
DATA-DRIVEN AIRCRAFT ASSIGNMENT AND STOCHASTIC MODELS FOR
SERVICE SYSTEMS

Wei Liu

A dissertation submitted to the faculty of the University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in the Department of Statistics and Operations Research.

Chapel Hill
2022

Approved by:

Nilay Argon

Vinayak Deshpande

Vidyadhar Kulkarni

Yao Li

Quoc Tran-Dinh

c©2022
Wei Liu

ALL RIGHTS RESERVED

ii

ABSTRACT

WEI LIU: DATA-DRIVEN AIRCRAFT ASSIGNMENT AND STOCHASTIC MODELS FOR
SERVICE SYSTEMS

(Under the direction of Vinayak Deshpande and Vidyadhar Kulkarni)

This dissertation consists of two parts: data-driven aircraft assignment and stochastic models

for service systems. In the first part, we propose a data-driven approach to reduce the delay

propagation by optimizing the assignment between incoming and outgoing flights flown by an

airline. There are two projects in this part. In the first project, we consider the aircraft assignment

problem at a single airport. We propose a data-driven approach to estimate the assignment cost

by considering covariates including scheduled arrival time, originating airport and aircraft type of

the flights. We conclude that the stochastic assignment derived from this data-driven approach

significantly outperforms the actual assignment. In the second project in this part, we extend

the previous project to a network of airports by optimizing the assignment between incoming and

outgoing flights at each airport in the network. We propose a similar data-driven approach to

estimate the assignment costs at each airport, and show that our approach performs better than

the benchmark policies.

In the second part, we consider the stochastic models for service systems. There are two

projects in this part as well. In the first project, we consider a joint staffing and admission control

problem under minimal, partial and full information cases. We compare the profit under different

information cases over the parameter space in detail. In the second project, we consider the joint

admission and service rate control problem for a general reward structure under an unobservable

(minimal information case) single server queueing system. We show that when the per unit service

cost is less than or equal to a critical value, it is optimal to admit all the customers, otherwise, it is

optimal to admit none. We show that this socially optimal policy induces the customers to behave

in a socially optimal way with self-regulation.

iii

ACKNOWLEDGEMENTS

First of all, I would thank my advisors, Dr. Vinayak Deshpande and Dr. Vidyadhar Kulkarni,

for their guidance and encouragement during my PhD study. Without their unreserved help and

support, this dissertation would not have been possible. I would also express my gratitude to my

dissertation committee members, Dr. Nilay Argon, Dr. Yao Li and Dr. Quoc Tran-Dinh. They

gave me valuable comments and suggestions on my research. I appreciate their great help.

I would also express my gratitude to the faculty members and staff in our department for their

help and support in these five years. With their great help, I have learned and improved a lot

during my PhD study. After these five years’ study in the department, I have grown as a researcher

and an instructor.

I would also express many thanks to my friends. They offered me valuable suggestions when I

face some difficult questions. We also attended lots of interesting activities together, for example,

badminton. They make my life more colorful.

Finally, I would express my deepest gratitude to my parents, Yong Liu and Xiuxia Dong.

Without their love and support, I would not have the opportunity to pursue a PhD in US.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES. xi

1 Introduction . 1

2 Introduction to Data-Driven Aircraft Assignment . 4

3 Literature Review to Data-Driven Aircraft Assignment . 8

4 Data-Driven Aircraft Assignment at A Single Airport to Minimize Delay Propagation 13

4.1 Modeling the Aircraft Assignment Problem . 13

4.2 The Optimal Assignment under Deterministic Arrival Times . 16

4.2.1 Nonnegative Delay . 16

4.2.2 Signed Delay . 18

4.3 The Optimal Assignment under Stochastic Arrival Times. 21

4.3.1 Example . 22

4.3.2 The Revised FIFO Assignment . 22

4.3.3 The Stochastic Assignment . 24

4.4 A Data-Driven Approach for the Aircraft Assignment Problem . 25

4.4.1 Data-Driven Approach to the Stochastic Assignment . 25

4.4.2 Data-Driven Approach to the rFIFO Assignment . 33

4.5 Computational Experiments . 34

4.5.1 Data Collection and Cleaning. 35

4.5.2 Optimal Number of Clusters . 36

4.5.3 Comparison of FIFO, rFIFO, and Stochastic assignment policies 39

4.6 Maintenance Routing Problem . 45

4.7 Conclusions . 49

5 Data-Driven Aircraft Assignment Over Multiple Airports to Minimize Delay Propagation . 53

5.1 Model Description . 53

5.2 Iterative Algorithm . 56

5.2.1 Algorithm . 56

5.2.2 Performance of the Iterative Algorithm . 60

5.2.3 Comparison among Deterministic, Mixed and Stochastic cases 62

5.3 Data-driven Approach . 67

5.3.1 Data-driven Approach Under Stochastic Case . 67

5.3.2 Data-driven Approach Under Mixed Case . 70

5.3.3 Data-driven Approach Under Deterministic Case . 71

5.4 Computational Experiment . 71

5.4.1 Assignments Derived from the Data-driven Approach . 71

5.4.2 Comparison . 73

5.5 Conclusions . 74

6 Introduction . 76

7 Literature Review . 82

8 Joint Staffing and Admission Control Under Different Levels of Information 88

8.1 Formulation and Preliminaries . 88

8.2 Minimal Information . 92

8.2.1 Admission Control . 93

8.2.2 Staffing Problem . 95

8.2.3 Numerical Results . 96

8.3 Partial Information . 99

8.3.1 Admission Control . 101

8.3.2 Staffing Problem . 103

8.3.3 Numerical Results . 104

vi

8.4 Full Information . 108

8.4.1 Virtual Queueing Time Process . 108

8.4.2 Admission Control . 109

8.4.3 Staffing Problem . 117

8.4.4 Numerical Results . 118

8.5 Value of Information. 119

8.6 Conclusions . 123

9 Joint Admission and Service Rate Control of an Unobservable Queue . 126

9.1 The Model . 126

9.2 Socially Optimal Policy . 127

9.3 Decentralized Decisions . 132

9.3.1 Individually Optimal Policy. 133

9.3.2 Stackelberg Game . 134

9.3.3 Nash Equilibrium. 136

9.4 Analytical Examples . 137

9.5 Numerical Results . 142

9.6 Conclusions . 147

Appendix A RATIONALE TO CHOOSE SCHEDULED ARRIVAL TIME, ORI-
GIN AIRPORT AND AIRCRAFT TYPE AS COVARIATES 149

Appendix B CLUSTER LABEL FOR EACH FLIGHT . 152

BIBLIOGRAPHY. 159

vii

LIST OF TABLES

4.1 The Total Actual Propagated Delay (in Minutes) by Using FIFO,
Regression Tree, Random Forest, Neural Net Clustering and k-
means Clustering Methods in 2018 . 26

4.2 Number of Flights for Each Time of Day Subinterval . 27

4.3 Number of Flights for Each Originating Airport . 28

4.4 Number of Flights by Aircraft Type in Each Year . 36

4.5 Total Actual Propagated Delay (in Minutes) Under the Stochastic
Assignment in 2017 . 37

4.6 Optimal Clusters for the Scheduled Arrival Time Under the rFIFO
and Stochastic Assignments . 37

4.7 Optimal Clusters for the Originating Airport Under the Stochastic
Assignment. 38

4.8 Optimal Clusters for the Aircraft Type Under the rFIFO Assign-
ment . 38

4.9 Total Actual Propagated Delay (in Minutes) Under the rFIFO As-
signment in 2017 . 38

4.10 Optimal Clusters for the Originating Airport Under the rFIFO Assignment . . 39

4.11 The Optimal Number of Clusters clsa∗r , cloa∗r , clat∗r , clsa∗, cloa∗ and clat∗ 39

4.12 Comparison Among FIFO, rFIFO and Stochastic Assignments in
terms of Total Actual Propagated Delay (in Minutes) in 2018 40

4.13 Comparison Among FIFO, rFIFO and Stochastic Assignments in
terms of Total Actual Propagated Delay (in Minutes) in the Net-
work in 2018 . 41

4.14 Percentage of Flights Delayed (Due to Propagated Delay) Under
the FIFO, rFIFO and Stochastic Assignments . 42

4.15 Comparison Between the Actual Assignment and Stochastic Assign-
ment on the Total Actual Propagated Delay (in Minutes) 43

4.16 Comparison Between the Actual Assignment and Stochastic As-
signment on the Percentage of Delayed Flights (Due to Propagated
Delay) . 43

4.17 Number of Flights that Differ from FIFO Assignment for Different
Aircraft-assignment Policies . 44

4.18 Airlines for America Per Minute Delay Cost Estimate . 44

4.19 Maintenance Stations for Delta Airlines . 45

4.20 Comparison on the Number of Infeasible Strings . 49

4.21 Comparison on the Maximum Excess Time (in Hours) of Infeasible
Strings . 50

5.1 The change of T̃ d(h), T̃m(h) and T̃ s(h) as Iteration Continues for N1 58

5.2 The change of T̃ d(h), T̃m(h) and T̃ s(h) (in minutes) as Iteration
Continues for N2 . 58

5.3 The change of T d(x(h)), Tm(x(h)) and T s(x(h)) (in minutes) as
Iteration Continues for N1 . 58

5.4 The change of T d(x(h)), Tm(x(h)) and T s(x(h)) (in minutes) as
Iteration Continues for N2 . 58

5.5 Characteristics of Two Flight Networks in (Yan and Kung, 2016) 62

5.6 Comparison among Different Approaches in Total Expected Prop-
agated Delay (in minutes) and Computation Time (in seconds) 62

5.7 Comparison among T d(x∗d), Tm(x∗m) and T s(x∗s) (in minutes) 65

5.8 Comparison among T s(xFIFO), T s(x∗d), T s(x∗m) and T s(x∗s) (in minutes) . . 66

5.9 Comparison between T s(xFIFO, Aug) and T s(xJul, Aug) . 66

5.10 Comparison on the Total Expected Propagated Delay (in minutes)
between Different Methods . 68

5.11 Comparison on the Total Expected Propagated Delay (in minutes)
between the Squared Euclidean Distance and Pearson Correlation
Distance under k-medoids Clustering Method . 69

5.12 The Total Expected Propagated Delay (in minutes) in July with
the Change of Number of Clusters k for Network N1 . 71

5.13 The Total Expected Propagated Delay (in minutes) in July with
the Change of Number of Clusters k for Network N2 . 72

5.14 Total Expected Propagated Delay (in minutes) in August Under
Different Cases . 72

5.15 Comparison on the Total Expected Propagated Delay (in minutes)
between the Benchmark Policies and the Data-driven Approach Un-
der the Stochastic Case . 73

5.16 Comparison on the Percentage of Departure Delay between the
Benchmark Policies and the Data-driven Approach Under the Stochas-
tic Case . 74

ix

B.1 Cluster Label for Each flight in N1 . 152

B.2 Cluster Label for Each flight in N2 . 154

x

LIST OF FIGURES

8.1 s∗M and c∗M as a function of r for different values of b under minimal
information case . 97

8.2 Optimal staffing s∗∗M as a function of c and r for different values of
b under minimal information case . 97

8.3 Optimal admission probability p∗∗M as a function of c and r for dif-
ferent values of b under minimal information case . 98

8.4 Optimal profit P ∗∗M as a function of c and r for different values of b
under minimal information case . 99

8.5 s∗P and c∗P as a function of r for different values of b under partial
information case . 105

8.6 Optimal staffing s∗∗P as a function of c and r for different values of
b under partial information case . 106

8.7 Optimal capacity K∗∗P as a function of c and r for different values
of b under partial information case . 107

8.8 Optimal profit P ∗∗P as a function of c and r for different values of b
under partial information case . 107

8.9 A sample path of W (t) and N(t) . 108

8.10 c∗F as a function of r for different values of b under full information
case . 119

8.11 Optimal staffing s∗∗F as a function of c and r for different values of
b under full information case . 119

8.12 Optimal profit P ∗∗F as a function of c and r for different values of b
under full information case . 120

8.13 The server value ratio as a function of r . 120

8.14 The profit ratios as a function of c and r . 121

8.15 The staffing ratios as a function of c and r . 122

8.16 The admission ratios as a function of c and r . 123

9.1 c̄(1) as a function of b and h in examples 1 and 3, respectively 143

9.2 µ∗ as a function of c in examples 1 and 3, respectively . 143

9.3 µ∗ as a function of b and h in examples 1 and 3, respectively 144

9.4 Optimal profit as a function of c in examples 1 and 3, respectively 145

9.5 Optimal profit as a function of b and h in examples 1 and 3, respectively 145

9.6 c̄(1) as a function of b and h in examples 2 and 4, respectively 145

9.7 µ∗ as a function of c in examples 2 and 4, respectively . 146

9.8 µ∗ as a function of b and h in examples 2 and 4, respectively 146

9.9 Optimal profit as a function of c in examples 2 and 4, respectively 147

9.10 Optimal profit as a function of b and h in examples 2 and 4, respectively 147

A.1 Comparison on the Empirical Cumulative Distribution of Arrival
Delay between Intervals [14, 15) and [20, 21) with the Origin Airport
being Chicago Airport and the Aircraft Type being MD-88/MD-90-30 150

A.2 Comparison on the Empirical Cumulative Distribution of Arrival
Delay between Columbia Airport and Chicago Airport with Sched-
uled Arrival Time in [9, 10) and Aircraft Type being MD-88/MD-90-30 151

A.3 Comparison on the Empirical Cumulative Distribution of Arrival
Delay between Boeing 737-932ER and MD-88/MD-90-30 with Sched-
uled Arrival Time in [8, 9) and Origin Airport being Chicago Airport 151

xii

CHAPTER 1

Introduction

This thesis consists two parts. In the first part, we consider the data-driven aircraft assignment

to minimize the delay propagation in the airline industry. We consider the assignment first at a

single airport and then in a network of airports. In the second part, we consider the stochastic

models for service systems. Specifically, we first consider a joint staffing and admission control

problem for a binary reward structure under different levels of information, and then analyze the

joint admission and service rate control under a general reward structure for an unobservable queue.

The terms used in the rest of this chapter will be defined precisely in the respective chapters.

In the first part, we propose a data-driven approach to reduce the delay propagation by opti-

mizing the assignment between incoming and outgoing flights flown by an airline. There are two

projects in this chapter. In the first project, we consider the aircraft assignment problem at a

single airport. We consider both deterministic and stochastic arrival times. In the deterministic

case, we consider two different objective functions: nonnegative and signed delays. We show the

optimality of the First-In, First-Out (FIFO) assignment for these objectives. In the stochastic case,

we propose the revised FIFO (rFIFO) and stochastic assignments based on the mean and distri-

bution of arrival delay, respectively. The central component to derive the rFIFO and stochastic

assignments is the estimation of arrival delay distribution. We provide a data-driven approach to

estimate the arrival delay distribution by considering covariates like scheduled arrival time, origi-

nating airport and aircraft type of the flights, which is further used to estimate assignment cost.

We derive the rFIFO and stochastic assignments based on the estimation of the assignment cost.

Then we compare the FIFO assignment obtained from the deterministic setting with the rFIFO

and stochastic assignments derived from the data-driven approach using the real-world data. We

show that the rFIFO and stochastic assignments offer a verifiable improvement compared to the

FIFO assignment, and the stochastic assignment works the best by using the real data of Delta

1

Airlines at Atlanta airport. We conclude that the stochastic assignment would have saved Delta

6.5 million dollars in delay costs annually.

In the second project in this part, we optimize the assignment between incoming and outgoing

flights at each airport in the network. We propose an iterative algorithm under the deterministic,

mixed and stochastic cases to solve the aircraft assignment problem. The computational results

indicate that the iterative algorithm brings a lower total expected propagated delay compared

to the previous algorithms, and reduce the computation time substantially. We also show that

the assignment derived from the deterministic and mixed cases underestimate the total expected

propagated delay significantly. An important component of the aircraft assignment problem over

the entire network of flights is the estimation of primary delay distribution. We propose a data-

driven approach under the deterministic, mixed and stochastic cases to estimate the primary delay

distribution, which is further used to derive the aircraft assignment for future operations. We

show that the data-driven approach under the stochastic case performs better than the data-driven

approach under the deterministic and mixed cases. Finally, we compare the assignment derived from

the data-driven approach under the stochastic case with two benchmark policies on two networks

operated by one major airline. The result shows that our approach outperforms the benchmark

policies in terms of the total expected propagated delay without degrading the percentage of delayed

flights.

In the second part, we consider the stochastic models for service systems. There are two projects

in this part as well. In the first project, we consider a joint staffing and admission control problem

with three different levels of information. For the joint staffing and admission control problem,

we consider it into two steps, namely admission control and staffing problem. For the admission

control problem, we aim to propose an admission policy to maximize the reward rate, which is

earned by the service provider if the incoming customer’s queueing time is within a predefined

time. Since there is a cost for each server per unit time, we get the optimal staffing level by

maximizing the profit rate, defined as the revenue rate minus the cost incurred by each server in

staffing design problem. The joint staffing and admission control problem would be affected by the

information we have. We consider three different levels of information, namely, minimal, partial

and full information cases. In the minimal information case, we only know the system parameters,

such as arrival rate, service rate and the predefined time, and we do not know anything else about

2

the state of the system. In the partial information case, we know the number of customers in the

system at the time of arrival in addition to the information known in the minimal information case.

In the full information case, we know the exact queueing time of incoming customers in addition

to the information known in the minimal information case. We show that the trends of optimal

admission control policy under the minimal and partial information cases are similar, which are

very different from that under the full information case. We also show the difference in profit under

different information cases within the parameter space. Our model can not only help the system

manager decide the optimal admission control and staffing policy based on the information he has

about the system, but also help the system manager realize the potential improvement in profit if

he can get additional information.

In the second project in this part, we consider the joint admission and service rate control

problem for a general reward structure for an unobservable queue. The system operator has two

controls: the admission probability, and the average service rate. We prove the optimal admission

and service rate control policy when the general reward structure satisfying certain conditions.

Then we give four different kinds of reward structures satisfying such conditions. We further show

that our proposed reward structure could make sure the customer can behave in a socially optimal

way. We also show that the centralized decision, Stackelberg equilibrium and Nash equilibrium are

equivalent in deriving the optimal admission and service rate control policy. It implies that our

proposed optimal policy is applicable to a very general setting.

3

CHAPTER 2

Introduction to Data-Driven Aircraft Assignment

Flight on-time performance, OTP in short, is a widely accepted metric that airlines use globally

to demonstrate punctuality of their flight networks. Airlines are compared on their OTPs and the

metric often serves as a potential service differentiator for marketing the brand to air travelers

(Official Airline Guide 2020). The U.S. Department of Transportation (DOT) considers a flight to

be delayed when its actual arrival time is at least 15 minutes later than its scheduled arrival time.

In 2018, 81.3% of flights arrived on time in the United States based on the DOT definition of on-

time arrivals. Counting only those flights whose actual arrival time is no later than the scheduled

arrival time further reduces the on-time performance for arrivals to 65.1% in 2018.

(Ball et al., 2010) estimate that the passenger time lost due to schedule buffers, delayed flights,

flight cancellations, and missed connections costed the US economy approximately $16.7 billion in

2007. The $8.3 billion direct costs to airlines consisted of increased expenses for crew, fuel, and

maintenance, among others. A report by the Joint Economic Committee of the U.S. Congress

(Schumer and Maloney 2008) estimated the total cost of flight delays to the U.S. economy was as

much as $41 billion in 2007. Clearly, flight delays have a significant impact on the U.S. economy.

Airlines typically blame flight delays on a number of external factors that are out of their control.

Flight delays have been attributed to several causes such as weather conditions, airport congestion,

airspace congestion, use of smaller aircraft by airlines, etc. The Bureau of Transportation Statistics

(BTS) provides a breakdown of flight delays in the U.S. into five categories: (i) Air Carrier delay, (ii)

Aircraft Arriving Late, (iii) National Aviation System delay, (iv) Security delay, and (v) Extreme

Weather delay. It is important to note that the largest contributor of flight delays in recent years

has been the propagated delay due to late arriving aircraft. Close to 40% of all delays have been

attributed to aircraft arriving late by BTS during 2011-2019. Flight delays are caused due to two

factors: (i) the randomness in the intrinsic travel time for a scheduled flight (which is the travel time

excluding propagated delays), and (ii) the propagation of this randomness through the air-travel

4

network and infrastructure. While a large portion of the intrinsic randomness in travel time of a

flight can be attributed to factors outside an airline’s control such as weather, the propagation of

this randomness in an airline’s network is largely driven by factors within an airlines’ control such

as aircraft routing and flight scheduling decisions.

The airline schedule development process consists of four phases (Deshpande and Arıkan 2012):

(1) service planning, (2) schedule generation, (3) resource allocation, and (4) execution scheduling.

The service planning phase is conducted by the marketing group with the goal of creating a set

of services that an airline will offer in each market. This usually consists of the frequency of

flights offered in each market and also usually includes desired time windows (e.g., 5 p.m.–6 p.m.)

and aircraft types (e.g., wide body, narrow body, long range, etc.). The scheduling group takes

this service plan and develops the actual passenger schedules by considering aggregate constraints

such as the total number of available aircraft and flight crew. Note that each passenger schedule

includes the exact departure and arrival time of each flight, and hence the scheduled block-time

decision for each flight is made at this stage (i.e., schedule generation phase). The passenger

schedules then become an input to various specific resource allocation decisions that are usually

the responsibility of the operations group (i.e., resource allocation phase). For example, aircraft

with specific tail numbers are assigned to appropriate aircraft rotations by taking into consideration

various constraints such as maintenance requirements. Finally, the execution scheduling phase

involves implementing the developed schedule by taking schedule deviations (irregular operations)

into account.

Thus, propagation of delays in an airlines’ network can be reduced through proper scheduling

decisions, as well as resource allocation decisions in the planning phase. Traditional schedule plan-

ning and routing models solve a deterministic optimization problem that assumes that flight times

are known and fixed (Barnhart and Cohn 2004). Recent approaches that incorporate uncertainty

in the planning process captures the stochastic nature of travel times. One approach is to change

flight schedules to make them more robust by adding buffers in the schedule that can absorb delays

in arriving flights. A second approach is to create aircraft assignments for a fixed flight schedule to

minimize delay propagation. The aircraft routing problem is to assign tail numbers on scheduled

arriving flights at an airport to scheduled departing flights from the same airport with the objective

of minimizing propagated delays. We focus on this second approach in our research.

5

There are two perspectives within this specific category. Previous research, such as (Dunbar

et al., 2012) and (Dunbar et al., 2014), considers the aircraft routing problem from a string-based

perspective, i.e., selecting the strings (a sequence of connected flight legs assigned to an aircraft that

begins and ends at maintenance stations) that minimizes the total delay propagation. However,

we consider the problem from a leg-based perspective, i.e., optimizing the assignment of aircraft

tail numbers between incoming and outgoing flights at each airport in the network to minimize the

total delay propagation. We call this specific assignment problem as a aircraft assignment problem.

If the arrival delays are known precisely (unlikely in practice), then the aircraft assignment problem

can be formulated as a traditional assignment model, which can be solved very easily. However,

since arrival delays are unknown during the planning phase, the aircraft assignment problem can

be formulated as a stochastic assignment model with random assignment costs. The challenge in

solving this problem arises in estimating the (stochastic) assignment costs associated with assigning

the tail number of an arriving flight to a departing flight at that airport since the assignment cost

depends on arrival delays.

We propose a data-driven approach to estimate the arrival delay distribution for the aircraft

assignment problem at a single airport in the first project, and propose a data-driven approach

to estimate the primary delay distribution for the aircraft assignment problem at each airport

in the second project. In the first project, we estimate the assignment costs by using empirical

observations of arrival delays from prior years’ flight records to compute the estimated propagated

delay associated with connecting an arriving aircraft tail number to a departing flight. We propose

a data-driven clustering method to account for factors such as originating airport of an arriving

flight, scheduled time of arrival, and aircraft type to translate the empirical observations of prior

years’ arrival delays to the assignment costs for our model. These assignment costs are used to test

the performance of several aircraft assignment policies using a hold-out sample data set.

In the second project, we propose a data-driven approach to estimate the assignment costs at

each airport for the aircraft assignment problem. We first propose an iterative algorithm under the

deterministic, mixed and stochastic cases to solve the aircraft assignment problem. An important

component of the aircraft assignment problem over the entire network of flights is the estimation

of primary delay distribution. We propose a data-driven approach under the deterministic, mixed

and stochastic cases to estimate the primary delay distribution, which is further used to derive

6

the aircraft assignment for future operations. Finally, we compare the assignment derived from

the data-driven approach under the stochastic case with two benchmark policies on two networks

operated by one major airline. The result shows that our approach outperforms the benchmark

policies in terms of the total expected propagated delay without degrading the percentage of delayed

flights.

7

CHAPTER 3

Literature Review to Data-Driven Aircraft Assignment

Academic literature has examined two approaches to minimize airline propagated delays and

disruptions: (i) ex-post plans to minimize the impact of observed actual disruptions, (ii) ex-ante

plans to reduce potential delays and disruptions. Ex-post airline delay research includes (Yen and

Birge, 2006) , (Froyland et al., 2013) and (Wei and Vaze, 2018). (Lee et al., 2020) is the first

to propose a joint ex-post and ex-ante approach to optimize the recovery decisions in response to

realized disruptions and in anticipation of future disruptions. Our focus is on the ex-ante plans

which are typically made in the schedule generation and resource allocation phase of the airline

scheduling process. There are two ex-ante approaches to make an airline network robust and less

susceptible to possible delays and disruptions. The first approach examines a plan in terms of

the ease of recovery in the event of a disruption, and the second approach aims to develop a plan

which is more resistant to flight delays. Within the first category of ex-ante models, there are three

streams of research: (i) dividing an airline network into isolated subnetworks, (ii) creating crew

schedules in which crew follow the same aircraft, and (iii) maximizing swapping opportunities for

aircraft in the event of delays. In the first stream of literature, namely isolating airline sub-networks

to improve the robustness, (Kang, 2004) consider a degradable airline schedule, which is defined as

a schedule divided into several independent layers, with each layer at a different level of importance,

and the layer with more importance is recovered first after a disruption. Their method improves

robustness of the airline network significantly because the disruption in one layer does not affect

other layers. (Rosenberger et al., 2004) considers both hub isolation and short cancellation cycles in

a fleet assignment model. They demonstrate that their approach can limit the effect of a disruption

to only a few flights within one particular hub.

In the second stream of literature, namely creating crew schedules so that crew follow the same

aircraft, (Ehrgott and Ryan, 2002) propose a bi-criteria optimization framework to get a Pareto

optimal solution by minimizing the crew pairing cost and the penalty cost incurred by allowing the

8

crew to change aircraft when the connection time is not long enough to absorb the expected arrival

delay. (Mercier et al., 2005) try to include a penalty cost on a restricted connection in an integrated

aircraft routing and crew pairing problem. Further, (Weide et al., 2010) consider the integrated

problem by solving the subproblem iteratively until there is no more opportunity to improve the

robustness.

