous)

pctVacant6up: percent of vacant housing that has been vacant more than 6 months (continuous)

pctVacantBoarded: percent of vacant housing that is boarded up (continuous)

pctWfarm: percentage of households with farm or self employment income in 1989 (continuous)

pctWorkMom18: percentage of moms of kids under 18 in labor force (continuous)

persEmergShelt: number of people in homeless shelters (truncated)

persPerRenterOccup: mean persons per rental household (continuous)

popDensity: population density in persons per square mile (continuous)

rentQrange: rental housing - difference between upper quartile and lower quartile rent (continuous)

Urban: degree of urbanization (ordinal)

Urban1: dichotomized from Urban, indicating if Urban being 1 or 2

Urban2: dichotomized from Urban, indicating if Urban being 2

4.8.4 Proofs of Main Theorems

Proof of Theorem 4.1

Proof. For j ∈ C, by definition, Xj = Zj . Thus, E(fj(Xj)Y ) = E(fj(Zj)Y ) = δj .

For j ∈ B, we have

E(XjY ) = E(Xj(β∗0 + β∗T f(z))) = β∗0(1− Φ(∆j)) + β∗TE(Xjf(z)).

By taking double expectation, we have

E(Xjfi(Zi)) = E(XjE(fi(Zi)|fj(Zj))) = E(Xjfj(Zj))Σij = φ(∆j)Σij .

Hence E(Xjf(z)) = φ(∆j)Σj , where Σj is the jth column of matrix Σ. Since δ = E(f(z)Y ) = Σβ∗,

we have E(XjY ) = β∗0(1− Φ(∆j)) + φ(∆j)ΣT
j β
∗. Then, E(XjY ) = β∗0(1− Φ(∆j)) + φ(∆j)δj .

73



For j ∈ T , since Xj = ZjI(Zj > Cj), we have

E(I(Xj > 0)fj(Xj)Y ) = E(I(Zj > Cj)fj(Zj)Y ).

Then,

E(I(Zj > Cj)fj(Zj)Y ) = E(I(Zj > Cj)fj(Zj))β∗0 + E(I(Zj > Cj)fj(Zj)f(z))Tβ∗

= β∗0φ(∆j) + E(I(Zj > Cj)fj(Zj)2)ΣT
j β
∗

= β∗0φ(∆j) + E(I(Zj > Cj)fj(Zj)2)δj

= β∗0φ(∆j) + C(∆j)δj ,

where C(∆j) = ∆jφ(∆j) + 1− Φ(∆j).

Proof of Theorem 4.2

Proof. For j ∈ C, δ̂j = n−1∑n
i=1 f̂j(Xij)Yi, where f̂j(t) = Φ−1(F̃ (t)). Then, for any t > 0, it holds

that

P
(∣∣∣δ̂j − δj∣∣∣ ≥ t) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

f̂j(Xij)Yi − E(fj(Zj)Y )
∣∣∣∣∣ ≥ t

)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

fj(Zij)f(zi)Tβ∗ − E(fj(Zj)f(z)T )β∗
∣∣∣∣∣ ≥ t/4

)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

fj(Zij)εi

∣∣∣∣∣ ≥ t/4
)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

(̂fj(Zij)− fj(Zij))f(zi)Tβ∗
∣∣∣∣∣ ≥ t/4

)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

(̂fj(Zij)− fj(Zij))εi

∣∣∣∣∣ ≥ t/4
)

= I + II + III + IV.
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For I, by Condition 2, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

fj(Zij)f(zi)Tβ∗ − E(fj(Zj)f(z)T )β∗
∣∣∣∣∣ ≥ t/4

)

≤ P
(

max
1≤k≤p1

∣∣∣∣∣ 1n
n∑
i=1

fj(Zij)fk(Zik)− E(fj(Zj)fk(Zk))
∣∣∣∣∣ · ‖β∗‖1 ≥ t/4

)

≤ P
(

max
1≤k≤p1

∣∣∣∣∣ 1n
n∑
i=1

fj(Zij)fk(Zik)− E(fj(Zj)fk(Zk))
∣∣∣∣∣ ≥ t/(4M)

)

≤ p1C1e
−C2nt2 ,

where the last inequality follows from Lemma 3 in Bickel and Levina (2008b) and the union bound,

and C1 and C2 are some generic positive constants. Then, letting t = C(log p1)1/2(logn)1/4n−1/4

for a sufficiently large constant C, we have I = o(p−1
1 ).

For II, it follows from Condition 1 that ‖fj(Zij)εi‖ψ1 = supp≥1 p
−1(E |fj(Zij)εi|p)1/p ≤ 2M2.

Thus, fj(Zj)ε is sub-exponential. Then, it follows from the Bernstein inequality that

P

(∣∣∣∣∣ 1n
n∑
i=1

fj(Zij)εi

∣∣∣∣∣ ≥ t/4
)
≤ 2 exp

[
−C ′′ min( t2

64M4 ,
t

8M2 )n
]
, (4.8.1)

where C ′′ is a universal constant. Hence, letting t = C(log p1)1/2(logn)1/4n−1/4 for a sufficiently

large constant C and (log p1)(logn)1/2n−1/2 → 0, we have II = o(p−1
1 ).

For IV, it follows from the Cauchy-Schwarz inequality that

P

(∣∣∣∣∣ 1n
n∑
i=1

(̂fj(Zij)− fj(Zij))εi

∣∣∣∣∣ ≥ t/4
)
≤ P

∣∣∣∣∣∣
√√√√ 1
n

n∑
i=1

(̂fj(Zij)− fj(Zij))2

√√√√ 1
n

n∑
i=1

ε2i

∣∣∣∣∣∣ ≥ t/4
 .

By Condition 1 and Bernstein inequality, we have

P

∣∣∣∣∣∣
√√√√ 1
n

n∑
i=1

ε2i − σ

∣∣∣∣∣∣ > C

n1/4

 ≤ P (∣∣∣∣∣ 1n
n∑
i=1

ε2i − σ2
∣∣∣∣∣ > Cσ

n1/4

)
= o(n−1/2),
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for some constant C. Then, for sufficiently large n, by the law of total probability,

P

(∣∣∣∣∣ 1n
n∑
i=1

(̂fj(Zij)− fj(Zij))εi

∣∣∣∣∣ ≥ t/4
)

≤ P

√√√√ 1
n

n∑
i=1

(̂fj(Zij)− fj(Zij))2 ≥ t/(8σ)

+ o(n−1/2).

Letting t = C(log p1)1/2(logn)1/4n−1/4 with a sufficiently large constant C, it follows from Lemma

4.3 that IV = o(1). Similarly, we can show that under the same choice of t, III = o(1).

Then, by the union bound, for any t > 0, we have

P (‖δ̂C − δC‖∞ ≥ t) ≤ p1P

(∣∣∣∣∣ 1n
n∑
i=1

fj(Zij)f(zi)Tβ∗ − E(fj(Zj)f(z)T )β∗
∣∣∣∣∣ ≥ t/4

)

+ p1P

(∣∣∣∣∣ 1n
n∑
i=1

fj(Zij)εi

∣∣∣∣∣ ≥ t/4
)

+ P

(
max
j∈C

∣∣∣∣∣ 1n
n∑
i=1

(̂fj(Zij)− fj(Zij))f(zi)Tβ∗
∣∣∣∣∣ ≥ t/4

)

+ P

(
max
j∈C

∣∣∣∣∣ 1n
n∑
i=1

(̂fj(Zij)− fj(Zij))εi

∣∣∣∣∣ ≥ t/4
)
.

By choosing t = C(log p1)1/2(logn)1/4n−1/4 and noting that (log p1)(logn)1/2n−1/2 → 0, we have

‖δ̂C − δC‖∞ = Op((log p1)1/2(logn)1/4n−1/4).

For j ∈ B, δ̂j = φ(∆̂j)−1(1/n)
∑

1≤i≤nXijYi, where ∆̂j = Φ−1(1− (1/n)
∑

1≤i≤nXij). Then, for

any t > 0,

P
(∣∣∣δ̂j − δj∣∣∣ ≥ t) ≤ P

(∣∣∣∣∣(√2πe
∆̂j
2 −
√

2πe
∆j
2 )E(XjY )

∣∣∣∣∣ ≥ t/3
)

+ P

(∣∣∣∣∣√2πe
∆j
2 ( 1
n

n∑
i=1

XijYi − E(XjY ))
∣∣∣∣∣ ≥ t/3

)

+ P

(∣∣∣∣∣(√2πe
∆̂j
2 −
√

2πe
∆j
2 )( 1

n

n∑
i=1

XijYi − E(XjY ))
∣∣∣∣∣ ≥ t/3

)

= I + II + III.
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For I, by Conditions 2 and 4,

P

(∣∣∣∣∣(√2πe
∆̂j
2 −
√

2πe
∆j
2 )E(XjY )

∣∣∣∣∣ ≥ t/3
)
≤ P

(∣∣∣∣∣e ∆̂j
2 − e

∆j
2

∣∣∣∣∣ ≥ t/(3M)
)
.

By Lemma A.1 in Fan et al. (2017), the function Φ−1(y) is Lipschitz continuous for

y ∈ (Φ(−2M),Φ(2M)). Given the event Aj = {|∆̂j | ≤ 2M}, we have

∣∣∣∆̂j −∆j

∣∣∣ ≤ L1

∣∣∣∣∣
n∑
i=1

Xij − (1− Φ(∆j))
∣∣∣∣∣ = L1

∣∣∣∣∣(1/n)
n∑
i=1

Xij − E(Xj)
∣∣∣∣∣ .

Then, we have

P (Acj) = P (|∆̂j | > 2M)

= P

(
1− 1

n

n∑
i=1

Xij < Φ(−2M) or 1− 1
n

n∑
i=1

Xij > Φ(2M)
)

= P

(
1
n

n∑
i=1

Xij − (1− Φ(∆j)) > Φ(∆j)− Φ(−2M)

or 1
n

n∑
i=1

Xij − (1− Φ(∆j)) < Φ(∆j)− Φ(2M)
)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

Xij − (1− Φ(∆j))
∣∣∣∣∣ ≥ Φ(2M)− Φ(M)

)

≤ 2 exp
(
−n2 (Φ(2M)− Φ(M))2

)
,

where the second to the last inequality follows from Condition 3 and the last inequality follows

from the Hoeffding inequality. Furthermore, by the Hoeffding inequality and Lipschitz continuity of

exp(x/2) for x ∈ (−2M, 2M), we have, for any t > 0,

P

(∣∣∣∣e∆̂j/2 − e∆j/2
∣∣∣∣ ≥ t)

≤ P
(∣∣∣∣e∆̂j/2 − e∆j/2

∣∣∣∣ ≥ t|Aj)+ P (Acj)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

Xij − (1− Φ(∆j))
∣∣∣∣∣ ≥ t/(L1L2)

)
+ 2 exp

(
−n2 (Φ(2M)− Φ(M))2

)

≤ 2 exp
(
− nt2

L2
1L

2
2

)
+ 2 exp

(
−n2 (Φ(2M)− Φ(M))2

)
.
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Letting t = C
√

log p2/n for some sufficiently large constant C, we have I = o(p−1
2 ).

For II, by using similar arguments as in (4.8.1), we can show that II = o(p−1
2 ), when t =

C
√

log p2/n for some sufficiently large constant C. For III, it is a higher-order term dominated by I

and II. Then, the union bound gives ‖δ̂B − δB‖∞ = Op(
√

log p2/n).

For j ∈ O, given the result that ‖δ̂B−δB‖∞ = Op(
√

(log p2)/n), the ensemble method guarantees

that ‖δ̂O − δO‖∞ = Op(
√

(log p3)/n). Details can be found in the supplementary materials of Feng

and Ning (2019).

For j ∈ T , we have

∣∣∣δ̂j − δj∣∣∣ . ∣∣∣(C(∆̂j)−1 − C(∆j)−1)E(fj(Xj)I(Xj > 0)Y )
∣∣∣

+
∣∣∣∣∣C(∆j)−1 1

n

n∑
i=1

(̂fj(Xij)− fj(Xij))I(Xij > 0)Yi

∣∣∣∣∣
+
∣∣∣∣∣C(∆j)−1( 1

n

n∑
i=1

fj(Xij)I(Xij > 0)Yi − E(fj(Xj)I(Xj > 0)Y ))
∣∣∣∣∣ .

Using similar arguments as in Lemma 4.3, maxj∈T n−1∑n
i=1(̂fj(Xij) − fj(Xij))2I(Xij > 0) =

Op((log p4)(logn)1/2n−1/2). The rest of the proof follows similar arguments as for j ∈ C and

j ∈ B.

Proof of Theorem 4.3

Proof. We rely on the general M-estimator theory (Negahban et al. 2012) to prove the results. First,

we verify that the restrictive strong convexity (RSC) condition holds with high probability. Let

L(β) = (1/2)βT Σ̂β − δ̂Tβ. We have

δL(∆,β∗) = L(β∗ + ∆)− L(β∗)−∇L(β∗)T∆

= 1
2∆T Σ̂∆,

where ∆ = β̂ − β∗. To verify the RSC condition, it suffices to show that δL(∆,β∗)/‖∆‖22 is

bounded away from 0 for all ∆ ∈ {∆ : ‖∆Mc‖1 ≤ 3‖∆M‖1}. Under Conditions 3 and 4, we have

P (‖Σ̂−Σ‖max ≥ C

√
log p
n

) ≤ C1p
2−C2C ,
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for some sufficiently large positive constant C and generic positive constants C1 and C2. Then, with

probability greater than 1− C1p
2−C2C , it holds that

δL(∆,β∗)
‖∆‖22

= ∆T Σ̂∆
2‖∆‖22

= ∆TΣ∆ + ∆(Σ̂−Σ)∆
2‖∆‖22

≥ m

2 −
‖∆‖21C

√
(log p)/n

2‖∆‖22
(Condition 5)

≥ 1
2

(
m− C

√
(log p)/n

(4‖∆M‖1
‖∆M‖2

)2)

≥ 1
2(m− Cs

√
(log p)/n) ≥ m

4 .

Next, by Lemma 4.5 and Theorem 2, we have ‖Σ̂β∗ − δ̂‖∞ = OP
(
(log p)1/2(logn)1/4n−1/4

)
.

Then, by choosing λ = C(log p)1/2(logn)1/4n−1/4 for some sufficiently large C, it follows from

Lemma 4.4 that Theorem 4.3 holds.

