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ABSTRACT

Yixin Nie: Data-Driven Natural Language Inference
(Under the direction of Mohit Bansal)

Natural Language Inference (NLI) research involves the development of models that can

mimic human inference processes based on natural language and classify the inference relation

between sentences. For example, given the premise that “In 2019, the Raptors won their first

Eastern Conference title, and the team’s first NBA Finals”, it follows that “The Raptors beat

another team in the 2019 NBA Finals”. but it does not follow that “The Golden State Warriors

won the last game of the NBA Finals in 2019”. The goal of NLI is to build machines that can

take pairs of premise and hypothesis as input and correctly predict the inference relation between

them, that is reverse engineering the inference process of a human. NLI is a fundamental task

with a simple and generic formalization such that NLI models can be practically useful in all kind

of NLP applications. In recent years, there has been emerging interest and research in data-driven

natural language inference.

This thesis starts with several key applications of data-driven NLI modules, including sentence-

based NLI modeling, how to effectively use the NLI model as a key natural language understand-

ing (NLU) module in both an automatic fact-checking system for claim verification and in an

open-domain dialogue system for improving dialogue consistency. Empirical results not only

demonstrate valuable use cases of NLI models in NLP applications but, more importantly, reveal

the fact that the data is a key factor that contributes to the success of the usage of NLI models.

That leads to the second part of this thesis, namely, adversarial NLI, a research endeavor that

embodies dynamic human-and-model-in-the-loop learning paradigm for NLI via competitive

iterations between model training and crowd-sourcing to push the limit of NLU.
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CHAPTER 1: INTRODUCTION

Understanding entailment and contradiction is fundamental to understanding natural lan-

guage, and inference about entailment and contradiction is a valuable testing ground for the devel-

opment of semantic representations. Given a premise sentence and a hypothesis sentence, the task

of natural language inference (NLI) is to predict the inference relation between the two sentences.

The relation can be “entailment” if the premise infers the hypothesis, or “contradiction” if the

premise contradicts the hypothesis, or it can also be “neutral” if the premise can neither infer nor

contradict the hypothesis. The introduction of large-scale natural language inference datasets,

including the PASCAL Recognising Textual Entailment Challenge (RTE), Stanford Natural Lan-

guage Inference (SNLI), and Multi-Domain Natural Language Inference (MNLI) (Dagan et al.,

2005; Bowman et al., 2015a; Williams et al., 2018a) provides valuable fuel to facilitate the data-

driven neural approach for learning NLI. These datasets have not only attracted NLP researchers

to develop models that can do general natural language understanding which results in advance-

ment in language representation learning but also served as testing sets for general-purpose NLU

evaluation which helps to benchmark our current progress (Wang et al., 2018a). During the past

five years, we have witnessed significant improvement on NLI modeling (Chen et al., 2017c; Nie

and Bansal, 2017; Devlin et al., 2019a; Liu et al., 2019b) and widespread applications of NLI

in other NLP tasks like automatic fact verification (Thorne et al., 2018b), automatic summariza-

tion (Maynez et al., 2020), machine translation (Poliak et al., 2018a), video-caption (Pasunuru

and Bansal, 2017), and conversation (Nie et al., 2021).

The main content of this thesis can roughly be categorized into efforts on answering the fol-

lowing two questions: (1) How can we effectively use data-driven models in NLP applications?;

(2) How can we understand NLP models’ general understanding ability via NLI. For the first
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question, we present our past work on building a NLI model that achieved the top-simple model

in the second workshop on evaluating vector space representations for NLP, an automatic fact-

checking system that won first place in the fact extraction and verification challenge in EMNLP

2018. We also present our work on using natural language inference models to evaluate and

improve the consistency of state-of-the-art open domain chatbots. For the second question, we

present adversarial NLI, a research effort on rethinking benchmarking in NLP, crowdsourcing

NLP datasets and initiating dynamic NLP benchmarks.

Sentence Encoder-based NLI. For NLI modeling, practitioners often approach NLI using

end-to-end neural networks. The input sentence will be first converted into a list of vectors

called token embeddings and then be fed into the neural networks. The output of the neural

network is a 3-element vector produced by a softmax layer, indicating model predicted prob-

ability for entailment, neutral, and contradiction, respectively. The parameters of the neural

network will be optimized by minimizing the cross-entropy loss between the predicted label

and the ground truth label. For the neural networks, typical choices includes RNNs (Mikolov

et al., 2010), LSTMs (Hochreiter and Schmidhuber, 1997), or Transformers (Vaswani et al.,

2017). All of which can easily take a sequence of token embedding as inputs. Usually, we im-

pose no constraints on the design of the neural networks. However, there is a specific type of

model called the sentence encoder-based NLI model that is focused on encoding natural language

sentences into vectors with the potential to produce a vector representing the general sentence

meaning. The benefit of the design is that after training, the sentence encoder will be able to

learn a more generic language representations that will be useful across many NLP tasks (Con-

neau et al., 2017b; Reimers and Gurevych, 2019). In this thesis, I proposed an LSTM-based sen-

tence encoder for NLI modeling by stacking multiple layers of LSTM with shortcut connections.

The resultant model achieved state-of-the-art performance on the two canonical NLI datasets

(SNLI (Bowman et al., 2015a) and MNLI (Williams et al., 2018a)).

Automatic Fact Checking. This is the most intuitive application of NLI. The task itself can be

also described in an existing NLP framework called Machine Reading at Scale (MRS). Machine
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Reading at Scale (MRS) is a term initiated in (Chen et al., 2017a) to describe the task of language

understanding by utilizing external textual knowledge sources. MRS has become popular ever

since its birth because it promotes the idea of combined design of information retrieval and ma-

chine comprehension. The goal of Machine Reading at Scale has also been extended to build a

system that can give satisfactory responses (such as QA or fact-checking) based on user queries

by accessing and retrieving information from a pre-defined set of knowledge sources. Machine

Reading at Scale is vital for various NLP applications like QA, and automatic fact-checking. Ex-

isting tasks and datasets for MRS includes automatic fact checking (Thorne et al., 2018b) and

multi-hop extractive QA (Yang et al., 2018). Progress on MRS has been made by improving sepa-

rately the upstream retrieval sub-modules and the downstream comprehension sub-modules with

recent advancements on representation learning (Devlin et al., 2019a; Liu et al., 2019b). However,

partially due to the lack of annotated data for intermediate retrieval in an MRS setting, the evalu-

ations were done mainly on the final downstream task and with much less consideration for the

intermediate retrieval performance. This led to the convention that upstream retrieval modules

mostly focus on getting better coverage of the downstream information such that the upper bound

of the downstream score can be improved, rather than finding more exact information. This con-

vention is misaligned with the nature of MRS where equal effort should be put into emphasizing

the models’ joint performance and optimizing the relationship between the semantic retrieval and

the downstream comprehension subtasks. To shed light on the importance of semantic retrieval

for downstream comprehension tasks, we start by establishing a simple and effective hierarchi-

cal pipeline system for MRS using Wikipedia as the external knowledge source. The system is

composed of a term-based retrieval module, two neural modules for both paragraph-level retrieval

and sentence-level retrieval, and a neural downstream task module. The system achieves start-

of-the-art results on both FEVER (Thorne et al., 2018b) and Hotpot QA (Yang et al., 2018) with

significant improvement over the previous best results.

NLI for Consistent Dialogue Modeling. One of the important aspects of NLI applications is

to help improve the consistency and faithfulness of natural language generation (NLG) models.
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This thesis also studied the NLI models in the context of dialogue modeling. We know that when

interacting with chatbots, people carry over many of the same expectations as when interacting

with humans (Nass and Moon, 2000). Self-contradictions by these bots are often jarring, imme-

diately disrupt the conversational flow, and help support arguments about whether generative

models could ever really understand what they are saying at all (Marcus, 2018). From a listener’s

perspective, such inconsistent bots fail to gain user trust and their long-term communication con-

fidence. From a speaker’s perspective, it violates the maxim of quality in Grice’s cooperative

principles (Grice, 1975) —“Do not say what you believe to be false.” Hence, efforts on reducing

contradicting or inconsistent conversations by open-domain chatbots are imperative. Therefore,

we introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational

dataset containing both human-human and human-bot contradictory dialogues. We developed

a contradiction detection model within NLI paradigm and the results show that our best contra-

diction detection model correlates well with human judgments and further provides evidence

for its usage in both automatically evaluating and improving the consistency of state-of-the-art

generative chatbots.

Adversarial NLI and Benchmarking in NLP. The development of challenging large-scale

benchmarks like ImageNet (Krizhevsky et al., 2012) in computer vision, and GLUE (Bow-

man et al., 2015a), SQuAD (Rajpurkar et al., 2016), and others in natural language processing

(NLP) is crucially important for the progress in AI. In recent years, we have witnessed rapid

development and advancement in deep representation learning technologies. In NLP specifi-

cally, the invention of language scale pre-trained transformers like BERT (Devlin et al., 2019a),

RoBERTa (Liu et al., 2019b), GPT (Brown et al., 2020a) have achieved superhuman performance

on various NLP tasks. As a result, model performance on NLP benchmarks like GLUE (Wang

et al., 2018a) has saturated quickly and can no longer be able to give insightful feedback. In spite

of the progress and high benchmark scores, empirical and qualitative analysis by NLP practi-

tioners reveals that current NLP models are still far from human-level intelligence and we are

not close to solving most NLP tasks (Nie et al., 2019b; Gururangan et al., 2018b; Poliak et al.,
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2018b; Tsuchiya, 2018; Glockner et al., 2018; Geva et al., 2019; McCoy et al., 2019). We pro-

pose an iterative, adversarial human-and-model-in-the-loop solution for NLU dataset collection

that addresses both benchmark longevity and robustness issues. In the first stage, human annota-

tors devise examples that our current best models cannot determine the correct label for. These

resulting hard examples—which should expose additional model weaknesses—can be added to

the training set and used to train a stronger model. We then subject the strengthened model to

the same procedure and collect weaknesses over several rounds. After each round, we train a

new model and set aside a new test set. The process can be iteratively repeated in a never-ending

learning (Mitchell et al., 2018) setting, with the model getting stronger and the test set getting

harder in each new round. Thus, not only is the resultant dataset harder than existing benchmarks,

but this process also yields a “moving post” dynamic target for NLU systems, rather than a static

benchmark that will eventually saturate. We used the described procedure to collect a new dataset

called Adversarial NLI (Nie et al., 2020a).

1.1 Thesis Statement

The thesis reveals that rectifying the souring of NLI data is an important factor for both build-

ing applicable NLI models in fact-checking and dialogue modeling, as well as for effectively

benchmarking general language understanding progress.

1.2 Overview of Chapters

The remainder of this dissertation is organized into five chapters. Chapter 2 presents our work

on building a sentence encoder-based NLI model that achieved state-of-the-art performance on

the multi-genre NLI task. Chapter 3 presents our work on building an MRS system that achieved

state-of-the-art performance on both the extractive QA and the automatic fact-checking task.

Experiments on the system reveal the importance of accurate intermediate retrieval in the success

of downstream question answering and NLI models. Chapter 4 presents our work on collecting
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data and utilizing NLI models for automatically evaluating and improving the consistency of

open-domain dialogue agents. Chapter 5 illustrates our efforts in dynamically benchmarking

general natural language understanding progress via adversarial NLI data collection. Chapter 6

summarizes the contributions herein and discusses the potential opportunities for future work.
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CHAPTER 2: SENTENCE ENCODER-BASED NLI

2.1 Introduction and Background

biLSTM

w1 w2

biLSTM biLSTM

biLSTM biLSTM biLSTM

biLSTM biLSTM biLSTM

Row max pooling

Final
Vector 

Representation

Word 
Embedding

Source Sentence

Fine-tunning

wn

Figure 2.1: Our encoder’s architecture: stacked biLSTM with shortcut connections and fine-
tuning.

Natural language inference (NLI) or recognizing textual entailment (RTE) is a fundamental

semantic task in the field of natural language processing. The problem is to determine whether a

given hypothesis sentence can be logically inferred from a given premise sentence. Recently re-

leased datasets such as the Stanford Natural Language Inference Corpus (Bowman et al., 2015a)

(SNLI) and the Multi-Genre Natural Language Inference Corpus (Williams et al., 2017) (Multi-

NLI) have not only encouraged several end-to-end neural network approaches to NLI, but have

also served as an evaluation resource for general representation learning of natural language.
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Depending on whether a model will first encode a sentence into a fixed-length vector with-

out any incorporating information from the other sentence, the several proposed models can be

categorized into two groups: (1) encoding-based models (or sentence encoders), such as Tree-

based CNN encoders (TBCNN) in Mou et al. (2016) or the Stack-augmented Parser-Interpreter

Neural Network (SPINN) in Bowman et al. (2016), and (2) joint, pairwise models that use cross-

features between the two sentences to encode them, such as the Enhanced Sequential Inference

Model (ESIM) in Chen et al. (2017c) or the bilateral multi-perspective matching (BiMPM) model

in Wang et al. (2017b). Moreover, common sentence encoders can again be classified into tree-

based encoders such as SPINN in Bowman et al. (2016) which we mentioned before, or sequen-

tial encoders such as the biLSTM model by Bowman et al. (2015a).

In this work, we follow the former approach of encoding-based models, and propose a novel

yet simple sequential sentence encoder for the Multi-NLI problem. Our encoder does not require

any syntactic information of the sentence. It also does not contain any attention or memory struc-

ture. It is basically a stacked (multi-layered) bidirectional LSTM-RNN with shortcut connections

(feeding all previous layers’ outputs and word embeddings to each layer) and word embedding

fine-tuning. The overall supervised model uses these shortcut-stacked encoders to encode two

input sentences into two vectors, and then we use a classifier over the vector combination to la-

bel the relationship between these two sentences as that of entailment, contradiction, or neutral

(similar to the classifier setup of Bowman et al. (2015a) and Conneau et al. (2017b)). Our sim-

ple shortcut-stacked encoder achieves strong improvements over existing encoders due to its

multi-layered and shortcut-connected properties, on both matched and mismatched evaluation

settings for multi-domain natural language inference, as well as on the original SNLI dataset. It

is the top single-model (non-ensemble) result in the EMNLP RepEval 2017 Multi-NLI Shared

Task (Nangia et al., 2017), and the new state-of-the-art for encoding-based results on the SNLI

dataset (Bowman et al., 2015a).

Github Code Link: https://github.com/easonnie/multiNLI_encoder
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2.2 Model

Our model mainly consists of two separate components, a sentence encoder and an entailment

classifier. The sentence encoder compresses each source sentence into a vector representation

and the classifier makes a three-way classification based on the two vectors of the two source

sentences. The model follows the ‘encoding-based rule’, i.e., the encoder will encode each source

sentence into a fixed length vector without any information or function based on the other sen-

tence (e.g., cross-attention or memory comparing the two sentences). In order to fully explore

the generalization of the sentence encoder, the same encoder is applied to both the premise and

the hypothesis with shared parameters projecting them into the same space. This setting follows

the idea of Siamese Networks in Bromley et al. (1993). Figure 2.1 shows the overview of our

encoding model (the standard classifier setup is not shown here; see Bowman et al. (2015a) and

Conneau et al. (2017b) for that).