In the third stream of literature, namely maximizing aircraft swapping opportunities, (Ageeva,

2000) attempts to incorporate robustness into the aircraft routing problem by increasing aircraft

swapping opportunities to explore the tradeoff between robustness and schedule planning cost.

(Smith and Johnson, 2006) develop a fleet assignment model by imposing station purity, limiting

the number of fleet types allowed to serve each airport. They demonstrate that imposing station

purity can provide more swapping opportunities for the aircraft. Further, (Gao et al., 2009) extend

the station purity idea to both fleet purity and crew purity. In our research, we choose to combine

the aircrafts with same seating capacity into one type, which can help increase the station purity

before we optimize the assignment between incoming and outgoing flights.

In the second approach to build robustness, namely constructing a plan which is less susceptible

to the possible delays, there are two methods. The first method utilizes the robust optimization

to minimize the maximal possible total propagated delay while building flight schedules or aircraft

routes. The second method tries to use the stochastic optimization to minimize the expectation

of the total propagated delay while building flight schedules or aircraft routes. In the stream

of research using the robust optimization approach, (Yan and Kung, 2016) try to minimize the

maximal possible total propagated delay in the aircraft routing problem when the flight leg delays

lie in a pre-specified uncertainty set. On the other hand, (Antunes et al., 2019) apply the robust

optimization approach to develop a robust crew pairing schedule. Their approach can help capture

the detailed delay propagation through crew connections and cost structure of crew salary. (Marla

et al., 2018) compare the stochastic optimization approach, robust optimization approach and the

chance-constrained optimization approach, where chance-constrained optimization approach allows

the constraint violations up to a certain specified probability limit. They show that the stochastic

optimization approach can improve on-time performance, total propagated delay and passenger

disruptions significantly, and solutions obtained by the two other approaches can improve these

criteria as well if they are formulated properly.

9

In the stream of research that uses the stochastic optimization approach, there are also two

different methods. The first method tries to decrease the delay propagation by retiming the flight

schedule for fixed aircraft assignment, and the second method intends to reduce the delay prop-

agation by optimizing the aircraft assignment for a fixed flight schedule. Within the category of

research trying to retime the flight schedule for a fixed aircraft assignment, (Lan et al., 2006) try

to minimize passenger disruptions by retiming the departure times of flights within a small time

window. (Ahmadbeygi et al., 2010) apply propagation tree to reduce the delay propagation by

modifying the departure time of the flight so that the slack time present in the network can be

re-allocated to where it is needed most. Further, (Dunbar et al., 2014) consider retiming the flight

departure times to minimize the delay propagation between the aircraft and crew.

For the category of research trying to optimize the aircraft assignment for a fixed flight sched-

ule, (Lan et al., 2006) try to reduce delay propagation by routing aircraft intelligently. In order to

capture the delay propagation along each string, they apply a log-normal distribution to approx-

imate the primary delay distribution. Here, the primary delay is the delay incurred with reasons

independent of the aircraft assignment. They show that their method can greatly reduce the delay

propagation. (Dunbar et al., 2012) try to minimize the total delay propagation in a combined rout-

ing and crewing network by assuming flight leg delay is known prior to the assignment of aircraft

and crew to flights. (Borndörfer et al., 2010) present an alternative approach to formulate the

aircraft routing problem by minimizing the total probability of positive delay propagation along

an aircraft route. They demonstrate that their approach can help reduce the delay propagation by

analyzing the real-world data.

Our research lies in the category of research trying to construct a plan that is less susceptible

to potential delays and disruptions by optimizing the aircraft assignment for a given (fixed) flight

schedule. Papers by (Lan et al., 2006), (Borndörfer et al., 2010) and (Dunbar et al., 2012) study

this problem using a string-based approach by identifying the strings that minimizes the delay

propagation. The main drawback in their approach is that it leads to an integer program that is

not efficiently solvable for a real-world network. In reality, a major airline may run a schedule with

hundreds of flights flown by one aircraft type over dozens of airports in one day. The number of

strings to cover such a network is exponentially large, and solving an integer program with that

many strings is impractical due to the prohibitive amount of computational resources it needs. In

10

contrast, we choose to minimize the delay by considering a balanced assignment problem between

incoming and outgoing flights of a single airline at each airport in the network for a given aircraft

type. This leg-based approach decomposes a large problem into manageable assignment problems

that can be easily solved using off-shelf standard algorithms. This allows us to solve aircraft routing

problems with a network with thousands of flights per day.

The second feature that separates our research from the earlier research is the treatment of

the random nature of the delays. (Lan et al., 2006) and (Borndörfer et al., 2010) assume that the

primary delays for all flights have the same distribution. (Dunbar et al., 2012) and (Dunbar et al.,

2014) refine this approach by considering the primary delays as consisting of different components

whose distribution may be dependent on the time of the day. However, they test their model using

a single parametric primary delay distribution for all flights for each instance, although they do

vary the parametric distribution from instance to instance. (Ahmadbeygi et al., 2010) do consider

the dependence of the primary delay on the upstream primary delay as well as the originating

airport, and then use clustering to identify the applicable primary delay distribution. However,

they aim to minimize the delay propagation by retiming flight schedule instead of optimizing

aircraft assignment problem. In contrast, we consider the arrival delay of flights as an exogenous

quantity driven by several covariates in the first project. We consider several explanatory covariates

for the arrival delay, such as scheduled arrival time, originating airport and aircraft type. We use

a data-driven approach to estimate the arrival delay distribution. Specifically, we use training and

tuning steps to identify ideal clusters using the clustering method. These optimal clusters produce

an empirical arrival delay distribution, which is further used to estimate the assignment cost. In

the second project, we propose a data-driven approach to estimate the primary delay distribution

by considering each flight as the covariate of primary delay. Specifically, we clustering the primary

delays and identify the ideal number of clusters in the training step, and then test its performance

on a new set. Even though (Yan and Kung, 2016) also use a data-driven approach to deal with the

primary delay distribution, they try to solve the problem by using robust optimization approach

through minimizing the maximal propagated delay. By contrast, we solve the problem by using

stochastic optimization approach through minimizing the total expected propagated delay, and we

use a completely different data-driven approach.

11

Finally, in the field of stochastic assignment problem in Operations Research, both (Aldous,

1992) and (Krokhmal and Pardalos, 2009) analyze this topic by assuming elements of the assignment

cost matrix are i.i.d random variables with a known parametric distribution, such as uniform

distribution and exponential distribution. They then show the lower bound, upper bound and

the limit of the expected cost. Further, (Emami et al., 2018) try to find the optimal assignment

of jobs (measurements) to workers (tracks) in the field of multi-target tracking, so that the total

assignment cost is minimized. They assume elements of the cost matrix are i.i.d random variables

with a known distribution as well. In contrast, elements in our cost matrix are not i.i.d since the

same arrival delay distribution of a flight determines the assignment cost of connecting that flight

to all outgoing flights. Also, elements in our cost matrix have a special structure where assignment

costs are always decreasing in a column (scheduled departure time). Estimating the cost matrix

with this special structure is non-trivial. Hence, we propose a data-driven approach to estimate

the stochastic cost matrix of the assignment problem by considering covariates such as scheduled

arrival time, originating airport, etc.

12

CHAPTER 4

Data-Driven Aircraft Assignment at A Single Airport to Minimize Delay Prop-
agation

4.1 Modeling the Aircraft Assignment Problem

An airline operates many flights in a day across its network. Legacy carriers such as American,

Delta, United and Southwest operate thousands of flights each day. Every flight has a sched-

uled/actual departure time and a scheduled/actual arrival time, an originating airport and a des-

tination airport. We will next illustrate the aircraft routing problem with a simple example.

Flight DL673 operated by Delta on July 24th, 2018 originated from Newark Airport (EWR)

with destination as Atlanta Airport (ATL). It had a scheduled departure time of 2:34 pm, but

actually departed at 2:40 pm from EWR, and was scheduled to arrive at ATL at 4:59 pm on the

same day but actually arrived at 5:13 pm at ATL resulting in a 14 minutes’ arrival delay. The

aircraft that was assigned to that flight was a Boeing 717-200, with seating capacity of 100, and

with a tail number N607AT. Based on the aircraft type and the airport, it is estimated to take 40

minutes to service the aircraft once it lands at ATL, so it is estimated to be ready to fly on the

next flight at 5:39 pm. Thus, this aircraft tail number, N607AT, can be potentially assigned to any

Boeing 717-200 flight scheduled to fly out after 5:39 pm from ATL. It was actually assigned to flight

DL1779, which was scheduled to leave ATL at 6:40 pm resulting in a ground buffer of 61 minutes

at ATL airport. Since the arrival delay of 14 minutes was smaller than the ground buffer of 61

minutes, the late arrival of the incoming flight did not result in any propagated delay. However, if

this tail number had been assigned to another flight departing at 5:39 pm, the 14 minutes’ arrival

delay would have propagated to the departing flight. In general, we are interested in the problem of

assigning incoming aircraft tail numbers to outgoing flights at a given airport in order to minimize

propagated delay. We shall make this problem more precise below.

13

We consider all the flights at a single airport that are currently using aircraft of a given type

(e.g., Boeing 717-200). We consider n incoming flights and n outgoing flights of a single aircraft

type at a single airport over a finite time. Here, we use the term “arrival i” to represent incoming

flight i, and “departure j” to denote outgoing flight j (1 ≤ i, j ≤ n). Let ai be the scheduled arrival

time for flight i (1 ≤ i ≤ n). Let dj be the scheduled departure time for flight j (1 ≤ j ≤ n).

Without loss of generality, we assume 0 ≤ a1 ≤ a2... ≤ an and 0 ≤ d1 ≤ d2... ≤ dn. Also, let Ai be

the actual arrival time for flight i, and let Xi = Ai − ai be the arrival delay for incoming flight i,

which may be positive or negative. Let τ be the minimum time needed to service the aircraft so

that it is ready to depart on the next flight, called the minimum turnaround time. We define ready

time ri = Ai + τ , which is the time when the aircraft arriving as flight i is ready to depart on its

next flight.

We say that arrival i is assigned to departure j if the aircraft carrying passengers on incoming

flight i is assigned to carry passengers on outgoing flight j. Define the signed propagated departure

delay of flight j resulting from assigning the incoming aircraft from arrival i to departure j as

Sij = Ai + τ − dj .

We call Sij as the signed delay since it can be positive or negative. Let Cij be the random “cost”

of assigning arrival i to departure j. We assume

Cij = f(Sij)

for a given function f . For example, we may use

f(Sij) = max(Sij , 0)

if the “cost” of assigning incoming flight i to outgoing flight j is the non-negative propagated delay.

Let

xij =


1, if arrival i is assigned to departure j,

0, otherwise.

14

Let x = [xij] be a n×n matrix. We say x represents an assignment policy if it satisfies the following

constraints:

n∑
i=1

xij = 1, 1 ≤ j ≤ n,

n∑
j=1

xij = 1, 1 ≤ i ≤ n,

xij = 0 or 1, 1 ≤ i, j ≤ n.

(4.1)

The total random cost of assignment x is given by

C(x) =
n∑
i=1

n∑
j=1

Cijxij

The expected cost of assignment x is

c(x) = E(C(x)) = E

 n∑
i=1

n∑
j=1

Cijxij

 =
n∑
i=1

n∑
j=1

E(Cij)xij =
n∑
i=1

n∑
j=1

cijxij , (4.2)

where cij = E(Cij).

We aim to find an assignment x that minimizes c(x). That is, we solve

SAP : min
x

n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
i=1

xij = 1, 1 ≤ j ≤ n,

n∑
j=1

xij = 1, 1 ≤ i ≤ n,

xij = 0 or 1, 1 ≤ i, j ≤ n.

(4.3)

Note that problem SAP is a stochastic version of the traditional assignment problem since the

assignment costs cij depends on the probabilistic distribution of the random arrival time, Ai, of

flight i. A key challenge in solving this problem is estimating the costs cij from historical data,

since future arrival delays are unknown during the planning phase. Once cij is estimated from

available data, problem SAP can be easily solved using standard algorithms for the assignment

15

problem. We first focus on deriving insight on the structure of the solution to problem SAP in

section 4.1, and then use this structure to provide a solution to problem SAP in section 4.2

The assignment x∗ giving the minimum cost is called the optimal assignment. We state a useful

result about the optimal solution x∗ when the cost matrix c has a special structure. We begin with

a definition:

Definition 4.1. A n by n matrix c = [cij] is called a Monge matrix if

cij + cmk ≤ cik + cmj

for all 1 ≤ i < m ≤ n and 1 ≤ j < k ≤ n.

(Burkard et al., 1996) state (see Theorem 3.1 in Burkard et al. 1996) that the optimal solution

x∗ to SAP is given by the identity assignment

x∗i,i = 1, 1 ≤ i ≤ n,

if the cost matrix is a Monge matrix. And the Monge property is recently addressed by (Estes and

Ball, 2021) as well. Since the ai and di’s are increasing in i, we see that the identity assignment is

a First-In-First-Out (FIFO) assignment. We shall consider several special instances of the c matrix

in the next section.

4.2 The Optimal Assignment under Deterministic Arrival Times

In this section, we consider the special case when arrival times are deterministic, that is, Ai = ai

for i = 1, ..., n. This case is called deterministic case. Also, it implies Sij = sij = ai+τ−dj = ri−dj

(1 ≤ i, j ≤ n). We study the optimal assignment under different situations below.

4.2.1 Nonnegative Delay

In this subsection, we consider the case of (non-negative) delay, that is

cij = max{sij , 0} = s+
ij , 1 ≤ i, j ≤ n. (4.4)

16

It implies the aircraft can only depart on or after the scheduled departure time. We show the

special structure of the c matrix defined above in the theorem below.

Theorem 1. The c matrix defined by Equation 4.4 is a Monge matrix.

Proof. Let i, j, k,m satisfy 1 ≤ i < m ≤ n and 1 ≤ j < k ≤ n. We need to prove

cij + cmk ≤ cmj + cik.

We have

cij + cmk = max{sij , 0}+ max{smk, 0},

and

cmj + cik = max{smj , 0}+ max{sik, 0}.

We use the fact that cij increases in i and decreases in j and prove the result by considering

the following six exclusive and exhaustive cases.

(i) If sij ≤ 0, smk ≤ 0, smj ≥ 0 and sik ≤ 0, then

cij + cmk = 0 ≤ cmj + cik = cmj .

(ii) If sij ≥ 0, smk ≤ 0, smj ≥ 0 and sik ≤ 0, then

cij + cmk = sij ≤ smj = cmj + cik.

(iii) If sij ≥ 0, smk ≥ 0, smj ≥ 0 and sik ≤ 0, then

cij + cmk = sij + smk ≤ smj + sik ≤ smj = cmj + cik.

(iv) If sij ≤ 0, smk ≥ 0, smj ≥ 0 and sik ≤ 0, then

cij + cmk = smk ≤ smj = cmj + cik.

17

(v) If sij ≤ 0, smk ≤ 0, smj ≤ 0 and sik ≤ 0, then

cij + cmk = 0 = cmj + cik.

(vi) If sij ≥ 0, smk ≥ 0, smj ≥ 0 and sik ≥ 0, then

cij + cmk = sij + smk ≤ smj + sik = cmj + cik.

The result now follows.

This immediately yields the next result:

Theorem 2. Under the cost structure of Equation 4.4, the FIFO assignment is an optimal policy.

Proof. Since c is a Monge matrix, the result follows from Theorem 3.1 of (Burkard et al., 1996).

4.2.2 Signed Delay

Next, we consider the signed delay given by

cij = sij = ai + τ − dj = ri − dj , 1 ≤ i, j ≤ n. (4.5)

Since ai is increasing in i and dj is increasing in j, cij increases in i and decreases in j (1 ≤ i, j ≤ n).

Lemma 1. The signed delay matrix c = [cij] is a Monge matrix.

Proof. Let i, j, k,m satisfy 1 ≤ i < m ≤ n and 1 ≤ j < k ≤ n. We have

cij + cmk = ri − dj + rm − dk = rm − dj + ri − dk = cmj + cik.

Thus, s is a Monge matrix.

As stated before, Theorem 3.1 in (Burkard et al., 1996) implies that the FIFO assignment is

optimal. However, in this case, the s matrix is even more structured than being a Monge matrix.

Hence, we can obtain further results about optimal assignments in this case. The first result appears

in Theorem 3 below.

18

Theorem 3. Under the cost structure given in Equation 4.5, all assignments are optimal with the

total signed delay given by
n∑
i=1

ai −
n∑
j=1

dj + nτ.

Proof. We have

c(x) =

n∑
i=1

n∑
j=1

cijxij

=

n∑
i=1

n∑
j=1

(ai + τ − dj)xij

=
n∑
i=1

n∑
j=1

aixij +
n∑
i=1

n∑
j=1

τxij −
n∑
i=1

n∑
j=1

djxij

=
n∑
i=1

ai −
n∑
j=1

dj + nτ,

(4.6)

using Equations 5.1. This proves the theorem.

Since all the assignments are the same in this case, we consider the majorization criteria. We

need to introduce the following notation. For any vector z ∈ Rn, let

z[1] ≥ ... ≥ z[n]

denote its components in decreasing order, and let

z[] = [z[1], ..., z[n]]

be the z vector with components arranged in decreasing order.

Definition 4.2. (Majorization) A vector z ∈ Rn is majorized by y ∈ Rn (or y majorizes z), if

r∑
i=1

z[i] ≤
r∑
i=1

y[i], 1 ≤ r < n,

n∑
i=1

z[i] =

n∑
i=1

y[i].

For a given assignment x, we define a(x) as a vector whose j-th component is given by

aj(x) =

n∑
i=1

cijxij , 1 ≤ j ≤ n.

19

We say that an assignment x majorizes assignment y if a(x) majorizes a(y).

We aim to find an assignment x which can be majorized by any other assignment. In other

words, we want to find an assignment x that minimizes

cr(x) =
r∑
j=1

a[j](x)

for every r = 1, ..., n. Note that such an assignment is not guaranteed to exist.

That is, for a given r (1 ≤ r ≤ n), we want to solve

min
x

cr(x) =

r∑
j=1

a[j](x)

s.t.
n∑
i=1

cijxij = a(x)j , 1 ≤ j ≤ n

n∑
i=1

xij = 1, 1 ≤ j ≤ n

n∑
j=1

xij = 1, 1 ≤ i ≤ n

xij = 0 or 1, 1 ≤ i, j ≤ n

(4.7)

We show the surprising result that the FIFO assignment optimizes the above objective function

for each r.

Theorem 4. Under the cost structure of Equation 4.5, the FIFO assignment is majorized by all

other assignments.

Proof. Let assignment x be the FIFO assignment policy, that is, xii = 1 for all i (1 ≤ i ≤ n). Let

y be another assignment. We shall show that

cr(x) ≤ cr(y)

for all 1 ≤ r ≤ n.

If y = x, we are done. If y is not equal to x, then there is an i for which xii = 1, but yii = 0.

Let i be the smallest such index. Then there exists a k > i such that yik=1 and an m > i such

20

that ymi = 1. Now construct an assignment y′ by setting y′ii = 1, y′mk = 1, and the rest of y′ is the

same as y.

Due to the monotonicity properties of the c matrix, we need to consider two cases. We first

consider the case when cik < cmk < cii < cmi. Let a[](y
′) and a[](y) be the reordered vectors. Then

a[](y) = [..., cmi, ..., cik, ...] and a[](y
′) = [..., cii, ..., cmk, ...], elements represented by ... are the same

in both the vectors. Since cii < cmi, and cii+cmk = cik+cmi, so a(y′) is majorized by a(y). Similar

results hold in the second case when cik < cii < cmk < cki. Thus, y′ is majorized by y. That is

cr(y
′) ≤ cr(y)

for all 1 ≤ r ≤ n. If y′ = x, we are done, else we repeat. Note that y′ is strictly “closer” to x. Since

there is a finite number of assignments, and we never see the same assignment more than once, this

procedure will terminate with y′ = x. The result follows, since y was arbitrary.

Based on the definition of majorization criterion, we see that Theorem 4 can help illustrate

the robustness of the FIFO assignment in a distributional sense, i.e., the FIFO assignment not

only minimizes the total delays, but also minimizes the maximum delay, the two largest delays,

the three largest delays, and so on. While the FIFO assignment policy is optimal in minimizing

propagated delays when flight arrival times are deterministic, the FIFO policy is not necessarily

optimal when flight arrival times are stochastic as shown in the next section. However, given the

strong properties of the FIFO assignment in a deterministic setting, it acts as a good benchmark

for evaluating any solution when arrival times are stochastic.

4.3 The Optimal Assignment under Stochastic Arrival Times

In this section, we consider the real-world setting where the actual arrival times Ais are unknown

during the planning phase and, hence, are random variables. This setting is called the stochastic

case. The expected cost of assigning arriving flight i to departing flight j is thus given by

cij = E(max{Ai + τ − dj , 0}) = E(max{ai +Xi + τ − dj , 0}), 1 ≤ i, j ≤ n. (4.8)

21

4.3.1 Example

We use one simple example to show that the optimal assignment derived under the stochastic

case can perform better than the FIFO assignment. Suppose there are 2 incoming flights and 2

outgoing flights at a given airport, that is n = 2. Let a1 = 0.3, a2 = 0.5, τ = 0.7, d1 = 1.3, and

d2 = 1.5. Suppose the delay for the i-th flight is Xi ∼ N(µi, σ
2
i) (1 ≤ i ≤ n). Let hi and Hi be the

pdf and cdf, respectively, of Xi. Let µ1 = 0.4, µ2 = 0. We also have the variances of the delay as

σ2
1 = σ2

2 = 0.04.

For the expected nonnegative delay, we compute the cost matrix using Equation 4.8. Here, we

use the following formula for a random variable X with N(µ, σ2) distribution :

E(max(X,α)) = µ(1−H(α)) + σ2h(α)− α(1−H(α)),

where α is a constant, and h and H are pdf and cdf of X, respectively. We get the following cost

matrix for the 2× 2 assignment for this example

c =

0.1396 0.0396

0.0396 0.0059

 ,
with optimal assignment

x∗ =

0 1

1 0

 .
The total expected non-negative delay of the FIFO assignment policy is .1396 + .0059 = .1455.

However, the optimal assignment x∗ has the total expected non-negative delay .0396+.0396 = .0792.

Thus, the optimal policy based on the stochastic analysis performs strictly better than the FIFO

assignment. Hence, in this section we focus on analyzing solutions to the assignment problem for

the stochastic case.

4.3.2 The Revised FIFO Assignment

In this subsection, we create a modified version of the FIFO assignment for the stochastic case,

where we do not solve the assignment problem in the stochastic case directly. Instead, we define a

22

new cost matrix c′ as follows:

c′ij = max{ai +E(Xi) + τ − dj , 0} = max{ai + µi + τ − dj , 0} = max{a′i + τ − dj , 0}, 1 ≤ i, j ≤ n,

(4.9)

where µi = E(Xi) is the expected delay of flight i, and a′i = ai + µi, which can be called the

expected arrival time. Let

cij(Xi) = max{ai +Xi + τ − dj , 0}, 1 ≤ i, j ≤ n.

Based on Jensen’s inequality, we know

cij(E(Xi)) ≤ E(cij(Xi)) (4.10)

since cij(Xi) is a convex function of Xi (1 ≤ i, j ≤ n). We can reindex the arriving flights so

that a′i ≤ a′i+1, 1 ≤ i < n. Based on Theorem 2, we know the FIFO assignment is an optimal

policy under c′ with the reindexed arrivals. We call this as the revised FIFO (written as rFIFO)

assignment. Under the rFIFO assignment, the arriving flight with the i-th smallest a′i is assigned

to outgoing flight i.

Let

c′(x) =

n∑
i=1

n∑
j=1

c′ijxij , (4.11)

be the total cost using assignment x under the cost structure of Equation 4.9. Let x′∗ be the

optimal assignment under this cost structure. The cost c(x) is defined in Equation 4.2, which is the

total cost applying assignment x under the cost structure of Equation 4.8. Let x∗ be the optimal

assignment under this cost structure. Because of the special relationship between c′ij and cij in

Equation 4.10, we show that there is a lower bound and an upper bound on c(x∗) in Theorem 5.

Theorem 5. Under the cost structure of Equations 4.2 and 4.11, c′(x′∗) ≤ c(x∗) ≤ c(x′∗).

Proof.

c′(x′∗) ≤ c′(x∗) ≤ c(x∗) ≤ c(x′∗).

23

Here the first inequality follows since x′∗ is optimal for c′, and the second inequality follows from

Equation 4.10, and the last inequality follows because x∗ is optimal for c.

From Theorem 5, we see that c′(x′∗) provides a lower bound for c(x∗) without knowing the cost

matrix c. Furthermore, c(x′∗) provides an upper bound for c(x∗) without solving the assignment

problem under cost matrix c.

4.3.3 The Stochastic Assignment

We now consider solving the assignment problem under the cost structure of Equation 4.8

directly. The derived optimal assignment is called the stochastic assignment. However, solving this

problem may involve as many as 30,000 flights for some aircraft types when we solve the assignment

problem for each aircraft type for all flights over a three month period. This can slow down the

solution of the assignment problem considerably. Hence, we introduce a daily assignment algorithm

that decomposes the original problem into T smaller daily assignment problems.

Let na(t) (nd(t)) be the number of scheduled arrivals (scheduled departures, resp.) on day t,

1 ≤ t ≤ T . A flight is called an overnight flight for day t if it is scheduled to arrive before day t

and it is not scheduled to depart on day t or later. Let O(t) be the number of overnight flights on

day t. Here, we let O(1) = 0. We see that na(t) +O(t) is the number of flights that are available to

depart on day t. Of these nd(t) are actually scheduled to depart on day t, and the rest are overnight

flights for day t+ 1. Hence, we get

O(t+ 1) = na(t) +O(t)− nd(t).

Clearly, na(t) and nd(t) are known from the data, and is guaranteed to be such that O(t) ≥ 0.

We can decompose the assignment problem into T smaller assignment problems if we assume

that the O(t) overnight flights are assigned to the first O(t) departing flights on day t. We describe

the day-by-day assignment problem below.

Let cumulative number of scheduled arrivals up to day t be defined as nca(t) =
∑t′=t−1

t′=1 na(t
′) for

1 < t ≤ T + 1, with nca(1) = 0. Thus, the na(t) arriving flights on day t are indexed (in increasing

order of their scheduled arrival time) from nca(t) + 1 to nca(t + 1). The t-th assignment problem

24

consists of assigning these flights to departing flights indexed from nca(t)+1 to nca(t)+nd(t)−O(t),

and O(t+1) overnight flights if nd(t)−O(t) > 0. Otherwise, these incoming flights will be assigned

to the O(t+ 1) overnight flights directly. This gives us the entire assignment solution as a union of

the T smaller assignments.

