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ABSTRACT

Yutong Liu: High-dimensional Data Analysis Problems in Infectious Disease Studies
(Under the direction of Quefeng Li)

Recent technological developments give researchers the opportunity to obtain large informative datasets

when studying infectious disease. Such datasets are often high-dimensional, which presents challenges for

classical multivariate analysis methods. It is critical to develop novel methods that can solve problems arising

in infectious disease studies when the data is high-dimensional or has complex structure.

In the first project, we focus on a Plasmodium vivax malaria infection study. A standard competing risks

set-up requires both time-to-event and cause-of-failure to be fully observable for all subjects. However, in

practice, the cause of failure may not be observable, thus impeding the risk assessment. When a recurrent

episode of Plasmodium vivax malaria happens following treatment, the patient may have suffered a relapse

from a previous infection or acquired a new infection from a mosquito bite. In this case, the time to relapse

cannot be modeled when a competing risk, a new infection, is present. Therefore, we developed a novel

method for classifying the latent cause of failure under a competing risks set-up, which uses not only time to

event information but also transition likelihoods between covariates at the baseline and at the time of event

occurrence. Our classifier shows superior performance under various scenarios in simulation experiments.

The method was applied to Plasmodium vivax infection data to classify recurrent infections of malaria.

In the second project, we investigate data collected from a Chlamydia trachomatis genital tract infection

study, which contains data of mixed types from multiple groups of subjects. To handle mixed type data, we

propose a Latent Mixed Gaussian Copula model that can quantify the correlations among binary, categorical,

continuous, and truncated variables in a unified framework. We also provide a tool to decompose the variation

into the group-specific and the common variation over multiple groups via solving a regularizedM -estimation

problem. We conduct extensive simulation studies to show the advantage of our proposed method. We also

demonstrate that by jointly solving the M -estimation problem over multiple groups, our method is better

than decomposing the variation group-by-group. We apply our method to the Chlamydia trachomatis genital
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tract infection study to demonstrate how it can be used to discover informative biomarkers that differentiate

patients.

For data collected from the Chlamydia trachomatis genital tract infection study, not all subjects have

complete data from all data modalities, resulting in a block-wise missing structure of the mixed type data.

To utilize as much data as possible, we propose to impute the missing values by the Latent Mixed Gaussian

Copula model in the third project, where we perform imputation for block-wise missing values by the

underlying correlations between fully observed and partially observed variables. The method proposed can

be applied to multi-modal data with various data types and shows superior performance for imputing the

mixed type data in simulation experiments. We applied the method to data from the Chlamydia trachomatis

genital tract infection study for imputation of missing endometrial infection status, endometrial diagnosis

results, and truncated cytokine values.
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INTRODUCTION

Infectious diseases have always been an area of focus when it comes to public health. The ongoing

COVID-19 pandemic, only emerging at the end of 2019, has posed severe challenges to population health

globally. Even before the COVID-19 pandemic, infectious diseases like HIV, tuberculosis, malaria, and

hepatits have been one of the leading causes of death and disability (WHO, 2019a).

Recent technological developments like quantitative PCR and targeted deep sequencing make it possible

for researchers to obtain large scale genetic data from patients when studying infectious disease. However,

the nature of genetic data proclaims that, in such datasets, the number of variables will always be larger than

the number of patients, and therefore leads to a high-dimensional dataset. For this kind of high-dimensional

dataset, classical multivariate analysis methods designed for low-dimensional can not be applied directly.

To better study infectious disease, it is critical to develop novel methods that can be used when the data is

high-dimensional or of complex structure.

In Chapter 3, we developed a method to classify the cause of Plasmodium vivax malaria recurrence

from a competing risks perspective. A standard competing risks set-up requires both time to event and

cause of failure to be fully observable for all subjects. However, in application, the cause of failure may

not always be observable, thus impeding the risk assessment. In some extreme cases, none of the causes

of failure is observable. Plasmodium vivax, is the most widespread human malaria (Howes et al., 2016).

Due to the dormant liver stage of P. vivax, hypnozoites may reactivate and cause another infection weeks

to months after the initial infection (Chu and White, 2016). However, the fact that individuals can also

become reinfected due to a new mosquito bite makes it difficult to study the anti-relapse efficacy of treatment.

In the case of a recurrent episode of Plasmodium vivax malaria following treatment, the patient may have

suffered a relapse from a previous infection or acquired a new infection from a mosquito bite. Therefore,

the time to relapse cannot be modeled when a competing risk, a new infection, is present. The efficacy of

a treatment for preventing relapse from a previous infection may be underestimated when the true cause

of infection cannot be classified. To solve this problem, we developed a novel method for classifying the

latent cause of failure under a competing risks set-up, which uses not only time to event information but also
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transition likelihoods between covariates at the baseline and at the time of event occurrence. Our classifier

shows superior performance under various scenarios in simulation experiments. The method was applied to

Plasmodium vivax infection data to classify recurrent infections of malaria.

Chlamydia is the leading bacterial sexually transmitted infection in the United States and the infection is

often asymptomatic. In up to 50% of women, untreated infection can ascend from the cervix to the upper

genital tract and potentially lead to severe female reproductive morbidities. In Chapter 4, we look at data

collected from a Chlamydia trachomatis genital tract infection study. In this study, both gene expression

data and SNP data were collected at the same time from two groups of subjects, one group of subjects with

cervical infections only, while the other group of subjects have both cervical infections and endometrial

infections. Identification of the commonly and differentially expressed genes and their underlying regulatory

SNPs between women with and without ascending infection can greatly enhance the understanding of

disease. There are many biomedical studies collect data of mixed types of variables from multiple groups of

subjects. Some of these studies aim to find the group-specific and the common variation among all these

variables. Even though similar problems have been studied by some previous works, their methods mainly

rely on the Pearson correlation, which cannot handle mixed data. To address this issue, we propose a Latent

Mixed Gaussian Copula model that can quantify the correlations among binary, categorical, continuous,

and truncated variables in a unified framework. We also provide a tool to decompose the variation into

the group-specific and the common variation over multiple groups via solving a regularized M -estimation

problem. We conduct extensive simulation studies to show the advantage of our proposed method over the

Pearson correlation-based methods. We also demonstrate that by jointly solving the M -estimation problem

over multiple groups, our method is better than decomposing the variation group-by-group. We apply our

method to a Chlamydia trachomatis genital tract infection study to demonstrate how it can be used to discover

informative biomarkers that differentiate patients.

Even though the method proposed in Chapter 4 can handle mixed type data and perform variance

decomposition simultaneously, it requires all subjects to have complete data from all data modalities. Subjects

with element-wise missing values, or missing values from one or more data modalities, referred to as block-

wise missingness, will be excluded. However, by excluding subjects with any missing values, we are also

removing valuable information from the dataset. To be able to utilize as much data as possible when the

mixed type data has a element-wise or block-wise missing structure, we propose to impute the missing values

by a Latent Mixed Gaussian Copula model in Chapter 5. A Winsorized empirical cumulative distribution

2



function estimator will be used for estimating the transformation functions of the observed variables, which

will then be used for imputing the values of the latent layer. By the conditional distribution of the latent

variables, we can impute all the element-wise and block-wise missing values. The method proposed can be

applied to mixed type data regardless of the missing mechanism.
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LITERATURE REVIEW

2.1 Competing Risks with Missing Cause of Failure

It is commonly seen in biomedical research that the occurrence of an event during the follow-up period

can be attributed to one of multiple causes. Data of this type is a standard competing risks set-up, where one

event occurs per subject, and the failure type is one of many possible causes. Usually, both time to event and

the cause of failure are observable. However, in some cases, the cause of failure may be unknown or missing.

The problem of missing cause of failure in competing risks data has been given much attention since

Dinse (1982). There are two possible approaches for estimating competing risks data with missing cause

of failure when the cause is missing at random (Rubin, 1976): (1) complete-case analysis, utilizing only

complete observations, e.g., Effraimidis and Dahl (2014), or, (2) construct a regression model for the missing

cause using all observations, including those with missing cause of failure. In the second approach, one can

use a global parametric model (Lu and Tsiatis, 2001), a semi-parametric framework (Goetghebeur and Ryan,

1995) or a nonparametric regression method (Gouskova, Lin and Fine, 2017) to estimate the cause-specific

hazard functions. A similar problem is also considered in Sun and Gilbert (2012) and Juraska and Gilbert

(2016) when considering the competing cause as a mark for the mark-specific hazard function. A doubly

robust estimator is proposed in these papers when the mark variable is possibly missing. However, these

approaches require at least some of the observations to have complete records. They cannot be applied to

studies where the cause of failure is unknown for every subject.

2.2 Variation Decomposition of Mixed Variables

2.2.1 Differential Gene Co-expression Analysis

In gene co-expression network studies, people aim to find differentially expressed genes or pathways

across groups of subjects with different phenotypes. A lot of methods have been developed for differential

gene co-expression analysis (van Dam et al., 2018), which aims to reveal regulatory genes corresponding to
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different phenotypes. Watson (2006) developed CoXpress, where they used hierarchical cluster analysis to

identify groups of genes that are differentially co-expressed under different phenotypes. Choi and Kendziorski

(2009) introduced GSCA to test whether some given gene sets are differentially coexpressed between different

groups. Tesson, Breitling and Jansen (2010) presented DiffCoEx, a method that was built on the Weighted

Gene Coexpression Network Analysis (WGCNA, Langfelder and Horvath, 2008) framework for identifying

gene modules that are differentially coexpressed between two groups. Amar, Safer and Shamir (2013)

developed DICER, where a probabilistic score was used for detecting a group of genes that are coexpressed

differently for disease and normal samples. Rahmatallah, Emmert-Streib and Glazko (2014) introduced

GSCNA, which assign a weight factor for each gene in the set and provides not only a method to test whether

a group of genes are coexpressed differently within different group but also evaluate the importance of genes

in gene sets. However, this method also requires predefined gene sets. The methods mentioned above focus

on finding the group-specific, or say, phenotype-specific structure across groups of different phenotypes but

did not consider the fact that even for groups with different phenotypes, there will be some shared information

across groups. To account for the shared information across groups, Alter, Brown and Botstein (2003)

developed GSVD, which use generalized singular value decomposition to formulate expression data as a sum

of effects of genes that are shared for both datasets and effects that are unique for each dataset. GSVD can

only deal with the situation when there are two datasets. Ponnapalli et al. (2011) later defined a higher-order

GSVD that can deal with three or more datasets. Ha, Baladandayuthapani and Do (2015) developed DINGO,

which model the conditional dependencies among genes through a Gaussian graphical model and decompose

them into a global and group-specific components.

2.2.2 Latent Gaussian Copula Model

2.2.2.1 Continuous variables

Let X = (X1, . . . , Xp)
T be a p-dimensional vector. Liu, Lafferty and Wasserman (2009) proposed

that if there exists monotone and differentiable functions f =
{
fj
}p
j=1

such that {f1(X1), . . . , fp(Xp)}T ∼

N(0,Σ), where Σ is a correlation matrix, then X is said to follow a Gaussian copula model, denoted by

X ∼ NPN(0,Σ,f). To estimate the transformation functions fj , they also proposed a Winsorized empirical
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CDF estimator, which is defined as

F̃j(t; δn,x1, . . . ,xn) := Tδn

(
1

n

n∑
i=1

I(xij ≤ t)

)
(2.1)

for Xj , and

Tδn(a) :=


δn, if a < δn,

a, if δn ≤ a ≤ 1− δn,

1− δn, if a > 1− δn.

Define f̃j(t) = Φ−1(F̃j(t)) and use the truncation level δn = 1
4n1/4

√
π logn

, Han, Zhao and Liu (2013) proved

that f̃j(t) converges to fj uniformly over an expanding interval with high probability.

2.2.2.2 Binary and truncated variables

When the observed dataX are not continuous variables, Fan et al. (2017) studies the Latent Gaussian

copula model for binary data. That is, the random vector X ∈ Rp that takes value 0 or 1 satisfies the

binary latent Gaussian copula model, if there exists a p-dimensional random vector Y = (Y1, . . . , Yp)
T ∼

NPN(0,Σ, f) such that Xj = I(Yj > Cj) for all j = 1, . . . , p, where I(·) is the indicator function and

C = (C1, . . . , Cp) is a vector of constants, then we say the random vector X satisfies the latent Gaussian

copula model with Σ being the latent correlation matrix and denoteX ∼ LNPN(0,Σ, f,C).

Yoon, Carroll and Gaynanova (2020) further extended the idea to truncated data. That is, for a random

vectorX ∈ Rp, if there exist a p-dimensional random vector Y = (Y1, . . . , Yp)
T ∼ NPN(0,Σ, f) such that

Xj = I(Yj > Cj)Yj for j = 1, . . . , p, where I(·) is the indicator function and C = (C1, . . . , Cp) is a vector

of positive constants, then we sayX satisfies the truncated latent Gaussian copula model with Σ being the

latent correlation matrix and denoteX ∼ TLNPN(0,Σ, f,C).

2.2.2.3 Correlation estimation for mixed data via Kendall’s τ

Estimating the latent correlation matrix is a critical problem for the latent Gaussian Copula and Mixed

Gaussian Copula models. This problem has been studied by Liu, Lafferty and Wasserman (2009), Fan et al.

(2017) and Yoon, Carroll and Gaynanova (2020). They proposed to first calculate the Kendall’s τ correlations

of observed variables and connect them to the correlations of latent variables via some bridge functions.
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In particular, let
{

(Xij , Xik)
}n
i=1

be the realizations of the observed variables Xj and Xk, the Kendall’s τ

correlation between Xj and Xk is defined as

τ̂jk =
2

n(n− 1)

∑
1≤i<i′≤n

sign(Xij −Xi′j) sign(Xik −Xi′k). (2.2)

Let τjk = E(τ̂jk) be the population Kendall’s τ . Then, the latent correlation Rjk between fj(Yj) and fk(Yk)

is Rjk = F−1
jk (τjk), where Fjk(·) is a bridge function. We summarize the bridge functions for the pairwise

correlations among continuous, binary and truncated variables. These formulae were original derived in Liu,

Lafferty and Wasserman (2009), Fan et al. (2017) and Yoon, Carroll and Gaynanova (2020).

Theorem 1 (Liu, Lafferty and Wasserman, 2009; Fan et al., 2017; Yoon, Carroll and Gaynanova, 2020)

(a) For j ∈ C and k ∈ C , Fjk(Rjk) = 2 sin−1(Rjk)/π.

(b) For j ∈ B and k ∈ B, Fjk(Rjk) = 2Φ2(∆j ,∆k;Rjk)− 2Φ1(∆j)Φ1(∆k), where ∆j = fj(Cj)

and ∆k = fk(Ck).

(c) For j ∈ B and k ∈ C , Fjk(Rjk) = 4Φ2(∆j , 0;Rjk/
1√
2
)− 2Φ1(∆j), where ∆j = fj(Cj).

(d) For j ∈ T and k ∈ B, Fjk(Rjk) = 2
{

1 − Φ1(∆j)
}

Φ1(∆k) − 2Φ3(−∆j ,∆k, 0;R3a) −

2Φ3(−∆j ,∆k, 0;R3b), where ∆j = fj(Cj),∆k = fk(Ck),

R3a =


1 −Rjk 1√

2

−Rjk 1 −Rjk√
2

1√
2
−Rjk√

2
1

 andR3b =


1 0 − 1√

2

0 1 −Rjk√
2

− 1√
2
−Rjk√

2
1

 .

(e) For j ∈ T and k ∈ C , Fjk(Rjk) = −2Φ2(−∆j , 0; 1/
√

2) + 4Φ3(−∆j , 0, 0;R3c), where

∆j = fj(Cj) and

R3c =


1 1√

2

Rjk√
2

1√
2

1 Rjk

Rjk√
2

Rjk 1

 .
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(f) For j ∈ T and k ∈ T , Fjk(Rjk) = −2Φ4(−∆j ,−∆k, 0, 0;R4a) + 2Φ4(−∆j ,−∆k, 0, 0;R4b),

where ∆j = fj(Cj),∆k = fk(Ck),

R4a =



1 0 1√
2
−Rjk√

2

0 1 −Rjk√
2

1√
2

1√
2
−Rjk√

2
1 −Rjk

−Rjk√
2

1√
2
−Rjk 1


andR4b =



1 Rjk
1√
2

Rjk√
2

Rjk 1
Rjk√

2
1√
2

1√
2

Rjk√
2

1 Rjk

Rjk√
2

1√
2

Rjk 1


.

It was proved in Liu, Lafferty and Wasserman (2009), Fan et al. (2017) and Yoon, Carroll and Gaynanova

(2020) that all these bridge functions are strictly increasing for any Rjk ∈ (−1, 1). Thus, they are invertible.

In practice, we can estimate Rjk by R̂jk = F−1
jk (τ̂jk). For a binary or truncated variable, ∆k = fk(Ck) is

unknown. To estimate it, Fan et al. (2017) proposed to use the plug-in estimator ∆̂k = Φ−1(
∑n

i=1 I(Xik 6=

0)/n).

2.2.3 Variation Decomposition for Observations from One Population

The problem of variation decomposition can be approached from several different perspectives, including

Principal Component Analysis (PCA) (Lock et al., 2013; Zhou et al., 2015; Feng et al., 2018), Canonical

Correlation Analysis (CCA) (Shu, Wang and Zhu, 2020), and Partial Least Squares (PLS) (Löfstedt and

Trygg, 2011). Lock et al. (2013) introduced the Joint and Individual Variation Explained (JIVE) method that

can capture the joint variation across different data types and the individual variation of each data type. Feng

et al. (2018) developed AJIVE, where score subspaces were used to ensure an identifiable decomposition.

Zhou et al. (2015) proposed COBE for efficient extraction of common and individual features, where they

used a low-rank approximation to decompose the data into a shared common subspace and many individual

subspaces. Shu, Wang and Zhu (2020) proposed D-CCA, a decomposition-based canonical correlation

analysis method. Instead of using the Euclidean space, D-CCA defines the common and unique parts using a

more general Hilbert space. Löfstedt and Trygg (2011) derived OnPLS to separate the shared and specific

variations. However, these methods are designed only for continuous variable, and cannot be directly applied

to other variables, such as binary, categorical or truncated variables. To carry out integrative analysis for data

of different types and decompose the data into shared and individual structures, Li, Gaynanova et al. (2018)

developed the Generalized Association Study (GAS), which uses the log-likelihood function to integrate
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different variables that follow exponential family distributions. Zhu, Li and Lock (2020) generalized the

idea of GAS and proposed a Generalized integrative PCA method, which can be used to analyze more than

two data sets. It also allows data to have block-wise missing values. However, all these methods focused on

finding the similarities and differences among variables collected from one population and thus cannot be

used to decompose the variation of two subpopulations.

2.3 High-dimensional Block-wise and Element-wise Missing Data Imputation

2.3.1 Matrix Completion

The matrix completion problem (Laurent, 2001) aims to recover an unknown large matrix based on a

small number of its known entries. One of the most famous application of matrix completion methods is the

Netflix Prize problem, where a training set of people’s existed ratings, usually only a few number of movies

from each person, are given, and the goal is to predict people’s ratings for all other movies that they never

rated before. Such a problem is impossible to solve without additional information or assumptions. However,

in many cases, it is reasonable to assume that the matrix to be recovered is low-rank or approximately

low-rank, and the problem will become solvable (Hastie, Tibshirani and Wainwright, 2019, Section 7). This

assumption makes sense as it is implying that the decision is only driven by a few factors. Assume the matrix

we wish to recover is a square n × n matrix M with rank r. Even though there are n2 entries in M , its

degrees of freedom is only (2n − r)r (Candès and Recht, 2009), which is notably much smaller than n2

when the rank r is small. Following Candès and Tao (2010), let Ω be the set of locations corresponding to the

observed entries inM , and define Y = PΩ(X) as

Yij =


Xij , (i, j) ∈ Ω

0, otherwise
. (2.3)

Intuitively, one would consider recovering matrix by solving the optimization problem

minimize rank(X)

subject to PΩ(X) = PΩ(M)
(2.4)
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where X is the decision variable. However, this problem is NP-hard. Instead, Candès and Recht (2009)

considered minimizing the nuclear norm ofX , defined as ‖X‖∗ =
∑n

k=1 λk(X), where λk(X) denote the

kth largest singular value ofX and the nuclear norm is calculated as the sum of the singular values over the

constraint set. The optimization problem then becomes

minimize ‖X‖∗

subject to PΩ(X) = PΩ(M)
(2.5)

The nuclear norm is a convex relaxation of the rank of a matrix, and therefore, (2.5) is a convex problem.

Candès and Recht (2009) proved that ifM has row and column spaces that are incoherent with the standard

basis, thenM can be recovered from a random sampling of a small number of entries using nuclear norm

minimization if Ω is random and the number of entries inM observed is greater than Cn6/5r log n. Candès

and Tao (2010) then quantitatively improved condition of observed entries to greater than Cµ4n(log n)2,

given that M obeys the strong incoherence property with parameter µ = O(
√

log n). Gross (2011) later

showed that the exact recovery can be achieved by nuclear norm optimization if the number of observed

entries is greater than Crn log n. To efficiently solve (2.5), Cai, Candès and Shen (2010) developed the

singular value thresholding algorithm, which iteratively perform soft-thresholding on the singular value of

the matrix obtained from the previous step and can handle very large scale problems. Mazumder, Hastie and

Tibshirani (2010) rewrite (2.5) in Lagrange form as

min
X

1

2
‖PΩ(M)− PΩ(X)‖2F + λ‖X‖∗ (2.6)

where λ is a non-negative regularization parameter. To solve the nuclear norm regularized least-square

problem (2.6), Mazumder, Hastie and Tibshirani (2010) proposed SOFT-IMPUTE, an algorithm that iteratively

solve the (2.6) via SVD and soft-thresholding, where the non-sparse matrix can be written as the sum of a

low rank matrix plus a sparse matrix at each iteration.

Other than using nuclean norm minimization, Rennie and Srebro (2005) proposed to use the maximum

margin matrix factorization (MMMF) method, where a factor model was used, to recoverM . Rennie and

Srebro (2005) proved that for a n1 × n2 rank r matrix M that can be factorized as M = AB′, where
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A ∈ Rn1×r,B ∈ Rr×n2 , the nuclear norm ofM is equal to

min
M=AB′

1

2

(
‖A‖2F + ‖B‖2F

)
. (2.7)

They considered the following problem

min
A,B

1

2
‖PΩ(M −AB′)‖2F +

λ

2

(
‖A‖2F + ‖B‖2F

)
, (2.8)

which is biconvex and the solution agrees with that given by using nuclear norm minimization. Besides

MMMF, Keshavan, Montanari and Oh (2010) proposed to solve the following problem

min
U ,V ,S

‖PΩ(M)− PΩ(USV ′)‖2F + λ‖S‖2F , (2.9)

where U ′U = V ′V = Ir and S is an r × r matrix. They also introduced a gradient descent algorithm

for solving this problem, which is a 3-step algorithm that utilize both singular value decomposition and

Grassmann manifolds optimization. Hastie et al. (2015) combined the ideas from SOFT-IMPUTE and

MMMF and propose to solve for

min
A,B

1

2
‖(M̂ −AB′)‖2F +

λ

2

(
‖A‖2F + ‖B‖2F

)
, (2.10)

where M̂ =
(
PΩ(M)− PΩ(X̂)

)
+ X̂ , and X̂ is obtained by soft-thresholding SVD of M̂ from the last

iteration. They presented the softImpute-ALS algorithm for solving (2.10) and showed that the solution

converges given sufficiently large r.

2.3.2 High-dimensional block-wise missing data imputation

In biomedical research, the block-wise missing structure is very common for high-dimensional multi-

modality datasets. There are several popular approaches for solving high-dimensional data problems when a

block-wise missing structure is presented. The most straightforward way is to only use data with complete

observations and remove those with any missing values. However, in lots of biomedical research, only a

small number of observations have data from all modalities. By simply removing observations with any

missing values, we would lose a lot of valuable information. Moreover, the estimator obtained will be biased
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if the missing mechanism is not missing completely at random, which is usually not the case for block-wise

missing data.

Another approach for handling block-wise missing data is to use all data available, without any deletion

or imputation. Yuan et al. (2012) developed the method iMSF, where a multi-task sparse learning framework

is used, and observations with data from at least one modality can all be included. Xiang et al. (2014)

extended the idea of iMSF and proposed a bi-level model, where they performed covariate-level and modality-

level analysis at the same time. Yu et al. (2020) introduced DISCOM, where coefficients in the optimal

linear prediction were estimated using an extended Lasso-type estimator, based on estimates for covariance

matrices among covariates and between the response and covariates. However, DISCOM require the missing

mechanism to be missing completely at random.

Finally, there are also works aim to impute this kind of block-wise missing data. Cai, Cai and Zhang

(2016) proposed a structured matrix completion (SMC) method based on SVD and the use of Schur com-

plement. They showed that the data matrix can be recovered if the matrix is exactly or approximately low

rank. However, SMC requires there to be some complete rows and columns in the data matrix, and that

the missing need to be completely at random. Also, the method can only be applied on data with Gaussian

distribution, and can not handle more than two data modalities easily. Zhang, Tang and Qu (2020) considered

a factor model approach for imputing the missing blocks. The method does not rely on any specific missing

mechanism and remains efficient when there are a lot of block-wise missings. However, this approach can

only be used for continuous data. To solve the problem of imputation for mixed-type data. Xue and Qu

(2020) proposed a multiple block-wise imputation (MBI) approach that can handle mixed type covariate.

Zhu, Li and Lock (2020) developed GIPCA, a low rank approach that can impute block-wise missing data of

mixed types. For the methods proposed in Xue and Qu (2020) and Zhu, Li and Lock (2020), since they used

parametric methods, the distribution of the covariates has to fall in the exponential family.
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CHAPTER 3: DYNAMIC CLASSIFICATION OF PLASMODIUM VIVAX MALARIA RECUR-
RENCE: AN APPLICATION OF CLASSIFYING UNKNOWN CAUSE OF FAILURE IN COMPET-

ING RISKS

3.1 Introduction

3.1.1 Plasmodium vivax Malaria Infection

Plasmodium vivax, in short, P. vivax, is the most widespread human malaria (Howes et al., 2016).

According to the 2019 World Malaria Report released by World Health Organization (WHO), 53% of the

global P. vivax burden is in the South-East Asia Region, and 75% of malaria cases in the Region of the

Americas are resulted from P. vivax. Due to the dormant liver stage of P. vivax, hypnozoites may reactivate

and cause another infection weeks to months after the initial infection (Chu and White, 2016). Relapse due to

inadequately treated blood stages is less common and is referred to as treatment failure or recrudescence.

Therefore, when first-line antimalarials are used, relapse is usually attributed to hypnozoite-induced relapse.

P. vivax relapses are an important source of morbidity and contribute to malaria mortality (Dini et al. 2020,

Robinson et al. 2015, Baird 2013). However, the fact that individuals can also become reinfected due to a

new mosquito bite makes it difficult to study the anti-relapse efficacy of treatment. Previous studies have

concluded that even when the level of transmission is relatively low, there is a high genetic diversity in P.

vivax parasites within patient populations in Cambodia (Lin et al., 2013, Friedrich et al., 2016). Such genetic

diversity, often resulting in multiple parasites haplotypes present in a single infection, provides an opportunity

for researchers to distinguish relapse from a recurrent infection by examining the overlap of haplotypes

between infections and the appearance of haplotypes associated with relapse.

Lin et al. (2015) applied targeted deep sequencing to 108 isolates collected from 78 Cambodian volunteers

with P. vivax infection (Lon et al., 2014). Subjects in the study were treated initially with dihydroartemisinin-

piperaquine (DP), an effective drug to treat the blood stages of P. vivax, all but precluding treatment failure

due to recrudescence. To detect recurrent infection, blood smears of study subjects were taken firstly at

baseline, then weekly for six weeks following treatment, then monthly thereafter. At the end of the study,
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Figure 3.1: Time to First Recurrence Infection for 23 subjects with recurrence infections.

23 of the 78 subjects experienced recurrent infections, with a median of 68 days in the time to recurrence.

Subjects’ participation in the study ranged from 2 to 6 months, with a median of 4 months follow-up. Since

treatment failure with DP is unlikely, these recurrences most likely represent relapse or reinfection. In fact,

of the 23 subjects with recurrent infection, five subjects had a second recurrent infection, and one subject

had a third recurrent infection. To simplify the analysis, we only consider the first recurrent infection among

those 23 subjects. Panel (a) in Figure 3.2 shows the Kaplan-Meier curve for the first recurrent infection along

with the risk table showing number of subjects at risk over ten-day intervals. The horizontal axis in the plot

indicates days from baseline, and the vertical axis is the estimated survival probability. The solid line is the

step function and shaded area is associated 95% point-wise confidence interval of the step function. The

longest follow-up time is 180 days, and 70% (55 subjects) were disease-free at the end of the follow-up

period. Figure 3.1 is a subject-by-subject time to first infection plot which shows the 23 subjects’ time to first

recurrence infection.

P. vivax exhibits great genetic diversity, surpassing that seen in P. falciparum (Neafsey et al., 2012).

Parobek et al. (2014) identified a highly variable 117-base pair (bp) segment of the P. vivax merozoite surface

protein 1 gene (pvmsp1) within the 33-kDa subunit of the 42-kDa region, which exhibits great nucleotide

diversity. After extracting DNA from filter paper blood spots, Lin et al. (2015) applied deep sequencing to
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this region and used a bioinformatics pipeline called SeekDeep (Hathaway et al., 2018) to determine different

haplotypes of pvmsp1 defined by at least a single nucleotide difference between haplotypes. They identified

67 unique pvmsp1 haplotypes across 108 isolates from either initial infection or recurrent infections, with

each patient isolate harboring, on average, three different haplotypes. They found nine haplotypes that are

common and appeared in at least 10% of individuals. 46 rare haplotypes appeared in only one isolate, with

some later attributed to sequencing error. Only 41 unique haplotypes were identified in those subjects with

recurrent infection. Panel (b) in Figure 3.2 shows a heatmap that indicates the presence/absence of these

41 haplotypes (genetic variants) in the initial and recurrent infections from those 23 subjects. Each column

represents one unique haplotype, and each row represents one subject with an identification number. The

subjects were sorted based on their time to the first recurrent infection, with the shortest time at the top

and the longest time at the bottom. Pink cells indicate the presence of the haplotype in the initial infection

but absence in the recurrent infection. Blue cells show the absence of the haplotype in the initial infection

but presence in the recurrent infection. Purple cells show haplotypes that were present in both infections.