2.2.1 Sentence Encoder

Our sentence encoder is simply composed of multiple stacked bidirectional LSTM (biLSTM)

layers with shortcut connections followed by a max pooling layer. Let bilstmi represent the ith

biLSTM layer, which is defined as:

hi
t “ bilstmi

pxi
t, tq, @t P r1, 2, ..., ns (2.1)

where hi
t is the output of the ith biLSTM at time t over input sequence pxi

1, x
i
2, ..., x

i
nq.

In a typical stacked biLSTM structure, the input of the next LSTM-RNN layer is simply the

output sequence of the previous LSTM-RNN layer. In our settings, the input sequences for the

ith biLSTM layer are the concatenated outputs of all the previous layers, plus the original word

embedding sequence. This gives a shortcut connection style setup, related to the widely used

idea of residual connections in CNNs for computer vision (He et al., 2016a), highway networks

for RNNs in speech processing (Zhang et al., 2016), and shortcut connections in hierarchical
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multitasking learning (Hashimoto et al., 2017); but in our case we feed in all the previous layers’

output sequences as well as the word embedding sequence to every layer.

Let W “ pw1, w2, ..., wnq represent words in the source sentence. We assume wi P Rd is a

word embedding vector which is initialized using some pre-trained vector embeddings (and is

then fine-tuned end-to-end via the NLI supervision). Then, the input of ith biLSTM layer at time

t is defined as:

x1
t “ wt (2.2)

xi
t “ rwt, h

i´1
t , hi´2

t , ...h1
t s pfor i ą 1q (2.3)

where rs represents vector concatenation.

Then, assuming we have m layers of biLSTM, the final vector representation will be obtained

by applying row-max-pool over the output of the last biLSTM layer, similar to Conneau et al.

(2017b). The final layer is defined as:

Hm
“ phm

1 , h
m
2 , ..., h

m
n q (2.4)

v “ maxpHm
q (2.5)

where hm
i , v P R2dm , Hm P R2dmˆn, dm is the dimension of the hidden state of the last for-

ward and backward LSTM layers, and v is the final vector representation for the source sentence

(which is later fed to the NLI classifier).

The closest encoder architecture to ours is that of Conneau et al. (2017b), whose model con-

sists of a single-layer biLSTM with a max-pooling layer, which we treat as our starting point.

Our experiments (Section 2.4) demonstrate that our enhancements of the stacked-biRNN with

shortcut connections provide significant gains on top of this baseline (for both SNLI and Multi-

NLI).
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2.2.2 Entailment Classifier

After we obtain the vector representation for the premise and hypothesis sentence, we ap-

ply three matching methods to the two vectors (i) concatenation (ii) element-wise distance and

(iii) element-wise product for these two vectors and then concatenate these three match vectors

(based on the heuristic matching presented in Mou et al. (2016)). Let vp and vh be the vector

representations for premise and hypothesis, respectively. The matching vector is then defined as:

m “ rvp, vh, |vp ´ vh| , vp b vhs (2.6)

At last, we feed this final concatenated result m into a MLP layer and use a softmax layer to

make final classification.

Layers and Dimensions Accuracy
#layers bilstm-dim Matched Mismatched

1 512 72.5 72.9
2 512 + 512 73.4 73.6
1 1024 72.9 72.9
2 512 + 1024 73.7 74.2
1 2048 73.0 73.5
2 512 + 2048 73.7 74.2
2 1024 + 2048 73.8 74.4
2 2048 + 2048 74.0 74.6
3 512 + 1024 + 2048 74.2 74.7

Table 2.1: Analysis of results for models with different # of biLSTM layers and their hidden
state dimensions.

Matched Mismatched
without any shortcut connection 72.6 73.4
only word shortcut connection 74.2 74.6

full shortcut connection 74.2 74.7

Table 2.2: Ablation results with and without shortcut connections.
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Word-Embedding Matched Mismatched
fixed 71.8 72.6

fine-tuned 72.7 72.8

Table 2.3: Ablation results with and without fine-tuning of word embeddings.

# of MLPs Activation Matched Mismatched
1 tanh 73.7 74.1
2 tanh 73.5 73.6
1 relu 74.1 74.7
2 relu 74.2 74.7

Table 2.4: Ablation results for different MLP classifiers.

2.3 Experimental Setup

2.3.1 Datasets

As instructed in the RepEval Multi-NLI shared task, we use all of the training data in Multi-

NLI combined with 15% randomly selected samples from the SNLI training set resampled at

each epoch) as our final training set for all models; and we use both the cross-domain (‘mis-

matched’) and in-domain (‘matched’) Multi-NLI development sets for model selection. For the

SNLI test results in Table 2.5, we train on only the SNLI training set (and we also verify that the

tuning decisions hold true on the SNLI dev set).

Model Accuracy
SNLI Multi-NLI Matched Multi-NLI Mismatched

CBOW (Williams et al., 2017) 80.6 65.2 64.6
biLSTM Encoder (Williams et al., 2017) 81.5 67.5 67.1

300D Tree-CNN Encoder (Mou et al., 2016) 82.1 – –
300D SPINN-PI Encoder (Bowman et al., 2016) 83.2 – –
300D NSE Encoder (Munkhdalai and Yu, 2017) 84.6 – –
biLSTM-Max Encoder (Conneau et al., 2017b) 84.5 – –

Our biLSTM-Max Encoder 85.2 71.7 71.2
Our Shortcut-Stacked Encoder 86.1 74.6 73.6

Table 2.5: Final Test Results on SNLI and Multi-NLI datasets.
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2.3.2 Parameter Settings

We use cross-entropy loss as the training objective with Adam-based (Kingma and Ba, 2015)

optimization with a batch size of 32. The starting learning rate is 0.0002 with half decay every

two epochs. The number of hidden units for MLP classifier is 1600. A dropout layer is also

applied on the output of each MLP layer, with dropout rate set to 0.1. We used pre-trained 300D

Glove 840B vectors (Pennington et al., 2014) to initialize the word embeddings. Tuning decisions

for word embedding training strategy, the hyperparameters of dimension and number of layers for

biLSTM, and the activation type and number of layers for MLP, are all explained in Section 2.4.

2.4 Results and Analysis

2.4.1 Ablation Analysis Results

We now investigate the effectiveness of each of the enhancement components in our overall

model. These ablation results are shown in Tables 2.1, 2.2, 2.3 and 2.4, all based on the Multi-

NLI development sets. Finally, Table 2.5 shows results for different encoders on SNLI and Multi-

NLI test sets.

First, Table 2.1 shows the performance changes for different number of biLSTM layers and

their varying dimension size. The dimension size of a biLSTM layer is referring to the dimension

of the hidden state for both the forward and backward LSTM-RNNs. As shown, each added layer

model improves the accuracy and we achieve a substantial improvement in accuracy (around 2%)

on both matched and mismatched settings, compared to the single-layer biLSTM in Conneau

et al. (2017b). We only experimented with up to 3 layers with 512, 1024, 2048 dimensions each,

so the model still has potential to improve the result further with a larger dimension and more

layers.

Next, in Table 2.2, we show that the shortcut connections among the biLSTM layers are also

an important contributor to accuracy improvement (around 1.5% on top of the full 3-layered

stacked-RNN model). This demonstrates that simply stacking the biLSTM layers is not sufficient
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to handle a complex task like Multi-NLI and it is significantly better to have the higher layer

connected to both the output and the original input of all the previous layers (note that Table 2.1

results are based on multi-layered models with shortcut connections).

Next, in Table 2.3, we show that fine-tuning the word embeddings also improves results,

again for both the in-domain task and cross-domain tasks (the ablation results are based on a

smaller model with a 128+256 2-layer biLSTM). Hence, all our models were trained with word

embeddings being fine-tuned. The last ablation in Table 2.4 shows that a classifier with two lay-

ers of ReLU is preferable than other options. Thus, we use that setting for our strongest encoder.

2.4.2 Multi-NLI and SNLI Test Results

Finally, in Table 2.5, we report the test results for MNLI and SNLI. First for Multi-NLI, we

improve substantially over the CBOW and biLSTM Encoder baselines reported in the dataset pa-

per (Williams et al., 2017). We also show that our final shortcut-based stacked encoder achieves

around 3% improvement as compared to the 1-layer biLSTM-Max Encoder in the second last row

(using the exact same classifier and optimizer settings). Our shortcut-encoder was also the top

singe-model (non-ensemble) result on the EMNLP RepEval Shared Task leaderboard.

Next, for SNLI, we compare our shortcut-stacked encoder with the current state-of-the-art

encoders from the SNLI leaderboard (https://nlp.stanford.edu/projects/snli/).

We also compare to the recent biLSTM-Max Encoder of Conneau et al. (2017b), which served

as our model’s 1-layer starting point.1 The results indicate that ‘Our Shortcut-Stacked Encoder’

surpasses all the previous state-of-the-art encoders, and achieves the new best encoding-based

result on SNLI, suggesting the general effectiveness of simple shortcut-connected stacked layers

in sentence encoders.

1Note that the ‘Our biLSTM-Max Encoder’ results in the second-last row are obtained using our reimplementation of
the Conneau et al. (2017b) model; our version is 0.7% better, likely due to our classifier and optimizer settings.
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2.5 Conclusion

We explored various simple combinations and connections of biLSTM-RNN layered archi-

tectures and developed a Shortcut-Stacked Sentence Encoder for natural language inference. Our

model is the top single result in the EMNLP RepEval 2017 Multi-NLI Shared Task, and it also

surpasses the state-of-the-art encoders for the SNLI dataset. In future work, we are also evaluat-

ing the effectiveness of shortcut-stacked sentence encoders on several other semantic tasks.

2.6 Addendum: Shortcut vs. Residual

In later experiments, we found that a residual connection can achieve similar accuracies with

fewer number of parameters, compared to a shortcut connection. Therefore, in order to reduce the

model size and to also follow the SNLI leader-board settings (e.g., 300D and 600D embeddings),

we performed some additional SNLI experiments with the shortcut connections replaced with

residual connections, where the input to each next biLSTM layer is the concatenation of the word

embedding and the summation of outputs of all previous layers (related to ResNet in computer

vision (He et al., 2016a)). Table 2.6 shows these residual-connection SNLI test results and the

parameter comparison to shortcut-connection models (using 3 stacked-biLSTM layers, and one

800-unit MLP layer, based on SNLI dev set tuning).

Model #param Dev Test
300D Residual-Stacked-Encoder 9.7M 86.4 85.7
600D Residual-Stacked-Encoder 28.9M 87.0 86.0
600D Shortcut-Stacked-Encoder 34.7M 86.8 85.9

Table 2.6: Results on SNLI for the fewer-parameter Residual-Stacked Encoder models. Each
model has 3 biLSTM-stacked layers and 1 MLP layer. The #param column denotes the number
of parameters in millions.
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CHAPTER 3: FACT CHECKING, EXTRACTIVE QA, AND SEMANTIC RETRIEVAL
IN MACHINE READING AT SCALE

3.1 Introduction

Extracting external textual knowledge for machine comprehensive systems such as fact check-

ing and question answering has long been an important yet challenging problem. Success re-

quires not only precise retrieval of the relevant information sparsely restored in a large knowledge

source but also a deep understanding of both the selected knowledge and the input query to give

the corresponding output. Initiated by Chen et al. (2017b), the task was termed as Machine Read-

ing at Scale (MRS), seeking to provide a challenging situation where machines are required to

do both semantic retrieval and comprehension at different levels of granularity for the final down-

stream task.

Progress on MRS has been made by separately improving the information retrieval (IR) sub-

modules and the machine comprehension sub-modules with recent advancements on representa-

tion learning (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019b). However, partially

due to the lack of annotated data for intermediate retrieval in an MRS setting, the evaluations

were done mainly on the final downstream task and with much less consideration on the interme-

diate retrieval performance. This led to the convention that upstream retrieval modules mostly

focus on getting better coverage of the downstream information such that the upper-bound of the

downstream score can be improved, rather than finding more exact information. This conven-

tion is misaligned with the nature of MRS where equal effort should be put in emphasizing the

models’ joint performance and optimizing the relationship between the semantic retrieval and the

downstream comprehension sub-tasks.
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Hence, to shed light on the importance of semantic retrieval for downstream comprehen-

sion tasks, we start by establishing a simple yet effective hierarchical pipeline system for MRS

using Wikipedia as the external knowledge source. The system is composed of a term-based

retrieval module, two neural modules for both the paragraph-level retrieval and sentence-level re-

trieval, and a neural downstream task module. We evaluated the system on two recent large-scale

open domain benchmarks for fact verification and multi-hop QA, namely FEVER (Thorne et al.,

2018a) and HOTPOTQA (Yang et al., 2018), in which retrieval performance can also be evaluated

accurately since intermediate annotations on evidences are provided. Our system achieves the

state-of-the-art results with 45.32% for answer EM and 25.14% joint EM on HOTPOTQA (8% ab-

solute improvement on answer EM and doubling the joint EM over the previous best results) and

with 67.26% on FEVER score (3% absolute improvement over previously published systems).

We then provide empirical studies to validate design decisions. Specifically, we show the

necessity of both the paragraph-level retrieval and sentence-level retrieval for maintaining good

performance, and further illustrate that a better semantic retrieval module not only is beneficial

to achieving high recall and keeping a high upper bound for downstream tasks, but also plays

an important role in shaping the downstream data distribution and providing more relevant and

high-quality data for downstream sub-module training and inference. These mechanisms are vital

for a good MRS system on both QA and fact verification.

3.2 Related Work

Machine Reading at Scale First proposed and formalized in Chen et al. (2017b), MRS has

gained popularity with increasing amount of work on both dataset collection (Joshi et al., 2017;

Welbl et al., 2018) and MRS model developments (Wang et al., 2018b; Clark and Gardner, 2017;

Htut et al., 2018). In some previous work (Lee et al., 2018), paragraph-level retrieval modules

were mainly for improving the recall of required information, while in some other works (Yang

et al., 2018), sentence-level retrieval modules were merely for solving the auxiliary sentence se-

lection task. In our work, we focus on revealing the relationship between semantic retrieval at
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different granularity levels and the downstream comprehension task. To the best of our knowl-

edge, we are the first to apply and optimize neural semantic retrieval at both the paragraph and

sentence levels for MRS.

Automatic Fact Checking: Recent work (Thorne and Vlachos, 2018) formalized the task of au-

tomatic fact checking from the viewpoint of machine learning and NLP. The release of FEVER (Thorne

et al., 2018a) stimulates many recent developments (Nie et al., 2019a; Yoneda et al., 2018;

Hanselowski et al., 2018) on data-driven neural networks for automatic fact checking. We con-

sider the task also as MRS because they share almost the same setup except that the downstream

task is verification or natural language inference (NLI) rather than QA.

Information Retrieval Success in deep neural networks inspires their application to informa-

tion retrieval (IR) tasks (Huang et al., 2013; Guo et al., 2016; Mitra et al., 2017; Dehghani et al.,

2017). In typical IR settings, systems are required to retrieve and rank (Nguyen et al., 2016) ele-

ments from a collection of documents based on their relevance to the query. This setting might be

very different from the retrieval in MRS where systems are asked to select facts needed to answer

a question or verify a statement. We refer to the retrieval in MRS as Semantic Retrieval since it

emphasizes on semantic understanding.

