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ABSTRACT

Gracie Conte: Numerical Analysis of Linear and Nonlinear Schrödinger
Equations on Quantum Graphs

(Under the direction of Jeremy L. Marzuola)

A wide variety of problems in quantum mechanics can be modeled with Schrödinger-type equations

on quantum graphs. More specifically, graphs are useful for simplifying models of physical systems

that feature nano-scaled branching structures. Since analytical solutions can only be found for a few

trivial cases, it is necessary to consider how to accurately solve this type of problem numerically.

While a wide variety of tools exist to solve these types of partial differential equations on lines, this

is not well studied in the case of graphs - one critical difference between the two cases being that

graphs require more complicated boundary conditions. This paper utilizes a new approach to include

the boundary conditions in the discretized operator that preserves high levels of accuracy. Thus, a

proper time evolution scheme must work in conjunction with a spatial operator that has incorporated

boundary conditions and preserve the accuracy of our spatial component, and this is accomplished by

implementing methods from differential algebraic equations. We study the numerical computation

of linear and nonlinear states for Schrödinger equations on graphs, as well as numerically compute

their linear stability properties. The latter result has implications for the future study of relative

periodic orbits on graphs. All numerical components are being adapted into a Matlab software

package called QGlab jointly with Roy Goodman on Github.
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CHAPTER 1

Introduction

1.1 A Brief Overview

Stationary Schrödinger-type equations on graphs are what gave origin to the name “quantum

graph.” However, a wide variety of applications for other equations in mathematical physics have

been also been studied on metric graphs including the heat [10, 34, 43] and wave [14, 27] equations.

To better understand the fundamentals of these equations on quantum graphs, this thesis studies

the Laplacian and equations built around the Laplacian in this context. In particular, we investigate

linear spectral theory and linear Poisson problems before delving into nonlinear elliptic partial

differential equations and culminating with nonlinear time-dependent problems.

Since analytical solutions can only be found for a few simple cases, it is necessary to consider

how to accurately solve this type of problem numerically. Driven by a need to work with a variety of

Hamiltonian operators on such a broad spectrum of graphs, a software package was developed in

Matlab called QGlab over the course of this dissertation in collaboration with Roy Goodman.

Further details about the package can be found in [40].

1.2 Physical Motivation

The Schrödinger equation plays an instrumental role in quantum mechanics, and its discovery was

a significant landmark in the development of the subject. It is a linear partial differential equation

that describes the wave function or state function of quantum mechanical systems. However, while

it provides a way to calculate the wave function of a system and how it changes dynamically in time,

it does not directly say what the wave function represents. Instead of directly giving the position,

its output is interpreted as probability amplitude by squaring the absolute value of the solution

which tells us the likelihood that a quantum object is at a given location. The most well-known

application for the Schrödinger equation is to describe the motion of individual particles. Another

main application is using the eigenvalues of the operator to find the energy levels of a system. Using

Schrödinger operators in conjunction with quantum graphs allows us to make approximations for
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waves propagating in thin structures.

Quantum graphs appear in various fields such as solid state physics, quantum chemistry, nanotech-

nology, and wave physics, as there are many scenarios in these fields in which a wave is propagated

through a quasi-one-dimensional system. This class of problems can be greatly simplified (though

not to a trivial extent) through the use of quantum graphs. Two key uses for quantum graphs will

be described; the first use is a direct application of graphs to model physical systems, and the second

regards the study of complex quantum systems in which graphs are a simpler setting.

Thin branching systems are ideal physical scenarios to model from the perspective of quantum

graphs. For instance, the phenomenon of a quantum wire circuit could be described as a tube with

a Y-intersection whose radius is shrunk infinitesimally until only an electron can flow through it

and has been studied in the context of quantum graphs by [11, 30, 61, 70, 71, 72]. Other scenarios

include: thin branching wave guides which guide waves with minimal loss of energy by restricting the

transmission of energy to one direction [6, 46, 59], Anderson localization which studies the slowing

down of light through the use of a photonic crystal [45, 46, 54, 55, 67] which can be represented by

a Bethe lattice [52, 53], and the spectra of carbon nanotubes which have garnered interest due to

their exceptional mechanical properties [9, 56, 57, 60].

Now, let us discuss a few brief examples of complex quantum systems in which quantum graphs

provide a more simple framework to study the problem and produce insightful results. Bose-Einstien

condensates are a state of cold matter whose behavior is studied on complex random networks

through the use of graphs [1, 20, 22, 33, 64]. The quantum Hall effect, a quantized version of

the Hall effect, is studied on combinatorial and quantum graphs to answer questions in quantum

transport [23, 37, 46]. The Casimir effect, which is a force in quantum field theory, has been studied

theoretically and experimentally in various geometries, but graphs have been used to study the

“piston” geometry in particular [34, 35].

These are but a few physically motivated systems where quantum graphs can be utilized to assist

in the analysis of the problem. Further examples and references are provided in [17].

1.3 Mathematical Motivation

The study of the nonlinear Schrödinger equation on quantum graphs has garnered much attention

in recent history for a diverse range of topics, ranging from the investigation of ground state energy

[4, 5, 39, 62] and standing wave solutions [18, 47, 48, 69], to the study of thin manifolds converging

2



to quantum graphs [31, 41, 65].

The interest was initially driven as a model of many physical systems, most notably as models of

light propagation in optical fibers with junctions and for Bose-Einstein condensates under mean-field

approximation. In the context of light propagation, it models nearly-monochromatic guided optical

beams in weakly coupled waveguides with both linear and nonlinear Kerr refractive indices and no

absorption [21, 36]. Meanwhile, Bose-Einstein condensates are a state of matter occurring when

individual atoms are cooled to extremely low temperatures and then the atoms coalesce into a

quantum mechanical entity that can be described by a wave function on a near macroscopic scale

[42, 75, 76]. Subsequent to these studies, there has been significant mathematical interest in topics

such as the existence, stability, and variational properties of the solutions [3, 49, 50, 66] and the

impact of a graph’s geometry on the solution [2, 44, 58, 69].

The effects of a graph’s geometry on nonlinear states is a topic that has been explored in a

number of settings. In particular, it was studied in [18] on the dumbbell graph then generalized from

a computational standpoint in [39]. Similarities were found to how the nonlinear states bifurcate

in certain graph settings to how they bifurcate for multiple-well potentials. Such similarities have

been studied in the case of the double-well potential [63] and the triple-well potential [38]. It

is these multiple-well settings in which periodic orbits arise that can be found using the excited

states [38, 80]. Through accurate numerical computations of excited states, solving time dependent

nonlinear equations and analysis of linear stability operators, this dissertation lays the numerical

foundation for searching for relative-periodic solutions in the graph setting similar to those found for

multiple-well potentials.
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CHAPTER 2

Quantum Graphs

This chapter focuses on laying the foundations of quantum graphs. After discussing fundamental

definitions, we analyze the spectrum of the Laplacian on quantum graphs and extend the work done

in [15] by using more general boundary conditions before closing the chapter with a few illustrative

examples.

2.1 Defining a Quantum Graph

A graph Γ consists of a finite or countably infinite set of vertices V = {vi} and a set E = {ej}

of edges connecting the vertices and is denoted (V, E). Each edge em can be identified with a pair

(vi, vk) of vertices and two edges that have a vertex in common are said to be adjacent. Loops and

multiple edges between vertices will be allowed so we can say that E ⊂ V × V . We also denote by

Ev the set of all edges incident to the vertex v (i.e., containing v). It is assumed that the degree

dv = |Ev| of any vertex v is finite and positive. We hence exclude vertices with no edges coming in

or going out. This is natural, since such vertices are irrelevant for the purposes of quantum graph.

A variety of graphs will be used in the coming sections. While the dumbbell will be the main

example of this paper, the purpose of the QGlab package is to work on all graphs so we will take a

moment to introduce the three most pervasively used graphs in Figure 2.1.

(a) Lollipop (b) Star (c) Dumbbell

Figure 2.1: Common graphs

A directed metric graph (as depicted in Figure 2.2) assigns each edge, em, a finite length and
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imposes a coordinate x that increases from 0 to ℓm as it traverses the edge from the initial vertex

to the ending one. A quantum graph is a directed metric graph that has been equipped with a

Schrödinger-type operator. But before discussing this, one should review the Schrödinger equation.

Figure 2.2: A directed graph with three vertices and four edges. Vertex 1 has degree 3, vertex
2 has degree 4, and vertex 3 has degree 1.

2.1.1 The Schrödinger Equation

The most general form of the cubic nonlinear Schrödinger equation is

iut = −uxx + V (x)u+ σ|u|2u, (2.1)

where x ∈ R, V (x) is the potential (which can be zero), and σ ∈ R. In the case that σ = 0, this is the

linear Schrödinger equation and if σ is nonzero, this is the nonlinear Schrödinger equation

(NLS). The nonlinearity is said to be attractive when σ < 0 and repulsive when σ > 0; the affiliated

equations are called the focusing and defocusing NLS, respectively. A more in depth discussion

of the different behaviors can be found in [25].

The operator in the Schrödinger equation that does not pertain to the nonlinearity is the

Schrödinger operator

L = −∂xx + V (x). (2.2)

The Schrödinger equation is known to have solitons (or traveling wave solutions) of the form

u(x, t) = e−iµtu(x), (2.3)

5



where u(x) is a real-valued localized function that must solve the stationary problem

u′′ − V (x)u− σu3 = −µu, (2.4)

as it is independent from time. (See [73, §1.3] for further information pertaining to the dynamics.)

In the instance that σ = 0, we are left with the Poisson or eigenvalue problem

u′′ − V (x)u = −µu. (2.5)

Now that the Schrödinger equation (and thus the Schrödinger operator) is understood, we return

to an important topic pertaining to graphs: defining how solutions must behave at the vertices.

2.1.2 Vertex Conditions

Vertices may be divided into two groups depending on how many edges they are connected to.

A vertex of degree one is called a leaf vertex. In other words, it is a vertex connected to exactly

one edge, no loops. An internal vertex has degree greater than one. Leaf nodes have boundary

conditions while conditions for internal nodes are called matching conditions.

Matching conditions break into two subcategories. First, is the continuity condition. This

says the solution from each edge must be equal at a shared vertex. In other words, if a vertex vn

joins edges ej and ek, then

uj(v) = uk(v). (2.6)

There is also the Kirchhoff boundary condition which is defined by

dv∑
j=1

ωju
′
j(vn) + βu1(vn) = ϕ, ∀vn ∈ V (2.7)

where ωj is the weight of jth edge and β ∈ R. When β = ϕ = 0, we call this the current

conservation condition.

The boundary condition found at the leaf vertices is, in its most general form, a Robin condition

u′m(v) + αmum(v) = 0 (2.8)

6



where αm ∈ R for all m = 1, ..., |E|. Note that the Robin condition is just a more specific case of

the Kirchhoff condition. Some specific variations of the Robin condition that are most common

are when α = 0 which yields the Neumann condition. The Dirichlet condition, um(v) = 0, is

obtained when α→ ∞.

2.2 Spectrum of the Laplacian

Now that the Laplacian operator has been introduced in the context of quantum graphs, a

natural problem is to investigate its spectrum. For a compact graph, the spectrum consists solely of

discrete points, so the problem consists of characterizing the set of eigenvalues λ and eigenfunctions

u such that

∆u = λu. (2.9)

This is known to have the analytic solution

um(x) = ame
ikx + bme

ik(ℓm−x), m = 1, 2, . . . , |E| (2.10)

where 0 < ℓm <∞ is the length of the mth edge and λ = k2. (This is done for ease of notation and

to ensure that λ > 0.)

Since (2.10) is defined on each of our edges, there are 2|E| a and b constants and the enforcement

of the boundary conditions on each edge (as previously discussed) will result in 2|E| equations.

Solving these equations for each am and bm in terms of the other am’s and bm’s will generate a

system which can be solved for k (and thus λ). This problem was solved for Neumann boundary

conditions [15, §5.2]; a more generalized result is proven here for general Robin and Kirchhoff

boundary conditions.