4.4 A Data-Driven Approach for the Aircraft Assignment Problem

In this section, we first illustrate a data-driven approach to solve the stochastic aircraft as-

signment problem, and then introduce a similar data-driven approach for the rFIFO assignment in

brief.

4.4.1 Data-Driven Approach to the Stochastic Assignment

Clearly, the central component of the stochastic assignment model is the estimation of assign-

ment cost matrix, which is derived through the estimation of the arrival delay Xi of flight i for

1 ≤ i ≤ n. However, since arrival delays are unknown during the planning phase, the challenge in

solving this problem arises in estimating the (stochastic) assignment costs associated with assigning

the tail number of an arriving flight to a departing flight at that airport since the assignment cost

depends on arrival delays. Arrival delays depend on several covariates such as originating airport,

aircraft type, airport congestion, and time varying factors such as scheduled arrival time of day,

day of the week, and month of the year.

We use a data-driven approach to estimate the assignment costs for our aircraft assignment

problem. Specifically, we estimate the assignment costs by using empirical observations of arrival

delays from prior years’ flight records to compute the estimated propagated delay associated with

connecting an arriving aircraft tail number to a departing flight. We propose a data-driven cluster-

ing method to account for factors such as originating airport of an arriving flight, scheduled time

of arrival, and aircraft type to translate the empirical observations of prior years’ arrival delays to

the assignment costs for our model. These assignment costs are used to test the performance of

several aircraft assignment policies using a hold-out sample data set.

We implemented several well developed procedures for this estimation: regression tree, random

forest, Neural net clustering and clustering method. The total propagated delays obtained by

25

using the FIFO, regression tree, random forest, neural net clustering and k-means clustering (to be

defined below) methods are shown in Table 4.1. From the table, we see that the k-means clustering

method performs the best. Hence, we focus on the clustering method as described in detail below.

Table 4.1: The Total Actual Propagated Delay (in Minutes) by Using FIFO, Regression Tree, Random
Forest, Neural Net Clustering and k-means Clustering Methods in 2018

Aircraft type FIFO Regression tree Random forest Neural net clustering k-means clustering

A319-114 0 0 0 0 0

Boeing 757-351 2589 3143 2575 2610 2553

Boeing 737-732 743 814 530 713 854

Boeing 737-832 578 589 564 504 600

A320-200 2584 3231 2586 3218 3186

Boeing 737-932ER 7826 8402 8464 7971 7610

Boeing 757-200 8866 8716 8751 8695 7617

Boeing 717-200 33743 33545 32702 32111 28496

A321-211 35977 41565 35256 36462 34780

MD-88/MD-90-30 137405 141521 129028 137664 132840

Total 230311 241526 220456 229948 218536

We illustrate this approach using data from 2016, 2017 and 2018. To be more specific, we first

cluster flights in our training data (e.g., 2016) based on covariates such as scheduled arrival time,

originating airport and aircraft type using nine deciles of observed arrival delays. These clusters

provide empirical data to estimate the arrival delay distribution for flights in the validation data

(e.g., 2017). This is then used to estimate the assignment costs to derive the optimal stochastic

assignment for the validation data (e.g., 2017). We then choose the optimal number of clusters

based on the performance of this optimal assignment based on actual arrival delays in the validation

data (e.g., 2017). Finally, we test the actual performance of this clustering method based optimal

stochastic assignment, using the optimal number of clusters from the validation data, on a hold-out

test data set (e.g., 2018).

Our approach controls for three important covariates that drive the arrival delay of any flight i:

its scheduled arrival time (SA), its originating airport (OA), and the aircraft type (AT). We show

the rationale on why we choose these three covariates in Appendix A. We control for the variation

in arrival delays based on scheduled arrival time, the flight origin airport, and the aircraft type

using a clustering procedure described in detail below.

26

We first describe the clustering procedure to estimate the empirical arrival delay distribution

based on the scheduled arrival-time (SA) covariate. We begin by classifying each flight based on

a one-hour time block in which it is scheduled to arrive. For example, a flight scheduled to arrive

at 7:12 am is classified in the [7am-7:59am] time block. We thus classify each flight into one of

the 24 arrival-time blocks. Since the number of arriving flights between midnight and 7 am is very

small, we reduce the number of arrival time blocks to 17 by creating one homogenous midnight till

7 am time block. We then group the 17 time blocks into clsa clusters, so that the arrival delay

distribution of flights within each one-hour block in a given cluster are similar. We next provide

the technical description of this clustering process.

Let SA be the scheduled arrival time of a flight in number of hours past midnight. It takes

values in [0,24). Then we discretize it by splitting [0, 24) into 17 subintervals: I1 = [0, 7), I2 =

[7, 8), I3 = [8, 9), · · · , I16 = [21, 22), I17 = [22, 24). The number of flights in each subinterval in our

dataset is shown in Table 4.2.

Table 4.2: Number of Flights for Each Time of Day Subinterval

Subintervals [0,7) [7,8) [8,9) [9,10) [10,11) [11,12) [12,13) [13,14) [14,15) [15,16) [16,17) [17,18) [18,19) [19,20) [20,21) [21,22) [22,24)

Number of flights 1894 3596 6358 4041 3017 3858 3052 3281 4419 4615 3733 2349 4265 2887 5038 3812 1725

Let

g(SA) = k, if SA ∈ Ik.

Thus, the continuous variable SA is converted into a categorical variable g(SA) taking integer

values from 1 through 17. Now let

FSA(k) = {i : 1 ≤ i ≤ n, g(SAi) = k}, 1 ≤ k ≤ 17,

be the set of flights with arrival time in interval Ik. We compute δm(k), the 10m-th percentile

(1 ≤ m ≤ 9) of the empirical distribution of the observed delay of flights in FSA(k) using the data

from 2016. Let δ(k) = [δ1(k), δ2(k), · · · , δ9(k)] be a vector of these nine deciles for a given k. Thus,

the n flights yield the following 17 data points

(k, δ(k)), 1 ≤ k ≤ 17.

27

We use k-means clustering method to cluster δ into clsa clusters, where clsa is a given integer.

k-means clustering method assumes that the number of clusters clsa is a given integer. It aims

to minimize the sum of the within-cluster variances (squared Euclidean distances). The resulting

clustering has the property that the data points in the same cluster have similar arrival delay

distribution. Thus, the clustering algorithm produces a cluster function

clsa : {1, 2, · · · , 17} → {1, 2, · · · , clsa}.

Under this cluster function, the i-th flight belongs to cluster CLAi = clsa(g(SAi)) based on its

scheduled arrival time.

Next, we consider originating airport (OA) as the covariate under consideration, which is al-

ready a categorical variable. There are many originating airports, but some of them only have a

few flights between the originating airport and the hub airport in the data set that we analyze.

We put all airports with less than or equal to 250 flights into one cluster. For other airports with

more than 250 flights, we use the clustering method described below for further analysis. Let noa

be the number of originating airports with more than 250 flights in our data. For these originating

airports, the number of flights is shown in Table 4.3.

Table 4.3: Number of Flights for Each Originating Airport

Airport Number of flights Airport Number of flights Airport Number of flights Airport Number of flights Airport Number of flights

ABQ 269 DCA 1112 IND 798 MYR 318 SAV 924

ALB 253 DEN 746 JAN 629 OKC 511 SDF 737

AUS 622 DFW 998 JAX 1184 OMA 375 SEA 662

BDL 586 DSM 262 JFK 551 ORD 998 SFO 569

BHM 893 DTW 993 LAS 641 ORF 768 SJU 361

BNA 962 ECP 524 LAX 723 PBI 947 SLC 651

BOS 969 EWR 955 LGA 1363 PDX 348 SNA 265

BUF 431 EYW 303 LIT 562 PHL 926 SRQ 509

BWI 991 FLL 1237 MCI 752 PHX 488 STL 689

CAE 292 FNT 258 MCO 1458 PIT 738 SYR 264

CAK 338 GPT 276 MDT 251 PNS 626 TLH 358

CHS 950 GRR 354 MDW 678 PVD 261 TPA 1297

CLE 671 GSO 522 MEM 874 PWM 265 TYS 285

CLT 985 GSP 684 MIA 1076 RDU 1053 VPS 429

CMH 730 HOU 398 MKE 636 RIC 756 other 4204

CVG 602 HSV 568 MLB 342 ROC 264

DAB 399 IAD 578 MSN 259 RSW 765

DAL 419 IAH 665 MSP 951 SAN 413

DAY 349 ICT 266 MSY 1179 SAT 599

28

The goal of our clustering procedure is to group origin airports into clusters such that airports

belonging to the same cluster have similar arrival delay distribution. A technical description of

the clustering procedure based on origin airport is provided next. Following the same procedure as

above, we let

FOA(k) = {i : 1 ≤ i ≤ n,OAi = k}, 1 ≤ k ≤ noa,

be the set of flights with originating airport k. We compute, the 10m-th percentile (1 ≤ m ≤ 9) of

the empirical distribution of the observed delay of flights in FOA(k) using the data from 2016. Let

η(k) = [η1(k), η2(k), · · · , η9(k)] be a vector of these nine deciles for a given airport k. Thus, the n

flights give us the following noa data points

(k, η(k)), 1 ≤ k ≤ noa.

We use the same k-means clustering method to cluster η into cloa clusters, where cloa is a given

integer. Thus, we have the following cluster function for OA.

cloa : {1, 2, · · · , noa} → {1, 2, · · · , cloa}.

Under this cluster function, the i-th flight belongs to cluster CLOi = cloa(OAi).

Finally, we consider aircraft type (AT) as the covariate under consideration, which is already a

categorical variable. Let nat be the number of aircraft types in our data set. For these aircraft type,

the number of flights is shown in Table 4.4. The goal of our clustering procedure is to group aircraft

type into clusters such that aircraft type belonging to the same cluster have a similar arrival delay

distribution. A technical description of the clustering procedure based on aircraft type is provided

next. Following the same procedure as above, we let

FAT (k) = {i : 1 ≤ i ≤ n,ATi = k}, 1 ≤ k ≤ nat,

be the set of flights with aircraft type k. We compute, the 10m-th percentile (1 ≤ m ≤ 10) of

the empirical distribution of the observed delay of flights in FAT (k) using the data from 2016. Let

γ(k) = [γ1(k), γ2(k), · · · , γ9(k)] be a vector of these nine deciles for a given aircraft type k. Thus,

29

the n flights give us the following nat data points

(k, γ(k)), 1 ≤ k ≤ nat.

We use the same k-means clustering method to cluster γ into clat clusters, where clat is a given

integer. Thus, we have the following cluster function for AT.

clat : {1, 2, · · · , nat} → {1, 2, · · · , clat}.

Under this cluster function, the i-th flight belongs to cluster CLATi = clat(ATi).

Finally, we combine clusters based on flight scheduled arrival time, originating airport and

aircraft type to create joint clusters as described below. For u ∈ {1, 2, · · · , clsa}, v ∈ {1, 2, · · · , cloa},

w ∈ {1, 2, · · · , clat}, we define

F ′(u, v, w) = {i : 1 ≤ i ≤ n,CLAi = u, CLOi = v, CLATi = w}.

Let nuvw be the cardinality of F ′(u, v, w). Thus F ′(u, v, w) describes a joint cluster through

combining the originating airport clusters, scheduled arrival time clusters, and aircraft type clusters.

We next use these joint clusters F ′(u, v, w) to estimate the assignment costs for our stochastic

aircraft assignment problem. For flights in our validation or test data sets (e.g., 2017 or 2018),

we use the arrival delay data and clusters from the training data set (e.g., 2016) to estimate the

assignment costs. For example, to estimate the assignment cost of connecting arriving flight i

to departing flight j in 2017, we first check the cluster to which flight i belongs based on its

scheduled arrival time, originating airport and aircraft type, and then use the empirical arrival

delay distribution of this cluster in 2016 to approximate its assignment cost in 2017. We next

provide a detailed mathematical description of this process.

The estimated cost of assigning arriving flight i ∈ F ′(u, v, w) to departing flight j using clsa

clusters of SA, cloa clusters of OA, and clat clusters of AT in year yr is given by

cij(cl
sa, cloa, clat, yr) = E(max{ai,yr + τyr +Xi,yr − dj,yr, 0}) (4.12)

≈ 1

nuvw
Σk∈F ′(u,v,w) max{ai,yr + τ2016 + xk,2016 − dj,yr, 0}, (4.13)

30

where xk,2016 is the observed arrival delay of flight k in 2016, and ai,yr and dj,yr are from year yr,

yr = 2017 or 2018. Also, τyr is the minimum turnaround time in year yr for a given aircraft type

at a given airport.

The above process for estimating assignment costs can be conducted for any arbitrary number of

clusters clsa, cloa, and clat. Obviously, increasing the number of clusters will provide an increasingly

better in-sample fit but may have a poor out-of-sample performance. We next describe a procedure

to find the optimal number of clusters clsa, cloa, and clat so that it has the best performance on

actual arrival delays from a validation data-set (e.g., yr = 2017).

For a given number of clusters clsa, cloa, and clat, we first solve the assignment problem for a

validation data-set (e.g., yr = 2017).

min
x

n∑
i=1

n∑
j=1

cij(cl
sa, cloa, clat, yr)xij

s.t.
n∑
i=1

xij = 1, 1 ≤ j ≤ n,

n∑
j=1

xij = 1, 1 ≤ i ≤ n,

xij = 0 or 1, 1 ≤ i, j ≤ n.

(4.14)

Let the optimal solution to the above assignment problem be denoted by x∗(clsa, cloa, clat, yr) for

given clsa, cloa, and clat. We further discuss how to measure the performance of x∗(clsa, cloa, clat, yr)

if it is implemented in year yr. In this case, we need to compute the intrinsic travel time and the

propagated delay.

We first show how to compute the intrinsic travel time by using the actual data. Let Yi,yr be the

intrinsic travel time of flight i in year yr. Suppose an airplane has flown a string of k flights in the

data set. Without loss of generality, suppose the flights in that string are indexed 1−2−3− ...−k.

Then we have

Y1,yr = A1,yr − d1,yr, (4.15)

Yi,yr = Ai,yr − di,yr − (ai−1,yr + Yi−1,yr + τyr − di,yr)+, 2 ≤ i ≤ k, (4.16)

31

where Ai,yr is the actual observed arrival time for flight i, and ai,yr and di,yr are the scheduled arrival

and departure times for flight i in year yr, respectively. Thus, we can derive the intrinsic travel

time for all flights by using the actual data. Since we have data about the flights over an extended

period from the past, we can compute the intrinsic travel time of each flight i. This intrinsic travel

time is independent of the assignment. Thus it can be used to evaluate the performance of any

assignment.

Now we discuss how we can compute the propagated delay of any proposed assignment x at the

airport we analyze assuming the assignments at other airports are the same as the actual assignment

used by the airline. Note that a given assignment x together with the assignments at other airports

specifies a unique string of flights for each aircraft in the flight network. Consider a single string

consisting of k flights. Assume, without loss of generality, that the flights are numbered 1, 2, 3,...,

k. Note that the value of the intrinsic travel time Yi,yr of flight i (1 ≤ i ≤ k) is known from the

data analysis as described earlier. Let Ai(yr, x) be the implied arrival time of flight i in this string

under assignment x in year yr. Then we have

A1(yr, x) = d1,yr + Y1,yr, (4.17)

Ai(yr, x) = di,yr + Yi,yr + (Ai−1(yr, x) + τyr − di,yr)+, 2 ≤ i ≤ k. (4.18)

Carrying out these calculations for all the strings in the flight network, we can compute the

implied arrival time Ai(yr, x) of each flight i. We define the actual propagated delay of assigning

arrival i to departure j under assignment x in the validation year yr as

caij(yr, x) = max{Ai(yr, x) + τyr − dj,yr, 0} (1 ≤ i, j ≤ n). (4.19)

Let

ca(clsa, cloa, clat, yr) =
n∑
i=1

n∑
j=1

caij(yr, x
∗(clsa, cloa, clat, yr))x∗ij(cl

sa, cloa, clat, yr),

be the total actual propagated delay using assignment x∗(clsa, cloa, clat, yr). Thus, ca(clsa, cloa, clat, yr)

measures the actual total propagated delay that would have resulted if the assignment costs es-

32

timated from the training data (e.g., 2016) were used to create an optimal assignment for flights

in the validation data (e.g., 2017) and implemented in the validation data based on the cluster

parameters clsa, cloa, and clat. We now tune our model to find the optimal number of clusters

clsa∗, cloa∗, and clat∗ as follows:

(clsa∗, cloa∗, clat∗) = argmin{ca(clsa, cloa, clat, 2017) : 1 ≤ clsa ≤ 7, 1 ≤ cloa ≤ 9, 1 ≤ clat ≤ 4}.

(4.20)

There may be several pairs of (clsa, cloa, clat) that have the same minimum total actual prop-

agated delay. We choose the one that has smallest clsa first. If there are several such pairs, we

choose the one with smallest cloa. If there are still several such pairs, we further choose the one

with smallest clat.

Finally, we test the performance of this method on a hold-out test data set (e.g., 2018). Specif-

ically, we use the optimal number of clusters derived in the previous step, clsa∗, cloa∗, and clat∗

to estimate the assignment costs for flights in the test data set using the empirical arrival delay

distribution from the training data. We then solve the stochastic assignment problem using these

estimated assignment costs to derive the optimal aircraft assignment for flights in the test data.

We then calculate the total actual propagated delay in the test data set, ca(clsa∗, cloa∗, clat∗, 2018),

using Equations 4.14 and 4.19, to compute the performance of our proposed method.

4.4.2 Data-Driven Approach to the rFIFO Assignment

In this subsection, we describe a data-driven approach to derive a revised version of the FIFO

assignment, called rFIFO, when arrival delays are stochastic. Compared to the data-driven ap-

proach to derive the stochastic assignment, we replace Equation 4.12 with Equation 4.21 to derive

the estimated cost of assigning arrival i ∈ F ′(u, v, w) to departure j using clsa clusters of SA, cloa

clusters of OA, and clat clusters of AT in year yr. That is,

cij,r(cl
sa, cloa, clat, yr) = max{ai,yr + τyr + EXi,yr − dj,yr, 0} (4.21)

≈ max{ai,yr + τ2016 +
Σk∈F ′(u,v,w)xk,2016

nuvw
− dj,yr, 0}. (4.22)

33

We then find the optimal number of clusters clsa, cloa and clat based on performance on flights

in the validation data, i.e., yr = 2017. Namely, we first solve Equation 4.14 with cost matrix

cr(cl
sa, cloa, clat, yr) = [cij,r(cl

sa, cloa, clat, yr)]. Suppose the optimal assignment by using this up-

dated cost matrix is x∗r(cl
sa, cloa, clat, yr). Let

car(cl
sa, cloa, clat, yr) =

n∑
i=1

n∑
j=1

caij(yr, x
∗
ij,r(cl

sa, cloa, clat, yr))x∗ij,r(cl
sa, cloa, clat, yr),

which is the total actual propagated delay using assignment x∗r(cl
sa, cloa, clat, yr). Then we can

derive the optimal number of clusters as follows

(clsa∗r , cloa∗r , clat∗r) = argmin{car(clsa, cloa, clat, 2017) : 1 ≤ clsa ≤ 7, 1 ≤ cloa ≤ 9, 1 ≤ clat ≤ 4}.

(4.23)

There may be several pairs of (clsa, cloa, clat) that have the same total actual propagated de-

lay as well. We use the same rule to find the optimal number of clusters as in the previous

subsection. Finally, we use the optimal clusters, clsa∗r , cloa∗r , and clat∗r , to derive the optimal

rFIFO assignment in the test data from 2018, and its corresponding total actual propagated delay

car(cl
sa∗
r , cloa∗r , clat∗r , 2018).

4.5 Computational Experiments

In this section, we first describe how we collect and clean the data to illustrate our analysis using

training, validation, and test data sets. We then describe our data-driven approach to estimate

the assignment costs using the training data set (2016) and then derive the optimal number of

clusters for the rFIFO and stochastic assignments using the validation data set (2017). Using these

assignment costs and optimal clusters, we then solve the stochastic aircraft assignment problem

for the test data set (2018). We compare the total actual propoagated delay performance of

three policies (FIFO, rFIFO, and stochastic assignment) in the test data set (2018) to develop our

recommendations for the aircraft assignment problem.

34

4.5.1 Data Collection and Cleaning

We collected the data from several resources within the Bureau of Transportation Statistics

(BTS) website. The main data is the Airline On-time Performance data for all domestic flights

flown in the US. This data set includes actual/scheduled arrival/departure times, arrival/departure

delays, originating airport, destination airport and the tail number of the aircraft for each commer-

cial flight operated by major airlines in the US. From this website, we downloaded the data for the

months of July, August and September in 2016, 2017 and 2018. Thus, the number of days of our

analysis is 92 for each year. There are 4,809,651 flight records in this downloaded data set. For the

purpose of illustration, we chose to focus on Delta Airlines, thus reducing the size of the data set

to 740,191 flight records, among which 276 flights do not have tail number. Also, we downloaded

Aircraft Registration Master file, Deregistered Aircraft file and Aircraft Reference file from Aircraft

Registry Database to get the aircraft type and seating capacity for each aircraft. In addition, some

tail numbers were invalid/missing in the Aircraft registration file. Hence, we conducted an internet

search to find the aircraft type and seating capacity for tail numbers with missing information in

the Aircraft registration file. Then, using the tools from (Ramdas and Williams, 2006) and (Arıkan

et al., 2013), we cleaned the data. Specifically, we first deleted flights with inaccurate information,

such as the flights with an invalid tail number, flights with more than 684 minutes of air-time, flights

with negative taxi-in time, taxi-out time or air time, and flight with a ratio of distance/air-time

higher than 10.45. Further, to avoid corrupt data, we eliminated flights with following conditions

(i) the actual departure time of an aircraft from an airport is earlier than its actual arrival of the

previous flight to the same airport, (ii) duplicate records for the same aircraft flying the same route

on succesive flights, (iii) an aircraft arrives to an airport and the next flight of the same aircraft is

from a different airport in less than 5 hours.

We then chose Atlanta airport, the world’s busiest airport, for Delta Airlines to conduct our

analysis. There are eleven aircraft types flown by Delta Airlines at Atlanta airport. However, we

removed the data for Boeing 767 from our analysis because Delta was phasing out this aircraft

type during the period of our analysis. The following detailed information for each aircraft type is

shown in Table 4.4:

1. the type of aircraft,

35

https://www.transtats.bts.gov/tables.asp?DB_ID=120
https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download/
https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download/

2. seating capacity,

3. n(yr) = the number of incoming/outgoing flights for each aircraft type in year yr (yr =2016,

2017 and 2018),

The rows in the table are arranged in the increasing order of the number of flights in 2018.

They range from about 500 to almost 30,000 over the 92 days. Next, we consider the originating

airports for the flights arriving at Atlanta. There are 90 originating airports with more than 250

flights, shown in Table 4.3. We do not distinguish between the smaller airports.

Table 4.4: Number of Flights by Aircraft Type in Each Year

Aircraft type Seating capacity n(2016) n(2017) n(2018)

A319-114 145 1341 364 551

Boeing 757-351 275 1155 674 658

Boeing 737-732 149 1280 1128 1493

Boeing 737-832 189 1368 2856 1652

A320-200 182 1914 2808 2938

Boeing 737-932ER 222 5314 4878 5694

Boeing 757-200 178 6207 5497 6240

Boeing 717-200 100 10502 7404 7211

A321-211 199 1721 5070 7325

MD-88/MD-90-30 142 30611 29718 28628

4.5.2 Optimal Number of Clusters

To implement the data-driven approach, we need to derive the optimal number of clusters

(based on the arrival times, the originating airports and the aircraft types) under the rFIFO and

stochastic assignments using the total actual propagated delay in 2017.

For the stochastic assignment, the optimal number of clusters derived based on the procedure

in section 4.4.1 for aircraft type is 1, i.e., we regard all the aircraft types as a single homogenous

cluster. After fixing the optimal number of clusters for the aircraft type, the total actual propagated

delay in 2017 under the stochastic assignment as a function of clsa and cloa is shown in Table 4.5.

From Table 4.5, we can see the optimal numbers of clusters for the scheduled arrival time and

originating airport are both 5. The optimal clusters for scheduled arrival time under the stochastic

36

Table 4.5: Total Actual Propagated Delay (in Minutes) Under the Stochastic Assignment in 2017

clsa
cloa

1 2 3 4 5 6 7 8 9

1 208403 197878 201461 201798 204293 204281 200297 202491 200827

2 206673 200443 199516 204920 202254 199520 206225 203033 203672

3 204009 201745 203177 201227 197992 200241 201211 204652 206162

4 205199 199369 198275 202578 202049 207285 198093 198360 201649

5 209272 202380 204606 202373 193713 201026 202775 200196 202964

6 203451 204933 203312 202618 198802 199851 202778 206720 197453

7 204877 200708 200454 196380 198999 198263 206276 200508 201116

assignment are shown in Table 4.6. From the table, we can see that the scheduled arrival time is

split into five intervals, namely, [0, 14), [14, 17), [17, 20), [20, 22) and [22, 24). Specifically, [17, 20),

and [20, 22) are the evening peak times, and [0, 14), [14, 17) and [22, 24) are the rest. Further, the

optimal clusters for originating airport under the stochastic assignment are shown in Table 4.7.

We see that the airports in clusters 2, 4 and 5 are mostly busy airports. The airports in cluster 3

are mostly small airports and not busy, while the airports in cluster 1 are in between. From these

results, we can see that our data-driven approach under the stochastic assignment makes intuitive

sense.

Table 4.6: Optimal Clusters for the Scheduled Arrival Time Under the rFIFO and Stochastic Assignments

Cluster Interval

1 [0,14)

2 [14,17)

3 [17,20)

4 [20,22)

5 [22,24)

For the rFIFO assignment, the optimal number of clusters for the aircraft type is 3. The

corresponding optimal clusters are shown in Table 4.8. From the table, we can see that aircraft

types in cluster 1 include Boeing 737-732, Boeing 737-832 and MD-88/MD-90-30, where MD-

88/MD-90-30 has the largest number of flights flown at ATL, and the other two types may be

overwhelmed by MD-88/MD-90-30. Aircraft types in cluster 2 including A319-114, Boeing 737-

37

Table 4.7: Optimal Clusters for the Originating Airport Under the Stochastic Assignment

Cluster Airport

1 BDL, BOS, CLT, ICT, JAX, LIT, PBI, PHX, PIT, PVD, PWM, RIC, ROC, RSW, SAV, SDF, SNA, SYR, TPA

2 BHM, BNA, BUF, CLE, CMH, DAB, DAY, DEN, DTW, FLL, GSP, JAN, LAS, LAX, MCI, MDT, MDW, MIA,

MSN, MSP, MSY, ORF, SAN, SAT, SEA, SFO, SLC, SRQ, STL

3 ABQ, ALB, CAE, CAK, CHS, CVG, DSM, ECP, FNT, GPT, GRR, GSO, HSV, MKE, MYR, OKC, OMA, PDX,

PNS, SJU, TLH, TYS, VPS

4 AUS, BWI, DAL, DFW, EYW, HOU, IAD, IAH, IND, MCO, MEM, MLB, RDU

5 DCA, EWR, JFK, LGA, ORD, PHL

932ER and Boeing 757-200 mostly have a small number of flights flown at ATL. And aircraft types

in cluster 3 including Boeing 757-351, A320-200, A321-211 and Boeing 717-200 are in between.