Proof of Theorem 4.4

Proof. By the standard convex optimization theory, any β ∈ Rp satisfying the following Karush–

Kuhn–Tucker conditions (Boyd and Vandenberghe 2004) is the solution to (4.3.1).

(Σ̂β)j − δ̂j + λsign(βj) = 0, for j ∈M; (4.8.2)∣∣∣(Σ̂β)j − δ̂j
∣∣∣ < λ, for j /∈M; (4.8.3)

λmin(Σ̂MM) > 0. (4.8.4)

We first show that there exists a solution β̂M ∈ Rs to (4.8.2) in the neighbourhood N = {β :

‖β − β∗M‖∞ ≤ Cλ} with probability tending to 1. We have

(Σ̂β)M − δ̂M = Σ̂MM(βM − β∗M) + Σ̂MMβ∗M − δ̂M.
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It follows from Lemma 4.5 and Theorem 4.2 that

P (‖Σ̂MMβ∗M − δ̂M‖∞ ≥ Can) ≤ P (‖Σ̂MMβ∗M − δM‖∞ ≥ Can)

+ P (‖δ̂M − δM‖∞ ≥ Can)

= o(1),

where an = (log p)1/2(logn)1/4n−1/4. Let τ = (τj) ∈ Rp with τj = sign(βj) for j ∈ M and τj = 0

for j /∈M,

f(βM) = Σ̂MM(βM − β∗M) + Σ̂MMβ∗M − δ̂M + λτM,

g(βM) = Σ̂−1
MMf(βM) = βM − β∗M + Σ̂−1

MM{Σ̂MMβ∗M − δ̂M + λτM}.

By Lemma 4.6, for some sufficiently large constant C, we have

P (‖Σ̂−1
MM‖∞ ≥ 2M) ≤ C1p

2−C2C .

Hence, by the stated choice of λ, with probability tending to 1, we have

‖Σ̂−1
MM{Σ̂MMβ∗M − δ̂M + λτM}‖∞ ≤ ‖Σ̂

−1
MM‖∞‖Σ̂MMβ∗M − δ̂M + λτM}‖∞

≤ ‖Σ̂−1
MM‖∞(‖Σ̂MMβ∗M − δ̂M‖∞ + λ)

≤ 2M(Can + λ) . λ.

Hence, when n is sufficiently large, if (βM − β∗M)j = Cλ for some sufficently large C > 0,

g(βM)j = Cλ− Σ̂−1
MM(Σ̂MMβ∗M − δ̂M + λτM)j ≥ 0,

and if (βM − β∗M)j = −Cλ,

g(βM)j = −Cλ− Σ̂−1
MM(Σ̂MMβ∗M − δ̂M + λτM)j ≤ 0.

By the continuity of g(βM) and Miranda’s existence theorem, g(βM) = 0 has a solution β̂M in N
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with probability tending to 1.

Second, we verify that β̂ = (β̂M,0)T also satisfies (4.8.3). We have

(Σ̂β)Mc − δ̂Mc = Σ̂McMβM − δ̂Mc = Σ̂McM(βM − β∗M) + (Σ̂β∗ − δ̂)Mc .

Since g(βM) = 0, we have

(Σ̂β)Mc − δ̂Mc = Σ̂McMΣ̂−1
MM(Σ̂MMβ∗M − δ̂M + λτM) + (Σ̂β∗ − δ̂)Mc .

By similar arguments as in Lemma 4.5, we have

P (‖(Σ̂β∗ − δ̂)Mc‖∞ ≥ Can) = o(1).

By Lemma 4.7, we have

P (‖Σ̂McMΣ̂−1
MM‖∞ ≥ (1− α)(1− ε/2)) ≤ C1p

2−C2C .

Then, with probability tending to 1,

‖(Σ̂β)Mc − δ̂Mc‖∞ ≤ (1− α)(1− ε/2)(Can + λ) + Can

≤ (1− α)(1− ε/2)λ+ (2− ε/2)Can

< (1− α)λ,

where the last inequality is due to an = o(λ). This verifies (4.8.3). Finally, to verify (4.8.4), Condition

5 implies that λmin(ΣMM) ≥ m. Then by a similar proof, we can show that λmin(Σ̂MM) ≥ m/2

with probability tending to 1.

Proof of Proposition 4.1
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Proof. For j ∈ B, denote ξ̃j = ΣT
C̃j

Σ−1
C̃C̃

ΣC̃j , η̃j = Σ−1
C̃C̃

ΣC̃j , and

Lj =
∆j − η̃Tj fC̃(zC̃)√

1− ξ̃j
.

We first calculate E(fj(Zj)|xj , fC̃(zC̃)). We have fj(Zj)|fC̃(zC̃) ∼ N(η̃Tj fC̃(zC̃), 1 − ξ̃j). Hence,

fj(Zj)|fC̃(zC̃) =
√

1− ξ̃jZ + η̃Tj fC̃(zC̃), where Z ∼ N(0, 1) is independent of Zj and zC̃. Then,

we have

E(fj(Zj)|Xj , fC̃(zC̃)) = E
(√

1− ξ̃jZ + η̃Tj fC̃(zC̃)|I(Z > Lj)
)

= η̃Tj fC̃(zC̃) +
√

1− ξ̃jE(Z|I(Z > Lj)).

Since E(Z|Z > Lj) = φ(Lj)/(1−Φ(Lj)) and E(Z|Z ≤ Lj) = −φ(Lj)/Φ(Lj), Xj |fC̃(zC̃) = I(Z > Lj),

we have

E(fj(Zj)|Xj , fC̃(zC̃)) = η̃Tj fC̃(zC̃) +
√

1− ξ̃j(Xj
φ(Lj)

1− Φ(Lj)
− (1−Xj)

φ(Lj)
Φ(Lj)

).

Now we calculate E((E(fj(Zj)|Xj , fC̃(zC̃))− fj(Zj))2). Let A =
√

1− ξ̃j(Xjφ(Lj)/(1− Φ(Lj))− (1−

Xj)φ(Lj)/(Φ(Lj))). We have,

E((E(fj(Zj)|Xj , fC̃(zC̃))− fj(Zj))2)

= E((A+ η̃Tj fC̃(zC̃)− fj(Zj))2)

= E(A2) + E((η̃Tj fC̃(zC̃)− fj(Zj))2) + 2E(A(η̃Tj fC̃(zC̃)− fj(Zj))).

Since

E(A2) = (1− ξ̃)ELj

(
φ(Lj)2

1− Φ(Lj)
+ φ(Lj)2

Φ(Lj)

)
= (1− ξ̃)ELj

(
φ(Lj)2

(1− Φ(Lj))Φ(Lj)

)
,
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and

E(A(η̃Tj fC̃(zC̃)− fj(Zj))) = −E(Afj(Zj))

= −(1− ξ̃j)ELj

(
φ(Lj)2

1− Φ(Lj)
+ φ(Lj)2

Φ(Lj)

)

= −(1− ξ̃j)ELj

(
φ(Lj)2

(1− Φ(Lj))Φ(Lj)

)
,

then,

MSIE(ũj ; C̃ ∪ {j}) = E((E(fj(Zj)|Xj , fC̃(zC̃))− fj(Zj))2)

= E((η̃Tj fC̃(zC̃)− fj(Zj))2)− (1− ξ̃j)ELj

(
φ(Lj)2

(1− Φ(Lj))Φ(Lj)

)

= E((E(fj(Zj)|fC̃(zC̃))− fj(Zj))2)− (1− ξ̃j)ELj

(
φ(Lj)2

(1− Φ(Lj))Φ(Lj)

)

= MSIE(ũj ; C̃)− (1− ξ̃j)ELj

(
φ(Lj)2

(1− Φ(Lj))Φ(Lj)

)
.

Since 1− ξ̃j and ELj (φ(Lj)2/((1− Φ(Lj))Φ(Lj))) are both positive, we have

MSIE(ũj ; C̃ ∪ {j}) < MSIE(ũj ; C̃).

By the normality assumption, it follows that MSIE(ũj ; C̃) = Var(fj(Zj)|fC̃(zC̃)) = 1− ξ̃j . Hence,

we have

MSIE(ũj ; C̃ ∪ {j}) = (1− ξ̃j)
[
1− ELj

(
φ(Lj)2

1− Φ(Lj)Φ(Lj)

)]
,

where Lj = (∆j − η̃Tj fC̃(zC̃))/
√

1− ξ̃j ∼ N(∆j/
√

1− ξ̃j , ξ̃j/(1− ξ̃j)).

Proof of Theorem 4.5
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Proof. We have

MSPE = (β̂0 − β∗0)2 + β∗TM

{
1

ntest

ntest∑
i=1

(ûiM − ũiM)⊗2
}
β∗M

+ β∗TM

{
1

ntest

ntest∑
i=1

(ũiM − f(ztest,i)M)⊗2
}
β∗M

+ (β̂M − β∗M)T
{

1
ntest

ntest∑
i=1

f(ztest,i)⊗2
M

}
(β̂M − β∗M) +R

= I + II + III + IV +R.

For I, we have (β̂0 − β∗0)2 = Op(1/n). For II, we have

II ≤ ‖ 1
ntest

ntest∑
i=1

(ûiM − ũiM)⊗2‖max‖β∗M‖21.

For ‖(1/ntest)
∑

1≤i≤ntest(ûiM − ũiM)⊗2‖max, we have

‖ 1
ntest

ntest∑
i=1

(ûiM − ũiM)⊗2‖max ≤ max
j∈M

1
ntest

ntest∑
i=1

(ûij − ũij)2,

and

max
j∈M

1
ntest

ntest∑
i=1

(ûij − ũij)2 ≤ max
j∈M∩C

1
ntest

ntest∑
i=1

(ûij − ũij)2 ∨max
j∈A

1
ntest

ntest∑
i=1

(ûij − ũij)2,

where A =M∩ (B ∪ O ∪ T ). By Lemmas 4.3 and 4.10, we have

max
j∈M∩C

(1/ntest)
∑

1≤i≤ntest
(ûij − ũij)2 = Op((log p)(logn)1/2n−1/2),

max
j∈A

(1/ntest)
∑

1≤i≤ntest
(ûij − ũij)2 ≤

∑
j∈A

(1/ntest)
∑

1≤i≤ntest
(ûij − ũij)2

= Op(sA((log p)(logn)1/2n−1/2 ∨ (log p/n)1−qr)).
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Hence, we have

II =


Op((log p)(logn)1/2n−1/2), for A = ∅;

Op(sA((log p)(logn)1/2n−1/2 ∨ (log p/n)1−qr)), for A 6= ∅.

For III, we have

β∗
T

M

{
1

ntest

ntest∑
i=1

(ũiM − f(ztest,i)M)⊗2
}
β∗M = β∗

T

A

{
1

ntest

ntest∑
i=1

(ũiA − f(ztest,i)A)⊗2
}
β∗A.

Since ũC − f(ztest)C = 0, we have

III = β∗
T

A

{
1

ntest

ntest∑
i=1

(ũiA − f(ztest,i)A)⊗2 − E
(
(ũA − f(ztest)A)⊗2

)}
β∗A

+ β∗TA E
(
(ũA − f(ztest)A)⊗2

)
β∗A.

It follows from Theorem 2.26 of Wainwright (2019) that elements of ũA− f(ztest)A are sub-Gaussian.

Then applying Theorem 6.5 of Wainwright (2019) gives that

‖ 1
ntest

ntest∑
i=1

(ũiA − f(ztest,i)A)⊗2 − E
(
(ũA − f(ztest)A)⊗2

)
‖2 = Op(

s

n
+
√
s

n
).

Hence we have

III = β∗
T

A E
(
(ũA − f(ztest)A)⊗2

)
β∗A +Op(

s

n
+
√
s

n
).

For IV, we have

(β̂M − β∗M)T
{

1
ntest

ntest∑
i=1

f(ztest,i)⊗2
M

}
(β̂M − β∗M)

= (β̂M − β∗M)T
{

1
ntest

ntest∑
i=1

f(ztest,i)⊗2
M −ΣMM

}
(β̂M − β∗M)

+ (β̂M − β∗M)TΣMM(β̂M − β∗M)

= OP
(
‖β̂M − β∗M‖22

)
= Op(s(log p)(logn)1/2n−1/2),
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where the last identify follows from Theorem 4.3 and Condition 5.

By comparing the upper bounds of II and IV we conclude that

I + II + IV = Op(s(log p)(logn)1/2n−1/2 ∨ sA(log p/n)1−qr) = Op(san ∨ sAbn).

If A 6= ∅, the cross-products of III and each of I, II and IV are the leading terms and of the

order of Op(
√
san ∨

√
sAbn). If A = ∅, then the leading term is Op(san).

4.8.5 Supporting Lemmas and Their Proofs

Lemma 4.2. When n is sufficiently large, it follows that

max
j∈C

sup
t∈Ijn

∣∣∣̂fj(t)− fj(t)
∣∣∣ = Op

√ log logn+ (1/2) log p1
n1/2

 ,
where f̂j(t) is given by (4.3.3), fj(t) = Φ−1(Fj(t)), Ijn =

[
gj(−

√
logn), gj(

√
logn)

]
, and gj(u) =

f−1
j (u) = F−1

j (Φ(u)).

Proof. The proof follows a similar argument as in Theorem 2 of Han et al. (2013). We first show

that, for sufficiently large n,

P

 sup
t∈Ijn

∣∣∣̂fj(t)− fj(t)
∣∣∣ ≥ C

√
log logn+ (1/2) log p1

n1/2

 = o(p−1
1 ).

Then applying the union bound completes the proof.

By symmetry, we only focus on interval Isjn = [gj(0), gj(
√

logn)]. Define a series 0 = β−1 < α =

β0 < 1 < β1 < ... < βκ and Iijn := [gj(
√
βi−1 logn), gj(

√
βi logn)]. For all i = 0, 1, ..., κ, we have

sup
t∈Iijn

∣∣∣̂fj(t)− fj(t)
∣∣∣ = sup

t∈Iijn

∣∣∣Φ−1(F̃j(t))− Φ−1(Fj(t))
∣∣∣ .