Interestingly, only 16 subjects had overlapping haplotypes between initial and recurrent infections. Two

subjects with the shortest time to recurrent infection did not have any shared haplotypes.

3.1.2 Competing Risks with Unknown Cause of Failure

In P. vivax malaria research, subjects who live in endemic areas suffer recurrent infections which can

arise from (1) mosquito bites representing new infection, (2) relapse from latent infection in the liver, or (3)

recrudescence due to treatment failure. The cause of recurrent infection is unknown or indeterminable in

this case, thus impeding the efficacy assessment of anti-relapse treatment. Developing a reliable method to

distinguish new infections from relapse is critical. When analyzing the causes of P. vivax malaria recurrence

from a competing risks perspective, it is natural to assume that the time to recurrent infection is associated

with baseline covariates (e.g., genetic variants or haplotypes) collected at the initial infection. We assume that

each cause has a distinct cause-specific hazard function conditional on the baseline covariates, enabling us to

build an initial cause classifier that can distinguish the cause based on the time to recurrence information.

Subsequently, by observing changes in the values of genetic variants between initial and recurrent infections,

one can build another classifier that can distinguish the cause of failure, as the changes are driven by the
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Figure 3.2: Survival curve and heatmap for presence/absence of haplotypes
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latent cause. Thus, one can update the initial classifier by utilizing the information contained in the transition

of covariates between initial infection and recurrent infection. To study the transition mechanism, Lin, Li and

Lin (2020) proposed an approach that estimates the transition likelihoods using both shared and non-shared

genetic variants to improve classification accuracy when the cause of recurrent infection is unknown. Bureau,

Shiboski and Hughes (2003) utilized a continuous-time hidden Markov chain to obtain the true transition

probabilities between states when the disease status is possibly misclassified. However, Lin, Li and Lin

(2020) did not consider the time to recurrent infection, and Bureau, Shiboski and Hughes (2003) required the

disease status to be fully observed but subject to misclassification. Neither of these two approaches is ideal

for our malaria data, and can not be applied to the classification problem when dealing with competing risks

data with missing cause of failure.

In the classification problem with unknown cause of malaria recurrence, Taylor et al. (2019) proposed a

Bayesian approach that models the time to recurrent infection for prior classification probability and then

computes the posterior probability based on an assumed genetic model with a strong prior assumption.

Ferreira et al. (2020) treated relapse (combined with recrudescence) and new infection as competing risks

assuming an exponential distribution with a time-constant hazard for both causes. In contrast, we analyze

the time to event data under a competing risks set-up without specifying any temporal pattern of the hazard

function. We generalize the idea in Lin, Li and Lin (2020) to incorporate the transition likelihoods between

covariates to classify the unknown cause of infection. By considering the time to event information and

transition likelihoods at the same time, we utilize more information from the data and thus lead to a more

accurate classifier. Our method allows the causes of failure to be completely missing and can be applied

to P. vivax malaria data (Lin et al., 2015). The classification procedure includes two main steps. First, we

utilize the time to event and baseline covariates information to obtain an initial classifier. Then, we update the

classification probability obtained in the first step using transition likelihoods between covariates to obtain the

second classifier, whose performance is better than the first one. The challenges of building these classifiers

are that the covariates are high-dimensional, and they can be of different kinds of variables. To resolve the

first challenge, we propose a penalized maximum partial likelihood estimator and use an efficient proximal

gradient descent algorithm to obtain the estimator. To resolve the second challenge, we propose a general

transition likelihood that can incorporate different kinds of variables.

The rest of this chapter is organized as follows. In Section 3.2, we describe the method of modeling

competing risk data under a proportional hazards model with baseline covariates. In Section 3.3, we
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introduce general formulae for the two classifiers. An algorithm for the computation of parameters needed

for constructing the classifiers is laid out in Section 3.4. We carry out comprehensive simulation experiments

under various scenarios to evaluate the performance of the proposed classifiers in Section 3.5. Finally, we

apply the developed method to the P. vivax malaria data and show the classification result in Section 3.6. We

summarize our current approach and discuss its extensions in Section 3.7.

3.2 Model and Estimation

In a general setting of competing risks, let T ∗i be the failure time and εi ∈ {1, 2} be the cause of failure

for subject i. We consider only two causes of failure since this is the most general setting of competing

risks application. If there are more than two causes, one may combine causes other than the primary

interest into one category and format the model with two causes of failure. To model the time to failure

when competing risks are presented, we consider a cause-specific hazard function for cause k, (k = 1, 2),

defined by: λik(t) = limdt→0 P (t ≤ T ∗i < t + dt, εi = k|T ∗i ≥ t)/dt. With Xi = (Xi1, . . . , XiJ)′ being

the J-dimensional vector of covariates at the baseline, we consider a proportional hazards model for the

cause-specific hazard function, defined by λik(t;β) = λ0k(t) exp(βk
′Xi), where λ0k(t) is the baseline

hazard function for cause k, βk = (βk1, . . . , βkJ)′ is the vector of regression coefficients, and β = (β′1,β
′
2)′

(Kalbfleisch and Prentice, 2002, section 8.2).

When the causes of failure are fully observed and time to failure is right-censored, one observes

Ti = min(T ∗i , Ci), δi = I(Ti ≤ Ci), and failure type εi when δi = 1, where I(·) is the indicator function.

Assume {Ti, δi, δiεi,Xi} are i.i.d. for i = 1, . . . , n. Under the fully observed data, we estimate β using the

partial likelihood function

n∏
i=1

2∏
k=1

{
exp(βk

′Xi)∑
l∈Ri

exp(βk
′X l)

}δik
, (3.1)

where δik = δiI(εi = k) indicates whether the failure of cause k occurs, and Ri ≡ {l : Tl ≥ Ti} is a set of

subjects who are at risk at Ti. However, in our case, neither cause was observed. Thus, the partial likelihood

function above is not feasible since δik is not observable. When neither cause is observed, the available data

is {Ti, δi,Xi} for i = 1, . . . , n, which is identical to the conventional right-censoring time to event data.
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Partial likelihood function for β is

n∏
i=1

{
λi(Ti)∑
`∈Ri

λ`(Ti)

}δi
, (3.2)

where λi(t) is the overall hazard function. Assuming only one event can occur at time t+ dt, one write the

overall hazard function as λi(t) =
∑2

k=1 λik(t) since P (t ≤ T ∗i < t + dt|T ∗i ≥ t) =
∑2

k=1 P (t ≤ T ∗i <

t+ dt, εi = k|T ∗i ≥ t). Hence, (3.2) becomes

n∏
i=1

{ ∑2
k=1 λ0k(Ti) exp(βk

′Xi)∑
`∈Ri

∑2
k=1 λ0k(Ti) exp(βk

′X`)

}δi
,

where the baseline hazard function λ0k(t) cannot be completely unspecified for k = 1, 2, unlike the partial

likelihood function in (3.1).

The primary interest of the competing risks model in our application is written as

λi1(t) = λ0(t) exp(α), (3.3)

λi2(t) = λ0(t) exp(β′Xi). (3.4)

This model fits naturally with the P. vivax malaria data we intend to analyze. Reinfection is considered

as the first cause of failure (εi = 1) that randomly occurs from the environment following a time-to-event

distribution with no association with the baseline covariatesXi. We assume its hazard λi1(t) can be written

as the baseline hazard λ0(t) attenuated by a constant factor exp(α) as shown in model (3.3). The hazard

function λi1(t) is considered as the background hazard. For the P. vivax malaria study, λi1(t) represents a

random mosquito bite from the living or working environment. Relapse is considered the second cause of

failure (εi = 2) that is associated with the baseline covariatesXi in model (3.4), which follows a proportional

hazards model. These two causes of failure compete to occur, and only one of the causes, either relapse

or reinfection, would occur if the event time is not censored. Under models (3.3) and (3.4), both hazard

functions share the same baseline hazard λ0(t). The ratio of λi1(t) and λi2(t) only depends on baseline

covariatesXi, and can be considered as a semiparametric two-sample density ratio model promoted by Qin

(1998). The baseline hazard λ0(t) here needs no specification, and can be any function of time. It can also be

a function of covariates, under the condition that covariates included in λ0(t) are independent of those inXi.
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Without any specification of λ0(t), one can use the partial likelihood function

PL(θ) =
n∏
i=1

[
exp(α) + exp(β′Xi)∑

`∈Ri

{
exp(α) + exp(β′X`)

}]δi , (3.5)

to estimate θ = (α,β′)′, where α and β are unknown parameters of interest. However, the dimensionality of

θ is a concern in our case since genetic sequencing produces a large number of haplotypes that are considered

as covariates in our model. In Section 3.4, we introduce a penalized maximum partial likelihood method to

estimate the high-dimensional θ.

In addition, we discuss an approach to verify the specification of models (3.3) and (3.4) for the P. vivax

malaria data. The model diagnosis can be explored by martingale residuals defined by M̂i = δi − Λ̂i(Ti) for

subjects i = 1, . . . , n, where Λ̂i(t) is the estimated cumulative hazard function for Λi(t) = Λ0(t){exp(α) +

exp(β′Xi)}. The estimation involves not only parameter estimates for θ = (α,β′)′, but also baseline

hazard estimate for Λ0(t) =
∫ t

0 λ0(s)ds. One can use a Breslow-type estimator Λ̂0(t) =
∑n

i=1 I(Ti ≤

t)δi/
∑

j∈Ri
{exp(α̂) + exp(β̂

′
Xj)} for Λ0(t) and calculate a test statistic T (x) =

∑n
i=1 I(β̂

′
Xi ≤ x)M̂i

for a lack of fit test over the follow-up time. One can construct a confidence band for T (x) via Monte-Carlo

simulation, as proposed in Lin, Wei and Ying (1993). Model diagnosis results for the P. vivax malaria data

are given in Section 3.6.

3.3 Classification

We propose two classifiers to classify the event to one of the two causes. The first classifier uses the

baseline information and partial likelihood function (3.5) to obtain the initial estimate of the probability that

the event is of cause k. The second classifier updates the first classifier using transition likelihoods under

different causes. We expect that the second classifier will perform better when the transition of covariates is

informative since more information is involved. If the transition of covariates is not informative of the cause

of failure, the second classifier improves little from the first classifier.

3.3.1 Based on baseline information

LetN∗i (t) be the number of events up to time t, and dN∗i (t) = N∗i (t+dt)−N∗i (t) be the event indicator

in the next instantaneous time dt after t. The observed counting process is Ni(t) = Yi(t)N
∗
i (t), where
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Yi(t) = I(Ti ≥ t) indicates whether subject i is at risk at time t. Let ξ(0)
ik (t) = P (εi = k|dNi(t) = 1,Xi =

xi) be the probability of cause k, given that an event occurs in [t, t + dt) and the realization of baseline

covariate isXi = xi. We have: ξ(0)
ik (t) = P (εi = k|dNi(t) = 1,Xi = xi) = λik(t;θ)/λi(t;θ). If an event

occurs at Ti = ti for subject i, ξ(0)
ik (ti) can be estimated by

ξ̂
(0)
i1 (ti) =

λi1(ti; θ̂)

λi(ti; θ̂)
=

λ0(ti) exp(α̂)

λ0(ti){exp(α̂) + exp(β̂
′
xi)}

=
exp(α̂)

exp(α̂) + exp(β̂
′
xi)

, (3.6)

ξ̂
(0)
i2 (ti) =

λi2(Ti; θ̂)

λi(Ti; θ̂)
=

λ0(Ti) exp(β̂
′
xi)

λ0(Ti){exp(α̂) + exp(β̂
′
xi)}

=
exp(β̂

′
xi)

exp(α̂) + exp(β̂
′
xi)

, (3.7)

where θ̂ is the maximum partial likelihood estimator of θ in (3.5). Since formulae (3.6) and (3.7) are

independent of ti, we write ξ̂(0)
i1 and ξ̂(0)

i2 in short for ξ̂(0)
i1 (ti) and ξ̂(0)

i2 (ti), respectively.

We classify an event to be of cause 2 if ξ̂(0)
i2 > ξ̂

(0)
i1 and to be of cause 1 otherwise.

3.3.2 Based on both baseline and event information

When an event occurs for subject i, we assume that Zi = (Zi1, . . . , ZiJ)′ is collected at the event time,

which is the same set of covariates as baseline covariates Xi. We propose to utilize the transitions from

Xi to Zi to aid the cause classification. Let ξ(1)
ik (t) = P (εi = k|dNi(t) = 1,Xi = xi,Zi = zi) be the

probability of cause k given realizations of bothXi = xi and Zi = zi. One can show that

ξ
(1)
ik (t) =

f(zi|εi = k, dNi(t) = 1,Xi = xi)P (εi = k|dNi(t) = 1,Xi = xi)∑2
k=1 f(zi|εi = k, dNi(t) = 1,Xi = xi)P (εi = k|dNi(t) = 1,Xi = xi)

=
φi(k)ξ

(0)
ik (t)∑2

k=1 φi(k)ξ
(0)
ik (t)

,

where φi(k) = f(zi|εi = k, dNi(t) = 1,Xi = xi) is the conditional density function of Zi givenXi under

cause k. We call φi(k) the conditional transition likelihood of cause k. One can treat the classification

probability ξ(1)
ik (t) as an updated version of ξ(0)

ik (t) by the ratio of transition likelihoods between possible

causes since ξ
(1)
ik (t)

ξ
(1)
i` (t)

= φi(k)
φi(`)

ξ
(0)
ik (t)

ξ
(0)
i` (t)

for ` = 1, 2 and ` 6= k. Note that if the transition likelihoods are informative,

φi(1) and φi(2) will be very different from each other and thus lead to more accurate classification of ξ(1)
ik (t).

We assume that the transition likelihood φi(k) follows a parametric model φi(k,γk), where γk is the

vector of parameters to be estimated. More details of this parametric model φi(k) follow in Section 3.3.3.
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The distribution of Zi is a mixture of transition likelihoods from two latent causes:

f(zi|dNi(t) = 1,Xi = xi) =
2∑

k=1

f(zi, εi = k|dNi(t) = 1,Xi = xi)

=

2∑
k=1

f(zi|εi = k, dNi(t) = 1,Xi = xi)P (εi = k|dNi(t) = 1,Xi = xi)

=
2∑

k=1

φi(k,γk)ξ
(0)
ik (t).

With ξ(0)
ik (t) being estimated by ξ̂(0)

ik , and let m =
∑n

i=1 δi be the number of subjects having recurrent

infections. We estimate γk by maximizing a pseudo log-likelihood function:

`(γ1,γ2) =

m∑
i=1

log
{ 2∑
k=1

φi(k,γk)ξ̂
(0)
ik

}
. (3.8)

Let (γ̂ ′1, γ̂
′
2)′ = argmaxγ1,γ2

`(γ1,γ2) and write ξ̂(1)
ik in short for ξ̂(1)

ik (ti). We estimate ξ(1)
ik by

ξ̂
(1)
ik =

φi(k, γ̂k)ξ̂
(0)
ik∑2

k=1 φi(k, γ̂k)ξ̂
(0)
ik

. (3.9)

We classify the event to be of cause 2 if and only if ξ̂(1)
i2 > ξ̂

(1)
i1 .

3.3.3 Transition likelihood

The transition likelihood plays a critical role in classification. In this section, we discuss a generalized

linear model to model the transition likelihood function φi(k,γk). Suppose the density of Zij conditioning

on Xij and εi = k has the form of

f(z;ϑijk, ψjk) = exp
{

(zϑijk − b(ϑijk))/a(ψjk) + c(z, ψjk)
}
,

where a(·), b(·) and c(·) are known functions, ϑijk is the natural parameter, and ψjk is the dispersion

parameter (McCullagh and Nelder, 1989). Let g(µijk) = ϑijk be the cause-specific canonical link function,
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where µijk = E(Zij |εi = k, dNi(t) = 1, Xij = xij). We define φi(k,γk) as:

φi(k,γk) = f(zi|εi = k, dNi(t) = 1,Xi = xi)

=
J∏
j=1

exp
[
{zijg(µijk)− b(g(µijk))}/a(ψjk) + c(zij , ψjk)

]
,

where g(µijk) = qjk0 + xijqjk1, qjk0 is the intercept term and qjk1 is the coefficient of xij .

To improve the classification performance, we want the transition likelihoods to be as informative as

possible. When some external variables contain information about the transition, we also would like to

incorporate them into the transition likelihoods. LetW ij = (Wij1,Wij2, . . . ,WijL)′ be the L-dimensional

vector of these external variables andW i = (W ′
i1,W

′
i2, . . . ,W

′
iJ)′. Then, we have

φi(k,γk) = f(zi|εi = k, dNi(t) = 1,Xi = xi,W i = wi)

=
J∏
j=1

exp
[
{zijg(µijk)− b(g(µijk))}/a(ψjk) + c(zij , ψjk)

]
,

where g(µijk) = qjk0 + xijqjk1 + w′ijq
∗
jk, wij is a realization ofW ij with the corresponding coefficients

q∗jk = (q∗jk1, q
∗
jk2, . . . , q

∗
jkL)′. Let qk0 = (q1k0, . . . , qJk0)′, qk1 = (q1k1, . . . , qJk1)′, q∗k = (q∗1k

′, . . . , q∗Jk
′)′

and ψk = (ψ1k, . . . , ψJk)
′. Then, we let γk = (q′k0, q

′
k1, q

∗′
k ,ψ

′
k)
′ represent all the parameters in φi(k,γk).

Our proposed transition likelihood model manifests differently according to the type of covariates. We

give three examples showing how to construct φi(k,γk) when the covariates are binary, normal, or Poisson.

Example 1 (Binary Covariates) When Xij and Zij are binary covariates, we have

g(µijk) = log

(
µijk

1− µijk

)
= qjk0 + xijqjk1 + w′ijq

∗
jk,

where the link function g is a logit function. The transitional likelihood for cause k becomes

φi(k,γk) =

J∏
j=1

µ
zij
ijk

(
1− µijk

)1−zij , (3.10)

where µijk = exp(ϑijk)/{1 + exp(ϑijk)}, ϑijk = qjk0 + xijqjk1 + w′ijq
∗
jk, γk = (q′k0, q

′
k1, q

∗′
k )′ and

ψk = (1, . . . , 1)′.
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Example 2 (Normal Covariates) When Xij and Zij are normally distributed covariates, we have

g(µijk) = µijk = qjk0 + xijqjk1 + w′ijq
∗
jk,

ψjk = Var(Zij |εi = k, dNi(t) = 1, Xij = xij ,W ij = wij),

where the link function g is an identity function. The transitional likelihood for cause k becomes

φi(k,γk) =
J∏
j=1

1√
2πψjk

exp
{
−

(zij − µijk)2

2ψjk

}
, (3.11)

where γk = (q′k0, q
′
k1, q

∗′
k ,ψ

′
k)
′ and ψk = (ψ1k, . . . , ψJk)

′.

Example 3 (Poisson Covariates) When Xij and Zij are Poisson covariates, we have

g(µijk) = log(µijk) = qjk0 + xijqjk1 + w′ijq
∗
jk,

where the link function g is a log function. The transitional likelihood for cause k becomes

φi(k,γk) =

J∏
j=1

µ
zij
ijk exp(−µijk)

zij !
, (3.12)

where µijk = exp(ϑijk), ϑijk = qjk0 + xijqjk1 + w′ijq
∗
jk, γk = (q′k0, q

′
k1, q

∗′
k )′ and ψk = (1, . . . , 1)′.

3.4 Computation

3.4.1 Estimation of parameters

Define the negative partial log-likelihood function as

`(θ) = −
n∑
i=1

δi

[
log

{
exp(α) + exp(β′Xi)

}
− log

{∑
l∈Ri

{
exp(α) + exp(β′X l)

}}]
. (3.13)

To estimate θ in (3.5), we propose to solve a penalized likelihood problem

θ̂ = argmin
θ

{
`(θ) + νp(β)

}
, (3.14)
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where ν is a positive tuning parameter and p(β) is a penalty function. When sample size n is larger than

the number of covariates J , (4.1) is a low-dimensional problem, in which case we set ν = 0. When n is

smaller than J , (4.1) is a high-dimensional problem, in which case we choose the optimal ν by minimizing

the Bayesian Information Criterion (BIC, Schwarz et al., 1978), which is given by BIC = 2`(θ̂) + c · log(n),

where c is the number of covariates selected in the model. Popular choices of p(β) include the L1-penalty

(Tibshirani, 1996), the elastic net penalty (Zou and Hastie, 2005), or some folded concave penalty (Fan and

Lv, 2011). In this paper, we choose the L1-penalty.

To solve (4.1), we use a proximal gradient algorithm (Parikh and Boyd, 2014). First, we find a quadratic

approximation to `(θ) centered at θ(h), the estimate of θ at the hth iteration of the algorithm, that majorizes

`(θ). That is

`(θ) ≤ `(θ(h)) + (θ − θ(h))′∇`(θ(h)) +
1

2d
||θ − θ(h)||22, (3.15)

where d is a scalar that plays the role as a step size, θ(h) = (α(h),β(h)′)′ and the gradient vector∇`(θ(h)) is

given by∇`(θ(h)) = (∇α`(θ(h)),∇β`(θ(h))′)′, where

∇α`(θ) = −
n∑
i=1

δi

[
exp(α)

exp(α) + exp(β′Xi)
−

∑
l∈Ri

exp(α)∑
l∈Ri

{
exp(α) + exp(β′X l)

}], (3.16)

∇β`(θ) = −
n∑
i=1

δi

[
Xi exp(β′Xi)

exp(α) + exp(β′Xi)
−

∑
l∈Ri

{
Xl exp(β′X l)

}∑
l∈Ri

{
exp(α) + exp(β′X l)

}]. (3.17)

Denote the right-hand side of (3.15) by Qd(θ;θ(h)) and let g(β) = νp(β). Then we minimize

Qd(θ,θ
(h)) + g(β), which gives the proximal problem

α(h+1) = argmin
α

1

2
||α− [α(h) − d∇α`(θ(h))]||22, (3.18)

β(h+1) = argmin
β

1

2
||β − [β(h) − d∇β`(θ(h))]||22 + dg(β). (3.19)

The solution of (3.18) is given by α(h+1) = α(h) − d∇α`(θ(h)). The solution of (3.19) is given by

a proximal operator β(h+1) = proxdg(β
(h) − d∇β`(θ(h))). Depending on the choice of penalty function,

such an operator has a closed-form expression. For example, if we use an L1-penalty: p(β) = ||β||1, then

proxdg(β
(h)−d∇β`(θ(h))) = s(β(h)−d∇β`(θ(h)), νd), where s(x, π) is the elementwise soft-thresholding

operator, whose jth element is defined as s(x, π)j = sgn(xj)(|xj | − π)+. As for the step size, we follow
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Parikh & Boyd (2014, section 4.2) and perform a backtracking line search; namely, we iteratively decrease

step size until the majorization holds, i.e, the inequality (3.15) holds. This strategy is commonly used in the

proximal gradient method.

We stop iterating the algorithm when the change in the objective function between two consecutive

iterations is less than ζ% of the objective function’s value at the former iteration, where ζ ∈ (0, 100) is a

user-defined stopping threshold, which is chosen by us to be 10. A detailed algorithm is summarized as

follows:
Data: Xi, Ti, δi; i = 1, . . . , n.

Result: Estimates for θ = (α,β′)′.

Initialize d at d(0) ∈ R+, θ = (α,β′)′ at θ(0) = (α(0),β(0)′)′, where α(0) ∈ R1, β(0) ∈ Rp;

At the hth iteration, let d = d(h−1),

repeat

Let α = α(h−1) − d∇α`(θ(h−1)) and β = proxdg(β
(h−1) − d∇β`(θ(h−1))),

if `(θ) ≤ Qd{θ;θ(h−1)} then
let d(h) = d, α(h) = α, β(h) = β; break;

else
let d = 0.8d.

end if

until
∣∣∣{`(θ(h))+g(β(h))}−{`(θ(h−1))+g(β(h−1))}

`(θ(h−1))+g(β(h−1))

∣∣∣ ≤ ζ%.

Algorithm 1: The Proximal Gradient Algorithm

3.4.2 Classification Algorithm

We give a complete algorithm for classifying the causes of an event by using time to event information

Ti and δi, baseline covariatesXi, covariates collected when the event occurs Zi, and external informative

covariatesW i in this section.

Firstly, Given Xi, Ti, and δi, estimate θ using partial likelihood (3.5) and Algorithm 1. Secondly,

estimate ξ(0)
ik by (3.6) and (3.7). Thirdly, based on the type of covariatesXi and Zi, estimate the transition

likelihood φi(k,γk) of cause k by maximizing the pseudo likelihood function in (3.8). Next, estimate ξ(1)
ik as

in (3.9). Finally, if ξ̂(1)
i2 > ξ̂

(1)
i1 then classify the event to be of cause 2, otherwise classify the event to be of

cause 1.
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3.5 Simulation Experiments

To study the improvement in classification using transition likelihoods compared with using baseline

information alone, we carry out comprehensive simulation experiments to evaluate the performance of two

classifiers based on ξ̂(0)
i and ξ̂(1)

i respectively. We evaluate the performance of the proposed classifiers by

comparing their sensitivity, specificity, and overall accuracy in classifying the causes of events. We mimic

the data observed in the P. vivax malaria infection study (Lin et al., 2015) and assume that the cause could

be either reinfection (εi = 1) or relapse (εi = 2). Sensitivity is defined as the number of subjects correctly

classified as relapse divided by the number of relapse subjects; specificity is defined as the number of subjects

correctly classified as reinfection divided by the number of reinfection subjects and overall accuracy is defined

as the number of correctly classified subjects divided by the number of subjects.

Following the proposed model in Section 3.2, we assume that the baseline hazard is a homogeneous

Poisson process with hazard function λ0(t), which is a constant for t > 0 and the same for all subjects.

By using the partial likelihood function (3.5), we do not need to specify λ0(t) and expect the classification

performance to be similar under different baseline hazard functions. We carry out simulations with three

different baseline hazard functions λ0(t) = exp(τ), where τ = −0.5, 0, 0.5.

The reinfection process was assumed to be the same for all subjects with hazard function λi1(t) =

λ0(t) exp(α). The relapse process was assumed to have a proportional hazard function λi2(t) = λ0(t) exp(β′Xi)

for subject i. The first classifier classifies a recurrent infection as relapse if ξ̂(0)
i2 > 0.5, and the second

classifier classifies a recurrent infection as relapse if ξ̂(1)
i2 > 0.5.

We consider two situations where Xi and Zi are binary and normally distributed variables. We

allow dimensions of Xi and Zi to be either low or high. Under the low-dimensional settings, we set two

combinations for n and J , with (n, J) = (400, 10) and (n, J) = (800, 20). For the high-dimensional settings,

we focus on the classification performance of the classifiers, as well as the variable selection performance.

We consider (n, J) = (100, 200) and (n, J) = (200, 400), where the former is closer to the real P. vivax

malaria infection study. When evaluating the variable selection performance, we focus on the sensitivity,

specificity, and overall accuracy of selecting covariates with non-zero regression coefficients.

Remark that the improvement of the second classifier is mainly attributed to including the transition

likelihoods from the baseline covariates Xi to the covariates at recurrence infection Zi. If Zi associates

withXi, the transition likelihood is informative, and the second classifier would have a better classification
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performance. However, when Zi is not associated withXi, then little information would be contained in the

transition likelihood. Thus, the second classifier would have a similar performance to the first classifier. We

consider two scenarios where the association between Zi andXi is either strong or weak. For simplicity, we

assume that for each pair of Xij and Zij , there exists only one external covariate Wij that is associated with

the transition.

3.5.1 Binary Covariates

For the low-dimensional setting, we set α to be 0, the first 3 components of β to be log(1.5), and

the rest of the components to be 0. We generated Xi from the Bernoulli distribution with probability

P (Xij = 1) = 0.5 exp{−0.1(j − 1)} for j = 1, . . . , 10. Such a choice ofXi and β indicates that the three

most prevalent variants are associated with the relapse. We generated failure time T ∗i based on the all-cause

hazard function λi(t) = λi1(t) + λi2(t) and then determined whether the infection is a relapse or reinfection

by a Bernoulli random variable with success probability equals to exp(β′Xi)/{exp(α) + exp(β′Xi)}. The

right censoring time Ci was generated following a uniform distribution between 0 and c, where c is a constant

controlling for 20% censoring. The observed time Ti is the minimum between T ∗i and Ci. We assume that for

any j ≤ J , there is one external covariate Wij affecting the transition from Xij to Zij . For each i and j, we

independently generate Wij from a uniform distribution between 0 and 1, which is also independent of Xij .

If the event is reinfection, Zi was generated independently from the same distribution asXi. If the event

is a relapse, we generated Zi following the transition model (3.10). We let qj21 = q∗j21 = 0.9 in the first

scenario when Zi strongly associates with Xi, and qj21 = q∗j21 = 0.001 in the second scenario when Zi

weakly associates withXi. The intercept qj20 was set to be 0.3 for both scenarios. We repeat the simulation

500 times for each combination of n and J under both scenarios. The operating characteristics of the two

classifiers are reported in Table 3.1. Reported values are means and standard deviations over 500 simulations.

Table 3.1 shows that performance of the first classifier I(ξ̂
(0)
i > 0.5) is similar under both scenarios

in terms of sensitivity, specificity, and overall accuracy. This result is reasonable since we only included

baseline covariates and time to event information when constructing the first classifier, and these information

were generated using the same mechanisms under both scenarios. The second classifier I(ξ̂
(1)
i2 > 0.5) has

a better performance than the first classifier I(ξ̂
(0)
i2 > 0.5) in scenario 1, where sensitivity, specificity, and

overall accuracy are all in favor of the second classifier. The classification accuracy gets better when sample
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Table 3.1: Classification of proposed classifiers with low-dimensional binary covariates.