To begin, it is necessary to rewrite (2.10) with new notation that will allow us to account for

general edge orientation (whether or not an edge is incoming or outgoing from a vertex vn). Thus,

we define

um = ãme
ikx + b̃me

ik(ℓm−x), (2.11)

7



where

ãm =

 am if um(vn) = um(0)

bm if um(vn) = um(ℓm)
and b̃m =

 bm if um(vn) = um(0)

am if um(vn) = um(ℓm)
.

For the vertex conditions at vn, first consider the Robin condition proposed in (2.8), which can

be rewritten in the following way upon substituting in (2.11):

dvn∑
j=1

(ãj − b̃j) + αm(ãm + b̃me
ikℓm) = 0, (2.12)

where 1 ≤ m ≤ dvn . For any vn with dvn > 1, there is also the continuity condition

ã1 + b1e
ikx = · · · = ãd + b̃de

ikx. (2.13)

For any n such that 1 ≤ n ≤ dvn , continuity implies that

dvn∑
j=1

(ãj + b̃je
ikℓj ) = dvn(ãn + b̃ne

ikℓn). (2.14)

Subtracting (2.14) from (2.12) and performing algebraic simplification yields the following:

dvn∑
j=1

(ãj − b̃je
ikℓj ) + αm(ãm + bme

ikℓm −
dvn∑
j=1

(ãj + b̃je
ikℓj ) = −dvn(ãn + b̃ne

ikℓj )

2

dvn∑
j=1

(b̃je
ikℓj ) + αm(ãm + bme

ikℓm = dvn(ãn + b̃ne
ikℓj ),

which allows us to solve for ãn:

ãn = −b̃neikℓn +
2

dvn

dvn∑
j=1

(b̃je
ikℓj )− αm

dvn
(am + bme

ikℓ) (2.15)

Now that we see how to solve for one variable, we can use this to construct a system of equations

whose matrix form is

S(k)D(k)a = a, (2.16)
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where

a = (a1, . . . , a|E|, b1, . . . , b|E|)
T .

To define S(k) and D(k), it is necessary to consider the edge with respect to a given vertex vn,

instead of its place in the graph as a whole. In particular, think of each edge as having a “forward”

direction (its original orientation) and a “backward” direction. The reversal of edge m is denoted

as m̃. (Note that this is consistent with our definition of (2.11)!) D(k) is a diagonal matrix with

entries are given by

Djj(k) = eikℓj , (2.17)

where j cycles first through the “forward” edges and then through the “backwards” ones. S(k) can

then be defined utilizing the idea of an edge following another edge. We say that e′m follows em if

the end-vertex of em is the starting vertex of e′m. In this frame of mind, we get

S(k)j′,j =



2ik

dvnik + αn
− 1 if j′ = j̃ at vn

2ik

dvnik + αn
if j′ follows j and j′ ̸= j̃ at vn

0 otherwise.

(2.18)

This may be difficult to envision generally, but there will be several example calculations in the

following section to illuminate this formulation.

Since both S(k) and D(k) are in terms of k, this differs from the results in [15, Sec. 5.2] for

Neumann boundary conditions where the matrix S is independent of k. But similar in a similar

spirit, (2.16) is rearranged as

(I− S(k)D(k))a = 0 (2.19)

where I is the identity matrix. Clearly, I− S(k)D(k) is singular so

det(I− S(k)D(k)) = 0.

In fact, this determinant

Σ(k) := det(I− S(k)D(k)) (2.20)
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is better known as the secular determinant, and it allows us to solve for k and obtain our

eigenvalues. As a consequence of S depending on k, it is necessary to modify the proof in [15, §5.4]

that the secular determinant produces purely real eigenvalues despite the fact that Σ(k) is itself a

complex-valued function. The following are the necessary pieces to prove the desired statement.

Lemma 2.1. Let

L =
∑
e∈E

le

denote the total length of the graph. If k is real, then the phase angle of D is equal to its determinant.

Proof. This falls out immediately by calculating the determinant as follows:

det(D) =
∏
e∈E

e2ikle = e2ikL.

Lemma 2.2. Let nleaf be the number of leaf vertices on a given graph, nint be the number internal

vertices, and mj be the degree of the internal vertices. Further, set

θR =

nleaf∑
j=1

arctan

(
k

αj

)
and θK =

nint∑
j=1

arctan

(
mjk

βj

)
,

where αj is the Robin boundary condition at the leaf vertices and βj is the Kirchhoff boundary

condition at the internal vertices. The phase angle of S is equal to its determinant.

Proof. We begin by calculating the determinant of S and find the following:

det(S) =

nleaf∏
j=1

αj + ik

αj − ik

nint∏
j=1

mjk + iβj
mjk − iβj

. (2.21)

Let zj = αj + ik = rje
iθj and yj = mjk + iβj = ρje

iϕj where

θj = arg(zj) and ϕj = arg(yj).

10



Now zj and yj can be used in (2.21) to obtain the following desired result:

det(S) =

nleaf∏
j=1

zj
zj

nint∏
j=1

yj
yj

=

nleaf∏
j=1

rje
iθj

rje−iθj

nint∏
j=1

ρje
iϕj

ρje−iϕj

=

nleaf∏
j=1

e2iθj
nint∏
j=1

e2iϕj

=e2i
∑nleaf

j=1 θje2i
∑nint

j=1 ϕj

=e2i(ΘR+ΘK).

Lemma 2.3. S is a unitary matrix.

Proof. We will use the fact that a matrix is unitary if any two unique rows are orthogonal and if the

dot product of each row with itself is 1.

If two edges are not adjacent to one another, then their corresponding rows from the continuity

and Kirchhoff conditions will have zeros wherever the other one has constants by construction. Hence,

their dot product must be zero. The harder case is when edges are adjacent.

Suppose we have edges adjacent via a vertex of degree m > 1. We then have unique rows of S, x

and y, whose dot product is as follows:

x⃗ · y⃗ = x⃗T ¯⃗y

=

(
β
ik − (m− 2)

m− β
ik

)(
2

m− β
ik

)
+

(
2

m− β
ik

)(
β
ik − (m− 2)

m− β
ik

)
+

m−2∑
j=1

(
2

m− β
ik

)(
2

m− β
ik

)

=

2β
ik − 2m+ 4− 2β

ik − 2m+ 4 +
∑m−2

j=1 4

m2 + β2

k2

=
−4m+ 8 + 4(m− 2)

m2 + β2

k2

= 0,
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where β is the Kirchhoff condition. We also have

x⃗ · x⃗ = x⃗T ¯⃗x

=

(
β
ik − (m− 2)

m− β
ik

)(
β
ik − (m− 2)

m− β
ik

)
+

m−1∑
j=1

(
2

m− β
ik

)(
2

m− β
ik

)

=

β2

k2
+ (m− 2)2 +

∑m−1
j=1 4

m2 + β2

k2

=
β2

k2
+m2 − 4m+ 4 + 4(m− 1)

m2 + β2

k2

= 1.

Thus all rows coming from the continuity and Kirchhoff conditions are orthonormal.

The last case to consider is the rows that we obtain from the boundary conditions. These rows

yield a row with a single non-zero entry that is also the only non-zero entry in its respective column.

Thus, its dot product with any other row will be zero. Now we find the dot product of such a row, z,

with itself:

z⃗ · z⃗ = z⃗T ¯⃗z

=

(
α+ ik

−α+ ik

)(
α+ ik

−α+ ik

)
=

(
α+ ik

−α+ ik

)(
α− ik

−α− ik

)
=

(
α+ ik

−α+ ik

)(
(−1)(−α+ ik)

(−1)(α+ ik)

)
= 1,

where α is the boundary condition for the leaf node. Thus, all rows coming from the boundary

conditions are orthonormal.

With these facts established, we may now closely follow the proof in [15, §5.4] showing that the

eigenvalues of the secular determinant are, in fact, real.

12



Theorem 2.1. The analytic function

ζ(k) =
1√

det(S(k)D(k))
det(I − S(k)D(k))

is real-valued for k ∈ R and has the same zeros as the secular determinant Σ(k).

Proof. For real values of k, we know that the matrix U = S(k)D(k) is unitary because both S(k)

and D(k) are unitary matricies. So, we can rewrite

ζ(k) = (detU)−
1
2 det(I − U).

Using the unitary nature of U , we know UU∗ = I and detU∗ = (detU)−1. We now evaluate

ζ(k) =(detU)
1
2 det(I − U∗)

=(detU)
1
2 det(UU∗ − U∗)

=(detU)
1
2 det(U − I) det(U∗)

=(detU)−
1
2 det(I − U) = ζ(k)

by making use of the identity

detAB = detAdetB.

Therefore, ζ(k) must be real for real values of k.

2.2.1 Example Calculations

For all of the following examples, it is useful to recall that the solution on edge em is given by

(2.10), and we will use explicit examples of (2.6), (2.7), and (2.8).

Star Graph We begin with the graph that has the most straightforward calculation, the star

graph. Recall from Figure 2.1b that it features four vertices and three edges connecting to a center
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vertex. The vertex conditions in this case are
ψ1(0) = ψ2(0) = ψ3(0) Continuity condition

ψ′
1(0) + ψ′

2(0) + ψ′
3(0) + βψ1(0) = 0 Kirchhoff condition

αjψj(lj) + ψ′
j(lj) = 0 Boundary condition.

The bj terms are easily found by substituting (2.10) into the Robin boundary conditions to get

αj(aje
iklj + bj) + ajike

iklj − bjik = 0. (2.22)

This is solved for bj , which simplifies to

bj =
ik + αj

ik − αj
aje

iklj . (2.23)

Now, we must solve for the aj terms; this is more involved, but still straightforward.

First, (2.10) is substituted into the continuity condition to find

a1 + b1e
ikl1 = a2 + b2e

ikl2 = a3 + bikl33 . (2.24)

When this is substituted into the Kirchhoff condition we find that

a1 − b1e
ikl1 + a2 − b2e

ikl2 + a3 − b3e
ikl3 +

β

ik

(
a1 + b1e

ikl1
)
= 0. (2.25)

Rearranging (2.25), we get

(
1 +

β

ik

)
a1 =

(
1− β

ik

)
b1e

ikl1 − a2 + b2e
ikl2 − a3 + b3e

ikl3 , (2.26)

and (2.24) can be used to get

a2 = a1 + b1e
ikl1 − b2e

ikl2 (2.27)

a3 = a1 + b1e
ikl1 − b3e

ikl3 . (2.28)
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Substituting (2.27) and (2.28) into (2.26), a1 can be found in terms of bj :

a1 =
1

3 + β
ik

((
− β

ik
− 1

)
b1e

ikl1 + 2b2e
ikl2 + 2b3e

ikl3

)
=

−β − ik

3ik + β
b1e

ikl1 +
2ik

3ik + β
b2e

ikl2 +
2ik

3ik + β
b3e

ikl3 . (2.29)

A similar process can be used to find a2 and a3.

The system of equations generated by the aj and bj solutions can be turned into the following

matrix system:



0 0 0
−β − ik

3ik + β

2ik

3ik + β

2ik

3ik + β

0 0 0
2ik

3ik + β

−β − ik

3ik + β

2ik

3ik + β

0 0 0
2ik

3ik + β

2ik

3ik + β

−β − ik

3ik + β

ik + α1

ik − α1
0 0 0 0 0

0
ik + α2

ik − α2
0 0 0 0

0 0
ik + α3

ik − α3
0 0 0





eikl1 0 0 0 0 0

0 eikl2 0 0 0 0

0 0 eikl3 0 0 0

0 0 0 eikl1 0 0

0 0 0 0 eikl2 0

0 0 0 0 0 eikl3


a = a

where a = (a1 a2 a3 b1 b2 b3)
T . This matches the framework laid out for the secular determinant

very nicely. Note that the involved piece of information is S(k), which is

S(k) =



0 0 0
−β − ik

3ik + β

2ik

3ik + β

2ik

3ik + β

0 0 0
2ik

3ik + β

−β − ik

3ik + β

2ik

3ik + β

0 0 0
2ik

3ik + β

2ik

3ik + β

−β − ik

3ik + β
ik + α1

ik − α1
0 0 0 0 0

0
ik + α2

ik − α2
0 0 0 0

0 0
ik + α3

ik − α3
0 0 0


.
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With this explicit example calculated, one can return to the definition of S in (2.18) to better

understand its general construction.