Table 4.8: Optimal Clusters for the Aircraft Type Under the rFIFO Assignment

Cluster Aircraft type

1 Boeing 737-732, Boeing 737-832, MD-88/MD-90-30

2 A319-114, Boeing 737-932ER, Boeing 757-200

3 Boeing 757-351, A320-200, A321-211, Boeing 717-200

After fixing the optimal number of clusters for the aircraft type, the total actual propagated

delay in 2017 under the rFIFO assignment with the change of clsa and cloa is shown in Table 4.9.

Table 4.9: Total Actual Propagated Delay (in Minutes) Under the rFIFO Assignment in 2017

clsa
cloa

1 2 3 4 5 6 7 8 9

1 202783 200105 201422 198407 200102 200323 197897 198717 199843

2 203699 204224 201599 200306 198912 201129 199811 199310 197957

3 204347 203709 202844 201762 200688 201279 200769 200498 199241

4 204696 203729 200772 202845 199323 197274 198925 201952 201273

5 204701 203850 200394 202920 196998 195755 196417 199515 198841

6 204836 203570 201396 202489 201245 199308 197984 201355 197880

7 204340 203543 200912 203252 201529 199373 197615 200571 198154

From the table, we can see that the optimal number of clusters for the scheduled arrival time

is 5, which is the same as that in the stochastic assignment. And the optimal number of clusters

for the originating airport is 6. The optimal clusters for originating airport under the rFIFO

assignment are shown in Table 4.10. We see that the airports in clusters 2, 4 and 5 are mostly busy

airports. The airports in clusters 3 and 6 are mostly small airports and not busy, while the airports

38

in cluster 1 are in between. This is similar to that in the stochastic case. From these results, we

see that our data-driven approach under the rFIFO assignment makes intuitive sense as well. The

optimal number of clusters for the scheduled arrival time, the originating airport and the aircraft

type under the rFIFO and stochastic assignments are summarized in Table 4.11.

Table 4.10: Optimal Clusters for the Originating Airport Under the rFIFO Assignment

Cluster Airport

1 BDL, BOS, CLT, CMH, ICT, JAX, LAS, LIT, MIA, ORF, PBI, PHX, PIT, PVD, PWM, RIC, ROC, RSW, SAN,

SAV, SDF, SNA, SYR, TPA

2 AUS, BHM, BNA, CLE, DAB, DAY, DEN, DTW, FLL, GSP, JAN, LAX, MCI, MDT, MDW, MSN, MSP, MSY,

SAT, SEA, SFO, SLC, SRQ, STL

3 ABQ, BUF, CAE, CHS, CVG, ECP, GPT, GRR, GSO, HSV, MKE, MYR, OKC, OMA, PDX, PNS, TLH, VPS

4 BWI, DAL, DFW, EYW, HOU, IAD, IAH, IND, MCO, MEM, MLB, RDU

5 DCA, EWR, JFK, LGA, ORD, PHL

6 ALB, CAK, DSM, FNT, SJU, TYS

Table 4.11: The Optimal Number of Clusters clsa∗r , cloa∗r , clat∗r , clsa∗, cloa∗ and clat∗

clsa∗r cloa∗r clat∗r clsa∗ cloa∗ clat∗

5 6 3 5 5 1

4.5.3 Comparison of FIFO, rFIFO, and Stochastic assignment policies

Using the optimal clusters derived from 2017 data as described in the previous sub-section,

we first compute the assignment costs for the rFIFO and stochastic assignment policies. The

optimal rFIFO and stochastic assignment policies were computed in our test data set from 2018

using these assignment costs. We then compare the performance of FIFO, rFIFO and stochastic

assignments as shown in Table 4.12. In this table, ca(F, 2018) (second column) is the total actual

propagated delay by using the FIFO assignment policy in 2018, while car(cl
sa∗
r , cloa∗r , 2018) (column

3) and ca(clsa∗, cloa∗, 2018) (column 5) represent the actual propagated delay by using the rFIFO

and stochastic assignment policies, respectively. IrF (2018) and Ist(2018) (columns 4 and 6) are the

percentage improvement by using the rFIFO and stochastic assignments, respectively, compared

to the FIFO assignment in 2018. The last row (columns 2, 3 and 5) of Table 4.12 shows the total

actual propagated delay over all flights of all aircraft types in 2018 under the three assignments. We

see from this table that both the rFIFO and stochastic assignments perform better than the FIFO

assignment. Specifically, the stochastic assignment performs the best, with the overall improvement

39

compared to the FIFO assignment being 5.11%, even though the stochastic assignment may perform

worse than the FIFO assignment for some individual aircraft types.

Table 4.12: Comparison Among FIFO, rFIFO and Stochastic Assignments in terms of Total Actual Prop-
agated Delay (in Minutes) in 2018

Aircraft type ca(F, 2018) car(cl
sa∗
r , cloa∗r , 2018) IrF (2018) ca(clsa∗, cloa∗, 2018) Ist(2018)

A319-114 0 0 0.00% 0 0.00%

Boeing 757-351 2589 2566 0.89% 2553 1.39%

Boeing 737-732 743 743 0.00% 854 -14.94%

Boeing 737-832 578 578 0.00% 600 -3.81%

A320-200 2584 2683 -3.83% 3186 -23.30%

Boeing 737-932ER 7826 7852 -0.33% 7610 2.76%

Boeing 757-200 8866 8840 0.29% 7617 14.09%

Boeing 717-200 33743 32475 3.76% 28496 15.55%

A321-211 35977 35408 1.58% 34780 3.33%

MD-88/MD-90-30 137405 135157 1.64% 132840 3.32%

Sum of all types 230311 226302 1.74% 218536 5.11%

Then we show the network effect of the rFIFO and stochastic assignments. We compare the

total actual propagated delay over the entire network for different assignment policies in Table 4.13.

We see that the rFIFO and stochastic assignments still perform better than the FIFO assignment.

Specifically, the rFIFO assignment performs 0.68% better than the FIFO assignment, and the

stochastic assignment performs 1.65% better than the FIFO assignment. If we compare the saving

in the total actual propagated delay at Atlanta airport with that in the entire network in comparison

to the FIFO assignment, we see that the saving increases from 4,009 (230, 311− 226, 302) minutes

to 7,299 (1, 066, 316 − 1, 059, 017) minutes under the rFIFO assignment, and the saving increases

from 11,775 (230, 311 − 218, 536) minutes to 17,590 (1, 066, 316 − 1, 048, 726) minutes under the

stochastic assignment. It implies that even though we only aim to minimize the propagated delay

at Atlanta airport, the derived assignment can bring a further reduction in total actual propagated

delay over the entire network.

We further compare the FIFO, rFIFO and stochastic assignments in 2018 in terms of the

percentage of flights delayed due to propagated delay as shown in Table 5.16. For a given assignment

policy x, define the percentage of flights delayed by more than b minutes in 2018 as pd(x, b).

Assignment x can be FIFO, rFIFO or stochastic assignment. From Table 5.16, we see that the

40

Table 4.13: Comparison Among FIFO, rFIFO and Stochastic Assignments in terms of Total Actual
Propagated Delay (in Minutes) in the Network in 2018

Aircraft type FIFO rFIFO Stochatic assignment

A319-114 83908 83908 83908

Boeing 757-351 14714 14691 14675

Boeing 737-732 5711 5752 5918

Boeing 737-832 69298 69298 68373

A320-200 97379 97478 98405

Boeing 737-932ER 67487 67546 68453

Boeing 757-200 78280 78054 76107

Boeing 717-200 213405 211701 207092

A321-211 104904 101920 103241

MD-88/MD-90-30 331230 328669 322554

Sum of all types 1066316 1059017 1048726

Improvement compared to FIFO 0.68% 1.65%

difference of pd(x, b) among these three assignments is very small. It implies the rFIFO or stochastic

assignment can lower total actual propagated delay without significantly impacting the percentage

of flights delayed as compared to the FIFO assignment.

In view of the above evidence, we recommend the stochastic assignment for implementation.

To see its effectiveness, we also compared the stochastic assignment policy with the actual aircraft

assignment implemented by the airline in 2018 in terms of the total actual propagated delay and

the percentage of delayed flights, as shown in Tables 4.15 and 4.16, respectively. In Table 4.15,

ca(a, 2018) (column 2) is the total actual propagated delay induced by using the actual airline

assignment, while ca(clsa∗, cloa∗, 2018) (column 3) is the total actual propagated delay induced by

using the stochastic assignment proposed in this project. Similarly, Ias (2018) is the percentage

improvement in terms of the total actual propagated delay by using the stochastic assignment

policy over the actual airline assignment. We see that the stochastic assignment outperforms the

actual assignment for all types except for types Boeing 757-351 and MD-88/MD-90-30. The reason

why MD-88/MD-90-30 under actual assignment can perform better is because we observe that the

airline changes the assignment of MD-88/MD-90-30 dynamically based on the updated information

it has. Table 4.16 offers similar comparison in the fraction of delayed flights. From this table, we

41

Table 4.14: Percentage of Flights Delayed (Due to Propagated Delay) Under the FIFO, rFIFO and Stochas-
tic Assignments

Aircraft type
FIFO rFIFO Stochastic assignment

pd(x, 0) pd(x, 15) pd(x, 0) pd(x, 15) pd(x, 0) pd(x, 15)

A319-114 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Boeing 757-351 8.97% 5.62% 8.21% 5.02% 8.21% 4.86%

Boeing 737-732 0.47% 0.40% 0.40% 0.33% 0.40% 0.27%

Boeing 737-832 0.18% 0.18% 0.18% 0.18% 0.24% 0.24%

A320-200 0.92% 0.68% 1.06% 0.82% 1.09% 0.92%

Boeing 737-932ER 2.27% 1.42% 2.34% 1.49% 2.32% 1.60%

Boeing 757-200 1.04% 0.95% 1.01% 0.85% 1.01% 0.83%

Boeing 717-200 3.52% 3.02% 3.37% 2.80% 3.36% 2.75%

A321-211 9.31% 5.75% 9.88% 5.79% 10.83% 5.90%

MD-88/MD-90-30 5.01% 4.00% 4.92% 3.80% 5.18% 3.90%

All types 4.26% 3.19% 4.27% 3.07% 4.50% 3.14%

see that the stochastic assignment brings a significant improvement in fraction of delayed flights

compared to the actual assignment for each aircraft type.

The last row in Tables 4.15 and 4.16 shows the impact of using stochastic assignment policy for

all flights. For example, it shows a large 18% improvement in the total actual propagated delay over

the actual assignment used in 2018, from 265,419 minutes under the actual assignment to 218,536

minutes under the stochastic assignment. The percentage of flights delayed by over 15 minutes

decreases from 6.89% in actual assignment to 3.14% under the stochastic assignment policy. This

implies that if the airline can use the stochastic assignment, it can not only greatly reduce the delay

propagation, but also improve the on-time performance across all flights significantly.

Further, to derive insight on how the policies differ in their assignment from the FIFO policy,

we derive the number of flights whose assignment differs from the FIFO assignment in Table 4.17.

We see that the number of flight assignments that differ from the FIFO assignment gradually

increases from rFIFO to stochastic to the actual airline assignment. Specifically, the actual airline

assignment is almost 50% different from the FIFO assignment. This suggests that the airline can

achieve significant performance improvement by moving closer to the FIFO assignment as suggested

by the stochastic assignment policy. This table also suggests that the stochastic assignment differs

from the FIFO assignment for a small number of flights for aircraft types with small number

42

Table 4.15: Comparison Between the Actual Assignment and Stochastic Assignment on the Total Actual
Propagated Delay (in Minutes)

Aircraft type
Actual assignment Stochastic assignment Improvement

ca(a, 2018) ca(clsa∗, cloa∗, 2018) Ias (2018)

A319-114 1251 0 100.00%

Boeing 757-351 2070 2553 -23.33%

Boeing 737-732 4935 854 82.70%

Boeing 737-832 4559 600 86.84%

A320-200 19971 3186 84.05%

Boeing 737-932ER 12488 7610 39.06%

Boeing 757-200 20317 7617 62.51%

Boeing 717-200 32842 28496 13.23%

A321-211 36129 34780 3.73%

MD-88/MD-90-30 130857 132840 -1.52%

All types 265419 218536 17.66%

Table 4.16: Comparison Between the Actual Assignment and Stochastic Assignment on the Percentage of
Delayed Flights (Due to Propagated Delay)

Aircraft type
Actual assignment Stochastic assignment

pd(x, 0) pd(x, 15) pd(x, 0) pd(x, 15)

A319-114 6.17% 4.17% 0.00% 0.00%

Boeing 757-351 10.94% 6.69% 8.21% 4.86%

Boeing 737-732 9.71% 5.29% 0.40% 0.27%

Boeing 737-832 8.41% 4.36% 0.24% 0.24%

A320-200 15.28% 9.36% 1.09% 0.92%

Boeing 737-932ER 9.15% 4.23% 2.32% 1.60%

Boeing 757-200 12.48% 5.90% 1.01% 0.83%

Boeing 717-200 12.18% 6.42% 3.36% 2.75%

A321-211 17.72% 8.38% 10.83% 5.90%

MD-88/MD-90-30 14.17% 7.41% 5.18% 3.90%

All types 13.42% 6.89% 4.50% 3.14%

43

of flights. However, for aircraft types with large number of flights, such as MD-88/MD-90, the

stochastic assignment policy also differs significantly from the FIFO policy. Thus, the FIFO policy

could be significantly sub-optimal when travel times are stochastic.

Table 4.17: Number of Flights that Differ from FIFO Assignment for Different Aircraft-assignment Policies

Aircraft type n(2018) rFIFO Stochastic assignment Actual assignment

A319-114 551 32 108 215

Boeing 757-351 658 20 67 217

Boeing 737-732 1493 39 416 668

Boeing 737-832 1652 26 464 767

A320-200 2938 132 1040 1406

Boeing 737-932ER 5694 410 2104 2762

Boeing 757-200 6240 336 2576 3125

Boeing 717-200 7211 869 3091 3550

A321-211 7325 772 2543 3166

MD-88/MD-90-30 28628 8533 13372 14201

Finally, to illustrate the benefit of our proposed model, we calculate the potential monetary

savings for an airline if they were to implement the stochastic assignment policy. We first convert

total flight delays into a dollar amount by using the per minute delay cost estimate given by the

Airlines for America (A4A). The cost per minute for the different impacts of delays is shown in

Table 4.18 (Airlines for America 2019).

Table 4.18: Airlines for America Per Minute Delay Cost Estimate

Item Delay cost for Airlines ($/min.)

Fuel 27.02

Crew-Pilots/Flight Attendants 23.36

Maintenance 11.75

Aircraft Ownership 9.28

Other 2.80

Note that this estimate does not consider the cost to the passenger, or the environment including

noise and emissions issues (Barnhart et al. 2014 and Chen and Solak 2015), but only includes the

cost incurred by an airline due to flight delays. We use the direct costs related to crew-pilots/flights

attendants, aircraft ownership, and other costs to compute the per minute propagated delay cost,

44

which is $35.44 in 2018. Thus, based on the propagated delay in Table 4.15, we can work out the

savings in cost by using our stochastic assignment policy compared to the actual assignment for

all aircraft types. This gives us a total savings of (265419− 218536) ∗ 35.44 = 1.66 million dollars

for the three months of July, August, and September. Thus, the corresponding annual savings is

around 1.66∗243710/62390 = 6.49 million dollars, based on 243710 total number of incoming flights

operated by Delta Airlines at Atlanta airport in 2018, while 62390 is the corresponding total number

of incoming flights from July to September in 2018. It implies that it helps Delta Airlines potentially

save approximately 6.5 million dollars if they had used the stochastic assignment at Atlanta airport

in 2018. Thus, an aircraft assignment policy that takes into account the stochastic nature of

propagated delays can potentially reduce operating costs related to flight delays significantly.

4.6 Maintenance Routing Problem

In this section, we analyze the maintenance routing problem by considering the maintenance

checks mandated by FAA. There are four types of maintenance checks: A, B, C, and D, varying in

scope, duration, and frequency (Clarke et al. 1997 and Lan et al. 2006). Any violations may result in

significant penalties (Eltoukhy et al. 2017). In literature, the research on the maintenance routing

problem only considers A checks, which are currently called the line maintenance checks based on

the definition from National Aviation Academy. The line maintenance checks are the only checks

that need to be performed frequently since they only need to cover some basic inspection checks.

The academy recommends that aircraft needs the line maintenance checks every 24 to 60 hours

of accumulated flight time, but it depends on the operator of the aircraft. Since the maintenance

requires trained professionals and equipment, these checks are only performed at a limited number

of airports. For example, Delta Airlines has 30 maintenance stations shown in Table 4.19.

Table 4.19: Maintenance Stations for Delta Airlines

Maintenance
stations

ATL, BDL, BOS, BWI, CHS, CVG, DCA, DEN, DTW, EWR, FLL, HNL, JFK, LAS, LAX,

LGA, MCO, MEM, MIA, MSP, PDX, PHL, PHX, RDU, SAN, SAV, SEA, SFO, SLC, TPA

We now consider the maintenance routing problem using the stochastic assignment at Atlanta

airport proposed in Section 7, and the actual assignment at other airports. This yields a path

followed by each tail number. Each path is a sequence of flights flown by one tail number. We

45

https://www.naa.edu/types-of-aviation-maintenance-checks/

can partition each path into a set of subpaths, namely strings. Each string starts and ends at a

maintenance station with a layover larger than or equal to five hours. Each string can be further

subdivided into rotations, and each rotation has a layover larger than or equal to five hours at its

endpoints. Thus the entire network can be divided into rotations, with each rotation consisting

of a collection of flights. We use the rotations as given from now on, and we then construct the

strings based on the connection between rotations. Let Lj be the length of string j, i.e., the sum

of the flight times of all the flights in the string. Then the excess time of string j is given by

cj = max(Lj − Tr, 0),

where Tr is the maximum flight time between maintenance stations allowed by FAA. We use Tr = 60

and 72 hours in our numerical experiment. Our objective is to select the strings so that the sum

of excess times of the selected strings is minimized. We formulate the network below.

We describe the network formulation for the maintenance routing problem using stochastic

assignment at Atlanta airport, and actual assignment at other airports. Suppose there are N

airports in total, indexed 1 through N . Let N = {1, 2, ..., N}. We reserve index 1 for Atlanta

airport. Let there be R rotations in total, indexed 1 through R. Let R = {1, ..., R}. Let In ⊆ R

be the set of rotations that end in airport n, and On ⊆ R be the set of rotations leaving airport n.

Let s(r) be the start time of rotation r and t(r) be the termination time of rotation r, r ∈ R. Also,

let sa(r) be the starting airport of rotation r, and ta(r) be the terminating airport of rotation r.

Let f(r) be the total flight time of rotation r.

We first construct a directed acyclic network G = (V,E) with vertex set V and edge set E as

follows. The vertex set is given by

V = {(n, r) : n ∈ N, r ∈ In ∪On}.

That is, each node has a label (n, r), where n ∈ N is the airport index, and r is the rotation index

for the rotation incident on airport n, i.e., sa(r) = n or ta(r) = n. Note that there are two vertices

in V for each rotation, hence the number of vertices is |V | = 2R.

46

Next we construct the edge set E and define the edge length w(e) for e ∈ E. An edge e is a

pair (n, r) of nodes in V . Define a partition N = N1 ∪N2 as follows: N1 is the set of maintenance

stations, N2 is the set of non-maintenance stations. Then

E = {((1, r), (1, r′)) : r is assigned to r′ based on the stochastic assignment at Atlanta airport}

∪ {((n, r), (n, r′)) : r is assigned to r′ based on the actual assignment at airport n ∈ N1 \ {1}}

∪ {((n, r), (n, r′)) : n ∈ N2, r ∈ In, r′ ∈ On, 0 < s(r′)− t(r) ≤ 48 hours}

∪ {((n, r), (m, r)) : n ∈ N, r ∈ On, r ∈ Im}
(4.24)

The first subset is the set of rotations connected at Atlanta airport using the stochastic assignment.

The second subset describes the rotation connected in other maintenance stations. The third subset

describes the possible connections of incoming rotations to outgoing rotations at non-maintenance

airports, ensuring the ground time is at most 48 hours. The last subset describes a connection from

airport n to airport m if rotation r starts from airport n and ends at airport m. The edges in the

first three subsets have zero length, that is, w((n, r), (n, r′)) = 0 if ((n, r), (n, r′)) ∈ E. And length

of the edge in the last subset is the total flight time of the rotation, that is, w((n, r), (m, r)) = f(r)

if ((n, r), (m, r)) ∈ E.

We can find all the strings for this directed acyclic network using the method proposed by

(Baidari and Sajjan, 2016). Let ns be the number of strings. The information about the strings is

represented by a R× ns matrix A, defined as follows. Let

A(i, j) =


1, if rotation i is contained in string j,

0, otherwise.

Let c = [cj , j = 1, 2, ..., ns] be a column vector of these excess times. Define the decision variable

yj for each string as follows.

yj =


1, if string j is selected,

0, otherwise.

47

Let y = [yj , j = 1, 2, ..., ns] be a column vector of these decision variables. And let e be a R-

dimensional column vector of ones. Then a vector y is feasible if each rotation belongs to one

and only one string, i.e., Ay = e. The cost of this feasible assignment y is given by c>y. The

maintenance routing problem can now be defined as identifying a feasible y with the minimum cost

c>y. That is, the maintenance routing problem can be formulated as follows:

min
y

c>y

s.t. Ay = e.

(4.25)

A selection of strings can be used to create a path for each tail number over 92 days (July,

August and September) we analyze. However, if we solve the problem over 92 days directly, the

number of airports is 95, and the number of rotations is 13,553 for aircraft type MD-88/MD-90-

30. This creates a huge network with astronomically large number of strings. And the previous

research using the string-based method, such as (Lan et al., 2006) and (Yan and Kung, 2016), only

consider a daily flight network by assuming the fleeted schedule will repeat everyday. By contrast,

we can solve the aircraft routing problem in a two-week flight network using the method specified

above. So we split the 92 days into seven two-week periods, thus we have seven subnetworks. We

construct the solution over 92 days from these seven subnetworks by combining the flight times of

the strings that begin in one subnetwork and end in the next. We call the resulting solution as

proposed solution.

For a given solution y, we compute the following two performance measures.

Infs(y) = number of infeasible strings (the string with flight time exceeding Tr) in y.

Me(y) = maximum excess time of infeasible strings in y.

(4.26)

Let y∗ be the proposed solution. Let ya be the actual set of strings, and ys be the set of strings by

using the stochastic assignment at Atlanta airport, and actual assignment at other airports. We

show the two performance measures, namely, Infs(y) and Me(y), for ya, ys and y∗ in Tables 4.20

and 4.21, respectively. From Table 4.20, we can see that if we regard all types as a whole, the

improvements of y∗ compared to ya and ys are both larger than 30% when the required time is 60

48

hours, and the improvements are both larger than 40% when the required time is 72 hours. From

Table 4.21, we can see y∗ can help reduce the maximum excess time for the infeasible strings for six

of all aircraft types compared to ya and ys. In particular, it can help reduce the maximum excess

time for type MD-88/MD-90-30 (the type with the maximum number of flights) significantly. It

implies that our proposed method can not only help reduce the number of infeasible strings, but

also the maximum excess time of the infeasible strings.

Table 4.20: Comparison on the Number of Infeasible Strings

Aircraft type
60 hours 72 hours

ya ys y∗ ya ys y∗

A319-114 26 23 10 11 11 4

Boeing 757-351 45 34 34 6 7 7

Boeing 737-732 1 0 0 1 0 0

Boeing 737-832 70 65 59 20 18 14

A320-200 17 12 8 5 3 1

Boeing 737-932ER 49 84 49 28 35 23

Boeing 757-200 45 43 40 24 15 15

Boeing 717-200 138 124 92 69 72 41

A321-211 15 28 18 6 13 9

MD-88/MD-90-30 247 232 121 110 123 50

Sum of all types 653 645 431 280 297 164

Improvement to ya 33.18% 44.78%

Improvement to ys 34.00% 41.43%

4.7 Conclusions

Flight delays have a significant impact on an airline’s operating cost including increased ex-

penses for crew, fuel, and maintenance. Propagated delays due to late arriving aircraft contribute

to 40% of all flight delays as reported by the Bureau of Transportation Statistics. The propagation

of flight delays in an airlines’ network is largely driven by factors within an airlines’ control such

as aircraft routing and flight scheduling decisions. The aircraft assignment problem is to assign

tail numbers on scheduled arriving flights at an airport to scheduled departing flights at the same

airport with the objective of minimizing propagated delays. In this project, we propose a new data-

49

Table 4.21: Comparison on the Maximum Excess Time (in Hours) of Infeasible Strings

Aircraft type
60 hours 72 hours

ya ys y∗ ya ys y∗

A319-114 81 43 35 69 31 6

Boeing 757-351 42 72 72 30 60 60

Boeing 737-732 31 0 0 19 0 0

Boeing 737-832 55 55 40 43 43 28

A320-200 56 56 27 44 44 2

Boeing 737-932ER 42 65 43 30 53 31

Boeing 757-200 61 68 68 49 56 56

Boeing 717-200 90 79 68 78 67 40

A321-211 28 29 29 16 17 17

MD-88/MD-90-30 84 81 47 72 69 38

driven approach for the aircraft assignment problem by formulating it as a balanced assignment

problem between incoming and outgoing flights flown by the same aircraft type at a single airport.

We consider both deterministic and stochastic versions of the aircraft assignment problem. In

the deterministic case, we prove the optimality of the First-in-First-out (FIFO) assignment policy

under two different performance measures. This justifies the use of the FIFO policy as a benchmark

policy due to its optimality properties. In the stochastic case, we show that the FIFO assignment

policy is no longer optimal and propose the rFIFO and stochastic assignment formulations for the

aircraft assignment problem.

A key challenge in solving the problem is estimating the stochastic assignment costs associated

with assigning tail numbers on an arriving flight to a departing flight at the same airport. This

arises because arrival delays depend on several factors such as originating airports, time of the day,

aircraft type amongst others. We propose a data-driven approach to estimate the assignment costs

by using empirical observations of arrival delays from prior years’ flight records to compute the

empirical propagated delay distribution. We propose a data-driven clustering method to account

for factors such as originating airport, time of day, and aircraft type that affect the arrival delay

distribution. This empirical approach is then used to compute the aircraft assignment costs which

serve as an input to our stochastic assignment model.