Then by the Mean Value Theorem, there always exists some ξn ∈ [min{F̃j(gj(
√
βi−1 logn)),

Fj(gj(
√
βi−1 logn))},max{F̃j(gj(

√
βi logn)), Fj(gj(

√
βi logn))}], such that

sup
t∈Iijn

∣∣∣Φ−1(F̃j(t))− Φ−1(Fj(t))
∣∣∣ = sup

t∈Iijn

∣∣∣(Φ−1)′(ξn)(F̃j(t)− Fj(t))
∣∣∣ .
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Next, we bound both (Φ−1)′(ξn) and F̃j(t)− Fj(t) in each of these small intervals.

Since (Φ−1)′(u) = 1/φ(Φ−1(u)), then by its monotonicity, we have

(Φ−1)′(ξn) ≤ (Φ−1)′(max(F̃j(gj(
√
βi logn)), Fj(gj(

√
βi logn)))).

By Lemma 21 of Han et al. (2013), for large enough n, it holds almost surely that

F̃j(gj(
√
βi logn)) ≤ 4

√
log logn

n
(1− Fj(gj(

√
βi logn)))1/2 + Fj(gj(

√
βi logn))

= 4

√
log logn

n
(1− Φ(

√
βi logn))1/2 + Φ(

√
βi logn)

≤ Φ

√βi logn+ 4

√
log logn
n1−βi/2

 ,
where the last inequality follows from the supplementary material of Liu et al. (2012). Hence for

large enough n, it holds almost surely that

(Φ−1)′(F̃j(gj(
√
βi logn))) ≤ 1/φ

√βi logn+ 4

√
log logn
n1−βi/2


� (Φ−1)′(Fj(gj(

√
βi logn))).

Then, (Φ−1)′(ξn) ≤ C/φ(
√
βi logn) ≤ c1n

βi/2.

To bound F̃j(t)− Fj(t), we have

P

 sup
t∈I0jn

∣∣∣F̃j(t)− Fj(t)∣∣∣ ≥ 1
2n +

√
log logn+ (1/2) log p1

n

 ≤ 2
p1(logn)2 ,

P

 sup
t∈I0jn

∣∣∣F̃j(t)− Fj(t)∣∣∣ ≥ 2

√
log logn+ (1/2) log p1

n

 ≤ 2
p1(logn)2 .

Above all, we can bound f̃j(t)− fj(t) on I0jn by

P

 sup
t∈I0jn

∣∣∣̃fj(t)− fj(t)
∣∣∣ ≥ 2c1

√
log logn+ (1/2) log p1

n1−α

 ≤ 2
p1(logn)2 .
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Now for i = 1, ..., κ, it follows from Lemma 21 of Han et al. (2013) that for large enough n,

P

 sup
t∈Iijn

∣∣∣F̃j(t)− Fj(t)∣∣∣ ≤ 4

√
log logn

n
(1− Fj(gj(

√
βi−1 logn)))1/2

 = 1,

P

 sup
t∈Iijn

∣∣∣F̃j(t)− Fj(t)∣∣∣ ≤ 4

√
log logn

n
(n
−βi−1/2
√
α logn

)1/2

 = 1,

P

 sup
t∈Iijn

∣∣∣F̃j(t)− Fj(t)∣∣∣ ≤ 4

√
log logn
n1+βi−1/2

 = 1.

Since (Φ−1)′(ξn) ≤ C/φ(
√
βi logn) ≤ c1n

βi/2, it holds for i = 1, ..., κ that

P

 sup
t∈Iijn

∣∣∣̂fj(t)− fj(t)
∣∣∣ ≤ 4c1

√
log logn

n1+βi−1/2−βi

 = 1.

By choosing βi = (2− (1/2)i)(1/2) so that 1− α = 1/2 and 1 + βi−1/2− βi = 1/2, we have

P

 sup
t∈∪κi=0Iijn

∣∣∣̂fj(t)− fj(t)
∣∣∣ ≥ 4c1

√
log logn+ (1/2) log p1

n1/2

 ≤ 2
p1(logn)2 .

Since ∪κi=0Iijn = [gj(0), gj(
√

(2− 2−κ)(1/2) logn)], by symmetry, the same arguments apply to

[gj(−
√

(2− 2−κ)(1/2) logn), gj(
√

(2− 2−κ)(1/2) logn)]. By letting κ→∞, we prove the result for

Ijn = [gj(−
√

logn), gj(
√

logn)].

Lemma 4.3. For j ∈ C, suppose {X ′ij}n
′
i=1 and {Xij}ni=1 are two i.i.d sequences, and n′ � n. When

p1 = O(nξ) for an arbitrary ξ > 0, it holds that

max
j∈C

1
n′

n′∑
i=1

(̂fj(X ′ij)− fj(X ′ij))2 = Op((log p1)(logn)1/2n−1/2), (4.8.5)

max
j∈C

1
n

n∑
i=1

(̂fj(Xij)− fj(Xij))2 = Op((log p1)(logn)1/2n−1/2), (4.8.6)

where f̂j is given by (4.3.3).

Proof. We use similar arguments as in Theorem 4 of Liu et al. (2009) and only prove for (4.8.5).

The proof for (4.8.6) can be done similarly.

For any arbitrary ξ, there always exists a constant M ≥ 2(1 + ξ). Without loss of generality,
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assume M > 2 and let β = 1. We break the interval [gj(−
√
M logn), gj(

√
M logn)] into

Mn = (gj(−
√
β logn), gj(

√
β logn)),

En =
[
gj(−

√
M logn), gj(−

√
β logn)

]
∪
[
gj(
√
β logn), gj(

√
M logn)

]
.

In Mn, the convergence of marginal transformations has been studied in Lemma 4.2. Let ∆i(j) =

(̂fj(X ′ij)− fj(X ′ij))2 and Θt(j) = (̂fj(t)− fj(t))2.

For any ε > 0, we have

P

max
j∈C

1
n′

n′∑
i=1

∆i(j) > ε

 = P

max
j∈C

1
n′

n′∑
i=1

∆i(j) > ε,An

+ P (A c
n ),

where the event An is defined as

An = {gj(−
√
M logn) ≤ X ′1j , . . . , X ′n′j ≤ gj(

√
M logn),∀j ∈ C}.

Then by Lemma 13 of Liu et al. (2009) and using the fact that M ≥ 2(ξ + 1), we have

P (A c
n ) = P

(
max

i=1,...,n′;j∈C

∣∣∣fj(X ′ij)∣∣∣ > √M logn
)
≤ P

(
max

i=1,...,n′;j∈C

∣∣∣fj(X ′ij)∣∣∣ > √2 log(np1)
)

≤ c

2
√
π log(np1)

.

For P
(
maxj∈C(1/n′)

∑n′
i=1 ∆i(j) > ε,An

)
, we have

P

max
j∈C

1
n′

n′∑
i=1

∆i(j) > ε,An


≤ P

max
j∈C

1
n′

∑
X′ij∈En

∆i(j) > ε/2

+ P

max
j∈C

1
n′

∑
X′ij∈Mn

∆i(j) > ε/2


= I + II.
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For II, we have

P

max
j∈C

1
n′

∑
X′ij∈Mn

∆i(j) > ε/2

 ≤ p1P

(
max
t∈Mn

Θt(j) > ε/2
)

= p1P

(
sup
t∈Mn

∣∣∣̂fj(t)− fj(t)
∣∣∣ > √ε/2) .

Since it follows from Lemma 4.2 that, for any ε ≥ C(log logn+ log p1)n−1/2,

P

(
max
t∈Mn

∣∣∣̂fj(t)− fj(t)
∣∣∣ > √ε/2) = o(1/p1).

By choosing ε ≥ C(log p1)n−1/2, we have II = o(1).

For I, let θ1 = nβ/2ε/(4A
√

logn), where A is a constant given in the Lemma 15 of Liu et al.

(2009). Then,

n′ε

2θ1
− n′A

√
logn
nβ

= n′A

√
logn
nβ

> 0.

By Lemma 15 of Liu et al. (2009), we have

P

 1
n′

n′∑
i=1

I(X ′ij ∈ En) > ε

2θ1


= P

 n′∑
i=1

(I(X ′ij ∈ En)− P (X ′ij ∈ En)) > n′ε

2θ1
− n′P (Xij ∈ En)


≤ P

 n′∑
i=1

(I(X ′ij ∈ En)− P (X ′ij ∈ En)) > n′ε

2θ1
− n′A

√
logn
nβ

 .
By the Bernstein inequality, we have

P

 1
n′

n′∑
i=1

I(X ′ij ∈ En) > ε

2θ1


≤ P

 n′∑
i=1

(I(X ′ij ∈ En)− P (X ′ij ∈ En)) > n′A

√
logn
nβ


≤ exp

(
− c1n

2−β logn
c2n1−β/2√logn+ c3n1−β/2√logn

)
= o(1),
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since β = 1. Note that,

max
j∈C

1
n′

∑
X′ij∈En

∆i(j) ≤ max
j∈C

sup
t∈En

Θt(j) ·
1
n′

n′∑
i=1

I(X ′ij ∈ En).

Therefore,

P

max
j∈C

1
n′

∑
X′ij∈En

∆i(j) > ε/2

 = P

max
j∈C

1
n′

∑
X′ij∈En

∆i(j) > ε/2,max
j∈C

sup
t∈En

Θt(j) > θ1


+ P

max
j∈C

1
n′

∑
X′ij∈En

∆i(j) > ε/2,max
j∈C

sup
t∈En

Θt(j) ≤ θ1


≤ P

(
max
j∈C

sup
t∈En

Θt(j) > θ1

)
+ P

 1
n′

n′∑
i=1

I(X ′ij ∈ En) > ε

2θ1


= P

(
max
j∈C

sup
t∈En

Θt(j) > θ1

)
+ o(1).

Then we have,

P

(
max
j∈C

sup
t∈En

Θt(j) > θ1

)
≤ p1P

(
sup
t∈En

(̂f(t)− f(t))2 ≥ θ1

)
= p1P

(
sup
t∈En

∣∣∣̂f(t)− f(t)
∣∣∣ ≥ √θ1

)
.

To ensure the above probability converges to 0, we choose

θ1 = nβ/2ε

4A
√

logn
≥ 2(M + 4) logn,

where ε ≥ CM (log p1)(logn)1/2n−1/2, and CM = 8A(M + 4)/(1 + ξ). Note that this choice of ε also

guarantees that ε ≥ C(log p1)n−1/2 as required for handling the arguments in Mn. Thus, we have

max
j∈C

1
n′

n′∑
i=1

(̂fj(X ′ij)− fj(X ′ij))2 = Op((log p1)(logn)1/2n−1/2).

Similarly, (4.8.6) can be shown using the above argument by subsituting {X ′ij}1≤i≤n′ with {Xij}1≤i≤n

for any j ∈ C.

Lemma 4.4. Let β̂ be the solution of (4.3.1), when RSC condition holds and λ ≥ 2‖∇L(β∗)‖∞, it
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holds that

‖β̂ − β∗‖2 = O(sλ2), and ‖β̂ − β∗‖1 = O(sλ).

Proof. Lemma 4.4 is a direct implication of Corollary 1 of Negahban et al. (2012).

Lemma 4.5. Under Conditions 2, 3 and 4, there exists a sufficiently large positive constant C, and

some generic positive constants C1 and C2 such that

P

‖Σ̂β∗ − δ‖∞ ≥ C
√

log p
n

 ≤ C1p
2−C2C .

Proof. Since β∗ = Σ−1δ, we have

‖Σ̂β∗ − δ‖∞ = ‖(Σ̂−Σ)Σ−1δ‖∞ ≤ ‖Σ̂−Σ‖max‖β∗‖1.

By Condition 2, we have

‖Σ̂β∗ − δ‖∞ ≤ ‖Σ̂−Σ‖max‖β∗‖1 ≤M‖Σ̂−Σ‖max.

By Conditions 3 and 4, it follows from Corollary 6.1 of Fan et al. (2017), Theorem 7 of Yoon et al.

(2020), Proposition 1 of Feng and Ning (2019), and (3.5) of Zhao et al. (2014) that

P

‖Σ̂−Σ‖max ≥ C

√
log p
n

 ≤ C1p
2−C2C .

Then,

P

‖Σ̂β∗ − δ‖∞ ≥ C
√

log p
n

 ≤ P
‖Σ̂−Σ‖max ·M ≥ C

√
log p
n


= P

‖Σ̂−Σ‖max ≥ C

√
log p
n


≤ C1p

2−C2C .

This completes the proof of Lemma 4.5.
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Lemma 4.6. Under Conditions 3, 4 and 6, if s
√

(log p)/n = o(1), there exists a sufficiently large

positive constant C and some generic positive constans C1 and C2 such that

P (‖Σ̂−1
MM‖∞ ≥ 2M) ≤ C1p

2−C2C .

Proof. By Fan et al. (2017), Yoon et al. (2020),Feng and Ning (2019), and Zhao et al. (2014), we

have

P

‖Σ̂−Σ‖max ≥ C

√
log p
n

 ≤ C1p
2−C2C .

Then,

P

‖Σ̂MM −ΣMM‖∞ ≥ Cs

√
log p
n

 ≤ P
s‖Σ̂MM −ΣMM‖max ≥ Cs

√
log p
n


≤ C1p

2−C2C .

Since

‖Σ̂−1
MM‖∞ = ‖Σ−1

MM + Σ̂−1
MM(ΣMM − Σ̂MM)Σ−1

MM‖∞

≤ ‖Σ−1
MM‖∞ + ‖Σ̂−1

MM‖∞‖ΣMM − Σ̂MM‖∞‖Σ−1
MM‖∞,

by Conditions 3, 4 and 6, it holds with probability greater than 1− C1p
2−C2C that

‖Σ̂−1
MM‖∞ ≤M +MCs

√
log p
n
‖Σ̂−1
MM‖∞,

‖Σ̂−1
MM‖∞ ≤

M

1−MCs
√

(log p)/n
≤ 2M.

where the last inequality holds since s
√

log p/n = o(1).

Lemma 4.7. Under Conditions 3,4,6 and 7, we have

P (‖Σ̂McMΣ̂−1
MM‖∞ > (1− α)(1− ε/2)) ≤ C1p

2−C2C .
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Proof. Note that

Σ̂McMΣ̂−1
MM = Σ̂McM(Σ̂−1

MM −Σ−1
MM) + (Σ̂McM −ΣMcM)Σ−1

MM + ΣMcMΣ−1
MM

= I + II + III.