3.3 Method

In previous works, an MRS system can be complicated with different sub-components pro-

cessing different retrieval and comprehension sub-tasks at different levels of granularity, and with

some sub-components intertwined. For interpretability considerations, we used a unified pipeline

setup. The overview of the system is in Fig. 3.1.

To be specific, we formulate the MRS system as a function that maps an input tuple pq,Kq to

an output tuple pŷ,Sq where q indicates the input query, K is the textual KB (Knowledge Base), ŷ

is the output prediction, and S are selected supporting sentences from Wikipedia. Let E denotes

a set of necessary evidences or facts selected from K for the prediction. For a QA task, q is the
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P-Level
Retrieval

S-Level
Retrieval

QA

When did Robben retire 
from Bayern?

P-Level
Retrieval

S-Level
Retrieval

NLI True

2019

2019

Term based

False

Fact 1: Robben said in an interview "I can 
say that this is my last year [at Bayern]...

Fact 2: On 18 May 2019, he scored 
his last league goal for Bayern...

Robben retired from 
Bayern in 2009.

Term based

Figure 3.1: System Overview: blue dotted arrows indicate the inference flow and the red solid
arrows indicate the training flow. Grey rounded rectangles are neural modules with different
functionality. The two retrieval modules were trained with all positive examples from annotated
ground truth set and negative examples sampled from the direct upstream modules. Thus, the
distribution of negative examples is subjective to the quality of the upstream module.

input question and ŷ is the predicted answer. For a verification task, q is the input claim and ŷ is

the predicted truthfulness of the input claim. For all tasks, K is Wikipedia.

The system procedure is listed below:

(1) Term-Based Retrieval: To begin with, we used a combination of the TF-IDF method and a

rule-based keyword matching method1 to narrow the scope from the entire Wikipedia down to

a set of related paragraphs; this is a standard procedure in MRS (Chen et al., 2017b; Lee et al.,

2018; Nie et al., 2019a). The focus of this step is to efficiently select a candidate set PI that can

cover the information as much as possible (PI Ă K) while keeping the size of the set acceptable

enough for downstream processing.

(2) Paragraph-Level Neural Retrieval: After obtaining the initial set, we compare each para-

graph in PI with the input query q using a neural model (which will be explained later in Sec 3.3.1).

The outputs of the neural model are treated as the relatedness score between the input query and

the paragraphs. The scores will be used to sort all the upstream paragraphs. Then, PI will be

1Details of term-based retrieval are in Appendix.
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narrowed to a new set PN (PN Ă PI) by selecting the top kp paragraphs having relatedness score

higher than some threshold value hp (going out from the P-Level grey box in Fig. 3.1). kp and hp

would be chosen by keeping a good balance between the recall and precision of the paragraph

retrieval.

(3) Sentence-Level Neural Retrieval: Next, we select the evidence at the sentence-level by

decomposing all the paragraphs in PN into sentences. Similarly, each sentence is compared with

the query using a neural model (see details in Sec 3.3.1) and we obtain a set of sentences S Ă PN

for the downstream task by choosing the top ks sentences with output scores higher than some

threshold hs (S-Level grey box in Fig. 3.1). During evaluation, S is often evaluated against some

ground truth sentence set denoted as E.

(4) Downstream Modeling: At the final step, we simply applied task-specific neural models

(e.g., QA and NLI) on the concatenation of all the sentences in S and the query, obtaining the

final output ŷ.

In some experiments, we modified the setup for certain analysis or ablation purposes which

will be explained individually in Sec 3.6.

3.3.1 Modeling and Training

Throughout all our experiments, we used BERT-Base (Devlin et al., 2019b) to provide the

state-of-the-art contextualized modeling of the input text.2

Semantic Retrieval: We treated the neural semantic retrieval at both the paragraph and sen-

tence level as binary classification problems with the models’ parameters updated by minimizing

binary cross entropy loss. To be specific, we fed the query and context into BERT as:

rCLS s Query rSEP s Context rSEP s

2We used the pytorch BERT implementation in https://github.com/huggingface/pytorch-
pretrained-BERT.
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We applied an affine layer and sigmoid activation on the last layer output of the [CLS ] token

which is a scalar value. The parameters were updated with the objective function:

Jretri “ ´
ÿ

iPT
p{s
pos

logpp̂iq ´
ÿ

iPT
p{s
neg

logp1 ´ p̂iq

where p̂i is the output of the model, Tp{s
pos is the positive set and T

p{s
neg is the negative set. As shown

in Fig. 3.1, at sentence level, ground-truth sentences were served as positive examples while other

sentences from the upstream retrieved set were served as negative examples. Similarly at the

paragraph-level, paragraphs having any ground-truth sentence were used as positive examples

and other paragraphs from the upstream term-based retrieval processes were used as negative

examples.

QA: We followed Devlin et al. (2019b) for QA span prediction modeling. To correctly handle

yes-or-no questions in HOTPOTQA, we fed the two additional “yes” and “no” tokens between

[CLS ] and the Query as:

rCLS s yes no Query rSEP s Context rSEP s

where the supervision was given to the second or the third token when the answer is “yes” or

“no”, such that they can compete with all other predicted spans. The parameters of the neural QA

model were trained to maximize the log probabilities of the true start and end indexes as:

Jqa “ ´
ÿ

i

“

logpŷsi q ` logpŷei q
‰

where ŷsi and ŷei are the predicted probability on the ground-truth start and end position for the

ith example, respectively. It is worth noting that we used ground truth supporting sentences plus

some other sentences sampled from the upstream retrieved set as the context for training the QA

module such that it will adapt to the upstream data distribution during inference.
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Fact Verification: Following Thorne et al. (2018a), we formulate downstream fact verifica-

tion as a 3-way natural language inference (NLI) classification problem (MacCartney and Man-

ning, 2009; Bowman et al., 2015a) and train the model with 3-way cross entropy loss. The input

format is the same as that of semantic retrieval and the objective is Jver “ ´
ř

i yi ¨ logpŷiq, where

ŷi P R3 denotes the model’s output for the three verification labels, and yi is a one-hot embed-

ding for the ground-truth label. For verifiable queries, we used ground truth evidential sentences

plus some other sentences sampled from the upstream retrieved set as new evidential context for

NLI. For non-verifiable queries, we only used sentences sampled from the upstream retrieved set

as context because those queries are not associated with ground truth evidential sentences. This

detail is important for the model to identify non-verifiable queries and will be explained more in

Sec 3.6.

It is worth noting that each sub-module in the system relies on its preceding sub-module to

provide data both for training and inference. This means that there will be upstream data distri-

bution misalignment if we trained the sub-module in isolation without considering the properties

of its precedent upstream module. The problem is similar to the concept of internal covariate

shift (Ioffe and Szegedy, 2015), where the distribution of each layer’s inputs changes inside a

neural network. Therefore, it makes sense to study this issue in a joint MRS setting rather than

a typical supervised learning setting where training and test data tend to be fixed and modules

being isolated. We release our code and the organized data both for reproducibility and providing

an off-the-shelf testbed to facilitate future research on MRS.

3.4 Experimental Setup

MRS requires a system not only to retrieve relevant content from textual KBs but also to

poccess enough understanding ability to solve the downstream task. To understand the impact

or importance of semantic retrieval on the downstream comprehension, we established a unified

experimental setup that involves two different downstream tasks, i.e., multi-hop QA and fact

verification.
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3.4.1 Tasks and Datasets

HOTPOTQA: This dataset is a recent large-scale QA dataset that brings in new features: (1) the

questions require finding and reasoning over multiple documents; (2) the questions are diverse

and not limited to pre-existing KBs; (3) it offers a new comparison question type (Yang et al.,

2018). We experimented with our system on HOTPOTQA in the fullwiki setting, where a system

must find the answer to a question in the scope of the entire Wikipedia, an ideal MRS setup. The

sizes of the train, dev and test split are 90,564, 7,405, and 7,405. More importantly, HOTPOTQA

also provides human-annotated sentence-level supporting facts that are needed to answer each

question. Those intermediate annotations enable evaluation on models’ joint ability on both fact

retrieval and answer span prediction, facilitating our direct analysis on the explainable predictions

and their relations with the upstream retrieval.

FEVER: The Fact Extraction and VERification dataset (Thorne et al., 2018a) is a recent dataset

collected to facilitate the automatic fact checking. The work also proposes a benchmark task in

which given an arbitrary input claim, candidate systems are asked to select evidential sentences

from Wikipedia and label the claim as either SUPPORT, REFUTE, or NOT ENOUGH INFO, if the

claim can be verified to be true, false, or non-verifiable, respectively, based on the evidence. The

sizes of the train, dev and test split are 145,449, 19,998, and 9,998. Similar to HOTPOTQA, the

dataset provides annotated sentence-level facts needed for the verification. These intermediate

annotations could provide an accurate evaluation on the results of semantic retrieval and thus is

well suited for the analysis on the effects of the retrieval module on downstream verification.

As in Chen et al. (2017b), we use Wikipedia as our unique knowledge base because it is a

comprehensive and self-evolving information source often used to facilitate intelligent systems.

Moreover, as Wikipedia is the source for both HOTPOTQA and FEVER, it helps standardize any

further analysis of the effects of semantic retrieval on the two different downstream tasks.
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3.4.2 Metrics

Following Thorne et al. (2018a); Yang et al. (2018), we used annotated sentence-level facts to

calculate the F1, Precision and Recall scores for evaluating sentence-level retrieval. Similarly, we

labeled all the paragraphs that contain any ground truth fact as ground truth paragraphs and used

the same three metrics for paragraph-level retrieval evaluation. For HOTPOTQA, following Yang

et al. (2018), we used exact match (EM) and F1 metrics for QA span prediction evaluation, and

used the joint EM and F1 to evaluate models’ joint performance on both retrieval and QA. The

joint EM and F1 are calculated as: Pj “ Pa ¨ Ps;Rj “ Ra ¨ Rs;Fj “
2Pj ¨Rj

Pj`Rj
;EMj “ EMa ¨ EMs,

where P , R, and EM denote precision, recall and EM; the subscript a and s indicate that the

scores are for answer span and supporting facts.

For the FEVER task, following Thorne et al. (2018a), we used the Label Accuracy for evalu-

ating downstream verification and the Fever Score for joint performance. Fever score will award

one point for each example with the correct predicted label only if all ground truth facts were con-

tained in the predicted facts set with at most 5 elements. We also used Oracle Score for the two

retrieval modules. The scores were proposed in Nie et al. (2019a) and indicate the upperbound of

the final FEVER Score at one intermediate layer assuming all downstream modules are perfect.

All scores are averaged over the examples in the whole evaluation set.

3.5 Results on Benchmarks

We chose the best system based on the dev set, and used that for submitting private test pre-

dictions on both FEVER and HOTPOTQA3.

As can be seen in Table 3.1, with the proposed hierarchical system design, the whole pipeline

system achieves a start-of-the-art on HOTPOTQA with large-margin improvements on all the

metrics. More specifically, the biggest improvement comes from the EM for the supporting fact

which in turn leads to doubling of the joint EM on previous best results. The scores for answer

3Results can also be found at the leaderboard websites for the two datasets: https://hotpotqa.github.io
and https://competitions.codalab.org/competitions/18814
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Method Ans Sup Joint

EM F1 EM F1 EM F1

Yang Yang et al. (2018) 24.7 34.4 5.3 41.0 2.5 17.7
Ding Ding et al. (2019) 37.6 49.4 23.1 58.5 12.2 35.3
whole pip. 46.5 58.8 39.9 71.5 26.6 49.2
Dev set

Yang Yang et al. (2018) 24.0 32.9 3.9 37.7 1.9 16.2
MUPPET 30.6 40.3 16.7 47.3 10.9 27.0
Ding Ding et al. (2019) 37.1 48.9 22.8 57.7 12.4 34.9
whole pip. 45.3 57.3 38.7 70.8 25.1 47.6
Test set

Table 3.1: Results of systems on HOTPOTQA.

Model F1 LA FS

Hanselowski Hanselowski et al. (2018) - 68.49 64.74
Yoneda Yoneda et al. (2018) 35.84 69.66 65.41
Nie Nie et al. (2019a) 51.37 69.64 66.15
Full system (single) 76.87 75.12 70.18
Dev set

Hanselowski Hanselowski et al. (2018) 37.33 65.22 61.32
Yoneda Yoneda et al. (2018) 35.21 67.44 62.34
Nie Nie et al. (2019a) 52.81 68.16 64.23
Full system (single) 74.62 72.56 67.26
Test set

Table 3.2: Performance of systems on FEVER. “F1” indicates the sentence-level evidence F1
score. “LA” indicates Label Acc. without considering the evidence prediction. “FS”=FEVER
Score (Thorne et al., 2018a)

predictions are also higher than all previous best results with „8 absolute points increase on

EM and „9 absolute points on F1. All the improvements are consistent between test and dev set

evaluation.

Similarly for FEVER, we showed F1 for evidence, the Label Accuracy, and the FEVER

Score (same as benchmark evaluation) for models in Table 3.2. Our system obtained substantially

higher scores than all previously published results with a „4 and „3 points absolute improve-

ment on Label Accuracy and FEVER Score. In particular, the system gains 74.62 on the evidence

F1, 22 points greater that of the second system, demonstrating its ability on semantic retrieval.
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Previous systems (Ding et al., 2019; Yang et al., 2018) on HOTPOTQA treat supporting fact

retrieval (sentence-level retrieval) just as an auxiliary task for providing extra model explain-

ability. In Nie et al. (2019a), although they used a similar three-stage system for FEVER, they

only applied one neural retrieval module at sentence-level which potentially weakens its retrieval

ability. Both of these previous best systems are different from our fully hierarchical pipeline

approach. These observations lead to the assumption that the performance gain comes mainly

from the hierarchical retrieval and its positive effects on downstream tasks. Therefore, to validate

the system design decisions in Sec 3.3 and reveal the importance of semantic retrieval towards

downstream performance, we conducted a series of ablation and analysis experiments on all the

modules. We started by examining the necessity of both the paragraph and sentence retrieval and

give insights on why both of them matter.

3.6 Analysis and Ablations

Intuitively, both the paragraph-level and sentence-level retrieval sub-module help speeding

up the downstream processing. More importantly, since downstream modules were trained by

sampled data from upstream modules, both of neural retrieval sub-modules also play an implicit

but important role in controlling the immediate retrieval distribution i.e. the distribution of set

PN and set S (as shown in Fig. 3.1), and providing better inference data and training data for

downstream modules.

3.6.1 Ablation Studies

Setups: To reveal the importance of neural retrieval modules at both paragraph and sentence

level for maintaining the performance of the overall system, we removed either of them and

examine the consequences. Because the removal of a module in the pipeline might change the

distribution of the input of the downstream modules, we re-trained all the downstream modules

accordingly. To be specific, in the system without the paragraph-level neural retrieval module, we

re-trained the sentence-level retrieval module with negative sentences directly sampled from the
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Method P-Level Retrieval S-Level Retrieval Answer Joint

Prec. Rec. F1 EM Prec. Rec. F1 EM F1 EM F1

Whole Pip. 35.17 87.93 50.25 39.86 75.60 71.15 71.54 46.50 58.81 26.60 49.16
Pip. w/o p-level 6.02 89.53 11.19 0.58 29.57 60.71 38.84 31.23 41.30 0.34 19.71
Pip. w/o s-level 35.17 87.92 50.25 - - - - 44.77 56.71 - -

Table 3.3: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on
HOTPOTQA.