I(ξ̂
(0)
i > 0.5) I(ξ̂

(1)
i > 0.5)

Scenario τ (n, J) Sensitivity Specificity Overall Sensitivity Specificity Overall

1 -0.5 (400, 10) 50.3 (20.2) 59.0 (19.2) 53.6 (5.1) 90.7 (4.2) 94.3 (3.2) 92.1 (2.2)
(800, 20) 50.1 (19.9) 59.6 (19.2) 54.0 (4.5) 97.8 (0.9) 98.7 (0.8) 98.0 (0.5)

0 (400, 10) 49.1 (18.4) 60.1 (17.6) 53.6 (4.6) 89.3 (10.8) 93.2 (10.8) 90.9 (10.4)
(800, 20) 49.6 (18.2) 59.7 (17.8) 53.8 (3.9) 97.9 (0.9) 98.2 (0.8) 98.0 (0.6)

0.5 (400, 10) 48.3 (18.7) 61.9 (17.3) 53.9 (4.8) 88.9 (12.2) 92.4 (12.0) 90.3 (11.8)
(800, 20) 50.2 (17.8) 59.5 (17.2) 54.1 (3.9) 97.9 (0.8) 98.1 (0.8) 98.0 (0.5)

2 -0.5 (400, 10) 48.7 (19.7) 60.6 (18.8) 53.6 (5.0) 66.3 (16.9) 72.5 (30.2) 68.8 (21.2)
(800, 20) 50.7 (18.7) 58.8 (17.9) 54.0 (4.1) 66.2 (14.6) 71.9 (13.4) 68.6 (11.9)

0 (400, 10) 49.3 (19.7) 59.6 (18.5) 53.6 (5.1) 64.4 (18.2) 69.2 (32.3) 66.3 (23.1)
(800, 20) 51.6 (17.9) 58.5 (17.4) 54.5 (3.9) 66.2 (14.7) 72.1 (13.3) 68.6 (11.9)

0.5 (400, 10) 49.2 (18.6) 60.6 (17.6) 53.7 (4.5) 68.7 (16.6) 74.9 (27.5) 71.1 (20.4)
(800, 20) 50.8 (18.1) 58.8 (17.5) 54.0 (4.1) 66.3 (14.5) 72.3 (12.9) 68.7 (11.8)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.

size is larger. In scenario 1, the strong association between Zi andXi makes the transition likelihood much

more informative. Therefore, the improvement in the classification performance is obvious in this scenario.

However, in scenario 2, the association between Zi and Xi is relatively weak. The transition likelihood

contains less information. Hence, the second classifier improves little upon the first classifier, averaging

merely 12% – 18% improvement in the overall accuracy, even when the sample size is larger.

When n and J are fixed, we can see that differences in the baseline hazard function λ0(t) barely affect

the performance of both classifiers. This result is reasonable since the baseline hazard λ0(t) is canceled in

(3.13). As long as the proportional hazards assumption stands, the classification accuracy is similar regardless

of the true form of the baseline hazard λ0(t).

For high-dimensional settings, we set α to be 0, the first 10 components of regression coefficients in β to

be log(1.5), and the rest to be 0. The remaining set-up was the same as in the low-dimensional setting. We

repeat the simulation 500 times for each combination of (n, J) under two scenarios. The performance of the

two classifiers is reported in Table 3.2.

In Table 3.2, we can see similar results as in Table 3.1. The first classifier behaves similarly under both

scenarios. In scenario 1, the second classifier has perfect sensitivity and nearly perfect specificity. In scenario

2, the second classifier has similar overall accuracy as the first classifier, with slightly lower sensitivity and

slightly higher specificity. The choice of the baseline hazard function λ0(t) barely affects the performance.
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Table 3.2: Classification and variable selection of proposed classifiers with high-dimensional binary covari-
ates.

I(ξ̂
(0)
i > 0.5) I(ξ̂

(1)
i > 0.5) α̂ β̂

Scenario τ (n, J) Sensitivity Specificity Overall Sensitivity Specificity Overall Bias Sensitivity Specificity Overall

1 -0.5 (100, 200) 98.1 (3.0) 4.4 (6.8) 76.1 (4.6) 100 (0) 96.3 (6.0) 99.5 (0.7) 0.48 (0.05) 75.2 (12.8) 57.1 (2.0) 58.0 (2.1)
(200, 400) 96.7 (3.5) 8.4 (7.1) 75.3 (3.1) 100 (0) 100 (0) 100 (0) 0.51 (0.01) 87.2 (10.6) 65.7 (1.3) 66.7 (1.4)

0 (100, 200) 97.8 (3.4) 5.3 (7.7) 74.8 (4.5) 100 (0) 97.4 (4.5) 99.6 (0.6) 0.49 (0.04) 72.9 (13.0) 58.2 (2.1) 59.0 (2.2)
(200, 400) 95.7 (3.7) 9.2 (7.5) 75.1 (3.5) 100 (0) 100 (0) 100 (0) 0.51 (0.01) 87.0 (10.6) 65.7 (1.6) 65.9 (1.4)

0.5 (100, 200) 97.6 (2.8) 4.6 (6.8) 75.3 (4.5) 100 (0) 96.7 (6.0) 99.5 (0.7) 0.49 (0.04) 72.9 (13.6) 58.0 (2.3) 58.7 (2.4)
(200, 400) 95.8 (3.8) 9.8 (7.1) 75.0 (3.3) 100 (0) 99.9 (0.8) 100 (0) 0.51 (0.02) 87.1 (11.2) 65.4 (1.4) 66.0 (1.5)

2 -0.5 (100, 200) 97.9 (2.9) 4.9 (5.8) 75.8 (4.6) 91.8 (4.5) 13.0 (8.2) 73.1 (5.0) 0.49 (0.05) 78.3 (14.3) 62.2 (2.5) 61.1 (2.3)
(200, 400) 96.2 (3.8) 8.8 (7.9) 75.3 (3.3) 90.7 (5.6) 14.9 (9.1) 72.7 (4.0) 0.50 (0.02) 73.8 (14.1) 67.2 (1.7) 66.3 (1.7)

0 (100, 200) 97.5 (3.1) 6.4 (6.9) 74.9 (4.3) 91.9 (4.8) 14.3 (9.2) 72.7 (4.2) 0.50 (0.04) 79.2 (15.8) 62.6 (2.2) 61.4 (2.4)
(200, 400) 95.8 (3.8) 8.8 (7.4) 74.8 (3.5) 90.6 (5.1) 15.4 (8.3) 72.5 (3.9) 0.51 (0.02) 75.3 (14.5) 67.5 (1.9) 66.5 (1.4)

0.5 (100, 200) 97.4 (2.6) 5.7 (6.1) 75.4 (4.4) 91.5 (4.8) 13.6 (8.7) 72.8 (4.8) 0.51 (0.04) 79.0 (15.8) 61.6 (2.3) 60.5 (2.3)
(200, 400) 95.6 (3.7) 9.5 (7.7) 74.7 (3.1) 90.3 (5.5) 16.3 (8.3) 72.2 (3.8) 0.51 (0.02) 73.1 (14.9) 66.2 (1.5) 65.4 (1.5)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.

We also evaluated the accuracy of coefficient estimates θ̂ = (α̂, β̂
′
)′ for the high-dimensional settings,

where the bias of α̂ and variable selection performance of β̂ are reported in Table 3.2. Since we did not use

transition likelihoods when estimating θ, the accuracy of θ̂ is similar under both scenarios. The baseline

hazard function was canceled when calculating the partial likelihood function (3.5). Therefore, it has little

influence on the performance of θ̂. One can see that as J gets larger, the bias of α̂ increases. However, the

performance of β̂ improves since more variables are selected correctly.

3.5.2 Normally Distributed Covariates

In addition, we simulate for normally distributed Xi and Zi. For both low- and high-dimensional

settings, we consider the same set-up for α and β as in the simulation study for binary covariates. We

generated Xi and W i independently from a standard normal distribution. The event time T ∗i , censoring

time Ci, and observed time Ti were all generated with the same strategy as for the binary covariates. We

generated Zi based on the event type, following the transition model (3.11). We let qj21 = q∗j21 = 0.9 in

scenario 1, where Zi strongly associates with Xi, and let qj21 = q∗j21 = 0.001 in scenario 2, where Zi

weakly associates with Xi. We let qj20 = 0.3 and ψjk = 1 for each j under both scenarios. We repeated

the simulation 500 times for each combination of n and J under both scenarios. The performance of two

classifiers is reported in Tables 3.3 and 3.4 for low- and high-dimensional settings respectively. We also

reported the estimation accuracy and variable selection performance of θ̂ in the high-dimensional settings in

Table 3.4.
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Table 3.3: Classification of proposed classifiers with low-dimensional continuous covariates.

I(ξ̂
(0)
i > 0.5) I(ξ̂

(1)
i > 0.5)

Scenario τ (n, J) Sensitivity Specificity Overall Sensitivity Specificity Overall

1 −0.5 (400, 10) 67.8 (4.1) 54.8 (4.5) 61.6 (3.2) 97.5 (1.4) 97.5 (1.6) 97.6 (1.0)
(800, 20) 64.9 (2.8) 58.6 (2.5) 61.8 (1.9) 99.8 (0.2) 99.8 (0.3) 99.7 (0.1)

0 (400, 10) 65.9 (4.4) 57.1 (4.3) 61.6 (3.1) 97.6 (1.3) 97.5 (1.3) 97.5 (0.9)
(800, 20) 63.6 (2.4) 59.5 (2.6) 61.6 (1.9) 99.7 (0.3) 99.7 (0.3) 99.7 (0.2)

0.5 (400, 10) 64.7 (3.5) 60.2 (3.9) 62.4 (3.0) 97.6 (1.2) 97.4 (1.1) 97.5 (0.7)
(800, 20) 62.5 (2.5) 60.4 (2.2) 61.5 (1.7) 99.7 (0.3) 99.7 (0.3) 99.7 (0.2)

2 −0.5 (400, 10) 67.6 (4.3) 54.9 (4.3) 61.5 (3.1) 68.5 (4.3) 56.2 (4.8) 62.5 (3.1)
(800, 20) 64.6 (2.7) 58.4 (2.8) 61.8 (2.5) 67.9 (2.4) 62.7 (3.8) 65.4 (2.0)

0 (400, 10) 65.7 (3.9) 57.4 (4.2) 61.7 (3.0) 67.0 (3.9) 59.1 (4.4) 63.1 (3.0)
(800, 20) 63.6 (2.6) 59.9 (2.7) 61.8 (1.8) 67.3 (2.4) 64.0 (2.6) 65.6 (1.8)

0.5 (400, 10) 63.9 (3.6) 59.6 (4.0) 61.8 (2.7) 65.5 (3.2) 61.1 (4.0) 63.5 (2.5)
(800, 20) 62.8 (2.6) 60.6 (2.5) 61.7 (1.8) 66.4 (2.5) 64.6 (2.6) 65.5 (1.7)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.

In Table 3.3, the first classifier performs similarly under both scenarios. The second classifier has better

performance than the first classifier under scenario 1 but comparable performance under scenario 2. Also, the

change of the baseline hazard function λ0(t) barely affects the performance of both classifiers. A similar

pattern is also observed in Table 3.4 in high-dimensional settings. As for θ̂, it has similar accuracy with

various baseline hazard functions λ0(t). However, when J gets larger, the bias of α̂ increases a little, but the

performance of β̂ gets better. In summary, our classifiers perform similarly for both binary and normally

distributed covariates.

Table 3.4: Classification and variable selection of proposed classifiers with high-dimensional continuous
covariates.

I(ξ̂
(0)
i > 0.5) I(ξ̂

(1)
i > 0.5) α̂ β̂

Scenario τ (n, J) Sensitivity Specificity Overall Sensitivity Specificity Overall Bias Sensitivity Specificity Overall

1 −0.5 (100, 200) 85.8 (5.8) 29.8 (8.7) 59.2 (5.5) 98.7 (11.4) 99.7 (5.7) 99.5 (6.7) 0.44 (0.02) 69.5 (14.8) 57.3 (2.3) 58.5 (2.9)
(200, 400) 88.7 (3.5) 27.1 (5.9) 60.0 (4.1) 100 (0) 100 (0) 100 (0) 0.47 (0.01) 82.0 (11.9) 60.4 (1.9) 60.9 (1.9)

0 (100, 200) 83.4 (5.2) 33.6 (7.4) 59.0 (5.4) 99.0 (10.5) 99.6 (5.7) 99.1 (7.2) 0.45 (0.02) 70.8 (15.4) 57.3 (3.0) 57.9 (3.0)
(200, 400) 85.2 (4.5) 31.9 (5.6) 59.6 (3.9) 100 (0) 100 (0) 100 (0) 0.47 (0.01) 82.7 (12.5) 59.3 (1.9) 59.9 (1.9)

0.5 (100, 200) 81.9 (5.3) 37.5 (7.2) 60.1 (5.2) 98.3 (12.8) 99.7 (5.8) 99.0 (8.1) 0.44 (0.02) 71.4 (14.5) 56.1 (2.7) 56.9 (2.9)
(200, 400) 84.5 (3.7) 34.0 (5.1) 59.6 (3.9) 100 (0) 100 (0) 100 (0) 0.47 (0.01) 85.0 (11.0) 58.6 (1.7) 59.2 (1.6)

2 −0.5 (100, 200) 85.5 (5.4) 29.3 (7.9) 58.9 (5.7) 94.2 (3.6) 23.4 (7.9) 60.8 (6.3) 0.43 (0.02) 62.3 (15.4) 64.8 (2.8) 64.6 (2.9)
(200, 400) 84.0 (4.3) 32.0 (5.8) 59.5 (4.1) 96.3 (2.2) 31.7 (6.9) 65.8 (4.7) 0.47 (0.01) 75.6 (14.4) 68.0 (1.8) 68.2 (1.9)

0 (100, 200) 82.9 (6.0) 34.2 (7.2) 59.5 (5.4) 92.9 (4.0) 27.7 (7.6) 61.7 (5.6) 0.44 (0.02) 64.8 (15.6) 64.1 (2.7) 64.1 (2.9)
(200, 400) 81.3 (4.2) 36.5 (5.9) 59.6 (3.9) 95.7 (2.2) 35.7 (6.7) 66.5 (4.7) 0.47 (0.01) 76.8 (14.1) 67.4 (2.0) 67.7 (2.0)

0.5 (100, 200) 82.0 (5.7) 37.8 (7.1) 60.1 (5.5) 92.5 (4.1) 31.0 (8.1) 62.1 (6.1) 0.45 (0.02) 63.8 (15.9) 63.7 (2.8) 63.7 (2.9)
(200, 400) 79.9 (4.0) 38.5 (5.5) 59.5 (3.7) 95.1 (2.3) 37.8 (6.6) 66.9 (4.5) 0.46 (0.01) 77.1 (13.6) 66.7 (2.1) 67.4 (2.1)

Sensitivity, specificity and overall accuracy are given as percentages.
Reported values are means and standard deviations over 500 simulations.
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Figure 3.3: The BIC curve with different values of the tuning parameter ν. The BIC attains its minimum at
ν = 2.05.

3.6 Plasmodium vivax Malaria Infection Study

As discussed in the introduction, it is essential to identify the cause of infection in P. vivax malaria

research when the primary interest is treatment efficacy or effectiveness. In this section, we apply our

proposed classifier to the P. vivax malaria data described in Section 3.1.1. We aim to classify the recurrent

infection as either reinfection (εi = 1) or relapse (εi = 2). We first fit the cause-specific hazards model

(3.3) and (3.4) withXi as a vector of binary covariates that indicate whether a haplotype (genetic variant) is

present or absent. Parameters θ = (α,β′)′ were estimated via the penalized partial likelihood function (3.5)

with an L1-penalty. To choose the optimal tuning parameter ν, we performed a grid search in the interval [0,

3.5] and calculated the corresponding Bayesian Information Criterion (BIC) values. Figure 3.3 shows the

BIC curve with different values of the tuning parameter ν.

We report the classification results based on ν = 2.05, where the BIC attains its minimum. In this

case, two haplotypes (CAM.00 and CAM.04) were selected, with the proportional baseline coefficient

exp(α̂) = 0.686. We also performed a sensitivity analysis by choosing ν = 0.8, where the BIC curve begins
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flatting out. In this case, 12 haplotypes (CAM.00, CAM.02 to CAM.10, CAM.12 and CAM.24) were selected

with exp(α̂) = 0.859. The classification results based on ν = 0.8 is reported in Section 3.8.

After we obtained θ̂, probabilities ξ̂(0)
i1 and ξ̂(0)

i2 were calculated based on formulae (3.6) and (3.7),

respectively. For subjects with a recurrent infection, reading frequency for each haplotype presented at the

baseline sequencing of the initial infection is used as the external covariateW i. Here, covariatesXi and Zi

are binary variables. When the recurrent infection is reinfection (εi = 1), we assumeZi is independent ofXi

andW i, but follows the same distribution asXi. In this case, φi(1) can be estimated independently without

using the pseudo-likelihood function (3.8), and the distribution of Zi can be estimated usingXi alone.

To be specific, for εi = 1, the transition likelihood function φi(1,γ1) can be written as

φi(1,γ1) = f(zi|εi = 1, dNi(t) = 1,Xi = xi,W i = wi) =

J∏
j=1

p
zij
j (1− pj)1−zij ,

where pj = P (Xij = 1), γ1 = (p1, . . . , pJ)′. The parameter pj can be consistently estimated by the

sample mean p̂j = n−1
∑n

i=1 xij . Accordingly, the transition likelihood of reinfection can be estimated by

φi(1, γ̂1) =
∏J
j=1 p̂

zij
j (1− p̂j)1−zij .

For εi = 2, when the recurrent infection is a relapse, we assume the transition likelihood follows the

form of (3.10), that logit(µij2) = qj20 + xijqj21 + wijxijq
∗
j21, with wij being the reading frequency of the

jth haplotype of subject i when the haplotype is presented at the baseline sequencing, i.e., xij = 1. For

computational simplicity, we assume that all haplotypes follow the same transition model, i.e., qj20 = q0,

qj21 = q1, and q∗j21 = q∗ for all j. Then, we have φi(2,γ2) = f(zi|εi = 2, dNi(t) = 1,Xi = xi,W i =

wi) =
∏J
j=1 µ

zij
ij2

(
1−µij2

)1−zij , where µij2 = exp(q0+xijq1+wijxijq
∗)/{1+exp(q0+xijq1+wijxijq

∗)}

and γ2 = (q0, q1, q
∗)′.

We replaced φi(1,γ1) in (3.8) by φi(1, γ̂1) and maximized the pseudo-likelihood function to obtain γ̂2.

When using ν = 2.05, we have q̂0 = −1.366, q̂1 = 2.738, and q̂∗ = 4.317. When the recurrent infection is

relapse, the parameter q0 is the log odds of a subject whose baseline sequencing did not contain haplotype j

(xij = 0) but the follow-up sequencing at the recurrence did (zij = 1). The estimate q̂0 = −1.366 can be

transformed into an estimated transition probability of 0.203, meaning there is 20% chance that the unseen

haplotype at the baseline may show up at the recurrence when the cause is relapse. Since q̂0 + q̂1 = 1.372,

it shows that there is around 80% chance of observing a haplotype again at the recurrence (zij = 1) when

the cause is relapse and the haplotype appeared at the baseline (xij = 1). Since q̂∗ = 4.317, it indicates that
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there is more than 99% chance of observing the same haplotype again at the recurrence (zij = 1) when the

reading frequency of the haplotype is more than 80% at the baseline (wij = 0.8). When using ν = 0.8, we

have q̂0 = −1.323, q̂1 = 2.506, and q̂∗ = 4.284. These estimates are similar to those when using ν = 2.05

and can be interpreted analogously.

Finally, we calculate ξ̂(1)
ik by (3.9) for k = 1, 2 and classify the recurrent event as relapse if ξ̂(1)

i2 > ξ̂
(1)
i1

and reinfection otherwise. Table 5 contains the classification results for the 23 subjects with recurrent

infection based on our proposed method using ν = 2.05. The tables include days to recurrence, baseline and

recurrence haplotypes, the estimates β̂, recurrence haplotype prevalence, two classification probabilities, and

classification results from Lin, Li and Lin (2020), which analyzed the same data without utilizing the time to

event information and external covariates in the estimation of transition likelihoods.

Our proposed method classifies 3 out of 23 recurrence pairs differently from Lin, Li and Lin (2020). The

first pair is 87→ 87R, which was classified as relapse by Lin, Li and Lin (2020) but as reinfection by our

classifier. Five variants showed up at the baseline sequencing, of which only CAM.00, the haplotype with the

highest prevalence, showed up again in the recurrence sequencing. Also, the days to recurrence for this pair

is 81 days, which is a relatively long time for relapse, suggesting that this recurrence event is more likely

to be reinfection. The second pair is 123→ 123R, which was classified as reinfection by Lin, Li and Lin

(2020) but as relapse by our classifier. Two haplotypes (CAM.00 and CAM.02) were observed at the baseline

sequencing, and haplotype CAM.00 showed up again at the recurrence sequencing with CAM.01. Since only

two haplotypes appeared at the recurrence, and CAM.00 is the most prevalent variant, the recurrent infection

looks more likely to be a reinfection if not taking time to recurrent into consideration. However, the recurrent

infection occurred only 26 days after the initial infection, which is a relatively short time compared to other

reinfection cases. The only case classified as reinfection with a recurrent time less than 26 days was pair

160→ 160 R, with only 17 days to recurrence, but this is reasonable since there is no overlap between the

baseline and recurrence variants. Notably, the pair 123→ 123R has 96% CAM.00 in the reading frequency

at baseline, which supports the classification as relapse due to a high likelihood of observing the same variant

in relapse if the variant has a high reading frequency at baseline, as suggested by large q̂∗. The last disparity

comes from pair 153→ 153R, which was classified as relapse by Lin, Li and Lin (2020) but as reinfection by

our classifier. There is no overlap between initial and recurrence variants. The time to recurrence is 115 days,

which is longer than any case that was classified as relapse. The only case with days to recurrence longer

than this pair is pair 151→ 151R, which was classified as reinfection by both Lin, Li and Lin (2020) and our
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classifier. Therefore, it is more reasonable to classify pair 153→ 153R as reinfection. Overall, by considering

the time to event and baseline haplotype reading frequency, our classifier achieves more consensus in this

study.

Table 3.5: Classification of the first recurrent infection (ν = 2.05).

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

10→ 10R 84 CAM.00 0.907 0.783 CAM.00 0.590 0.995 Relapse Relapse

CAM.11 0 CAM.11 0.077

CAM.15 0.013

31→ 31R 84 CAM.00 0.907 0.910 CAM.16 0.006 0.988 Relapse Relapse

CAM.02 0

CAM.04 1.026

CAM.31 0

36→ 36R 99 CAM.00 0.907 0.910 CAM.01 0.269 0.645 Relapse Relapse

CAM.01 0 CAM.02 0.41

CAM.02 0 CAM.07 0.192

CAM.03 0 CAM.17 0.064

CAM.04 1.026

CAM.05 0

CAM.06 0

CAM.07 0

CAM.09 0

CAM.11 0

68→ 68R 99 CAM.00 0.907 0.910 CAM.10 0.077 0.997 Relapse Relapse

CAM.02 0

CAM.04 1.026

CAM.10 0

80→ 80R 56 CAM.00 0.907 0.910 CAM.00 0.590 0.000 Reinfection Reinfection

CAM.04 1.026 CAM.01 0.269

CAM.05 0 CAM.02 0.410

CAM.08 0 CAM.03 0.295

CAM.09 0 CAM.05 0.231

CAM.24 0 CAM.06 0.231

CAM.27 0 CAM.07 0.192

CAM.08 0.154

CAM.12 0.064

CAM.41 0.013

81→ 81R 35 CAM.00 0.907 0.783 CAM.00 0.590 0.974 Relapse Relapse

CAM.01 0 CAM.01 0.269

(Continued on next page)
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Table 5 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

CAM.51 0

82→ 82R 56 CAM.00 0.907 0.910 CAM.00 0.590 0.674 Relapse Relapse

CAM.03 0 CAM.01 0.269

CAM.04 1.026 CAM.03 0.295

CAM.10 0 CAM.46 0.006

87→ 87R 81 CAM.00 0.907 0.783 CAM.00 0.590 0.424 Reinfection Relapse

CAM.01 0 CAM.07 0.192

CAM.02 0 CAM.08 0.154

CAM.08 0 CAM.53 0.013

CAM.24 0

89→ 89R 14 CAM.00 0.907 0.910 CAM.01 0.269 0.052 Reinfection Reinfection

CAM.04 1.026 CAM.09 0.077

CAM.06 0 CAM.20 0.026

CAM.08 0 CAM.27 0.038

CAM.10 0

CAM.12 0

96→ 96R 71 CAM.00 0.907 0.910 CAM.00 0.590 0.983 Relapse Relapse

CAM.02 0 CAM.30 0.013

CAM.04 1.026

CAM.08 0

112→ 112R 67 CAM.00 0.907 0.910 CAM.00 0.590 0.670 Relapse Relapse

CAM.01 0 CAM.01 0.269

CAM.02 0 CAM.02 0.410

CAM.04 1.026

CAM.07 0

CAM.12 0

CAM.40 0

CAM.42 0

CAM.60 0

118→ 118R 89 CAM.08 0 0.593 CAM.01 0.269 0.008 Reinfection Reinfection

CAM.02 0.410

CAM.25 0.006

CAM.39 0.006

123→ 123R 26 CAM.00 0.907 0.783 CAM.00 0.590 0.700 Relapse Reinfection

CAM.02 0 CAM.01 0.269

125→ 125R 82 CAM.02 0 0.593 CAM.00 0.590 0.000 Reinfection Reinfection

CAM.01 0.269

(Continued on next page)
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Table 5 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

CAM.02 0.410

CAM.04 0.346

CAM.09 0.077

CAM.13 0.006

CAM.14 0.026

CAM.38 0.006

CAM.45 0.006

126→ 126R 85 CAM.00 0.907 0.910 CAM.01 0.269 0.975 Relapse Relapse

CAM.01 0 CAM.07 0.192

CAM.02 0 CAM.33 0.006

CAM.03 0

CAM.04 1.026

CAM.05 0

CAM.06 0

CAM.07 0

CAM.22 0

CAM.50 0

130→ 130R 68 CAM.00 0.907 0.910 CAM.00 0.590 0.997 Relapse Relapse

CAM.02 0 CAM.04 0.346

CAM.03 0 CAM.12 0.064

CAM.04 1.026

CAM.12 0

151→ 151R 126 CAM.03 0 0.593 CAM.00 0.590 0.325 Reinfection Reinfection

CAM.05 0 CAM.08 0.154

CAM.08 0 CAM.14 0.026

CAM.64 0.006

152→ 152R 94 CAM.00 0.907 0.783 CAM.00 0.590 0.153 Reinfection Reinfection

CAM.01 0 CAM.01 0.269

CAM.05 0.231

CAM.07 0.192

153→ 153R 115 CAM.00 0.907 0.910 CAM.02 0.410 0.425 Reinfection Relapse

CAM.04 1.026 CAM.20 0.026

CAM.07 0

CAM.55 0

154→ 154R 64 CAM.00 0.907 0.783 CAM.03 0.295 0.116 Reinfection Reinfection

CAM.06 0 CAM.05 0.231

CAM.57 0 CAM.06 0.231

(Continued on next page)
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Table 5 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

160→ 160R 17 CAM.02 0 0.803 CAM.00 0.590 0.000 Reinfection Reinfection

CAM.04 1.026 CAM.03 0.295

CAM.07 0 CAM.05 0.231

CAM.10 0.077

CAM.61 0.006

177→ 177R 84 CAM.00 0.907 0.910 CAM.01 0.269 0.773 Relapse Relapse

CAM.04 1.026

CAM.07 0

179→ 179R 84 CAM.03 0 0.593 CAM.01 0.269 0.234 Reinfection Reinfection

CAM.05 0 CAM.13 0.006

CAM.07 0

CAM.09 0

CAM.17 0

CAM.22 0

We evaluate the proposed models (3.3) and (3.4) for the P. vivax malaria data using the proposed

method in Section 3.2. For a sequence of x in the range of the linear predictor β̂
′
Xi, we calculate the test

statistic T (x) =
∑n

i=1 I(β̂
′
Xi ≤ x)M̂i, where M̂i is the martingale residual defined in Section 2. Using a

Monte-Carlo simulation with Qi(i = 1, . . . , n) sampled independently from the standard normal distribution,

the confidence band for T (x) can be constructed by calculating TQ(x) =
∑n

i=1 I(β̂
′
Xi ≤ x)M̂iQi. We

simulate the process of T (x) by repeating the sampling. Using ν = 2.05, the linear predictor β̂
′
Xi ranges

from 0 to 1.94. Figure 3.4 shows the result with observed T (x) (thick solid line) and 100 simulated curves

(dashed lines) for x ∈ [0, 1.94]. The test statistics are point-wisely within the simulated processes, with no

significant indication of model violation. The model diagnosis result for the sensitivity analysis when ν = 0.8

is provided in Section 3.8. Similarly, there is no significant model violation when using ν = 0.8 as well.

Misidentification of unique haplotypes is a concern in the current analysis. Low-frequency minority

genetic variants that only differ in sequence by one nucleotide base pair to common variants may represent

false haplotypes generated by sequencing error. We adjusted the stringency of criteria used for calling

haplotypes to “collapse” such variants together, reducing the total number of 67 unique haplotypes to 32

(Hathaway et al., 2018). As a sensitivity analysis, we also analyzed the data with this total number of 32

haplotypes, based on collapsing variants with 1-nucleotide apart within the same isolate. The classification
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Figure 3.4: Goodness-of-fit model diagnosis for the P. vivax malaria data using ν = 2.05
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result has several disparities with that using 67 haplotypes but mostly agreed with the one based on the

method in Lin, Li and Lin (2020) also using 32 haplotypes. It is not surprising to find the classification result

sensitive to the identification of haplotype since our method relies on the modeling of the transition between

variants. The collapse of variants and corresponding classification results using 32 haplotypes are provided in

Section 3.8.

3.7 Discussion

We proposed a classification method for identifying the latent cause of events under competing risks set-

up, which utilizes both time to event and transition likelihood information for better classification performance.

By considering the transition likelihood, we utilize more information when constructing the classifier, which

leads to better performance than the classifier using only baseline information. The method can be applied

regardless of the true form of the baseline hazard function, and can also be applied to a variety of covariate

data types. We examined the performance of our method through simulation studies under various settings as

well as real data analysis, which shows high reliability of our method.