For I,

‖Σ̂McM(Σ̂−1
MM −Σ−1

MM)‖∞

≤ (‖ΣMcM‖∞ + ‖Σ̂McM −ΣMcM‖∞)‖Σ̂−1
MM‖∞‖Σ̂MM −ΣMM‖∞‖Σ−1

MM‖∞.

Since by Condition 4, ‖ΣMcM‖∞ . s , and P (‖Σ̂McM − ΣMcM‖∞ ≤ Cs
√

(log p)/n) ≥ 1 −

C1p
2−C2C , we have

P (‖Σ̂McM(Σ̂−1
MM −Σ−1

MM)‖∞ ≥ Cs2
√

log p/n) ≤ C1p
2−C2C .

Using similar arguments, for II, we have

P (‖(Σ̂McM −ΣMcM)Σ−1
MM‖∞ ≥ Cs

√
(log p)/n) ≤ C1p

2−C2C .

Hence, if s2√(log p)/n = o(1), we have

P (‖Σ̂McM(Σ̂−1
MM −Σ−1

MM) + (Σ̂McM −ΣMcM)Σ−1
MM‖∞ ≤ (1− α)ε/2) ≥ 1− C1p

2−C2C .

This result together with Condition 7 completes the proof.

Lemma 4.8. Under Conditions 3, 4 and 5, if we choose λ2 = C
√

log p1/n in (3.8.3) for some

sufficiently large constant C and log p1/n = o(1), then it holds with probability at least 1−C1p
2−C2C

that

‖η̂j − ηj‖22 . Rqλ
2−qr, ‖η̂j − ηj‖21 . R2

qλ
2−2qr,

where C1 and C2 are some positive constants and r ∈ (0, 1).
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Proof. Define C = {∆ ∈ Rp1 : ‖∆Sc‖1 ≤ 3‖∆S‖1 + 4‖ηjSc‖1}, where S = {i ∈ {1, 2, .., p1} :∣∣∣(ηj)i∣∣∣ > η} and η > 0 is some threshold to be chosen. For any ∆ ∈ C, we have

‖∆‖1 ≤ ‖∆S‖1 + ‖∆Sc‖1 ≤ 4‖∆S‖1 + 4‖ηjSc‖1

≤ 4
√
|S|‖∆‖2 + 4Rjqη1−q

≤ 4
√
Rqη

−q/2‖∆‖2 + 4Rjqη1−q.

Next, we verify the RSC condition for ∆ ∈ C. We have

√
(1/2)∆T Σ̂CC∆ =

√
(1/2)∆TΣCC∆ + (1/2)∆T (Σ̂CC −ΣCC)∆

≥ ((m/2)‖∆‖22 − C
√

log p/n‖∆‖21)1/2

≥
√
m/2‖∆‖2 − C(log p/n)1/4‖∆‖1

≥
√
m/2‖∆‖2 − C(log p/n)1/4(

√
Rqη

−q/2‖∆‖2 +Rqη
1−q)

= ‖∆‖2(
√
m/2− C(log p/n)1/4

√
Rqη

−q/2)− C(log p/n)1/4Rqη
1−q.

When we choose λ2 = C
√

log p/n and η = Cλr2 for some 0 < r < 1, we have

C(log p/n)1/4
√
Rqη

−q/2 = C
√
Rq(log p/n)(1−qr)/4 <

√
m/8,

when log p/n = o(1). Thus, it holds with probability at least 1− C1p
2−C2C that

√
(1/2)∆T Σ̂CC∆ ≥ ‖∆‖2

√
m/8− C(log p/n)1/4Rqη

1−q,

which verifies the RSC condition. Then, the result follows from Theorem 1 from Negahban et al.

(2012).

Lemma 4.9. Let h1(x) = φ(x)/(1−Φ(x)), h2(x) = φ(x)/Φ(x), and h3(x, y) = (φ(y)−φ(x))/(Φ(y)−

Φ(x)). Then, h1, h2, and h3 are uniformly Lipschitz continuous with finite Lipschitz constants.

Proof. To show that a continuously differentiable function is uniformly Lipschitz continuous, we
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only need to show that its partial derivatives are all uniformly bounded. Since,

h1(x) = φ(x)
1− Φ(x) = φ(x)

Φ(−x) = φ(−x)
Φ(−x) = h2(−x).

We only need to show h2 is uniformly Lipschitz continuous. We have,

h′2(x) = φ(x)(−x)Φ(x)− φ(x)2

Φ(x)2 .

which is bounded as x → ∞. We prove that it is also bounded when x → −∞. By L’Hospital’s

rule, we have

lim
x→−∞

Φ(x)
φ(x)/(−x) = 1,

which implies that

lim
x→−∞

−x
h2(x) = lim

x→−∞

−1
h′2(x)

= 1.

Therefore, limx→−∞ h′2(x) = −1.

Next, we show h3 is uniformly Lipschitz continuous. We have

∂h3(x, y)
∂y

= φ(y)(−y)(Φ(y)− Φ(x))− (φ(y)− φ(x))φ(y)
(Φ(y)− Φ(x))2 ,

which is bounded everywhere, except for y = x. By using L’Hospital’s, we have

lim
y→x

∂h3(x, y)
∂y

<∞.

Hence, ∂h3(x, y)/∂y is uniformly bounded. Similarly, we can show that ∂h3(x, y)/∂x is uniformly

bounded. Thus, h3 is uniformly Lipschitz continuous.

Lemma 4.10. Under Conditions 3, 4 and 5, if we choose λ2 = C
√

log p1/n in (4.5.2) for some

sufficiently large constant C and p = O(nξ) for an arbitrary ξ > 0, we have for j ∈ B ∪ O ∪ T that

(1/ntest)
∑ntest
i=1 (ûij − ũij)2 = Op(an ∨ bn), where an = (log p/n)1−qr and bn = (log p)(logn)1/2n−1/2.
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Proof. We prove for j ∈ B. The proofs for j ∈ O ∪ T can be done analogously. Note that,

ũij = Aij + ηTj fC(xtest,iC) and ûij = Âij + η̂Tj f̂C(xtest,iC), where

Aij = Xtest,ij

√
1− ξjφ(Lij)
1− Φ(Lij)

− (1−Xtest,ij)
√

1− ξjφ(Lij)
Φ(Lij)

and Lij =
∆j − ηTj fC(xtest,iC)√

1− ξj
.

Hence, we only need to study (1/ntest)
∑ntest
i=1 (Âij − Aij)2 and (1/ntest)

∑ntest
i=1 (η̂Tj f̂C(xtest,iC) −

ηTj fC(xtest,iC))2. For the second term, it has

1
ntest

ntest∑
i=1

(η̂Tj f̂C(xtest,iC)− ηTj fC(xtest,iC))2 . (η̂j − ηj)T ( 1
ntest

ntest∑
i=1

fC(xtest,iC)⊗2)(η̂j − ηj)

+ ηTj ( 1
ntest

ntest∑
i=1

(f̂C(xtest,iC)− fC(xtest,iC))⊗2)ηj

= I + II.

For I, we have

(η̂j − ηj)T ( 1
ntest

ntest∑
i=1

fC(xtest,iC)⊗2)(η̂j − ηj)

≤ ‖η̂j − ηj‖21‖
1

ntest

ntest∑
i=1

fC(xtest,iC)⊗2‖max

≤ ‖η̂j − ηj‖21‖
1

ntest

ntest∑
i=1

fC(xtest,iC)⊗2 −ΣCC‖max

+ ‖η̂j − ηj‖21‖ΣCC‖max

. ‖η̂j − ηj‖21,

where the last inequality follows from Bickel and Levina (2008b) and ‖ΣCC‖max = 1. Hence, by

Lemma 4.8, we have I = Op(an).
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For II, we have

ηTj ( 1
ntest

ntest∑
i=1

(f̂C(xtest,iC)− fC(xtest,iC))⊗2)ηj

≤ ‖ηj‖21‖
1

ntest

ntest∑
i=1

(f̂C(xtest,iC)− fC(xtest,iC))⊗2‖max

. ‖ηj‖21 max
j∈C

1
ntest

ntest∑
i=1

(̂fj(Xtest,ij)− fj(Xtest,ij))2.

Hence, by Lemma 4.3, we have II = Op(bn). Combining the results for I and II, we have

1
ntest

ntest∑
i=1

(η̂Tj f̂C(xtest,iC)− ηTj fC(xtest,iC))2 = Op(an ∨ bn). (4.8.7)

To bound (1/ntest)
∑ntest
i=1 (Âij −Aij)2, we have

Aij = Xtest,ij

√
1− ξjφ(Lij)
1− Φ(Lij)

− (1−Xtest,ij)
√

1− ξjφ(Lij)
Φ(Lij)

=
√

1− ξj(Xtest,jh1(Lij)− (1−Xtest,j)h2(Lij)),

Âij = Xtest,ij

√
1− ξ̂jφ(L̂ij)
1− Φ(L̂ij)

− (1−Xtest,ij)

√
1− ξ̂jφ(L̂ij)

Φ(L̂ij)

=
√

1− ξ̂j(Xtest,ijh1(L̂ij)− (1−Xtest,ij)h2(L̂ij)),

Lij =
∆j − ηTj fC(xtest,iC)√

1− ξj
, and L̂ij =

∆̂j − η̂Tj f̂C(xtest,iC)√
1− ξ̂j

.

Note that

L̂ij − Lij . (∆̂j −∆j + η̂Tj f̂C(xtest,iC)− ηjT fC(xtest,iC))

+ ( 1√
1− ξ̂j

− 1√
1− ξj

)(∆j − ηjT fC(xtest,iC)).
(4.8.8)

For Âij −Aij , we have

Âij −Aij . (
√

1− ξ̂j −
√

1− ξj)(Xtest,ijh1(Lij)− (1−Xtest,ij)h2(Lij))

+
√

1− ξj{Xtest,ijh1(L̂ij)− (1−Xtest,ij)h2(L̂ij)

− (Xtest,ijh1(Lij)− (1−Xtest,ij)h2(Lij))}.
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Furthermore, we observe

Xtest,ijh1(Lij)− (1−Xtest,ij)h2(Lij) = Xtest,ij(h1(Lij) + h2(Lij))− h2(Lij)

< h1(Lij) + h2(Lij),

since h2 > 0 and Xtest,ij ≤ 1. Then, we have

Âij −Aij . (
√

1− ξ̂j −
√

1− ξj)(h1(Lij) + h2(Lij))

+
√

1− ξj(Xtest,ij(h1(L̂ij)− h1(Lij)) + (1−Xtest,ij)(h2(Lij)− h2(L̂ij)))

. (
√

1− ξ̂j −
√

1− ξj)(h1(Lj) + h2(Lj))

+
√

1− ξj(h1(L̂j)− h1(Lj) + (h2(Lj)− h2(L̂j))).

It follows from Lemma 4.8 that

Âij −Aij . (
√

1− ξ̂j −
√

1− ξj)(h1(0) + h2(0) + (H1 +H2) |Lij |)

+
√

1− ξj(H1 +H2)
∣∣∣L̂ij − Lij∣∣∣ . (4.8.9)

Combining (4.8.8) and (4.8.9), we have

Âij −Aij . (
√

1− ξ̂j −
√

1− ξj)
(

h1(0) + h2(0) + (H1 +H2)
∣∣∣∣∣∆j − ηTj fC(xtest,iC)√

1− ξj

∣∣∣∣∣
)

+
√

1− ξj(L1 + L2)
∣∣∣(∆̂j −∆j + η̂Tj f̂C(xtest,iC)− ηTj fC(xtest,iC))

∣∣∣
+
√

1− ξj(L1 + L2)

∣∣∣∣∣∣
 1√

1− ξ̂j
− 1√

1− ξj

 (∆j − ηTj fC(xtest,iC))

∣∣∣∣∣∣ .
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Hence we have

1
ntest

ntest∑
i=1

(Âij −Aij)2

. (
√

1− ξ̂j −
√

1− ξj)2 1
ntest

ntest∑
i=1

(h1(0) + h2(0) + (H1 +H2) |Lij |)2

+ (1− ξj)(L1 + L2)2 1
ntest

ntest∑
i=1

(
∆̂j −∆j + η̂Tj f̂C(xtest,iC)− ηTj fC(xtest,iC)

)2

+ (1− ξj)(L1 + L2)2

 1√
1− ξ̂j

− 1√
1− ξj

2
1

ntest

ntest∑
i=1

L2
ij

= I + II + III.

Note that ξ̂j − ξj . ‖η̂j − ηj‖1 maxk∈C Σjk + ‖ηj‖1 maxk∈C(Σ̂jk − Σjk) = Op(
√
an) by Lemmas 4.1

and 4.8. Hence Condition 5 implies that

√
1− ξ̂j −

√
1− ξj ≤

∣∣∣ξj − ξ̂j∣∣∣√
1− ξj

.
∣∣∣ξj − ξ̂j∣∣∣ = Op(

√
an), 1√

1− ξ̂j
− 1√

1− ξj

 = Op(
√
an).

Then we have I + III = Op(an). For II, we have shown that maxj∈B
∣∣∣∆̂j −∆j

∣∣∣ = Op(
√

log p2/n).

Then, by (4.8.7), we have II = Op(an ∨ bn). Above all, we have

1
ntest

ntest∑
i=1

(Âij −Aij)2 = Op(an ∨ bn).

Combining it with the result for (1/ntest)
∑ntest
i=1 (η̂Tj f̂C(xtest,iC)−ηTj fC(xtest,iC))2, we have the following

for j ∈ B,

1
ntest

ntest∑
i=1

(ûij − ũij)2 = Op(an ∨ bn) = Op((log p/n)1−qr ∨ (log p)(logn)1/2n−1/2).
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For j ∈ O, ûij can be expressed as

ûij =
√

1− ξ̂j
Nj∑
k=0

I(Xtest,ij = k)
φ(L̂ijk)− φ(L̂ij(k+1))
Φ(L̂ij(k+1))− Φ(L̂ijk)

+ η̂Tj f̂C(xtest,iC)

=
√

1− ξ̂j
Nj∑
k=0

I(Xtest,ij = k)(−h3(L̂ijk, L̂ij(k+1))) + η̂Tj f̂C(xtest,iC),

and h3 has been shown in Lemma 4.9 to be uniformly Lipschitz continuous. Similarly, we have

1
ntest

ntest∑
i=1

(ûij − ũij)2 = Op((log p/n)1−qr ∨ (log p)(logn)1/2n−1/2).