Method P-Level Retrieval S-Level Retrieval Verification

Orcl. Prec. Rec. F1 Orcl. Prec. Rec. F1 LA FS L-F1 (S/R/N)

Whole Pip. 94.15 48.84 91.23 63.62 88.92 71.29 83.38 76.87 70.18 75.01 81.7/75.7/67.1
Pip. w/o p-level 94.69 18.11 92.03 30.27 91.07 44.47 86.60 58.77 61.55 67.01 76.5/72.7/40.8
Pip. w/o s-level 94.15 48.84 91.23 63.62 - - - - 55.92 61.04 72.1/67.6/27.7

Table 3.4: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules
on FEVER. “LA”=Label Accuracy; “FS”=FEVER Score; “Orcl.” is the oracle upperbound of
FEVER Score assuming all downstream modules are perfect. “L-F1 (S/R/N)” means the classifi-
cation f1 scores on the three verification labels: SUPPORT, REFUTE, and NOT ENOUGH INFO.

term-based retrieval set and then also re-trained the downstream QA or verification module. In

the system without the sentence-level neural retrieval module, we re-train the downstream QA or

verification module by sampling data from both ground truth set and retrieved set directly from

the paragraph-level module. We tested the simplified systems on both FEVER and HOTPOTQA.

Results: Tables 3.3 and 3.4 shows the ablation results for the two neural retrieval modules at

both paragraph and sentence level on HOTPOTQA and FEVER. To begin with, we can see that re-

moving the paragraph-level retrieval module significantly reduces the precision for sentence-level

retrieval and the corresponding F1 on both tasks. More importantly, this loss of retrieval precision

also led to substantial decreases for all the downstream scores on both the QA and verification

task in spite of their higher upper-bound and recall scores. This indicates that the negative ef-

fects on the downstream module induced by the omission of paragraph-level retrieval can not

be amended by the sentence-level retrieval module, and focusing semantic retrieval merely on

improving the recall or the upper-bound of the final score will risk jeopardizing the performance

of the overall system.

Next, the removal of the sentence-level retrieval module induces a „2 point drop on EM and

F1 score in the QA task, and a „15 point drop on the FEVER Score in the verification task. This
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Figure 3.2: The results of EM for supporting fact, answer prediction and joint score, and the re-
sults of supporting fact precision and recall with different values of kp at paragraph-level retrieval
on HOTPOTQA.

suggests that rather than just enhance explainability for QA, the sentence-level retrieval module

can also help pinpoint relevant information and reduce the noise in the evidence that might other-

wise distract the downstream comprehension module. Another interesting finding is that without

sentence-level retrieval module, the QA module suffered much less than the verification module;

conversely, the removal of the paragraph-level retrieval neural module induces a 11 point drop on

answer EM comparing to a „9 point drop on Label Accuracy in the verification task. This seems

to indicate that the downstream QA module relies more on the upstream paragraph-level retrieval

whereas the verification module relies more on the upstream sentence-level retrieval. Finally, we

also evaluate the F1 score on FEVER for each classification label and we observe a significant

drop of F1 on NOT ENOUGH INFO category without retrieval module, meaning that semantic

retrieval is vital for the downstream verification module’s discriminative ability on NOT ENOUGH

INFO label.

3.6.2 Sub-Module Change Analysis

To further study the effects of upstream semantic retrieval towards downstream tasks, we

change training or inference data between intermediate layers and then examine how this modifi-

cation will affect the downstream performance.

Effects of Paragraph-level Retrieval We fixed hp “ 0 (the value achieving the best perfor-

mance) and re-trained all the downstream parameters and track their performance as kp (the
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Figure 3.3: The results of EM for supporting fact, answer prediction and joint score, and the re-
sults of supporting fact precision and recall with different values of hs at sentence-level retrieval
on HOTPOTQA.

Figure 3.4: The results of Label Accuracy, FEVER Score, and Evidence F1 with different values
of hs at sentence-level retrieval on FEVER.

number of selected paragraphs) being changed from 1 to 12. The increasing of kp means a poten-

tial higher coverage of the answer but more noise in the retrieved facts. Fig. 3.2 shows the results.

As can be seen that the EM scores for supporting fact retrieval, answer prediction, and joint per-

formance increase sharply when kp is changed from 1 to 2. This is consistent with the fact that at

least two paragraphs are required to answer each question in HOTPOTQA. Then, after the peak,

every score decreases as kp becomes larger except the recall of supporting fact which peaks when

kp “ 4. This indicates that even though the neural sentence-level retrieval module possesses

a certain level of ability to select correct facts from noisier upstream information, the final QA

module is more sensitive to upstream data and fails to maintain the overall system performance.

Moreover, the reduction on answer EM and joint EM suggests that it might be risky to give too

much information for downstream modules with a unit of a paragraph.
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Effects of Sentence-level Retrieval Similarly, to study the effects of the neural sentence-level

retrieval module towards downstream QA and verification modules, we fixed ks to be 5 and set hs

ranging from 0.1 to 0.9 with a 0.1 interval. Then, we re-trained the downstream QA and verifica-

tion modules with different hs value and experimented on both HOTPOTQA and FEVER.

Question Answering: Fig. 3.3 shows the performance trend. Intuitively, the precision increases

while the recall decreases as the system becomes more strict about the retrieved sentences. The

EM scores for supporting fact retrieval and joint performance reaches their highest values when

hs “ 0.5, a natural balancing point between precision and recall. More interestingly, the EM

score for answer prediction peaks when hs “ 0.2 and where the recall is higher than the pre-

cision. This misalignment between answer prediction performance and retrieval performance

indicates that unlike the observation at the paragraph-level, the downstream QA module is able to

withstand a certain amount of noise at the sentence-level and benefits from a higher recall.

Fact Verification: Fig. 3.4 shows the trends for Label Accuracy, FEVER Score, and Evidence

F1 by modifying the upstream sentence-level threshold hs. We observed that the general trend is

similar to that of the QA task where both the label accuracy and FEVER score peak at hs “ 0.2

whereas the retrieval F1 peaks at hs “ 0.5. Note that, although the downstream verification

could take advantage of a higher recall, the module is more sensitive to sentence-level retrieval

compared to the QA module in HOTPOTQA.

3.6.3 Answer Breakdown

We further sample 200 examples from HOTPOTQA and manually tag them according to

several common answer types (Yang et al., 2018). The proportion of different answer types is

shown in Figure 3.5. The performance of the system on each answer type is shown in Table 3.5.

The most frequent answer type is ’Person’ (24%) and the least frequent answer type is ’Event’

(2%). It is also interesting to note that the model performs the best in Yes/No questions as shown

in Table 3.5, reaching an accuracy of 70.6%.
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Answer Type Total Correct Acc. (%)

Person 50 28 56.0
Location 31 14 45.2
Date 26 13 50.0
Number 14 4 28.6
Artwork 19 7 36.8
Yes/No 17 12 70.6
Event 5 2 40.0
Common noun 11 3 27.3
Group/Org 17 6 35.3
Other PN 20 9 45.0

Total 200 98 49.0

Table 3.5: System performance on different answer types. “PN”= Proper Noun
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Figure 3.5: Proportion of answer types.

3.6.4 Examples

Fig. 3.6 shows an example that is correctly handled by the full pipeline system but not by the

system without paragraph-level retrieval module. We can see that it is very difficult to filter the

distracting sentence after the sentence-level either by the sentence retrieval module or the QA

module.

Above findings in both FEVER and HOTPOTQA bring us some important guidelines for

MRS: (1) A paragraph-level retrieval module is imperative; (2) A downstream task module is

able to undertake a certain amount of noise from sentence-level retrieval; (3) Cascade effects on

downstream tasks might be caused by a modification at the paragraph-level retrieval.
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Question: Wojtek Wolski played for what team based in the Miami metropolitan area?
GT Answer: Florida Panthers

GT Facts:
[Florida Panthers,0]: The Florida Panthers are a professional ice hockey team based in the
Miami metropolitan area. pP-Score : 0.99; S-Score : 0.98q

[Wojtek Wolski,1]: In the NHL, he has played for the Colorado Avalanche, Phoenix Coyotes,
New York Rangers, Florida Panthers, and the Washington Capitals. pP-Score : 0.98; S-Score :
0.95q

Distracting Fact:
[History of the Miami Dolphins,0]: The Miami Dolphins are a professional American football
franchise based in the Miami metropolitan area. pP-Score : 0.56; S-Score : 0.97q

Wrong Answer : The Miami Dolphins

Figure 3.6: An example with a distracting fact. P-Score and S-Score are the retrieval score at
paragraph and sentence level respectively. The full pipeline was able to filter the distracting fact
and give the correct answer. The wrong answer in the figure was produced by the system without
paragraph-level retrieval module.

3.7 Conclusion

We proposed a simple yet effective hierarchical pipeline system that achieves state-of-the-art

results on two MRS tasks. Ablation studies demonstrate the importance of semantic retrieval at

both the paragraph and sentence levels in the MRS system. The work can give general guidelines

on MRS modeling and inspire future research on the relationship between semantic retrieval and

downstream comprehension in a joint setting.
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CHAPTER 4: CONSISTENT DIALOGUE MODELING VIA NLI

4.1 Introduction

Recent progress on neural approaches to natural language processing (Devlin et al., 2019a;

Brown et al., 2020b), and the availability of large amounts of conversational data (Lowe et al.,

2015; Smith et al., 2020) have triggered a resurgent interest on building intelligent open-domain

chatbots. Newly developed end-to-end neural bots (Zhang et al., 2020; Adiwardana et al., 2020;

Roller et al., 2020) are claimed to be superior to their predecessors (Worsnick, 2018; Zhou et al.,

2020) using various human evaluation techniques (See et al., 2019; Li et al., 2019; Adiwardana

et al., 2020) that aim to give a more accurate measure of what makes a good conversation. While

the success is indisputable, there is still a long way to go before we arrive at human-like open-

domain chatbots. For example, it has been shown that open-domain chatbots frequently generate

annoying errors (Adiwardana et al., 2020; Roller et al., 2020) and a notorious one among these is

the class of contradiction, or consistency errors.

When interacting with chatbots, people carry over many of the same expectations as when

interacting with humans (Nass and Moon, 2000). Self-contradictions by these bots (see Fig.4.1,

bottom) are often jarring, immediately disrupt the conversational flow, and help support argu-

ments about whether generative models could ever really understand what they are saying at all

(Marcus, 2018). From a listener’s perspective, such inconsistent bots fail to gain user trust and

their long-term communication confidence. From a speaker’s perspective, it violates the maxim

of quality in Grice’s cooperative principles (Grice, 1975) —”Do not say what you believe to be

false.” Hence, efforts on reducing contradicting or inconsistent conversations by open-domain

chatbots are imperative.
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Human Human

Human BlenderBot 2.7B

Figure 4.1: Contradictory dialogues contained in our new DECODE dataset. The main train,
valid and test sets contain human-written dialogues with deliberate contradictions (example at
top), and an out-of-domain test set consists of labeled human-bot dialogues (bottom), involving
state-of-the-art bots (Roller et al., 2020).

Prior works (Welleck et al., 2019) characterized the modeling of persona-related consistency

as a natural language inference (NLI) problem (Dagan et al., 2005; Bowman et al., 2015b), and

constructed a dialog NLI dataset based on Persona-Chat (Zhang et al., 2018), but so far state-of-

the-art chatbots (Roller et al., 2020) have not been able to make use of such techniques. Overall,
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the challenge remains that we are still unable to answer the simple yet important question—“how

good are we at modeling consistency (including persona, logic, causality, etc.) in a general con-

versation?”. The inability to measure this obscures to what degree building new modules or

techniques can in turn help prevent contradicting responses during generation.

Seeking to answer this question, we introduce the DialoguE COntradiction DEtection task

(DECODE)1 and collect a new conversational dataset containing human written dialogues where

one of the speakers deliberately contradicts what they have previously said at a certain point dur-

ing the conversation. We also collect an out-of-distribution (OOD) set of dialogues in human-bot

interactive settings which contain human-labeled self-contradictions made by different chatbots.

We then compare a set of state-of-the-art systems, including a standard unstructured approach

and a proposed structured approach for utilizing NLI models to detect contradictions. In the

unstructured approach, a Transformer NLI model directly takes in the concatenation of all ut-

terances of the input dialogue for prediction, following the paradigm of NLU modeling. In the

structured approach, utterances are paired separately before being fed into Transformer NLI

models, explicitly taking account of the natural dialogue structure.

Results reveal that: (1) our newly collected dataset is notably more effective at providing su-

pervision for the contradiction detection task than existing NLI data including those aimed at cov-

ering the dialogue domain; (2) the structured utterance-based approach for dialogue consistency

modeling is more robust in our analysis and more transferable to OOD human-bot conversation

than the unstructured approach. This finding challenges the mainstream unstructured approach

of simply applying pre-trained Transformer models and expecting them to learn the structure,

especially for OOD scenarios which are often the case when incorporating NLU modules into

NLG systems, since intermediate in-domain data are scarce.

Finally, with such improvements on the contradiction detection task, we show that our best re-

sulting detector correlates well with human judgments and can be suitable for use as an automatic

1DECODE dataset and code are publicly available at XXX.
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metric for checking dialogue consistency. We further provide evidence for its usage in improving

the consistency of state-of-the-art generative chatbots.

4.2 Related Work

Several prior works on improving dialogue consistency have explored using direct modeling

of the dialogue context in generation algorithms. The modeling can be implicit where the dia-

logue consistency-related information like style (Wang et al., 2017a), topics, or personal facts

are maintained in distributed embeddings (Li et al., 2016; Zhang et al., 2019a), neural long-term

memories (Bang et al., 2015), hierarchical neural architecture (Serban et al., 2016), latent vari-

ables (Serban et al., 2017), topical attention (Dziri et al., 2019b), or even self-learned feature

vectors (Zhang et al., 2019b). Some works have grounded generation models on explicit user

input (Qian et al., 2018), or designated personas (Zhang et al., 2018). Although, improvements

on automatic generation metrics were often shown on guided response generation based on the

consistency modeling, the issue of contradiction has never been resolved, nor have generally ap-

plicable methods to gauge the consistency improvements been developed. Further, simply scaling

models has not made the problem go away, as is evident in the largest chatbots trained such as

BlenderBot with up to 9.4B parameter Transformers (Roller et al., 2020).