When modeling the outcomes of competing risks, we assumed a proportional hazards model with

a common baseline hazard function for every cause-specific hazard. When the hazards share the same

covariates, the model may not be identifiable. To avoid the identifiability issue when analyzing the P. vivax

malaria data, we assume the reinfection process is independent of any baseline covariates in Xi but has

a hazard function proportional to a baseline hazard λ0(t). This assumption is reasonable for our data but

may not be ideal for a general case. Also, in our current approach, we assume the transition of covariates

is independent of time. It will be of interest to generalize the transition model to be a function of time.

A possible approach is to include time ti as a covariate in the model for µijk. This approach is somehow

restricted to a linear function of time, which is subject to model misspecification.

Another topic worth investigating is the statistical inference of regression coefficients β. The treatment

effectiveness relies on formal statistical testing on the treatment effect. While the current method selects the

variables with high accuracy, statistical inferences such as producing p-values and 95% confidence intervals

need more work.
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3.8 Additional results of Plasmodium vivax malaria infection study

We here give more details about the Plasmodium vivax Malaria Infection study. Table 3.6 shows the

classification results given by our method when using 67 haplotypes and ν = 0.8. Table 3.7 details the

haplotypes that were collapsed with other haplotypes. Any other haplotypes not shown in the first column

of the table were not collapsed. Table 3.8 shows the classification results given by our method when using

32 haplotypes, in which case the BIC attains its minimum at ν = 1.6. Figure 3.5 shows the goodness-of-fit

test result when using ν = 0.8. The test statistics are point-wisely within the simulated processes, with no

significant pattern of model violation.

Table 3.6: Classification of the first recurrent infection based on our proposed method (ν = 0.8).

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

10→ 10R 84 CAM.00 1.194 0.793 CAM.00 0.590 0.996 Relapse Relapse

CAM.01 0 CAM.11 0.077

CAM.15 0.013

31→ 31R 84 CAM.00 1.194 0.935 CAM.16 0.006 0.992 Relapse Relapse

CAM.02 0.075

CAM.04 1.245

CAM.31 0

36→ 36R 99 CAM.00 1.194 0.897 CAM.01 0.269 0.628 Relapse Relapse

CAM.01 0 CAM.02 0.41

CAM.02 0.075 CAM.07 0.192

CAM.03 -0.293 CAM.17 0.064

CAM.04 1.245

CAM.05 -0.274

CAM.06 -0.292

CAM.07 0.287

CAM.09 0.068

CAM.11 0

68→ 68R 99 CAM.00 1.194 0.936 CAM.10 0.077 0.998 Relapse Relapse

CAM.02 0.075

CAM.04 1.245

CAM.10 0.022

80→ 80R 56 CAM.00 1.194 0.951 CAM.00 0.590 0.000 Reinfection Reinfection

CAM.04 1.245 CAM.01 0.269

CAM.05 -0.274 CAM.02 0.410

CAM.08 0.384 CAM.03 0.295

(Continued on next page)
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Table 3.6 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

CAM.09 0.068 CAM.05 0.231

CAM.24 0.207 CAM.06 0.231

CAM.27 0 CAM.07 0.192

CAM.08 0.154

CAM.12 0.064

CAM.41 0.013

81→ 81R 35 CAM.00 1.194 0.793 CAM.00 0.590 0.975 Relapse Relapse

CAM.01 0 CAM.01 0.269

CAM.51 0

82→ 82R 56 CAM.00 1.194 0.910 CAM.00 0.590 0.670 Relapse Relapse

CAM.03 -0.293 CAM.01 0.269

CAM.04 1.245 CAM.03 0.295

CAM.10 0.022 CAM.46 0.006

87→ 87R 81 CAM.00 1.194 0.882 CAM.00 0.590 0.616 Relapse Relapse

CAM.01 0 CAM.07 0.192

CAM.02 0.075 CAM.08 0.154

CAM.08 0.384 CAM.53 0.013

CAM.24 0.207

89→ 89R 14 CAM.00 1.194 0.953 CAM.01 0.269 0.109 Reinfection Reinfection

CAM.04 1.245 CAM.09 0.077

CAM.06 -0.292 CAM.20 0.026

CAM.08 0.384 CAM.27 0.038

CAM.10 0.022

CAM.12 0.307

96→ 96R 71 CAM.00 1.194 0.955 CAM.00 0.590 0.992 Relapse Relapse

CAM.02 0.075 CAM.30 0.013

CAM.04 1.245

CAM.08 0.384

112→ 112R 67 CAM.00 1.194 0.963 CAM.00 0.590 0.847 Relapse Relapse

CAM.01 0 CAM.01 0.269

CAM.02 0.075 CAM.02 0.410

CAM.04 1.245

CAM.07 0.287

CAM.12 0.307

CAM.40 0

CAM.42 0

CAM.60 0

(Continued on next page)
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Table 3.6 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

118→ 118R 89 CAM.08 0.384 0.631 CAM.01 0.269 0.012 Reinfection Reinfection

CAM.02 0.410

CAM.25 0.006

CAM.39 0.006

123→ 123R 26 CAM.00 1.194 0.805 CAM.00 0.590 0.720 Relapse Reinfection

CAM.02 0.075 CAM.01 0.269

125→ 125R 82 CAM.02 0.075 0.556 CAM.00 0.590 0.000 Reinfection Reinfection

CAM.01 0.269

CAM.02 0.410

CAM.04 0.346

CAM.09 0.077

CAM.13 0.006

CAM.14 0.026

CAM.38 0.006

CAM.45 0.006

126→ 126R 85 CAM.00 1.194 0.890 CAM.01 0.269 0.968 Relapse Relapse

CAM.01 0 CAM.07 0.192

CAM.02 0.075 CAM.33 0.006

CAM.03 -0.293

CAM.04 1.245

CAM.05 -0.274

CAM.06 -0.292

CAM.07 0.287

CAM.22 0

CAM.50 0

130→ 130R 68 CAM.00 1.194 0.936 CAM.00 0.590 0.997 Relapse Relapse

CAM.02 0.075 CAM.04 0.346

CAM.03 -0.293 CAM.12 0.064

CAM.04 1.245

CAM.12 0.307

151→ 151R 126 CAM.03 -0.293 0.492 CAM.00 0.590 0.242 Reinfection Reinfection

CAM.05 -0.274 CAM.08 0.154

CAM.08 0.384 CAM.14 0.026

CAM.64 0.006

152→ 152R 94 CAM.00 1.194 0.793 CAM.00 0.590 0.157 Reinfection Reinfection

CAM.01 0 CAM.01 0.269

CAM.05 0.231

(Continued on next page)
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Table 3.6 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

CAM.07 0.192

153→ 153R 115 CAM.00 1.194 0.947 CAM.02 0.410 0.586 Relapse Relapse

CAM.04 1.245 CAM.20 0.026

CAM.07 0.287

CAM.55 0

154→ 154R 64 CAM.00 1.194 0.741 CAM.03 0.295 0.098 Reinfection Reinfection

CAM.06 -0.292 CAM.05 0.231

CAM.57 0 CAM.06 0.231

160→ 160R 17 CAM.02 0.075 0.853 CAM.00 0.590 0.000 Reinfection Reinfection

CAM.04 1.245 CAM.03 0.295

CAM.07 0.287 CAM.05 0.231

CAM.10 0.077

CAM.61 0.006

177→ 177R 84 CAM.00 1.194 0.947 CAM.01 0.269 0.864 Relapse Relapse

CAM.04 1.245

CAM.07 0.287

179→ 179R 84 CAM.03 -0.293 0.485 CAM.01 0.269 0.165 Reinfection Reinfection

CAM.05 -0.274 CAM.13 0.006

CAM.07 0.287

CAM.09 0.068

CAM.17 0

CAM.22 0
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Table 3.7: Collapsing of original 67 haplotypes to 32 haplotypes.

Original haplotype Collapse to
CAM.05 CAM.00
CAM.12 CAM.00
CAM.24 CAM.00
CAM.46 CAM.00
CAM.51 CAM.00
CAM.54 CAM.00
CAM.57 CAM.00
CAM.61 CAM.00
CAM.62 CAM.00
CAM.25 CAM.01
CAM.26 CAM.01
CAM.43 CAM.01
CAM.44 CAM.01
CAM.63 CAM.01
CAM.13 CAM.02
CAM.31 CAM.02
CAM.32 CAM.02
CAM.34 CAM.02
CAM.38 CAM.02
CAM.40 CAM.02
CAM.49 CAM.02
CAM.60 CAM.02
CAM.56 CAM.04
CAM.58 CAM.04
CAM.37 CAM.06
CAM.42 CAM.06
CAM.55 CAM.06
CAM.64 CAM.06
CAM.15 CAM.07
CAM.39 CAM.07
CAM.41 CAM.07
CAM.50 CAM.07
CAM.17 CAM.08
CAM.59 CAM.09
CAM.45 CAM.10
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Table 3.8: Classification of first recurrent infection based on our proposed method when using 32 haplotypes
(ν = 1.6).

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

10→ 10R 84 CAM.00 0.862 0.768 CAM.00 0.679 0.927 Relapse Relapse

CAM.11 0 CAM.07 0.218

CAM.11 0.077

31→ 31R 84 CAM.00 0.862 0.913 CAM.16 0.006 0.981 Relapse Relapse

CAM.02 0

CAM.04 1.157

36→ 36R 99 CAM.00 0.862 0.913 CAM.01 0.321 0.393 Reinfection Relapse

CAM.01 0 CAM.02 0.449

CAM.02 0 CAM.07 0.218

CAM.03 0 CAM.08 0.218

CAM.04 1.157

CAM.06 0

CAM.07 0

CAM.09 0

CAM.11 0

68→ 68R 99 CAM.00 0.862 0.913 CAM.10 0.077 0.995 Relapse Relapse

CAM.02 0

CAM.04 1.157

CAM.10 0

80→ 80R 56 CAM.00 0.862 0.913 CAM.00 0.679 0 Reinfection Reinfection

CAM.04 1.157 CAM.01 0.321

CAM.08 0 CAM.02 0.449

CAM.09 0 CAM.03 0.295

CAM.27 0 CAM.06 0.269

CAM.07 0.218

CAM.08 0.218

81→ 81R 35 CAM.00 0.862 0.768 CAM.00 0.679 0.942 Relapse Relapse

CAM.01 0 CAM.01 0.321

82→ 82R 56 CAM.00 0.862 0.913 CAM.00 0.679 0.723 Relapse Relapse

CAM.03 0 CAM.01 0.321

CAM.04 1.157 CAM.03 0.295

CAM.10 0

87→ 87R 81 CAM.00 0.862 0.768 CAM.00 0.679 0.461 Reinfection Relapse

CAM.01 0 CAM.07 0.218

CAM.02 0 CAM.08 0.218

CAM.08 0 CAM.53 0.006

(Continued on next page)
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Table 3.8 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

89→ 89R 14 CAM.00 0.862 0.913 CAM.01 0.321 0.7 Relapse Reinfection

CAM.04 1.157 CAM.09 0.077

CAM.06 0 CAM.20 0.026

CAM.08 0 CAM.27 0.038

CAM.10 0

96→ 96R 71 CAM.00 0.862 0.913 CAM.00 0.679 0.989 Relapse Relapse

CAM.02 0 CAM.30 0.013

CAM.04 1.157

CAM.08 0

112→ 112R 67 CAM.00 0.862 0.913 CAM.00 0.679 0.739 Relapse Relapse

CAM.01 0 CAM.01 0.321

CAM.02 0 CAM.02 0.449

CAM.04 1.157

CAM.06 0

CAM.07 0

118→ 118R 89 CAM.08 0 0.583 CAM.01 0.321 0.003 Reinfection Reinfection

CAM.02 0.449

CAM.07 0.218

123→ 123R 26 CAM.00 0.862 0.768 CAM.00 0.679 0.702 Relapse Relapse

CAM.02 0 CAM.01 0.321

125→ 125R 82 CAM.02 0 0.583 CAM.00 0.679 0.001 Reinfection Reinfection

CAM.01 0.321

CAM.02 0.449

CAM.04 0.359

CAM.09 0.077

CAM.10 0.077

CAM.14 0.026

126→ 126R 85 CAM.00 0.862 0.913 CAM.01 0.321 0.969 Relapse Relapse

CAM.01 0 CAM.07 0.218

CAM.02 0 CAM.33 0.006

CAM.03 0

CAM.04 1.157

CAM.06 0

CAM.07 0

CAM.22 0

130→ 130R 68 CAM.00 0.862 0.913 CAM.00 0.679 0.98 Relapse Relapse

CAM.02 0 CAM.04 0.359

(Continued on next page)
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Table 3.8 (continued from previous page)

Recurrence Days to Baseline Recurrence Variant Class by Class by

Pair Recurrence Variants β̂ ξ̂(0) Variants Prevalence ξ̂(1) our method Lin et al.

CAM.03 0

CAM.04 1.157

151→ 151R 126 CAM.00 0.862 0.768 CAM.00 0.679 0.828 Relapse Relapse

CAM.03 0 CAM.06 0.269

CAM.08 0 CAM.08 0.218

CAM.14 0.026

152→ 152R 94 CAM.00 0.862 0.768 CAM.00 0.679 0.799 Relapse Relapse

CAM.01 0 CAM.01 0.321

CAM.07 0.218

153→ 153R 115 CAM.00 0.862 0.913 CAM.02 0.449 0.76 Relapse Relapse

CAM.04 1.157 CAM.20 0.026

CAM.06 0

CAM.07 0

154→ 154R 64 CAM.00 0.862 0.768 CAM.00 0.679 0.771 Relapse Relapse

CAM.06 0 CAM.03 0.295

CAM.06 0.269

160→ 160R 17 CAM.02 0 0.816 CAM.00 0.679 0.009 Reinfection Reinfection

CAM.04 1.157 CAM.03 0.295

CAM.07 0 CAM.10 0.077

177→ 177R 84 CAM.00 0.862 0.913 CAM.01 0.321 0.815 Relapse Relapse

CAM.04 1.157

CAM.07 0

179→ 179R 84 CAM.00 0.862 0.768 CAM.01 0.321 0.046 Reinfection Reinfection

CAM.03 0 CAM.02 0.449

CAM.07 0

CAM.08 0

CAM.09 0

CAM.22 0
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Figure 3.5: Goodness-of-fit model diagnosis for the P. vivax malaria data using ν = 0.8
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CHAPTER 4: DECOMPOSITION OF CORRELATIONS OF MIXED VARIABLES BY A LATENT
MIXED GAUSSIAN COPULA MODEL

4.1 Introduction

With the rapid development of technology, high-dimensional multi-omics data can be collected from the

same subject, such as genomics (DNA methylation, copy number variation and single nucleotide polymor-

phism), transcriptomics (mRNA expression and microRNA expression), proteomics, and metabolomics data.

Much evidence has demonstrated the benefit of integrating these data in an analysis. However, in practice,

such an integrative analysis can be challenging because multi-omics data can be of different types and at

different scales. It is especially challenging when seeking to identify the common and differential networks

between two or more subject groups. An example is a Chlamydia trachomatis genital tract infection study.

Chlamydia is the leading bacterial sexually transmitted infection in the United States and the infection is

often asymptomatic. In up to 50% of women, untreated infection can ascend from the cervix to the upper

genital tract and potentially lead to severe female reproductive morbidities. Identification of the commonly

and differentially expressed genes and their underlying regulatory SNPs between women with and without

ascending infection can greatly enhance the understanding of disease.

To study the correlations among mixed types of variables, many new methods have been developed.

Fan et al. (2017) proposed a latent Gaussian copula model to measure the correlations between binary and

continuous variables. They assumed that the observed binary and continuous variables are driven by some

latent variables that follow the nonparanormal distribution (Liu, Lafferty and Wasserman, 2009). Under

such an assumption, Fan et al. (2017) proposed to use Kendall’s τ , a semiparametric rank-based correlation

coefficient estimator, to measure the latent correlations between binary and continuous variables. Yoon,

Carroll and Gaynanova (2020) further extended the method to incorporate truncated variables and developed

a rank-based estimator that can be used in the Canonical Correlation Analysis. However, both works only

considered the situation when there is only one population. They did not consider decomposing the variation

into common and group-specific components.
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To find the common and idiosyncratic variation of mixed variables for multiple groups, we propose a

two-step method. First, we propose a Latent Mixed Gaussian Copula model to incorporate binary, categorical,

continuous, and truncated variables under a unified framework. Then, we develop rank-based estimators of

the correlation matrices for each group. Next, we propose to decompose such correlation matrices as a sum of

a low-rank matrix that captures the group-specific variation for each group and a sparse matrix that captures

the common variation across all groups. Such a decomposition is done by solving a penalized M -estimation

problem. We propose to view the decomposition step as a de-noising process that after removing the shared

variation, the low-rank group-specific components can give a clearer view of the differences between groups.

Another benefit of our method is that it allows different types of data being analyzed in a unified framework.

The rest of this chapter is organized as follows. In Section 4.2, we describe the formulation and solution

of our proposed method in details. In Section 4.3, we carry out extensive simulation studies to compare our

method with some competitive methods. In Section 4.4, we apply our method to a Chlamydia trachomatis

genital tract infection study to demonstrate how it can be used to find useful biomarkers that differentiate

subtypes of patients.

4.2 Methodology

Without loss of generality, we consider two groups of subjects. For the g-th group, assume that we

observe a p-dimensional vector Xg = (Xg,1, . . . , Xg,p)
T containing variables of mixed types, such as

continuous, binary, categorical, or truncated variables. We assume thatXg is derived from a vector of latent

continuous variables Y g = (Yg,1, . . . , Yg,p)
T by the transformation function hg = (hg,1, . . . , hg,p)

T that

Xg,j = hg,j(Yg,j) =



Yg,j , if j ∈ C ;

I(Yg,j > Cg,j), if j ∈ B;

I(Yg,j > Dg,j)Yg,j , if j ∈ T ;∑L−1
l=1 I(Yg,j > Cg,j,l), if j ∈ G ;

(4.1)

where C , B, T , and G are the index sets for continuous, binary, truncated, and categorical variables

respectively, and {Cg,j}j∈B, {Dg,j}j∈T and {Cg,j,l}j∈G ,1≤l≤Lj−1 are the corresponding cut-offs. We

assume that the latent Y g follows a Gaussian Copula model proposed by Liu, Lafferty and Wasserman
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(2009). More specifically, we assume that there exists some monotonically increasing functions fg =

(fg,1, . . . , fg,p)
T such that (fg,1(Yg,1), . . . , fg,p(Yg,p))

T ∼ N(0,Rg), whereRg is a correlation matrix. We

call (4.1) as the Latent Mixed Gaussian Copula (LMGC) model for mixed data. In the existing literature,

Fan et al. (2017) studied the LMGC model for continuous and binary variables only. Yoon, Carroll and

Gaynanova (2020) further extended it to incorporate truncated variables. In all these works, the authors

developed consistent estimators of the latent correlation matrix, and further applied these estimators in some

unsupervised problems, such as the Canonical Correlation Analysis. However, we would like to point out

that these works only deal with a single set of samples.

Different from these works, we propose to use the LMGC model to decompose the latent correlation

matrix into a low-rank and a sparse matrices that capture the group-specific and common variation among

mixed variables respectively. The LMGC model transforms the observed mixed variables into latent multi-

variate normal variables. Then, we perform the decomposition based on the correlation matrix of the latent

variables. We emphasize that even though the latent variables themselves are not observable, it is still feasible

to decompose its correlation matrix. Indeed, such a decomposition is motivated by factor analysis. We assume

that the latent variables fg(Y g) follow a factor decomposition that

fg(Y g) = ΛgF g +U , (4.2)

where F g ∈ Rrg is the group-specific latent factors from group g, Λg ∈ Rp×rg is the loading matrix, rg is

the number of latent factors in group g, and U ∈ Rp is the idiosyncratic component, which is assumed to be

uncorrelated with F g. To avoid the identifiability issue, we adopt the standard identifiability conditions in the

factor analysis literature by assuming that cov(F g) = Irg and Λ′gΛg is a diagonal matrix for g ∈ {1, 2}. In

factor decomposition (4.2), we assume that the group-specific variation is induced by the latent factor F g and

the common variation is induced by the idiosyncratic component U that is shared in the two groups. Then, it

follows from (4.2) that

Rg = ΛgΛ
′
g + ΣU . (4.3)

A similar idea of variation decomposition by factor model has also been used in Fan et al. (2018). We can

think of (4.3) as a de-noising step ofRg. That is, after removing the common ΣU , the real group-specific

variation are contained in Σg = ΛgΛ
′
g.
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Next, we show in Proposition 1 that (4.3) is a well-defined problem, in the sense that even if fg(Y g)

has different decomposition in (4.2), the decomposition of Rg in (4.3) is still unique. Furthermore, we

demonstrate in Section 4.2.1 that the decomposition in (4.3) does not require fg(Y g) to be observable.

Proposition 1 For g ∈ {1, 2}, suppose rg is fixed, and fg(Y g) = ΛgF g + U = Λ̃gF̃ g + Ũ , where

(F 1,F 2,U) and (F̃ 1, F̃ 2, Ũ) are both mutually uncorrelated. Then, ΛgΛ
′
g = Λ̃gΛ̃

′
g and Σ̃U = ΣU .

4.2.1 Decomposition of the latent correlation matrices

To solve the decomposition problem (4.3), we need an estimator ofRg. In Section 4.2.2, we give more

details on how such an estimator can be obtained using some rank-based method. Given such an estimator, we

let `(Σ1,Σ2,ΣU ) = (1/2)‖R̂1 +R̂2−Σ1−Σ2−2ΣU‖2F and propose to solve a regularizedM -estimation

problem that

(
Σ̂1, Σ̂2, Σ̂U

)
= argmin

(Σ1,Σ2,ΣU )

{
`(Σ1,Σ2,ΣU ) + ν1‖Σ1‖∗ + ν2‖Σ2‖∗ + ν3‖ΣU‖1

}
, (4.4)

where ν1, ν2 and ν3 are all non-negative tuning parameters, whose optimal values can be chosen by cross-

validation. ‖M‖F , ‖M‖1 and ‖M‖∗ represents the Frobenius, L1- and nuclear norms of M , which are

defined as ‖M‖F =
√∑

i

∑
jM

2
ij , ‖M‖1 =

∑
i,j |Mi,j |, and ‖M‖∗ =

∑
k λk(M), where λk(M) is the

k-th largest eigenvalue of M for any real matrix M = (Mij) ∈ Rn×p. In (4.4), we use the nuclear norm

penalty to regularize the ranks of Σ1 and Σ2, and use the L1-penalty to induce a sparse estimator of ΣU . The

nuclear norm penalty has been shown to be useful to recover the low-rank structure (Candès and Recht, 2009;

Candès and Tao, 2010; Mazumder, Hastie and Tibshirani, 2010). The L1-penalty is a well-known penalty

function to render a sparse solution (Tibshirani, 1996). We also remark that if there are G groups (G > 2),

we can solve a similar problem as

(
Σ̂g, Σ̂U

)
= argmin

(Σg ,ΣU )

{
`(Σ1, · · · ,ΣG,ΣU ) +

G∑
g=1

νg‖Σg‖∗ + νG+1‖ΣU‖1
}
. (4.5)

Such a problem is essentially the same as (4.4).

Next, we discuss how to solve (4.4). Let Θ = (Σ1,Σ2,ΣU ) and write R̂ = R̂1 + R̂2. We have `(Θ) =

(1/2)tr{(R̂−Σ1−Σ2−2ΣU )T (R̂−Σ1−Σ2−2ΣU )}. We propose to iteratively fix two components in Θ

and solve for the other. To start the iterations, we need to obtain an initial estimator Θ̂
(0)

= (Σ̂
(0)

1 , Σ̂
(0)

2 , Σ̂
(0)

U ).
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First, we estimate rg by r̂g = argmaxj≤min{(ng ,p)}λj−1(R̂g)/λj(R̂g), where λj(R̂g) is the j-th largest

eigenvalue of R̂g. Let V̂ g = (v̂1
g, . . . , v̂

r̂g
g ), where v̂jg is the eigenvector corresponding to λj(R̂g) and

D̂g = diag(λ1(R̂g), . . . , λr̂g(R̂g)). Then, we let Σ̂
(0)

g = V̂ gD̂gV̂
T

g for g ∈ {1, 2} and Σ̂
(0)

U = (1/2)
(
R̂−

Σ̂
(0)

1 − Σ̂
(0)

2

)
. Denote the solution of Θ at the h-th iteration as Θ̂

(h)
= (Σ̂

(h)

1 , Σ̂
(h)

2 , Σ̂
(h)

U ). At the (h+ 1)-th

iteration, we first fix Σ̂
(h)

2 , Σ̂
(h)

U and solve for Σ̂
(h+1)

1 . This becomes a spectral regularization problem.

As shown in Mazumder, Hastie and Tibshirani (2010), this problem can be solved by a hard-thresholding

Singular Value Decomposition (SVD). In particular, let R̂− Σ̂
(h)

2 −2Σ̂
(h)

U = U
(h)
r̂1
D

(h)
r̂1
V

(h)T
r̂1

be the rank-r̂1

SVD. We have Σ̂
(h+1)

1 = U
(h)
r̂1
Sν1(D

(h)
r̂1

)V
(h)T
r̂1

, where Sν1(D
(h)
r̂1

) = diag[(λ
(h)
1 −ν1)+, . . . , (λ

(h)
r̂1
−ν1)+]

and λ(h)
j is the j-th largest singular value ofD(h)

r̂1
. Then, we check if Σ̂

(h+1)

1 is positive definite. If not, we

project it to the nearest positive definite matrix by solving

argmin
λmin(A)>0

‖Σ̂
(h+1)

1 −A‖F , (4.6)

where λmin(A) is the smallest eigenvalue ofA. With a slight abuse of notation, we still denote the solution

to (4.6) as Σ̂
(h+1)

1 . Then, we fix (Σ̂
(h+1)

1 , Σ̂
(h)

U ) and solve for Σ̂
(h+1)

2 , which can be done using the same

hard-thresholding SVD. Lastly, we fix (Σ̂
(h+1)

1 , Σ̂
(h+1)

2 ) and solve for Σ̂
(h+1)

U . In this step, we use the

proximal gradient descent algorithm (Parikh and Boyd, 2014) to solve the corresponding L1-penalized

problem. The solution is given by Σ̂
(h+1)

U = s(Σ̂
(h)

U − d∇ΣU
`(Σ̂

(h+1)

1 , Σ̂
(h+1)

2 , Σ̂
(h)

U ), ν3d), where d is the

step size, ∇ΣU
`(Σ̂

(h+1)

1 , Σ̂
(h+1)

2 , Σ̂
(h)

U ) = 4Σ̂
(h)

U − 2(R̂ − Σ̂
(h+1)

1 − Σ̂
(h+1)

2 ) and s(x, π) is the element-

wise soft-thresholding operator, whose (i, j)-th element is defined as s(x, π)i,j = sign(xi,j)(|xi,j | − π)+.

As for the choice of d, we follow Parikh & Boyd (2014, section 4.2) to perform a backtracking line

search. That is, we iteratively decrease d until `(Θ̂
(h+1)

) ≤ Qd
(
Θ̂

(h+1)
; Θ̂

(h))
, where Qd

(
Θ̂

(h+1)
; Θ̂

(h))
=

`(Σ̂
(h+1)

1 , Σ̂
(h+1)

2 , Σ̂
(h)

U ) + 〈Σ̂
(h+1)

U − Σ̂
(h)

U ,∇ΣU
`(Σ̂

(h+1)

1 , Σ̂
(h+1)

2 , Σ̂
(h)

U )〉 + 1
2d ||Σ̂

(h+1)

U − Σ̂
(h)

U ||2F . We

stop the iterations when the proportion of the maximal changes of (Σ̂1, Σ̂2, Σ̂U ) between two consecutive

iterations is less than ζ, where ζ ∈ (0, 1) is a user-defined stopping threshold, set to be 0.1. A detailed

algorithm for solving (4.4) is given here:

Algorithm1: The Proximal Gradient Algorithm for solving (4.4)

Input: X1 ∈ Rn1×p,X2 ∈ Rn2×p.

Output: Σ̂1, Σ̂2 and Σ̂U .
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Initialization: Compute R̂1, R̂2 and let R̂ = R̂1 + R̂2.

For g = 1, 2, let r̂g = argmaxj≤min{(ng ,p)}λj−1(R̂g)/λj(R̂g) and

Σ̂
(0)

g = V̂ gD̂gV̂
T

g , where D̂g = diag(λ1(R̂g), . . . , λr̂g(R̂g)), λj(R̂g) is

the j-th eigenvalue of R̂g, v̂jg is the corresponding eigenvector

and V̂ g = (v̂1
g, . . . , v̂

r̂g
g ).

Let Σ̂
(0)

U = 1
2

(
R̂− Σ̂

(0)

1 − Σ̂
(0)

2

)
. Set the step size d at d = d(0) ∈ R+.

At the (h+ 1)th iteration, let d = d(h) and repeat the following steps.

Let Σ̂
(h+1)

1 = U
(h)
r̂1
Sν1(D

(h)
r̂1

)V
(h)T
r̂1

, where R̂− Σ̂
(h)

2 − 2Σ̂
(h)

U = U
(h)
r̂1
D

(h)
r̂1
V

(h)T
r̂1

and Sν1(D
(h)
r̂1

) = diag[(λ1(D
(h)
r̂1

)− ν1)+, . . . , (λr̂1(D
(h)
r̂1

)− ν1)+].

If λmin(Σ̂
(h+1)

1 ) ≥ 0 then go to the next step, else let Σ̂
(h+1)

1 = A, whereA

solves argminλmin(A)>0 ‖Σ̂
(h+1)

1 −A‖F .

Let Σ̂
(h+1)

2 = U
(h)
r̂2
Sν2(D

(h)
r̂2

)V
(h)T
r̂2

, where R̂− Σ̂
(h+1)

1 − 2Σ̂
(h)

U = U
(h)
r̂2
D

(h)
r̂2
V

(h)T
r̂2

and Sν2(D
(h)
r̂2

) = diag[(λ1(D
(h)
r̂2

)− ν2)+, . . . , (λr̂2(D
(h)
r̂2

)− ν2)+].