For j ∈ T , ûij can be expressed as

ûij = I(Xtest,ij > 0)̂fj(Xtest,ij) + I(Xtest,ij = 0)(−
√

1− ξ̂jh2(L̂ij) + η̂Tj f̂C(xtest,iC)).

By an analogous argument, we have

1
ntest

ntest∑
i=1

(ûij − ũij)2 = Op((log p/n)1−qr ∨ (log p)(logn)1/2n−1/2).

Hence, the proof of Lemma 4.10 is complete.
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CHAPTER 5
MULTI-CLASS CLASSIFICATION VIA LATENT MIXED GAUSSIAN

COPULA MODEL

5.1 Introduction

Multi-class classification, assigning a subject to one of multple categories based on certain

features, is an important task commonly appearing in statistical research. In many applications,

the response for a multi-class classification problem frequently occurs with inherent ordering, which

leads to an ordinal classification problem. The ordinal classification problem is traditionally handled

by logistic or probit ordinal regression model under the proportional odds assumption (McCullagh

1980). With the emergence of big data containing enormous features in various scales, it poses great

challenges to handle the high dimensionality and non-normality of the features. Although penalized

likelihood methods have been successfully applied to high-dimensional linear, logistic regression

models (Tibshirani 1996; Fan and Li 2001; Zou and Hastie 2005) and Cox proportional hazards

regression model (Tibshirani 1997), it is only until recently that there have been some regularized

methods for high-dimensional ordinal regression model. Archer and Williams (2012) proposed to fit

an L1 penalized continuation ratio model for ordinal response, Wurm et al. (2017) proposed to fit a

family of multinomial-ordinal models with the elastic net penalty. Other than penalized likelihood

methods, some works (Archer et al. 2014; Hou and Archer 2015) proposed incremental forward

stagewise method as a greedy approximation to fit a family of high-dimensional ordinal regression

models. However, there has not been any theoretical guarantee on the classification performance for

these existing methods. To deal with non-normality of features in various scales, transformations,

such as the Box-Cox transformation, Fisher z-transformation and variance stablizing transformation,

have been frequently applied to overcome potential violations of model assumptions (Carroll and

Ruppert 1988). However, the choice of the transformations could be subjective and error-prone when

dealing with high-dimensional features. Above all, it is desirable to develop a unified framework

that could handle multi-class ordinal classification without resorting to ordinal regression.

Recent progress in estimating correlations among mixed variables using copula-based methods
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(Liu et al. 2009; 2012; Fan et al. 2017; Feng and Ning 2019) provides insights on high-dimensional

ordinal classification problem. Specifically, Liu et al. (2009; 2012) proposed a Gaussian copula model

to estimate correlations among continuous variables in various scales. Fan et al. (2017) proposed a

latent Gaussian copula model to simultaneuously handle continuous and binary variables. Feng

and Ning (2019) generalized the latent Gaussian copula model to handle ordinal and continuous

variables. These methods assume that there exist some latent continuous variables that generate

the observed mixed variables, and the latent continuous variables follow a standard multivariate

normal distribution, after applying some transformations. These methods propose to use rank-based

quantities to estimate the correlations. They can be applied to a series of unsupervised learning

problems, such as graph estimation and principal component analysis.

For the ordinal regression problem, there has been a rich literature that model the observed

ordinal response by thresholding a latent continuous variable (Hedeker and Gibbons 1994; Qu

et al. 1995; Sha and Dechi 2019), then the association between the observed ordinal response and

continuous features becomes equivalent to the association between the latent continuous response

and continuous features. Such model has been successfully applied to studying Alzheimer’s Disease

progression (Doyle et al. 2014), psychometrics (Bürkner and Vuorre 2019), and many other fields.

To make this latent variable model even more flexible to handle features with high dimensionality

and non-normality, the latent mixed Gaussian copula model provides a unified framework for

high-dimensional ordinal regression. Under this framework, it is natural to jointly model the ordinal

response and the high-dimensional continuous features so that the latent response and the latent

features are jointly normal and follow a linear regression model. Moreover, we can derive the Bayes

rule of classifying the ordinal response under such model, which consequently leads to a Fisher

consistent classification rule obtained by consistently estimating the unknown parameters.

To this end, we propose a semiparametric latent Gaussian copula classification method to classify

ordinal response given high-dimensional continuous features in various scales. The main contribution

of the paper are as follows. First, our method gives a unified framework to hanlde high-dimensional

ordinal classification, which incorporates the traditional ordinal regression model as a special case.

Second, our method has statistical properties in terms of estimation consistency and error rate

consistency under mild sparsity assumption.

The rest of the paper is organized as the follows. Section 5.2 first presents the latent Gaussian
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copula model and the latent Gaussian copula classification rule, then explains the estimation of

parameters in the latent Gaussian copula classification rule. Section 5.3 describes the statistical

properties of the proposed method in terms of its estimation and error rate consistency. Section

5.4 presents extensive numerical studies that compare the proposed method with other well-known

multi-class classification methods, demonstrating the proposed method’s superiority in terms of

classification performance and robustness under several metrics. In Section 5.5, we apply our

method to an imaging dataset from UCI machine learning repository for breast cancer progression

classification, and show our method results in an improved classification performance. All technical

details are given in Section 5.6.

5.2 Methodology

5.2.1 Latent Mixed Gaussian Copula Classification

Consider a multi-class classification problem where Y ∈ {0, 1, ...,K} denotes K + 1 class labels,

x = (X1, ..., Xp)T ∈ Rp is a vector of continuous features. Denote D = {(y1,xT1 )T , ..., (yn,xTn )T } as

the training data. The goal of multi-class classification is to find a classification rule D(x) from the

training data so that we can assign a class label to a new subject based on his features x. Based on

the decision theory, the Bayes rule under the 0-1 loss is DBayes(x) = argmaxk=0,1,...,K P (Y = k|x),

and the Bayes error RBayes = E(I(DBayes(x) 6= Y )). In certain applications, the ranks of class

labels have meanings. For example, the stages of Alzheimer disease or breast cancer are ordered

based on the disease progression. The ratings of products indicate the customer preference. For

these applications, it is important to model the distribution of the ordinal response Y . On the other

hand, in the high-dimensional setting when p > n, it is hard to directly model P (Y = k|x).

Instead, we propose a flexible model to model the joint distribution of (Y,x). We first assume

that the observed ordinal response Y is generated by a latent continuous variable Z such that

Y =
K∑
k=1

I(Z > Ck), where C = (C1, ..., CK)T is the unknown thresholds. Then we assume that Z

and x jointly follow a Gaussian copula. That is,

fy(Z)

fx(x)

 ∼N

0

0

 ,
 1 ΣT

xy

Σxy Σxx


 ,Σ =

 1 ΣT
xy

Σxy Σxx

 , (5.2.1)

where f = (fy, fx) are the unknown transformation functions, which are assumed to be monotonically
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increasing. The joint distribution for continuous variables (Z,x) is called a nonparanormal (NPN)

distribution, denoted by (Z,x) ∼ NPN(0,Σ, f). It was first introduced by Liu et al. (2009; 2012) to

study the correlation among non-normal continuous variables. In addition, the joint distribution for

mixed type variables (Y,x) is called a latent mixed nonparanormal (LMNPN) distribution, denoted

by (Y,x) ∼ LMNPN(0,Σ, f ,C,K). This model was first introduced by Fan et al. (2017) to study

the correlation among binary and continuous variables, and was later generalized by Feng and

Ning (2019) to incorporate ordinal variables with arbitrarily many levels. Using the latent mixed

nonparanormal distribution, we can simultaneously model the distribution of the ordinal response

and the distribution of high-dimensional continuous features, while allowing much flexibility on the

marginal transformation functions that characterize the specific distribution of the features. In the

following, we derive the Bayes rule for ordinal classification under our proposed model for P (Y,x).

Given (5.2.1), we essentially have the following regression model,

fy(Z) = fx(x)Tβ∗ + ε, (5.2.2)

where β∗ = Σ−1
xxΣxy, ε ∼ N(0, 1 −ΣT

xyΣ−1
xxΣxy) and is independent of fx(x). Under (5.2.2), the

Bayes rule becomes,

DBayes(x) = argmax
k=0,1,...,K

P (∆(k)
y < fy(Z) ≤ ∆(k+1)

y |fx(x))

= argmax
k=0,1,...,K

Φ(∆(k+1)
y − fx(x)Tβ∗√

1− ξy
)− Φ(∆(k)

y − fx(x)Tβ∗√
1− ξy

)

=
K∑
k=1

I(fx(x)Tβ∗ > ∆(k)
y ),

(5.2.3)

where ξy = ΣT
xyΣ−1

xxΣxy, ∆(k)
y = fy(Ck) and −∞ = ∆(0)

y < ∆(1)
y < ... < ∆(K+1)

y = ∞. In practice,

we propose the latent mixed Gaussian copula classification rule (LMGCC)

DLMGCC(x) =
K∑
k=1

I(f̂x(x)T β̂ > ∆̂(k)
y ), (5.2.4)

where β̂, ∆̂(k)
y and f̂x are estimators of β∗, ∆(k)

y and fx to be introduced later.

Our model in (5.2.2) has a natural connection to the classical ordinal regression under proportional
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odds assumption, which learns the classification rule by modeling g(P (Y ≤ k|x)) = Ck − ωTx for

k = 1, ...,K, where g is a pre-specified link function, ω denotes the regression coefficients, and the

distribution of the features x is unspecified. For the classical ordinal regression, if g is chosen as the

probit function, it is equivalent to assuming Y =
∑K
k=1 I(Z > Ck) where

Z = ωTx + ε,

where ε|x ∼ N(0, 1). Hence the classical ordinal regression requires that E(Z|x) is a linear function

in x, which is prone to model misspecification for high-dimensional x since the functional forms of

x are subjectively chosen from some transformations. In summary, there are two critical differences

between our proposed model in (3.2.1) and the classical ordinal probit regression. First (5.2.2)

specifies the distribution of the features x ∼ NPN(0,Σxx, fx), while the classical ordinal regression

have it unspecified. Second we allow the marginal transformation functions to be unspecified, while

the classical ordinal probit regression restricts E(Z|x) to be a linear function of x. For our proposed

model (3.2.1), if we assume fy(Z) =
√

1− ξyZ and fx is identity function, then (5.2.2) reduces

to the classical ordinal regression with ω = β∗(1 − ξy)−1/2 and ε independent of x. Hence, the

classical ordinal probit regression can be viewed as a special case of (5.2.2). Unlike the classical

ordinal regression, we utilize the properties of latent mixed Gaussian copula model to propose an

M-estimation formulation to estimate β∗ and plug-in estimators for ∆(k)
y (k = 1, ...,K) and fx.

5.2.2 Estimation

Since β∗ = Σ−1
xxΣxy, it can be seen that β∗ solves the following problem

β∗ = argmax
β∈Rp

1
2β

TΣxxβ −ΣT
xyβ.

Inspired by such an observation, if we have an estimator Σ̂ for Σ, then we can estimate β∗ by

solving the problem that

β̂ = argmin
β∈Rp

1
2β

T Σ̂xx − Σ̂T
xyβ + λ‖β‖1, (5.2.5)

where Σ̂xx and Σ̂xy are submatrices of Σ̂, ‖β‖1 is an L1-penalty function, and λ is a tuning

parameter, which can be chosen by cross-validation. The problem in (5.2.5) is a convex optimization

problem, which can be solved by a standard proximal gradient descent algorithm (Boyd and
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Vandenberghe 2004). Next we discuss how to obtain Σ̂.

The estimation of Σ by using the observed mixed data has been studied by Liu et al. (2012),

Fan et al. (2017) and Feng and Ning (2019). For the estimation of Σxx, the idea is to first estimate

the correlation between Xj and Xk by the Kendall’s tau correlation, then derive a bridge function

to map it to the correlation between variables fj(Xj) and fk(Xk). The Kendall’s tau for estimating

the correlation between Xj and Xk is given by

τ̂jk = 2
n(n− 1)

∑
1≤i<i′≤n

sgn(Xij −Xi′j)sgn(Xik −Xi′k), 1 ≤ j, k ≤ p.

If x ∼ NPN(0,Σxx, fx) with some unknown marginal transformation functions f = (f1, ..., fp), then

Liu et al. (2012) and Fan et al. (2017) gave the bridge function Fjk for pairwise correlations among

x,

F̂jk(r) = 2sin−1(r)/π, for 1 ≤ j, k ≤ p,

where C denotes the set of continuous variables. Then an estimator for Σjk can be obtained by

Σ̃jk = sin(π · τ̂jk/2).

For the estimation of Σxy, the idea is to use the ensemble method by Feng and Ning (2019).

We first dichotomize Y to binary variables Y (k)
i = I(Yi ≥ k), k = 1, ...,K, estimate the correlation

between Xj and Y (k) by the Kendall’s tau correlation,

τ̂
(k)
j = 2

n(n− 1)
∑

1≤i<i′≤n
sgn(Y (k)

i − Y (k)
i′ )sgn(Xij −Xi′j), k = 1, ...,K,

and use a bridge function to map τ̂ (k)
jk to the correlation between fj(Xj) and the latent variable

fy(Z). The distribution of (Y (k), Xj) satisfies the model proposed by Fan et al. (2017), which gave

the bridge function between Y (k) and Xj by the following,

F̂j(r) = 4Φ2(∆̂(k)
y , 0, r/

√
2)− 2Φ(∆̂(k)

y ), for 1 ≤ j ≤ p,

where Φd is the cumulative distribution function of the d-dimensional standard normal distribution,
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∆̂(k)
y estimates ∆̂(k)

y = fy(Ck) and has the following expression

∆̂(k)
y = Φ−1(1− (1/n)

n∑
i=1

Y
(k)
i ), k = 1, ...,K. (5.2.6)

Then, the latent correlation Σ̃(k)
jy based on Y (k) can be obtained by solving F̂j(Σ̃(k)

jy ) = τ̂
(k)
j . Finally,

Feng and Ning (2019) proposed to use the weighted average of these latent correlations to obtain

the point estimator of the correlation between Y and x, which has the form of

Σ̃jy =
K∑
k=1

Σ̃(k)
jy w

(k)
jy ,

where the weights must satisfy 0 ≤ w
(k)
jy ≤ 1,

∑K
k=1w

(k)
jy = 1. For simplicity, it suffices to use

w
(k)
jy = 1/K.