More similar to our work is utilizing NLI models in dialogue consistency. Dziri et al. (2019a)

attempted to use entailment models trained on synthetic datasets for dialogue topic coherence

evaluation. Particularly, Welleck et al. (2019) constructed the dialogue NLI dataset and (Li et al.,

2020) utilized it to try to reduce inconsistency in generative models via unlikelihood training

in a preliminary study that reports perplexity results, but did not measure actual generations or

contradiction rates. We note that the dialogue NLI dataset is only semi-automatically generated,

with limited coverage of only Persona-chat data (Zhang et al., 2018), whereas our DECODE is

human-written and across multiple domains. Our task also involves logical and context-related

reasoning beyond personal facts. We show that transfer of DECODE is subsequently more robust

than dialogue NLI on both human-human and human-bot chats.
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4.3 Task and Data

4.3.1 Dialogue Contradiction Detection

We formalize dialogue contradiction detection as a supervised classification task. The input of

the task is a list of utterances x “ tu0, u1, u2, ..., unu representing a dialogue or a dialogue snip-

pet. The output is y, indicating whether the last utterance un contradicts any previously conversed

information contained in the dialogue tu0, u1, ..., un´1u, where y can be 0 or 1 corresponding to

the non-contradiction and the contradiction label respectively. Preferably, the output should also

include a set of indices I Ď t0, 1, ..., n ´ 1u representing a subset of tu0, u1, ..., un´1u which

contain information that is actually contradicted by the last utterance un. The extra indices I

output require models to pinpoint the evidence for the contradiction, providing an extra layer of

explainability.

4.3.2 Data Collection

Our goal is first to collect training and evaluation data for this task. We thus collect dialogues

in which the last utterance contradicts some previous utterances in the dialogue history. To obtain

such dialogues, we give annotators dialogue snippets from pre-selected dialogue corpora, and

then ask them to continue the conversation by writing one or two utterances such that the last

utterance by the last speaker contradicts the dialogue history. We also ask annotators to mark all

the utterances in the dialogue history that are involved in the contradiction as supporting evidence.

We ask annotators to write contradicting utterances based partly on existing dialogues rather than

collecting new dialogue from scratch because the provided dialogues can often convey semantic-

rich contexts from different domains and inspire annotators to write more diverse examples. We

crowdsource the continuation and annotation data with Amazon Mechanical Turk via ParlAI

(Miller et al., 2017).

To ensure data quality, we apply three techniques: (i) an onboarding test every annotator has

to pass to contribute examples; (ii) each annotator can only create up to 20 examples; and (iii) all
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examples in the validation and test set are verified by asking 3 additional workers. More details

about annotation are provided in Appendix.

4.3.3 Dataset

We collected 17,713 human-written contradicting dialogues in which 4,121 are verified by

3 annotators. The pre-selected dialogue source corpora are Wizard of Wikipedia (Dinan et al.,

2018), EMPATHETICDIALOGUES (Rashkin et al., 2019), Blended Skill Talk (Smith et al., 2020),

and ConvAI2 (Dinan et al., 2020), covering various conversational topics. To facilitate the eval-

uation of consistency modeling on the dialogue contradiction detection classification task, we

sample an equal number of non-contradicting dialogues according to the same dialogue length

distribution as the contradicting ones from the same dialogue corpus. Then, we make the splits

such that the train split contains unverified examples, and dev and test splits only contain veri-

fied examples. Each split has balanced labels between contradiction and non-contradiction. The

breakdown of each of the dataset sources is shown in Appendix.

Auxiliary (Checklist) Test Sets We further create two auxiliary checklist evaluation sets by

transforming the contradiction examples in the original test in two ways such that the ground

truth label is either invariant or expected to flip. The two resultant sets serve as diagnostic tests on

the behavior, generalization and transferability of our models.

The transformations are: (1) Add Two Turns (A2T) We insert a pair of randomly sampled

utterances into the dialogue such that the inserted utterances are between the two original contra-

dicting utterances. This gives a new contradicting dialogue with a longer dialogue history; and (2)

Remove Contradicting Turns (RCT) We remove all the turns (all pairs of utterances) marked

as supporting evidence for the contradiction in the dialogue except the last utterance. This results

in a new non-contradiction dialogue. The dataset dialogues involve two speakers taking turns

speaking. To maintain this structure, for each marked utterance, we remove a pair of utterances

that represents a turn.
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Count Label

Main (Train) 27,184 balanced
Main (Dev) 4,026 balanced
Main (Test) 4,216 balanced

Human-Bot (Test) 764 balanced

A2T (Test) 2,079 contradiction
RCT (Test) 2,011 non-contradiction

Table 4.1: DECODE Dataset summary. The first column presents the different dataset types.
“Main” is the collected human-written dialogues. “balanced” indicates that the contradiction and
non-contradiction labels in that part of the dataset are balanced. A2T and RCT are the auxiliary
test sets described in subsection 4.3.3.

Human-Bot Test Set Our main dataset involves human-written dialogues containing contradict-

ing utterances based on human-human dialogues from existing corpora. In practice, to evaluate

the response quality of a machine rather than a human in terms of its consistent responses, we

care about how well a contradiction detector can perform in human-bot interactive conversations.

To that end, we further collect human-bot dialogue data by employing crowdworkers to inter-

act with a diverse set of open-domain bots. These include Poly-encoder (Humeau et al., 2019)

based retrieval models, generative models (Roller et al., 2020), unlikelihood trained models (Li

et al., 2020), retrieve-and-refine models (Weston et al., 2018; Roller et al., 2020), models either

pre-trained on a previously existing Reddit dataset extracted and obtained by a third party that

was hosted by pushshift.io (Baumgartner et al., 2020) or fine-tuned on the Blended Skill Talk

(BST) dialogue tasks (Smith et al., 2020) – that is, all the dialogue models that are compared

in the study in Roller et al. (2020). During the collection, if the bot generates an utterance that

contradicts itself, we ask the worker to mark the utterance. In some of the dialogues, workers are

explicitly instructed to goad the bots into making contradicting utterances. The final human-bot

test set we derive contains 764 dialogues, half of which end with a contradicting utterance by the

bot. All the dialogues in the set, with either contradiction or non-contradiction labels, are verified

by 3 additional annotators, beside the human who actually talked to the bot.

The auxiliary and human-bot test sets aim to test models’ robustness and generalizability be-

yond the collected human-written test set (Ribeiro et al., 2020; Gardner et al., 2020), and give a

39



more comprehensive analysis of the task. Table 5.2 summarizes the final overall dataset. Exam-

ples are provided for each dataset type in Fig. 4.1 and Appendix Table 5.1.

4.4 Models

To model the dialogue consistency task, we first employ some of the techniques used in NLI

sequence-to-label modeling, where the input is a pair of textual sequences and the output is a

label. The benefit of such modeling is that we can directly make use of existing NLI datasets

during training. However, unlike previous work (Welleck et al., 2019) that directly utilized NLI

models giving a 3-way output among “entailment”, “contradiction”, and “neutral”, we modify the

model with a 2-way output between “contradiction” and “non-contradiction” (either “entailment”

or “neutral”) labels, as our task is centered around the detection of inconsistency.

More formally, we denote the model as ŷpred “ fθpC, uq, where ŷpred is the prediction of the

label y, i.e. whether the textual response u contradicts some textual context C “ tu0, u1, ..., un´1u,

and θ are the parameters of the model.

4.4.1 Dialogue Contradiction Detectors

We explore two distinct approaches that propose differing fθ for the detection prediction

problem.

Unstructured Approach. In this approach, we simply concatenate all the previous utterances in

the dialogue history to form a single textual context. Then, we apply fθ to the context and the last

utterance to infer the probability of contradiction:

ŷpred “ fθpru0, u1, u2, ..., un´1s, unq (4.1)

When concatenating the utterances, we insert special tokens before each utterance to indicate

the speaker of that utterance. This is aimed to provide a signal of the dialogue structure to the
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models. Still, this approach assumes that the model can use these features adequately to learn the

underlying structure of the dialogue implicitly during training.

Structured Utterance-based Approach. Since the reasoning crucially depends on the last utter-

ance, in this method we first choose all the utterances by the last speaker to form a set S. We then

pair every utterance in the set with the last utterance and feed them one by one into fUB
θ . The

final contradiction probability is the maximum over all the outputs:

ŷpred “ max
␣

fUB
θ pui, unq : ui P S

(

(4.2)

Additionally, the utterance-based approach is able to give a set of utterances as supporting evi-

dence for a contradiction decision by choosing the pairs having contradiction probability higher

than a threshold ηe:

I “
␣

i : fUB
θ pui, unq ą ηe

(

(4.3)

This not only gives explanations for its prediction but can also help diagnose the model itself, e.g.

we can measure metrics of the model’s ability to provide these explanations by comparing them

against gold supporting evidence annotations.

One downside of this modeling approach is that it will not be able to capture reasoning be-

tween speakers. A case for that would be a pronoun by one speaker might refer to something

initiated by the other speaker. Nevertheless, the utterance-based approach explicitly adds an

inductive structure bias to learning and inference which we will see can aid its generalization

capability.

Thresholding. For both the unstructured and utterance-based approaches, the detection of contra-

diction is made by comparing ŷpred with a threshold τ and by default τ is 0.5.

4.4.2 Experimental Setup

We study four base pre-trained models variants for fθ: BERT (Devlin et al., 2019a), Elec-

tra (Clark et al., 2019), RoBERTa (Liu et al., 2019b), and BART (Lewis et al., 2020). They repre-
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Model Training Data MT MT (Strict) HB SE F1

Unstructured Approach

RoBERTa

All 97.46 - 77.09 -
All - DNLI 97.44 - 73.17 -
All - ANLI-R3 98.04 - 73.56 -
All - DECODE 84.42 - 61.91 -
DNLI 57.19 - 60.34 -
ANLI-R3 82.21 - 59.69 -
DECODE 96.85 - 70.03 -

Utterance-based Approach

RoBERTa

SNLI + MNLI 77.40 47.70 73.17 72.4
All 94.19 80.08 83.64 88.5
All - DNLI 94.38 80.93 81.68 88.4
All - ANLI-R3 94.07 79.32 82.85 88.4
All - DECODE 86.67 66.95 77.36 80.6
DNLI 76.54 63.09 75.26 71.2
ANLI-R3 81.59 69.11 70.52 74.3
DECODE 93.19 80.86 84.69 87.5

BERT DECODE 88.88 74.14 75.52 84.3
Electra DECODE 93.17 81.19 80.76 87.5
BART DECODE 94.47 80.10 79.19 88.2

Majority
- - 50.00 50.00 50.00 48.7

Table 4.2: Test performance on DECODE for various methods. “MT” and “HB” columns show
model accuracy on the Main Human-Human Test set and the Human-Bot set, respectively. The
“MT (Strict)” column indicates the percentage when both the 2-way contradiction detection and
the supporting evidence retrieval exactly match with the ground truth. “SE F1” is F1 score for
supporting evidence retrieval. “All” in the “Training Data” column stands for a combination of
SNLI, MNLI, DNLI, ANLI-R3, DECODE. “All - DNLI” denotes all the datasets with DNLI
removed.

sent the start-of-the-art language representation models and have yielded successes in many NLU

tasks. The input format of fθ follows how these models handle sequence-pairs (C and u) for clas-

sification tasks with padding, separator and other special tokens such as position embeddings and

segment features inserted at designated locations accordingly.

We fine-tune fθ on different combinations of NLI training data including SNLI (Bowman

et al., 2015b), MNLI (Williams et al., 2018b), ANLI-R3 (Nie et al., 2020b)2, DNLI (Welleck

et al., 2019), as well as our DECODE Main training set. We convert the 3-way labels of the

examples in existing NLI datasets to 2-way, as described before, and θ is optimized using cross-

entropy loss. When training fUB
θ in the utterance-based approach using the DECODE training set,

2ANLI data is collected in three rounds resulting in three subsets (R1, R2, R3). We only used training data in R3
since it contains some dialogue-related examples.
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the input sequences are sampled utterance pairs from the DECODE dialogue. In other scenarios,

fθ or fUB
θ are trained with data treated as in normal NLI training.

The models are evaluated on the test sets described in subsection 4.3.3. For the utterance-

based approach, which provides supporting evidence utterances (Equation 4.3), we report F1 on

evidence retrieval. We also report a stricter score which evaluates whether both 2-way contradic-

tion detection and supporting evidence retrieval exactly match with the ground truth on DECODE

Main test.

4.5 Results and Analysis

4.5.1 Performance on Constructed Dataset

Our main results comparing various detectors on DECODE are shown in Table 4.2. We now

describe our key observations.

DECODE is notably more effective than other existing NLI data in providing supervision

for contradiction detection in dialogue. We found that models trained on DECODE achieve

higher accuracy than that of those trained on DNLI or ANLI-R3, on all evaluation sets, with large

improvements, e.g. a 12-point jump from the same model training on ANLI-R3 and a 16-point

jump from training on DNLI using utterance-based RoBERTa on the DECODE Main test set.

Moreover, while training on “All” datasets (SNLI, MNLI, ANLI-R3, DNLI & DECODE) is effec-

tive, the removal of DECODE from the training data induces a consequential downgrade on the

performance. Training on NLI data which does not cover the dialogue domain, e.g., SNLI+MNLI

is even worse, only achieving 77.4% on DECODE Main (Test) vs. 93.19% for DECODE and can-

not even reach the majority baseline on the “Main (Test-Strict)”. Further, training on DECODE is

also more helpful than DNLI or ANLI-R3 for supporting evidence retrieval. These findings indi-

cate that existing NLI data has limited transferability to the dialogue contradiction detection task

despite their coverage of the dialogue domain in addition to other domains and that our DECODE
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data provides a valuable resource for modeling dialogue consistency and developing data-driven

approaches for contradiction detection.

Different pre-training models that perform similarly on the in-domain test set can have very

different performance on OOD human-bot dialogue. The last four rows of the table show the

results of utterance-based RoBERTa, BERT, Electra, and BART trained on DECODE. We can see

that RoBERTa, Electra, and BART got similar in-domain accuracy on DECODE, around 93%-

94%. RoBERTa stands out when comparing their performance on the human-bot test set with

the highest score of 84.69% across the column and with better performance on supporting evi-

dence retrieval as well. We speculate that this is due to the fact that RoBERTa pre-training data

has a broader coverage than Electra and BART. We hope future work on dialogue contradiction

detection could explore pre-training models on more dialogue-focused corpora.

The unstructured approach gets higher accuracy on the in-domain test set. A direct compar-

ison between unstructured RoBERTa and utterance-based RoBERTa trained on DECODE reveals

that the unstructured approach more often than not gets a higher accuracy than its corresponding

utterance-based approach when other experimental setups are kept identical. Noticeably, unstruc-

tured RoBERTa trained on all NLI data got a 97.46% score, whereas utterance-based yielded

94.19%. This seemingly indicates that training an unstructured model is able to yield a good rep-

resentation of the consistency of the dialogue. However, analysis on the human-bot and auxiliary

test sets shows that such high accuracy is an over-amplification of the model’s real understanding

ability, as we discuss next.

The structured utterance-based approach is more robust, and more transferable. Figure 4.2

gives a comparison between utterance-based and unstructured RoBERTa on each of the evalua-

tion sets. We can see that the utterance-based model is able to maintain satisfactory performance

across all the sets whereas the unstructured model underperforms at the human-bot and RCT

auxiliary test sets with a 34.4% accuracy on RCT compared to 78.4% for utterance-based, in

stark contrast to the high performance of the unstructured method on the in-domain DECODE
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Figure 4.2: Comparison between utterance-based and unstructured approaches of RoBERTa
pre-trained, DECODE fine-tuned models on DECODE Main (Test), Human-bot, and auxiliary
test sets.

Main test set. This result indicates the unstructured approach overfits on superficial patterns in

the DECODE Main training data which are still present due to RCT’s construction process.3 The

fact that the utterance-based approach has good transferability to the OOD human-bot test set

indicates that injecting the correct inductive structure bias is beneficial for modeling dialogue

consistency. We believe this is an interesting result generally for research using Transformers,

where there is currently a belief amongst some practitioners that they can just use a standard

Transformer and it will learn all the structure correctly on its own. In our setting that is not the

case, and we provide a method that can rectify that failing.