For this example, we will also do the calculation for determining the phase angle, which begins

with the determinant of S:

det(S) =
(α1 + ik)(α2 + ik)(α3 + ik)

(α1 − ik)(α2 − ik)(α3 − ik)
.

Define zj = αj + ik = rje
iθj , where r, θj ∈ R. Then,

θj = arg(zj).

We do the following calculation:

det(S) =

3∏
j=1

zj
zj

=

3∏
j=1

rje
iθj

rje−iθj
=

3∏
j=1

e2iθj = e2i
∑3

j=1 θj = e2iΘR ,

where ΘR =

3∑
j=1

arg(zj).

Lollipop Graph Next, we cover the lollipop graph from Figure 2.1a, which features two vertices

and two edges. In this case, the standard matching conditions are


ψ1(0) = ψ1(l1) = ψ2(0) Continuity condition

ψ′
1(0)− ψ′

1(l1) + ψ′
2(0) + βψ1(0) = 0 Kirchhoff condition

αψ2(l2) + ψ′
2(l2) = 0 Boundary condition

By substituting (2.10) into the continuity condition, we get

a1 + b1e
ikℓ1 = a1e

ikℓ1 + b1 = a2 + b2e
ikℓ2 . (2.30)

We also substitute (2.10) into the Kirchhoff condition to get

a1 − b1e
ikℓ1 − a1e

ikℓ1 + b1 + a2 − b2e
ikℓ2 +

α1

ik

(
a1 + b1e

ikl1
)
= 0,
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which we rearrange into

(
1 +

α1

ik

)
a1 =

(
1− α1

ik

)
b1e

ikℓ1 + a1e
ikℓ1 − b1 − a2 + b2e

ikl2 . (2.31)

We then make use of (2.30) to get

b1 = a1 + b1e
ikℓ1 − a1e

ikℓ1

a2 = a1 + b1e
ikℓ1 − b2e

ikℓ2 .

These are substituted into (2.31) which, when solved for a1, yield

a1 =
2ik

3ik + α1
a1e

ikℓ1 − ik + α1

3ik + α1
b1e

ikℓ1 +
2ik

3ik + α1
b2e

ikl2 . (2.32)

A similar process can be used to find equations for a2 and b1.

To solve for b2, one need only substitute (2.10) into the Robin condition

a2e
ikℓ2 − b2 +

α2

ik
(a2e

ikℓ2 + b2) = 0,

and rearrange to get

b2 =
ik + α2

ik − α2
a2e

ikℓ2 . (2.33)

Our solutions for a1, a2, b1 and b2 can be summarized with the following system:



2ik

3ik + α1
0

−ik − α1

3ik + α1

2ik

3ik + α1

2ik

3ik + α1
0

2ik

3ik + α1

−ik − α1

3ik + α1

−ik − α1

3ik + α1
0

2ik

3ik + α1

2ik

3ik + α1

0
ik + α2

ik − α2
0 0





eikl1 0 0 0

0 eikl2 0 0

0 0 eikl1 0

0 0 0 eikl2





a1

a2

b1

b2


=



a1

a2

b1

b2


,

where we recall that this implies that
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S(k) =



2ik

3ik + α1
0

−ik − α1

3ik + α1

2ik

3ik + α1

2ik

3ik + α1
0

2ik

3ik + α1

−ik − α1

3ik + α1

−ik − α1

3ik + α1
0

2ik

3ik + α1

2ik

3ik + α1

0
ik + α2

ik − α2
0 0


.

Dumbbell Graph Recall the dumbbell graph from Figure 2.1c, which features two vertices and

three edges - one bridging between the vertices and the other two edges forming loops. Notice this

has no leaf vertices and thus no Robin boundary conditions. Applying standard matching conditions

produces the following system of equations:



ψ1(0) = ψ1(l1) = ψ2(0) Continuity condition

ψ2(l2) = ψ3(0) = ψ3(l3)

ψ′
1(0)− ψ′

1(l1) + ψ′
2(0) + β1ψ1(0) = 0 Kirchhoff condition

ψ′
3(0)− ψ′

3(l3)− ψ′
2(l2) + β2ψ3(0) = 0

Plugging the solution into the current conditions, we get the following:

a1 + b1e
ikl1 = a1e

ikl1 + b1 = a2 + b2e
ikl2 (2.34)

a2e
ikl2 + b2 = a3 + b3e

ikl3 = a3e
ikl3 + b3. (2.35)

Similarly, we substitute this into the Kirchhoff condition to get

a1 − b1e
ikl1 − (a1e

ikl1 − b1) + a2 − b2e
ikl2 +

β1
ik

(a1 + b1e
ikl1) = 0 (2.36)

a3 − b3e
ikl3 − (a3e

ikl3 − b3)− (a2e
ikl2 − b2) +

β2
ik

(a3 + b3e
ikl3) = 0. (2.37)
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Rearranging (2.36), we get

(
1 +

β1
ik

)
a1 = a1e

ikl1 + b1e
ikl1 − b1 − a2 + b2e

ikl2 − β1
ik
b1e

ikl1 , (2.38)

and we can make use of (2.34) to find

b1 = a1 + b1e
ikl1 − a1e

ikl2 (2.39)

a2 = a1 + b1e
ikl1 − b2e

ikl3 . (2.40)

Substituting (2.39) and (2.40), into (2.38) we can find a1 in terms of a1, b1 and b2:

a1 =
2

3 + β1

ik

a1e
ikl1 −

−β1

ik + 1

3 + β1

ik

b1e
ikl1 +

2

3 + β1

ik

b2e
ikl2 . (2.41)

This is what will become the first row. Now, solve (2.39) and (2.40) for a1 and substitute them into

(2.41) to get equations for b1 and a2:

b1 =
−β1

ik − 1

3 + β1

ik

a1e
ikl1 +

2

3 + β1

ik

b1e
ikl1 +

2

3 + β1

ik

b2e
ikl2

=
−β1 − ik

3ik + β1
a1e

ikl1 +
2ik

3ik + β1
b1e

ikl1 +
2ik

3ik + β1
b2e

ikl2 ,

a2 =
2

3 + β1

ik

a1e
ikl1 +

2

3 + β1

ik

b1e
ikl1 +

β1

ik − 1

3 + β1

ik

b2e
ikl2

=
2ik

3ik + β1
a1e

ikl1 +
2ik

3ik + β1
b1e

ikl1 +
β1 − ik

3ik + β1
b2e

ikl2 .

Similar manipulations can be done regarding Equations 2.35 and 2.37 to solve for b2, a3, and b3.

The resulting system of equations has the following S(k) which, as we noted in the previous two

examples, is particularly interesting as it can be used to better understand (2.18):
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S(k) =



2ik
3ik+β1

0 0 −β1−ik
3ik+β1

2ik
3ik+β1

0

2

3+
β1
ik

0 0 2

3+
β1
ik

−β1−ik
3ik+β1

0

0 2ik
3ik+β2

2ik
3ik+β2

0 0 −β2−ik
3ik+β2

−β1−ik
3ik+β1

0 0 2

3+
β1
ik

2ik
3ik+β1

0

0 −β2−ik
3ik+β2

2ik
3ik+β2

0 0 2ik
3ik+β2

0 2ik
3ik+β2

−β2−ik
3ik+β2

0 0 2ik
3ik+β2



.

2.2.2 Symbolic Calculation

While eigenvalues can now be computed for any graph, it is still useful to automate the finding of

the secular determinant. As mentioned earlier, it is known that the eigenvalues will be real. However,

a few tricks beyond the removal of the phase angle will need to be employed numerically to ensure

this.

When the secular determinant is calculated symbolically, the phase angle is removed then

converted to sines and cosines. This results in a transcendental function that may still have

imaginary coefficients even though the eigenvalues are, in fact, real. There are two ways for the

transcendental function to produce real solutions; all coefficients are either real or purely imaginary

(up to a constant). The transcendental function may be a fraction, so it is divided by the ratio of

the leading coefficients. (Dividing by any constant can be done safely since the secular determinant

equals zero.) This ensures that the new coefficients will now either be real or purely imaginary. The

last trick is to look for imaginary coefficients. If there are none, the resulting transcendental function

is purely real, and it is the secular determinant. But, if there is an imaginary coefficient, then the

imaginary portion of the transcendental function is taken to be the secular determinant, as the real

portion is zero.
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CHAPTER 3

Accurately Defining Numerical Spatial Operators

QGlab is a Matlab package that has been developed jointly with Roy Goodman as the focus

of this dissertation work. While it is more thoroughly documented in [40], we use this chapter to

highlight the numerical methods that we built to solve linear and nonlinear stationary problems

on quantum graphs using the Chebyshev discretization. This begins with defining the Laplacian

in a way that incorporates boundary conditions and utilizes techniques proposed in [28] to achieve

spectral accuracy. We then generalize this result to work in the context of quantum graphs and show

necessary details that allow QGlab to automatically generate the discretized Laplacian operator

for any given graph. This is followed by an application to the field of spectral flow where the

behavior of the Laplacian’s limiting eigenfunctions (as described in [13]) is verified through the use

of QGlab. The final section overviews the tools that are implemented in QGlab to generate

numerical solutions to nonlinear, elliptic partial differential equations.

3.1 Discretizing the Laplacian

Now that the Laplacian operator has been investigated analytically, the first thing we will do

numerically is accurately discretize it. Each edge is discretized by N internal points; including the

end points at the vertices totals to N + 2 points. For now, the focus will be on accurately defining

things on a closed interval [0, ℓ], and the results are then generalized for graphs later.

For most purposes, uniformly spaced points enable us to use the finite difference scheme which is

easy to understand and runs quite quickly due to the sparse nature of the operator matrices. QGlab

implements the finite difference method using standard second order centered differences with the

boundary conditions enforced at so-called ghost points as discussed in [29]; more details about its

implementation in QGlab can be found in [40].

Figure 3.1: Discretization of the interval [0, ℓ] using ghost points
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At the expense of sparsity, accuracy can be improved upon through the use of another discretiza-

tion, namely Chebyshev points of the second kind (see Figure 3.2),

xk =
ℓ

2

(
1− cos

(
kπ

N + 1

))
, k = 0, 1, . . . , N,N + 1. (3.1)

Notice how these points are clustered at the end points in Figure 3.2. While the QGLAB package

has been implemented in a way that allows the user to switch easily between uniformly spaced

discretization points and Chebyshev points, this dissertation focuses on implementations from the

perspective of Chebyshev points.

Figure 3.2: Discretization of the interval [0, ℓ] using Chebyshev points of the second kind.

We will focused on Chebyshev points due to their high accuracy at relatively low numbers

of discretization points. As an illustration of how Chebyshev points are useful, we will consider

their ability to prevent the Runge phenomenon when performing polynomial interpolation. A

polynomial can be used to interpolate the data produced by evaluating f(x) at x = {xj}N+1
j=0 via the

formulation

f(x) ≈ p(x) =
N+1∑
j=0

fjlj(x), (3.2)

where fj = f(xj) in this context and the lj(x) terms denote the Lagrange interpolating weights.

Uniformly spaced points are known to produce less accurate approximations at the boundaries.

However, Chebyshev points produce spectrally accurate results at the boundary points for reasonably

smooth solutions. The contrast of the polynomial interpolants generated on these two different

discretizations is illustrated in Figure 3.3.

The proposed interpolating polynomial in (3.2) provides the means to define the matrix rep-

resentation of the first derivative matrix, since the derivative of f(x) can be approximated by

p′(x):

f ′(x) ≈ p′(x) =

N+1∑
j=0

fjl
′
j(x) (3.3)
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(a) Uniform points (b) Chebyshev points of the 2nd kind

Figure 3.3: Runge phenomenon

The matrix generated by evaluating l′j(x) at x is the differentiation matrix defined on (3.1).