We remark that we do not need to estimate the marginal transformation functions when applying

these estimators. Besides, Fan et al. (2017) have proved that all these bridge functions are invetible.

In order to be used in our proposed problem (5.2.5), we further need the estimator for Σxx to

be positive definite. Then, we project Σ̃xx into the cone of positive definite matrices by solving

Σ̂xx = argminΣ>0‖Σ̃xx −Σxx‖max. Such a problem has been studied by Zhao et al. (2014), who

proposed to replace the elementwise maximum loss function with a smooth surrogate and apply

accelerated proximal gradient algorithm to solve it. Finally, Σ̂ is obtained once the submatrix Σ̃xx

of Σ̃ is replaced by Σ̂xx.

To estimate the marginal transformation for the features fx, we propose the following estimator

f̂j(t) = Φ−1(F̃j(t)) for j = 1, ..., p, (5.2.7)

where F̃j(t) is the winsorized empirical c.d.f of the jth continuous feature with the form

F̃j(t) = δnI(F̂j(t) < δn) + F̂j(t)I(δn ≤ F̂j(t) ≤ 1− δn) + (1− δn)I(F̂j(t) > 1− δn),

where F̂j(t) = (1/n)
∑n
i=1 I(Xij ≤ t) is the empirical c.d.f of the jth continuous feature and δn is

often chosen to be 1/(2n).

Based on our proposed estimators β̂, ∆̂(k)
y (k = 1, ...,K), and f̂ = (̂f1, ..., f̂p), we next study their
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statistical properties in parameter estimation and theoretical performance in classification.

5.3 Theoretical Properties

We start with introducing some notations. For vector a ∈ Rp, let ‖a‖∞ = max1≤j≤p |aj |,

‖a‖1 =
∑p
j=1 |aj |, ‖a‖2 = (

∑p
j=1 a

2
j )1/2 denote its max, L1-, and Euclidean norms, respectively. For

a matrix A = (aij) ∈ Rp×p, let ‖A‖max = maxi,j |aij |, ‖A‖∞ = maxi
∑

1≤j≤p |aij |, λmin(A) and

λmax(A) be the minimum and maximum eigenvalues of A respectively. For any symmetric matrix

Σ, we write Σ > 0 if λmin(Σ) > 0. For any two sequences an and bn, we write an . bn if there

exists a constant c > 0 such that an ≤ cbn. an � bn if an . bn and bn . an.

First we rely on the general M-estimation theory (Negahban et al. 2012) to study the statistical

properties of β̂. We assume that β∗ ∈ Bq(Rq) =
{
θ ∈ Rp :

∑
1≤j≤p |θj |

q ≤ Rq
}
where q ∈ [0, 1) is a

fixed constant. Without loss of generality, let ‖β∗‖1 > m for some m > 0. The following theorem

quantifies the estimation error of β̂ in the Euclidean and L1 norms respectively.

Theorem 5.1. Suppose the following conditions hold.

Condition 1. max1≤j<k≤p |Σjk| ≤ 1− δ for some δ > 0.

Condition 2. maxk=1,...,Nj
∣∣∆(k)

y

∣∣ ≤M for some M > 0.

Condition 3. m ≤ λmin(Σ) ≤ λmax(Σ) ≤M for some m and M > 0.

If choosing λ = C‖β∗‖1
√

(log p)/n for some sufficiently large constant C, and

Rqλ
1−q = o(1), then there exist generic constants C1 and C2 such that

‖β̂ − β∗‖22 . Rqλ
2−q and ‖β̂ − β∗‖21 . R2

qλ
2(1−q)

with probability at least 1− C1p
−C2.

Conditions 1-2 are standard technical conditions required for uniform convergence of Σ̂, they also

appears in Fan et al. (2017) and Feng and Ning (2019). Condition 3 is a technical condition needed

in the proof of Theorem 5.1. Given these conditions, Theorem 5.1 shows that β̂ is a consistent

estimator of β∗ under weak sparsity assumption. The results in Theorem 5.1 are derived from

Theorem 1 of Negahban et al. (2012), which also presents a similar convergence rate in Euclidean

norm under weak sparsity given by Corollary 3. But the difference is that our choice of the tuning

parameter λ has the term ‖β∗‖1 while Corollary 3 in Negahban et al. (2012) does not have it. This

difference is due to that we only know the convergence rate of Σ̂ in ‖Σ̂−Σ‖max, so we can only
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bound ‖Σ̂xxβ
∗ − Σ̂xy‖∞ by ‖Σ̂xx −Σxx‖max‖β∗‖1 + ‖Σ̂xy −Σxy‖∞, while Negahban et al. (2012)

assumes linear regression model directly using observed features X with sub-Gaussian columns

and obtain fast convergence rate for ‖(XT ε)/n‖∞. If we impose an assumption that ‖β∗‖1 <∞,

then our estimator β̂ can reach the fast convergence rate in Euclidean norm as in Corollary 3 of

Negahban et al. (2012). The convergence rate in L1 norm is obtained by multipying an upper bound

for the compatibility constant to the convergence rate in Euclidean norm. Next we show that β̂ has

variable selection consistency under exact sparsity.

We assume β∗ is exactly sparse that β∗ ∈ B0(R0), and defineM = {j : βj 6= 0}, R0 = ‖M‖0 =∑p
j=1 I(βj 6= 0), and ΣMM and ΣMcM are submatrices of Σxx. In the following theorem, we show

the variable selection consistency of β̂ under exact sparsity.

Theorem 5.2. Suppose Conditions 1 - 3 and the following conditions hold.

Condition 4. ‖Σ−1
MM‖∞ ≤M for some M > 0.

Condition 5. ‖ΣMcMΣ−1
MM‖∞ ≤ (1− α)(1− ε) for some α > 0 and ε > 0.

Condition 6. minj∈M |β∗j | � (‖β∗‖1
√

(log p)/n)γ for some 0 < γ < 1.

If R2
0
√

(log p)/n = o(1), and λ = C(‖β∗‖1
√

(log p)/n)γ, where 0 < γ < 1 and C is some sufficiently

large constant, then with probability at least 1−C1p
−C2 , we have ‖β̂M−β∗M‖∞ . λ and M̂ =M.

Condition 4 requires that ΣMM is invertible and assumes that the sup-norm of its inverse

is bounded by a constant. Condition 5 is a standard irrepresentable condition that requires the

important and unimportant variables cannot be highly correlated. It is well known that such a

condition is needed for the variable selection consistency of the L1-penalized methods. Condition 6

is a beta-min condition requiring that the minimal signal to be bounded away from zero. Given

these conditions, Theorem 5.2 shows that β̂ is variable selection consistent and gives uniformly

consistent estimators of the nonzero components of β∗. Theorem 5.2 will be useful when studying

the misclassification error of the LMGCC rule, defined as RLMGCC(D) = E(I(DLMGCC(x) 6= Y )|D)

with (x, Y ) coming from a new subject, compared to the Bayes error RBayes, it gives explicit

expressions for the probability of M̂ =M and the uniform convergence rate of β̂. Next we analyze

the classification oracle property of LMGCC.
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Recall from (5.2.3) that the Bayes rule assigns a subject to the kth class if and only if

∆(k)
y < fx(x)Tβ∗ ≤ ∆(k+1)

y . (5.3.1)

The LMGCC rule assigns a subject to the kth class if and only if

∆̂(k)
y < f̂x(x)T β̂ ≤ ∆̂(k+1)

y . (5.3.2)

Theorem 5.3 evaluates the difference between the LMGCC rule and the Bayes rule, in terms of∣∣∣(f̂x(x)T β̂ − ∆̂(k)
y )− (fx(x)Tβ∗ −∆(k)

y )
∣∣∣ for k = 1, ...K.

Theorem 5.3. When the conditions for Theorem 3.2 hold, if R0(nb logn)−1/2 = o(1) for some

0 < b < 1, then we have the following for k = 1, ...,K.

(f̂x(x)T β̂ − ∆̂(k)
y )− (fx(x)Tβ∗ −∆(k)

y ) = Op

(
R0‖β∗‖∞

√
(log logn)/n1−b/2 +R0λ

√
logn

)
.

To prove Theorem 5.3, we need to know the β̂, ∆̂(k)
y (k = 1, ...,K) and f̂x are consistent.

The consistency of β̂ has been studied early in this section. The consistency of ∆̂(k)
y has been

studied in Fan et al. (2017) and Feng and Ning (2019) as they show that ∆̂(k)
y is root-n consistent.

Finally, the consistency of f̂j has been given in Theorem 2 of Han et al. (2013), where they give

a uniform convergence rate on an expanding interval Tjn = [gj(−
√
b logn), gj(

√
b logn)], where

gj = f−1
j and 0 < b < 1. Then given the events that M̂ =M and Xj ∈ Tjn for all j ∈M, we can

show that (f̂x(x)− fx(x))TMβ∗M = Op(R0‖β∗‖∞
√

(log logn)/n1−b/2) and (β̂M − β∗M)T (fx(x))M =

Op(R0λ
√

logn). The condition that R0(nb logn)−1/2 = o(1) controls P (Xj /∈ Tjn, for some j ∈

M) = o(1). With Theorem 3, we can apply it to further show that the misclassification error rate

of LMGCC rule is consistent to the Bayes error in the following corollary.

Corollary 5.1. Suppose the conditions for Theorem 3.2 hold.

If R0

(
‖β∗‖∞

√
(log logn)/n1−b/2 + λ

√
logn+ (nb logn)−1/2

)
= o(1) for some 0 < b < 1, then

E(RLMGCC(D)) = RBayes + o(1).

Corollary 5.1 shows that the average misclassification error of LMGCC can converge to the

Bayes error under exact sparsity. In the following section, we will demonstrate this property through

111



simulation studies.

5.4 Simulations

We investigate the numerical performance of our proposed method under four different scenarios.

In each of the four scenarios, we compare the classification performance of the proposed LMGCC

method with some well-known classifiers for multi-class classification, such as the support vector

machine (SVM) with radial basis function kernel, the K-nearest-neighbors algorithm (KNN), the

random forest (RF), the multinomial logistic regression with an L1-penalty (Multinomial), and

the ordinal probit regression with an L1-penalty (Ordinal) mentioned in Section 5.2. Among these

candidate classifiers, the SVM, the KNN, and the RF are machine-learning-based classifiers that

do not model the distribution for the response and the features; the multinomial regression is a

parametric classifier that directly models P (Y = k|x) without incorporating the order of label

k, while the ordinal regression is a parametric classifier that models P (Y ≤ k|x) to handle the

label order. We also compare the classification performance of the LMGCC method with the

Bayes rule to examine the error rate consistency property in Corollary 3.1. We design the first

two scenarios with balanced class labels, so we aim to compare the overall misclassification error

r = (1/ntest)
∑ntest
i=1 I(ŷtest,i 6= ytest,i) of these classifiers, where ntest denotes the sample size in

the test set. While we design the other two scenarios with unbalanced class labels, the overall

misclassification error becomes inadequete to distinguish the prediction accuracy for ordinal response

since we are interested in the misclassification error in both the dominant and the minority class.

We use the average within-group error rate as an additional performance evaluation metric with the

following form

r̃ = 1
K + 1

K∑
k=0

 1
ntest,k

∑
i:ytest,i=k

I(ŷtest,i 6= ytest,i)

 ,
where ntest,k denotes the sample size for those test samples with label k. This metric was introduced

previously in Qiao and Liu (2009). In each of the four scenarios, we set the training and the test set

sizes to be n = 200 and ntest = 400 respectively, and consider p = 50 and p = 500. The setup for

the four scenarios are as follows.

Scenario 1: Σxx = (σxx,ij)p×p where σxx,ij = 0.5|i−j| for 1 ≤ i, j ≤ p. β∗ = (0.18, ..., 0.18, 0, ..., 0)T ,

where the first 10 elements are 0.18 and the rest are zeros. Σxy = Σxxβ
∗, and Σ is obtained
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given Σxx and Σxy. We generate (fy(Z), fx(x)) from N(0,Σ) and choose marginal transformations

fj(Xj) = X3
j for 1 ≤ j ≤ p. Set three classes to be balanced, i.e. P (Y = k) = 1/3 for k = 0, 1, 2, with

∆(1)
y = −0.43 and ∆(2)

y = 0.43 and the observed response is generated by Y =
∑2
k=1 I(fy(Zy) > ∆(k)

y ).

Scenario 2: All settings remain the same as Scenario 1, except the marginal transformations

fj(Zj) = log(Zj) for 1 ≤ j ≤ p.

Scenario 3: All settings remain the same as Scenario 1, except the three classes are unbalanced,

i.e. P (Y = 0) = 1/4, P (Y = 1) = 1/2, P (Y = 2) = 1/4, with ∆(1)
y = −0.7 and ∆(2)

y = 0.7.

Scenario 4: All settings remain the same as Scenario 3, except the marginal transformations

fj(Zj) = log(Zj) for 1 ≤ j ≤ p.

For each scenario, we independently generate n samples for the training set and ntest samples

for the test set, by generating (fy(Z), fx(x)) from N(0,Σ), obtaining x by f−1
x (fx(x)) and Y by∑2

k=1 I(fy(Z) > ∆(k)
y ). For the proposed LMGCC method, we obtain the estimator for the regression

coefficients by solving (5.2.5), obtain the estimators for transformations by (5.2.7), and obtain the

estimators for the two thresholds by (5.2.6), then the LMGCC rule is given by (5.2.4). We also use

the performance of the Bayes rule given by (5.2.3) as a benchmark for each scenario; see red lines in

Figures (5.1) to (5.4). We implement SVM using the e1071 package, implement KNN using the

class package, implement RF using the randomForest package, implement multinomial logistic

regression with L1-penalty using the glmnet package, and implement ordinal probit regression with

L1-penalty using the ordinalNet package. The optimal tuning parameters for each method are

chosen by a grid search using five-fold cross-validation. For each scenario we repeat simulations

for 100 times, report the overall misclassification error for all six methods in all scenarios and the

average within-group error for all six methods in Scenario 3 and 4.