In general, there is still much room for improvement. The results in Table 4.2 also demon-

strate that the modeling of dialogue consistency is a demanding task. On the contradiction de-

tection task, the best score achieved by the state-of-the-art pre-trained language models on DE-

CODE (Test-Strict) is 80.86% and the best human-bot test score is 84.69%. Considering all the

3Overfitting on superficial patterns is a typical issue and open problem in NLU modeling (Nie et al., 2020b).
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examples in the test sets are verified by at least 3 annotators, humans are able to swiftly iden-

tify such contradictions. This suggests there is a large ability gap between our best automatic

detectors and humans. Closing this gap is an important challenge for the community.

4.5.2 Performance in an Interactive Setting

Utterance-based (DECODE) Utterance-based (DNLI) Unstructured (DECODE)
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Figure 4.3: The fire rate of RoBERTa models with different setups on utterances belonging to
different categories. “Human” and “Bot” stand for utterances by the human or the bot prospec-
tively. “@N” indicates the category where N annotators agreed on the contradiction label. The
x-axis indicates different approaches and the text in parentheses denotes the training data.

Model vs. Human Judgment To further understand the detector predictions and how well they

might align with human judgments, we consider the Human-Bot data again. We first divide all

the utterances into two categories based on whether they are generated by a human or a bot. Then,

the bot-generated utterances that have been marked by annotators as contradicting utterances

are categorized into three sets based on the number of annotators that agree on the contradiction

label. By design, the more annotators that agree on the contradiction label, the more plausible

that it is a contradiction. We examine detector model fire rate on the utterances in the 5 different
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categories and results are shown in Figure 4.3. The fire rate of utterance-based RoBERTa trained

on DECODE on human utterances is 5.5% contrasting to the 74.3% on 3-agreed contradicting

utterances, whereas the fire rates of unstructured RoBERTa on different categories are more clus-

tered together. This finding demonstrates that our models can discriminate between utterances

with a distinct nature, and the model predictions are aligned with human judgments. Moreover, a

strong discriminative detector could be a useful tool to stratify utterances.
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Figure 4.4: The comparison between the average contradiction score by the detector (y-axis) and
the human identified contradiction rate (x-axis) on the utterances by different bots, averaged by
type of bot. Each point in the plot is a bot which has conversed with humans and produced at
least 180 utterances (with some identified as contradictions) in our interactive settings.

Using DECODE as an Automatic Metric The results presented above indicate that the pre-

diction of the detector can easily differentiate between the quality of utterances by humans and

the utterances by bots. We further investigate whether it can differentiate the quality of the ut-

terances by different bots and be used as an automatic metric checking generation consistency.

We compare the average contradiction score of the detector with the contradiction rate by human

judgments on the utterances generated by different classes of model (bots). The bots are the same

set of models described in subsection 4.5.2 from which we collected our human-bot dialogue

examples. The trend in Figure 4.4 reveals that the scores are positively correlated with human

judgments, with a Pearson correlation coefficient of 0.81. We would expect that improvement

on the DECODE task will directly increase the correlation between the automatically produced
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Model + DECODE Human
Decoding Strategy Contradict% Contradict%

Standard generation
Beam Search 69.7% 84.2%
Top-k (k “ 40) 42.1% 69.7%
Sample-and-Rank 39.5% 55.3%

DECODE Re-ranking
Beam Search 46.1% 55.3%
Top-k (k “ 40) 2.6% 39.5%

Table 4.3: Generation Re-ranking using DECODE vs. standard methods, reporting the contradic-
tion % as flagged by our contradiction detection classifier (i.e., an automatic metric, “DECODE
Contradict%”) in addition to human judgments (“Human Contradict%”).

detection score and human judgments, where use of such an automatic metric can ease the burden

on laborious human evaluation of consistency.

4.5.3 Generation Re-ranking

Given a contradiction detector, an obvious question other than using it as an automatic metric,

is: can it be used to improve the consistency of dialogue generation models? We consider a very

simple way to do that in the state-of-the-art generative model, BlenderBot (BST 2.7B) (Roller

et al., 2020). During the decoding phase, for decoding methods that can output multiple hypothe-

ses, we simply rerank the top scoring hypotheses using the contradiction detection classifier.

We use our best performing classifier, our utterance-based RoBERTa model with DECODE

fine-tuning, and consider three methods of decoding: beam search, top-k sampling (Fan et al.,

2018) and sample-and-rank (Adiwardana et al., 2020), and compare the standard and DECODE-

reranked decoding methods to each other. For beam search we use the best found parameters

from (Roller et al., 2020) which are beam size 10, minimum beam length 20 and beam blocking

of 3-grams. For top-k we use k “ 40. For Sample-and-Rank we use k=40 and 20 samples. We

consider the same human-bot dialogue logs as before, but only between Blenderbot BST 2.7B

and humans, selecting only contradicting utterances. Table 4.3 presents the results.
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Automatic metric using DECODE Using our same DECODE contradiction classifier as the

automatic metric, as in subsection 4.5.2, we observe that by re-ranking the beam of beam search

(size 10) we can improve the metric. Still, 46.1% of the time the detector flags generations as

contradictions (vs. 69.7% without re-ranking). Upon observation of the outputs, this seems to be

due to the beam of beam decoding not being diverse enough (Vijayakumar et al., 2016): when

the top scoring utterance is flagged as contradicting, many of the other utterances in the beam are

similar responses with slight rephrases, and are flagged contradicting as well. Top-k sampling

fares much better, where reranking in our test can very often find at least one from the k “ 40

samples that does not flag the classifier, leaving only a 2.6% contradiction firing rate. We note we

expect these numbers are over-optimisticly low because the metric itself is being used to search

(re-rank) and evaluate in this case.

Human Judgments The last column of Table 4.3 presents human judgments of the various

model generations, judged using the same approach as before with human verifiers, and report-

ing the percentage of contradictions. We observe similar results to the automatic metric findings.

DECODE re-ranking reduces the number of contradictions, particularly for Top-k re-ranking vs.

Top-k: testing for significance with a Wilcoxon signed-rank test, we get p “ 0.051 using two

human verifiers and p “ 0.023 for three verifiers.

4.6 Conclusion

We introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversa-

tional dataset containing both human-human and human-bot contradictory dialogues. Training

models on DECODE achieves better performance than other existing NLI data by a large margin.

We further propose a structured utterance-based approach where utterances are paired before

being fed into Transformer NLI models to tackle the dialogue contradiction detection task. We

show the superiority of such an approach when transferring to out-of-distribution dialogues com-

pared to a standard unstructured approach representative of mainstream NLU modeling. We

further show that our best contradiction detector correlates with human judgments, and provide
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evidence for its usage in both automatic checking and improving the consistency of state-of-the-

art generative chatbots.
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CHAPTER 5: ADVERSARIAL NLI

5.1 Introduction

Progress in AI has been driven by, among other things, the development of challenging large-

scale benchmarks like ImageNet (Russakovsky et al., 2015) in computer vision, and SNLI (Bow-

man et al., 2015a), SQuAD (Rajpurkar et al., 2016), and others in natural language processing

(NLP). Recently, for natural language understanding (NLU) in particular, the focus has shifted to

combined benchmarks like SentEval (Conneau and Kiela, 2018) and GLUE (Wang et al., 2018a),

which track model performance on multiple tasks and provide a unified platform for analysis.

With the rapid pace of advancement in AI, however, NLU benchmarks struggle to keep up

with model improvement. Whereas it took around 15 years to achieve “near-human performance”

on MNIST (LeCun et al., 1998; Cireşan et al., 2012; Wan et al., 2013) and approximately 7 years

to surpass humans on ImageNet (Deng et al., 2009; Russakovsky et al., 2015; He et al., 2016b),

the GLUE benchmark did not last as long as we would have hoped after the advent of BERT (De-

vlin et al., 2019b), and rapidly had to be extended into SuperGLUE (Wang et al., 2019). This

raises an important question: Can we collect a large benchmark dataset that can last longer?

The speed with which benchmarks become obsolete raises another important question: are

current NLU models genuinely as good as their high performance on benchmarks suggests? A

growing body of evidence shows that state-of-the-art models learn to exploit spurious statistical

patterns in datasets (Gururangan et al., 2018a; Poliak et al., 2018c), instead of learning meaning

in the flexible and generalizable way that humans do. Given this, human annotators—be they sea-

soned NLP researchers or non-experts—might easily be able to construct examples that expose

model brittleness.
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Step 1: Write examples
Step 2: Get model feedback
Step 3: Verify examples and make splits
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Figure 5.1: Adversarial NLI data collection via human-and-model-in-the-loop enabled train-
ing (HAMLET). The four steps make up one round of data collection. In step 3, model-correct
examples are included in the training set; development and test sets are constructed solely from
model-wrong verified-correct examples.

We propose an iterative, adversarial human-and-model-in-the-loop solution for NLU dataset

collection that addresses both benchmark longevity and robustness issues. In the first stage, hu-

man annotators devise examples that our current best models cannot determine the correct label

for. These resulting hard examples—which should expose additional model weaknesses—can

be added to the training set and used to train a stronger model. We then subject the strengthened

model to the same procedure and collect weaknesses over several rounds. After each round, we

train a new model and set aside a new test set. The process can be iteratively repeated in a never-

ending learning (Mitchell et al., 2018) setting, with the model getting stronger and the test set

getting harder in each new round. Thus, not only is the resultant dataset harder than existing

benchmarks, but this process also yields a “moving post” dynamic target for NLU systems, rather

than a static benchmark that will eventually saturate.

Our approach draws inspiration from recent efforts that gamify collaborative training of ma-

chine learning agents over multiple rounds (Yang et al., 2017) and pit “builders” against “break-

ers” to learn better models (Ettinger et al., 2017). Recently, Dinan et al. (2019) showed that such

an approach can be used to make dialogue safety classifiers more robust. Here, we focus on nat-
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ural language inference (NLI), arguably the most canonical task in NLU. We collected three

rounds of data, and call our new dataset Adversarial NLI (ANLI).

Our contributions are as follows: 1) We introduce a novel human-and-model-in-the-loop

dataset, consisting of three rounds that progressively increase in difficulty and complexity, that

includes annotator-provided explanations. 2) We show that training models on this new dataset

leads to state-of-the-art performance on a variety of popular NLI benchmarks. 3) We provide a

detailed analysis of the collected data that sheds light on the shortcomings of current models, cat-

egorizes the data by inference type to examine weaknesses, and demonstrates good performance

on NLI stress tests. The ANLI dataset is available at github.com/facebookresearch/anli/. A demo

is available at adversarialnli.com.

Context Hypothesis Reason Round Labels Annotationsorig. pred. valid.

Roberto Javier Mora Garcı́a (c. 1962 – 16
March 2004) was a Mexican journalist and
editorial director of “El Mañana”, a newspaper
based in Nuevo Laredo, Tamaulipas, Mexico.
He worked for a number of media outlets in
Mexico, including the “El Norte” and “El Di-
ario de Monterrey”, prior to his assassination.

Another individual
laid waste to Roberto
Javier Mora Garcia.

The context states that Roberto
Javier Mora Garcia was assassi-
nated, so another person had to
have “laid waste to him.” The
system most likely had a hard
time figuring this out due to it
not recognizing the phrase “laid
waste.”

A1
(Wiki)

E N E E Lexical (assassina-
tion, laid waste),
Tricky (Presuppo-
sition), Standard
(Idiom)

A melee weapon is any weapon used in di-
rect hand-to-hand combat; by contrast with
ranged weapons which act at a distance. The
term “melee” originates in the 1640s from the
French word “mĕlée”, which refers to hand-to-
hand combat, a close quarters battle, a brawl,
a confused fight, etc. Melee weapons can be
broadly divided into three categories

Melee weapons are
good for ranged and
hand-to-hand combat.

Melee weapons are good for hand
to hand combat, but NOT ranged.

A2
(Wiki)

C E C N C Standard (Con-
junction), Tricky
(Exhaustification),
Reasoning (Facts)

If you can dream it, you can achieve it—unless
you’re a goose trying to play a very human
game of rugby. In the video above, one bold
bird took a chance when it ran onto a rugby
field mid-play. Things got dicey when it got
into a tussle with another player, but it shook
it off and kept right on running. After the play
ended, the players escorted the feisty goose off
the pitch. It was a risky move, but the crowd
chanting its name was well worth it.

The crowd believed
they knew the name
of the goose running
on the field.

Because the crowd was chanting
its name, the crowd must have
believed they knew the goose’s
name. The word “believe” may
have made the system think this
was an ambiguous statement.

A3
(News)

E N E E Reasoning (Facts),
Reference (Coref-
erence)

Table 5.1: Examples from development set. ‘An’ refers to round number, ‘orig.’ is the original
annotator’s gold label, ‘pred.’ is the model prediction, ‘valid.’ are the validator labels, ‘reason’
was provided by the original annotator, ‘Annotations’ are the tags determined by an linguist
expert annotator.

5.2 Dataset collection

The primary aim of this work is to create a new large-scale NLI benchmark on which current

state-of-the-art models fail. This constitutes a new target for the field to work towards, and can
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elucidate model capabilities and limitations. As noted, however, static benchmarks do not last

very long these days. If continuously deployed, the data collection procedure we introduce here

can pose a dynamic challenge that allows for never-ending learning.

5.2.1 HAMLET

To paraphrase the great bard (Shakespeare, 1603), there is something rotten in the state of

the art. We propose Human-And-Model-in-the-Loop Enabled Training (HAMLET), a training

procedure to automatically mitigate problems with current dataset collection procedures (see

Figure 5.1).

In our setup, our starting point is a base model, trained on NLI data. Rather than employing

automated adversarial methods, here the model’s “adversary” is a human annotator. Given a

context (also often called a “premise” in NLI), and a desired target label, we ask the human

writer to provide a hypothesis that fools the model into misclassifying the label. One can think

of the writer as a “white hat” hacker, trying to identify vulnerabilities in the system. For each

human-generated example that is misclassified, we also ask the writer to provide a reason why

they believe it was misclassified.

For examples that the model misclassified, it is necessary to verify that they are actually cor-

rect —i.e., that the given context-hypothesis pairs genuinely have their specified target label. The

best way to do this is to have them checked by another human. Hence, we provide the example to

human verifiers. If two human verifiers agree with the writer, the example is considered a good

example. If they disagree, we ask a third human verifier to break the tie. If there is still disagree-

ment between the writer and the verifiers, the example is discarded. If the verifiers disagree, they

can overrule the original target label of the writer.

Once data collection for the current round is finished, we construct a new training set from

the collected data, with accompanying development and test sets, which are constructed solely

from verified correct examples. The test set was further restricted so as to: 1) include pairs from

“exclusive” annotators who are never included in the training data; and 2) be balanced by label
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classes (and genres, where applicable). We subsequently train a new model on this and other

existing data, and repeat the procedure.

5.2.2 Annotation details

We employed Mechanical Turk workers with qualifications and collected hypotheses via the

ParlAI1 framework. Annotators are presented with a context and a target label—either ‘entail-

ment’, ‘contradiction’, or ‘neutral’—and asked to write a hypothesis that corresponds to the label.