Thus, an approximation of f ′(x) at x can be given by

fprime ≈ D(N+2)×(N+2)f , (3.4)

where

Dij = l′j(xi), (3.5)

and f is the vector whose values are fj . More explicit details are provided in [77]. To obtain the

Laplacian, one need only square D to find a fairly accurate approximation.

3.1.1 Incorporating Boundary Conditions

Closed Interval The main goal is to find an accurate way to numerically formulate



d2u

dx2
= f(x), 0 < x < ℓ

u′(0) + α0u(0) = ϕ0,

−u′(ℓ) + αℓu(ℓ) = ϕℓ.

(3.6a)

(3.6b)

(3.6c)

To begin discretizing this problem, (3.6a) is refomulated as

D2u = f , (3.7)
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where

u =



u0

u1
...

uN+1


and f =



f0

f1
...

fN+1


. (3.8)

But, this is a well-defined matrix system that does not account for the boundary conditions which

we know will be crucial when we discuss graphs.

There are a few ways to incorporate the boundary conditions into a differentiation matrix. The

most straightforward method is row replacement; it involves removing two rows (typically the first and

last) of the differentiation matrix and replacing them with rows that enforce the boundary conditions.

However, this is generally used in the case of uniformly spaced points, where row replacement has

linear convergence (quadratic convergence is possible if done carefully as demonstrated in [50, 18]).

As discussed in [77], this translates poorly to operators defined by Chebyshev points and does

especially poorly for higher-order problems where it might be necessary to replace more than just

two rows to properly implement the boundary conditions.

In [28], the authors developed an alternative method for incorporating boundary conditions in

a differentiation matrix while preserving high spatial accuracy built around the use of Chebyshev

points. The motivating observation is that we would like to work with N internal points instead of

the given N + 2 points that include the boundaries, but simply deleting the end points is no better

than row replacement. Instead, the goal is to work on Chebyshev points of the first kind

χk =
ℓ

2

(
1− cos

(
(2k − 1)π

2N

))
k = 1, 2, . . . , N. (3.9)

which are not defined at the end points, providing us with N many alternative interior points to

work on (Figure 3.4).

Figure 3.4: Discretization of the interval [0, ℓ] using Chebyshev points of the second kind (in
blue) and first kind (in green)
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The method relies on the barycentric resampling matrix, which provides an efficient and stable

means to take a vector of values representing an interpolating polynomial defined on Chebyshev

points of the second kind and resample this polynomial at Chebyshev points of the first kind. Its

construction utilizes the barycentric interpolation formula proposed in [19].

Given the set of points x = {xk}N+1
k=0 , the barycentric weights are

wk =
N+1∏
l=0
l ̸=k

(xk + xl)
−1, k = 0, . . . , N + 1. (3.10)

These are utilized to construct a unique interpolating polynomial,

pN+1(x) =

∑N+1
k=0 (wk/(x− xk))fk∑N+1
l=0 (wl/(x− xl))

, (3.11)

which interpolates the set of data points {(xk, fk)}N+1
k=0 . The polynomial is evaluated at {xk}N+1

k=0

and again at {χk}Nk=1, so that the barycentric resampling matrix defined by

(Pint)j,k =


wk

χj − xk

(
N+1∑
l=0

wl

χj − xl

)−1

χj ̸= xk

1 χj = xk.

(3.12)

satisfies

pN+1(χ) = Pint pN+1(x). (3.13)

(A more generalized version of this matrix in [28, §3.1].)

This matrix is denoted as Pint since it will project the information to purely the interior points,

and it has the dimensions N × (N + 2). The product

Lint = PintD
2 (3.14)

defines an N × (N + 2) differentiation matrix, so applying Pint to both sides of (3.7) leaves two rows

free for the implementation of boundary conditions.

The standard basis vectors, ek, are utilized in the implementation of the boundary conditions to

pick out the correct location in a vector. For instance, it is very helpful to know u(0) = u0 = eT1 u,
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so we can write (3.6b) as (
eT1 D+ α0e

T
1

)
u = ϕ0.

Similarly, we write (3.6c) as (
−eTN+2D+ αLe

T
N+2

)
u = ϕL.

The boundary conditions can be summarized in matrix form by

LBCu = ϕ, (3.15)

where

LBC =

 eT1 D+ α0e
T
1

−eTN+2D+ αLe
T
N+2


2×(N+2)

and ϕ =

ϕ0
ϕL

 . (3.16)

The matrices Lint,LBC and Pint are used to create a single system of N +2 equations and N +2

unknowns

Lint

LBC

u =

 Pint

02×(N+2)

 f +

0N×2

I2

ϕ (3.17)

which is the full discretized version of (3.6).

General Graph The process generalizes to graphs fairly naturally. Suppose that we want to

discretize the problem



d2u

dx2
= f(x), x ∈ ej , ∀ej ∈ E ,

ui(vn) = uj(vn), ∀ei, ej ∈ Vn,∑
em∈Vn

wmu
′
m(vn) + αnueN+2∈Vn(vn) = ϕn, ∀vn ∈ V

(3.18a)

(3.18b)

(3.18c)

on an arbitrary directed, metric graph where um is the solution on the mth edge. We begin by

discretizing each edge em with Nm Chebyshev points of the second kind that we will denote as x.

The notation umk = um(xk) is introduced to refer to the solution on edge m evaluated at the kth
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discretization point, so that um would be the discretized solution on edge m. The full discretized

solution can be made using the um’s, and a similar process is done to discretize f(x) so that

u =



u1

u2

...

u|E|


, f =



f1

f2
...

f|E|


, and ϕ =



ϕ1

ϕ2
...

ϕ|E|


,

where ϕ is the vector of nonhomogeneous boundary conditions.

Defining the Laplacian and barycentric resampling matrix on a graph are done by defining them

on each edge using the same construction methods employed for the line. L
(m)
int is defined as the

Laplacian on em, and P
(m)
int is the corresponding barycentric resampling matrix. Note that these

matrices are of the sizes (Nm + 2)×Nm, so that the matrices

Lint =



L
(1)
int

L
(2)
int

. . .

L
(|E|)
int


and Pint =



P
(1)
int

P
(2)
int

. . .

P
(|E|)
int


(3.19)

are of dimension(Ntot + 2|E|)×Ntot where Ntot =
∑|E|

m=1Nm.

Enforcing conditions at each vertex vn requires one row for the Kirchhoff-Robin condition (3.18c)

and dvn − 1 rows for the continuity condition (3.18b). Altogether, these form a matrix L
(n)
VC with dvn

rows so that LVC has |E| many rows. Thus, the Laplacian with encoded boundary conditions and

the barycentric resampling matrix for the graph are given by

L =

 Lint

LVC

 =



L
(1)
int

. . .

L
(|E|)
int

L
(1)
VC

...

L
(|V|)
VC


and P =



P
(1)
int

. . .

P
(|E|)
int

02|E|×(Ntot+2|E|)


. (3.20)
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Next, we define a vertex condition assignment matrix MVCA of size (Ntot + 2|E| )× |V| whose

purpose is to map the correct nonhomogeneous condition to the correct vertex condition. This

means that MVCA consists entirely of zeros except in column n which has a one in the first row

corresponding to the position of the first row of L
(n)
VC in L. Thus, the discrete problem can be

represented in the compact form

Lu = Pf +MVCAϕ. (3.21)

Example To better visualize the construction of the Laplacian, consider the Poisson problem

defined on the lollipop graph, which has the following formulation



d2u

dx2
= f(x), x ∈ Ej , ∀ej ∈ E ,

u1(ℓ1) = u2(0) = u2(ℓ2),

u′1(ℓ1)− u′2(0) = u2(ℓ2).

(3.22)

For this example, the edge e1 points from v1 to v2 and has N1 = 4, while edge e2 points from v2 to

itself and has N2 = 8 discretization points. The lollipop graph discretized with Chebyshev points of

the second kind is shown in Figure 3.5. The figure also shows the structure of the nonzero entries of

the matrix L. While the construction of Lint is fairly understandable without an example, a sample

calculation for LVC is provided by considering the boundary conditions at v2.

Figure 3.5: Lollipop with labeled discretized points
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The continuity conditions

u1(ℓ1) = u2(0),

u1(ℓ1) = u2(ℓ2)

are easier to digest and thus done first. To write the discretized version, notice that while edge one is

discretized with 4 internal points, a total of 6 points are needed for the entire edge when accounting

for the end points. Thus, u1(ℓ1) = u6. With this in mind, we write the discretized version of the

continuity condition

(e6 − e7)u = 0,

(e6 − e16)u = 0.

These correspond to the last two green lines of the Laplacian depicted in Figure 3.6.

Now, consider the Robin condition

w1u
′
1(ℓ1)− w2u

′
2(0) + w2u

′
2(ℓ2) + α2u2(0) = 0,

which is discretized as

(w1e6D1 − w2e7D2 + w2e16D2 + α2e7)u = 0

and is represented in the first green line of the Laplacian from Figure 3.6. Figure 3.6 also shows the

structure of the nonzero entries of P, and we can note that the matrix MVCA is 16× 2 and its only

nonzero entries are located at (13, 1) and (14, 2).

3.1.2 Numerical Implementation

While squaring D is a common way to approximate the Laplacian matrix, this introduces various

numerical errors for operators implemented with a Chebyshev discretization. This section provides

implementation details necessary for accurately and efficiently defining the rectangular differentiation

matrices. The definition that is used for higher order differentiation matrices is given by

D
(p+1)∗
ij =

1

χi − xj

[
(−1)j

2(N + 1)

(
T
(p+1)
N+1 (χi)− T

(p+1)
N−1 (χi)

)
− (p+ 1)D

(p)
ij ,

]
(3.23)
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Figure 3.6: The left and right figures show the nonzero entries in L and P matrices respectively.

where the star indicates that the first term inside the square brackets is halved for j = 0 and

j = N + 1, (p) denotes the pth spatial derivative, Tn = cos(n arccosx), and D(p+1) is a N × (N + 2)

rectangular matrix. If χi and xi are the same, the corresponding entry becomes

D
(p+1)
ij = (−1)j

T
(p+1)
N+1 (χi)− T

(p+1)
N−1 (χi)

2(N + 1)(p+ 2)
. (3.24)

This formulation is verified in [77, §4].

Below are a few additional tricks that also reduce numerical errors and enhance the efficiency

when creating rectangular differential operator.

Trigonometric Identities The nodes {χj}Nj=1 and {xj}N+1
j=0 could cause the D(p) matrix to be

ill-conditioned if they are extremely close together, since we divide by χj − xk. So, we use the

identity

χj − xk = −2 sin

(
θj + ϕk

2

)
sin

(
θj − ϕk

2

)
(3.25)

where

θj =
(2j − 1)π

2M
= arctan(yj) and ϕk =

(k − 1)π

N − 1
= arctan(xk).

We refer the reader to [24] and [74] for how this reduces cancellation errors and increases accuracy.
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The Flipping Trick The rectangular differentiation matrix D(p) is skew-symmetric:

D
(p)
i,j = (−1)pD

(p)
N−1−i,N+1−j

as discussed in [77]. In addition to increasing accuracy, is useful for defining D(p) more efficiently as

it utilizes the duplicity of off diagonal terms to do one calculation instead of two.

The Negative-Sum Trick The last trick implemented to increase the accuracy of our scheme is

the negative-sum trick which was used in [12]. The idea is that constant functions must evaluate to

zero when differentiated, so the sum of the diagonal entries is calculated by negating the sum of the

rest of the row to ensure that
N+1∑
i=0

Dij = 0. (3.26)

Only square matrices were considered in [12], so this condition was enforced on the diagonal in the

following way to increase the accuracy of the scheme:

Dii = −
N+2∑
j=0
j ̸=i

Dij . (3.27)

However, the idea that a constant function must be zero when differentiated must hold in the

rectangular case as well and can be advantageously enforced a with a little cleverness.

Recall that each term of D(p) is divided by the term χi − xj . The most ill-conditioned entry of

any row would then be the one which has been divided by the smallest value of |χi − xj |. Replacing

the most ill-conditioned value of the matrix with a value that would enforce (3.26) would then

increase the accuracy of the rectangular scheme, so we assign it to be the negative of the sum of the

rest of the row. In other words,

D
(p)
ij = −

N+1∑
k=0
k ̸=j

D
(p)
ik (3.28)

where j is chosen such that |χi − xj | = minj=1,..,N |χi − xj |.