50

These assignment costs are then used to derive the aircraft assignment for two policies: rFIFO

and stochastic assignment policies. The rFIFO policy is a revised version of the FIFO policy which

adjusts the actual arrival time of each flight by its expected delay. The stochastic assignment

policy in contrast uses the empirical distribution of arrival delays in evaluating assignment costs.

The assignment costs for both policies are estimated from a training data set for Delta Airlines at

Atlanta airport from 2016. The optimal clusters for the empirical estimation are established using

a validation data set from 2017 for Delta. Finally, the optimal rFIFO and stochastic assignment

policies are derived for an out of sample data set from 2018 for Delta at Atlanta airport. We

compared the rFIFO and stochastic assignment policies with the FIFO assignment, using the data-

driven approach and considering the total delay, as well as the fraction of delayed flights on an

out-of-sample data set from 2018.

We show that the rFIFO and stochastic assignment policies derived from the data-driven ap-

proach both perform better than the FIFO assignment, and the stochastic assignment policy per-

forms the best in terms of total actual propagated delay. Specifically, the improvement in total

propagated delay by using the stochastic assignment compared to the FIFO assignment is 5.11%.

Also, the difference in the fraction of delayed flights among these three assignments is pretty small.

This implies that the rFIFO or stochastic assignment lower total actual propagated delay almost

without influencing the performance in the percentage of delayed flights when it is compared to the

FIFO assignment.

We also compared the stochastic assignment with the actual assignment that was used by Delta

in 2018. We show that for all Delta Airlines flights at Atlanta airport from July to September in

2018, the stochastic assignment policy yields a roughly 18% improvement in total actual propagated

delay over the actual airline assignment. It also reduces the fraction of delayed flights from 6.89%

to 3.14% based on the DOT definition of a delayed flight. Further, we estimate that Delta Airlines

would have potentially saved approximately 6.5 million dollars in flight delay related operating

costs if it had used the stochastic assignment in 2018. In view of this evidence, we recommend

the use of the stochastic assignment policy for the aircraft assignment problem. We feel that our

proposed stochastic assignment policy is specially beneficial for busy airports with a large number

of flights. By incorporating the stochastic nature of arrival delays in solving the aircraft assignment

problem, and combining it with a data-driven approach can potentially help an airline significantly

51

reduce its operating costs due to flight delays, improve passenger convenience and experience, and

help the environment by reducing emissions.

In terms of the maintenance routing problem, we construct a directed acyclic network to min-

imize the total excess time over three months. It would bring a significant improvement in the

number infeasible strings and the maximum excess time for the string. It implies that our proposed

approach can also take care of the maintenance issue mandated by FAA.

52

CHAPTER 5

Data-Driven Aircraft Assignment Over Multiple Airports to Minimize Delay
Propagation

5.1 Model Description

We consider an aircraft assignment problem to minimize the total expected propagated delay

over all the flights flown by a given aircraft type (aircrafts with the same seating capacity) run by

one airline. Specifically, we consider the problem from a leg-based perspective by optimizing the

assignment between incoming and outgoing flights at each airport in a daily flight network. We

describe it in more detail as follows.

Suppose there are P airports in the network, labeled as 1, 2, ..., P . There are M flights flown

among these airports, labeled as 1, 2, ...,M . Let F = {1, 2, ...,M} be the set of these flights. Let

di/Di be the scheduled/actual departure time at the originating airport ori(i) for flight i ∈ F , and

ai/Ai be the scheduled/actual arrival time at destination airpot des(i) for flight i ∈ F . At airport

p, there are a set of incoming flights and a set of outgoing flights. Let I(p) be the set of incoming

flights at airport p, and O(p) be the set of outgoing flights at airport p. However, some pairs of

incoming and outgoing flights are feasible for the aircraft assignment, and some of them are not. An

incoming flight i ∈ I(p) and an outgoing flight j ∈ O(p) is called a feasible incoming and outgoing

flight pair if the outgoing flight j is supposed to depart η minutes later than the scheduled arrival

time of the incoming flight i. Let IF (p) be the set of incoming flights in the feasible pairs at airport

p, and OF (p) be the set of outgoing flights in the feasible pairs at airport p. So, I(p)\IF (p) is

the set of infeasible incoming flights at airport p. For these flights, we add the dummy outgoing

flights OD(p), which can be regarded as the overnight flight to the next day. For dummy outgoing

flights, we assume its scheduled departure time is a positive infinite number, and for all the dummy

outgoing flights, we assume the destination airport is P + 1. Similarly, O(p)\OF (p) is the set of

infeasible outgoing flights at airport p. For these flights, we add the set of dummy incoming flights

53

ID(p), which can be regarded as the overnight flight from the previous day. For dummy incoming

flights, we assume its scheduled arrival time is a negative infinite number, and for all the dummy

incoming flight, we assume the originating airport is 0. Let INC(p) = I(p)∪ID(p) be the set of all

incoming flights including the dummy incoming flights at airport p, and OUT (p) = O(p) ∪OD(p)

be the set of all outgoing flights including the dummy outgoing flights at airport p. Thus, the

number of incoming flights in INC(p) is the same as the number of outgoing flights in OUT (p).

We further consider the assignment problem between incoming flights in INC(p) and outgoing

flights in OUT (p) at airport p (1 ≤ p ≤ P). Let

xij =


1, if flight i ∈ INC(p) is assigned to flight j ∈ OUT (p),

0, otherwise.

Specifically, if xij = 1 for some i ∈ ID(p) and j ∈ O(p), it means the dummy incoming flight (i.e.

overnight flight from the previous day) i is assigned to flight j ∈ O(p), which implies flight j is the

first flight in the string (a sequence of flights flown by one aircraft). Similarly, if xij = 1 for some

i ∈ I(p) and j ∈ OD(p), it means incoming flight i ∈ I(p) is assigned to dummy outgoing flight

(i.e. overnight flight to the next day) j, which implies flight i is the last flight of the string. Let

x = [xij]. We say x represents an assignment policy if it satisfies the following constraints:

∑
i∈INC(p)

xij = 1, j ∈ OUT (p), 1 ≤ p ≤ P,

∑
j∈OUT (p)

xij = 1, i ∈ INC(p), 1 ≤ p ≤ P,

xij = 0 or 1, i ∈ INC(p), j ∈ OUT (p), 1 ≤ p ≤ P.

(5.1)

Now we formally introduce two important concepts related to a flight: the primary delay and

the propagated delay. Intuitively speaking, the propagated delay is the delay incurred by the

lateness of the previous flight, which is affected by the aircraft assignment. On the other hand, the

primary delay accounts for the en-route delay, passenger connection delay, and other delays that

are not a function of aircraft assignment (Lan et al. 2006; Yan and Kung 2016). We show how to

compute each type of delay.

54

Let Xi be the primary delay of flight i. Suppose an airplane has flown a string of k flights on a

given day in the data set. Without loss of generality, suppose the flights in that string are indexed

1− 2− 3− ...− k. Then we have

X1 = (A1 − a1)+ (5.2)

Xi = (Ai − ai − (Ai−1 + τ − di)+)+, 2 ≤ i ≤ k. (5.3)

Thus, we can derive the primary delay for all flights by using the actual data. Since we have data

about the flights over an extended period from the past, once we can estimate the distribution of

the primary delay Xi of each flight i. This distribution is independent of the assignment.

Now we discuss how we can compute the propagated delay of any proposed assignment x.

Note that a given assignment x specifies a unique string of flights for each aircraft in the network.

Consider a single string consisting of k flights. Assume, without loss of generality, that the flights

are numbered 1, 2, ..., k. Note that the distribution of the primary delay Xi of flight i (1 ≤ i ≤ k)

is known from the data analysis as described earlier. Let Ai(x) be the implied arrival time of flight

i in this string under assignment x. Then we have

A1(x) = a1 +X1, (5.4)

Ai(x) = ai +Xi + (Ai−1(x) + τ − di)+, 2 ≤ i ≤ k. (5.5)

Carrying out such calculations for all the strings in assignment x, we can compute the implied

arrival time Ai(x) of each flight i (i ∈ F ′). Now let flight i ∈ INC(p) be an incoming flight and

flight j ∈ OUT (p) be an outgoing flight at airport p. Then the implied propagated delay if flight i

is assigned to flight j under assignment x can be computed by

Ci,j(x) = (Ai(x) + τ − dj)+. (5.6)

Let cij(x) = E(Cij(x)) be the expected propagated delay of assigning incoming flight i ∈

INC(p) to outgoing flight j ∈ OUT (p) under assignment x (1 ≤ p ≤ P).

55

The total expected propagated delay of assignment x is

T (x) =
P∑
p=1

∑
i∈INC(p)

∑
j∈OUT (p)

cij(x)xij . (5.7)

Thus, the aircraft assignment problem (AP) can be modeled as follows:

AP : min
x

T (x) =

P∑
p=1

∑
i∈INC(p)

∑
j∈OUT (p)

cij(x)xij

s.t.
∑

i∈INC(p)

xij = 1, j ∈ OUT (p), 1 ≤ p ≤ P,

∑
j∈OUT (p)

xij = 1, i ∈ INC(p), 1 ≤ p ≤ P,

xij = 0 or 1, i ∈ INC(p), j ∈ OUT (p), 1 ≤ p ≤ P.

(5.8)

Clearly, this is a nonlinear integer programming problem since the cost matrix c(x) depends on

the assignment x. It is difficult to solve this problem directly. We propose an iterative algorithm

to transform this nonlinear integer programming problem into a set of linear assignment problems

(one assignment problem at each airport) so that it can be solved efficiently by using the traditional

algorithm, namely Hungarian algorithm. We will illustrate this iterative algorithm in detail in the

next section.

5.2 Iterative Algorithm

In this section, we first introduce an iterative algorithm under different cases to derive the

solution (assignment) to AP. Then we show the performance of the iterative algorithm by comparing

it with the approach proposed by the previous research, and finally compare the solutions derived

from the algorithm under different cases.

5.2.1 Algorithm

We begin with the description of the iterative algorithm (IA). It is designed to stop after H

iterations, where H is a preset positive integer.

56

Step 0: Set h = 0. Compute

c̃i,j(p, 0) = (ai + τ − dj)+, i ∈ INC(p), j ∈ OUT (p), 1 ≤ p ≤ P.

Step 1: Solve the following assignment problem for each airport p ∈ {1, 2, · · · , P}:

LAP : T̃ (p, h+ 1) = min
∑

i∈INC(p)

∑
j∈OUT (p)

c̃ij(p, h)xij

s.t.
∑

i∈INC(p)

xij = 1, j ∈ OUT (p),

∑
j∈OUT (p)

xij = 1, i ∈ INC(p),

xij = 0 or 1, i ∈ INC(p), j ∈ OUT (p).

(5.9)

Denote the resulting optimal assignment at airport p by x(p, h+ 1). Let the overall assignment be

x(h+ 1) = [x(p, h+ 1), 1 ≤ p ≤ P] and

T̃ (h+ 1) =
P∑
p=1

T̃ (p, h+ 1).

Step 2: Let x = x(h + 1), compute the propagated delays implied by assignment x using

Equation 5.6. Set

C̃i,j(p, h+ 1) = (Ai(x) + τ − dj)+, i ∈ INC(p), j ∈ OUT (p), 1 ≤ p ≤ P.

Let c̃ij(p, h+1) = E(C̃ij(h+1)), and let the overall cost matrix be c̃(h+1) = [c̃(p, h+1), 1 ≤ p ≤ P].

Step 3: Set h = h+ 1. If h ≥ H, stop. Else go to step 1.

After the algorithm terminates, we compute T (x(h)) for h = 1, 2, · · · , H, and choose x(h) that

produces the smallest T (x(h)) as the optimal assignment, and call it x∗. Note that T̃ (h) is not the

same as T (x(h)), which can be observed from Tables 5.1 , 5.2 , 5.3 and 5.4.

Intuitively, we can regard each iteration of the iterative algorithm as the operation of the

flights on one day. On the initial day (iteration 0), we optimize the assignment between incoming

and outgoing fights at each airport by assuming the fight will arrive as scheduled. This resulting

57

Table 5.1: The change of T̃ d(h), T̃m(h) and T̃ s(h) as Iteration Continues for N1

Iteration 1 2 3 4 5 6 7 8 9 10

T̃ d(h) 0.00 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84

T̃m(h) 0.00 431.15 415.61 415.20 415.20 415.20 415.20 415.20 415.20 415.20

T̃ s(h) 0.00 546.39 510.06 510.06 510.06 510.06 510.06 510.06 510.06 510.06

Table 5.2: The change of T̃ d(h), T̃m(h) and T̃ s(h) (in minutes) as Iteration Continues for N2

Iteration 1 2 3 4 5 6 7 8 9 10

T̃ d(h) 5.00 335.48 335.48 335.48 335.48 335.48 335.48 335.48 335.48 335.48

T̃m(h) 5.00 754.51 753.16 753.16 753.16 753.16 753.16 753.16 753.16 753.16

T̃ s(h) 5.00 1067.58 1055.94 1055.55 1055.94 1055.55 1055.94 1055.55 1055.94 1055.55

Table 5.3: The change of T d(x(h)), Tm(x(h)) and T s(x(h)) (in minutes) as Iteration Continues for N1

Iteration 1 2 3 4 5 6 7 8 9 10 min
T (x(1))−T (x∗)

T (x(1))
× 100%

Td(x(h)) 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 0.00%

Tm(x(h)) 449.55 415.61 415.2 415.2 415.2 415.2 415.2 415.2 415.2 415.2 415.2 7.64%

Ts(x(h)) 569.84 510.23 510.06 510.06 510.06 510.06 510.06 510.06 510.06 510.06 510.06 10.49%

Table 5.4: The change of T d(x(h)), Tm(x(h)) and T s(x(h)) (in minutes) as Iteration Continues for N2

Iteration 1 2 3 4 5 6 7 8 9 10 min
T (x(1))−T (x∗)

T (x(1))
× 100%

Td(x(h)) 356.19 335.48 335.48 335.48 335.48 335.48 335.48 335.48 335.48 335.48 335.48 5.81%

Tm(x(h)) 766.28 753.16 753.16 753.16 753.16 753.16 753.16 753.16 753.16 753.16 753.16 1.71%

Ts(x(h)) 1078.58 1055.94 1055.55 1055.94 1055.55 1055.94 1055.55 1055.94 1055.55 1055.94 1055.55 2.14%

58

optimal assignment x(1) is actually the First-In, First-Out (FIFO) assignment at each airport. This

assignment is used on day 1 (iteration 1). This assignment yields a string for each aircraft, which

is then used to update the implied arrival time for each flight on day 1. Using these, we compute

the cost matrix c̃(1) for iteration 1, which is then further used to derive a new assignment x(2) for

day (iteration) 2. This iterative process continues for H iterations.

Note that this is not a descent algorithm. That is, there is no guarantee that T̃ (h) or T (x(h))

will monotonically decrease as iteration continues. Hence, we terminate the algorithm after a

sufficiently large number of iterations H and choose the assignment x(h) that produces the smallest

T (x(h)) for h = 1, 2, · · · , H. Our numerical experience with real data indicates that the total

expected propagated delay approaches a fixed value or fluctuates within a small range in the first

10 iterations, which is shown in Tables 5.3 and 5.4. Hence, we choose to stop the algorithm with

H = 10 iterations.

Now we consider three cases of this algorithm: (1). deterministic (d), (2). mixed (m), and (3).

stochastic (s). The only difference among these three cases is in the computation of Ai(x). We use

the superscripts d, m or s to denote the implied arrivals under each case. The explicit equations

are given below.

Deterministic Case:

Ad1(x) = a1 + EX1, (5.10)

Adi (x) = ai + EXi + E(Adi−1(x) + τ − di)+, 2 ≤ i ≤ k. (5.11)

Here, we assume that all primary delays are equal to their expected values, and hence there is no

randomness in the system.

Mixed Case:

Am1 (x) = a1 +X1, (5.12)

Ami (x) = ai +Xi + E(Ami−1(x) + τ − di)+, 2 ≤ i ≤ k. (5.13)

59

Here, we assume that the primary delays are stochastic with known distributions. However, we

replace the implied propagated delays by their expected values. This reduces the computational

effort needed to compute the cost matrices in each iteration.

Stochastic Case:

As1(x) = a1 +X1, (5.14)

Asi (x) = ai +Xi + (Asi−1(x) + τ − di)+, 2 ≤ i ≤ k. (5.15)

Thus, Asi (x) is the same as Ai(x) as described in the previous section. This case takes into account

the stochastic nature of the primary as well as implied propagated delays.

We denote the corresponding Cij(x) (equation 5.6) as Cdij(x), Cmij (x) and Csij(x); and the

corresponding assignment produced by the algorithm as x∗d, x∗m and x∗s, and the corresponding

T (x) as T d(x∗d), Tm(x∗m) and T s(x∗s).

5.2.2 Performance of the Iterative Algorithm

In this subsection, we study the performance of the iterative algorithm by comparing it with

the approach proposed by the previous researchers, such as (Dunbar et al., 2014) and (Yan and

Kung, 2016). (Dunbar et al., 2014) and (Yan and Kung, 2016) both model the delay stochasticity

by constructing a set of random scenarios Ω, where each scenario ω ∈ Ω corresponds to primary

delay values Xw for each flight. Then based on Equations from 5.10 to 5.15, we can derive the

expected propagated delay of assigning incoming flight i ∈ INC(p) to outgoing flight j ∈ OUT (p)

under assignment x (1 ≤ p ≤ P) in the deterministic, mixed and stochastic cases as follows:

cdij(x) = E(Cdij(x)) =
∑
ω∈Ω

1

|Ω|
Cd,ωij (x), (5.16)

cmij (x) = E(Cmij (x)) =
∑
ω∈Ω

1

|Ω|
Cm,ωij (x), (5.17)

csij(x) = E(Csij(x)) =
∑
ω∈Ω

1

|Ω|
Cs,ωij (x). (5.18)

(Dunbar et al., 2014) propose two algorithms to deal with the aircraft assignment problem,

namely the exact approach and the local approach. The exact approach considers all the feasible

60

aircraft strings R. And for each feasible string r ∈ R, they calculate its total expected propagated

delay along the string based on Equation 5.18. Then they try to minimize the total expected

propagated delay over all the strings in the network. However, this approach is not practical for

industry-sized problems due to its lack of an efficient column generation process, which is used to

find the strings with less delay. Therefore, (Yan and Kung, 2016) compare their approach with

local approach proposed by (Dunbar et al., 2014). In the local approach, (Dunbar et al., 2014)

calculate the total expected propagated delay along the string based on Equation 5.17.

(Yan and Kung, 2016) try to minimize the maximal possible total propagated delay in the

aircraft assignment problem when the flight delays lie in a pre-specified uncertainty set. This

would produce an aircraft assignment in the network, which can be further used to derive the total

expected propagated delay based on Equation 5.17.

In the approaches of (Dunbar et al., 2014) and (Yan and Kung, 2016), branch-and-price solution

process finds provably good solution very quickly but fails to prove optimality for a long time. The

branch-and-price is a branch-and-bound method with linear programming relaxation, which is

solved by using column generation at each node of the branch-and-bound tree (Lan et al. 2006).

So, the runtime of branch-and-price solution process is limited to 120 seconds, which implies the

total expected propagated delay derived from (Yan and Kung, 2016) and (Dunbar et al., 2014) may

not be optimal.

Then we compare our iterative algorithm in the mixed case with approach proposed by (Yan

and Kung, 2016) and the local approach given by (Dunbar et al., 2014). Specifically, we compare our

approach with that of (Dunbar et al., 2014) and (Yan and Kung, 2016) on two of the largest aircraft

types operated by one major US airline in the 31 days of August in year 2007. The characteristics

of daily flight network from these two aircraft types are shown in Table 5.5. The comparison among

our approach and the approaches proposed by (Dunbar et al., 2014) and (Yan and Kung, 2016) on

the total expected propagated delay is shown in Table 5.6. Here, for the iterative algorithm, we set

η = 31 for N1 to make sure the corresponding assignment uses 24 aircrafts, and set η = 20 for N2

to make sure the corresponding assignment uses 23 aircrafts. From Table 5.6, we see that the total

expected propagated delay and computation time by using each approach, and the last row indicates

the improvement in total expected propagated delay of our approach compared to the approach

proposed by (Yan and Kung, 2016). In terms of the total expected propagated delay, our iterative

61

algorithm can perform 14.51% and 10.03% better than that of (Yan and Kung, 2016), respectively,

in the two daily flight networks. This is a surprising level of improvement considering the algorithm

in (Yan and Kung, 2016) is a heuristic optimization algorithm. In terms of the computation time,

the time needed for our iterative algorithm is less than 1 second, but the approach from (Yan and

Kung, 2016) and (Dunbar et al., 2014) needs hundreds of seconds. Thus, the improvement in terms

of computation time is also significant.

Table 5.5: Characteristics of Two Flight Networks in (Yan and Kung, 2016)

Network Number of flights Number of aircraft Minimum turnaround time (in minutes)

N1 106 24 20

N2 117 23 30

Table 5.6: Comparison among Different Approaches in Total Expected Propagated Delay (in minutes) and
Computation Time (in seconds)

Approach
N1 N2

Delay Computation time Delay Computation time

(Dunbar et al., 2014) 575.3 217.04 854.0 140.11

(Yan and Kung, 2016) 485.7 1,041.99 837.1 420.06

Iterative algorithm 415.2 0.38 753.2 0.98

Improvement 14.51% 10.03%

5.2.3 Comparison among Deterministic, Mixed and Stochastic cases

In this subsection, we mainly compare the assignments x∗d, x∗m and x∗s derived from the

iterative algorithm under the deterministic, mixed and stochastic cases, as well as the optimal

assignments to AP under Equation 5.1 based on the cost matrices derived from Equation 5.10 to

5.15. Let Cdij(x), Cmij (x) and Csij(x) be as defined in Section 3.1, and let cdij(x), cmij (x) and csij(x)

be their expected values, respectively. The next lemma compares these expected values.

Lemma 2. For any assignment x,

cdij(x) ≤ cmij (x) ≤ csij(x). (5.19)

Proof. Proof

62

For any assignment x in the network, we consider a single string consisting of k flights derived

from the assignment. Assume the flights in the string are numbered 1, 2, ..., k. Then we can use

the induction method to prove the lemma.

The expected propagated delay of assigning flight 1 to flight 2 under the deterministic, mixed

and stochastic cases are

cd12(x) = Cd12(x) = (Ad1 + τ − d2)+ = (a1 + EX1 + τ − d2)+, (5.20)

cm12(x) = ECm12(x) = E(Am1 + τ − d2)+ = E(a1 +X1 + τ − d2)+, (5.21)

cs12(x) = ECs12(x) = E(As1 + τ − d2)+ = E(a1 +X1 + τ − d2)+. (5.22)

Using Jensen’s inequality, we get

cd12(x) ≤ cm12(x) = cs12(x).

When i ∈ {2, ..., k− 1}, the expected propagated delay of assigning flight i to flight i+ 1 under

the deterministic, mixed and stochastic cases are

cdi,i+1(x) = Cdi,i+1(x) = (Adi + τ − di+1)+ = (ai + EXi + cdi−1,i(x) + τ − di+1)+, (5.23)

cmi,i+1(x) = ECmi,i+1(x) = E(Ami + τ − di+1)+ = E(ai +Xi + cmi−1,i(x) + τ − di+1)+, (5.24)

csi,i+1(x) = ECsi,i+1(x) = E(Asi + τ − di+1)+ = E(a1 +Xi + Csi−1,i(x) + τ − di+1)+. (5.25)

When i = 2, we know

cd23(x) = (a2 + EX2 + cd12(x) + τ − d3)+

≤ (a2 + EX2 + cm12(x) + τ − d3)+

≤ E(a2 +X2 + cm12(x) + τ − d3)+

= cm23(x)

= E(a2 +X2 + cs12(x) + τ − d3)+

≤ E(a2 +X2 + Cs12(x) + τ − d3)+

= cs23(x).

(5.26)

63

Suppose for i ∈ {2, ..., k − 2}, we have

cdi−1,i(x) ≤ cmi−1,i(x) ≤ csi−1,i(x).

Then

cdi,i+1(x) = (ai + EXi + cdi−1,i(x) + τ − di+1)+

≤ (ai + EXi + cmi−1,i(x) + τ − di+1)+

≤ E(ai +Xi + cmi−1,i(x) + τ − di+1)+

= cmi,i+1(x),

≤ E(ai +Xi + csi−1,i(x) + τ − di+1)+

≤ E(ai +Xi + Csi−1,i(x) + τ − di+1)+

= csi,i+1(x).

(5.27)

Thus, for i ∈ {1, ..., k − 1}, we have

cdi,i+1(x) ≤ cmi,i+1(x) ≤ csi,i+1(x) (5.28)

Thus, the above inequalities hold for all the strings derived from assignment x. Hence, the

Lemma follows.

Let x∗∗d, x∗∗m and x∗∗s be the optimal assignments to AP under Equation 5.1 based on the

cost matrices cd(x), cm(x) and cs(x), respectively. These may be different from x∗d, x∗m and x∗s

derived from the iterative algorithm since the assignments x∗d, x∗m and x∗s may not be the optimal

assignments. Let T ∗∗d = T d(x∗∗d), T ∗∗m = Tm(x∗∗m) and T ∗∗s = T s(x∗∗s) be the total expected

propagated delay under the optimal assignments x∗∗d, x∗∗m and x∗∗s, respectively. Using Lemma

2, we get Proposition 1 below.

Proposition 1.

T ∗∗d ≤ T ∗∗m ≤ T ∗∗s.

64

Proof. Proof We first prove T ∗∗d ≤ T ∗∗m. Then T ∗∗m ≤ T ∗∗s follows similarly.

T ∗∗d = T d(x∗∗d) ≤ T d(x∗∗m) ≤ Tm(x∗∗m) = T ∗∗m.

Here the first inequality follows since x∗∗d is optimal for cost matrix cd, and the second inequality

follows from Lemma 2.

We further show the numerical comparison among T d(x∗d), Tm(x∗m) and T s(x∗s) on the data

from the two flight networks in the previous subsection. The result is shown in Table 5.7. From

the table, we see that there is a big difference among these three values for both networks. Specifi-

cally, T d(x∗d) is much smaller than Tm(x∗m) and T s(x∗s), which implies the approach proposed by

(Dunbar et al., 2012) (only using expected primary delay) underestimates the total expected prop-

agated delay significantly. Further, Tm(x∗m) is much smaller than T s(x∗s), it implies the approach

proposed by (Yan and Kung, 2016) and the local approach proposed by (Dunbar et al., 2014)

underestimates the total expected propagated delay significantly as well. Even though (Dunbar

et al., 2014) also consider the stochasticity of both primary and propagated delays, their approach

is less efficient, which makes it less applicable to the industry-size problem. From the result, we

can also see that the order in magnitude among T d(x∗d), Tm(x∗m) and T s(x∗s) is consistent with

Proposition 1.