We phrase the label classes as “definitely correct”, “definitely incorrect”, or “neither definitely

correct nor definitely incorrect” given the context, to make the task easier to grasp. Model predic-

tions are obtained for the context and submitted hypothesis pair. The probability of each label is

shown to the worker as feedback. If the model prediction was incorrect, the job is complete. If

not, the worker continues to write hypotheses for the given (context, target-label) pair until the

model predicts the label incorrectly or the number of tries exceeds a threshold (5 tries in the first

round, 10 tries thereafter).

To encourage workers, payments increased as rounds became harder. For hypotheses that the

model predicted incorrectly, and that were verified by other humans, we paid an additional bonus

on top of the standard rate.

5.2.3 Three Rounds of Collection

Round 1 For the first round, we used a BERT-Large model (Devlin et al., 2019b) trained on

a concatenation of SNLI (Bowman et al., 2015a) and MNLI (Williams et al., 2018c), and se-

lected the best-performing model we could train as the starting point for our dataset collection

procedure. For Round 1 contexts, we randomly sampled short multi-sentence passages from

Wikipedia (of 250-600 characters) from the manually curated HotpotQA training set (Yang et al.,

2018). Contexts are either ground-truth contexts from that dataset, or they are Wikipedia pas-

sages retrieved using TF-IDF (Chen et al., 2017b) based on a HotpotQA question.

1https://parl.ai/
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Dataset Genre Context Train / Dev / Test Model error rate Tries Time (sec.)
Unverified Verified mean/median per verified ex.

A1 Wiki 2,080 16,946 / 1,000 / 1,000 29.68% 18.33% 3.4 / 2.0 199.2 / 125.2

A2 Wiki 2,694 45,460 / 1,000 / 1,000 16.59% 8.07% 6.4 / 4.0 355.3 / 189.1

A3
Various 6,002 100,459 / 1,200 / 1,200 17.47% 8.60% 6.4 / 4.0 284.0 / 157.0

(Wiki subset) 1,000 19,920 / 200 / 200 14.79% 6.92% 7.4 / 5.0 337.3 / 189.6

ANLI Various 10,776 162,865 / 3,200 / 3,200 18.54% 9.52% 5.7 / 3.0 282.9 / 156.3

Table 5.2: Dataset statistics: ‘Model error rate’ is the percentage of examples that the model got
wrong; ‘unverified’ is the overall percentage, while ‘verified’ is the percentage that was verified
by at least 2 human annotators.

Round 2 For the second round, we used a more powerful RoBERTa model (Liu et al., 2019b)

trained on SNLI, MNLI, an NLI-version2 of FEVER (Thorne et al., 2018b), and the training data

from the previous round (A1). After a hyperparameter search, we selected the model with the

best performance on the A1 development set. Then, using the hyperparameters selected from this

search, we created a final set of models by training several models with different random seeds.

During annotation, we constructed an ensemble by randomly picking a model from the model

set as the adversary each turn. This helps us avoid annotators exploiting vulnerabilities in one

single model. A new non-overlapping set of contexts was again constructed from Wikipedia via

HotpotQA using the same method as Round 1.

Round 3 For the third round, we selected a more diverse set of contexts, in order to explore ro-

bustness under domain transfer. In addition to contexts from Wikipedia for Round 3, we also

included contexts from the following domains: News (extracted from Common Crawl), fiction

(extracted from StoryCloze (Mostafazadeh et al., 2016) and CBT (Hill et al., 2015)), formal spo-

ken text (excerpted from court and presidential debate transcripts in the Manually Annotated

Sub-Corpus (MASC) of the Open American National Corpus3), and causal or procedural text,

which describes sequences of events or actions, extracted from WikiHow. Finally, we also col-

lected annotations using the longer contexts present in the GLUE RTE training data, which came

2The NLI version of FEVER pairs claims with evidence retrieved by Nie et al. (2019a) as (context, hypothesis)
inputs.
3anc.org/data/masc/corpus/
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from the RTE5 dataset (Bentivogli et al., 2009). We trained an even stronger RoBERTa ensemble

by adding the training set from the second round (A2) to the training data.

5.2.4 Comparing with other datasets

The ANLI dataset, comprising three rounds, improves upon previous work in several ways.

First, and most obviously, the dataset is collected to be more difficult than previous datasets, by

design. Second, it remedies a problem with SNLI, namely that its contexts (or premises) are very

short, because they were selected from the image captioning domain. We believe longer contexts

should naturally lead to harder examples, and so we constructed ANLI contexts from longer,

multi-sentence source material.

Following previous observations that models might exploit spurious biases in NLI hypothe-

ses, (Gururangan et al., 2018a; Poliak et al., 2018c), we conduct a study of the performance of

hypothesis-only models on our dataset. We show that such models perform poorly on our test

sets.

With respect to data generation with naı̈ve annotators, Geva et al. (2019) noted that models

can pick up on annotator bias, modelling annotator artefacts rather than the intended reasoning

phenomenon. To counter this, we selected a subset of annotators (i.e., the “exclusive” workers)

whose data would only be included in the test set. This enables us to avoid overfitting to the

writing style biases of particular annotators, and also to determine how much individual annotator

bias is present for the main portion of the data. Examples from each round of dataset collection

are provided in Table 5.1.

Furthermore, our dataset poses new challenges to the community that were less relevant for

previous work, such as: can we improve performance online without having to train a new model

from scratch every round, how can we overcome catastrophic forgetting, how do we deal with

mixed model biases, etc. Because the training set includes examples that the model got right

but were not verified, learning from noisy and potentially unverified data becomes an additional

interesting challenge.
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Model Training Data A1 A2 A3 ANLI ANLI-E SNLI MNLI-m/-mm

BERT

S,M‹1 00.0 28.9 28.8 19.8 19.9 91.3 86.7 / 86.4
+A1 44.2 32.6 29.3 35.0 34.2 91.3 86.3 / 86.5
+A1+A2 57.3 45.2 33.4 44.6 43.2 90.9 86.3 / 86.3
+A1+A2+A3 57.2 49.0 46.1 50.5 46.3 90.9 85.6 / 85.4
S,M,F,ANLI 57.4 48.3 43.5 49.3 44.2 90.4 86.0 / 85.8

XLNet S,M,F,ANLI 67.6 50.7 48.3 55.1 52.0 91.8 89.6 / 89.4

RoBERTa

S,M 47.6 25.4 22.1 31.1 31.4 92.6 90.8 / 90.6
+F 54.0 24.2 22.4 32.8 33.7 92.7 90.6 / 90.5
+F+A1‹2 68.7 19.3 22.0 35.8 36.8 92.8 90.9 / 90.7
+F+A1+A2‹3 71.2 44.3 20.4 43.7 41.4 92.9 91.0 / 90.7
S,M,F,ANLI 73.8 48.9 44.4 53.7 49.7 92.6 91.0 / 90.6

Table 5.3: Model Performance. ‘S’ refers to SNLI, ‘M’ to MNLI dev (-m=matched, -
mm=mismatched), and ‘F’ to FEVER; ‘A1–A3’ refer to the rounds respectively and ‘ANLI’
refers to A1+A2+A3, ‘-E’ refers to test set examples written by annotators exclusive to the test
set. Datasets marked ‘‹n’ were used to train the base model for round n, and their performance on
that round is underlined (A2 and A3 used ensembles, and hence have non-zero scores).

5.3 Dataset statistics

The dataset statistics can be found in Table 5.2. The number of examples we collected in-

creases per round, starting with approximately 19k examples for Round 1, to around 47k exam-

ples for Round 2, to over 103k examples for Round 3. We collected more data for later rounds

not only because that data is likely to be more interesting, but also simply because the base model

is better and so annotation took longer to collect good, verified correct examples of model vulner-

abilities.

For each round, we report the model error rate, both on verified and unverified examples. The

unverified model error rate captures the percentage of examples where the model disagreed with

the writer’s target label, but where we are not (yet) sure if the example is correct. The verified

model error rate is the percentage of model errors from example pairs that other annotators con-

firmed the correct label for. Note that error rate is a useful way to evaluate model quality: the

lower the model error rate—assuming constant annotator quality and context-difficulty—the

better the model.
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We observe that model error rates decrease as we progress through rounds. In Round 3, where

we included a more diverse range of contexts from various domains, the overall error rate went

slightly up compared to the preceding round, but for Wikipedia contexts the error rate decreased

substantially. While for the first round roughly 1 in every 5 examples were verified model errors,

this quickly dropped over consecutive rounds, and the overall model error rate is less than 1 in 10.

On the one hand, this is impressive, and shows how far we have come with just three rounds. On

the other hand, it shows that we still have a long way to go if even untrained annotators can fool

ensembles of state-of-the-art models with relative ease.

Table 5.2 also reports the average number of “tries”, i.e., attempts made for each context until

a model error was found (or the number of possible tries is exceeded), and the average time this

took (in seconds). Again, these metrics are useful for evaluating model quality: observe that the

average number of tries and average time per verified error both go up with later rounds. This

demonstrates that the rounds are getting increasingly more difficult.

The dataset statistics can be found in Table 5.2. The number of examples we collected in-

creases per round, starting with approximately 19k examples for Round 1, to around 47k exam-

ples for Round 2, to over 103k examples for Round 3. We collected more data for later rounds

not only because that data is likely to be more interesting, but also simply because the base model

is better and so annotation took longer to collect good, verified correct examples of model vulner-

abilities.

For each round, we report the model error rate, both on verified and unverified examples. The

unverified model error rate captures the percentage of examples where the model disagreed with

the writer’s target label, but where we are not (yet) sure if the example is correct. The verified

model error rate is the percentage of model errors from example pairs that other annotators con-

firmed the correct label for. Note that error rate is a useful way to evaluate model quality: the

lower the model error rate—assuming constant annotator quality and context-difficulty—the

better the model.
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We observe that model error rates decrease as we progress through rounds. In Round 3, where

we included a more diverse range of contexts from various domains, the overall error rate went

slightly up compared to the preceding round, but for Wikipedia contexts the error rate decreased

substantially. While for the first round roughly 1 in every 5 examples were verified model errors,

this quickly dropped over consecutive rounds, and the overall model error rate is less than 1 in 10.

On the one hand, this is impressive, and shows how far we have come with just three rounds. On

the other hand, it shows that we still have a long way to go if even untrained annotators can fool

ensembles of state-of-the-art models with relative ease.

Table 5.2 also reports the average number of “tries”, i.e., attempts made for each context until

a model error was found (or the number of possible tries is exceeded), and the average time this

took (in seconds). Again, these metrics are useful for evaluating model quality: observe that the

average number of tries and average time per verified error both go up with later rounds. This

demonstrates that the rounds are getting increasingly more difficult.

5.4 Results

Table 5.3 reports the main results. In addition to BERT (Devlin et al., 2019b) and RoBERTa

(Liu et al., 2019b), we also include XLNet (Yang et al., 2019) as an example of a strong, but

different, model architecture. We show test set performance on the ANLI test sets per round,

the total ANLI test set, and the exclusive test subset (examples from test-set-exclusive workers).

We also show accuracy on the SNLI test set and the MNLI development set (for the purpose

of comparing between different model configurations across table rows). In what follows, we

discuss our observations.

Base model performance is low. Notice that the base model for each round performs very

poorly on that round’s test set. This is the expected outcome: For round 1, the base model gets

the entire test set wrong, by design. For rounds 2 and 3, we used an ensemble, so performance is
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not necessarily zero. However, as it turns out, performance still falls well below chance4, indicat-

ing that workers did not find vulnerabilities specific to a single model, but generally applicable

ones for that model class.

Rounds become increasingly more difficult. As already foreshadowed by the dataset statistics,

round 3 is more difficult (yields lower performance) than round 2, and round 2 is more difficult

than round 1. This is true for all model architectures.

Training on more rounds improves robustness. Generally, our results indicate that training

on more rounds improves model performance. This is true for all model architectures. Simply

training on more “normal NLI” data would not help a model be robust to adversarial attacks, but

our data actively helps mitigate these.

RoBERTa achieves state-of-the-art performance... We obtain state of the art performance

on both SNLI and MNLI with the RoBERTa model finetuned on our new data. The RoBERTa

paper (Liu et al., 2019b) reports a score of 90.2 for both MNLI-matched and -mismatched dev,

while we obtain 91.0 and 90.7. The state of the art on SNLI is currently held by MT-DNN (Liu

et al., 2019a), which reports 91.6 compared to our 92.9.

...but is outperformed when it is base model. However, the base (RoBERTa) models for rounds

2 and 3 are outperformed by both BERT and XLNet (rows 5, 6 and 10). This shows that annota-

tors found examples that RoBERTa generally struggles with, which cannot be mitigated by more

examples alone. It also implies that BERT, XLNet, and RoBERTa all have different weaknesses,

possibly as a function of their training data (BERT, XLNet and RoBERTa were trained on differ-

ent data sets, which might or might not have contained information relevant to the weaknesses).

Continuously augmenting training data does not downgrade performance. Even though

ANLI training data is different from SNLI and MNLI, adding it to the training set does not harm

performance on those tasks. Our results (see also rows 2-3 of Table 5.6) suggest the method

could successfully be applied for multiple additional rounds.

4Chance is at 33%, since the test set labels are balanced.
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Figure 5.3: Comparison of verified, unverified and combined data, where data sets are downsam-
pled to ensure equal training sizes.

Exclusive test subset difference is small. We included an exclusive test subset (ANLI-E) with

examples from annotators never seen in training, and find negligible differences, indicating that

our models do not over-rely on annotator’s writing styles.

5.4.1 The effectiveness of adversarial training

We examine the effectiveness of the adversarial training data in two ways. First, we sample

from respective datasets to ensure exactly equal amounts of training data. Table 5.5 shows that

the adversarial data improves performance, including on SNLI and MNLI when we replace part

of those datasets with the adversarial data. This suggests that the adversarial data is more data

efficient than “normally collected” data. Figure 5.2 shows that adversarial data collected in later

rounds is of higher quality and more data-efficient.
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Model SNLI-Hard NLI Stress Tests

AT (m/mm) NR LN (m/mm) NG (m/mm) WO (m/mm) SE (m/mm)

Previous models 72.7 14.4 / 10.2 28.8 58.7 / 59.4 48.8 / 46.6 50.0 / 50.2 58.3 / 59.4

BERT (All) 82.3 75.0 / 72.9 65.8 84.2 / 84.6 64.9 / 64.4 61.6 / 60.6 78.3 / 78.3
XLNet (All) 83.5 88.2 / 87.1 85.4 87.5 / 87.5 59.9 / 60.0 68.7 / 66.1 84.3 / 84.4
RoBERTa (S+M+F) 84.5 81.6 / 77.2 62.1 88.0 / 88.5 61.9 / 61.9 67.9 / 66.2 86.2 / 86.5
RoBERTa (All) 84.7 85.9 / 82.1 80.6 88.4 / 88.5 62.2 / 61.9 67.4 / 65.6 86.3 / 86.7

Table 5.4: Model Performance on NLI stress tests (tuned on their respective dev. sets).
All=S+M+F+ANLI. AT=‘Antonym’; ‘NR’=Numerical Reasoning; ‘LN’=Length;
‘NG’=Negation; ‘WO’=Word Overlap; ‘SE’=Spell Error. Previous models refers to the Naik
et al. (2018) implementation of Conneau et al. (2017a) for the Stress Tests, and to the Gururangan
et al. (2018b) implementation of Gong et al. (2018) for SNLI-Hard.