3.2 Eigenvalues of the Laplacian

Upon establishing the numerical version of the Laplacian, the generation of numerical eigenvalues

comes quickly thereafter. The analytical eigenvalue problem, namely (2.5), has the numerical
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equivalent

Lv = λPv. (3.29)

This problem can be solved fairly easily using built-in commands in Matlab when we have Dirichlet

boundary conditions. However, current algorithms involve inverting L to some extent, and L is

a singular matrix in the case of no leaf vertices or when those leaf vertices do not have Dirichlet

conditions. The method for accounting for the singular nature of L and recovering the original

eigenvalues is described in the following section.

3.2.1 Shifting Method

This method will be discussed using the generalized eigenvalue problem

Av = λBv (3.30)

as the explicit structures of L and P are not necessary and works for any singular matrix A.

Theorem 3.1. If λ is an eigenvalue for

(A+B)v⃗ = λBv⃗ (3.31)

with the associated eigenvector v, then λ− 1 is an eigenvalue for (3.30) with the same associated

eigenvector v⃗.

Proof. Suppose λ is an eigenvalue of (3.31). Then

(A+B)v⃗ = λBv⃗

Av⃗ +Bv⃗ = λBv⃗

Av⃗ = (λ− 1)Bv⃗

Thus λ− 1 is an eigenvalue of (3.30) with eigenvector v⃗.

This method relies on the fact that singular square matrices exist in a subset of the space of all

square matrices that has measure zero. Thus, any tiny random perturbation is almost certain to

take you out of that thin subset. (“Almost certain” is actually a technical term here, meaning with
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probability 1.) In the case that we are discussing, P serves as the perturbative term.

3.2.2 Results

The eigenvalues obtained using the shifting method were checked against the analytically obtained

roots from secular determinant. Naturally, the first question is how many discretization points

should we use per edge to ensure we are optimizing the accuracy of our eigenvalues. To accomplish

this, the first nonzero eigenvalue of the Laplacian was examined at a variety of discretization points

on the lollipop graph with Dirichlet boundary conditions and current conservation (Figure 3.7).

Figure 3.7: Comparison of first nonzero analytical and numerical eigenvalues

While N = 16 produced the most accurate result (relative error was 10−14), the first nonzero

eigenvalue produced by the discretizations between 12 and 68 were, at the worst, on the order of

10−12 accuracy. Further analysis of the spectrum revealed that 16 discretization points did not yield

the best results for all the eigenvalues, but the range between 24 and 32 discretization points did

best with accuracy on the order of 10−11 or better (see Figure 3.8).

Another comparison between the two discretization types (Chebyshev and uniform) was performed

as well to ensure that the Chebyshev points are performing as expected compared to the uniform

points. Figure 3.9 depicts how the first nonzero eigenvalue is more accurate over a range of

discretization points, while Figure 3.10 compares the first 12 eigenvalues from each disctretization

type. As expected, the eigenvalues produced by the Cheybshev discretization were substantially

more accurate and needed far fewer points to achieve this accuracy.

Using N = 32 discretization points on each edge, the accuracy of the first ten eigenvalues were
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Figure 3.8: Error analysis for first five nonzero eigenvalues relative to analytically obtained
eigenvalues from the secular determinant

Figure 3.9: Error analysis for first nonzero eigenvalues to compare accuracy of the Chebyshev
and uniform discretizations

Figure 3.10: Error analysis for first 12 eigenvalues, N = 32 for the Chebyshev discretization
while N = 320 for the uniform discretization
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Graph Leaf BC Relative Error
Lollipop Dirichlet 10−11

Lollipop Neumann 10−11

Lollipop Robin 10−11

Star Dirichlet 10−11

Star Neumann 10−12

Star Robin 10−12

Dumbbell N/A 10−12

Table 3.1: First 10 eigenvalues, given N = 32

verified on a variety of graphs with various boundary conditions, and some of these results are

summarized in Table 3.1.

Further analysis was done on other types of graphs to ensure this accuracy generalized to any

graph, and the results from the other graphs matched the findings in Table 3.1. From this analysis,

it is clear that 32 discretization points should be sufficient to optimize results in most cases and

create a spatial operator that is operating at machine precision.

3.3 Linear Solvers: An Application to Spectral Flow

Here, we provide an application of the graph Laplacian which validates the limiting behavior

of eigenvalues under spectral flow as described in [16]; this constitutes an important concept when

studying the nodal deficiency of Laplace eigenfunctions. The work in [13] characterizes the eigenvalues

and eigenfunctions with respect to the spectral flow parameter and derives explicit formulas for the

limiting eigenfunctions. These results are the primary focus of this section.

Consider the linear Schrödinger eigenvalue problem with a potential V :

−∆u(x) + V (x)u = λu(x), u(0) = u(1) = 0, (3.32)

whose eigenvalues are λ1 < λ2 ≤ λ3 ≤ · · · with corresponding eigenfunctions ϕ1, ϕ2, ϕ3, · · · . One

may be interested in quantifying the oscillations of ϕk in terms of the index k as one would do

in Sturm-Liouville theory. To do this, it is helpful to study the interior zeros of ϕk in terms of

the nodal domain - the segments between these interior zeros. The number of nodal domains is

denoted by ν(ϕk), and Courant’s nodal domain theorem states that ν(ϕk) ≤ k (i.e. ϕk(x) has at
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most k − 1 interior zeros). Another way to say this is that the nodal deficiency

δ∗(ϕk) := k − ν(ϕk) (3.33)

is nonnegative. If the index k∗ is fixed, more information can be found about δ∗(ϕk∗).

This is accomplished by letting Zk∗ = {x ∈ (0, 1) | ϕk∗(x) = 0} denote the set of interior zeros

for ϕk∗(x), which is used to define the spectral flow problem

−∆u(x) + V (x)u(x) + σu(x)
k∗−1∑
k=1

δ(x− xk) = λ(σ)u(x), u(0) = u(1) = 0 (3.34)

parametrized by σ ∈ [0,∞) and xk ∈ Zk∗ . It is proven in [13] that the nodal deficiency of ϕk∗ was

exactly equal to the number of eigenvalue curves, λk(σ), that passed through λk∗ as σ ranges from 0

to ∞.

This problem can be reformulated in language that easily translates to a quantum graph format

by applying the Schrödinger operator L = −∆ + V (x) to each open subinterval (xk−1, xk) and

imposing boundary conditions at the interval end points that both account for the delta function

and enforce continuity. More succinctly, the problem becomes



Lu(x) = λ(σ)u(x), x ∈
k∗⋃
k=1

(xk−1, xk)

u(x0 = 0) = u(xk∗ = 1) = 0,

u(x+k ) = u(x−k ), 1 ≤ k ≤ k∗ − 1

u′(x+k )− u′(x−k ) = σu(xk), 1 ≤ k ≤ k∗ − 1

(3.35)

where the superscript + and − denote right- and left-hand limits, respectively. This easily fits into

the framework of quantum graphs where the interval endpoints {xk}k
∗

k=0 represent vertices and the

open intervals are edges. Dirichlet boundary conditions are enforced at the leaf vertices x0 = 0 and

xk∗ = 1, while matching conditions are applied to all of the interior vertices xk for 1 ≤ k ≤ k∗ − 1.

Through this lens, the work in [13] was numerically validated and a few results are provided below.

The results given illustrate how the value of σ affects eigenvalues for a given value of k∗. Observe

in Figure 3.11 that the λk’s for 1 ≤ k < k∗ increases until they converge to λk∗ as σ varies from 0
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Figure 3.11: This illustrates the convergence of eigenvalues 1 through 4 to eigenvalue 5 when
k∗ = 5

to 108 where as λk∗ stays constant. This is consistent with the findings in [16]. Fixing σ = 108,

the corresponding eigenvectors are then depicted in Figure 3.12. The nodal deficiency of ϕ5 can be

quickly calculated by looking at Figure 3.12; ϕ5 has 5 nodal domains, so its nodal deficiency is 0.

Since all eigenvalue curves converge to λ5, there are 0 eigenvalue curves passing through it which

agrees with the findings in [13].

Figure 3.12: Fixing k∗ = 5 and σ = 108, figures are of eigenfunctions corresponding to given
eigenvalues
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3.4 Solvers for Nonlinear Elliptic PDEs

Bifurcations of stationary waves are common phenomena in both conservative and dissipative

nonlinear wave systems. Bifurcations of stationary waves induce qualitative changes to the wave

behavior and can be used to control system outcome. Thus, their studies are both mathematically

and physically important. A bifurcation occurs when a small smooth change to a parameter in

the system causes the solution to have an abrupt change in its qualitative or topological behavior.

The parameter’s value at this point is called the bifurcation point. In particular, a bifurcation in

a dynamical system could change the local stability properties of equilibria, cause periodic orbits to

appear and disappear, or cause other invariant sets to change.

Consider a solution (u(x), µ) to the nonlinear, stationary Schrödinger problem defined in (2.4).

If σ = 0 this is exactly the context covered in the previous sections. For this analysis, we will fix

σ = 2 to be consistent with other works (such as [38]) so that the equation that we will work with is

u′′ − V (x)u+ 2u3 = −µu. (3.36)

To analyze our problem, we need the linearization operator (i.e. the Jacobian)

L+ = ∂xx − V (x) + µ+ 6u2 (3.37)

to determine bifurcations points. For a fixed µ = µ0, the corresponding solitary wave will be denoted

as u0(x), and the linearization operator is denoted as

L+0 = L+|µ=µ0,u=u0 . (3.38)

If L+0 is invertible, the implicit function theorem can be applied, and we know that on an open

interval containing µ0, there exists a unique family of solutions. However, if L+0 is singular, the

implicit function theorem does not apply, and the existence or uniqueness of nearby solutions is no

longer guaranteed. Thus, the point (u0, µ0) at which L is singular is called a bifurcation point. The

three most commonly-seen bifurcations of stationary waves are the saddle-node, transcritical, and

pitchfork bifurcations; these will be the focus of this section.

A saddle-node bifurcation (or fold bifurcation) occurs when two distinct equilibria collide
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and disappear entirely. Visually, it has two branches (one stable, one unstable) of solutions on one

side of µ = µ0, which merge smoothly at µ0 (Figure 3.13a). A pitchfork bifurcation occurs when

a system transitions from one fixed point to three fixed points. It is characterized by having a

single branch on one side of µ = µ0 and three branches on the other side (Figure 3.13b). The single

branch continues smoothly through the bifurcation and is the middle branch on the side with three

branches. The other two branches on this side are on the top and bottom and connected smoothly

at µ0. A transcritical bifurcation is characterized by a fixed point that exists for all values of the

bifurcation parameter and is never destroyed. But, for certain values of the parameter, there is a

second fixed point, and the points exchange stability when they collide. Visually, it looks like two

branches crossing each other at µ0 (Figure 3.13c). Note that as a consequence, this ensures there

will be one stable and one unstable equilibria for all values of µ except at the point of collision, µ0.

Sufficient conditions for these major types of solitary wave bifurcations are derived in [79] where the

focus is the simple zero eigenvalue of L+0.

(a) Saddle-node bifurcation (b) Pitchfork bifurcation (c) Transcritical bifurcation

Figure 3.13: Basic example visualizations of each of the three main bifurcation types

To find solutions to the NLS, QGlab bifurcates off of the solutions to the nonlinear problem to

obtain solutions to the linear problem. To accomplish this, QGlab takes in a specified eigenfunction

to initialize finding u0(x), then finds bifurcation points by varying µ, utilizing a Lyapunov-Schmidt

reduction. The branches for both are computed using pseudo-arclength continuation. At the

bifurcation points, a Newton solver is utilized to land on a new branch and find additional solutions

to the NLS. Further computation details follow as described in [39]. Figure 3.14 illustrates a

bifurcation diagram for the dumbbell graph where µ is varied from −1 to 0. It is known in this case

that there will be two bifurcations (as shown in [62]). Note that Figure 3.14 recreates the bifurcation
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Figure 3.14: A bifurcation diagram for the dumbbell graph. he blue curve is the continuation
of the first eigenfunction. The red curves were computed by following branches from
bifurcation points. Saddle-node bifurcations are indicated with a triangle while squares
denote branching bifurcations.

diagram found in [38, Fig 3.2], where a uniform grid (instead of Chebyshev points) was use.