Table 5.7: Comparison among T d(x∗d), Tm(x∗m) and T s(x∗s) (in minutes)

Total expected propagated delay N1 N2

T d(x∗d) 10.84 335.48

Tm(x∗m) 415.20 753.16

T s(x∗s) 510.06 1055.55

We now have four candidate assignments: FIFO (written as xFIFO), x∗∗d, x∗∗m and x∗∗m. We

compare their performance if they are used in actual practice. We know that both primary and

propagated delays are random in the actual operations process. Hence we measure the performance

of x∗∗d and x∗∗m under the stochastic setting, that is, using the cost matrix cs(x), and compare

them with x∗∗s. Clearly, since x∗∗s is optimal for cs(x), it must outperform the others.

65

Further, we compare T s(xFIFO), T s(x∗d), T s(x∗m) and T s(x∗s) on the numerical data from the

two networks. The results are shown in Table 5.8. From the table, we see that T s(x∗s) ≤ T s(xFIFO),

and T s(x∗s) ≤ T s(x∗m) ≤ T s(x∗d) holds for both networks even though the difference between

T s(x∗m) and T s(x∗s) is small, but the difference maybe big for other networks. This is consistent

with the order in magnitude among T s(xFIFO), T s(x∗∗d), T s(x∗∗m) and T s(x∗∗s) as well.

Table 5.8: Comparison among T s(xFIFO), T s(x∗d), T s(x∗m) and T s(x∗s) (in minutes)

Total expected propagated delay N1 N2

T s(xFIFO) 569.84 1078.58

T s(x∗d) 569.84 1085.97

T s(x∗m) 514.94 1056.35

T s(x∗s) 510.06 1055.94

In the computation presented above, we assume that the primary delay distribution is given. For

example, when we work out the aircraft assignment in August, we assume we know its distribution

in August. However, in practice, before making the aircraft assignment in August, we can only use

the delay data before August, and the scheduled arrival and departure times in August. In this case,

there are two intuitive approaches we can use. The first approach is to use the FIFO assignment at

each airport in August directly based on the scheduled arrival and departure times. Then we can

derive the total expected propagated delay under the FIFO assignment by using the primary delay

in August. Denote this by T s(xFIFO, Aug). The second approach involves estimating the primary

delay distribution for each flight by using the data in July, and using this estimated distribution

to derive the optimal assignment under cs. The we apply this assignment into the cost matrix

derived from the observed primary delay in August. We denote the corresponding total expected

propagated delay by T s(xJul, Aug). The comparison between T s(xFIFO, Aug) and T s(xJul, Aug)

is shown in Table 5.9.

Table 5.9: Comparison between T s(xFIFO, Aug) and T s(xJul, Aug)

Network T s(xFIFO, Aug) T s(xJul, Aug)

N1 569.84 590.00

N2 1078.58 1073.65

66

From Table 5.9, we see that if we use xJul in August, it performs worse than xFIFO for N1,

and marginally better than xFIFO for N2. Overall, xJul does not perform well compared to xFIFO.

This implies that our estimation of primary delay distribution in August using the data in July

in the naive manner described here is not very effective. We need to improve the accuracy of

the estimates. Hence, we explore a data-driven approach to derive an assignment so that it can

perform better than both xFIFO and xJul, which can serve as two benchmark policies for further

comparison. We report the results of this exploration in the next section.

5.3 Data-driven Approach

In this section, we propose a data-driven approach in the deterministic, mixed and stochastic

cases, respectively, to estimate the primary delay distribution, and then derive the assignments

based on the distribution.

5.3.1 Data-driven Approach Under Stochastic Case

We first illustrate the data-driven approach in the stochastic case. Clearly, the central compo-

nent is the estimation of primary delay distribution for each flight. Currently, most of the researches

(Lan et al. 2006; Dunbar et al. 2012, 2014) do not try to estimate the primary delay distribution.

By contrast, we propose a data-driven approach to estimate the primary delay distribution for each

flight so that it can bring a verifiable improvement in total expected propagated delay when it is

applied to the aircraft assignment problem. To illustrate this approach, we use the primary delay

data in July and August in year 2007 of networks N1 and N2 specified in the previous section.

Specifically, we first cluster eight largest primary delays among 31 primary delays in July for each

flight, and then choose the optimal number of clusters based on the performance of each number

of clusters. This produces the primary delay distribution to derive the assignment. Finally, we test

its performance in August.

Consider the daily flight network defined in Section 9.2 with M flights in the network. There

is a set of random scenarios Ω in July, where each scenario ω ∈ Ω corresponds to primary delay

values Xw for each flight. Let Xi = [X1
i , X

2
i , · · · , X

|Ω|
i] be a vector of primary delay values for flight

i, where Xω
i is the primary delay value for flight i under scenario ω ∈ Ω.

67

For any vector z ∈ R|Ω|, let

z[1] ≥ ... ≥ z[|Ω|]

denote its components in decreasing order, and let

z[] = [z[1], ..., z[|Ω|]]

be the z vector with components arranged in decreasing order. Thus, X
[]
i is a permutation of Xi

vector with the components arranged in decreasing order.

Let δ(i) = [X
[1]
i , X

[2]
i , · · · , X [8]

i] for i = 1, 2, · · · ,M . Thus, the M flights yield the M data points

(i, δ(i)), 1 ≤ i ≤M. We analyzed these data points by using several unsupervised learning methods:

the hierarchical clustering method, Gaussian mixture models, and self-organizing maps, k-means

and k-medoids clustering methods. We concluded that the k-medoids clustering method works the

best in reducing the total expected propagated delay. The comparison among these unsupervised

learning methods is shown in Table 5.10.

Table 5.10: Comparison on the Total Expected Propagated Delay (in minutes) between Different Methods

Network Hierarchical clustering Gaussian mixture models Self-organizing maps k-means k-medoids

N1 580.52 595.06 590.74 605.90 536.87

N2 1071.06 1067.23 1066.61 1071.61 1052.68

We use k-medoids clustering method to cluster δ = {δ(i), 1 ≤ i ≤ M} into k clusters, where

k is a given integer. It aims to minimize the sum of distances between each point and the center

of the cluster the point lies in. The center (also called medoid) of the cluster is a member of the

cluster, which is chosen as a point resulting in the smallest within-cluster distance. To be precise,

for points (1-by-n vectors) y1, y2, ..., ym in one cluster, the medoid of the cluster is

arg min
ys,1≤s≤m

m∑
t=1

d(ys, yt),

where d(ys, yt) is the distance between ys and yt. This is different from k-means clustering method

since k-means clustering method chooses the sample mean of all the points in the cluster as the

center.

68

Here, we use the Pearson correlation distance, defined as follows: .

d(ys, yt) = 1− r = 1− (ys − ȳs)(yt − ȳt)′√
(ys − ȳs)(ys − ȳs)′

√
(yt − ȳt)(yt − ȳt)′

,

where ȳs = 1
n

∑n
i=1 ysi, and ȳt = 1

n

∑n
i=1 yti. That is, d(ys, yt) is equal to one minus the sample

correlation r between ys and yt. Thus, d(ys, yt) lies between 0 (when r = 1) and 2 (when r = −1).

When d(ys, yt) = 0, it implies there is a strong positive correlation between ys and yt. When

d(ys, yt) = 2, it implies there is a strong negative correlation between ys and yt. The resulting

clustering has the property that the data points in the same cluster have more positive correlations.

We have also tried the squared Euclidean distance, but it performs worse in reducing the total

expected propagated delay than the Pearson correlation distance. The comparison is shown in

Table 5.11.

Table 5.11: Comparison on the Total Expected Propagated Delay (in minutes) between the Squared
Euclidean Distance and Pearson Correlation Distance under k-medoids Clustering Method

Network Squared Euclidean distance Pearson correlation distance

N1 608.87 536.87

N2 1072.35 1052.68

Thus, clustering algorithm produces a cluster function

cluster : {1, 2, · · · ,M} → {1, 2, · · · , k}.

Under this cluster function, flight i belongs to cluster CLi = cluster(i). We call CLi as the

clustering label of flight i.

Now for u ∈ {1, 2, · · · , k}, we define

F (u) = {1 ≤ i ≤M : CLi = u}

as the set of flights with clustering label u. We compute βω(u), the ω-th sample average of the

primary delays in scenario ω of flights in F (u) in July. Let β(u) = [β1(u), β2(u), · · · , β|Ω|(u)] be a

vector for a given u. Thus, the estimated primary delay value in scenario ω for flight i ∈ F (u) is

βω(cluster(i)).

69

Applying the estimated primary delay for each flight under k clusters, the estimated expected

propagated delay of assigning incoming flight i ∈ INC(p) to outgoing flight j ∈ OUT (p) under

assignment x (1 ≤ p ≤ P) is given by

ĉsij(x, k) = E(Ĉsij(x, k)) ≈
∑
ω∈Ω

1

|Ω|
Ĉs,ωij (x, k), (5.29)

where Ĉs,ωij (x, k) is calculated based on the estimated primary delay scenarios derived from k

clusters.

Next we find the optimal number of clusters k that performs the best in July, where we assume

1 ≤ k ≤ 10. That is, we first solve AP with cost matrix cs(x, k) = [csij(x
s, k)] by using the iterative

algorithm. Let the solution derived from the iterative algorithm be x∗s(k). Then we compute the

total expected propagated delay T s(x∗s(k), Jul) by applying x∗s(k) to the cost matrix derived from

Equation 5.18 by using the primary delay scenarios in July. We further define the optimal number

of clusters k as

k∗s = argmin{T s(x∗s(k), Jul) : 1 ≤ k ≤ 10}. (5.30)

Then we test x∗s(k∗s) on the primary delay scenarios in August. The corresponding total

expected propagated delay when the assignment x∗s(k∗s) is applied to the cost matrix derived from

the primary delay scenarios in August is T s(x∗s(k∗s), Aug).

5.3.2 Data-driven Approach Under Mixed Case

For the data-driven approach in mixed case, compared to the approach in stochastic case, we

only consider the expected propagated delay when the delay is propagated to the next flight. That

is, we change Equation 5.29 to

ĉmij (x, k) = E(Ĉmij (x, k)) =
∑
ω∈Ω

1

|Ω|
Ĉm,ωij (x, k). (5.31)

Then we follow the same approach in the stochastic case to derive the optimal number of cluster

k∗m, the assignment x∗m(k∗m), and the total expected propagated delay T s(x∗m(k∗m), Aug) in

August.

70

5.3.3 Data-driven Approach Under Deterministic Case

For the data-driven approach in deterministic case, compared to the approach in stochastic

case, we only consider the expected primary delay when the delay is propagated to the next flight.

That is, we change Equation 5.29 to

ĉdij(x, k) = E(Ĉdij(x, k)) =
∑
ω∈Ω

1

|Ω|
Ĉd,ωij (x, k). (5.32)

Then we can follow the same approach in the stochastic case to derive the optimal number of

cluster k∗d, the assignment x∗d(k∗d), and the total expected propagated delay T s(x∗d(k∗d), Aug)

in August. We further compare the assignments derived from data-driven approaches under these

cases as well as the benchmark policies in the next section.

5.4 Computational Experiment

In this section, we first show the details on how we derive the assignments by using the data-

driven approach. Then we compare the benchmark policies defined in Section 5.2 with the assign-

ments derived from the data-driven approach using several different criteria.

5.4.1 Assignments Derived from the Data-driven Approach

In this subsection, we first show how can we derive the optimal number of clusters in the data-

driven approach under deterministic, mixed and stochastic cases. We vary the number of clusters

k from 1 to 10 for the data-driven approach under different cases. The result is shown in Tables

5.12 and 5.13.

Table 5.12: The Total Expected Propagated Delay (in minutes) in July with the Change of Number of
Clusters k for Network N1

k 1 2 3 4 5 6 7 8 9 10 k∗

T s(x∗d(k), Jul) 846.77 846.77 846.77 846.77 846.77 846.77 846.77 846.77 846.77 846.77 1

T s(x∗m(k), Jul) 891.58 830.23 830.61 860.48 851.03 849.71 846.71 829.94 847.68 842.77 8

T s(x∗s(k), Jul) 867.45 819.68 829.58 843.65 833.77 807.74 820.55 828.58 810.48 775.90 10

Tables 5.12 and 5.13 show the performance of different number of clusters for the deterministic,

mixed and stochastic cases for networks N1 and N2. The bold entries show the performance of the

71

Table 5.13: The Total Expected Propagated Delay (in minutes) in July with the Change of Number of
Clusters k for Network N2

k 1 2 3 4 5 6 7 8 9 10 k∗

T s(x∗d(k), Jul) 1544.61 1539.10 1538.58 1539.06 1542.35 1546.10 1546.10 1551.00 1550.52 1550.55 3

T s(x∗m(k), Jul) 1536.52 1620.13 1639.81 1621.39 1496.23 1496.23 1496.23 1496.23 1535.35 1498.35 5

T s(x∗s(k), Jul) 1619.10 1619.10 1638.94 1621.39 1511.35 1495.81 1495.77 1495.81 1534.90 1495.84 6

optimal number of clusters. The corresponding cluster label for each flight in N1 and N2 is shown

in Tables B.1 and B.2, respectively, in Appendix B. From Table B.1, we see that flights with cluster

labels 4, 5 and 10 have large primary delays. For these flights, the scheduled departure/arrival

times are mostly in peak hours (afternoon and night) at the originating/destination airport, and

the destination airport are mostly big hubs. On the other hand, the flights with label 5 have

small primary delays. Their scheduled departure/arrival times are usually in the off-peak hours

(morning) at the originating/destination airport. For their destination airports, there are many

non-hub airports. For other flights in N1, they are in between. Similarly, from Table B.2, we can

see that flights with labels 2 and 3 have large primary delays, and they fly during the peak hours.

By contrast, the flights with labels 1 and 4 have small primary delays, and fly in the off-peak hours.

The primary delays for other flights in N2 are in between. From these two tables, we see that the

clustering method tries to put the flights with similar primary delay into one cluster. The clustering

result reflects the effect from originating/destination airport, and the scheduled arrival/departure

time on the primary delay.

Now we apply this optimal number of clusters to determine the assignments x∗d(k∗d), x∗m(k∗m)

and x∗s(k∗s) in August and derive the total expected propagated delay T s(x∗d(k∗d), Aug),

T s(x∗m(k∗m), Aug) and T s(x∗s(k∗s), Aug) under different cases in August. These are displayed in

in Table 5.14. From the table, we see that stochastic case performs the best over-all, even though

the mixed case performs 1 minute better than the stochastic case for N2.

Table 5.14: Total Expected Propagated Delay (in minutes) in August Under Different Cases

Network N1 N2

T s(x∗d(k∗d), Aug) 569.84 1074.84

T s(x∗m(k∗m), Aug) 571.19 1051.74

T s(x∗s(k∗s), Aug) 536.87 1052.68

72

5.4.2 Comparison

We further compare the benchmark policies, namely, xFIFO and xJul, with the assignment

derived from data-driven approach under the stochastic case on the total expected propagated

delay, which is shown in Table 5.15. From the table, we see that x∗s(k∗s) performs 6.14% and

2.46% better than xFIFO for N1 and N2, respectively. Also, x∗s(k∗s) performs 9.00% and 1.95%

better than xJul for N1 and N2, respectively. From the comparison, we see that the assignment

derived from data-driven approach in the stochastic case significantly outperforms the benchmark

policies. Hence we recommend this approach to the airlines. This helps the airline save cost

significantly by reducing the total expected propagated delay.

Table 5.15: Comparison on the Total Expected Propagated Delay (in minutes) between the Benchmark
Policies and the Data-driven Approach Under the Stochastic Case

Network N1 N2

T s(xFIFO, Aug) 569.84 1078.58

T s(xJul, Aug) 590.00 1073.65

T s(x∗s(k∗s), Aug) 536.87 1052.68
T s(xFIFO,Aug)−T s(x∗s(k∗s),Aug)

T s(xFIFO,Aug)
× 100% 6.14% 2.46%

T s(xJul,Aug)−T s(x∗s(k∗s),Aug)
T s(xJul,Aug)

× 100% 9.00% 1.95%

Further, we compare the percentage of delayed flights between the benchmark policies and

the data-driven approach under the stochastic case. Based on the definition from DOT, a flight

is considered to be delayed when its actual departure time is at least 15 minutes later than its

scheduled departure time. We denote pd(x, 15) as the percentage of flights delayed by more than

15 minutes under assignment x. If we consider 0 minute instead of 15 minutes in the delay definition,

we denote pd(x, 0) as the percentage of flights delayed by a positive amount. The comparison is

shown in Table 5.16. From the table, we see that percentages of delayed flights for the assignments

derived from the benchmark policies and the data-driven approach under the stochastic case are

almost the same even though x∗s(k∗s) can perform kind of better than the benchmark policies. It

implies that the data-driven approach under the stochastic case can decrease the delay propagation

almost without influencing the percentage of delayed flights.

73

Table 5.16: Comparison on the Percentage of Departure Delay between the Benchmark Policies and the
Data-driven Approach Under the Stochastic Case

Network N1 N2

Percentage of delay pd(x, 0) pd(x, 15) pd(x, 0) pd(x, 15)

xFIFO 8.64% 6.36% 15.03% 10.97%

xJul 9.01% 6.45% 14.78% 10.92%

x∗s(k∗s) 8.58% 6.27% 14.86% 10.92%

5.5 Conclusions

In this project, we formulate the aircraft assignment problem from a leg-based perspective

by considering a balanced assignment problem between the incoming and outgoing flights at each

airport in the network. Then we propose an iterative algorithm under the deterministic, mixed

and stochastic cases, respectively, to solve the aircraft assignment problem. We also compare the

iterative algorithm with the approach proposed by previous researches, and compare the iterative

algorithm under different cases. Further, we propose a data-driven approach under different cases

to estimate the primary delay distribution, which is used to derive the aircraft assignment in the

future operations. Finally, we compare the assignment derived from the data-driven approach with

the benchmark policies over different criteria.

We show that the iterative algorithm can bring a significant improvement in total expected

propagated delay compared to the algorithms suggested by previous researchers, such as (Dunbar

et al., 2014) and (Yan and Kung, 2016), by using the real-world data from one major airline. More

importantly, the iterative algorithm can also reduce the computation time by orders of magnitudes

compared to the previous algorithms. We further compare the iterative algorithm under different

cases. We show that the optimal assignment derived from the cost matrix under the deterministic

and mixed cases underestimate the total expected propagated delay significantly compared to the

optimal assignment derived from the stochastic case. For the assignment derived the iterative

algorithm under different cases, similar phenomenon can be observed as well by using the real-

world data.

We also compare the assignments derived from the data-driven approach under different cases.

We show that the data-driven approach under the stochastic case works the best. We also analyze

74

the clustering label for each flight using the optimal number of clusters under the stochastic case.

From the analysis, we see that the clustering method tries to put the flights with similar primary

delay into one cluster, which takes into account the effect from originating/destination airport,

and the scheduled arrival/departure time on the primary delay. Then we compare the assignment

derived from the data-driven approach under the stochastic case with the benchmark policies. We

show that the assignment derived from the data-driven approach can bring a significant improve-

ment on the total expected propagated delay compared to the benchmark policies almost without

influencing the percentage of departure delays.

75

CHAPTER 6

Introduction

In the past three decades, the number of companies that offer service via telephone or other

online tool has increased dramatically. Based on a report from CustomerServ in 2017, there are

over 3.4 million call center agents employed in the United States. This phenomenon is further

catalyzed by the pandemic. During the pandemic, the companies are more likely to provide the

remote service through telephone or other online tool. It is estimated that the worldwide call and

contact center market will reach $481 billion by 2024.

A central challenge in designing and managing a service operations in general, and a call

center in particular, is to achieve the a balance between operational efficiency and service quality

(Mandelbaum and Zeltyn 2009). Traditional literature on the service operations only considers

admission control aspect of this problem, such as (Naor, 1969) and (Koçağa and Ward, 2010).

Admission control allows system manager to accept some of the arriving customers, and reject the

rest. Recent literature tries to consider the staffing aspect in addition to the admission control

aspect of the problem, such as (Koole and Pot, 2011; Janssen and van Leeuwaarden, 2015) and

(Sanders et al., 2017). The staffing level/service rate decision allows the system manager to choose

the right number of servers/right value of service rate. However, they mostly assume that the

holding cost is proportional to the queueing time (or waiting time). By contrast, in the first

project, we focus on the case where a customer is satisfied if her queueing time is less than or equal

to a prespecified upper limit, called the service level parameter. This reward structure is called the

binary reward structure. We have not come across any admission control results using this reward

structure. Then we consider a general reward structure towards the joint admission and service

rate control for an unobservable queue in the second project.

We first introduce the first project in detail. We start with the introduction on the special binary

reward structure. Considering the reward based on a queueing time threshold is highly relevant for

the service provider to do admission control in the industry like healthcare in addition to call center,

76

https://www.customerserv.com/blog/how-big-call-center-industry
https://callcenterstudio.com/blog/weekly-news-update-the-call-and-contact-center-market-will-reach-481-billion-by-2024-blogs/
https://callcenterstudio.com/blog/weekly-news-update-the-call-and-contact-center-market-will-reach-481-billion-by-2024-blogs/

and it is much more challenging and interesting to analyze. A most common example is a call center

with multiple agents who answer calls from customers. Typically, a call center defines a customer

as satisfied if her call is answered within a prespecified amount of time, say 20 seconds (Koole and

Pot 2011). So the service level parameter is 20 seconds in this system. Another example is provided

by a COVID-19 testing lab. The COVID test samples are collected from patients and brought to

this lab where they are tested to see if the patients have COVID-19. The test sample from a patient

has to be tested within 72 hours after it is collected. Otherwise, the sample deteriorates and the

test results are unreliable and not very useful to the patient (Laboratory Corporation of America

2020). Thus the service level parameter in this example is 72 hours. As a third example, consider

an emergency department where patients queue up for service. Consider the queue of the highest

priority patients among those. If the queueing time of these patients is too long, patients would

suffer serious repercussions (Shi et al. 2016). Thus we may set the service level parameter in such

a system to be six hours, say.

In the first project, we focus on the important issue of management of these systems to max-

imize the number of satisfied customers at a minimum cost. We first discuss the cost and reward

components of operating such a system. Assume that the manager earns a reward whenever a

customer’s queueing time is within the service level parameter. In the special case when the service

level parameter is zero, a customer is satisfied if she enters service right away upon arrival, thus

experiencing zero queueing time. The system manager also incurs cost for operating the system.

For example, the costs in running a call center mainly arise from the salaries and the facilities.

The costs in operating a COVID-19 testing labs mainly come from the testing machines and staff

salaries. The costs in an emergency department are similarly related to the staffing level. We define

the profit as the revenue from the satisfied customers minus the staffing costs involved in providing

the services. The system manager wants to maximize the long run profit rate from this system.

The system manager has two tools at his disposal to achieve this goal: admission control and

staffing level. Admission control allows him to accept some of the arriving customers, and reject

the rest. Although the rejected customers are counted as unsatisfied customers, fewer admitted

customers may lead to higher overall fraction of satisfied customers and hence enhance the revenue.

There is no explicit additional cost to rejecting a customer, other than the loss of potential revenue.

This is a common assumption in the current literature. The staffing level decision allows him to

77

choose the number of servers. Clearly, higher staffing level will lead to higher fraction of satisfied

customers and hence higher revenue, but will also lead to higher cost. The manager needs to

judiciously choose the right combination of the admission policy and the staffing level to maximize

the profit. We call this the joint staffing and admission control problem. Considering the special

revenue structure in the admission control combined with the discrete nature of the staffing level, it

would make the joint staffing and admission control problem much more challenging and interesting

to deal with.

Clearly, the joint staffing and admission policy decisions depend on the information we have

about the system. In this project we consider three different levels of information: minimal infor-

mation, partial information, and full information. In the minimal information case, we only know

the system parameters, such as arrival rate, service rate and the service level parameter, and we do

not know any other details about the system. The queue corresponding to the minimal information

case is also called the unobservable queue. In the partial information case, we know the number

of customers in the system in addition to the system parameters. The queue corresponding to the

partial information case is also called the observable queue. Finally, in the full information case,

we know the exact queueing time a customer will experience if she is admitted, in addition to the

system parameters.

The minimal information case can occur in practice, but the partial information case is the most

common one. For example, the call centers, the COVID testing labs or the emergency departments

often know the number of customers in the system. The full information case is not that common,

since it requires the knowledge of the service time of each admitted customer. We consider it mainly

because it is expected to yield the best profit rate among the three levels of information and hence

will provide a standard against which we can judge the relative importance of the other levels of

information.

In the first project, we consider the combination of the three aspects mentioned above, namely,

admission control, staffing problem and the level of information. To the best of our knowledge,

these three aspects have rarely been dealt with in the literature in a joint fashion. There is, however,

a large body of work in each area.

First, consider the admission control problem. There is a huge literature in this area and

we will review a few relevant papers in more detail in the next chapter. This literature generally

78

assumes that the cost is proportional to the queueing time. Our revenue structure with nonnegative

service level parameter is rare in the literature on queueing control. It is quite relevant in many

queueing management situations, like the call centers, the COVID testing labs, or the emergency

departments mentioned above.

Second, there is also a lot of research on the staffing problem, which we will review in the

next chapter in more detail. It mainly focuses on Quality-and-Efficiency-Driven (QED) regime

to derive the staffing level, where the utilization of server approaches one and simultaneously the

number of servers approaches infinity. This approach usually does not incorporate the cost of

staffing and generally leads to what are called the square-root staffing rules. There are few papers

that incorporate a cost or reward structure to find the optimal staffing level. For example, (Koole

and Pot, 2011) consider the partial information case and determine the optimal staffing level by

considering the expected reward for each handled call, and the holding cost for each admitted

customer as well as the cost for each server per unit time.

Lastly, there are a few papers that analyze queueing systems based on available information,

and fewer still that compare the effect of different levels of information. For example, (Guo and

Zipkin, 2007) consider the effect of information on customers’ decisions to join or not in a single

server queue, although they do not consider the staffing management or admission control. This

paper and the paper by (Koole and Pot, 2011) are the two that are closest to our work presented

here. We discuss them in more detail in the next section.

In the second project in this stream, we extend the previous project by considering a general

reward structure under a general unobservable queuing system with a single server. It means we

try to propose a joint admission and service rate policy in the second project instead of a joint

staffing and admission control policy. Specifically, we first consider a service system with centralized

decision maker. Each admitted customer produces a profit that depends on the system parameters,

the decision variables, and the service cost that is proportional to the service rate. The decision

maker has to decide what fraction of the arrivals to admit (a static policy), and at what rate to

service the admitted customers (also a static policy). The decision maker wants to optimize the

profit (revenue − cost). We illustrate it with two common revenue (or reward) structures that occur

in many applications. The first one is the binary reward structure. The second reward structure

arises if the service manager gets a fixed reward for each admitted customer, but the system also

79

incurs a cost proportional to the waiting time or queueing time of the customer. We call this the

linear reward structure, to distinguish it from the binary reward structure. One can imagine any

convex combination of these two revenue structures as another reward structure.