If λmin(Σ̂
(h+1)

2 ) ≥ 0 then go to the next step, else let Σ̂
(h+1)

2 = A, whereA

solves argminλmin(A)>0 ‖Σ̂
(h+1)

2 −A‖F .

Let

Σ̂
(h+1)

U = s(Σ̂
(h)

U − d∇ΣU
`(Σ̂

(h+1)

1 , Σ̂
(h+1)

2 , Σ̂
(h)

U ), ν3d), (4.7)

where s(x, π)i,j = sign(xi,j)(|xi,j | − π)+.

If `(Θ̂
(h+1)

) ≤ Qd{Θ̂
(h+1)

; Θ̂
(h)
}, proceed to the next iteration,

else let d = 0.8d and return to equation (4.7).

Iterate until max
{
‖Σ̂(h+1)

1 ‖F−‖Σ̂
(h)
1 ‖F

‖Σ̂(h)
1 ‖F

, ‖Σ̂
(h+1)
2 ‖F−‖Σ̂

(h)
2 ‖F

‖Σ̂(h)
2 ‖F

, ‖Σ̂
(h+1)
U ‖F−‖Σ̂

(h)
U ‖F

‖Σ̂(h)
U ‖F

}
≤ ζ.

4.2.2 Rank-based Latent Correlation Matrix Estimator

In this section, we propose a rank-based estimator ofRg for mixed data to be used in (4.4). Since such

an estimator is separately calculated for each group, for the sake of simplicity, we omit the notation g in

the subscript. We denote Φp(µ,Σ) as the cumulative distribution function (c.d.f.) of the p-dimensional

multivariate normal distribution with meanµ and covariance matrix Σ. In particular, we write Φ2(µ1, µ2;σ12)
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as the c.d.f. of a two-dimensional normal distribution with mean (µ1, µ2)T and σ12 is the covariance between

the two variables.

Here, we derive the formulae of bridge functions for the latent correlations between three-level categorical

variables and continuous/binary/truncated variables, which is one of our paper’s contributions. We also prove

that all these bridge functions are monotone so that they are invertible.

Theorem 2 The following results hold.

(a) For j ∈ G and k ∈ C ,

Fjk(Rjk; ∆j1,∆j2) = 2Φ2(∆j2, 0;
Rjk√

2
)− 2Φ2(∆j2, 0;−

Rjk√
2

)

− 2Φ3(∆j1,∆j2, 0;R3d) + 2Φ3(∆j2,∆j1, 0;R3d),

where ∆j1 = fj(Cj1),∆j2 = fj(Cj2), and

R3d =


1 0 −Rjk√

2

0 1
Rjk√

2

−Rjk√
2

Rjk√
2

1

 .

(b) For j ∈ G and k ∈ B,

Fjk(Rjk) = 2Φ2(∆j2,∆k;Rjk)− 2Φ1(∆j2)Φ1(∆k)− 2Φ1(∆j1)Φ2(∆j2,∆k;Rjk)

+ 2Φ1(∆j2)Φ2(∆j1,∆k;Rjk),

where ∆j1 = fj(Cj1),∆j2 = fj(Cj2), and ∆k = fk(Ck).

56



(c) For j ∈ G and k ∈ T ,

Fjk(Rjk; ∆j1,∆j2,∆k)

= 2
{
− 2Φ1(∆k)Φ1(∆j2)− Φ1(∆j2) + 2Φ2(∆j2,∆k;Rjk)

− Φ1(∆j1)Φ1(∆j2) + Φ2(0,∆j2;−Rjk/
√

2)− 2Φ1(∆j1)Φ2(∆j2,∆k;Rjk)

− Φ1(∆k)Φ2(∆j2,∆k;Rjk) + 2Φ3(0,∆j2,∆k;R3e)− 2Φ3(0,∆j2,∆k;R3f )

+ 2Φ3(∆j2,∆j1, 0;R3d) + 2Φ4(0,∆j2,∆k,∆k;R4c)

+ 2Φ4(0,∆j2,∆j1,∆k;R4d) + 2Φ4(0,∆j2,∆j1,∆k;R4e)

+ 2Φ4(0,∆j1,∆j1,∆k;R4e)− 2Φ2(∆j1,∆k;Rjk)Φ2(∆j2,∆k;Rjk)

− 2Φ5(0,∆j1,∆j1,∆k,∆k;R5) + 2Φ5(0,∆j2,∆j1,∆k,∆k;R5)
}
,

where ∆j1 = fj(Cj1),∆j2 = fj(Cj2), ∆k = fk(Ck),

R3e =


1

Rjk√
2
− 1√

2

Rjk√
2

1 0

− 1√
2

0 1

 , R3f =


1 −Rjk√

2
− 1√

2

−Rjk√
2

1 Rjk

− 1√
2

Rjk 1

 ,

R4c =



1 −Rjk√
2
− 1√

2
1√
2

−Rjk√
2

1 Rjk 0

− 1√
2

Rjk 1 0

1√
2

0 0 1


, R4d =



1
Rjk√

2
−Rjk√

2
− 1√

2

Rjk√
2

1 0 0

−Rjk√
2

0 1 Rjk

− 1√
2

0 Rjk 1


,

R4e =



1
Rjk√

2
−Rjk√

2
1√
2

Rjk√
2

1 0 Rjk

−Rjk√
2

0 1 0

1√
2

Rjk 0 1


andR5 =



1 −Rjk√
2

Rjk√
2
− 1√

2
1√
2

−Rjk√
2

1 0 Rjk 0

Rjk√
2

0 1 0 Rjk

− 1√
2

Rjk 0 1 0

1√
2

0 Rjk 0 1


.
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(d) For j ∈ G and k ∈ G ,

F (Rjk) = 2Φ2(∆j2,∆k2;Rjk)− 2Φ1(∆j2)Φ1(∆k2)

− 4Φ2(∆k2,∆j2;Rjk)Φ1(∆j1) + 4Φ2(∆j1,∆k2;Rjk)Φ1(∆j2)

+ 2Φ2(∆j2,∆k2;Rjk)Φ2(∆j1,∆k1;Rjk)

− 2Φ2(∆j2,∆k1;Rjk)Φ2(∆j1,∆k2;Rjk),

where ∆j1 = fj(Cj1),∆j2 = fj(Cj2),∆k1 = fk(Ck1), ∆k2 = fk(Ck2).

Proposition 2 All bridge functions in Theorem 2 are strictly increasing functions of Rjk ∈ (−1, 1) for

any given constants ∆j ,∆k,∆j1,∆j2,∆k1, and ∆k2.

For a three-level categorical variable, ∆j1 = fj(Cj1) and ∆j2 = fj(Cj2) are unknown in practice. We

observe that

E{I(Xij = 2)} = P(Xij = 2) = P(fj(Cj2) > ∆j2) = 1− Φ1(∆j2),

E{I(Xij = 0)} = P(Xij = 0) = P(fj(Cj1) < ∆j1) = Φ1(∆j1).

Then, we can estimate ∆j1 and ∆j2 by the moment estimators ∆̂j1 = Φ−1(n0/n) and ∆̂j2 = Φ−1(1−n2/n),

where n0 =
∑n

i=1 I(Xij = 0), n1 =
∑n

i=1 I(Xij = 1), n2 =
∑n

i=1 I(Xij = 2), and n0 + n1 + n2 = n.

Using all formulae given in the above, we can estimate each element of R. However, the resulting

estimator R̂ is not guaranteed to be positive definite. In that case, we can use the same technique in (4.6) to

further project it to the nearest positive definite matrix.

4.3 Simulation experiments

To evaluate the numerical performance of our proposed method, we compare it with the following

methods: (i) separate decomposition of sample Pearson correlation matrix in each group, which solves the

problem of

(Σ̆
†
g, Σ̆

†
Ug

) = argmin
(Σg ,ΣUg )

‖R̆g −Σg −ΣUg‖2F + νg‖Σg‖∗ + ν3‖ΣUg‖1, for g ∈ {1, 2},
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where R̆g is the sample Pearson correlation matrix of observed variables for the g-th group. (ii) joint

decomposition based on sample Pearson correlation matrix, which solves

(
Σ̆1, Σ̆2, Σ̆U

)
= argmin

(Σ1,Σ2,ΣU )

1

2
‖R̆1 + R̆2 −Σ1 −Σ2 − 2ΣU‖2F + ν1‖Σ1‖∗ + ν2‖Σ2‖∗ + ν3‖ΣU‖1;

(iii) separate decomposition of the correlation matrix of latent variables in each group,

(Σ̂
†
g, Σ̂

†
Ug

) = argmin
(Σg ,ΣUg )

‖R̂g −Σg −ΣUg‖2F + νg‖Σg‖∗ + ν3‖ΣUg‖1, for g ∈ {1, 2}.

We carry out simulation studies under both low- and high-dimensional settings and consider three

different correlation structures under each setting. In all cases, ranks of the low-rank matrices were set as

r1 = 3 and r2 = 2. For the low-dimensional settings, we set ng = 100 for g ∈ {1, 2} and p = 60. We

consider the following three scenarios.

Scenario 1: We set Σ1 = Q1D1Q
T
1 , where D1 = diag(7, 6.5, 6) and Q1 ∈ Rp×r1 is an orthonormal

matrix. To generateQ1, we start withA1 = (a1,a2,a3) ∈ Rp×r1 , where the first 30 elements of a1 range

from 0.02 to 0.6 with increments of 0.02 and the next 30 elements of a1 range from 0.71 to 1 with increments

of 0.01, elements of a2 range from -1.16 to 1.2 with increments of 0.04, and elements of a3 range from

0.12 to 1.3 with increments of 0.02. We then apply the Gram-Schmidt normalization to A1 to obtain Q1.

We set diagonal elements of ΣU to be 1 minus the diagonal elements of Σ1, and its (i, j)-th off-diagonal

element as σu,ij = σu,iσu,jρ
|i−j| if |i − j| = 1 and σu,ij = 0 otherwise, where ρ = 0.5 and σu,j denotes

the j-th diagonal element of ΣU . We set Σ2 = w2w
T
2 , where w2 = (w21,w22) with the (1:4, 31:35,

54:60)-th the elements of w21 being equal to 0.65 and the rest being zeros. Here, we use i : j to denote a

sequence of consecutive integers from i to j. The j-th element of w22 is set as w22;j =
√

1− σu,j − w2
21;j ,

for 1 ≤ j ≤ 60, where w22;j denotes the j-th element of w22. Under this scenario, ‖ΣU‖F ≈ 44.89%‖R1‖F

and ‖ΣU‖F ≈ 36.82%‖R2‖F , meaning the common variation captures 44.89% and 36.82% total variation

in these two groups.

Scenario 2: We setD1 = diag(3.5, 3.5, 3.5). Using the sameQ1 as in Scenario 1, we let Σ1 = Q1D1Q
T
1 .

We set the diagonal elements of ΣU to be 1 minus the diagonal elements of Σ1, and its (i, j)-th off-diagonal

element σu,ij = σu,iσu,jρ
|i−j| if |i − j| ≤ 2, σu,ij = 0 otherwise, and ρ = 0.5. We set Σ2 the same as in

Scenario 1 with the (1:3, 31:35, 55:60)-th elements of w21 been chosen as 0.503 and the rest as 0. Under this
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Figure 4.1: Heatmaps of ΣU for Scenarios 3 and 6.

scenario, ‖ΣU‖F ≈ 68.41%‖R1‖F and ‖ΣU‖F ≈ 62.72%‖R2‖F .

Scenario 3: We set Σ1 and Σ2 the same as in Scenario 1 with the (1:4, 31:35, 54:60)-th elements of

w21 to be 0.65 and the rest to be 0. We set the diagonal elements of ΣU to be 1 minus the diagonal elements

of Σ1. The off-diagonal elements of ΣU have a block-wise sparse structure; see Figure 4.1 for more details.

In this scenario, ‖ΣU‖F ≈ 42.09%‖R1‖F and ‖ΣU‖F ≈ 33.31%‖R2‖F .

The ΣU s in first two scenarios have similar banded structures, while in Scenario 2, the common variation,

measured by ‖ΣU‖F , takes a larger proportion of the total variation, measured by ‖Rg‖F . The third scenario

has a different structure of ΣU , but the proportion of its common variation is comparable to that of Scenario

1. We use these settings to see how our method performs for different cases of ΣU and Σg.

For the high-dimensional settings, we set ng = 50 for g ∈ {1, 2}, p = 90 and consider the following

three scenarios.

Scenario 4: We set Σ1 = Q1D1Q
T
1 , where D1 = diag(11, 10.5, 10) and Q1 ∈ Rp×r1 is an orthonormal

matrix. To generate Q1, we start with A1 = (a1,a2,a3), where the first 45 elements of a1 range from

0.02 to 0.9 with increments of 0.02 and the rest elements range from 1.01 to 1.45 with increments of 0.01,

elements of a2 range from -1.76 to 1.8 with increments of 0.04, and elements of a3 range from 0.12 to
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1.9 with increments of 0.02. We then apply Gram-Schmidt normalization to A1 to obtain Q1. We set

diagonal elements of ΣU to be 1 minus the diagonal elements of Σ1, and its (i, j)-th off-diagonal element as

σu,ij = σu,iσu,jρ
|i−j| if |i − j| = 1 and σu,ij = 0 otherwise, where ρ = 0.5. We set Σ2 = w2w

T
2 , where

w2 = (w21,w22) with the (1:8, 46:52, 81:90)-th elements of w21 being set as 0.65 and the rest as 0. The

j-th element of w22 is set as w22;j =
√

1− σu,j − w2
21;j . Under this scenario, ‖ΣU‖F ≈ 36.37%‖R1‖F

and ‖ΣU‖F ≈ 28.83%‖R2‖F .

Scenario 5: This scenario is the same as Scenario 2, except that we setD1 = diag(4.5, 4.5, 4.5) and use the

sameQ1 as in Scenario 4. We set Σ2 = w2w
T
2 , where w2 = (w21,w22), where the (1:6, 46:51, 82:90)-th

elements of w21 are set to be 0.459 and the rest to be 0. Under this scenario, ‖ΣU‖F ≈ 69.39%‖R1‖F and

‖ΣU‖F ≈ 62.82%‖R2‖F .

Scenario 6: We set Σ1 and Σ2 the same as in Scenario 4 with the (1:5, 46:50, 83:90)-th elements of w21 to

be 0.72 and the rest to be 0. The off-diagonal elements of ΣU have a block-wise sparse structure; see Figure

4.1 for more details. Under this scenario, ‖ΣU‖F ≈ 33.2%‖R1‖F and ‖ΣU‖F ≈ 25.47%‖R2‖F .

Under each scenario, we first generate ng i.i.d samples of Zg from N(0,Rg) for g ∈ {1, 2}, and

consider three LMGC models. In all these models, we set C = {1, . . . , p/3}, B = {p/3 + 1, . . . , 2p/3},

and G = {2p/3 + 1, . . . , p}.

• Model 1: For g ∈ {1, 2}, Y g = Zg, Xg = hg(Y g), where C1,j = 0.3, C2,j = 0.1 for j ∈ B, and

C1,j,1 = −0.7, C1,j,2 = 0.3, C2,j,1 = −0.5, C2,j,2 = 0.5 for j ∈ G .

• Model 2: Y 1 = exp(Z1) and Y 2 = Z2; Xg = hg(Y g), where C1,j = 1.5, C2,j = 0.1 for j ∈ B,

and C1,j,1 = 0.6, C1,j,2 = 1.4, C2,j,1 = −0.5, C2,j,2 = 0.5 for j ∈ G .

• Model 3: Y 1 = exp(Z1) and Y 2 = Z3
2; Xg = hg(Y g), where C1,j = 1.5, C2,j = 0.1 for j ∈ B,

and C1,j,1 = 0.6, C1,j,2 = 1.4, C2,j,1 = −0.5, C2,j,2 = 0.5 for j ∈ G .

We denote R̆g as the sample Pearson correlation coefficient of Xg, where its (j, k)-th element is

calculated as:

R̆g;(j,k) =
∑ng

i=1(xg;i,j − X̄g;j)(xg;i,k − X̄g;k)/
√
{
∑ng

i=1(xg;i,j − X̄g;j)2}{
∑ng

i=1(xg;i,k − X̄g;k)2},

where X̄g;j = (1/ng)
∑ng

i=1 xg;i,j for j = 1, . . . , p.

Figure 4.2 gives the boxplots of ‖R̂g −Rg‖F and ‖R̆g −Rg‖F . It is seen that R̂g performs much better

than R̆g in all scenarios.
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Figure 4.2: Estimation errors of Kendall’s τ and Pearson correlation based estimators ofRg.
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Figure 4.3: Estimation errors of Σg given by the four methods.
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(a) Sensitivity
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Figure 4.4: Variable selection accuracy of ΣU given by the four methods.
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Next, we compare the estimation error of the low-rank components by the four methods, which is

measured by ‖A1 +A2 −Σ1 −Σ2‖F , whereAg denotes one of Σ̆
†
g, Σ̆g, Σ̂

†
g and Σ̂g for g ∈ {1, 2}. It is

seen from Figure 4.3 that our method performs the best in all scenarios .

Moreover, we compare the sensitivity and specificity of the four methods on recovering the nonzero

elements of ΣU . Sensitivity is defined as the proportion of non-zero entries in ΣU being estimated as

non-zeros and specificity is defined as the proportion of zero entries in ΣU being estimated as zeros. Figure

4.4 demonstrates the sensitivity and specificity of four competitors over 100 simulations. In Scenarios 1 and

4, Σ̆
†
Ug
, Σ̆U , and Σ̂U have high and comparable sensitivities, but Σ̂U ’s specificity is higher than the other

two. The sensitivity of Σ̂
†
Ug

is low in these two scenarios, suggesting that separately decompose the latent

correlation matrices in two groups may not be capable of recovering the shared variation. For Scenarios 2

and 5, the sensitivity of all four methods reduces a lot. This is because their ΣU s have more complicated

structures than the ΣU s in Scenarios 1 and 4. However, our estimator still has much higher sensitivity

compared with the other methods . For Scenarios 3 and 6, ΣU has blocks of small nonzero elements. Under

these challenging settings, our method still outperforms the other three competitors. All these simulation

studies suggest that our method can have good recovery of the group-specific low-rank and the shared sparse

matrices for a variety of copula models.

4.4 Chlamydia trachomatis Genital Tract Infection Study

We applied our method to the multimodal data from the T cell Response Against Chlamydia (TRAC)

cohort (Russell et al., 2016), which is designed for studying chlamydial genital tract infection. Chlamydia

trachomatis can ascend from the cervix to the uterus and fallopian tubes in some women, and potentially

result in pelvic inflammatory disease and infertility. Leveraging the TRAC cohort, we previously analyzed

the association of 48 cytokines examined in cervical secretions with endometrial infection (Poston et al.,

2019) and identified the cytokine regulatory network associated with chlamydial ascending infection by a

graphical modelling approach (Zhong et al., 2020), but the genetic factors that drive the dysregulated cytokine

network are still unclear.

To reveal the underlying genetic factors, we jointly analyzed the data on 48 cervical cytokines and

genotype data from 128 women in TRAC, who had both cervical and endometrial infection (Endo+ group, n =

60) or had infection limited to the cervix (Endo- group, n = 68). Descriptions of the TRAC cohort, processing
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and quality control of genotype and cervical cytokine expression data have been published in detail previously

(Poston et al., 2019, Zhong et al., 2019). Directly genotyped single nucleotide polymorphisms (SNPs) were

used in this study, while imputed genotypes were excluded. We treated the genotypes as ordinal variables

with 3 levels. Cytokine levels were determined using Milliplex Magnetic Bead Assay. The cytokine values

were log2 transformed, and treated as normally distributed continuous variables.

Expression quantitative trait loci (eQTLs) are the SNPs that influence expression levels of mRNA

transcripts, which provide functional interpretation of the correlation between SNPs and cytokines. We

thus primarily focused on SNPs that were cis-eQTLs of the cytokines, defined as SNPs within 1MB region

flanking the gene that encodes the tested cytokine. eQTLs outside this region were defined as trans-eQTLs.

We identified 300 SNP-cytokine cis-eQTL pairs, including 277 unique SNPs and 42 unique cytokines by

Matrix eQTL (Shabalin, 2012) at significance level of 0.02. Next, we pruned the SNPs in high linkage

disequilibrium with other SNPs in the list (squared correlation coefficient > 0.6) by PriorityPruner (v0.1.4,

Edlund et al., 2016), and preferentially kept the most significant SNPs in the cis-eQTL detection. A total of

218 SNPs remained for further analysis. In each group, we further filtered SNPs whose latent correlation

with another SNP is greater than the upper 0.1% quantile of the absolute value of the latent correlation matrix,

while keeping the more significant SNPs in the cis-eQTL detection. Our final data set for each group had a

total of 227 variables, including 42 cytokines and 185 SNP variables.

We apply our proposed method on this data set to obtain R̂g, Σ̂g and Σ̂U . Figures 4.5 and 4.6 represent

their heatmaps. Rows and columns of the heatmaps in Figure 4.5 were ordered by applying hierarchical

clustering to the absolute value of Σ̂1, and those in Figure 4.6 were ordered by applying clustering result to

the absolute value of Σ̂2.

We highlighted the cluster of variables that is most distinct from the other variables in Σ̂1 for the Endo-

group (Figure 4.5B) and the same group of variables in Σ̂2 for Endo+ (Figure 4.5D) with green squares,

namely BlockA, which consists 7 cytokines (CXCL13, EGF, IL17A, IL23A, CXCL10, CCL7, CCL23) and

40 SNPs. Among the 40 SNPs, 28 SNPs (70%) are cis-eQTLs of these 7 cytokines, and the remaining 12

SNPs are trans-eQTLs of these cytokines.

These 7 cytokines formed two sub-networks, one includes IL17A, IL23A, CXCL10, CXCL13, and

their eQTLs. These 4 cytokines are associated with the aggregation of plasma cells and induction of Th17

cells, which are important immune cells involved in the host response to chlamydial genital tract infection

(Andrew et al., 2013; Darville et al., 2019). IL17A is the signature cytokine of Th17 cells; IL-23 induces
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Figure 4.5: Heatmaps of R̂g, Σ̂g and Σ̂U for Endo- (g = 1) and Endo+ (g = 2) groups. Rows and columns
of all heatmaps were ordered by applying clustering to the absolute value of Σ̂1. The cluster that is most
distinct from all other clusters in Σ̂1 is highlighted in the green square. The same group of variables in Σ̂2 is
also highlighted in the green square.
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Figure 4.6: Heatmaps of R̂g, Σ̂g and Σ̂U for Endo- (g = 1) and Endo+ (g = 2) groups. Rows and columns
of all heatmaps were ordered by applying clustering to the absolute value of Σ̂2. The cluster that is most
distinct from all other clusters in Σ̂2 is highlighted in the green square. The same group of variables in Σ̂1 is
also highlighted in the green square.
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the differentiation of naive CD4+ T cells into Th17 cells (Iwakura, Ishigame et al., 2006); CXCL10 is a

chemoattractant for CXCR3-positive Th17 cells and has also previously been correlated with detection of

plasma cells in patients with inflammation and fibrosis (Nastase et al., 2018). CXCL13 levels are associated

with plasma cell aggregates in tissues obtained from chlamydial induced endometrial inflammation (Kiviat

et al., 1990). Additionally, the connectivity of CXCL13 and IL-17A has been evidenced experimentally

(Rangel-Moreno et al., 2011).

We found enhanced eQTL effects and stronger correlation among these 4 cytokines in Endo- group,

compared to Endo+ group. To validate the differential eQTL effects between Endo+ and Endo- group,

we used a mediation test (GSMUT, Zhong et al., 2019) to examine whether any cis-eQTLs significantly

differentially affect the outcome mediated through altering the cytokine expression. We found that the eQTL

effects for rs4859453 and rs344108, i.e., the cis-eQTL of CXCL10 and CXCL13 respectively, only exist in

Endo- group, but not in Endo+ group (GSMUT P value < 0.05, Figure 4.7). The diminished eQTL effects in

Endo+ group were mostly mediated through increased expression of these two cytokines in Endo+ women

who carried TT and/or AT genotype. Our method also revealed additional differential eQTLs, for example

rs12941575, i.e., cis-eQTL of CCL7, which is not identified by mediation test (Figure 4.8). These findings

suggest that our method can simultaneously identify the dysregulated cytokine networks and differential

eQTLs. In addition, we can disclose the differential eQTLs with even mild to moderate effects, which might

be overlooked by mediation test at single cytokine level.

The other sub-network in blockA includes CCL7, CCL23, EGF and their eQTLs. These 3 cytokines are

predominately associated with the recruitment of monocytes to sites of inflammation and regulation of host

inflammatory responses. CCL23 and CCL7 are ligands for the chemokine receptor CCR1, which is critical

for recruitment of monocytes. CCR1 is a target of the EGF signaling axis, which can induce and enhance

CCR1 expression (Shin et al., 2017). In addition, CCL23 can mediate EGF receptor activation (Keates et al.,

2007).

Next, we highlighted the cluster that is most distinct from all other clusters in the unique low rank part

Σ̂2 for Endo+ group (Figure 4.6D) and the same group of variables in the unique low rank part Σ̂1 for

Endo- (Figure 4.6B) with green squares, namely Block B. BlockB consists of 5 cytokines (CSF3, FLT3LG,

TNFSF10, CCL5, CCL23,) and 56 SNPs.

All these 5 cytokines are involved in host immune and inflammatory responses to an infection. CSF3 and

FLT3LG play synergistic roles in the physiological steady state for maintenance of neutrophil and dendritic
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Figure 4.7: Expression of CXCL13 and CXCL10

Figure 4.8: Expression of CCL7
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Table 4.1: Estimate of all non-zero gene and gene elements of Σ̂U in real data analysis

Gene1, gene2 Estimate

TNFSF13, CXCL5 -0.037
TNFSF13, CCL23 0.203
CXCL14, PDGFB -0.004
CXCL9, CCL2 -0.026
EGF, CCL7 0.001
EGF, TNF -0.025
CXCL5, IFNA2 -0.063
CCL11, CCL7 0.057
FGF2, IL15 -0.009
FGF2, PDGFA -0.018
FGF2, PDGFB -0.015
CX3CL1, CXCL1 -0.021
IFNA2, IL13 0.021
IL13, IL6 -0.080
IL13, PDGFB 0.076
IL16, PDGFA -0.106
IL6, CCL23 0.026
IL6, PDGFB -0.024
CCL3, CCL4 0.097

cell populations (Bhattacharya et al., 2015). TNFSF10 is critical in promoting infection-induced inflammation

(Starkey et al., 2014), and experiments showed that G-CSF treatment increased the amount of TNFSF10

and the infiltration of neutrophils and mononuclear cells (Marino et al., 2009). CCL5 plays an important

role in sustaining CD8 cytotoxic T cell responses and CCL23 is highly chemotactic for monocytes. It has

been reported that neutrophils, monocytes and CD8 cytotoxic T cells contribute to chlamydial-induced upper

genital tract inflammation (Lijek et al., 2018).

Finally, we demonstrated the shared cytokine and eQTL networks between Endo- and Endo+ groups,

where the details are given in Tables 4.1 and 4.2. The cytokine networks among CXCL14, IL15, IL-16, PDGF-

A, PDGF-B have been consistently identified by our previous graphic modeling algorithm and evidenced by

biological function (Zhong et al., 2020). The preserved eQTL networks revealed important constitutional

eQTLs despite different disease groups, such as rs11176892 for IFNG, which is a critical cytokine for

controlling chlamydial infection.
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Table 4.2: Estimate of all non-zero gene and SNP elements of Σ̂U in real data analysis

Gene, SNP Estimate

TNFSF13, rs4227 -0.006
CXCL14, rs2112186 -0.041
EGF, rs2081466 -0.060
CXCL5, rs10002688 0.035
CXCL5, rs13139174 0.075
CCL11, rs280045 0.088
CCL11, rs8070999 0.003
CX3CL1, rs9935360 0.003
CX3CL1, rs1466133 -0.005
IFNG, rs11176892 -0.030
IL12B, rs11952950 0.031
IL12B, rs7734683 0.043
IL15, rs12331218 -0.012
IL15, rs1425520 0.041
IL16, rs7178382 -0.001
IL16, rs6495518 0.005
IL16, rs4778906 -0.071
CCL22, rs11076198 -0.003
TGFA, rs1871241 -0.002

4.5 Discussion

We proposed a novel method to decompose the correlation of mixed types of variables from multiple

groups by a Latent Mixed Gaussian Copula model. Our method can analyze binary, continuous, truncated

and categorical variables simultaneously. By solving a penalized M estimation problem, our method can

identify both the group-specific variation and the common variation. Various simulation experiments show

that our method is more accurate in identifying the shared and group-specific structures, compared with the

Pearson correlation based methods. The application of our method to the Chlamydia trachomatis genital tract

infection study reveals differential and shared eQTL networks between the Endo- and Endo+ patients.
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4.6 Technical Details

Proof of Proposition 1.

Since (F 1,F 2,U) and (F̃ 1, F̃ 2, Ũ) are both mutually uncorrelated, we have

cov(Λ1F 1,Λ2F 2) = 0, cov(Λ1F 1,U) = 0, cov(Λ2F 2,U) = 0,

cov(Λ̃1F̃ 1, Λ̃2F̃ 2) = 0, cov(Λ̃1F̃ 1, Ũ) = 0, cov(Λ̃2F̃ 2, Ũ) = 0.

Suppose ΛgF g +U = Λ̃gF̃ g + Ũ for g ∈ {1, 2}. LetW = Ũ −U . Then, Λ̃1F̃ 1 = Λ1F 1 −W and

Λ̃2F̃ 2 = Λ2F 2 −W . We have

0 = cov(Λ̃1F̃ 1, Λ̃2F̃ 2) = cov(Λ1F 1 −W ,Λ2F 2 −W )

= cov(Λ1F 1,Λ2F 2) + Var(W )− cov(Λ1F 1,W )− cov(Λ2F 2,W ),

which implies that

Var(W ) = cov(Λ1F 1,W ) + cov(Λ2F 2,W ). (4.8)

Similarly, we have

0 = cov(Λ̃gF̃ g, Ũ) = cov(ΛgF g −W ,U +W )

= cov(ΛgF g,U)−Var(W ) + cov(ΛgF g,W )− cov(U ,W ),

which implies that

Var(W ) = −cov(U ,W ) + cov(ΛgF g,W ). (4.9)

By (4.9), we also have

cov(Λ1F 1,W ) = cov(Λ2F 2,W ). (4.10)

By (4.8) and (4.10), we have Var(W ) = 2cov(Λ1F 1,W ) = 2cov(Λ2F 2,W ).