With these bifurcations, we can now discuss the solutions to (3.36). Notice how the two solutions

taken from the top branch (Figure 3.15a and Figure 3.16a) are both trivial solutions while both

solutions taken from the bottom branch (Figure 3.15b and Figure 3.16b) exude similar behaviors

(e.g. they are both monotonically increasing if the graph is read from left to right).

(a) Blue branch (b) Bottom branch (red)

Figure 3.15: Solutions from different branches at µ = −0.1
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(a) Blue branch (b) Bottom branch

(c) Second from bottom branch (d) Third from bottom branch

(e) Fourth from bottom branch

Figure 3.16: Solutions from different branches at µ = −0.8

Also notice the correspondence between Figure 3.16c and Figure 3.16e. They have reversed

behavior, which comes from the fact that they are results of the same bifurcation point (red triangle)

but are solutions produced by going in different directions from that bifurcation point.
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Figure 3.17: Berkolaiko-Marzuola-Pelinovsky (BMP) quantum graph layout

Another example is also calculated for the Berkolaiko-Marzuola-Pelinovsky quantum graph

(Figure 3.17) which is used in [18]. The blue curve is the continuation of the first eigenfunction. The

first bifurcation point is a branching bifurcation and creates the bottom red branch. The second

bifurcation point is a saddle-node bifurcation, and it produces the top two red curves.

Figure 3.18: A bifurcation diagram for the BMP graph

The solutions affiliated with each branch around the value of µ = −2 are displayed in Figure
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(a) Blue branch (b) Bottom branch (red)

(c) Middle red branch (d) Top red branch

Figure 3.19: Solutions from different branches at µ = −1.5

3.19. The behavior of the saddle-node bifurcation branch solutions are as expected; they appear to

be inverted versions of each other which was also observed in the dumbbell case.

While this section has discussed the archetypal bifurcations one encounters in this field, section

5.2.3 will discuss another important bifurcation called the Hamiltonian-Hopf bifurcation, which relies

on analysis of linearized operators around steady states and is used in the context of time-periodic

solutions. Before delving into this topic, we will first discuss the time-dependent problem.
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CHAPTER 4

Time Evolution

This chapter describes two different methods implemented in QGlab for performing time

evolution on graphs. The first method utilizes known techniques from the field of differential

algebraic equations, and its application to quantum graphs follows rather quickly. The second method

described derives a new scheme using known Runge-Kutta methods as a basis and generalizes them

to work for operators with encoded boundary conditions. It is worth noting that while quantum

graphs were the motivating factor, our adapted Runge-Kutta scheme works for any system with

boundary conditions.

4.1 Formulation of the Problem

Time evolution is complicated by the incorporation of boundary conditions in the spatial dis-

cretization of our operator. This encoding of the boundary conditions leads to a spatial discretization

matrix which is poorly-conditioned and, thus, needs to be paired with a numerical time-evolution

scheme that is more stable than accurate. Our approach here is motivated by that used in [28, §7.5]

in the discussion of solving nonlinear PDE using the Chebfun package.

We formulate the PDE in the following abstract form:



∂u

∂t
= F (t, u), t > 0

li(u, u
′) = 0, i = 1, . . . , 2|E|

u(x, 0) = f(x),

(4.1a)

(4.1b)

(4.1c)

where F is a (possibly nonlinear) 2nd-order differential operator in x, m is the number of edges, and

li’s are constant linear functionals that gives us necessary boundary conditions.

While the main focus for discretization points has been Chebyshev points, this formulation of the

problem allows for the user to choose either uniform or Chebyshev points as their discretization choice.

The key idea here is working with spatial operators that have incorporated boundary conditions
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as was discussed for the definition of the Laplacian. Much like that discussion, F must also be

discretized carefully. For instance, if u is defined using Chebyshev points of the second kind, F

incorporates the projection from the Chebyshev points of the second kind to the first kind. Since

u would also be defined on origonal discretization that includes the end points, Pint is multiplied

to the left-hand side of the (4.1a) so it will also defined on the second, smaller set of discretization

points that F is defined on. More details for the uniform case are discussed in [40].

The original discretization will be denoted as x and the smaller discretization that does not

incorporate the boundary vertices will be χ. Thus, when the Chebyshev discretization is being used,

x is points of the second kind while χ is points of the first kind as is illustrated in Figure 3.4. When

the uniform discretization is being used (recall Figure 3.1), x denotes the full set of discretization

points, {x0, x1, . . . , xN+1}, and χ is restricted to the interior points, namely {x1, . . . , xN}. The

discretized system can now be given as

Pint
du
dt = F(t,u),

LVCu= 02|E|×(Ntot+2|E|),
(4.2)

where Pint and LVC retain their definitions from earlier. This can be written more concisely as

Pint

0

 du

dt
=

F(t,u)

LVCu

 . (4.3)

With this numerical formulation, there were two main methods for time evolution that were

considered, each with their pros and cons that will be discussed.

4.2 Differential-Algebraic Equation Method

Since boundary conditions have been encoded as algebraic conditions, this is constitutes a

differential-algebraic equation, and we must decide how to evolve it in time. The problem can be

written as

Put = A(u), u(x, 0) = u0, (4.4)

where

A(u) =

 F(t,u)

LVCu

 .
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With this formulation of the problem, Matlab’s built-in stiff solver ode15s can now be utilized by

setting P to be the mass matrix and turning the massing option on. The tolerance is set so that it

does not exceed the accuracy of the initial condition, Pu0.

The example of the nonlinear Schrödinger equation on the dumbbell graph



iut = −uxx − 2|u|2u

u′1(ℓ1) = 0 u1(0) = u1(ℓ1) = u2(0) Continuity condition

u2(ℓ2) = u3(0) = u3(ℓ3)

−u′1(0) + u′1(ℓ1)− u′2(0) + β1u1(0) = 0 Kirchhoff condition

u′2(ℓ2)− u′3(0)− u′2(0) + β2u3(ℓ3) = 0

u(0, x) = ϕ(x) Initial condition

(4.5)

where ϕ(x) is a solution to the stationary problem, was used to test the accuracy of the method; each

edge was discretized with N = 32 points. The accuracy was determined by checking for conservation

of energy and mass, where the energy and mass of the system are defined by

E =

|E|∑
j=1

ωj

∫
ej

(
|u′j(x)|2 − |uj(x)|4

)
dx and M =

|E|∑
j=1

ωj

∫
ej

|uj(x)|2 dx. (4.6)

The resulting errors were on the order of 10−07 and 10−08, respectively, as summarized in Figure 4.1.

Figure 4.1: Convergence of DAE scheme

While this method runs relatively quickly and the results are sufficiently accurate, the next

method improves upon these results and provides the user with more control over the time-step,
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which may be desired in some cases.

4.3 Adapted Runge-Kutta Schemes for Stiff IVPs

While the previous method works by thinking about the problem through the from the perspective

of DAEs, another lens one could use to view this problem through is that of a stiff initial value

problem. In this context, diagonally implicit Runge-Kutta schemes are known for their stability

properties. However, they are not structured for spatial operators with incorporated boundary

conditions, so the goal of this section is to derive a new version of the known Runge-Kutta methods

to work in this situation.

For the adapted Runge-Kutta method (ARK), the notation ũ = Pu is introduced, and we pause

to make two important observations that will impact the development of this algorithm.

1. Note that ũ and F are discretized by the grid χ while u is discretized by the grid x. That is,

the input and output of F are defined on different discretizations.

2. Since our equation can be written ũt = F(t,u), it is easiest to consider what it would mean to

use a Runge-Kutta scheme to advance ũ and not u.

We want to take advantage of a typical Runge-Kutta scheme, which steps the solution forward in

time with a formula akin to

ũn+1 = ũn + h

s∑
i=1

biki, (4.7)

tn+1 = tn + h. (4.8)

We should take care into how to properly define ki. Normally, ki would be defined by setting it

equal to F, which has carefully chosen inputs (ie: k1 = F(tn,un))). However, ũ has rows of zeros at

the bottom in place of boundary conditions, whereas F has been resized to leave room for boundary

data to be added. This means that the dimensions of ki would not be compatible for matrix addition

with ũ. For this reason, it is better to defined ki by also including rows of zeros in the following way:

k =

 F

0

 .
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Before explicitly defining the ki’s, we should also recall that the input and output of F are defined on

two different sets of discretization points. This presents a minor challenge since we would normally

define a ki by adding scalar multiples of kj ’s to un (i.e. we might want to use F(tn+c2h,un+ha21k1)

when defining k2). But by definition, the ki’s will be defined on χ. Since un is defined on x, ki

cannot be added to the un inside of F. We will need to find the corresponding variant of ki on the

same discretization as un.

It is also important to remember that the boundary conditions are incorporated in un but not in

ki. So, we will want to use a matrix that both appropriately projects our information and satisfies

the boundary conditions. Namely, we will use

PVC =

 Pint

LVC

 , (4.9)

and define a new variable κi by

PVCκi = ki (4.10)

which guarantees that κi is defined on the same set of discretization points as un.

Thus we can properly define the ki’s in the following way:

k1 =

 F(tn,un + ha11κ1))

0

 (4.11a)

k2 =

 F(tn + c2h,un + ha21κ1 + ha22κ2)

0

 (4.11b)

k3 =

 F(tn + c3h,un + h(a31κ1 + a32κ2 + a33κ3))

0

 (4.11c)

...

ks =

 F(tn + csh,un + h(as1κ1 + as2κ2 + · · ·+ as,s−1κs−1))

0

 . (4.11d)

We now make the final observation that the boundary conditions are not being enforced at each step.

There are rows of zeros in place of the boundary conditions on both sides of (4.7), which means that
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we will not want to simply have ũn+1 as is written on the left-hand side. Since we want to have LVC

set equal to zero and also want u to be updated in a way that will enforce the boundary conditions,

we once more make use of PVC. Now, we will not only project u onto the right discretization (as

done in ũ), but also include the boundary conditions in the new step:

PVCun+1 = ũn + h

s∑
i=1

biki.

Hence the adapted Runge-Kutta scheme that will iterate the solution for (4.3) through time is:

PVCun+1 = Pun + h
s∑

i=1

biki, (4.12)

where ki is defined in (4.11).

This new scheme is implemented in QGlab uses coefficients defined by Nørsett’s three-stage,

4th order diagonally implicit Runge-Kutta method.

The same problem as posed in (4.5) was also used to benchmark this scheme once again using

N = 32. Conservation of energy and mass were similarly checked and results were on the order of

10−7 and 10−9, respectively, as summarized in Figure 4.2. While these results are slightly more

accurate than that of the DAE method, this method ran much more slowly. However, this scheme

does have the advantage of giving control over the time step selection to the user.

Figure 4.2: Convergence of ARK scheme
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A second convergence study for the ARK method is also provided. This one is performed on the

lollipop graph using the problem



iut = −uxx

u1(ℓ1) = u2(0) = u2(ℓ2) Continuity condition

u′1(ℓ1)− u′2(0) + u′2(ℓ2) = 0 Kirchhoff condition

u′1(0) = 0 Neumann boundary condition.

(4.13)

The linear Schrödinger equation is used in this case so that the numerical results can be compared

to the analytical solutions. For this convergence analysis, both the spatial and temporal regimes

were analyzed for the ARK method and results are summarized in Figure 4.3. Once again we can

see that 16 is not quite as good as Nx = 32. More importantly, we can observe that the accuracy

increases linearly by shrinking the size of the time step.