We shall show that if the revenue function satisfies a certain set of structural properties (for

example, concavity in decision variables), the optimal joint admission and service control has a

simple form as follows: if the per unit service cost is below a critical level (that depends on the

system parameters), it is optimal to admit all the customers, and choose an optimal service rate

that depends on the system parameters. If the per unit service cost is above this critical level, it

is optimal to not admit any customers, in effect shutting the system down. This is a surprising

results, since we do not make any assumptions about what the service system looks like. In fact,

the concavity assumptions would imply an interior solution, that is, the admitted fraction is in

the interval (0,1). The main reason behind this surprising optimality result is because the system

manager is in charge of deciding both the admission policy and the service rate, that is, because

the decision is centralized.

However, this immediately creates the question: what happens if the decision is not central-

ized? We consider this question next, under different non-centralized decision making scenarios.

We assume the revenue earned by the system manager from servicing an admitted customer is the

same as the reward earned by a customer if she decides to join. First, we consider the decentral-

ized Stackelberg game where the system manager is the leader who sets the service rate, and all

customers are followers who join if and only if their expected rewards are positive. This analysis is

discussed in Chapter 9.3.1. The second scenario is a two-player Stackelberg game with the system

manager as the leader and a single agent representing all the customers as the follower. This sin-

gle agent controls the behavior of all the customers so that the aggregate per customer reward is

maximized. This is discussed in detail in Chapter 9.3.2. The third scenario is a two-person Nash

game between the system manager and the customer agent. Here no-one is leader and no-one is a

follower. Each of the two players seek a Nash equilibrium policy that maximizes their own objective

function. This is discussed in Chapter 9.3.3. We show that, in each of these three scenarios, optimal

policy is identical to the centralized optimal policy. This is immensely useful, since this means that

the customers naturally behave in a socially optimal way without needing any external mechanism

to induce such a behavior.

80

In summary, the main contributions of this project are as follows: First, we analyze the joint

admission and service rate problem for a general reward structure for a general queueing system.

There are very few papers (see Stidham Jr and Weber 1989 and Adusumilli and Hasenbein 2010)

considering the joint problem, and they do so for specific queuing systems with linear reward func-

tions. Second, we show analytically that when the reward structure satisfies certain assumptions

specified in Chapter 9.1, there exists a critical level such that when the per unit service cost is less

than or equal to this critical level, the centralized optimal joint policy admits all the customers,

and rejects all otherwise. This surprising result makes the optimal policy much easier to implement

in reality. Third, we show that the centralized optimal joint policy remains optimal even when the

decisions are not centralized. We consider three different models of non-centralized decision mak-

ing: decentralized Stackelberg game, two-player Stackelberg game and two-player Nash game. In

each case, the optimal policy is the same as the centralized optimal joint policy. In other words, the

centralized optimal joint admission and service rate control policy also achieves the self-regulation

of the unobservable queue. Lastly, we specifically study the binary and linear reward structures in

an M/G/1 system and comment on the managerial insights through analytical as well as numerical

results. We show numerically that the optimal policy has unexpected behavior in the binary reward

structure. The details are in Chapter 9.5.

81

CHAPTER 7

Literature Review

There are three streams of literature relevant to our research: (1) admission control, (2) service

capacity control, (3) multiple levels of information, and (4) equilibrium analysis. We discuss them

below.

First consider the area of admission control. The recent book by (Stidham Jr, 2009) gives an

overview on the research in this area. Most of the research on admission control focuses on the

queueing systems under the partial information case, that is, it is assumed that the queue length

is observable. Most papers prove that a threshold-type policy is optimal under certain conditions,

that is, there exists a threshold such that an incoming customer is admitted if the number of

customers in the system is below this threshold, and rejected otherwise. We first discuss these

papers. There are only a few papers considering the admission control under the minimal or full

information case, and we discuss them later.

We first review the literature on admission control under the partial information case. This

review is by no means exhaustive. The earliest work on admission control is by (Naor, 1969),

where the author considers an M |M |1 queueing system and determines the socially optimal admis-

sion control policy that maximizes the profit rate, that is, the reward earned from the admitted

customers minus the expected waiting time cost of admitted customers in the queueing system.

He also analyses the individually optimal strategy, where the customers decide whether to join

or not in order to maximize their own expected reward. (Naor, 1969) finds that the customers

may not behave in a socially optimal way, thus calling for regulation in the form of service tolls.

(Yechiali, 1971) considers a GI|M |1 queueing system with a similar cost structure and shows that

a threshold-type admission policy is socially optimal. (Chr, 1972) extends the previous research by

considering multiple servers and non-linear waiting time cost function. (Ward and Kumar, 2008)

consider the admission control of a GI|GI|1 queue with impatient customers in a heavy traffic

regime. They incorporate costs associated with the customer rejection and reneging. They demon-

82

strate the asymptotic optimality of a threshold-type policy. (Koçağa and Ward, 2010) consider the

admission control problem with multiple servers and incorporate costs arising from customer aban-

donment, server idleness and customer rejections. They show the optimality of a threshold-type

policy and give an efficient iterative algorithm to minimize the long run average cost. (Borgs et al.,

2014) consider a system where a single class of delay-sensitive customers seeks service from a single

server, and the server prices its service and chooses an admission policy to maximize the revenue

rate. They prove the optimality of a threshold-type policy, and derive the optimal threshold and

optimal revenue in closed form. (D’Auria and Kanta, 2015) consider a two-node tandem network,

and provide a similar threshold-type policy.

Next we review the literature on admission control under the minimal information case. (Mendel-

son and Whang, 1990) consider an M |M |1 queueing system with multiple user classes, where each

class is represented by its delay cost per unit time, expected service time and an arrival rate that

depends on the admission price. They derive a pricing mechanism to maximize the profit rate.

The prices are not dependent on the queue length, which makes this a minimal information case.

(Haviv and Oz, 2018) consider the minimal information model where the service provider admits

a customer with a fixed probability so as to maximize the profit associated with the reward for

each admitted customer and the expected waiting time cost. This is the socially optimal admission

control. They also consider the individually optimal policies and regulation to make it compatible

with the socially optimal policies.

Further, we review the admission control under the full information case. (Bekker and Borst,

2006) consider the admission control of a single server queue with a service rate that depends

on the queueing time. A threshold-type policy admits an incoming customer if the workload is

under a threshold. They show that this threshold-type policy maximizes the long run throughput

under certain conditions, for example, an M |G|1 queue. (Liu and Kulkarni, 2006, 2008a,b) also do

extensive analysis on admission control with the workload-dependent balking or reneging.

Our research contributes to this stream of research as follows. The papers on admission control

mostly assume that the holding cost is proportional to the queueing time (or waiting time). How-

ever, we assume that we get a reward if the queueing time is less than or equal to a given threshold

value in the first project. We have not come across any admission control results using this reward

structure. Considering the reward based on a queueing time threshold is highly relevant for the

83

service provider to do admission control in the industry like healthcare. There is a large body

of empirical research regarding it as the criterion to measure the performance in operations of a

hospital, for example, (Pines et al., 2008; Liu et al., 2009; Singer et al., 2011; Patel et al., 2014),

and (Shi et al., 2016). We also give extensive analytical analysis on the asymptotic properties on

the long run revenue rate, and further analyze the optimal admission control policy and optimal

revenue rate under each information case. In the second project, we consider a general reward

structure, which includes the linear reward structure and binary reward structure as special cases.

To the best of our knowledge, this is the first paper to consider such a general reward structure.

Next we focus on the second steam of literature, namely, the service capacity control. Most

of them optimize the service capacity by changing staffing level. We begin with the work by

(Halfin and Whitt, 1981), where they derive the celebrated square-root staffing formula for large

systems. They also identify the precise asymptotic regime under which this result holds, now called

the Halfin-Whitt regime, or the QED regime. (Borst et al., 2004) determine the asymptotically

optimal staffing level in an M |M |s queue by balancing the costs incurred by the server and the

service quality in the QED regime. They consider a fixed hourly cost per server and fixed hourly

waiting time cost for each customer, and show that the optimal staffing level follows the square-

root staffing rule. Further, (Mandelbaum and Zeltyn, 2009) and (Armony et al., 2009) extend the

previous research by considering the impatient customers.

Then we consider the joint staffing and admission control problem. There are not too many

papers that consider the joint problem, and the few that do, fall under the partial information case,

and concentrate on the QED regime. For example, (Janssen and van Leeuwaarden, 2015) consider

a Markovian many-server system with retrials in the QED regime. Based on the target service

level, they first determine the staffing level. They consider an admission control policy that admits

an arriving customer with a probability that depends on the queue length. They do not consider

profit or cost optimization. (Sanders et al., 2017) use a similar method to determine the staffing

level based on the square-root staffing rule. They consider the rewards when no customers are

waiting and no servers are idling, and the costs incurred when there are waiting customers or there

are idle servers. They show that the revenue is maximized by a threshold-type policy that rejects

an arriving customer when the queue length exceeds a certain threshold. Our model on the joint

staffing and admission control problem is closest to the one considered by (Koole and Pot, 2011).

84

They consider the partial information case with expected reward for each handled call, holding cost

per unit time for each admitted customer, and cost for each server per unit time. They show that

the admission control is of a threshold type. They numerically derive the optimal staffing level and

the optimal admission control threshold that maximizes the long run revenue rate. Our staffing

cost model is the same as theirs, but our service reward model is different. We get a fixed reward

if the queueing time of a served customer is less than or equal to a given threshold in the first

project. We use this cost structure to derive the joint staffing and admission control policy. We

also consider the minimal and full information cases that they do not consider. As far as we know,

there are no papers considering the joint problem in the minimal or full information case.

Then we consider the joint admission and service rate control problem. (Stidham Jr and

Weber, 1989) and (Adusumilli and Hasenbein, 2010) are the only two papers that analyze the joint

admission and service rate control problem. They only consider an M/M/1 queue by considering

the holding cost, service cost and so on. Specifically, (Stidham Jr and Weber, 1989) show that the

optimal arrival rate and service rate are increasing in the number of customers in the system in

their setting, and (Adusumilli and Hasenbein, 2010) propose an efficient algorithm to solve the joint

problem even though they also show that the service rate is increasing in the number of customers

in the system. Compared to their research, our second project in this stream considers a general

reward structure under a general queueing system, and we give an optimal admission and service

rate control policy analytically as well.

Next we review the literature on the analysis of queueing system under multiple levels of

information. We are aware of only a few papers in this area. (Adan et al., 2018) consider the

control problem of how arrivals should be routed to the service stations in a polling system with

two nodes to minimize expected waiting costs. They give the individually and socially optimal

routing policies under different levels of information. (Guo and Zipkin, 2007) analyze the customers’

behavior in equilibrium in a single server queue with balking under three levels of information:

minimal information, partial information and full information. The customers decide to join or

balk based on their expected utilities, conditional on the information they have. They show how

to compute the key performance measures, such as the server utilization and throughput, in the

three information cases and obtain the closed-form solutions for some special cases. They also

show that more information does not always improve the performance. Their work is close to our

85

first project in this stream since they consider the three levels of information. They use a general

function of the queueing time of a customer, so our threshold based reward for customer service is

included in their work. However, they do not consider staffing or admission control policies. We

consider optimal admission control and staffing policies, and reach a different conclusion compared

to that of (Guo and Zipkin, 2007). We show that the performance of the system improves with

the additional information. The improvement from minimal to partial case is substantial, but the

improvement from partial to full information tends to be minor under certain parameter space.

We also study the joint problem of maximizing revenue per server. This has the advantage of

not needing the cost parameters. There are several papers that study the revenue per server, such

as (Huselid, 1995; Guthrie, 2001; Chowdhury et al., 2014) and (Yadav et al., 2019), but they only

analyzes the factors affecting the revenue per server and do not try to use it to find the optimal

staffing level or admission control. Our approach provides an important quantification of revenue

per server. We also show the connection between these two criteria (revenue per server vs. long

run profit rate) in determining the optimal staffing level.

Finally, we review the literature on the equilibrium analysis on the admission control. There

are two streams of research in this category, namely, Stackelberg equilibrium and Nash equilibrium.

Stackelberg equilibrium has received extensive attention in the field of supply chain management,

such as (Cachon and Zipkin, 1999; Dong and Rudi, 2004; Kouvelis and Zhao, 2012) and (Cho and

Tang, 2013). To the best of our knowledge there are no papers discussing Stackelberg equilibrium

policies in queueing systems. In their setting, they assume that the manufacturer is the leader who

sets the wholesale price, and the retailers are the followers who determine their order quantities in

response to the price. In the setting of our second project, the service provider is the leader who

sets the service rate and the agent for the customers is the follower who decide the probability with

which the customers join.

In the stream of Nash equilibrium, the concept is first proposed by (Nash Jr, 1950). In a Nash

game among a finite set of players, each player aims to maximize its own benefit over its own set

of strategies. A strategy is called a Nash equilibrium strategy if no player has an incentive deviate

from it on its own. In the past several decades, there is an increasing interest in applying the Nash

equilibrium to analyze the problem in electricity market and data envelopment analysis and so on,

such as (Hu and Ralph, 2007) and (Liang et al., 2008). They all try to show the existence of a

86

pure-strategy Nash equilibrium. There are only a few papers focusing on the application of Nash

equilibrium in admission control. They typically model the Nash game among the customers. The

system manager who decides the service rate or the size of the waiting room is not part of the

game. For example, (Naor, 1969; Yechiali, 1971) and (Haviv and Oz, 2016) focuses on the Nash

equilibrium within customers when they decide whether to join the queue or not for an observable

queue. Each customer decides whether to join the queue based on her own utility, thus they derive

a Nash equilibrium for the system capacity above which they will not join the queue. On the other

hand, (Edelson and Hilderbrand, 1975; Haviv, 2014) and (Haviv and Oz, 2018) analyze the Nash

equilibrium between customers for an unobservable queue. The customers determine the Nash

equilibrium for the admission probability.

As far as we know, there is no literature considering the Nash equilibrium or Stackelberg equi-

librium between the system manager and customers even though there is some research analyzing

the centralized decision case, such as (Stidham Jr and Weber, 1989), (Hassin and Haviv, 2003) and

(Adusumilli and Hasenbein, 2010). However, it is common to see that the customers and service

provider may make the decision simultaneously or sequentially in real operations. So, it is very im-

portant to consider the Nash equilibrium or Stackelberg equilibrium between the system manager

and customers. As far as we know our second project is the first to consider such games. We show

that, for our model, Nash equilibrium, Stackelberg equilibrium and centralized decision case are

equivalent.

87

CHAPTER 8

Joint Staffing and Admission Control Under Different Levels of Information

8.1 Formulation and Preliminaries

In this section, we introduce the problem setting. We consider a queueing system where po-

tential customers arrive according to a Poisson process with rate λ, and the service times are

independent and exponentially distributed with parameter µ (i.e., mean 1/µ). There are two deci-

sions to be made:

1. the staffing level (that is, the number of servers, s) to use to operate the system, and

2. a policy π that dictates which arrivals to be admitted to the system, and which ones to reject.

The admitted customers stay in the system until they are served in a first-come-first-served

(FCFS) fashion.

We assume that the staffing level is set only once initially, and cannot be changed with time

or in response to system state. However, the admission decisions are based on the knowledge of

the state of the system, which may change with time. Thus the staffing level is a design problem,

while the admission policy is a control problem. Let Π be the set of admissible policies π. We shall

define this more precisely later.

We next describe the costs and rewards that guide our choice of s ≥ 0 and π ∈ Π. Let Rn be

the non-negative (random) reward from the n-th customer. We assume that Rn = 0 if the n-th

arrival is not admitted. Thus there is no explicit cost to reject a customer, other than the loss of

potential revenue. Let c be the cost per unit time per server used to staff the system. Consider a

system with staffing level s and admission policy π. Let R(s, π) be the long run average reward

per unit time for this system. That is,

R(s, π) = lim
t→∞

Eπ(
∑N(t)

n=1 Rn)

t
, (8.1)

88

where N(t) is the number of arrivals up to time t. We assume that this limit exists.

Suppose E(Rn) is finite. Without loss of generality, we assume that E(Rn) ≤ 1 for all n. The

customers arrive at rate λ and each customer can produce at most a unit reward. The system can

serve as most sµ customers per unit time. Note that we do not insist that λ < sµ, since we can

control the admissions. Hence we get the following bound:

R(s, π) ≤ min(λ, sµ).

Next, let P (s, π) be the long run net profit per unit time of operating this system, given by

P (s, π) = R(s, π)− cs.

Then our decision problem can be modeled as the following optimization problem:

max
s≥0, π∈Π

P (s, π). (8.2)

This is called the joint staffing and admission control problem. We solve it in two stages as

follows. First, we fix the staffing level s, and solve the admission control problem. Define

R∗(s) = sup
π∈Π

R(s, π). (8.3)

A policy π∗(s) is called optimal if R(s, π∗(s)) = R∗(s). We assume that such a policy exists.

Clearly, we must have R∗(s) ≤ min(λ, sµ). The supremum of the long run profit per unit time of

using the staffing level s is given by

P ∗(s) = R∗(s)− cs.

Note that this could be negative. Then we solve the staffing problem

max
s≥0

P ∗(s). (8.4)

89

Since R∗(s) is bounded, P ∗(s) goes to −∞ as s → ∞. Hence P ∗(s) achieves its global maximum

at some finite value of s. Denote the smallest such value of s by s∗∗. Let

π∗∗ = π∗(s∗∗).

Thus the solution to the joint staffing and admission control problem is given by (s∗∗, π∗∗). The

optimal profit rate and revenue rate under the optimal joint staffing and admission control is given

by

P ∗∗ = P ∗(s∗∗), R∗∗ = R∗(s∗∗).

Note that R(0, π) = 0 for all π ∈ Π, and hence P (0, π) = 0 for all π ∈ Π. Hence the above quantities

are non-negative.

We can also consider another approach to optimal staffing problem that does not need c. Instead

of maximizing the net profit rate, we maximize the revenue rate per server. We can think of this

as the productivity of each server, and hence it makes sense to maximize it. See (Huselid, 1995;

Guthrie, 2001; Chowdhury et al., 2014) and (Yadav et al., 2019). We solve

max
s≥1

R∗(s)

s
. (8.5)

Since R∗(s) is bounded, the above revenue per server goes to zero as s → ∞. Hence the revenue

per server achieves global maximum at some finite value of s. Denote the largest such value of s

by s∗. Also let

c∗ =
R∗(s∗)

s∗
.

The following theorem makes clear about the connection between these two optimization problems.

Theorem 6. Let s∗ and s∗∗ be as defined above. Then

1. c < c∗ ⇒ s∗ ≤ s∗∗.

2. c ≥ c∗ ⇒ s∗∗ = 0.

90

Proof. (i) If c < c∗, suppose s < s∗, then we have

P ∗(s) = R∗(s)− cs

≤ c∗s− cs

< c∗s∗ − cs∗

≤ R∗(s∗∗)− cs∗∗ = P ∗(s∗∗).

Hence P ∗(s) is maximized at some s ≥ s∗. Thus we have s∗ ≤ s∗∗.

(ii) If c ≥ c∗, then for any s, we have

P ∗(s) = R∗(s)− cs ≤ c∗s− cs ≤ 0.

However, we know that P ∗(0) = 0. Hence s∗∗ = 0. The result follows.

The last part of the above theorem prompts us to think of c∗ as the server value: as long as

the server cost c < c∗, we can operate the system at profit. If c ≥ c∗, it is best to not operate the

system at all.

In this project, we consider the following reward structure. Let b ≥ 0 be a given scalar, and let

W q
n be the queueing time (not including service) of the n-th arriving customer. If the n-th arriving

customer is not admitted, we assume that W q
n =∞. We define

Rn =


1 if W q

n ≤ b,

0 if W q
n > b.

(8.6)

This implies that if the delay in starting the service of a customer is more than b, the service is

worthless. Note that once the customer is admitted, we are obligated to serve her even if the service

is worthless.

It makes sense to assume that the admission control policy π is influenced by the information

we have about the state of the system. We consider three different levels of information,

1. (M): minimal information,

91

2. (P): partial information, and

3. (F): full information.

In the minimal information case, we only know the system parameters λ, µ, and b, but we do

not know anything else about the state of the system. In the partial information case, we know

the number of customers in the system at the time of arrival, in addition to the system parameters

(λ, µ, b). In the full information case, we know the exact queueing time of incoming customer in

addition to (λ, µ, b).

8.2 Minimal Information

In this section, we consider the minimal information case. Thus we assume that we know the

system parameters (λ, µ, b), but not the time varying state of the system. We shall identify the set

of admissible policies ΠM , compute the long run expected profit per unit time PM , and study the

joint staffing and admission control problem.

Since the system is stationary with Poisson arrivals and exponential service times, it suffices

to restrict our attention to the stationary Markovian policies. Clearly, any stationary Markovian

policy admits customers with a given probability in an independent fashion (Haviv and Oz 2018).

Let a p-policy be an admission control policy that admits each customer with probability p in

an independent fashion. Since we can not observe the system state, every stationary Markovian

admission policy πM must be a p-policy for some p. Suppose the staffing level is s, and a p-policy

is followed. The queueing system is then an M |M |s queue with arrival rate λp and service rate µ.

Let

r =
λ

µ
, ρ =

λ

sµ
. (8.7)

The condition of stability is pρ < 1. Let A be the set of values of p such that this system is stable.

Then we see that

A =


[0, 1] if ρ < 1,

[0, 1/ρ) if ρ ≥ 1.

(8.8)

We can think of A as the set of admissible policies ΠM under the minimal information case.

92

From the results about M |M |s queues (See Kulkarni 2016), we see that the probability that

all servers are busy is given by

C(s, rp) =
(rp)s

s!

(
(1− rp

s
)
s−1∑
n=0

(rp)n

n!
+

(rp)s

s!

)−1

,

and the steady state distribution of the queueing time Wq is given by

P (Wq > w) = C(s, rp)e−µ(s−rp)w, w ≥ 0.

Hence the long run expected revenue per unit time under the p-policy is given by

RM (s, p) = λpP (Wq ≤ b)

= λp(1− P (Wq > b))

= µrp(1− C(s, rp)e−µ(s−rp)b).

(8.9)

Thus the long run expected profit per unit time is given by

PM (s, p) = RM (s, p)− cs,

and the joint staffing and admission control problem reduces to

max
s≥0,p∈A

µrp(1− C(s, rp)e−µ(s−rp)b)− cs.

As described in the previous section, we solve this problem is in two stages in the next two subsec-

tions.

8.2.1 Admission Control

In this subsection, we fix an s ≥ 0 and study the following admission control problem

max
p∈A

RM (s, p) = µrp(1− C(s, rp)e−µ(s−rp)b). (8.10)

93

Let p∗M (s) be a value of p that maximizes the above revenue rate. Then, for a given s, the p∗M (s)-

policy is an optimal admission control policy.

Note that RM (s, p) depends on p only via r̂ = rp. So we can define

r̂∗ = argmax{0 ≤ r̂ < s : µr̂(1− C(s, r̂)e−µ(s−r̂)b)}, (8.11)

and

R̂(s) = µr̂∗(1− C(s, r̂∗)e−µ(s−r̂∗)b). (8.12)

Then it is easy to see that

p∗M (s) = min{1, r̂
∗

r
}. (8.13)

It is easy to see that RM (s, p) is an increasing function of s and b individually. It can be shown

to be a concave function of p and r since C(s, rp) is known to be increasing and convex in p and r,

see (Lee and Cohen, 1983).

We next study the asymptotic properties of p∗M (s) and R∗M (s) as b, r, and s go to infinity in

the following theorem.

Theorem 7. In the minimal information case, we have

(i)

lim
b→∞

p∗M (s) =


1 if ρ < 1,

1
ρ if ρ ≥ 1,

(8.14)

lim
b→∞

R∗M (s) =


λ if ρ < 1,

sµ if ρ ≥ 1,

(8.15)

(ii)

lim
r→∞

p∗M (s) = 0, (8.16)

lim
r→∞

R∗M (s) = R̂(s), (8.17)

(iii)

lim
s→∞

p∗M (s) = 1, (8.18)

94

lim
s→∞

R∗M (s) = λ. (8.19)

Proof. (i) It is easy to see that limb→∞RM (s, p) = λp, which is an increasing function of p.

Hence p will tend to be the largest permissible value in A, which is 1 when ρ < 1, and 1/ρ

when ρ ≥ 1. The limits of RM follow from using these limits in Equation 8.10.

(ii) As r →∞, A→ {0}, hence we must have limr→∞ p
∗
M (s) = 0. From Equation 8.11, it follows

that rp∗M (s)→ r̂∗. Hence the result follows.

(iii) Since lims→∞C(s, rp) = 0, we have lims→∞RM (s, p) = λp. The result follows by an argument

similar to that in case 1.

8.2.2 Staffing Problem

Now consider the staffing problem, which involves computing the staffing level s that maximizes

the net profit per unit time, assuming that for each s, we choose the optimal admission control

policy p∗M (s). For a given staffing level s, the optimal revenue rate is

R∗M (s) = RM (s, p∗M (s)).

Hence the optimal profit rate for a given s is given by

P ∗M (s) = R∗M (s)− cs.

Hence the staffing problem reduces to the following optimization problem:

max
s≥0

P ∗M (s) = µrp∗(s)(1− C(s, rp∗(s))e−µ(s−rp∗(s))b)− cs. (8.20)

Note that R∗M (s) is an increasing function of s, but may not be a concave function of s. In fact,

it is numerically observed that there is an ŝ such that R∗M (s) is convex for s ∈ [0, ŝ] and concave

for s ∈ (ŝ,∞). Using the argument in the previous section, we see that P ∗M (s) achieves its global

maximum at some finite value of s. Denote this optimal staffing level by s∗∗M (if there are multiple

95

optima, choose the smallest). Then the optimal profit is given by

P ∗∗M = P ∗M (s∗∗M),

and the admission probability under the optimal staffing is given by

p∗∗M = p∗M (s∗∗).

As described in the previous section, we can compute

s∗M = argmax{s ≥ 1 :
R∗M (s)

s
}, (8.21)

and define

c∗M =
R∗M (s∗M)

s∗M
.

Again, choose the largest s∗M if there are multiple optima. Theorem 6 holds with s∗M , s∗∗M and c∗M

in place of s∗, s∗∗ and c∗.

8.2.3 Numerical Results

In this subsection, we present the numerical results for the joint staffing and admission control

problem. Specifically, we set µ = 1 without loss of generality, and study the behavior of optimal

staffing level s∗∗M , optimal admission probability p∗∗M , and optimal profit P ∗∗M as a function of c and

r with different values of b.