It is seen from Figure (5.1) that LMGCC has clear advantage in overall misclassification error

over other methods in Scenario 1. Such advantage becomes more obvious when the dimension

increases. These results are reasonable as only LMGCC identifies the joint normality structure

between the latent variables for the response and the features, while allowing a nonlinear relationship

between the latent response and the features. Among the competing nonparametric methods,

kernel-based SVM looks for boundary that gives large margin for the mapped observed features,

KNN assigns class label based on the Euclidean distance of the observed features, and random forest

aggregates classification trees for observed training data, none of them builds classification rule based
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Figure 5.1. Comparison of overall error rate for the six competitors in Scenario 1. Red lines indicate
the Bayes errors.
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Figure 5.2. Comparison of overall error rate for the six competitors in Scenario 2. Red lines indicate
the Bayes errors.
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Figure 5.3. Comparison of overall and average within-group error rate for the six competitors in
Scenario 3. Red lines indicate overall and average within-group error rates for the Bayes rule.
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Figure 5.4. Comparison of overall and average within-group error rate for the six competitors in
Scenario 4. Red lines indicate the overall and average within-group error rates for the Bayes rule.
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on modeling the distribution of the response and the features. As for the competing parametric

methods, both the multinomial regression and the ordinal regression classify a subject based on the

posterior probability of each class given observed features, but the multinomial regression ignores

the order of the labels and the model is misspecified, while the ordinal regression misspecifies the

functional form of the features.

Figure (5.2) shows similar results as Figure (5.1). Furthermore, results in Figure (5.2) show

our proposed LMGCC is robust to arbitrarily skewed monotone transformations, while other

competing methods except random forest are susceptible in multi-class classification when the

marginal transformations become more skewed.

Figure (5.3) shows both the overall and the average within-group error rate for all competitors in

Scenario 3. In this scenario, the three class labels have proportion (0.25, 0.5, 0.25). We are interested

in the misclassification error in all three classes, so the average within-group error becomes more

informative about which classifier has better multi-class classification performance. It is seen that

LMGCC demonstrates even more significant advantage on the average within-group error over other

competitors, and it maintains excellent classification performance for each class even when there is

an unbalanced class proportion, while other competitors shows inferior average within-group error

rate under both low and high dimension.

Finally, Figure (5.4) shows similar results as Figure (5.3), and again demonstrates that LMGCC

has robust classification performance invariant of the change of marginal transformations even when

the class proportion becomes unbalanced.

5.5 Real Data Analysis

The Wisconsin breast cancer data from the UCI Machine Learning Repository contains two

datasets. The diagnostic dataset contains patient information with baseline breast cancer diagnostic

results (benign or malignant). The prognostic dataset contains follow-up data for breast cancer cases,

i.e. those who were diagnosed to be malignant at the baseline, including only those cases exhibiting

invasive breast cancer and no evidence of distant metastases at the time of diagnosis. During the

follow-up, some cases might experience recurrence of breast cancer, indicating these are more severe

cases. In this example, our goal is to use the baseline features, which are 30 variables computed from

a digitized image of a fine needle aspiration (FNA) of a breast mass, to predict the status of breast

cancer progression being either benign, malignant but non-recurrent, and recurrent. We combine

117



LMGCC SVM KNN RF Multinomial Ordinal

10
15

20

O
ve

ra
ll 

E
rr

or
 R

at
e 

(%
)

LMGCC SVM KNN RF Multinomial Ordinal

20
25

30
35

40
45

A
ve

ra
ge

 W
ith

in
−

G
ro

up
 E

rr
or

 R
at

e 
(%

)

LMGCC SVM KNN RF Multinomial Ordinal

20
40

60
80

10
0

W
ith

in
−

R
ec

ur
re

nt
 E

rr
or

 R
at

e 
(%

)

Figure 5.5. Performance comparison of six competitors on classifying breast cancer progression
status.
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all subjects that were diagnosed as benign at the baseline with all subjects that were diagnosed as

malignant at the baseline and had follow-up status (non-recurrent or recurrent). For all the subjects,

the baseline FNA image features are all available. The full dataset for our analysis contains 496

samples with three possible status and 30 features. We want to point out that the class proportion

for the cancer progression status is unbalanced with 72% samples being benign, 21% samples being

malignant but non-recurrent, 7% samples being recurrent, and we are particularly interested to see

how well our method can predict the recurrent status. Therefore, we apply our proposed LMGCC

along with SVM, KNN, random forest, multinomial logistic regression with L1-penalty, and ordinal

probit regression with L1-penalty to this dataset and compare three performance evaluation metric:

the overall misclassification error, the average within-group error, and the within-recurrent-group

error. We randomly split the full data into a training set and a test set with same number of

samples, then apply the six competitors separately on the training set with the optimal tuning

parameters being chosen by five-fold cross-validation, and calculate their performance evaluation

metrics on the test set for comparison. The above procedures are repeated 100 times and the results

are shown in Figure (5.5).

The comparison of overall misclassification error shows that all classifiers yielded similar results

on this highly unbalanced dataset, which is not informative because over 70% samples are benign,

and classifying some of those rare malignant or even recurrent subjects to benign status can still

result in good overall classification performance. In this example, we particularly care about

making correct classification for those malignant and specifically recurrent subjects, so our focus

will be mainly the average within-group error and the within-recurrent error. It is shown that

LMGCC outperforms all other competitors by 2-5% in terms of the average within-group error. The

advantage of LMGCC is much more significant when comparing the classification performance for

those recurrent subjects, resulting in over 10% reduction in within-recurrent error. These results

are reasonable because the baseline characteristics of the cell nuclei already indicate the severity of

breast cancer, which can be viewed as the latent variable corresponding to the progression status,

and LMGCC captures the relationship between the latent response and the features, which could

lead to large advantage in predicting the cancer progression status.
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5.6 Technical Details

5.6.1 Proofs of Main Theorems

Proof of Theorem 5.1 The proof of Theorem 5.1 modifies the proof of Corollary 3 in Negahban

et al. (2012). Let ∆ = β̂ − β∗. Define C = {∆ ∈ Rp : ‖∆Sc‖1 ≤ 3‖∆S‖1 + 4‖β∗Sc‖1}, where

S = {i ∈ {1, 2, .., p} :
∣∣∣(ηj)i∣∣∣ > η} and η > 0 is some threshold to be chosen. For any ∆ ∈ C, we

have

‖∆‖1 ≤ ‖∆S‖1 + ‖∆Sc‖1 ≤ 4‖∆S‖1 + 4‖β∗Sc‖1,

‖∆S‖1 ≤
√
|S|‖∆‖2 ≤

√
Rqη

−q/2‖∆‖2.

Next, we verify the RSC condition for ∆ ∈ C. Using (5.6.5) in the proof of Lemma 5.2, with

probability at least 1 − C1p
−C2 for some generic positive constants C1 and C2 and a sufficiently

large constant C, we have

(1/2)∆T Σ̂xx∆ = (1/2)∆T Σ̂xx∆ + (1/2)∆T (Σ̂xx −Σxx)∆

≥ (m/2)‖∆‖22 − C
√

log p/n‖∆‖21

≥ (m/2)‖∆‖22 − 32C
√

log p/n(‖∆S‖21 + ‖β∗Sc‖21)

≥ (m/2− 32C
√

log p/nRqη−q)‖∆‖22 − 32C
√

log p/n‖β∗Sc‖21.

If we choose η = ‖β∗‖1
√

log p/n, and Rq‖β∗‖−q1 (log p/n)(1−q)/2 = o(1) since Rqλ1−q = o(1), then

we have the following for large n

32C
√

log p/nRqη−q = 32C ·Rq‖β∗‖−q1 (log p/n)(1−q)/2 ≤ m/4.

Thus, it holds with probability at least 1− C1p
−C2 that

(1/2)∆T Σ̂xx∆ ≥ (m/4)‖∆‖22 − 32C
√

log p/n‖β∗Sc‖21. (5.6.1)
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Based on Lemma 5.2 and (5.6.1), we apply Theorem 1 of Negahban et al. (2012) with κL = m/4,

Ψ2(M̄) = |S|, τ2
L = 32C

√
log p/n‖β∗Sc‖21 and R(θ∗M⊥) = ‖β∗Sc‖1. Using the result that

‖β∗Sc‖1 ≤ Rqη1−q,

we can simplify the result from Theorem 1 of Negahban et al. (2012) and obtain that with probability

at least 1− C1p
−C2 ,

‖β̂ − β∗‖22 . ‖β∗‖2−q1 Rq(
log p
n

)1−q/2 + ‖β∗‖3−2q
1 R2

q(
log p
n

)2−q.

Since ‖β∗‖3−2q
1 R2

q(log p/n)2−q =
(
‖β∗‖2−q1 Rq(log p/n)1−q/2

)2
‖β∗‖−1

1 , Rqλ2−q = o(1) becauseRqλ1−q =

o(1), and ‖β∗‖−1
1 < 1/m, we may conclude that, with probability at least 1− C1p

−C2

‖β̂ − β∗‖22 . Rqλ
2−q.

Furthermore we bound ‖β̂ − β∗‖21.

‖β̂ − β∗‖21 ≤ Ψ2(M̄)‖β̂ − β∗‖22

≤ Rqη−q‖β̂ − β∗‖22

. R2
q‖β‖

2(1−q)
1 (log p/n)1−q +R3

q‖β∗‖
3(1−q)
1 (log p/n)2−3q/2.

Since R3
q‖β∗‖

3(1−q)
1 (log p/n)2−3q/2 =

(
R2
q‖β‖

2(1−q)
1 (log p/n)1−q

)3/2
· (
√

log p/n), and R2
qλ

2(1−q) =

o(1), we can conclude that, with probability at least 1− C1p
−C2

‖β̂ − β∗‖21 . R2
qλ

2(1−q).

Proof of Theorem 5.2

Proof. By the standard convex optimization theory, any β ∈ Rp satisfying the following Karush–
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Kuhn–Tucker conditions (Boyd and Vandenberghe 2004) is the solution to (5.2.5).

(Σ̂xxβ)j − Σ̂xy,j + λsign(βj) = 0, for j ∈M; (5.6.2)∣∣∣(Σ̂xxβ)j − Σ̂xy,j

∣∣∣ < λ, for j /∈M; (5.6.3)

λmin(Σ̂MM) > 0. (5.6.4)

We first show that there exists a solution β̂M ∈ RR0 to (5.6.2) in the neighbourhood N = {β :

‖β − β∗M‖∞ ≤ Cλ} with probability at least 1− C1p
−C2 . We have

(Σ̂xxβ)M − Σ̂xy,M = Σ̂MM(βM − β∗M) + Σ̂MMβ∗M − Σ̂xy,M.

It follows from Lemma 5.2 that

P (‖Σ̂MMβ∗M − Σ̂xy,M‖∞ ≥ Can) ≤ C1p
−C2 ,

where an = ‖β∗‖1
√

(log p)/n. Let τ = (τj) ∈ Rp with τj = sign(βj) for j ∈ M and τj = 0 for

j /∈M,

f(βM) = Σ̂MM(βM − β∗M) + Σ̂MMβ∗M − Σ̂xy,M + λτM,

g(βM) = Σ̂−1
MMf(βM) = βM − β∗M + Σ̂−1

MM{Σ̂MMβ∗M − Σ̂xy,M + λτM}.

By Lemma 5.3, for some positive constant M , we have

P (‖Σ̂−1
MM‖∞ ≥ 2M) ≤ C1p

−C2 .

Hence, by the stated choice of λ, with probability at least 1− C1p
−C2 , we have

‖Σ̂−1
MM{Σ̂MMβ∗M − Σ̂xy,M + λτM}‖∞ ≤ ‖Σ̂

−1
MM‖∞‖Σ̂MMβ∗M − Σ̂xy,M + λτM}‖∞

≤ ‖Σ̂−1
MM‖∞(‖Σ̂MMβ∗M − Σ̂xy,M‖∞ + λ)

≤ 2M(Can + λ) . λ.
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Hence, when n is sufficiently large, if (βM − β∗M)j = Cλ for some sufficently large C > 0,

g(βM)j = Cλ− Σ̂−1
MM(Σ̂MMβ∗M − Σ̂xy,M + λτM)j ≥ 0,

and if (βM − β∗M)j = −Cλ,

g(βM)j = −Cλ− Σ̂−1
MM(Σ̂MMβ∗M − Σ̂xy,M + λτM)j ≤ 0.

By the continuity of g(βM) and Miranda’s existence theorem, g(βM) = 0 has a solution β̂M in N

with probability tending to 1.

Second, we verify that β̂ = (β̂M,0)T also satisfies (5.6.3). We have

(Σ̂xxβ)Mc − Σ̂xy,Mc = Σ̂McMβM − Σ̂xy,Mc = Σ̂McM(βM − β∗M) + (Σ̂xxβ
∗ − Σ̂xy)Mc .

Since g(βM) = 0, we have

(Σ̂xxβ)Mc − Σ̂xy,Mc = Σ̂McMΣ̂−1
MM(Σ̂MMβ∗M − Σ̂xy,M + λτM) + (Σ̂xxβ

∗ − Σ̂xy)Mc .

By similar arguments as in Lemma 5.2, we have

P (‖(Σ̂xxβ
∗ − Σ̂xy)Mc‖∞ ≥ Can) ≤ C1p

−C2 .

By Lemma 5.4, we have

P (‖Σ̂McMΣ̂−1
MM‖∞ ≥ (1− α)(1− ε/2)) ≤ C1p

2−C2C .

Then, with probability at least 1− C1p
−C2 ,

‖(Σ̂xxβ)Mc − Σ̂xy,Mc‖∞ ≤ (1− α)(1− ε/2)(Can + λ) + Can

≤ (1− α)(1− ε/2)λ+ (2− ε/2)Can

< (1− α)λ,
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where the last inequality is due to an = o(λ). This verifies (5.6.3). Finally, to verify (5.6.4), Condition

3 implies that λmin(ΣMM) ≥ m. Then by a similar proof, we can show that λmin(Σ̂MM) ≥ m/2

with probability at least 1− C1p
−C2 .

Proof of Theorem 5.3

Proof. We first bound ∆̂(k)
y −∆(k)

y for k = 1, ...,K. By definition, we have

∆(k)
y = Φ−1(1− P (Zy > Cyk)) = Φ−1(1− P (Y ≥ k))

∆̂(k)
y = Φ−1(1− (1/n)

n∑
i=1

Y
(k)
i ) = Φ−1(1− (1/n)

n∑
i=1

I(Yi ≥ k)).