Figure 4.3: This convergence study compares the numerical results from the ARK method
to the analytical solution. On the left, we fixed the time step at ∆t = 10−3. On the right,
we fixed the number of spatial steps at Nx = 32.
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CHAPTER 5

Linearization About Steady States and Progress
Towards Time-Periodic Solutions

The study of partial differential equations from a dynamical perspective can provide illuminating

perspective on the long-term behavior of solutions. In this context, one often wants to know whether

a given solution is stable, and whether or not this property can be changed by introducing a small

perturbation to the initial conditions. Bifurcation theory reveals that there are only a finite number

of ways for a solution to transfer from being stable to unstable and in each of these scenarios, certain

types of solutions and dynamics may be observed. One particular type of bifurcation that can give

rise to much more complicated dynamics is the Hamiltonian-Hopf bifurcation (HHB). While the

linear instabilities have been well-analyzed (see [68]), nonlinear wave dynamics in the neighborhood of

such bifurcations is less known. One step in this direction was made in [38], where Hamiltonian-Hopf

bifurcations of stationary, solitary waves were examined for the nonlinear Schrödinger equation

with symmetric, triple-well type potentials. The phenomenon that we are particularly interested

in is the investigation of time-dependent dynamics. Here, we speak of tunneling, as the solution

moves between various wells. This can be periodic or chaotic, and we aim to uncover the specific

circumstances under which periodic solutions arise.

In this chapter, the previously-discussed tools are now also implemented for a non-self-adjoint

problem, laying necessary ground work for using QGlab to find quasi-time-periodic solutions.

5.1 Motivation for Linearization Around Steady States

It is well-known that time periodic solutions exist for finite-dimensional Hamiltonian systems by

the Lyapunov center theorem, but the goal of this section is to set up a numerical framework for

pursuing a search for time-quasi-periodic solutions for an infinite-dimensional Hamiltonian system

on a compact domain. It is reasonable to believe this is possible given that near time-periodic

solutions for NLS with potentials on R have been found in [38, 80] which has certain implications to

the expected behavior on the dumbbell graph (see [18]). Furthermore, full time-periodic solutions
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for NLS with no potential on the torus were found in [78]. This result is quite relevant to our case

because time-periodic solutions were found due to the geometry of the space that was being worked

in. In particular, the geometry gave compactness and quantum graphs also fall under the domain of

compact spaces.

5.2 Role of Linearized Operators in Finding Relative Periodic Orbits

Certain types of bifurcations can cause periodic orbits to appear and disappear. The bifurcation

point where this occurs yields crucial information regarding the initial condition and period of the

solution. In particular, the Lyapunov center theorem tells us that periodic orbit solutions should

arise near purely imaginary eigenvalues of the linearized operator; thus, this will be our focus.

5.2.1 Complex Eigenvalues for the Cubic NLS Equation

In the context of the cubic NLS equation

iut = −uxx − 2|u|2u, (5.1)

we know that solitons have the form

u(x, t) = e−iµtv(x), (5.2)

where v(x) is a real-valued localized function solving the associated stationary problem

v′′(x) + 2v3(x) = −µv(x), (5.3)

and µ is a negative real-valued propagation constant (bifurcation parameter). These solitons exist as

continuous families parametrized by µ, and it is assumed that the solitons are differentiable with

respect to µ.

When considering the stability of these solitons, we linearize (5.1) with the normal-mode

perturbation

u(x, t) = eiµt
[
u(x) + f1(x)e

λt + f̄2(x)e
λ̄t
]
, f1, f2 ≪ 1 (5.4)

where the overbar represents complex conjugation. In order for (5.4) to be a solution for (5.1), f1
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and f2 must satisfy the following linear eigenvalue problem

H

f1
f2

 = λ

f1
f2

 , (5.5)

where we have the eigenvalue-eigenvector pair (λ, v) with v = (f1, f2)
T and H = J∗L∗ which are

defined by

J∗ = i

 1 0

0 −1

 , and L∗ =

 ∂xx + µ+ 4u2(x) 2u2(x)

2u2(x) ∂xx + µ+ 4u2(x)

 . (5.6)

(To verify the definition of L∗, simply plug (5.4) into (5.1) and note that only linear terms of f1 and

f2 are kept since remaining terms are relatively negligible.)

Alternatively, the problem can also be linearized utilizing the following perturbation instead:

u(x, t) = eiµt
[
u(x) + w1(x)e

λt + iw2(x)e
λt
]
. (5.7)

If (5.7) is to also serve as a solution for (5.1), w1 and w2 would need to satisfy a slightly different

linear eigenvalue problem than before, namely

JL

w1

iw2

 = λ

w1

iw2

 , (5.8)

where the eigenvalue-eigenvector pair would be (λ,w) with w = (w1, iw2)
T . Here J and L are defined

in the following way:

J =

 0 1

−1 0

 , and L =

 ∂xx + µ+ 6u2(x) 0

0 ∂xx + µ+ 2u2(x)

 (5.9)

and have similar properties to the J∗ and L∗ defined in (5.6).

Since we have linearized (5.1) in two different ways, it is important to note that (5.5) and (5.8)

produce the same spectrum as is illustrated in Figure 5.2a.
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Figure 5.1: The H and JL operators were computed on the indicated branch for the indicated
value of µ

The H and JL operators were numerically generated for bifurcation parameter µ = −0.477919

on the branch indicated in Figure 5.1. The H spectrum was analyzed numerically by comparing

results between the uniform and Chebyshev cases (see Figure 5.2b). The eigenvalues of H matched

between to the two discretizations on at least the order of 10−5 (see Figure 5.3), which is about the

same discrepancy found between the two discretizations results when the spectrum of the Laplacian

(a) Comparison of the H spectrum and
JL spectrum

(b) H spectrum calculated using
Chebysehv and uniform points

Figure 5.2: H and JL spectrum analysis
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(a) NCheb = 32 and NUnif = 64 (b) NCheb = 32 and NUnif = 128

Figure 5.3: Number of uniform discretization points were doubled while it was static for the
Chebyshev discretization

was analyzed. Doubling the number of points used for the uniform discretization causes the points

to match even more closely as depicted in Figure 5.3.

5.2.2 Derivation of the Normal Form

The normal form of a differential equation is another differential equation that is found by

making a polynomial change of variables that locally improves the nonlinear system in such a way

that we can more easily recognize its dynamics (see [32]). In this section, we derive an asymptotically

accurate ODE model (the normal form) for wave dynamics near the purely imaginary eigenvalue of

JL calculated at µ0.

Let µ = µ0 be our bifurcation point. We assume that the full PDE solution can be expanded

into the perturbation series

u(x, t) = eiθ
[
u0(x) + εu1(x, t, T ) + ε2u2(x, t, T ) + ...

]
, (5.10)

where

θ(t, T ) = µ0t+ ε

∫ T

0
µ1(τ) dτ + ε2

∫ T

0
µ2(τ) dτ + ... (5.11)

for T = εt with small parameter 0 < ε≪ 1. This parameter measures the deviation of the solution

from the soliton u0(x). Substituting the suggested expansion into (5.1), we can develop a hierarchy

of equations by grouping powers of ε. Below, calculations for ut and uxx are explicitly written to
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assist in the visualization of grouping terms with respect to powers of ε:

ut = iθte
iθ
[
u0 + εu1 + ε2u2 + . . .

]
+ eiθ

[
εu1t + ε2u1T + ε2u2t + ε3u2T + . . .

]
(5.12)

uxx = eiθ
[
u0xx + εu1xx + ε2u2xx + . . .

]
(5.13)

θt = µ0 + ε2µ1(T ) + ε3µ2(T ) + . . . (5.14)

Thus, the O(1) equation is

µ0e
iθu0 + eiθu0xx + 2eiθ|u0|2u0 = 0

⇒ u0xx + 2|u0|2u0 = −µ0u0, (5.15)

which is automatically satisfied (recall (5.3)). At O(ε), we can develop an equation for u1:

i(−iµ0eiθu1 + eiθu1t) + eiθu1xx + 2eiθ(u20ū1 + 2|u0|2u1) = 0

iu1t + u1xx + µ0u1 + 4|u0|2u1 + 2u20ū1 = 0

(i∂t + ∂xx + µ0 + 4u20)u1 + 2u20ū1 = 0. (5.16)

We can take the complex conjugate of (5.16) to obtain a second equation. These terms are reminiscent

of the real first row of H (without the i) so we evaluate H at µ = µ0 to define

H|µ=µ0 = H0 and − iH|µ=µ0 = Hreal
0 .

Then Hreal
0 can be used with (5.16) and its conjugate counterpart to summarize our information for

u1 as

(i∂t +Hreal
0 )

 u1

ū1

 = 0. (5.17)

Now, information about the spectrum of H0 can be used to find a solution for u1.

If iω is a simple eigenvalue of H0 with a single real eigenfunction [ψ1, ψ2]
T , then ω is a simple
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eigenvalue of Hreal
0 with a single real eigenfunction [ψ1, ψ2]

T . Thus, the localized solution for u1 is

u1 =
1

2

(
ψ1(x)e

iωt + ψ2(x)e
−iωt

)
(5.18)

While one may joyously continue this process for increasing powers of ε, this first term is all

that is necessary to create a sufficiently accurate initial condition for the relatively periodic solution.

After modifying the equation to remove the eiµt factor, the resulting solution should be truly periodic

in time. A method that could be then be used to search for time-periodic solutions in the resulting

modified NLS equation is the adjoint continuation method of Ambrose-Wilkening described in [7, 8].

5.2.3 Hamiltonian-Hopf Bifurcations

While periodic solutions may be found near any purely complex eigenvalue, more interesting

dynamics can be found near Hamiltonian-Hopf bifurcations. A Hamiltonian-Hopf bifurcations

occurs in conservative wave systems, where pairs of imaginary eigenvalues in the linear-stability

spectrum of stationary waves coalesce and move off of the imaginary axis, creating oscillatory

instability. These linear instabilities have been well-analyzed, and it has been shown that only

collisions of imaginary eigenvalues with opposite Krein signatures can induce such bifurcations by

[51].

In order to discuss Krein signatures, first suppose that we have a linear Hamiltonian system that

can be formulated as the spectral problem

JLv = λv, (5.19)

where L is a unbounded, densely defined, self-adjoint operator in the space of square-integrable

functions L2(R), and J is a bounded, skew-adjoint operator on L2(R). Hamiltonian symmetry allows

us to assume that the operators L and J satisfy

J2 = −I (5.20)

and

JL+ L̄J̄ = 0. (5.21)
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If λ0 ∈ C is a nonzero eigenvalue of (5.19) with eigenvector v0 in the domain of L, we define the

Krein quantity K(λ0) by

K(λ0) := ⟨Lv0, v0⟩, (5.22)

where ⟨·, ·⟩ is the standard inner product in L2(R). The Krein signature is defined as the sign of

the Krein quantity K(λ0) for a simple eigenvalue λ0 ∈ iR\{0}. The values of λ0 are restricted to

purely complex numbers because it is spectrally stable when Re(λ0) = 0. If Re(λ0) ̸= 0, then we

say it is spectrally unstable.

If the parameters of the stationary NLS equation change, parameters of the spectral problem

(5.19) also change. However, a simple eigenvalue λ0 ∈ iR will remain on the Re(λ) = 0 axis unless it

collides with another eigenvalue or a part of the continuous spectrum, due to the preservation of its

multiplicity and the Hamiltonian symmetry of eigenvalues. In this case, the eigenvalue λ0 and its

Krein quantity K(λ0) are, at least, continuous functions of parameters of the NLS equation.

Hamiltonian symmetry also makes it easy to see that the eigenvalues of the spectral problem

will occur in pairs or quadruplets. There is symmetry about the imaginary axis since σ3L = L̄σ3

where σ3 = diag(1,−1) (by (5.21)), and symmetry about the real axis since σ1L = L̄σ1 where

σ1 = antidiag(1, 1). Thus, if λ is an eigenvalue of L, then λ̄ is an eigenvalue by real axis symmetry

and −λ̄ is as well by imaginary axis symmetry. Applying real axis symmetry to the already found

eigenvalue −λ̄, we get −λ. Thus a single eigenvalue λ guarantees the existence of −λ, λ̄ and −λ̄.