By (4.8) and (4.9), we have −cov(U ,W ) = cov(Λ1F 1,W ) = cov(Λ2F 2,W ).

Then, we have Var(W ) = −2cov(U ,W ) = 2cov(Λ1F 1,W ) = 2cov(Λ2F 2,W ).
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Therefore,

Λ̃gΛ̃
′
g = Var(Λ̃gF̃ g) = Var(ΛgF g −W ) = Var(ΛgF g) + Var(W )− 2cov(ΛgF g,W )

= Var(ΛgF g) = ΛgΛ
′
g.

Thus, Var(Ũ) = Var(U +W ) = Var(U) + Var(W ) + 2cov(U ,W ) = Var(U).

Proof of Theorem 2.

(a) By the definition,

τjk = E(τ̂jk) = E
[ 2

n(n− 1)

∑
1≤i<i′≤n

sign
{

(Xij −Xi′j)(Xik −Xi′k)
}]
.

For the simplicity of notation, we omit i and i′ from the subscripts and write Xij and Xi′j as Xj and

X ′j , where we treat them as two independent realizations from the same distribution.

Since Xj and X ′j are three-level categorical variables,

sign(Xj −X ′j) = I(Xj = 2, X ′j = 0) + I(Xj = 2, X ′j = 1) + I(Xj = 1, X ′j = 0)

− I(Xj = 1, X ′j = 2)− I(Xj = 0, X ′j = 1)− I(Xj = 0, X ′j = 2)

= I(Xj = 2)− I(Xj = 2, X ′j = 2)

+ I(Xj = 1, X ′j = 0)− I(Xj = 0, X ′j = 1)− I(X ′j = 2) + I(Xj = 2, X ′j = 2)

= I(Xj = 2)− I(X ′j = 2) + I(Xj = 1, X ′j = 0)− I(Xj = 0, X ′j = 1)

Define Z = f(Y ), where Z ∼ N(0,Σ). Since sign(x) = 2I(x > 0)− 1, we have

τjk = E
[

sign(Xj −X ′j) sign(Xk −X ′k)
]

= E
[

sign(Xj −X ′j){2I(Xk > X ′k)− 1}
]

= E
[
2 sign(Xj −X ′j)I(Xk > X ′k)− sign(Xj −X ′j)

]
= E

[
2I(Xj = 2)I(Xk > X ′k)− 2I(X ′j = 2)I(Xk > X ′k)

+ 2I(Xj = 1, X ′j = 0)I(Xk > X ′k)− 2I(Xj = 0, X ′j = 1)I(Xk > X ′k)
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− I(Xj = 2) + I(X ′j = 2)− I(Xj = 1, X ′j = 0) + I(Xj = 0, X ′j = 1)
]

= E
[
2I(Zj > ∆j2, Zk − Z ′k > 0)− 2I(Z ′j > ∆j2, Zk − Z ′k > 0)

+ 2I(∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Zk − Z ′k > 0)

− 2I(Zj < ∆j1,∆j1 < Z ′j < ∆j2, Zk − Z ′k > 0)

− I(Zj > ∆j2) + I(Z ′j > ∆j2)

− I(∆j1 < Zj < ∆j2, Z
′
j < ∆j1) + I(Zj < ∆j1,∆j1 < Z ′j < ∆j2)

]
= 2P(Zj > ∆j2, Zk − Z ′k > 0)− 2P(Z ′j > ∆j2, Zk − Z ′k > 0)

+ 2P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Zk − Z ′k > 0)

− 2P(Zj < ∆j1,∆j1 < Z ′j < ∆j2, Zk − Z ′k > 0)

− P(Zj > ∆j2) + P(Z ′j > ∆j2)

− P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1) + P(Zj < ∆j1,∆j1 < Z ′j < ∆j2)

= 2P(Z ′k − Zk < 0)− 2P(Zj < ∆j2, Z
′
k − Zk < 0)

− 2P(Z ′k − Zk < 0) + 2P(Z ′j < ∆j2, Z
′
k − Zk < 0)

+ 2P(Zj < ∆j2, Z
′
j < ∆j1, Z

′
k − Zk < 0)− 2P(Zj < ∆j1, Z

′
j < ∆j1, Z

′
k − Zk < 0)

− 2P(Zj < ∆j1, Z
′
j < ∆j2, Z

′
k − Zk < 0) + 2P(Zj < ∆j1, Z

′
j < ∆j1, Z

′
k − Zk < 0)

= −2P(Zj < ∆j2, Z
′
k − Zk < 0) + 2P(Z ′j < ∆j2, Z

′
k − Zk < 0)

+ 2P(Zj < ∆j2, Z
′
j < ∆j1, Z

′
k − Zk < 0)− 2P(Zj < ∆j1, Z

′
j < ∆j2, Z

′
k − Zk < 0)

= 2Φ2(∆j2, 0;
Rjk√

2
)− 2Φ2(∆j2, 0;−

Rjk√
2

)− 2Φ3(∆j1,∆j2, 0;R3d) + 2Φ3(∆j2,∆j1, 0;R3d).

(b) Since Xk and X ′k are binary variables,

sign(Xk −X ′k) = I(Yk > Ck)− I(Y ′k > Ck).
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We have

τjk = E
[

sign(Xj −X ′j)
{
I(Yk > Ck)− I(Y ′k > Ck)

}]
= E

[
I(Xj = 2, Yk > Ck)− I(X ′j = 2, Yk > Ck) + I(Xj = 1, X ′j = 0, Yk > Ck)

− I(Xj = 0, X ′j = 1, Yk > Ck)− I(Xj = 2, Y ′k > Ck) + I(X ′j = 2, Y ′k > Ck)

− I(Xj = 1, X ′j = 0, Y ′k > Ck) + I(Xj = 0, X ′j = 1, Y ′k > Ck)
]

= E
[
I(Yj > Cj2, Yk > Ck)− I(Y ′j > Cj2, Yk > Ck)

+ I(Cj1 < Yj < Cj2, Y
′
j < Cj1, Yk > Ck)

− I(Yj < Cj1, Cj1 < Y ′j < Cj2, Yk > Ck)− I(Yj > Cj2, Y
′
k > Ck)

+ I(Y ′j > Cj2, Y
′
k > Ck)

− I(Cj1 < Yj < Cj2, Y
′
j < Cj1, Y

′
k > Ck)

+ I(Yj < Cj1, Cj1 < Y ′j < Cj2, Y
′
k > Ck)

]
= P(Zj > ∆j2, Zk > ∆k)− P(Z ′j > ∆j2, Zk > ∆k)

+ P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Zk > ∆k)

− P(Zj < ∆j1,∆j1 < Z ′j < ∆j2, Zk > ∆k)− P(Zj > ∆j2, Z
′
k > ∆k)

+ P(Z ′j > ∆j2, Z
′
k > ∆k)− P(∆j1 < Zj < ∆j2, Z

′
j < ∆j1, Z

′
k > ∆k)

+ P(Zj < ∆j1,∆j1 < Z ′j < ∆j2, Z
′
k > ∆k)

= P(Zk > ∆k)− P(Zj < ∆j2, Zk > ∆k)− P(Zk > ∆k) + P(Z ′j < ∆j2, Zk > ∆k)

+ P(Zj < ∆j2, Z
′
j < ∆j1, Zk > ∆k)− P(Zj < ∆j1, Z

′
j < ∆j1, Zk > ∆k)

− P(Zj < ∆j1, Z
′
j < ∆j2, Zk > ∆k) + P(Zj < ∆j1, Z

′
j < ∆j1, Zk > ∆k)

− P(Z ′k > ∆k) + P(Zj < ∆j2, Z
′
k > ∆k) + P(Z ′k > ∆k)− P(Z ′j < ∆j2, Z

′
k > ∆k)

− P(Zj < ∆j2, Z
′
j < ∆j1, Z

′
k > ∆k) + P(Zj < ∆j1, Z

′
j < ∆j1, Z

′
k > ∆k)

+ P(Zj < ∆j1, Z
′
j < ∆j2, Z

′
k > ∆k)− P(Zj < ∆j1, Z

′
j < ∆j1, Z

′
k > ∆k)

= −2P(Zj < ∆j2, Zk > ∆k) + 2P(Z ′j < ∆j2, Zk > ∆k)

+ 2P(Zj < ∆j2, Z
′
j < ∆j1, Zk > ∆k)− 2P(Zj < ∆j1, Z

′
j < ∆j1, Zk > ∆k)

− 2P(Zj < ∆j1, Z
′
j < ∆j2, Zk > ∆k) + 2P(Zj < ∆j1, Z

′
j < ∆j1, Zk > ∆k)
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= −2P(Zj < ∆j2) + 2P(Zj < ∆j2, Zk < ∆k) + 2P(Z ′j < ∆j2)

− 2P(Z ′j < ∆j2, Zk < ∆k)

+ 2P(Zj < ∆j2, Z
′
j < ∆j1)− 2P(Zj < ∆j2, Z

′
j < ∆j1, Zk < ∆k)

− 2P(Zj < ∆j1, Z
′
j < ∆j1) + 2P(Zj < ∆j1, Z

′
j < ∆j1, Zk < ∆k)

− 2P(Zj < ∆j1, Z
′
j < ∆j2) + 2P(Zj < ∆j1, Z

′
j < ∆j2, Zk < ∆k)

+ 2P(Zj < ∆j1, Z
′
j < ∆j1)− 2P(Zj < ∆j1, Z

′
j < ∆j1, Zk < ∆k)

= 2P(Zj < ∆j2, Zk < ∆k)− 2P(Z ′j < ∆j2, Zk < ∆k)

− 2P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k) + 2P(Zj < ∆j1, Z

′
j < ∆j2, Zk < ∆k)

= 2
[
P(Zj < ∆j2, Zk < ∆k)− P(Z ′j < ∆j2)P(Zk < ∆k)

− P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k) + P(Zj < ∆j1, Z

′
j < ∆j2, Zk < ∆k)

]
= 2Φ2(∆j2,∆k;Rjk)− 2Φ1(∆j2)Φ1(∆k)− 2Φ1(∆j1)Φ2(∆j2,∆k;Rjk)

+ 2Φ1(∆j2)Φ2(∆j1,∆k;Rjk.)

(c) Since Xj and X ′j are three-level categorical variables,

sign(Xj −X ′j) = I(Xj = 2)− I(X ′j = 2) + I(Xj = 1, X ′j = 0)− I(Xj = 0, X ′j = 1).

Since Xk and X ′k are truncated variables,

sign(Xk −X ′k) = −I(Xk = 0, X ′k > 0) + I(Xk > 0, X ′k = 0)

+ I(Xk > 0, X ′k > 0) sign(Xk −X ′k)

= −I(Xk = 0) + I(X ′k = 0) + I(Xk > 0, X ′k > 0) sign(Xk −X ′k).
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Since sign(x) = 2I(x > 0)− 1, we have

τjk = E
[

sign(Xj −X ′j) sign(Xk −X ′k)
]

= E
[
2I(Xj = 2)I(X ′k = 0)− 2I(Xj = 2)I(Xk = 0) + 2I(Xj = 1, X ′j = 0)I(X ′k = 0)

− 2I(Xj = 1, X ′j = 0)I(Xk = 0) + 2I(Xk > X ′k)I(Xj = 2)I(Xk > 0, X ′k > 0)

− 2I(Xk > X ′k)I(X ′j = 2)I(Xk > 0, X ′k > 0)

+ 2I(Xk > X ′k)I(Xj = 1, X ′j = 0)I(Xk > 0, X ′k > 0)

− 2I(Xk > X ′k)I(Xj = 0, X ′j = 1)I(Xk > 0, X ′k > 0)
]

= E
[
2I(Zj > ∆j2)I(Z ′k < ∆k)− 2I(Zj > ∆j2)I(Zk < ∆k)

+ 2I(∆j1 < Zj < ∆j2, Z
′
j < ∆j1)I(Z ′k < ∆k)

− 2I(∆j1 < Zj < ∆j2, Z
′
j < ∆j1)I(Zk < ∆k)

+ 2I(Z ′k − Zk < 0)I(Zj > ∆j2)I(Zk > ∆k, Z
′
k > ∆k)

− 2I(Z ′k − Zk < 0)I(Z ′j > ∆j2)I(Zk > ∆k, Z
′
k > ∆k)

+ 2I(Z ′k − Zk < 0)I(∆j1 < Zj < ∆j2, Z
′
j < ∆j1)I(Zk > ∆k, Z

′
k > ∆k)

− 2I(Z ′k − Zk < 0)I(∆j1 < Z ′j < ∆j2, Zj < ∆j1)I(Zk > ∆k, Z
′
k > ∆k)

]
= 2
[
P(Zj > ∆j2, Z

′
k < ∆k)− P(Zj > ∆j2, Zk < ∆k)

+ P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Z

′
k < ∆k)

− P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k)

+ P(Z ′k − Zk < 0, Zj > ∆j2, Zk > ∆k, Z
′
k > ∆k)

− P(Z ′k − Zk < 0, Z ′j > ∆j2, Zk > ∆k, Z
′
k > ∆k)

+ P(Z ′k − Zk < 0,∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Zk > ∆k, Z

′
k > ∆k)

− P(Z ′k − Zk < 0,∆j1 < Z ′j < ∆j2, Zj < ∆j1, Zk > ∆k, Z
′
k > ∆k)

]
= 2
[
P(Z ′k < ∆k)P(Zj > ∆j2)− P(Zk < ∆k)− P(Zj < ∆j2)

+ 2P(Zj < ∆j2, Zk < ∆k)− P(Zj < ∆j2)P(Z ′j < ∆j1)

− P(Z ′j < ∆j2)P(Zk < ∆k) + 2P(Z ′k − Zk < 0, Zj < ∆j2)

− 2P(Z ′j < ∆j1)P(Zj < ∆j2, Zk < ∆k)− P(Z ′k < ∆k)P(Zj < ∆j2, Zk < ∆k)
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+ 2P(Z ′k − Zk < 0, Z ′j < ∆j2, Zk < ∆k)− 2P(Z ′k − Zk < 0, Zj < ∆j2, Zk < ∆k)

+ 2P(Z ′k − Zk < 0, Zj < ∆j2, Z
′
j < ∆j1) + 2P(Z ′k − Zk < 0, Zj < ∆j2, Zk < ∆k, Z

′
k < ∆k)

+ 2P(Z ′k − Zk < 0, Z ′j < ∆j2, Zj < ∆j1, Zk < ∆k)

+ 2P(Z ′k − Zk < 0, Z ′j < ∆j2, Zj < ∆j1, Z
′
k < ∆k)

+ 2P(Z ′k − Zk < 0, Zj < ∆j1, Z
′
j < ∆j1, Z

′
k < ∆k)

− 2P(Z ′k − Zk < 0, Zj < ∆j1, Z
′
j < ∆j1, Zk < ∆k, Z

′
k < ∆k)

+ 2P(Z ′k − Zk < 0, Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k, Z

′
k < ∆k)

− P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k, Z

′
k < ∆k)

]
= 2
{
− 2Φ1(∆k)Φ1(∆j2)− Φ1(∆j2) + 2Φ2(∆j2,∆k;Rjk)− Φ1(∆j1)Φ1(∆j2)

+ Φ2(0,∆j2;−
Rjk√

2
)− 2Φ1(∆j1)Φ2(∆j2,∆k;Rjk)− Φ1(∆k)Φ2(∆j2,∆k;Rjk)

+ 2Φ3(0,∆j2,∆k;R3e)− 2Φ3(0,∆j2,∆k;R3f ) + 2Φ3(∆j2,∆j1, 0;R3d)

+ 2Φ4(0,∆j2,∆k,∆k;R4c) + 2Φ4(0,∆j2,∆j1,∆k;R4d) + 2Φ4(0,∆j2,∆j1,∆k;R4e)

+ 2Φ4(0,∆j1,∆j1,∆k;R4e)− 2Φ2(∆j1,∆k;Rjk)Φ2(∆j2,∆k;Rjk)

− 2Φ5(0,∆j1,∆j1,∆k,∆k;R5) + 2Φ5(0,∆j2,∆j1,∆k,∆k;R5)
}
.

(d) We have

τjk = E
[

sign(Xj −X ′j) sign(Xk −X ′k)
]

= E
[
{I(Xj = 2)− I(X ′j = 2) + I(Xj = 1, X ′j = 0)− I(Xj = 0, X ′j = 1)}

{I(Xk = 2)− I(X ′k = 2) + I(Xk = 1, X ′k = 0)− I(Xk = 0, X ′k = 1)}
]

= E
[
I(Xj = 2, Xk = 2)− I(Xj = 2, X ′k = 2)

− I(X ′j = 2, Xk = 2) + I(X ′j = 2, X ′k = 2)

+ I(Xj = 2, Xk = 1, X ′k = 0)− I(Xj = 2, Xk = 0, X ′k = 1)

+ I(X ′j = 2, Xk = 0, X ′k = 1)− I(X ′j = 2, Xk = 1, X ′k = 0)

+ I(Xj = 1, X ′j = 0, Xk = 2)− I(Xj = 1, X ′j = 0, X ′k = 2)
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+ I(Xj = 0, X ′j = 1, X ′k = 2)− I(Xj = 0, X ′j = 1, Xk = 2)

+ I(Xj = 1, X ′j = 0, Xk = 1, X ′k = 0)− I(Xj = 1, X ′j = 0, Xk = 0, X ′k = 1)

+ I(Xj = 0, X ′j = 1, Xk = 0, X ′k = 1)− I(Xj = 0, X ′j = 1, Xk = 1, X ′k = 0)
]

= E
[
2I(Xj = 2, Xk = 2)− 2I(X ′j = 2, Xk = 2)

+ 2I(Xj = 2, Xk = 1, X ′k = 0)− 2I(Xj = 2, Xk = 0, X ′k = 1)

+ 2I(Xj = 1, X ′j = 0, Xk = 2)− 2I(Xj = 1, X ′j = 0, X ′k = 2)

+ 2I(Xj = 1, X ′j = 0, Xk = 1, X ′k = 0)− 2I(Xj = 1, X ′j = 0, Xk = 0, X ′k = 1)
]

= 2P(Xj = 2, Xk = 2)− 2P(X ′j = 2, Xk = 2)

+ 2P(Xj = 2, Xk = 1, X ′k = 0)− 2P(Xj = 2, Xk = 0, X ′k = 1)

+ 2P(Xj = 1, X ′j = 0, Xk = 2)− 2P(Xj = 0, X ′j = 1, Xk = 2)

+ 2P(Xj = 1, X ′j = 0, Xk = 1, X ′k = 0)− 2P(Xj = 1, X ′j = 0, Xk = 0, X ′k = 1)

= 2P(Zj > ∆j2, Zk > ∆k2)− 2P(Z ′j > ∆j2, Zk > ∆k2)

+ 2P(Zj > ∆j2,∆k1 < Zk < ∆k2, Z
′
k < ∆k1)− 2P(Zj > ∆j2, Zk < ∆k1,∆k1 < Z ′k < ∆k2)

+ 2P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Zk > ∆k2)− 2P(Zj < ∆j1,∆j1 < Z ′j < ∆j2, Zk > ∆k2)

+ 2P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1,∆k1 < Zk < ∆k2, Z

′
k < ∆k1)

− 2P(∆j1 < Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k1,∆k1 < Z ′k < ∆k2)

= 2P(Zj < ∆j2, Zk < ∆k2)− 2P(Z ′j < ∆j2, Zk < ∆k2)

+ 2P(Zk < ∆k2, Z
′
k < ∆k1)− 2P(Zj < ∆j2, Zk < ∆k2, Z

′
k < ∆k1)

− 2P(Zk < ∆k1, Z
′
k < ∆k1) + 2P(Zj < ∆j2, Zk < ∆k1, Z

′
k < ∆k1)

− 2P(Zk < ∆k1, Z
′
k < ∆k2) + 2P(Zj < ∆j2, Zk < ∆k1, Z

′
k < ∆k2)

+ 2P(Zk < ∆k1, Z
′
k < ∆k1)− 2P(Zj < ∆j2, Zk < ∆k1, Z

′
k < ∆k1)
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+ 2P(Zj < ∆j2, Z
′
j < ∆j1)− 2P(Zj < ∆j2, Z

′
j < ∆j1, Zk < ∆k2)

− 2P(Zj < ∆j1, Z
′
j < ∆j1) + 2P(Zj < ∆j1, Z

′
j < ∆j1, Zk < ∆k2)

− 2P(Zj < ∆j1, Z
′
j < ∆j2) + 2P(Zj < ∆j1, Z

′
j < ∆j2, Zk < ∆k2)

+ 2P(Zj < ∆j1, Z
′
j < ∆j1)− 2P(Zj < ∆j1, Z

′
j < ∆j1, Zk < ∆k2)

+ 2P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k2, Z

′
k < ∆k1)

− 2P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k1, Z

′
k < ∆k1)

− 2P(Zj < ∆j1, Z
′
j < ∆j1, Zk < ∆k2, Z

′
k < ∆k1)

+ 2P(Zj < ∆j1, Z
′
j < ∆j1, Zk < ∆k1, Z

′
k < ∆k1)

− 2P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k1, Z

′
k < ∆k2)

+ 2P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k1, Z

′
k < ∆k1)

+ 2P(Zj < ∆j1, Z
′
j < ∆j1, Zk < ∆k1, Z

′
k < ∆k2)

− 2P(Zj < ∆j1, Z
′
j < ∆j1, Zk < ∆k1, Z

′
k < ∆k1)

= 2P(Zj < ∆j2, Zk < ∆k2)− 2P(Z ′j < ∆j2, Zk < ∆k2)− 2P(Zj < ∆j2, Zk < ∆k2, Z
′
k < ∆k1)

+ 2P(Zj < ∆j2, Zk < ∆k1, Z
′
k < ∆k2)− 2P(Zj < ∆j2, Z

′
j < ∆j1, Zk < ∆k2)

+ 2P(Zj < ∆j1, Z
′
j < ∆j2, Zk < ∆k2) + 2P(Zj < ∆j2, Z

′
j < ∆j1, Zk < ∆k2, Z

′
k < ∆k1)

− 2P(Zj < ∆j2, Z
′
j < ∆j1, Zk < ∆k1, Z

′
k < ∆k2)

= 2Φ2(∆j2,∆k2;Rjk)− 2Φ1(∆j2)Φ1(∆k2)

− 2Φ2(∆j2,∆k2;Rjk)Φ1(∆k1) + 2Φ2(∆j2,∆k1;Rjk)Φ1(∆k2)

− 2Φ2(∆j2,∆k2;Rjk)Φ1(∆j1) + 2Φ2(∆j1,∆k2;Rjk)Φ1(∆j2)

+ 2Φ2(∆j2,∆k2;Rjk)Φ2(∆j1,∆k1;Rjk)− 2Φ2(∆j2,∆k1;Rjk)Φ2(∆j1,∆k2;Rjk)

= 2Φ2(∆j2,∆k2;Rjk)− 2Φ1(∆j2)Φ1(∆k2)

− 4Φ2(∆k2,∆j2;Rjk)Φ1(∆j1) + 4Φ2(∆j1,∆k2;Rjk)Φ1(∆j2)

+ 2Φ2(∆j2,∆k2;Rjk)Φ2(∆j1,∆k1;Rjk)− 2Φ2(∆j2,∆k1;Rjk)Φ2(∆j1,∆k2;Rjk)
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Proof of Proposition 2.

To prove this lemma, we note that Fan et al. (2017) showed that the distribution function Φ2(·, ·; t) of a

bivariate random variable (Xj , Xk) is strictly increasing with t. Therefore, we have ∂Φ2(∆j ,∆k; t)/∂t > 0

for fixed constants ∆j and ∆k. Also, Yoon, Carroll and Gaynanova (2020) proved that for any constants

a1, . . . , ad, let Φd(a1, . . . , ad; Σd(r)) be the CDF of d-dimensional multivariate normal distribution with

covariance matrix

Σd(r) =



1 σ12(r) σ13(r) . . . σ1d(r)

σ21(r) 1 σ23(r) . . . σ2d(r)

1

...
. . .

...

σd1(r) . . . 1


.

Then there exists sij(r) > 0 for all r ∈ (−1, 1) such that

∂Φd(a1, . . . , ad; Σd(r))

∂r
=

d−1∑
i=1

d∑
j=i+1

sij(r)
∂σij(r)

∂r
.

(a) Let

R3g =


1 0

Rjk√
2

0 1 −Rjk√
2

Rjk√
2
−Rjk√

2
1

 , R3h =


1 0 −Rjk√

2

0 1 −Rjk√
2

−Rjk√
2
−Rjk√

2
1

 ,

we have Φ3(∆j2,∆j1, 0;R3d) = Φ3(∆j1,∆j2, 0;R3g), Φ(∆j2) = Φ2(∆j2, 0;
Rjk√

2
) +

Φ2(∆j2, 0;−Rjk√
2

), and Φ2(∆j1,∆j2; 0) = Φ3(∆j1,∆j2, 0;R3d) + Φ3(∆j1,∆j2, 0;R3g).
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Therefore,

∂F (t; ∆j1,∆j2)

∂t

= 2∂

{
Φ2(∆j2, 0;

t√
2

)− Φ2(∆j2, 0;− t√
2

)− Φ3(∆j1,∆j2, 0;R3d) + Φ3(∆j2,∆j1, 0;R3d)

}
/∂t

= 2∂

{
Φ2(∆j2, 0;

t√
2

)−
{

Φ(∆j2)− Φ2(∆j2, 0;
t√
2

)
}

+ Φ3(∆j2,∆j1, 0;R3d)−
{

Φ2(∆j1,∆j2; 0)− Φ3(∆j1,∆j2, 0;R3g)
}}

/∂t

= 2∂

{
2Φ2(∆j2, 0;

t√
2

)− Φ(∆j2)− Φ(∆j1)Φ(∆j2) + 2Φ3(∆j1,∆j2, 0;R3g)

}
/∂t

= 4
∂Φ2(∆j2, 0; t√

2
)

∂t
+ 4

∂Φ3(∆j1,∆j2, 0;R3g)

∂t
.

Then, we only need to prove that ∂Φ3(∆j1,∆j2, 0;R3g)/∂t ≥ 0.

By the chain rule,

∂Φ3(∆j1,∆j2, 0;R3g)

∂t
=
∑
i<k

{
∂Φ3(∆j1,∆j2, 0;R3g)

∂σik(r)

∂σik(r)

∂r

}

=
1√
2

{
∂Φ3(∆j1,∆j2, 0;R3g)

∂σ13(r)
− ∂Φ3(∆j1,∆j2, 0;R3g)

∂σ23(r)

}

where σik denotes the (i, k)-th element ofR3g.

By equation (3) in Plackett (1954), we have the result that

∂φd/∂σik = ∂2φd/(∂xi∂xk)

Hence,

∂Φ3(∆j1,∆j2, 0;R3g)

∂t
=

1√
2

{
∂Φ3(∆j1,∆j2, 0;R3g)

∂σ13(r)
− ∂Φ3(∆j1,∆j2, 0;R3g)

∂σ23(r)

}

=
1√
2

{∫ ∆j1

−∞

∫ ∆j2

−∞

∫ 0

−∞

(
∂φ3(x1, x2, x3;R3g)

∂σ13(r)
− ∂φ3(x1, x2, x3;R3g)

∂σ23(r)

)
dx1dx2dx3

}

=
1√
2

{∫ ∆j1

−∞

∫ ∆j2

−∞

∫ 0

−∞

(
∂2φ3(x1, x2, x3;R3g)

∂x1∂x3
− ∂2φ3(x1, x2, x3;R3g)

∂x2∂x3

)
dx1dx2dx3

}
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=
1√
2

{∫ ∆j2

−∞
φ3(∆j1, x2, 0;R3g)dx2 −

∫ ∆j1

−∞
φ3(x1,∆j2, 0;R3g)dx1

}

=
1√
2

{∫ ∆j2

−∞
φ3(∆j1, x, 0;R3g)dx−

∫ ∆j1

−∞
φ3(∆j2, x, 0;R3g)dx

}

=
1√
2

{
φ2(∆j1, 0;

Rjk√
2

)

∫ ∆j2

−∞
φ(x)dx− φ2(∆j2, 0;

Rjk√
2

)

∫ ∆j1

−∞
φ(x)dx

}

=
1√
2

{
φ2(∆j1, 0;

Rjk√
2

)Φ(∆j2)− φ2(∆j2, 0;
Rjk√

2
)Φ(∆j1)

}
.

We have

φ2(x, y;
Rjk√

2
) = fX,Y (x, y) = fX|Y (x|y)fY (y) = φ

( x√
1−R2

jk/2

)
φ(y).

Then,

∂Φ3(∆j1,∆j2, 0;R3g)

∂t
=

1√
2

{
φ2(∆j1, 0;

Rjk√
2

)Φ(∆j2)− φ2(∆j2, 0;
Rjk√

2
)Φ(∆j1)

}

=
1√
2
φ(0)

{
φ
( ∆j1√

1−R2
jk/2

)
Φ(∆j2)− φ

( ∆j2√
1−R2

jk/2

)
Φ(∆j1)

}

Therefore, we need to show that

φ
( ∆j1√

1−R2
jk/2

)
Φ(∆j2) > φ

( ∆j2√
1−R2

jk/2

)
Φ(∆j1),

which is equivalent to
Φ(∆j2)

φ
(

∆j2

s

) > Φ(∆j1)

φ
(

∆j1

s

) ,
where s =

√
1−R2

jk/2. Let h(x) = Φ(x)/φ(x/s). Since ∆j2 > ∆j1, we just need to show that

h(x) is an increasing function. We have

dh(x)

dx
=
φ(x)φ(x/s) + x

s2
Φ(x)φ(x/s)

φ2(x/s)
=

φ(x)

φ(x/s)
+
x

s2

Φ(x)

φ(x/s)
= h(x)

(
φ(x)

Φ(x)
+
x

s2

)
.
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When x ≥ 0, it’s obvious that φ(x)/Φ(x) + x/s2 ≥ 0. Since x ∼ N(0, s2), from the property of

Mill’s ratio, we also know that for x ≥ 0, φ(−x)/Φ(−x)− x/s2 ≥ 0, which means that when x < 0,

it also holds that φ(x)/Φ(x) + x/s2 ≥ 0. Hence h(x) is an increasing function.