Train Data A1 A2 A3 S M-m/mm

SMD1+SMD2 45.1 26.1 27.1 92.5 89.8/89.7
SMD1+A 72.6 42.9 42.0 92.3 90.3/89.6

SM 48.0 24.8 31.1 93.2 90.8/90.6
SMD3+A 73.3 42.4 40.5 93.3 90.8/90.7

Table 5.5: RoBERTa performance on dev set with different training data. S=SNLI, M=MNLI,
A=A1+A2+A3. ‘SM’ refers to combined S and M training set. D1, D2, D3 means down-
sampling SM s.t. |SMD2|=|A| and |SMD3|+|A|=|SM|. Therefore, training sizes are identical
in every pair of rows.

Second, we compared verified correct examples of model vulnerabilities (examples that the

model got wrong and were verified to be correct) to unverified ones. Figure 5.3 shows that the

verified correct examples are much more valuable than the unverified examples, especially in the

later rounds (where the latter drops to random).

5.4.2 Stress Test Results

We also test models on two recent hard NLI test sets: SNLI-Hard (Gururangan et al., 2018a)

and the NLI stress tests (Naik et al., 2018) . The results are in Table 5.4. We observe that all our

models outperform the models presented in original papers for these common stress tests. The

RoBERTa models perform best on SNLI-Hard and achieve accuracy levels in the high 80s on the

‘antonym’ (AT), ‘numerical reasoning’ (NR), ‘length’ (LN), ‘spelling error’(SE) sub-datasets,
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Train Data A1 A2 A3 S M-m/mm

ALL 73.8 48.9 44.4 92.6 91.0/90.6
S+M 47.6 25.4 22.1 92.6 90.8/90.6
ANLI-Only 71.3 43.3 43.0 83.5 86.3/86.5

ALLH 49.7 46.3 42.8 71.4 60.2/59.8
S+MH 33.1 29.4 32.2 71.8 62.0/62.0
ANLI-OnlyH 51.0 42.6 41.5 47.0 51.9/54.5

Table 5.6: Performance of RoBERTa with different data combinations. ALL=S,M,F,ANLI.
Hypothesis-only models are marked H where they are trained and tested with only hypothesis
texts.

and show marked improvement on both ‘negation’ (NG), and ‘word overlap’ (WO). Training on

ANLI appears to be particularly useful for the AT, NR, NG and WO stress tests.

5.4.3 Hypothesis-only results

For SNLI and MNLI, concerns have been raised about the propensity of models to pick up

on spurious artifacts that are present just in the hypotheses (Gururangan et al., 2018a; Poliak

et al., 2018c). Here, we compare full models to models trained only on the hypothesis (marked

H). Table 5.6 reports results on ANLI, as well as on SNLI and MNLI. The table shows that

hypothesis-only models perform poorly on ANLI5, and obtain good performance on SNLI and

MNLI. Hypothesis-only performance decreases over rounds for ANLI.

We observe that in rounds 2 and 3, RoBERTa is not much better than hypothesis-only. This

could mean two things: either the test data is very difficult, or the training data is not good. To

rule out the latter, we trained only on ANLI („163k training examples): RoBERTa matches

BERT when trained on the much larger, fully in-domain SNLI+MNLI combined dataset (943k

training examples) on MNLI, with both getting „86 (the third row in Table 5.6). Hence, this

shows that the test sets are so difficult that state-of-the-art models cannot outperform a hypothesis-

only prior.

5Obviously, without manual intervention, some bias remains in how people phrase hypotheses—e.g., contradiction
might have more negation—which explains why hypothesis-only performs slightly above chance when trained on
ANLI.
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Round Numerical & Quant. Reference & Names Standard Lexical Tricky Reasoning & Facts Quality

A1 38% 13% 18% 13% 22% 53% 4%
A2 32% 20% 21% 21% 20% 59% 3%
A3 10% 18% 27% 27% 27% 63% 3%

Average 27% 17% 22% 22% 23% 58% 3%

Table 5.7: Analysis of 500 development set examples per round and on average.

5.5 Linguistic analysis

We explore the types of inferences that fooled models by manually annotating 500 examples

from each round’s development set. A dynamically evolving dataset offers the unique opportunity

to track how model error rates change over time. Since each round’s development set contains

only verified examples, we can investigate two interesting questions: which types of inference do

writers employ to fool the models, and are base models differentially sensitive to different types

of reasoning?

The results are summarized in Table 5.7. We devised an inference ontology containing six

types of inference: Numerical & Quantitative (i.e., reasoning about cardinal and ordinal numbers,

inferring dates and ages from numbers, etc.), Reference & Names (coreferences between pro-

nouns and forms of proper names, knowing facts about name gender, etc.), Standard Inferences

(conjunctions, negations, cause-and-effect, comparatives and superlatives etc.), Lexical Inference

(inferences made possible by lexical information about synonyms, antonyms, etc.), Tricky Infer-

ences (wordplay, linguistic strategies such as syntactic transformations/reorderings, or inferring

writer intentions from contexts), and reasoning from outside knowledge or additional facts (e.g.,

“You can’t reach the sea directly from Rwanda”). The quality of annotations was also tracked; if a

pair was ambiguous or a label debatable (from the expert annotator’s perspective), it was flagged.

Quality issues were rare at 3-4% per round. Any one example can have multiple types, and every

example had at least one tag.

We observe that both round 1 and 2 writers rely heavily on numerical and quantitative reason-

ing in over 30% of the development set—the percentage in A2 (32%) dropped roughly 6% from

A1 (38%)—while round 3 writers use numerical or quantitative reasoning for only 17%. The

65



majority of numerical reasoning types were references to cardinal numbers that referred to dates

and ages. Inferences predicated on references and names were present in about 10% of rounds 1

& 3 development sets, and reached a high of 20% in round 2, with coreference featuring promi-

nently. Standard inference types increased in prevalence as the rounds increased, ranging from

18%–27%, as did ‘Lexical’ inferences (increasing from 13%–31%). The percentage of sentences

relying on reasoning and outside facts remains roughly the same, in the mid-50s, perhaps slightly

increasing over the rounds. For round 3, we observe that the model used to collect it appears to

be more susceptible to Standard, Lexical, and Tricky inference types. This finding is compatible

with the idea that models trained on adversarial data perform better, since annotators seem to

have been encouraged to devise more creative examples containing harder types of inference in

order to stump them.

5.6 Related work

Bias in datasets Machine learning methods are well-known to pick up on spurious statistical

patterns. For instance, in the first visual question answering dataset (Antol et al., 2015), biases

like “2” being the correct answer to 39% of the questions starting with “how many” allowed

learning algorithms to perform well while ignoring the visual modality altogether (Jabri et al.,

2016; Goyal et al., 2017). In NLI, Gururangan et al. (2018b), Poliak et al. (2018b) and Tsuchiya

(2018) showed that hypothesis-only baselines often perform far better than chance. NLI systems

can often be broken merely by performing simple lexical substitutions (Glockner et al., 2018),

and struggle with quantifiers (Geiger et al., 2018) and certain superficial syntactic properties

(McCoy et al., 2019).

In question answering, Kaushik and Lipton (2018) showed that question- and passage-only

models can perform surprisingly well, while Jia and Liang (2017) added adversarially con-

structed sentences to passages to cause a drastic drop in performance. Many tasks do not actually

require sophisticated linguistic reasoning, as shown by the surprisingly good performance of ran-

dom encoders (Wieting and Kiela, 2019). Similar observations were made in machine translation
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(Belinkov and Bisk, 2017) and dialogue (Sankar et al., 2019). Machine learning also has a ten-

dency to overfit on static targets, even if that does not happen deliberately (Recht et al., 2018). In

short, the field is rife with dataset bias and papers trying to address this important problem. This

work presents a potential solution: if such biases exist, they will allow humans to fool the models,

resulting in valuable training examples until the bias is mitigated.

Dynamic datasets. Bras et al. (2020) proposed AFLite, an approach for avoiding spurious biases

through adversarial filtering, which is a model-in-the-loop approach that iteratively probes and

improves models. Kaushik et al. (2019) offer a causal account of spurious patterns, and counter-

factually augment NLI datasets by editing examples to break the model. That approach is human-

in-the-loop, using humans to find problems with one single model. In this work, we employ both

human and model-based strategies iteratively, in a form of human-and-model-in-the-loop training,

to create completely new examples, in a potentially never-ending loop (Mitchell et al., 2018).

Human-and-model-in-the-loop training is not a new idea. Mechanical Turker Descent pro-

poses a gamified environment for the collaborative training of grounded language learning agents

over multiple rounds. The “Build it Break it Fix it” strategy in the security domain (Ruef et al.,

2016) has been adapted to NLP (Ettinger et al., 2017) as well as dialogue safety (Dinan et al.,

2019). The QApedia framework (Kratzwald and Feuerriegel, 2019) continuously refines and

updates its content repository using humans in the loop, while human feedback loops have been

used to improve image captioning systems (Ling and Fidler, 2017). Wallace et al. (2019) lever-

age trivia experts to create a model-driven adversarial question writing procedure and generate a

small set of challenge questions that QA-models fail on. Relatedly, Lan et al. (2017) propose a

method for continuously growing a dataset of paraphrases.

There has been a flurry of work in constructing datasets with an adversarial component, such

as Swag (Zellers et al., 2018) and HellaSwag (Zellers et al., 2019), CODAH (Chen et al., 2019),

Adversarial SQuAD (Jia and Liang, 2017), Lambada (Paperno et al., 2016) and others. Our

dataset is not to be confused with abductive NLI (Bhagavatula et al., 2019), which calls itself

αNLI, or ART.
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5.7 Discussion & Conclusion

In this work, we used a human-and-model-in-the-loop training method to collect a new bench-

mark for natural language understanding. The benchmark is designed to be challenging to current

state-of-the-art models. Annotators were employed to act as adversaries, and encouraged to find

vulnerabilities that fool the model into misclassifying, but that another person would correctly

classify. We found that non-expert annotators, in this gamified setting and with appropriate incen-

tives, are remarkably creative at finding and exploiting weaknesses. We collected three rounds,

and as the rounds progressed, the models became more robust and the test sets for each round

became more difficult. Training on this new data yielded the state of the art on existing NLI

benchmarks.

The ANLI benchmark presents a new challenge to the community. It was carefully con-

structed to mitigate issues with previous datasets, and was designed from first principles to last

longer. The dataset also presents many opportunities for further study. For instance, we collected

annotator-provided explanations for each example that the model got wrong. We provided infer-

ence labels for the development set, opening up possibilities for interesting more fine-grained

studies of NLI model performance. While we verified the development and test examples, we did

not verify the correctness of each training example, which means there is probably some room for

improvement there.

A concern might be that the static approach is probably cheaper, since dynamic adversarial

data collection requires a verification step to ensure examples are correct. However, verifying

examples is probably also a good idea in the static case, and adversarially collected examples can

still prove useful even if they didn’t fool the model and weren’t verified. Moreover, annotators

were better incentivized to do a good job in the adversarial setting. Our finding that adversarial

data is more data-efficient corroborates this theory. Future work could explore a detailed cost and

time trade-off between adversarial and static collection.

It is important to note that our approach is model-agnostic. HAMLET was applied against

an ensemble of models in rounds 2 and 3, and it would be straightforward to put more diverse
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ensembles in the loop to examine what happens when annotators are confronted with a wider

variety of architectures.

The proposed procedure can be extended to other classification tasks, as well as to ranking

with hard negatives either generated (by adversarial models) or retrieved and verified by humans.

It is less clear how the method can be applied in generative cases.

Adversarial NLI is meant to be a challenge for measuring NLU progress, even for as yet

undiscovered models and architectures. Luckily, if the benchmark does turn out to saturate

quickly, we will always be able to collect a new round.
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CHAPTER 6: SUMMARY, LIMITATIONS, AND FUTURE WORK

6.1 Summary of Contributions

We have presented our recent work centered around data-driven natural language inference.

The main contributions can be described twofold: (1) understanding how we can train data-driven

NLI models for downstream NLP applications; (2) how we can improve and evaluate NLI models

more generally in a dynamic human-and-model-in-the-loop fashion.

In Chapter 2, we describe our efforts in developing sentence encoder-based NLI models that

achieved state-of-the-art performance. The resultant sentence vectors are shown to be more dis-

criminative about certainty topical attributes than other existing sentence encoders. In Chapter 3,

we developed a retriever and reader framework that combines NLI and VQ with an informa-

tion retriever system and achieve state-of-the-art performance in both fact verification and open-

domain question answering tasks. In Chapter 4, we initiate a research effort on utilizing NLI

models for contradiction detection in dialogue and consistent generation. In Chapter 5, we pro-

pose a dynamic and adversarial human and model in the loop evaluation and training framework

for natural language inference. We first train state-of-the-art NLI models using the best NLP

model which is the BERT and then we deploy the models and ask the annotator to play with the

models and write difficult examples that fool the models. Once we have those difficult examples,

we make train/dev/test split and re-train the model using the data and do it again. The process can

be seen as a competitive iteration between model training and cloud sourcing and in the end, we

can have both more difficult evaluation sets and more robust models. The result shows that it not

only got state-of-the-art performance on existing NLI datasets but turn out to be more robust in

NLI stress test.
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All the presented datasets and algorithms in this thesis are publicly available to the commu-

nity and have attracted substantial attention. We hope our work could provide continued support

and inspiration for the research community in this area.

6.2 Limitations and Future Work

While progress has been achieved in natural language inference as we detailed above, the

task of natural language inference is still far from achieved. First of all, the definition of the task

imposes certain ambiguity on the category boundaries between the three NLI labels. For a notice-

able amount of examples, there are significant human disagreements about the ground truth label.

How to refine the definition or the utility of NLI is still an open question. Secondly, NLI has been

used as an important benchmark task for natural language understanding while existing datasets

are saturated quickly. Adversarial NLI is the first proposal to solve such issues. However, there

are also existing problems with ANLI such as difficulties of annotators writing good adversarial

examples and potentially low inter-annotation agreements in adversaries. Moreover, adversarial

training can only be an antidote for improvement on NLU and we will eventually hit the limit

of model capacity. Other methods like invariant risk minimization or restricting the modeling

to linguist grounded structures should be further explored to advance general natural language

understanding.

In the current world of NLU learning, training large scale language models on static corpus

or crawled web text data is able to yield a decently well NLP foundation models and the commu-

nity has achieved significant progress. However, now we might have reached a bottleneck with

this learning paradigm. With the increasing user-case in human-machine interaction, it starts to

become easier for us to have access to tons of human-and-bot interaction data and we are getting

closer to the idea of learning language through interaction where the model will have a better

alignment with human intention. One crucial future research topic is how we can take the ad-

vantages of this interaction interfaces or data and train models with more direct access to human

feedbacks. We can envision some scenarios in which we deploy some pre-trained models and
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then sparse but necessary human feedback will be needed to further improve the models. Re-

search on NLI and ANLI can be a pilot case study where such an interactive NLU endeavor can

be tested.
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