This causes purely real or purely imaginary eigenvalues to appear in ±λ pairs. Thus, if λ is

spectrally stable (that is Re(λ) = 0) then we have a spectrally stable pair ±λ on the imaginary

axis. If λ is spectrally unstable, then it will appear as a pair on the real axis or quadruplets in the

complex plane.

If two spectrally stable eigenvalues of the same Krein signature move towards each other in

the parameter continuation of the spectral problem (5.19), then their coalescence will not result

in the onset of instability. However, if the two spectrally stable eigenvalues have opposite Krien

signatures, their coalescence is expected to result in the onset of instability, subject to technical

non-degeneracy constraints discussed in [26, 51]. This fact will allow us to define conditions under

which Hamiltonian-Hopf bifurcations occur.

From §5.2.1, the operators L and J are self-adjoint and skew-symmetric, respectively. One can
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quickly verify that J2 = −I and JL + L̄J̄ = 0; thus, we have met the necessary assumptions to

discuss the Krein signature. (Same properties hold for L∗ and J∗.)

For each spectrally stable, simple eigenvalue λ0 = iω of the spectral problem (5.5) with eigenvector

v0 = (f1, f2)
T , the Krein quantity can be explicitly written as follows:

K(λ0) = ⟨Lv0, v0⟩ = −iλ0⟨σ3v0, v0⟩ = ω

∫
R

[
|f1(x)|2 − |f2(x)|2

]
dx. (5.23)

If λ0 is nonzero, then the Krein signature is given by

Kλ0 = sgn
(
ω

∫
R

[
|f1(x)|2 − |f2(x)|2

]
dx

)
. (5.24)

Similar to what was done in §5.2.2, the normal form near a HHB point (as derived in [80]) can

be used to derive the initial condition that would produce a relatively-periodic solution. This initial

condition could then be used in the following instead of the one that we proposed above.

The numerical method that would locate a HHB has yet to be implemented. Adding this

functionality to the current bifurcation tools would provide us with the ability to search for solutions

near HHB’s and would fit into the existing framework easily since our linearization operators meet

the listed criteria.
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APPENDIX A

QGLAB EXAMPLES

A.1 Poisson Solver

The Poisson equation can be a great problem to benchmark a solver’s accuracy since an analytical

solution can be found relatively easily in some cases. For example, we will work on the lollipop

graph to solve the vertex-value problem


∆u = f,

u1(0) = 0,

u′1(ℓ1)− u′2(0) + u′2(ℓ2) + u2(0) = 1,

where f = {−π2 cos(πx),−4 cos(2x)} on edge 1 and 2, and the edges have the respective lengths

2 and π. The exact solution on the edges is then uexact = {cos(πx), cos(2x)}. The structure of

QGlab makes it possible to solve this problem with just a few lines of code:

1 Phi = quantumGraphFromTemplate ( ‘ mu l t i b e l l ’ , ‘ nbe l l s ’ , 1 , ‘ rob inCoef f ’ , . . .

2 [ 0 1 ] , ‘ d i s c r e t i z a t i o n ’ , ‘ Chebyshev ’ , ‘ nX’ , 3 2 , ‘ nodeData ’ , [ 0 ; 1 ] ) ;

3 f 1 = @(x ) −pi ^2∗ cos ( p i ∗x ) ;

4 f 2 = @(x ) −4∗cos (2∗x ) ;

5 edgeData = Phi . applyFunctionsToAllEdges ({ f1 , f 2 }) ;

6 numer i ca lSo lut i on = Phi . s o l v ePo i s s on ( ’ edgeData ’ , edgeData ) ;

7 Phi . p l o t ( numer i ca lSo lu t i on )

This yields Figure A.1. When the numerical solution is compared to the analytical one, the relative

error is found on the order of 10−04.

The function quantumGraphFromTemplate calls on a library of predefined graphs which include

the lollipop (through the use of multibell), star, and dumbbell graphs, among numerous other

examples. The plot coordinates for all graph templates are already defined which streamlines the

production of visual aids. The command quantumGraph can be used to define graphs by specifying

the source and target vertices beyond the predefined templates. The command Phi.solvePoisson

calls on Phi.laplacianMatrix (which constructs the Laplacian utilizing methods described in §3.1)
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Figure A.1: Solution to nonhomogeneous Poisson problem

and solves the appropriate matrix equation using the information from nodeData.

A.2 Bifurcation Diagrams

Bifurcations are a fundamental tool in nonlinear partial differential equations that find solutions

by branching off of the linear portion of the operator as described in §3.4. To do this with QGlab ,

the quantum graph must first be constructed so a few eigenvalues and eigenfunctions can be found

for the graph Laplacian.

1 tag = ‘ star ’ ;

2 Phi = quantumGraphFromTemplate ( tag , ‘ n ’ , 3 , ‘ LVec ’ , [ p i /2 1 1 ] , . . .

3 ‘ d i s c r e t i z a t i o n ’ , ‘ Chebyshev ’ , ‘ nx ’ , 3 2 ) ;

4

5 nToPlot = 4 ;

6 nDoubles = 2 ;

7 nTr ip l e s = 0 ;

8 diagramNumber=e igen funct ionsSaveData (Phi , tag , nToPlot , nDoubles , nTr ip l e s ) ;

In this case, we will branch off of the first eigenvalue using the function continueFromEig which

continues a branch from the linear limit of the chosen eigenfunction. A number of options need to

be set for continueFromEig (and other continuation functions in general), and those are set using

the function continuerSet.
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9 opts = cont inue rSe t ( [ ] , ’ LambdaThresh ’ ,−2 , ’NThresh ’ ,4 , ’ p lo tF lag ’ , f a l s e ) ;

10 eigNumber = 1 ;

11 [ bn1 , b l1 ] = continueFromEig ( tag , diagramNumber , eigNumber , opts ) ;

12 bi furcat ionDiagram ( tag , diagramNumber )

The labels bn and bl are chosen to stand for bifurcation number and bifurcation location, respectively.

The last line produces the bifurcation diagram in Figure A.2 where it can be observed that there are

two bifurcation points which are stored in bl(1) and bl(2).

Figure A.2: Branch 1

The function continueFromBranchPoint branches off of the specified bifurcation point. To

branch off of the first bifurcation point on branch 1, we call the desired branch bn1 and desired

branch point bl1(1).

13 [ bn2 , b l2 ]=continueFromBranchPoint ( tag , diagramNumber , bn1 , b l1 (1 ) ,1 , opts ) ;

14 bi furcat ionDiagram ( tag , diagramNumber )

This generates Figure A.3a, where the bifurcation point is now labeled with a triangle which

indicates that this is a saddle-node bifurcation point. To obtain the other branch produced by the

same bifurcation point, we indicate that we would like to branch off of the same point but in the

opposite direction in the following way:
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15 [ bn3 , b l3 ]=continueFromBranchPoint ( tag , diagramNumber , bn1 , b l1 (1 ) ,−1 , opts ) ;

16 bi furcat ionDiagram ( tag , diagramNumber )

This generates Figure A.3b where a new bifurcation point is introduced on the most recently produced

branch. Now, there are two bifurcation points left that can be branched off of.

The bifurcation point on the first branch is stored in bl1(2) and can be bifurcated off of using

continueFromBranchPoint in the following way to generate Figure A.3c.

17 [ bn4 , b l4 ]=continueFromBranchPoint ( tag , diagramNumber , bn1 , b l1 (2 ) ,1 , opts ) ;

18 bi furcat ionDiagram ( tag , diagramNumber )

(a) Branch 2 (b) Branch 3

(c) Branch 4 (d) Branch 5

Figure A.3: Star bifurcation diagram branch progression
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The bifurcation point on the third branch is stored in bl3(1), and we can use

19 [ bn5 , b l5 ]=continueFromBranchPoint ( tag , diagramNumber , bn3 , b l3 (1 ) ,1 , opts ) ;

20 bi furcat ionDiagram ( tag , diagramNumber )

to generate our final bifurcation diagram, Figure A.3d.

The function plotSolution allows a user to easily obtain visuals of the solutions generated by

each branch. One can specify which solution they would like a visual of, or pick the last solution

generated on a branch. Below plots whichever solution is closest to µ = −2, resulting in Figure A.4.

19 p l o tSo l u t i on ( tag , diagramNumber , bn1 , 1 9 )

20 p l o tSo l u t i on ( tag , diagramNumber , bn2 , ’ l a s t ’ )

21 p l o tSo l u t i on ( tag , diagramNumber , bn3 , ’ l a s t ’ )

22 p l o tSo l u t i on ( tag , diagramNumber , bn4 , ’ l a s t ’ )

23 p l o tSo l u t i on ( tag , diagramNumber , bn5 , ’ l a s t ’ )

(a) Branch 1 Solution (b) Branch 2 Solution (c) Branch 3 Solution

(d) Branch 4 Solution (e) Branch 5 Solution

Figure A.4: Solutions to the NLS on the star graph
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A.3 Time Evolution

The functions timeEvolve15s and timeEvolveARK are the implemented time evolution schemes

that were described in §4.2 and §4.3. They both evolve a solution through time given a function,

initial condition, and end time; however, timeEvolveARK also requires that the step size be specified.

While timeEvolve15s utilizes Matlab’s built-in command ode15s (a backward differentiation

formula), timeEvolveARK utilizes the following butcher tableau designed for stiff problems:

x x 0 0

1

2

1

2
− x x 0

1− x 2x 1− 4x x

1

6(1− 2x)2
3(1− 2x)2 − 1

6(1− 2x)2
1

6(1− 2x)2

Table A.1: Butcher tableau for implemented ARK method

where x was chosen to be x = 1.066, the root of the cubic equation x3 − 3x2

2 + x
2 − 1

24 = 0 which

makes the method most stable.

The function timeEvolve15s is used for the following example which demonstrates how to set

up and solve the NLS on a star graph:

1 Phi = quantumGraphFromTemplate ( ’ s t a r ’ , ’LVec ’ ,8∗ pi , ’ d i s c r e t i z a t i o n ’ , . . .

2 ’ Chebyshev ’ , ’nX ’ ,80 , ’ r ob inCoe f f ’ , [ 0 NaN NaN NaN] , ’ weight ’ , [ 2 1 1 ] ) ;

3 M = Phi . l ap lac i anMatr ix ;

4 B = Phi . weightMatrix ;

5 f =@( t , z ) −1 i ∗( M∗z + (2∗ (B∗z ) .^2 .∗ conj (B∗z ) ) ) ;

6 y0 = Phi . applyFunctionsToAllEdges ({@(x ) exp(−1 i ∗x∗(−4) ) .∗ sech (x−4∗pi ) . . .

7 , 0 , 0} ) ;

8 tend = 20 ;

9 [ t , y ] = Phi . t imeEvolve15s ( f , u0 , tend ) ;

65



This results in a solution where the soliton starts on edge 1, propagates towards the junction,

then splits on edges 2 and 3 as illustrated in Figure A.5. The accuracy is tested by checking for

conservation of energy, mass, and momentum relative to y0. The definitions for energy and mass are

still the same as (4.6) and momentum is defined by

P (u) =

|E|∑
j=1

ωj

∫
ej

|u∗j (x)u′j(x)|2 dx. (A.1)

The accuracy results are summarized in Figure A.6.

(a) t = 0 (b) t = 0.95 (c) t = 3.21

Figure A.5: Propagation of a soliton towards center node with conservation of momentum

Figure A.6: Conservation of energy, mass, and momentum results

Conservation of momentum was enforced in this example by setting the the quantum graph

property weight to [2 1 1]. By default, it would be [1 1 1], which would not conserve momentum.

This is demonstrated in Figure A.7 which illustrates that a ripple is produced going backwards along

the first edge when the wave propagates through the center node.
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(a) t = 0 (b) t = 0.95 (c) t = 3.21

Figure A.7: Propagation of a soliton towards center node without conservation of momentum.

While energy and mass are conserved in this example, momentum is not, as is summarized in

Figure A.8. Notice how in the rightmost figure, there is significant jump in the relative momentum

about when t≈1.3; this corresponds to the point in time where the wave is propagating through

the junction.

Figure A.8: Conservation of energy, mass, and momentum results.
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