(b)

∂F (t; ∆j1,∆j2,∆k)

∂t
= 2

{
∂Φ2(∆j2,∆k; t)

(
1− Φ1(∆j1)

)
∂t

+
∂Φ1(∆j2)Φ2(∆j1,∆k; t)

∂t

}
= 2

{(
1− Φ1(∆j1)

)∂Φ2(∆j2,∆k; t)

∂t
+ Φ1(∆j2)

∂Φ2(∆j1,∆k; t)

∂t

}
> 0

(c) Let

R3i =


1

Rjk√
2

1√
2

Rjk√
2

1 Rjk

1√
2

Rjk 1

 ,

R4f =



1
Rjk√

2
1√
2

1√
2

Rjk√
2

1 Rjk 0

1√
2

Rjk 1 0

1√
2

0 0 1


,

R4g =



1 0 0
Rjk√

2

0 1 Rjk
Rjk√

2

0 Rjk 1 1√
2

Rjk√
2

Rjk√
2

1√
2

1


.

R4h =



1
Rjk√

2
1√
2
−Rjk√

2

Rjk√
2

1 Rjk 0

1√
2

Rjk 1 0

−Rjk√
2

0 0 1


,
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R4i =



1
Rjk√

2
1√
2

Rjk√
2

Rjk√
2

1 Rjk 0

1√
2

Rjk 1 0

Rjk√
2

0 0 1


We have

Φ3(0,∆j2,∆k;R3f ) = Φ2(∆j2,∆k;Rjk)− Φ3(0,∆j2,∆k;R3i).

Φ4(0,∆j2,∆k,∆k;R4c) = Φ1(∆k)Φ2(∆j2,∆k;Rjk)− Φ3(0,∆j2,∆k;R3i)

+ Φ4(0,∆j2,∆k,−∆k;R4f ).

Φ4(0,∆j2,∆j1∆k;R4d) = Φ1(∆j2)Φ2(∆j1,∆k;Rjk)− Φ3(0,∆j1,∆k;R3i)

+ Φ4(∆j2,∆j1,∆k, 0;R4g).

Φ4(0,∆j2,∆j1,∆k;R4e) = Φ4(0,∆j2,∆k,∆j1;R4h) = Φ3(0,∆j2,∆k;R3i)

− Φ4(0,∆j2,∆k,−∆j1;R4i).

Φ4(0,∆j1,∆j1,∆k;R4e) = Φ4(0,∆j1,∆k,∆j1;R4h) = Φ3(0,∆j1,∆k;R3i)

− Φ4(0,∆j1,∆k,−∆j1;R4i)
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∂F (t; ∆j1,∆j2,∆k)/∂t

= 2∂

{
2
(
1− Φ1(∆j1)

)
Φ2(∆j2,∆k;Rjk) + Φ2(0,∆j2;−

Rjk√
2

)− Φ1(∆k)Φ2(∆j2,∆k;Rjk)

− 2Φ2(∆j1,∆k;Rjk)Φ2(∆j2,∆k;Rjk) + 2Φ3(0,∆j2,∆k;R3e)− 2Φ3(0,∆j2,∆k;R3f )

+ 2Φ3(∆j2,∆j1, 0;R3d) + 2Φ4(0,∆j2,∆k,∆k;R4c) + 2Φ4(0,∆j2,∆j1∆k;R4d)

+ 2Φ4(0,∆j2,∆j1,∆k;R4e) + 2Φ4(0,∆j1,∆j1,∆k;R4e)

− 2Φ5(0,∆j1,∆j1,∆k,∆k;R5) + 2Φ5(0,∆j2,∆j1,∆k,∆k;R5)

}
/∂t

= 2∂

{
2
(
1− Φ1(∆j1)

)
Φ2(∆j2,∆k;Rjk) + Φ1(∆j2)− Φ2(0,∆j2;Rjk/

√
2)

− 2Φ2(∆j1,∆k;Rjk)Φ2(∆j2,∆k;Rjk) + 2Φ3(0,∆j2,∆k;R3e)− 2Φ2(∆j2,∆k;Rjk)

+ 2Φ3(∆j2,∆j1, 0;R3d) + Φ1(∆k)Φ2(∆j2,∆k;Rjk) + 2Φ1(∆j2)Φ2(∆j1,∆k;Rjk)

+ 2Φ4(0,∆j2,∆k,−∆k;R4f ) + 2Φ4(∆j2,∆j1,∆k, 0;R4g)

+ 2Φ3(0,∆j2,∆k;R3i)− 2Φ4(0,∆j2,∆k,−∆j1;R4i)

− 2Φ4(0,∆j1,∆k,−∆j1;R4i)

− 2Φ5(0,∆j1,∆j1,∆k,∆k;R5) + 2Φ5(0,∆j2,∆j1,∆k,∆k;R5)

}
/∂t

>2∂
{

2
(
1− Φ1(∆j1)

)
Φ2(∆j2,∆k;Rjk) + Φ1(∆j2)− Φ2(0,∆j2;Rjk/

√
2)

− 2Φ2(∆j1,∆k;Rjk)Φ2(∆j2,∆k;Rjk) + 2Φ3(0,∆j2,∆k;R3e)− 2Φ2(∆j2,∆k;Rjk)

+ 2Φ3(∆j2,∆j1, 0;R3d) + Φ1(∆k)Φ2(∆j2,∆k;Rjk) + 2Φ1(∆j2)Φ2(∆j1,∆k;Rjk)

+ 2Φ4(0,∆j2,∆k,−∆k;R4f ) + 2Φ4(∆j2,∆j1,∆k, 0;R4g) + 2Φ3(0,∆j2,∆k;R3i)

− 2Φ4(0,∆j2,∆k,−∆j1;R4i)− 2Φ4(0,∆j1,∆k,−∆j1;R4i)
}
/∂t

> 0
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(d) ∂F (t; ∆j1,∆j2,∆k1,∆k2)/∂t

= 2∂

{
Φ2(∆j2,∆k2; t)− Φ2(∆j2,∆k2; t)Φ1(∆k1) + Φ2(∆j2,∆k1; t)Φ1(∆k2)

− Φ2(∆j2,∆k2; t)Φ1(∆j1) + Φ2(∆j1,∆k2; t)Φ1(∆j2)

+ Φ2(∆j2,∆k2; t)Φ2(∆j1,∆k1; t)− Φ2(∆j2,∆k1; t)Φ2(∆j1,∆k2; t)

}
/∂t

= 2∂

[
Φ2(∆j2,∆k2; t)

{
1− Φ1(∆k1)− Φ1(∆j1) + Φ2(∆j1,∆k1; t)

}
+ Φ2(∆j1,∆k2; t)Φ1(∆j2) + Φ2(∆j2,∆k1; t)

{
Φ1(∆k2)− Φ2(∆j1,∆k2; t)

}]
/∂t

= 2
∂
{

Φ2(∆j2,∆k2; t)Φ2(−∆j1,−∆k1; t)
}

∂t
+ 2Φ1(∆j2)

∂Φ2(∆j1,∆k2; t)

∂t

+ 2
∂
[
Φ2(∆j2,∆k1; t)

{
P(Zk < ∆k2)−P(Zj < ∆j1, Zk < ∆k2)

}]
∂t

= 2
∂
{

Φ2(∆j2,∆k2; t)Φ2(−∆j1,−∆k1; t)
}

∂t
+ 2Φ1(∆j2)

∂Φ2(∆j1,∆k2; t)

∂t

+ 2
∂
[
Φ2(∆j2,∆k1; t)P(Zj ≥ ∆j1, Zk < ∆k2)

]
∂t

> 0
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CHAPTER 5: IMPUTATION OF BLOCK-WISE MISSING VALUES IN MIXED MULTI-MODAL
DATA

5.1 Introduction

In biomedical research, the block-wise missing structure is very common for high-dimensional multi-

modal data. The development of technology provide researchers the opportunity to collect multi-modal data.

However, the actual data collection process, especially for genetic data, is still expensive and the number

of subjects available in each data modality will be limited due to various reasons. It is often commonly

seen that not all subjects have information from every data modality, thus leading to a block-wise missing

structure in the data. Another challenge for multi-modal data is that data from each modality might be

of different types. An example is that in Chlamydia trachomatis genital tract infection researches, data

collected have multi-source measurements, such as clinical variables, mRNA profiles, DNA genotypes,

cervical microbiology, cervical cytokine profiles, endometrial microbiology and histology. The block of all

cervical cytokine profiles in a subject could be missing due to the lack of cervical swap sample from that

person. The block-wise missing values in the mixed-type data pose difficulty in the multi-modal data analysis,

since most studies only utilize the completely observed data from a sample.

We first consider the approaches for solving the block-wise missing data problem. There are several

popular approaches when a block-wise missing structure is presented, including complete-case analysis, use

all data available, or impute missing values. The most straightforward way is to only use data with complete

observations and remove those with any missing values (Liu et al., 2022). However, in many cases, only a

small fraction of subjects have data from all modalities. Removing observations with any missing values,

will lead to loss of much information. Another approach is to use all available data, without any deletion

or imputation. Yuan et al. (2012) developed the iMSF method, a multi-task sparse learning framework

for classification of patients’ Alzheimer’s disease (AD) progression, where observations with data from

at least one modality can all be included. Xiang et al. (2014) extended the iMSF and proposed a bi-level

model, where they performed covariate-level and modality-level analysis at the same time. Yu et al. (2020)
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introduced the DISCOM method, where coefficients in the optimal linear prediction were estimated using an

extended Lasso-type estimator, based on estimates for covariance matrices among covariates and between

the response and covariates. The above methods deal with block missing values for supervised problems.

Finally, for unsupervised problems, there are also works aim to impute block-wise missing data. From a

matrix completion perspective, Cai, Cai and Zhang (2016) proposed a structured matrix completion (SMC)

method based on singular value decomposition (SVD). They showed that the data matrix can be recovered

if the matrix is exactly or approximately low-rank. However, SMC requires certain rows and columns to

have complete data. Also, SMC can only be applied to Gaussian variables, and can not handle more than

two modalities. A more recent work by Zhou, Cai and Lu (2021) proposed another matrix completion

method (BONMI) that can complete multiple missing blocks. The BONMI exploits the orthogonal Procrustes

problem and impute the block-wise missing data by the inner product of the low-rank components. However,

their method is also based on SVD, therefore not applicable for binary, ordinal or truncated data. Zhang,

Tang and Qu (2020) considered a factor model approach for imputing the missing blocks. The method does

not rely on any specific missing mechanism. However, this approach can only be used for continuous data.

To handle mixed variables, Xue and Qu (2020) proposed a multiple block-wise imputation (MBI) approach.

Zhu, Li and Lock (2020) developed GIPCA, a low rank approach. For these two methods, since they used

parametric models, covariates should follow distributions from the exponential family. For the Chlamydia

trachomatis genital tract infection study, none of the methods mentioned above is ideal.

The second problem we face in the Chlamydia trachomatis genital tract infection study is that data from

different modality are of mixed types. For example, the cytokine data are continuous, and microbiology

data are binary or ordinal. In order to handle mixed variables, Fan et al. (2017) proposed a latent Gaussian

copula model to measure the correlations between binary and continuous variables. The latent Gaussian

copula model assumes that the observed continuous and binary variables are driven by some latent variables

that follow the nonparanormal distribution (Liu, Lafferty and Wasserman, 2009), where Kendall’s τ , a

semiparametric rank-based correlation estimator was used to measure the latent correlations between them.

They also derived formulae of bridge functions that maps the observed variables to the latent ones. Their

works were then extended by Quan, Booth and Wells (2018); Yoon, Carroll and Gaynanova (2020); Liu et al.

(2022) to incorporate ordinal and truncated variables. Quan, Booth and Wells (2018) provided formulae

for measuring correlations among ordinal, continuous and binary variables. Yoon, Carroll and Gaynanova

(2020) provided formulae for measuring correlations among truncated, continuous and binary variables. Liu

89



et al. (2022) provided formulae for measuring correlations between ordinal and truncated variables. However,

these works do not allow missing values.

To efficiently utilize multi-modal data with mixed variables, we propose to impute the block-wise missing

values using the Latent Mixed Gaussian Copula (LMGC) model. Using the LMGC model, we first impute

the latent variables with missing values based on the observed variables without missing values. Then, we

estimate the tranformation function to map the imputed latent variables to the mixed variables at their original

scales.

The rest of this chapter is organized as follows. In Section 5.2, we describe the formulation and solution

of our proposed method in details. In Section 5.3, we carry out extensive simulation studies to compare

our method with some competitive methods. In Section 5.4, we apply our method to data collected from a

Chlamydia trachomatis genital tract infection study.

5.2 Methodology

Assume that there are n subjects and for each subject, we observe a p-dimensional vector X =

(X1, . . . , Xp)
′ containing variables of mixed types, such as continuous, binary, ordinal, or truncated variables.

We use C, B, G, T to denote continuous, binary, ordinal and truncated variables, respectively. We use O and

M to denote observed and missing variables. Let A = B ∪ G ∪ T . We denote the set of variables other than

continuous variables without any missing values by A ∩O.

We aim to impute the block missing data inM with variables in C ∩ O using the Latent Mixed Gaussian

Copula (LMGC) model. The LMGC model assume thatX is derived from some latent variable Z. For any

subject with missing values, writeX = (X ′C∩O,X
′
A∩O,X

′
M)′ and Z = (Z ′C∩O,Z

′
A∩O,Z

′
M)′. Therefore,

to impute XM, we proposed to first estimate ZC∩O. Then, we estimate ZM using ZC∩O. Finally, we

transform the estimated ZM toXM.

In this section, we first introduce some basics of the LMGC model for complete data in Section 5.2.1 and

then present our method in Section 5.2.2.

5.2.1 Latent Mixed Gaussian Copula (LMGC) model for mixed data

In this section, we introduce the Latent Mixed Gaussian Copula (LMGC) model for mixed data when

there is no missing data presented.
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Assume that we have a p-dimensional vectorX = (X1, . . . , Xp)
′, containing variables of mixed types,

such as continuous, binary, ordinal, or truncated variables. We assume thatX is derived from latent continuous

variables Z = (Z1, . . . , Zp)
′ by the monotonically increasing transformation functions f = (f1, . . . , fp)

such that Z ∼ Np(0,R), whereR is a correlation matrix. We have

Xj =



f−1
j (Zj), if j ∈ C;

I(Zj > ∆j), if j ∈ B;

I(Zj > ∆j)f
−1
j (Zj), if j ∈ T ;∑Lj−1

l=1 I(Zj > ∆j,l), if j ∈ G;

(5.1)

where C, B, T , and G are the index sets for continuous, binary, truncated, and ordinal variables respectively,

and {∆j}j∈B, {∆j}j∈T and {∆j,l}j∈G,1≤l≤Lj−1 are the corresponding cut-offs. We call (5.1) as the Latent

Mixed Gaussian Copula (LMGC) model for mixed data. In the existing literature, Fan et al. (2017) studied

the LMGC model for continuous and binary variables only. The idea was then extended by Quan, Booth and

Wells (2018); Yoon, Carroll and Gaynanova (2020); Liu et al. (2022) to incorporate ordinal and truncated

data type.

In all these works, the authors developed consistent estimators of the latent correlation matrixR. They

proposed to calculate the Kendall’s τ correlations of observed variables and relate them to the correlations

of latent variables via some bridge functions. In particular, let
{

(Xij , Xik)
}n
i=1

be the realizations of the

observed variables Xj and Xk, the Kendall’s τ between Xj and Xk is defined as

τ̂jk =
2

n(n− 1)

∑
1≤i<i′≤n

sign(Xij −Xi′j) sign(Xik −Xi′k). (5.2)

Let τjk = E(τ̂jk) be the population Kendall’s τ . Then, the latent correlation between Zj and Zk is

Rjk = F−1
jk (τjk), where Fjk(·) is a bridge function. The explicit form of the bridge functions Fjk(·) for

the correlations between continuous, binary, 3 level ordinal and truncated variables are provided in the

Supplementary materials. These formulae were derived in Fan et al. (2017), Quan, Booth and Wells (2018),

Yoon, Carroll and Gaynanova (2020) and Liu et al. (2022).

Fan et al. (2017), Quan, Booth and Wells (2018), Yoon, Carroll and Gaynanova (2020) and Liu et al.

(2022) proved that all bridge functions are strictly increasing for any Rjk ∈ (−1, 1). Thus, they are invertible.
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In practice, we estimate Rjk by R̂jk = F−1
jk (τ̂jk). For a binary or truncated variable, ∆k = fk(Ck) is

unknown. We follow Fan et al. (2017) and estimate it with the plug-in estimator ∆̂k = Φ−1
{∑n

i=1 I(Xik 6=

0)/n
}

. For a 3-level ordinal variable, we estimate ∆j1 and ∆j2 by the moment estimators as ∆̂j1 =

Φ−1
{∑n

i=1 I(Xij = 0)/n
}

, and ∆̂j2 = Φ−1
{

1−
∑n

i=1 I(Xij = 2)/n
}

.

For j ∈ C and T , we will need to estimate the transformation function fj . To estimate fj , Liu, Lafferty

and Wasserman (2009) proposed to use a Winsorized empirical C.D.F. estimator, which is defined as

F̂j(t; δn) := Tδn

(
1

n

n∑
i=1

I(Xij ≤ t)

)
(5.3)

and

Tδn(a) :=


δn, if a < δn,

a, if δn ≤ a ≤ 1− δn,

1− δn, if a > 1− δn.

Define

f̂j(t) = Φ−1(F̂j(t)) (5.4)

and use the truncation level δn = 1
4n1/4

√
π logn

, Han, Zhao and Liu (2013) proved that f̂j(t) converges to fj

uniformly over an expanding interval with high probability.

5.2.2 Imputation of missing values based on the conditional multivariate normal distribution

For any subject with missing values, letX = (X ′C∩O,X
′
A∩O,X

′
M)′ and Z = (Z ′C∩O,Z

′
A∩O,Z

′
M)′.

Since variables A ∩O were not used in the imputation process, for simplicity, we use O to represent C ∩ O

in the rest of this section. To imputeXM, we propose to first estimate ZO. Then, we estimate ZM using

ZO and the correlations between ZO and ZM. Finally, we transform the estimated ZM toXM.

By definition, we have (Z ′O,Z
′
M)′ ∼ Np(0,R), with

R =

 RO ROM

RMO RM

 ,

whereRO,RM, andROM are the correlation matrices of ZO, ZM and between them.

92



By the conditional distribution of multivariate normal distribution, we have

ZM|ZO = zO ∼ N(R′OMR
−1
O zO,RM −R

′
OMR

−1
O ROM).

Therefore, we can estimate ZM by

ẐM = R̂
′
OMR̂

−1

O ẐO. (5.5)

Define SO = {i : Xi does not contain any missing values} and number of elements in SO as nO. For

1 ≤ j ≤ p , define Sj = {i : Xij is not missing} and number of elements in Sj as nj . For 1 ≤ j, k ≤ p,

define Sjk = {i : Xij and Xik are not missing} and number of elements in Sjk as njk. To use (5.5), we need

to estimateR. By the LMGC model described in Section 5.2.1, we can estimate each element Rjk using the

bridge function Fjk(·) and subjects in Sjk. When there are missing values, the Kendall’s τ between Xj and

Xk is defined as

τ̂jk =
2

njk(njk − 1)

∑
i,i′∈Sjk

sign(Xij −Xi′j) sign(Xik −Xi′k). (5.6)

The form of bridge functions Fjk(·) remains the same. For a binary or truncated variable, the estimator

for ∆k = fk(Ck) becomes

∆̂k = Φ−1

{∑
i∈Sk

I(Xik 6= 0)/nk

}
. (5.7)

For a three-level ordinal variable, the estimators for ∆j1 and ∆j2 becomes


∆̂j1 = Φ−1

{∑
i∈Sj

I(Xij = 0)/nj
}
,

∆̂j2 = Φ−1
{

1−
∑

i∈Sj
I(Xij = 2)/nj

}
.

(5.8)

For j ∈ C and T , the Winsorized empirical C.D.F. estimator becomes

F̂j(t; δnj ) := Tδnj

(
1

nj

∑
i∈Sj

I(Xij ≤ t)

)
(5.9)
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where

Tδnj
(a) :=


δnj , if a < δnj

a, if δnj ≤ a ≤ 1− δnj

1− δnj , if a > 1− δnj

, and δnj =
1

4nj1/4
√
π log nj

.

We define

f̂j(t) = Φ−1(F̂j(t)). (5.10)

Therefore, by (5.10), we could estimate ZO by

Ẑj = f̂j(Xj), ∀j ∈ O. (5.11)

Our imputation method is based on the fact that variables inXO are correlated with variables inXM,

and hence by considering the latent correlations between the observed and the missing data, the observed data

could provide information for the imputation of the missing data. Let R̃ be the estimator of the correlation

matrix whose elements are obtained by (5.6). When p is large, not all of observed variables are informative

with the missing values and R̃ might not be a good estimator for the latent correlation matrix. If the actual

correlations between the observed variables and the missing variables are small, including those variables

would not help with the accuracy of imputation. Instead, those variables will introduce noise to the imputation

process. When the extra error is larger than the extra information brought by these variables, thresholding and

conditioning only on part of the variables for imputation will improve the accuracy. The sparsity assumption

for the covariance matrix is frequently made to balance between biases and variances (Huang et al., 2006;

d’Aspremont, Banerjee and El Ghaoui, 2008; Bickel and Levina, 2008; Rothman et al., 2008). We assume

R has a sparse structure that is comprised of mostly zero values and (log p)/n→ 0. Following Bickel and

Levina (2008), we apply element-wise hard-thresholding to R̃. We denote the hard-thresholding results for

R̃ as R̂, which is given by

R̂jk = R̃jk · I(|R̃jk| ≥ λjk) and R̂ =

 R̂O R̂OM

R̂MO R̂M

 , (5.12)
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where λjk = c
√

log p
njk

is the hard-thresholding level and c is the tuning parameter. Therefore, we update (5.5)

and estimate ZM by

ẐM = R̂
′
OM{R̂O}−1Ẑ

′
O. (5.13)

We choose the optimal tuning parameter c by performing a grid search via cross-validation similar to that

proposed in Bickel and Levina (2008). For a given c, we split the sample into two sets where one fifth of the

subjects is reserved for testing and the rest is for training. We repeat this process T times. We split the data

such that subjects in SO are presented in both the training set and the testing set. For the t-th splitting process,

we use the subjects in the testing set to calculate R̃
(t)

test and use the training set to calculate R̃
(t)

train. Denote

R̂
(t)

train as the hard-thresholding result using parameter c of R̃
(t)

train, we choose the optimal c that minimizes∑T
t=1 ‖R̃

(t)

test − R̂
(t)

train‖2F . For the numerical studies, we set T = 10.

However, the resulting estimator R̂ is not guaranteed to be positive semidefinite. In that case, we project

it to the nearest positive semidefinite matrix by solving argminA≥0 ‖R̂−A‖F , whereA ≥ 0 meansA is

positive semidefinite. Such a problem can be solved by Zhao, Roeder and Liu (2014). With a slight abuse of

notation, we still denote the solution as R̂. Finally, by partitioning R̂, we obtain estimates for R̂O and R̂OM

that can be used in (5.13).

In conclusion, and any variable j with missing values, our method for imputing different types of missing

data can be implemented using the following formula:

X̂j =



f̂−1
j (Ẑj), if j ∈ C;

I(Ẑj > ∆̂j), if j ∈ B;

I(Ẑj > ∆̂j)f̂
−1
j (Ẑj), if j ∈ T ;∑Lj−1

l=1 I(Ẑj > ∆̂j,l), if j ∈ G;

(5.14)

where f̂−1
j can be estimated using (5.9) and (5.10), Ẑj can be estimated using (5.13) and ∆̂j can be estimated

by (5.7) or (5.8) based on the data type of j. In the following Algorithm 1, we give an algorithm describing

steps of the imputation procedure.

5.2.3 Existing methods for block-wise imputation

We introduce three methods in existing literature for missing value imputation in this section.
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Input: DataX , consists of data from multiple modalities of different types, with missing values.
Output: Complete data X̂ , where no missing value is presented.
begin

With the completely observed continuous dataXC∩O inX , estimate its corresponding latent
data ẐC∩O using equations (5.3), (5.4) and (5.11)

With ẐC∩O, estimate missing latent data ẐM that corresponding to the data with missingXM
inX using the bridge function and (5.12), (5.13)

Estimate X̂M using the estimated latent data ẐM with equations (5.7), (5.8) and (5.14)
Complete the missing entries in X̂ with the estimated data X̂M.

end
Algorithm 2: Algorithm for imputing missing data

The first is Complete Case Analysis method, which is not designed specifically for block-wise missing

structure. For each i ∈ SO and j ∈ M, it builds a generalized linear model (GLM) McCullagh and

Nelder, 1989 withXj = (Xj1, Xj2, . . . , XjnO)′ as the response and variables in O as covariates, and obtain

estimates for the regression coefficients β̂j . Let pO be the number of variables in O. To estimate β̂j , write

the likelihood function as `(βj), and we solve the following maximization problem

β̂j =


argmaxβj

`(βj), if pO < nO,

argmaxβj

{
`(βj) + λ‖βj‖1

}
, otherwise.

(5.15)

where ‖βj‖1 =
∑pO

k=1 |βjk| is the L1-penalty, and λ is the tuning parameter which can be chosen by cross-

validation. When pO < nO, (5.15) is a standard GLM problem. When pO ≥ nO, (5.15) is the standard lasso

problem (Tibshirani, 1996). After obtaining β̂j , predict variable j by calculating X̂j = g−1(X ′Oβ̂j), where

g is the link function corresponding to the distribution of variable j. For this method, we impute one variable

j each time.

The second is Multiple Block-Wise Imputation (MBI, Section 3.1, Xue and Qu, 2021) method. For this

method, block-wise imputations were carried out multiple times based on each missing pattern and results are

then integrated together for imputation of missing data. Based on the missing patterns across all data sources,

divide n samples into G disjoint groups. For g = 1, . . . , G, let g = 1 be the group with complete data, and

for g = 2, . . . , G, let Og andMg be the index sets of the observed covariates and missing covariates for

group g. Let pg be the number of elements in Og. Let Ng be the index set of subjects in group g and ng

be the number of subjects in group g. In addition, let U(g) be the index set of the groups g where missing

variables inMg and variables in at least one of the other sources are observed. For the complete group g = 1,
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let U(1) = 1. Denote the number of elements in U(g) as Bg. For group g with missing values inMg, each of

the groups u ∈ U(g) contains both observed values corresponding to missing variables inMg, and observed

values corresponding to a subset of observed variables Og. Let Ogu denote the index set of covariates which

are observed in Groups g and u. To impute the missing values for each j ∈ Mg, we build a GLM model

for each u using for subjects in N1, Nu with Xj as the response, XOgu as the covariates, and obtain the

estimated coefficients as β̂gu. Then, predict Xj for subjects in Ng using the GLM model with β̂gu andXOgu .

To estimate β̂gu, write the likelihood function as `(βgu), and we solve the following maximization problem

β̂gu =


argmaxβgu

`(βgu), if pg < nu,

argmaxβgu

{
`(βgu) + λ‖βgu‖1

}
, otherwise.

(5.16)

where ‖βgu‖1 =
∑pg

k=1 |βgu[k]| is the L1-penalty, and λ is the tuning parameter which can be chosen by

cross-validation. When pg < nu, (5.16) is a standard GLM problem. When pg ≥ nu, (5.16) is the standard

lasso problem (Tibshirani, 1996). After imputing Bg times of Xj for each j ∈ Mg, mean for the results

of the Bg imputations was used as the imputed value for continuous variables, and mode for the results of

the Bg imputations was used as the imputed value for discrete variables. This method incorporates more

information compared to complete case analysis since data with only partially observed values were also

included in the imputation process.

The third is Structured Matrix Completion (SMC, Cai, Cai and Zhang, 2016): This singular value

decomposition (SVD) based method consider the imputation as an approximate low-rank matrix recovery

problem and aims to recover the full matrix based on a subset of fully observed rows and columns. However,

it can only handle continuous data and imputes one block at a time. It can not be applied on binary data

or categorical data since its imputation rely on SVD. Assume that the observed data can be written in the

following block form:

X =

p1 p− p1 XOO XOM

XMO XMM

 n1

n− n1

The SMC method aims to recover the missing blockXMM based on the observed blocksXOO,XOM

andXMO. LetX [,O] = [X>OO,X
>
MO]> andX [O,] = [XOO,XOM]. DefineX [:,1:r] to be the submatrix
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consists of the first r columns of matrixX ,X [1:r,:] to be the submatrix consists of the first r rows of matrix

X , andX [1:r,1:r] to be the submatrix consists of the first r columns and the first r rows of matrixX .

The first step of SMC is to use SVD and move the significant factors ofX [,O] andX [O,] to the front. We

calculateX [,O] = U (1)Σ(1)V (1)>,X [O,] = U (2)Σ(2)V (2)>, and that X̃OO = U (2)>XOOV
(1), X̃OM =

U (2)>XOM, X̃MO = XMOV
(1). Next, to obtain a good estimate r̂ for the rank r ofX , which is the largest

r̂ under the condition that X̃OO,[1:r̂,1:r̂] is nonsingular and that ‖X̃MO,[1:r̂,1:r̂]X̃
−1

OO,[1:r̂,1:r̂]‖ ≤ 2
√
n/n1.

Finally, the missing blockXMM can be estimated by X̂MM = X̃MO,[:,1:r̂]X̃
−1

OO,[1:r̂,1:r̂]X̃OM,[1:r̂,:].

5.3 Simulation

To evaluate the numerical performance of our method, we carry out simulation experiments and compare

our method with three competitors introduced in the previous section, namely the Complete Case Analysis

method, the Multiple Block-Wise Imputation (MBI) method, and the Structured Matrix Completion (SMC)

method.