By Lemma A.1 in Fan et al. (2017), the function Φ−1(y) is Lipschitz continuous for

y ∈ (Φ(−2M),Φ(2M)). Given the event Ak = {|∆̂(k)
y | ≤ 2M}, we have

∣∣∣∆̂(k)
y −∆(k)

y

∣∣∣ ≤ L1

∣∣∣∣∣(1/n)
n∑
i=1

Y
(k)
i − (1− Φ(∆(k)

y ))
∣∣∣∣∣ = L1

∣∣∣∣∣(1/n)
n∑
i=1

Y
(k)
i − E(Y (k)

i )
∣∣∣∣∣ .

Then, we have

P (Ack) = P (|∆̂k
y | > 2M)

= P

(
1− 1

n

n∑
i=1

Y
(k)
i < Φ(−2M) or 1− 1

n

n∑
i=1

Y
(k)
i > Φ(2M)

)

= P

(
1
n

n∑
i=1

Y
(k)
i − (1− Φ(∆(k)

y )) > Φ(∆(k)
y )− Φ(−2M)

or 1
n

n∑
i=1

Y
(k)
i − (1− Φ(∆(k)

y )) < Φ(∆(k)
y )− Φ(2M)

)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

Y
(k)
i − (1− Φ(∆(k)

y ))
∣∣∣∣∣ ≥ Φ(2M)− Φ(M)

)

≤ 2 exp
(
−n2 (Φ(2M)− Φ(M))2

)
,

where the second to the last inequality follows from Condition 2 and the last inequality follows from
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the Hoeffding inequality. Then we have the following for any t > 0.

P
(∣∣∣∆̂(k)

y −∆(k)
y

∣∣∣ > t
)

≤ P
(∣∣∣∆̂(k)

y −∆(k)
y

∣∣∣ > t|Ak
)

+ P (Ack)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

Y
(k)
i − E(Y (k)

i )
∣∣∣∣∣ > t/L1

)
+ 2 exp

(
−n2 (Φ(2M)− Φ(M))2

)

≤ 2 exp(−nt
2

L2
1

) + 2 exp
(
−n2 (Φ(2M)− Φ(M))2

)
.

Hence, choosing any t ≥
√

(log p)/n can let P
(∣∣∣∆̂(k)

y −∆(k)
y

∣∣∣ > t
)

= o(1).

Next we bound f̂x(x)T β̂ − fx(x)Tβ∗. We define {j1, ..., jR0} = M to be the indices of the s

important features under exact sparsity. Then further define

Tn =
[
gj1(−

√
b logn), gj1(

√
b logn)

]
× ...×

[
gjR0

(−
√
b logn), gjR0

(
√
b logn)

]
,

for some 0 < b < 1. Moreover, define events E1 = {M̂ =M} and E2 = {x ∈ Rp : xM ∈ Tn}. Then

we have

P
(∣∣∣f̂x(x)T β̂ − fx(x)Tβ∗

∣∣∣ > t
)

≤ P
(∣∣∣f̂x(x)T β̂ − fx(x)Tβ∗

∣∣∣ > t|E1, E2
)

+ P (Ec1) + P (Ec2)

= I + II + III.

For I, given events E1 and E2, we can bound
∣∣∣f̂x(x)T β̂ − fx(x)Tβ∗

∣∣∣ by
‖β∗‖∞ supx∈E2‖(f̂x(x)− fx(x))M‖1 + ‖β̂M − β∗M‖∞ supx∈E2‖(fx(x))M‖1. Using Theorem 2 from

Han et al. (2013), we have

sup
x∈E2

‖(f̂x(x)− fx(x))M‖1 = Op(R0

√
log logn
n1−b/2 ).

By definition of E2, we have supx∈E2‖(fx(x))M‖1 = Op(R0
√

logn). Hence we have

∣∣∣f̂x(x)T β̂ − fx(x)Tβ∗
∣∣∣ = Op

R0‖β∗‖∞

√
log logn
n1−b/2 +R0λ

√
logn

 .
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For II, we have shown that II = o(1) in Theorem 5.2.

For III, we use Mill’s inequality on Gaussian tail to have

P (fj(Xj) >
√
b logn) = O((nb logn)−1/2),

and hence obtain III = O(R0(nb logn)−1/2) = o(1).

Above all, we have shown that P
(∣∣∣(f̂x(x)T β̂ − ∆̂(k)

y )− (fx(x)Tβ∗ −∆(k)
y )

∣∣∣ > t
)

= o(1) under

the conditions of Theorem 5.2, R0(nb logn)−1/2 = o(1), and choosing

t = R0

(
‖β∗‖∞

√
(log logn)/n1−b/2 + λ

√
logn

)
for some 0 < b < 1. This concludes the proof of

Theorem 5.3.

Proof of Corollary 5.1 The proof of Corollary modifies the proof of Corollary 19 in Han et al.

(2013). Denote the training data by D = {(x1, y1), ..., (xn, yn)}, denote a future observation by

(x, Y ), denote the Bayesian rule as Y ∗ and the LMGCC rule by Ŷ . We denote the LMGCC

miclassification error given training data by RLMGCC(D) and denote the Bayes error by RBayes.

We have the following identities.

I(Y = k) = I(∆(k)
y < fy(Zy) ≤ ∆(k+1)

y ),

I(Y ∗ = k) = I(∆(k)
y < fx(x)Tβ∗ ≤ ∆(k+1)

y ),

I(Ŷ = k) = I(∆̂(k)
y < f̂x(x)T β̂ ≤ ∆̂(k+1)

y ).

The indicators above take value 1 if the condition is true, and 0 if the condition is false. We can

define the following variables that are equivalent with the above indicators but take value 1 if the

condition is true, and -1 if the condition is false.

Wk = sgn(fy(Zy)−∆(k)
y ) + sgn(∆(k+1)

y − fy(Zy))− 1,

W ∗k = sgn(fx(x)Tβ∗ −∆(k)
y ) + sgn(∆(k+1)

y − fx(x)Tβ∗)− 1,

Ŵk = sgn(f̂x(x)T β̂ − ∆̂(k)
y ) + sgn(∆̂(k+1)

y − f̂x(x)T β̂)− 1.
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Since we have

RLMGCC(D) =
K∑
k=0

P (Y = k, Ŷ 6= k|D) =
K∑
k=0

P (Y 6= k, Ŷ = k|D),

RBayes =
K∑
k=0

P (Y = k, Y ∗ 6= k) =
K∑
k=0

P (Y 6= k, Y ∗ = k),

then

2RLMGCC(D) =
K∑
k=0

P (WkŴk < 0|D)

=
K∑
k=0

P (WkW
∗
k +Wk(Ŵk −W ∗k ) < 0|D)

≤
K∑
k=0

(P (WkW
∗
k < 0|D) + P (Wk(Ŵk −W ∗k ) < 0|D))

≤ 2RBayes +
K∑
k=0

P (Wk(sgn(f̂x(x)T β̂ − ∆̂(k)
y )− sgn(fx(x)Tβ∗ −∆(k)

y ))|D)

+
K∑
k=0

P (Wk(sgn(∆̂(k+1)
y − f̂x(x)T β̂)− sgn(∆(k+1)

y − fx(x)Tβ∗))|D)

≤ 2RBayes +
K∑
k=0

P (sgn(f̂x(x)T β̂ − ∆̂(k)
y ) 6= sgn(fx(x)Tβ∗ −∆(k)

y )|D)

+
K∑
k=0

P (sgn(∆̂(k+1)
y − f̂x(x)T β̂) 6= sgn(∆(k+1)

y − fx(x)Tβ∗)|D)

Therefore,

2E(RLMGCC(D))− 2RBayes ≤
K∑
k=0

P (sgn(f̂x(x)T β̂ − ∆̂(k)
y ) 6= sgn(fx(x)Tβ∗ −∆(k)

y ))

+
K∑
k=0

P (sgn(∆̂(k+1)
y − f̂x(x)T β̂) 6= sgn(∆(k+1)

y − fx(x)Tβ∗))

=
K∑
k=1

P (sgn(f̂x(x)T β̂ − ∆̂(k)
y ) 6= sgn(fx(x)Tβ∗ −∆(k)

y ))

+
K−1∑
k=0

P (sgn(∆̂(k+1)
y − f̂x(x)T β̂) 6= sgn(∆(k+1)

y − fx(x)Tβ∗))

= 2
K∑
k=1

P (sgn(f̂x(x)T β̂ − ∆̂(k)
y ) 6= sgn(fx(x)Tβ∗ −∆(k)

y )).
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For the simplicity of notation, denote G∗k = fx(x)Tβ∗ −∆(k)
y and Ĝk = f̂x(x)T β̂ − ∆̂(k)

y . Then the

remainder of the proof only needs to show P (sgn(Ĝk) 6= sgn(G∗k)) = o(1) for k = 1, ...,K. Since we

have

P (sgn(Ĝk) 6= sgn(G∗k)) = P (ĜkG∗k < 0)

≤ P (|G∗k| < t) + P (
∣∣∣Ĝk −G∗k∣∣∣ > t)

Using Theorem 5.3, we can choose t = R0

(
‖β∗‖∞

√
(log logn)/n1−b/2 + λ

√
logn+ (nb logn)−1/2

)
for some 0 < b < 1 such that P (

∣∣∣Ĝk −G∗k∣∣∣ > t) = o(1). Also, because t = o(1), the Gaussian

probability P (|G∗k| < t) = o(1). This proves the misclassification error consistency.

5.6.2 Supporting Lemmas and their Proofs

Lemma 5.1. (Fan et al. 2017; Feng and Ning 2019) Suppose Conditions 1 and 2 hold. It follow

that

P (‖Σ̃−Σ‖max ≥ C
√

log p/n) ≤ C1p
−C2 ,

where C1 and C2 are generic positive constants and C is a sufficiently large constant.

Proof. The proof of Lemma 5.1 can be found in the proofs of Theorem 6.1 in Fan et al. (2017) and

Proposition 1 in Feng and Ning (2019).

Lemma 5.2. Under Conditions 1 and 2, there exists a sufficiently large positive constant C, and

some generic positive constants C1 and C2 such that

P (‖Σ̂xxβ
∗ − Σ̂xy‖∞ ≥ C‖β∗‖1

√
log p
n

) ≤ C1p
−C2 .

Proof. By Lemma 5.1 and (3.5) of Zhao et al. (2014), we have

P (‖Σ̂−Σ‖max ≥ C

√
log p
n

) ≤ C1p
−C2 , (5.6.5)

for some sufficiently large constant C and some generic positive constants C1 and C2. We also have
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the following

‖Σ̂xxβ
∗ − Σ̂xy‖∞ = ‖Σ̂xxΣ−1

xxΣxy − Σ̂xy‖∞

= ‖(Σ̂xx −Σxx)Σ−1
xxΣxy + Σxy − Σ̂xy‖∞

≤ ‖Σ̂xx −Σxx‖max‖β∗‖1 + ‖Σ̂xy −Σxy‖∞.

Since we have ‖β∗‖1 > m for some m > 0, using the result of Lemma 5.1, we have that ‖Σ̂xxβ
∗ −

Σ̂xy‖∞ ≤ C‖β∗‖1
√

log p/n with probability at least 1−C1p
−C2 for some sufficiently large constant

C and some generic positive constants C1 and C2.

Lemma 5.3. Under Conditions 1, 2 and 4, if R0
√

(log p)/n = o(1), there exist some generic

positive constans C1 and C2 such that

P (‖Σ̂−1
MM‖∞ ≥ 2M) ≤ C1p

−C2 .

Proof. By Fan et al. (2017),Feng and Ning (2019), and Zhao et al. (2014), we have the following for

some sufficiently large constant C.

P

‖Σ̂−Σ‖max ≥ C

√
log p
n

 ≤ C1p
−C2 .

Then,

P

‖Σ̂MM −ΣMM‖∞ ≥ CR0

√
log p
n

 ≤ P
R0‖Σ̂MM −ΣMM‖max ≥ CR0

√
log p
n


≤ C1p

−C2 .

Since

‖Σ̂−1
MM‖∞ = ‖Σ−1

MM + Σ̂−1
MM(ΣMM − Σ̂MM)Σ−1

MM‖∞

≤ ‖Σ−1
MM‖∞ + ‖Σ̂−1

MM‖∞‖ΣMM − Σ̂MM‖∞‖Σ−1
MM‖∞,
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by Conditions 1, 2 and 4, it holds with probability greater than 1− C1p
−C2 that

‖Σ̂−1
MM‖∞ ≤M +MCR0

√
log p
n
‖Σ̂−1
MM‖∞,

‖Σ̂−1
MM‖∞ ≤

M

1−MCR0
√

(log p)/n
≤ 2M.

where the last inequality holds since R0
√

log p/n = o(1).

Lemma 5.4. Under Conditions 1,2,4 and 5, if R2
0
√

log p/n = o(1), then there exist some generic

positive constants C1 and C2 such that

P (‖Σ̂McMΣ̂−1
MM‖∞ > (1− α)(1− ε/2)) ≤ C1p

−C2 .

Proof. Note that

Σ̂McMΣ̂−1
MM = Σ̂McM(Σ̂−1

MM −Σ−1
MM) + (Σ̂McM −ΣMcM)Σ−1

MM + ΣMcMΣ−1
MM

= I + II + III.

For I,

‖Σ̂McM(Σ̂−1
MM −Σ−1

MM)‖∞

≤ (‖ΣMcM‖∞ + ‖Σ̂McM −ΣMcM‖∞)‖Σ̂−1
MM‖∞‖Σ̂MM −ΣMM‖∞‖Σ−1

MM‖∞.

Since by Condition 1, ‖ΣMcM‖∞ . R0 , and P (‖Σ̂McM − ΣMcM‖∞ ≤ CR0
√

(log p)/n) ≥

1− C1p
−C2 , we have

P (‖Σ̂McM(Σ̂−1
MM −Σ−1

MM)‖∞ ≥ CR2
0

√
log p/n) ≤ C1p

−C2 .

Using similar arguments, for II, we have

P (‖(Σ̂McM −ΣMcM)Σ−1
MM‖∞ ≥ CR0

√
(log p)/n) ≤ C1p

−C2 .
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Hence, if R2
0
√

(log p)/n = o(1), we have

P (‖Σ̂McM(Σ̂−1
MM −Σ−1

MM) + (Σ̂McM −ΣMcM)Σ−1
MM‖∞ ≤ (1− α)ε/2) ≥ 1− C1p

−C2 .

This result together with Condition 5 completes the proof.
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