In the simulation experiments, Scenarios 1 to 5 are low-dimensional Scenarios where n > p, and

Scenarios 6 to 8 are high-dimensional Scenarios where n < p. In Section 5.3.1, we use correlation matrices

of the same structure but different in magnitude of the true correlation to examine the effect of true correlation

on the performance of the imputation methods. In Section 5.3.2, we use the same latent correlation matrix, set

up the missing so that unbiased estimators can be obtained, and compare the performance of the imputation

methods on mixed-type data under different missing mechanisms in both the low- and high-dimensional

settings. In addition, we also examined the effect of different transformation function on the imputation

performance for continuous data modality. For the binary data modality, we consider the case where the

two categories are either balanced or unbalanced in terms of sizes. When the missing mechanism is MNAR,

we examine the imputation performance in Scenarios where unbiased estimator can not be obtained. These

effects were checked in both the low- and the high-dimensional settings.

5.3.1 The impact of latent correlations on imputation

For the following two Scenarios, we focus on effect of the magnitude of true latent correlation on the

performance of the different imputation methods.
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Scenario 1: Consider a correlation matrix S1 for p = 9 with a block structure, where

S1 =


S0 03 03

03 S0 03

03 03 S0

 , S0 =


1 r r

r 1 r

r r 1

 , and 03 =


0 0 0

0 0 0

0 0 0

 .

We set r = 0.9, use n = 500 and generate Z ∼ N9(0,S1). For j ∈ {1, 2, 3, . . . , 9}, set O = {1, 4, 7},

C = {2, 5, 8} and B = {3, 6, 9}. For j ∈ {C,B}, we generate the missing labels for each modality following

a Bernoulli distribution with success probability equals to 0.2. Therefore, the missing mechanism for

this Scenario is MCAR. We apply identity, cubic, and exponential transformation on the latent layer data

Z to generate X for j ∈ {O, C}. For j ∈ B, we set ∆j = 0 or −0.2 when the latent transformation

for j ∈ {O, C} is identity, 0 or − 3
√

0.2 when the transformation is cubic, and 1 or log(0.6) when the

transformation is exponential.

Scenario 2: The settings are the same as Scenario 1 except that we set r = 0.6.

After we generated the block-wise missing data for each Scenario, we apply our method and the three

other competitors on the data to impute the missing values in each modality. We note again that SMC can

only handle continuous data while our method and the two other competitors can handle both continuous data

and binary data. Denote the continuous missing block in the second data modality asXc and its estimates

as X̂c. We evaluate the imputation performance for the continuous missing data using each method by

calculating the Frobenius norm of the difference between the truth and the estimates, given by ‖X̂c −Xc‖F .

We evaluate the imputation performance for the binary missing data using each method by calculating the

sensitivity, specificity, and overall accuracy for each method. The sensitivity is defined as the percentage of

ones estimated correctly as ones and the specificity is defined as the percentage of zeros estimated correctly

zeros for the missing binary block. The overall accuracy is defined as the percentage of entries that has their

values correctly estimated.

We repeated the simulation 100 times under each Scenario and the results for Scenarios 1 and 2 are

shown in Figures 5.1 and 5.2. In Figures 5.1 and 5.2, panel (a) shows the error of imputed data in C. Panels

(b), (c) and (d) shows the sensitivity, specificity and overall accuracy of the imputed data in B. We consider

two cases where the proportion for the two classes in binary data are balanced or unbalanced. When the two

classes in binary data is unbalanced, there are more class one in the truth.
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Figure 5.1: Simulation results for Scenario 1 when r = 0.9. Panel (a) shows the error of imputed data in C.
Panels (b), (c) and (d) shows the sensitivity, specificity and overall accuracy of the imputed data in B.
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Figure 5.2: Simulation results for Scenario 2 when r = 0.6. Panel (a) shows the error of imputed data in C.
Panels (b), (c) and (d) shows the sensitivity, specificity and overall accuracy of the imputed data in B.
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From panels (a) in Figures 5.1 and 5.2, we could see that under both Scenarios, our proposed method

have the smallest error under Frobenius norm for imputing the continuous missing block. It also have the

highest overall accuracy for imputing the binary missing block. Overall, when the latent correlation between

variables is stronger (Scenario 1), the performance of all methods will be better compared to when the

latent correlation between variables is small (Scenario 2). When the latent correlation is high and the latent

transformation function is an identity function, all methods have comparable performance for imputing the

continuous block. The advantage of our method for imputing the continuous missing block gets bigger when

there is a non-identity latent transformation and when the latent correlation is smaller. For the binary blocks,

our method have a much higher accuracy for the classifying the smaller class when the latent transformation

is non-identity and the two binary classes are not balanced.

5.3.2 The impact of missing mechanism on imputation

For the following six Scenarios, we focus on effect of different missing mechanism on the performance

of the different imputation methods under low- and high-dimensional settings.

Scenario 3: Consider a correlation matrix S2 for p = 16 where

S2[j1,j2] =


0.3|j1−j2|, if |j1 − j2| ≤ 1

0.4, if |j1 − j2| = 8

0, otherwise

.

We use n = 500 and generate Z ∼ Np(0,S2). For j ∈ {1, 2, . . . , 16}, set O = {1, 2, . . . , 8}, C = {9, 10},

B = {11, 12}, G = {13, 14} and T = {15, 16}. For j ∈ {C,B,G, T }, we generate the missing labels for

each modality following a Bernoulli distribution with success probability equals to 0.25. Therefore, the

missing mechanism for this Scenario is MCAR. We apply exponential transformation functions, and set

∆j = 0.6 for j ∈ B, ∆j1 = 0.6,∆j2 = 1.2 for j ∈ G and ∆j = 0.5 for j ∈ T .

Scenario 4: The same set-up is used as in Scenario 3 except for the missing labels. For j ∈ C and

subject i, calculate PCi = logit−1(γ10 + γ11 ∗ Zi1), where γ10 = 0.2, γ11 = 0.3. If PCi ≤ 0.5, then set Xij

as missing. For j ∈ B and subject i, calculate PBi = logit−1(γ20 + γ21 ∗Zi3) where γ20 = 0.15, γ21 = 0.35.

If PBi ≤ 0.5, then set Xij as missing. For j ∈ G and subject i, calculate PGi = logit−1(γ30 + γ31 ∗ Zi5),
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where γ30 = 0.25, γ11 = 0.3. If PGi ≤ 0.5, then set Xij as missing. For j ∈ T and subject i, calculate

PT i = logit−1(γ40 + γ41 ∗ Zi7) where γ40 = 0.1, γ41 = 0.25. If PT i ≤ 0.5, then set Xij as missing.

Scenario 5: The same set-up is used as in Scenario 3 except for the missing labels. For j ∈ C and subject

i, calculate PCi = logit−1(γ10 + γ11 ∗ Zi9), where γ10 = 0.2, γ11 = 0.3. If PCi ≤ 0.5, then set Xij as

missing. For j ∈ B and subject i, calculate PBi = logit−1(γ20 + γ21 ∗ Zi11) where γ20 = 0.15, γ21 = 0.25.

If PBi ≤ 0.5, then set Xij as missing. For j ∈ G and subject i, calculate PGi = logit−1(γ30 + γ31 ∗ Zi13),

where γ30 = 0.25, γ11 = 0.3. If PGi ≤ 0.5, then set Xij as missing. For j ∈ T and subject i, calculate

PT i = logit−1(γ40 + γ41 ∗ Zi15) where γ40 = 0.1, γ41 = 0.25. If PT i ≤ 0.5, then set Xij as missing.

Scenario 6: Consider a correlation matrix S3 for p = 200 where

S3[j1,j2] =


0.3|j1−j2|, if |j1 − j2| ≤ 1

0.4, if |j1 − j2| = 120

0, otherwise

.

We use n = 100 and generate Z ∼ Np(0,S3). For j ∈ {1, 2, . . . , 200}, set O = {1, 2, . . . , 120}, C =

{121, 122, . . . , 140}, B = {141, 142, . . . , 160}, G = {161, 162, . . . , 180}, and T = {181, 182, . . . , 200}.

For j ∈ {C,B,G, T }, we generate the missing labels for each modality following a Bernoulli distribution

with success probability equals to 0.25. Therefore, the missing mechanism for this Scenario is MCAR. We

apply exponential transformation functions for j ∈ {O, C} and the same ∆j for j ∈ {B,G, T } as in Scenario

3.

Scenario 7: The same set-up is used as in Scenario 6 except for the missing labels. For j ∈ C and subject

i, calculate PCi = logit−1(γ10 + γ11 ∗ Zi1), where γ10 = 0.2, γ11 = 0.3. If PCi ≤ 0.5, then set Xij as

missing. For j ∈ B and subject i, calculate PBi = logit−1(γ20 + γ21 ∗ Zi21) where γ20 = 0.15, γ21 = 0.17.

If PBi ≤ 0.5, then set Xij as missing. For j ∈ G and subject i, calculate PGi = logit−1(γ30 + γ31 ∗ Zi41),

where γ30 = 0.25, γ11 = 0.45. If PGi ≤ 0.5, then set Xij as missing. For j ∈ T and subject i, calculate

PT i = logit−1(γ40 + γ41 ∗ Zi61) where γ40 = 0.1, γ41 = 0.15. If PT i ≤ 0.5, then set Xij as missing.

Scenario 8: The same set-up is used as in Scenario 6 except for the missing labels. For j ∈ C and subject

i, calculate PCi = logit−1(γ10 + γ11 ∗ Zi121), where γ10 = 0.2, γ11 = 0.3. If PCi ≤ 0.5, then set Xij as

missing. For j ∈ B and subject i, calculate PBi = logit−1(γ20 + γ21 ∗ Zi141) where γ20 = 0.15, γ21 = 0.35.

If PBi ≤ 0.5, then set Xij as missing. For j ∈ G and subject i, calculate PGi = logit−1(γ30 + γ31 ∗ Zi161),
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where γ30 = 0.25, γ11 = 0.3. If PGi ≤ 0.5, then set Xij as missing. For j ∈ T and subject i, calculate

PT i = logit−1(γ40 + γ41 ∗ Zi181) where γ40 = 0.3, γ41 = 0.15. If PT i ≤ 0.5, then set Xij as missing.

We repeated the simulation 100 times under each Scenario. For ordinal and truncated variables, we

evaluate the imputation performance for missing data by calculating the Kendall’s τ between the truth and the

estimated data. Results for Scenarios 3, 4 and 5 are displayed in Figure 5.3, and results for Scenarios 6, 7 and

8 are displayed in Figure 5.4. In both figures, panel (a) shows the error of imputed data in C. Panel (b) shows

the sensitivity, specificity and overall accuracy of the imputed data in B. Panel (c) is the Kendall’s τ between

the imputed data and truth for the missing block in G. Panels (d) is the Kendall’s τ between the imputed data

and truth for the missing block in T . For the low-dimensional settings, we can see that our method has the

smallest error for data in C among the four methods. For data in B, since the two classes are not balanced,

where there are more ones in the truth, we can see that all three methods have high and comparable sensitivity.

However, the specificity for our method is much higher than the other two methods, suggesting that for the

other two methods, a lot of zeros were misclassified as ones. Nevertheless, our method has the highest overall

accuracy regardless of the missing mechanism compared to the other two methods when imputing binary

data. As for ordinal data and truncated data, we can see from panels (c) and (d) that our method has a much

higher τ̂ under all Scenarios. A similar pattern can be observed in the high-dimensional settings as well,

that our method has better performance in terms of imputing continuous, binary, ordinal and truncated data

regardless of the missing mechanism as long as an unbiased estimator can be obtained.

5.3.3 Additional simulation results

We consider the following additional Scenarios for the simulation experiments. Scenarios 1* to 4* are

low-dimensional Scenarios where n > p, and Scenarios 5* to 8* are high-dimensional Scenarios where

n < p. We consider three different transformation functions for the continuous data modality: identity,

cubic and exponential. For the binary data modality, we consider the case where the two categories are

either balanced or unbalanced in terms of sizes. In Scenario 4*, we set up the missing so that unbiased

estimators can not be obtained, and compare with Scenario 3* to examine the effect of unbiased estimator

on the performance of the imputation methods. Similar Scenarios are considered in the high-dimensional

settings as well, where in Scenario 8*, we set up the missing so that unbiased estimators can not be obtained,

and compare with Scenario 7* to examine the effect of unbiased estimator. In conclusion, we aim to examine
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Figure 5.3: Imputation performance of four methods when imputing continuous data: panel (a), binary data:
panel (b), 3-level ordinal data: panel (c) and truncated data: panel (d) under Scenarios 3, 4 and 5
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Figure 5.4: Imputation performance of four methods when imputing continuous data: panel (a), binary data:
panel (b), 3-level ordinal data: panel (c) and truncated data: panel (d) under Scenarios 6, 7 and 8
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the effect of missing mechanism, the mixed data type, and transformation function on the performance of

imputation methods through the following simulation experiments.

Scenario 1*: Consider a correlation matrix S4 for p = 10 with a banded structure, where

S4[j1,j2] =


0.6|j1−j2|, if |j1 − j2| ≤ 2

0, otherwise
.

We use n = 500 and generate Z ∼ N10(0,S4). For j ∈ {1, 2, 3, . . . , 10}, set O = {1, 2, 5, 8, 9, 10},

C = {3, 4} and B = {6, 7}. For j ∈ {C,B}, we generate the missing labels for each modality following

a Bernoulli distribution with success probability equals to 0.2. Therefore, the missing mechanism for

this Scenario is MCAR. We apply identity, cubic, and exponential transformation on the latent layer data

Z to generate X for j ∈ {O, C}. For j ∈ B, we set ∆j = 0 or −0.2 when the latent transformation

for j ∈ {O, C} is identity, 0 or − 3
√

0.2 when the transformation is cubic, and 1 or log(0.6) when the

transformation is exponential.

Scenario 2*: The same set-up is used as in Scenario 1* except for the missing labels. Denote the q%

quantile for Zj by Zj;q%. We set Zi3 and Zi4 to be missing if Zi2 < Z2;10% or Zi2 > Z2;90%. We set Zi6

and Zi7 to be missing if Zi8 < Z8;10% or Zi8 > Z8;90%. The missing mechanism for this Scenario is MAR.

Scenario 3*: The same set-up is used as in Scenario 1* except for the missing labels. We set Zi3 and

Zi4 to be missing if Zi4 < Z4;10% or Zi4 > Z4;90%. We set Zi6 and Zi7 to be missing if Zi6 < Z6;10% or

Zi6 > Z6;90%. The missing mechanism for this Scenario is MNAR.

Scenario 4*: The same set-up is used as in Scenario 1* except for the missing labels. We set Zi3 and Zi4

to be missing if Zi4 < Z4;20%. We set Zi6 and Zi7 to be missing if Zi6 < Z6;20%. The missing mechanism

for this Scenario is MNAR.

Scenario 5*: We use n = 100 and generate Z ∼ Np(0,S3). For j ∈ {1, 2, . . . , 200}, set C =

{1, 2, . . . , 160} andB = {161, 162, . . . , 200}. Also, setO = {1, 2, . . . , 120} andM = {121, 122, . . . , 200}.

For j ∈M, we generate the missing labels for each modality following a Bernoulli distribution with success

probability equals to 0.25. Therefore, the missing mechanism for this Scenario is MCAR. We apply the same

transformation functions for and the same ∆j for j ∈ B as in Scenario 1.
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Scenario 6*: The same set-up is used as in Scenario 5* except for the missing labels. For j ∈ C ∩M,

we set Zij to be missing if Zi1 < Z1;10% or Zi1 > Z1;90%. For j ∈ B ∩M, we set Zij to be missing if

Zi41 < Z41;10% or Zi41 > Z41;90%. The missing mechanism for this Scenario is MAR.

Scenario 7*: The same set-up is used as in Scenario 5* except for the missing labels. For j ∈ C ∩M,

we set Zij to be missing if Zi121 < Z121;10% or Zi121 > Z121;90%. For j ∈ B ∩M, we set Zij to be missing

if Zi161 < Z161;10% or Zi161 > Z161;90%. The missing mechanism for this Scenario is MNAR.

Scenario 8*: The same set-up is used as in Scenario 5* except for the missing labels. For j ∈ C ∩M,

we set Zij to be missing if Zi121 < Z121;20%. For j ∈ B ∩M, we set Zij to be missing if Zi161 < Z161;20%.

The missing mechanism for this Scenario is MNAR.

The results for Scenarios 1* - 8*, are displayed in Figures 5.5 to 5.12. We repeated the simulation 100

times under each Scenario. From Figures 5.5 to 5.7, we can see that our proposed method have the smallest

error under Frobenius norm for imputing the continuous missing block under these Scenarios. It also have

the highest overall accuracy for imputing the binary missing block. When there is no transformation, the

complete data method is comparable to our method in terms of error for both the continuous block and

the binary block. However, when there is a non-identity latent transformation, our method performs much

better for the binary block. Further more, we also considered the effect of latent binary cut-off value on

the imputation. Take the cubic transformation for example, when using the -0.2 cut-off, the resulting data

includes more 1s than 0s. Since 0 is the smaller class, it is harder to identify correctly. The specificity of our

method under that setting is much higher than the other two competitors, meaning that the method performs

well even when the data is not balanced and have better performance in classifying the smaller class correctly.

We can observe a similar pattern under the exponential transformation when using the 0.6 cut-off. For the

binary blocks, the specificity of our method is much higher than the other two competitors and remains so

when the missing mechanism is MAR and MNAR. Under Scenario 4, the missing values for both blocks are

all values less than the 20% quantile and therefore, the moment estimator based on the observed data is biased.

Under this Scenario, we could see from Figure 5.8 that our proposed method still have the smallest error

under frobenius norm for imputing the continuous missing block compared to the other methods. And the

sensitivity for imputing the binary missing block is the highest under all transformations and different binary

cut-offs. Under identity transformation and exponential transformation using 1 as the binary cut-off, the MBI

method has the highest specificity and the highest overall accuracy, but its sensitivity is also the lowest among

all methods, while our method have a much higher sensitivity and a relatively satisfying specificity and the
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highest overall accuracy in general. Therefore, as long as we can obtain unbiased moment estimators from

the observed data, our method has very desirable performance for both continuous and binary data even when

the missing mechanism is not MCAR. Scenarios 5* to 8* are the high-dimensional cases compared with

Scenarios 1* to 4*. From Figures 5.9 to 5.12, we can see a similar pattern as in the low-dimensional settings,

where our method out-performs all other methods when imputing both continuous and binary variables under

various missing mechanisms.

5.4 Multi-Modal Data from Chlamydia trachomatis Genital Tract Infection Study

We assessed our method and the alternatives in real data from the T cell Response Against Chlamydia

(TRAC) study (Russell et al., 2016) in this section. The Institutional Review Boards for Human Subject

Research at the University of Pittsburgh and the University of North Carolina approved the study and all

participants provided written informed consent prior to inclusion. Chlamydia trachomatis (C. trachomatis)

can ascend from the lower genital tract (e.g., vagina, cervix) to the upper genital tract (e.g., uterus and

fallopian tubes) in some women, potentially resulting in severe reproductive disease sequelae. Infection is

often asymptomatic. Diagnosis of endometrial histology and infection is critically needed but frequently

missing due to challenges in obtaining sufficient endometrial biopsy samples. Another challenge is the high

proportion of missing cytokine values in cervical secretion, which significantly influences the interpretation

of final data. The major goal of this real data analysis is to impute the missing endometrial histologic

diagnosis and C. trachomatis infection status, as well as cervical cytokine expressions. Data from five

different modalities with 240 women in TRAC cohort at enrollment were used in this study (Table 5.1). These

data were collected from vaginal samples, cervical samples (including C. trachomatis burden, microbiology

and protein expression of cytokines) and endometrial biopsies (including C. trachomatis infection status and

histologic evaluation), and contained both block-wise and element-wise missing.

5.4.1 Data preprocess

There are three continuous variables with complete observations in the vaginal and cervical microbiology

data, including Cervical C. trachomatis burden, Nugent score and count of cervical white B cells. Cervical C.

trachomatis burden was log10 transformed.

109



Figure 5.5: Simulation results under Scenario 1* (MCAR, 20% missing)
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Figure 5.6: Simulation results under Scenario 2* (MAR, 20% missing)
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Figure 5.7: Simulation results under Scenario 3* (MNAR, 20% missing)
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Figure 5.8: Simulation results under Scenario 4* (MNAR, 20% missing)
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Figure 5.9: Simulation results under Scenario 5* (MCAR, 25% missing)
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Figure 5.10: Simulation results under Scenario 6* (MAR, 25% missing)
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Figure 5.11: Simulation results under Scenario 7* (MNAR, 25% missing)
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Figure 5.12: Simulation results under Scenario 8* (MNAR, 25% missing)
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Table 5.1: Block-wise missingness of multi-modalities data from TRAC cohort

Vaginal and Cervical Cervical Cervical Endometrial Endometrial
microbiology cytokine cytokine C. trachomatis infection histology

Missing continuous continuous truncated binary binary # of
Pattern (3)* (13) (12) (1) (1) subjects

1 Observed** Observed Observed Observed Observed 127
2 Observed Observed Observed Observed - 92
3 Observed Observed Observed - *** Observed 3
4 Observed Observed Observed - - 18

# of
subjects 240 240 240 219 130 240

* The number in parentheses is number of measured variables in each data modality.
** “Observed” indicates variables in the corresponding data modality were completely observed.
*** Dash line “-” indicates block-wise missing.

The levels of 96 cytokines in cervical sponge eluates were measured using multiplex assays. Cytokine

levels below the lower limit of quantification (LLOQ) were set to 0. Cytokines with more than 80% missing

values or value of 0 were filtered, and there are 56 cytokines after the initial filtering. Among the 56 remaining

cytokines, 25 of them have complete data and 31 have element-wise missing data. Although we could impute

the element-wise missing data with our method for those 31 cytokines, since there is no golden standard

to evaluate the performance of the imputation, we exclude those 31 cytokines with element-wise missing

data from the following analysis. The 25 cytokines with complete observations were divided into 2 data

modalities: 13 cytokines with less than or equal to 20% values of 0 were treated as continuous variables, and

the remaining 12 cytokines which contained more than 20% values of 0 were treated as truncated variables.

All non-zero values of cytokines were log2 transformed.

Endometrial infection status of C. trachomatis was treated as binary variable and had missing values.

Histological evaluation of endometritis using the endometrial biopsies were independently provided by three

physicians. We scored “Endometritis Negative” as 0, “Endometritis Positive” as 1 and “insufficient for

diagnosis” as missing. The final diagnosis score would be the consensus diagnosis among at least two of

them, and otherwise would be treated as missing. There were 130 participants with final diagnosis score, of

which 86 were endometritis negative and 44 were endometritis positive.

5.4.2 Imputation of endometrial C. trachomatis infection status

We imputed the missing endometrial C. trachomatis infection status leveraging the 16 completely

observed continuous variables (including 13 cervical cytokines and three variables from vaginal and cervical

microbiology). For the alternative method, we first trained the model by regressing endometrial C. trachomatis
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infection status on those 16 completely observed continuous variables among the 219 subjects with observed

endometrial C. trachomatis infection status by logistic regression. Using the estimated coefficients from the

trained model, we then predicted the endometrial C. trachomatis infection status of the remaining 21 subjects

with missing infection status. It is noted that when only the 16 completely observed continuous variables and

the infection status variable were included in the analysis, there was only one missing pattern. Thus, the MBI

method reduced to the standard complete case analysis method.

We used the 219 subjects with observed infection status (31% had positive infection and 69% had

negative infection) to compare the performance of imputation between our method and the alternative method.

We randomly split the 219 subjects into a 80% training (n=175) set and a 20% testing set (n=44), and repeated

this process 500 times. Each time, we assumed that the infection status for subjects in the testing set was

missing, and impute the infection status using the training set with our method and the alternative method

respectively. We then compared the imputed infection status with the true status in the testing set to obtain

the sensitivity, specificity, overall accuracy and Kendall’s τ for each method. The sensitivity is defined as

the percentage of true “Positive Infections” and the specificity is defined as the percentage of true “Negative

Infections”. The overall accuracy is defined as the percentage of both true positive and true negative infection

status. Kendall’s τ is a similarity score between the imputed status and the true infection status.

The mean and standard error of sensitivity, specificity, overall accuracy and Kendall’s τ estimated using

our and alternative method over 500 splitting process are demonstrated in boxplots (Figure 5.13) and listed in

Table 5.2. Our method has a clear advantage on the estimation of sensitivity, specificity, overall accuracy and

Kendall’s τ over the alternative method. Our method achieved an average sensitivity and specificity of 52%

and 92% respectively, compared to 48% and 88% by the alternative method. The overall accuracy of our

method (79%) also beat the alternative method (75%). In addition, our method had a much higher similarity

to the truth with Kendall’s τ of 0.49, compared to the alternative method with Kendall’s τ of 0.39.

Table 5.2: Imputed endometrial C. trachomatis infection status result (average of 500 splitting process, mean
and SE)

Sensitivity Specificity Overall accuracy Kendall’s τ
Our method 52.31% (0.56%) 92.05% (0.19%) 79.45% (0.25%) 0.49 (0.01)
Alternative 48.83% (0.6%) 87.58% (0.27%) 75.41% (0.26%) 0.39 (0.01)
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Figure 5.13: Boxplots for imputing endometrial C. trachomatis infection status over 500 splitting processes
using our and the alternative method
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5.4.3 Imputation of final histological diagnosis

We next imputed the missing final diagnosis scores leveraging the 16 completely observed continuous

variables. For the alternative method, we first trained the model by regressing the final diagnosis score on

those 16 completely observed continuous variables among the 130 subjects with consensus final diagnosis by

logistic regression. Using the estimated coefficients from the trained model, we then predicted the diagnosis

score of the remaining 110 subjects.

We used the 130 subjects with consensus final diagnosis (34% had positive endometritis and 66% had

negative endometritis) to compare the performance of imputation between our method and the alternative

method. We randomly split the 130 subjects into a 80% training (n=104) set and a 20% testing set (n=26),

and repeated this process 500 times. Each time, we assumed that the diagnosis score for subjects in the

testing set was missing, and impute the score using the training set with our method and the alternative

method respectively. We then compared the imputed scores with the true scores in the testing set to obtain

the sensitivity, specificity, overall accuracy and Kendall’s τ for each method. The sensitivity is defined

as the percentage of true “Endometritis Positive” and the specificity is defined as the percentage of true

“Endometritis Negative”. The overall accuracy is defined as the percentage of both true positive and true

negative diagnosis. Kendall’s τ is a similarity score between the imputed result and the true diagnosis result.

The mean and standard error of sensitivity, specificity, overall accuracy and Kendall’s τ estimated using

our and alternative methods over 500 splitting process are demonstrated in boxplots (Figure 5.14) and listed

in Table 5.3. Our method has a clear advantage on the estimation of sensitivity, specificity, overall accuracy

and Kendall’s τ over the alternative method. Our method achieved an average sensitivity and specificity of

62% and 83% respectively, compared to 47% and 77% by the alternative method. The overall accuracy of our

method (75%) also beat the alternative method (67%). In addition, our method had a much higher similarity

to the truth with Kendall’s τ of 0.45, compared to the alternative method with Kendall’s τ of 0.25.

Table 5.3: Imputed diagnosis result (average of 500 splitting process, mean and SE)

Sensitivity Specificity Overall accuracy Kendall’s τ
Our method 65.66% (0.67%) 83.22% (0.39%) 76.95% (0.32%) 0.49 (0.01)
Alternative 47.12% (0.74%) 77.49% (0.48%) 66.88% (0.39%) 0.25 (0.01)
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Figure 5.14: Boxplots for imputing diagnosis result over 500 splitting processes using our and the alternative
method
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5.4.4 Imputation of truncated cytokine variables

We finally compared the performance of our method and the alternative method for imputing the truncated

cytokine variables. We random split the 240 subjects into a 80% training set (n=192) and a 20% testing

set (n=48), and repeat this process 500 times. Each time, we assumed that the values of these 12 truncated

cytokine variables in the test set were all missing, and imputed the score using the training set with our

method and the alternative method. For variable j, letX [test,j] denote the truth of the values in the testing set,

X̂ [test,j] denote the estimate given by our method and X̃ [test,j] denote the estimate given by the alternative

method. We then calculated the similarity score, measured by Kendall’s tau as τ̂j between X̂ [test,j] and

X [test,j] and τ̃j between X̃ [test,j] andX [test,j].

Let τ̂ = (τ̂1, τ̂2, . . . , τ̂12) and τ̃ = (τ̃1, τ̃2, . . . , τ̃12). Finally, we calculated the Euclidean norm of τ̂ and

τ̃ and use the Euclidean norm to measure how well each method performed when imputing the truncated

cytokine variables. For the alternative method, since the truncated variables targeted for imputation had zero

inflation, we employed the Gamma Hurdle Model (GHM) to impute the truncated element-wise missing

variables.

A boxplot of ‖τ̂‖E and ‖τ̃‖E over 500 splitting process using two methods is presented in Figure 5.15.

‖τ̂‖E has a mean of 2.07 with standard error of 0.58 and ‖τ̃‖E has a mean of 1.77 with standard error of

0.01 over the 500 splitting process. We could see from Figure 5.15 that our method have a clear advantage

when imputing the truncated variables compared to the alternative method.

5.5 Discussion

In this chapter, we proposed a novel method that can perform imputation for both block-wise and

element-wise missings in multimodal data. Our method can handle various data types, including continuous,

binary, 3-level ordinal and truncated data. In the simulation experiments, the method presents superior

performance regardless of the missing mechanism (MCAR, MAR and MNAR) compared to other popular

methods in the current literature under both low- and high-dimensional settings. We applied the method to

the multimodal data collect from a Chlamydia trachomatis genital tract infection study to impute patients’

missing histological diagnosis results, endometrial C. trachomatis infection status and missing truncated

cytokine variables.
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Figure 5.15: A boxplot of ‖τ̂‖E and ‖τ̃‖E for imputing truncated variables over 500 splitting processes
using our and the alternative method

We want to point out that our method of imputing missing data based on the observed data highly

rely on the correlation between the observed data and the missing data. As demonstrated in the simulation

experiments, our method have a better performance when the true latent correlation between the observed

data and missing data is higher. Moreover, the missing mechanism does not affect the performance of our

method as long as we could obtain accurate moment estimator from the observed data.

We also want to mentioned that our methods focus on imputing the block-wise missing structure brought

by mulit-modal data. However, if there is element-wise missingness within each data modality, our method

can also be used for the element-wise imputation. In this case, the missing block will only contain one

variable which is the variable with element-wise missingness.
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