We first plot s∗M (the staffing level that maximizes worker productivity) and c∗M (the maximum

worker productivity) as a function of r ∈ [0, 15] for b = 0, 1, 5 in Figures 8.1a and 8.1b, respectively.

Note that c does not play any role in this computation. As expected, s∗M increases with r and

decreases with b, and c∗M increases with r and b. c∗M shows a non-smooth behavior, which is the

result of the discrete nature of s∗M . It also shows the right-hand limit of maximum value of c that

will produce a profitable operation (using the results of Theorem 6). Thus when r = 10, and b = 0,

s∗M is 15, and c∗M is seen to be .5986. Thus using Theorem 6, we see that if c ≥ .5986, the optimal

staffing level s∗∗M will be zero and if c < .5986, s∗∗M will be at least 15.

96

0 5 10 15

r

0

5

10

15

20

25

s
M*

b=0

b=1

b=5

(a) s∗M as a function of r

0 5 10 15

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
M*

b=0

b=1

b=5

(b) c∗M as a function of r

Figure 8.1: s∗M and c∗M as a function of r for different values of b under minimal information case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

5

10

15

20

25

s
M*
*

b=0

b=1

b=5

(a) s∗∗M as a function of c

0 5 10 15

r

0

5

10

15

20

25

s
M*
*

b=0

b=1

b=5

(b) s∗∗M as a function of r

Figure 8.2: Optimal staffing s∗∗M as a function of c and r for different values of b under minimal information
case

We next show s∗∗M as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in Figure 8.2a, and as a

function of r ∈ [0, 15] for b = 0, 1, 5, and c = .6 in Figure 8.2b. As expected, we can see that s∗∗M is

decreasing in c and b, and increasing in r. In Figure 8.2a, we see that when c crosses a threshold

(depending on r and b), the server cost is too high and the optimal s∗∗M jumps down to zero. This

sudden jump is interesting. For example, consider the case of b = 0, the threshold is .5986. Then

the optimal staffing level is 15 if c is just below .5986, and zero if it is just above .5986. This is

consistent with our observation in the previous paragraph. In Figure 8.2b, we see that there is a

b-dependent critical level of r below which the optimal staffing level is zero. This is because there

are not enough customers to make profit since the server cost is .6 per unit time. This critical level

decreases with b as expected.

97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p

M**

b=0

b=1

b=5

(a) p∗∗M as a function of c

0 5 10 15

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
M**

b=0

b=1

b=5

(b) p∗∗M as a function of r

Figure 8.3: Optimal admission probability p∗∗M as a function of c and r for different values of b under
minimal information case

Further, we show p∗∗M as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in Figure 8.3a, and as

a function of r ∈ [0, 15] for b = 0, 1, 5, and c = .6 in Figure 8.3b. In Figure 8.3a, one expects p∗∗M

to be 1 always, since using p∗∗M < 1 implies we do not make full use of incoming customers. Indeed

this is true for most cases. However, in some border line cases, using p∗∗M = 1 forces one to use one

extra server to make more profit. Hence it may be optimal to use p∗∗M < 1 if it allows one to use one

less server and improve the overall profits. We can also see that p∗∗M = .93 and s∗∗M = 10 for c = .87

and b = 5. If one uses p∗∗M = 1, it would force us to use s∗∗M = 11 to maintain stability and thus

adversely affect the profit. When c is small, p∗∗M = 1 since we have more servers and it is optimal

to admit all the customers to improve profit. When c crosses a threshold (depending on r and b),

s∗∗M and p∗∗M both jump down to zero. In Figure 8.3b, we can see the non-monotone behavior of p∗∗M .

This occurs because s∗∗M is discrete, and whenever it jumps up by 1, p∗∗M shoots up to 1 to make

more use of the service capacity. However, within the interval of r where s∗∗M stays unchanged,

p∗∗M gradually decreases to avoid overcrowding and consequently degrading rewards. However, as

r →∞, p∗∗M → 1 since s∗∗M would approach infinity.

Finally, we show the optimal profit P ∗∗M as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in

Figure 8.4a, and as a function of r ∈ [0, 15] for b = 0, 1, 5, and c = .6 in Figure 8.4b. As expected,

P ∗∗M is decreasing in c, and increasing in r and b. In Figure 8.4a, we see that when c is small, we

can admit all the arrivals and essentially employ enough servers to make queueing time less than

or equal to b for all the customers. Hence the optimal profit approaches r as c approaches 0. This

is why the three profit curves start at r = 10 in this figure. This is consistent with our intuition.

98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

1

2

3

4

5

6

7

8

9

10

P
M*
*

b=0

b=1

b=5

(a) P ∗∗
M as a function of c

0 5 10 15

r

0

1

2

3

4

5

6

P
M*
*

b=0

b=1

b=5

(b) P ∗∗
M as a function of r

Figure 8.4: Optimal profit P ∗∗
M as a function of c and r for different values of b under minimal information

case

The profit becomes zero when c ≥ c∗M and stays zero, because in this region it is optimal to not

operate the system at all. The profit looks like a linear function of c in this figure, but that is only

approximately true. In Figure 8.4b, we can see the non-smooth nature of P ∗∗M , which is attributable

to the non-smooth nature of the admission probability p∗∗M .

8.3 Partial Information

In this section, we consider the partial information case. Thus we assume we know the number

of customers in the system at the time of arrival, in addition to parameters (λ, µ, b). We shall

identify the set of admissible policies ΠP , compute the long run expected profit per unit time PP ,

and study the joint staffing and admission control problem.

As in the minimal information case, we restrict our attention to stationary Markovian policies

that admit or reject a customer based on the number of customers in the system at the time

of arrival. One can formulate the admission control problem (for a fixed s) as a Markov Decision

Process (MDP), but the reward functions involved are not convex, and hence it is not easy to derive

structural properties analytically. However, if the optimal policy rejects an arriving customer at

any level of the queue length, there must be a smallest value (say K) of the queue length when

such a rejection occurs first. If we start the system empty (a reasonable assumption), the queue

length will never exceed K under such a policy. Thus it suffices to restrict attention to a K-policy

that admits the customer only when the number of customers in the system is less than K.

99

Now suppose the staffing level is s, and a K-policy is followed. We can assume that K ≥ s,

since it does not make sense to reject customers when there are idle servers (one can prove this

rigorously, but we do not include the proof here). The queueing system is then an M |M |s|K queue

with arrival rate λ and service rate µ. Recall that r and ρ are defined in Equation 8.7. Note that

this system is always stable for any K <∞. Let pk be the stationary probability that there are k

customers in the system (0 ≤ k ≤ K). If ρ 6= 1, pk is given by (see Shortle et al. 2018)

p0 =
1− ρ

(1− ρ)
∑s−1

i=0
ri

i! + rs

s! (1− ρK−s+1)
,

and

pk =


rkp0
k! if 1 ≤ k ≤ s− 1,

rsp0ρk−s

s! if s ≤ k ≤ K.
(8.22)

If ρ = 1, pk = 1/(K + 1) for 0 ≤ k ≤ K. We will find it useful to note that pk, 0 ≤ k ≤ K, are

known to be decreasing and convex in K, see (Köchel, 2004).

Let Wq(k) be the queueing time for an arriving customer when there are k customers in the

system at the time of arrival. The FCFS service discipline implies that

Wq(k) =


0 if 0 ≤ k ≤ s− 1,

Erlang(sµ, k − s+ 1) if s ≤ k < K,

∞ if k = K.

Here the equality is in distribution. Note that if the number of customers in the system is K at

the time of arrival, this customer will not be admitted, and hence will produce zero reward. We

indicate this by setting the queueing time of such a customer to be ∞.

Using PASTA, we see that an arrival sees the system in state k with probability pk (0 ≤ k ≤ K).

So the long run expected revenue per unit time under K-policy is given by

RP (s,K) = λ

(s−1∑
k=0

pk +
K−1∑
k=s

P (Wq(k) ≤ b)pk
)
. (8.23)

100

Thus the long run expected profit per unit time is given by

PP (s,K) = RP (s,K)− cs,

and the joint staffing and admission control problem reduces to

max
s≥0,K≥s

λ

(s−1∑
k=0

pk +
K−1∑
k=s

P (Wq(k) ≤ b)pk
)
− cs.

As described in section 3, we solve this problem in two stages in the next two subsections.

8.3.1 Admission Control

In this subsection, we fix an s ≥ 0 and study the following admission control problem

max
K≥s

RP (s,K) = λ

(s−1∑
k=0

pk +

K−1∑
k=s

P (Wq(k − s+ 1) ≤ b)pk
)
. (8.24)

It is worth mentioning the relevant properties of RP (s,K). As mentioned earlier, 0 ≤ RP (s,K) ≤

min(λ, sµ). Furthermore, as K →∞, the M/M/s/K queue approaches an M/M/s queue. Hence

we get

lim
K→∞

RP (s,K) =


µr(1− C(s, r)e−µ(s−r)b) if ρ < 1,

0 if ρ ≥ 1.

(8.25)

Similar to the result in the minimal information case, it can be shown that that RP (s,K) is an

increasing function of s and b individually as well. Two special cases are easy to analyze: b = 0 and

b = ∞. If b = 0, the customers who enter without delay get reward of 1, and others get a reward

of zero. Hence

RP (s,K) = λ

s−1∑
k=0

pk, (b = 0). (8.26)

If b =∞, every entering customer gets a reward of 1. Hence

RP (s,K) = λ(1− pK), (b =∞). (8.27)

101

It is known that RP (s,K) is a decreasing convex function of K if b = 0, and an increasing concave

function of K if b = ∞, for all values of ρ, see (Smith, 2003), (Köchel, 2004) and (Smith et al.,

2010). In all other cases of b ∈ (0,∞), RP (s,K) is a unimodal function of K.

Let K∗P (s) be a value of K that maximizes the revenue rate RP (s,K). Then, for a given s, the

K∗P (s)-policy is an optimal admission control policy in the partial information case. Let

R∗P (s) = RP (s,K∗P (s)).

Next we collect several asymptotic properties of K∗P (s) and R∗P (s) in the next theorem.

Theorem 8. In the partial information case, we have

(i)

lim
b→0

K∗P (s) = s, (8.28)

lim
b→0

R∗P (s) = λ(
s−1∑
k=0

pk), (8.29)

(ii)

lim
b→∞

K∗P (s) =∞, (8.30)

lim
b→∞

R∗P (s) =


λ if ρ < 1,

sµ if ρ ≥ 1,

(8.31)

(iii)

lim
r→∞

K∗P (s) = s, (8.32)

lim
r→∞

R∗P (s) = sµ, (8.33)

(iv)

lim
s→∞

K∗P (s) =∞, (8.34)

lim
s→∞

R∗P (s) = λ. (8.35)

Proof. Proof

102

(i) The results follow from Equation 8.26 and the fact that the revenue is a decreasing function

of K.

(ii) The result about K∗P (s) follows from Equation 8.27 and the fact that the revenue is an increas-

ing function of K. Further, when ρ < 1, limb→∞(1− rsp0ρK−s

s!) = 1, hence limb→∞R
∗
P (s) = λ.

When ρ ≥ 1, limb→∞(1− rsp0ρK−s

s!) = 1/ρ, hence limb→∞R
∗
P (s) = sµ. The result now follows.

(iii) When the arrival rate goes to infinity in an M/M/s/K system, if K > s, in the limit sµ

customers enter the system, and a positive fraction of them face a positive queueing time, and

hence get a reward of less than one. Hence

lim
r→∞

RP (s,K) < sµ.

If K = s, on the average sµ customers enter the system per unit time, and each of them earns

a reward of 1. Hence

lim
r→∞

RP (s,K) = sµ.

So, when r approach infinity, K∗P (s) = s.

(iv) We know K ≥ s, so when s→∞, K →∞. Also,

lim
s→∞

R∗P (s) = lim
K→∞,s→∞

λ(1− pK) = lim
K→∞,s→∞

λ(1− rsp0ρ
K−s

s!
) = λ.

The result follows.

8.3.2 Staffing Problem

Now consider the staffing problem, which involves computing the staffing level s that maximizes

the net profit per unit time. For a given staffing level s, the optimal revenue rate is

R∗P (s) = RP (s,K∗P (s)).

103

Hence the optimal profit rate for a given s is given by

P ∗P (s) = R∗P (s)− cs.

Hence the staffing problem reduces to the following optimization problem:

max
s≥0

P ∗P (s) = λ

(s−1∑
k=0

pk +

K∗P (s)−1∑
k=s

P (Wq(k − s+ 1) ≤ b)pk
)
− cs. (8.36)

R∗P (s) is numerically observed that there is an ŝ such that R∗P (s) is convex for s ∈ [0, ŝ] and concave

for s ∈ (ŝ,∞). Using the argument in section 3, we see that P ∗P (s) achieves its global maximum at

some finite value of s. Denote this optimal staffing level by s∗∗P . Then the optimal profit is given

by

P ∗∗P = P ∗P (s∗∗P),

and the optimal capacity under the optimal staffing is given by

K∗∗P = K∗P (s∗∗).

As described in section 3, we can compute

s∗P = argmax{s ≥ 1 :
R∗P (s)

s
}, (8.37)

and define

c∗P =
R∗P (s∗P)

s∗P
.

Theorem 6 holds with s∗P , s∗∗P and c∗P in place of s∗, s∗∗ and c∗.

8.3.3 Numerical Results

In this subsection, we present the numerical results for the joint staffing and admission control

problem. Specifically, we study the behavior of optimal staffing level s∗∗P , optimal capacity K∗∗P and

optimal profit P ∗∗P as a function of c and r with different values of b.

104

0 5 10 15

r

1

2

3

4

5

6

7

8

s
P*

b=0

b=1

b=5

(a) s∗P as a function of r

0 5 10 15

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
P*

b=0

b=1

b=5

(b) c∗P as a function of r

Figure 8.5: s∗P and c∗P as a function of r for different values of b under partial information case

We first plot s∗P and c∗P as a function of r ∈ [0, 15] for b = 0, 1, 5 in Figures 8.5a and 8.5b,

respectively. Note that c plays no role in this as well. When b = 0, we know from Theorem 8 that

K∗P (s) = s. Hence

R∗P (s)/s = λ(1− pK)/K.

This decreases in K since pK is decreasing and convex in K (Messerli 1972). Hence s∗P = 1 for all

r, as seen in Figure 8.5a. When b = 1 and 5, we see s∗P increases with r. But it is interesting that

s∗P is not monotone in b and its value at b = 1 can differ by plus or minus one from its value at

b = 5. This is due to the discrete nature of s and K. In Figure 8.5b, we can see that c∗P increases

with r and b. Recall that c∗P
− (left-hand limit of c∗P) is the maximum value of c that will produce

a profitable operation (using the results of Theorem 6). Thus when r = 10, and b = 0, c∗P is seen

to be .9091. Hence if c ≥ .9091, the optimal staffing level will be zero.

Next, we study s∗∗P . We show s∗∗P as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in Figure

8.6a, and as a function of r ∈ [0, 15] for b = 0, 1, 5, and c = .6 in Figure 8.6b. As expected, we can

see that s∗∗P is decreasing in c, and increasing in r. In Figure 8.6a, we see that when c is too high,

s∗∗P will be 0 since it is too expensive to offer the service. The behavior of s∗∗P with b is interesting.

In general, if b1 < b2, there is a parameter-dependent critical level ĉ such that the optimal staffing

level under b1 is larger than that under b2 for c < ĉ, and the ordering reverses if c ≥ ĉ. This is

due to the tradeoff involved in choosing the optimal staffing level. Intuitively, when b is larger, it

is easier to get the revenue, and hence we tend to use fewer servers. If the server cost is less, we

tend to use more servers under optimality. These opposing tendencies lead to the non-monotone

105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

2

4

6

8

10

12

14

16

18

20

s
P*
*

b=0

b=1

b=5

(a) s∗∗P as a function of c

0 5 10 15

r

0

5

10

15

s
P*
*

b=0

b=1

b=5

(b) s∗∗P as a function of r

Figure 8.6: Optimal staffing s∗∗P as a function of c and r for different values of b under partial information
case

behavior of the optimal staffing level with respect to b. In Figure 8.6b , we see that the curves for

b = 1 and 5 keep intersecting each other in many places, thus showing that s∗∗P is not monotone

in b as well. Also, note that the optimal staffing level is zero for small values of r since the arrival

rate is too small to provide a profitable operation when c = .6.

Further, we show K∗P as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in Figure 8.7a, and

as a function of r ∈ [0, 15] for b = 0, 1, 5, and c = .6 in Figure 8.7b. As expected, K∗∗P increases as

b increases. In Figure 8.7a, we see that K∗∗P gradually decreases to 0 as c increases, since optimal

staffing level deceases with c and finally do not offer any service. In Figure 8.7b, we see that K∗∗P

shows non-monotone behavior with respect to r. This is the same phenomenon we observe when

studying p∗∗M as a function of r. This occurs since s∗∗P is discrete, and whenever it jumps up by 1,

K∗∗P jumps up to exploit the added service capacity to serve more customers. However, within the

interval of r where s∗∗P stays unchanged, K∗∗P decreases gradually since the arrival rate increases,

thus reducing the service quality.

Finally, we show P ∗∗P as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in Figure 8.8a, and

as a function of r ∈ [0, 15] for b = 0, 1, 5, and c = .6 in Figure 8.8b. As expected, P ∗∗P is decreasing

in c, and increasing in r and b, in spite of the non-monotone behavior of K∗∗P . These trends are

consistent with our intuition.

106

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

10

20

30

40

50

60

70

K
P*
*

b=0

b=1

b=5

(a) K∗∗
P as a function of c

0 5 10 15

r

0

10

20

30

40

50

60

70

80

K
P*
*

b=0

b=1

b=5

(b) K∗∗
P as a function of r

Figure 8.7: Optimal capacity K∗∗
P as a function of c and r for different values of b under partial information

case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

1

2

3

4

5

6

7

8

9

10

P
P*
*

b=0

b=1

b=5

(a) P ∗∗
P as a function of c

0 5 10 15

r

0

1

2

3

4

5

6

P
P*
*

b=0

b=1

b=5

(b) P ∗∗
P as a function of r

Figure 8.8: Optimal profit P ∗∗
P as a function of c and r for different values of b under partial information

case

107

8.4 Full Information

In this section, we consider the full information case. Thus we know that system parameters

(λ, µ, b). In addition, we also know the exact queueing time an incoming customer faces. To make

this more precise, we introduce the virtual queueing time (VQT) process in the next subsection.

8.4.1 Virtual Queueing Time Process

Let W (t) be the queueing time a customer will experience if she arrives at time t and is

admitted to the system. The process {W (t), t ≥ 0} is called VQT process. Let N(t) be the number

of customers in the system at time t. Then the definition of W (t) implies that W (t−) = 0 if and

only if N(t−) ≤ s− 1 and W (t+) > 0 if and only if N(t+) ≥ s. The system is said to be busy at

time t if N(t) ≥ s, and idle otherwise. If the system becomes busy (or stays busy) after admitting a

customer, there is a jump in the {W (t), t ≥ 0} process. The sequence of jump sizes are iid exp(sµ)

random variables. When W (t) > 0 (thus the system is busy at time t), W (t) decreases at a unit

rate between upward jumps. The VQT process reaches zero (from a positive level) when exactly

one server becomes idle, and stays zero until all servers become busy. Figure 8.9 shows a sample

path of a system with s = 2 and five arrival epochs Ti (i = 1, 2, 3, 4, 5). Arrivals 1, 2, 4 and 5 are

admitted, while 3 is rejected. The system becomes busy at time T1 and the busy period ends at

time T ′ when W (t) reaches 0 (simultaneously N(t) reaches s− 1 = 1). The idle period starts at T ′

and ends at T5 when N(t) reaches s = 2 (simultaneously W (t) jumps to a positive). The length of

the idle period is denoted by I.

T
0

T
1

T
2

T
3

T T
4

T
5

0

b

t

W(t)

T
0

T
1

T
2

T
3

T T
4

T
5

0

1

2

3

t

N(t)

 I

Figure 8.9: A sample path of W (t) and N(t)

108

The precise definition of the idle period I is as given below:

I = min{t ≥ 0 : N(t) = s|N(0) = s− 1}.

We analyze it by assuming that all arrivals that see at least one idle server upon arrival are admitted

(and experience zero queueing time). Let ψ(α) = E(e−αI) and φ(α) be equal to the total discounted

reward from all the arrivals over [0, I) . We do not need explicit expressions for these. But we do

need their expected values given below. From (Liu and Kulkarni, 2008a), we have

E(I) =
1

λ0
=

(s− 1)!
∑s−1

k=0
rk

k!

rsµ
. (8.38)

We can also show that the expected number of arrivals during I is given by

φ(0) = λE(I)− 1. (8.39)

We study the joint staffing and admission control problem in two stages in the next two sub-

sections.

8.4.2 Admission Control

In the full information case, we assume we know the VQT process at the time of arrival (actually

its entire history up to that point). A Markovian policy decides whether to admit or reject an arrival

at time t based on the VQT W (t). The set of all such Markovian policies is denoted by ΠF . In this

subsection, we assume that the staffing level s is fixed, and we aim to find an optimal policy π∗F (s)

from the set of admissible policies ΠF that maximizes the long run expected revenue per unit time.

We do this by deriving the optimality equation and the corresponding optimal admission control

policy.

We begin by studying the discounted case first. Suppose W (t) = w and a customer arrives at

time t. If we admit this customer, we get a reward r(W (t)), defined as

r(w) =

 1 if 0 ≤ w ≤ b,

0 if w > b.
(8.40)

109

Let π be an admissible policy in set ΠF . Let vπα(w) be the expected total discounted reward over

the infinite horizon starting in state w and following policy π, using the continuous discount factor

α > 0. Suppose the n-th customer arrives at time Tn. Then we have

vπα(w) = Eπ

[∞∑
n=1

e−αTnr(W (Tn))1{n-th customer is admitted}|W (0) = w)

]
. (8.41)

Let vα(w) be the optimal expected total discounted reward starting with state W (0) = w.

Define the optimal value function as

vα(w) = sup
π∈ΠF

vπα(w). (8.42)

Now define

uα(w) = vα(w)− vα(b). (8.43)

From the theory of average reward MDPs (Puterman 2014), we know that

g = lim
α→0

αvα(b) (8.44)

exists and equals the optimal long run average revenue per unit time. Also,

u(w) = lim
α→0

uα(w) (8.45)

exists and represents the bias function. Then next theorem gives the optimality equation satisfied

by u(·) and g.

Theorem 9. u(·) and g satisfy the following optimality equation:

u′(w) + g + λu(w) = λmax{u(w), r(w) +

∫ ∞
0

u(w + t)s(t)dt}, w > 0, (8.46)

with boundary condition

u′(0) = lim
w→0

u′(w) = (
λ

λ0
− 1)(g − λ), (8.47)

110

where

λ0 =
rsµ

(s− 1)!
∑s−1

k=0
rk

k!

. (8.48)

Proof. We begin by first deriving the optimality equation for vα(w). Using the same argument in

the partial information case, we conclude that it is optimal to admit a customer arriving at time t

if N(t) < s. That is, if there is at least one idle server, it is optimal to admit the arriving customer.

Suppose W (0) = w > 0. Condition on the state at an infinitesimal time h. The probability that

there is no arrival over (0, h] is 1− λh + o(h), in which case W (h) = w − h. The probability that

there is exactly one arrival is λh + o(h), and if we reject this arrival, we get zero reward and the

state becomes W (h) = w− h, and if we accept it, we get a reward of r(w− h) and the state jumps

to W (h) = w − h + Y , where Y ∼ exp(sµ) random variable. The probability of more than one

arrival is o(h). Combining all these cases and collecting all o(h) terms, we get

vα(w) = (1−λh)e−αhvα(w−h)+e−αhλhmax{vα(w−h), r(w−h)+

∫ ∞
0

vα(w−h+t)s(t)dt}+o(h),

(8.49)

where s(t) = sµe−sµt is the pdf of an exp(sµ) random variable.

Now, subtract vα(w − h) from both sides, and divide by h, and let h approach zero. Then

Equation 8.49 yields

v′α(w) + (λ+ α)vα(w) = λmax{vα(w), r(w) +

∫ ∞
0

vα(w + t)s(t)dt}. (8.50)

Next we derive the boundary condition. Suppose the idle time has started at time 0, that is

N(0) = s − 1. Let I be the idle time. Then we admit all customers during (0, I) and earn an

expected discounted reward of φ(α) during that time. At time I, the W process jumps to a state

Y ∼ exp(sµ) at time t and earns a reward of vα(Y) from then on. It is discounted by a factor

ψ(α) = E(e−αI). This gives us

vα(0) = φ(α) + ψ(α)

∫ ∞
0

vα(t)s(t)dt. (8.51)

111

Using Equation 8.43, we see that Equation 8.50 can be rewritten as

u′α(w) +αuα(w) +αvα(b) + λuα(w) = λmax{uα(w), r(w) +

∫ ∞
0

uα(w+ t)s(t)dt}, w > 0. (8.52)

Now let α→ 0 on Equation 8.52. Using Equation 8.44 and 8.45, we get

u′(w) + g + λu(w) = λmax{u(w), r(w) +

∫ ∞
0

u(w + t)s(t)dt}, (8.53)

which is Equation 8.46. Letting w → 0 in Equation 8.52, and using Equation 8.51, we get

v′α(0) + (λ+ α)vα(0) = λ
vα(0)− φ(α)

ψ(α)
. (8.54)

Thus when w = 0,

u′(0) = lim
α→0

v′α(0) = lim
α→0
{λvα(0)− φ(α)

ψ(α)
− (λ+ α)vα(0)}

= lim
α→0
{(λ

E(e−αI)
− λ− α)(vα(b) + uα(0))− φ(α)λ

ψ(α)
}

= lim
α→0
{α(λE(I)− 1)(vα(b) + uα(0))} − λφ(0)

= (λE(I)− 1)g − λφ(0).

The result then follows by using the expressions for E(I) and φ(0) from Equations 8.38 and 8.39.

Now we consider a specific admission control policy called the b-policy. It admits an arrival at

time t if W (t−) ≤ b and rejects it otherwise. Let gb be the long run reward rate and ub(w) be the

bias function of the b-policy. The next theorem gives the explicit expressions for ub and gb.

Theorem 10. The bias function ub(·) and the average reward gb of the b−policy are given by

gb =
−sλµ(λ0e

λb + λesµb − λ0e
sµb − sµesµb)

s2µ2esµb − λλ0eλb − sλµesµb + sλ0µesµb
, (8.55)

ub(w) =

 −gb(w − b), if w > b,

c1 + c2e
(sµ−λ)w + c3w, if 0 < w ≤ b,

(8.56)

112

where

c1 =
sµ(λ− gb)(b− e(sµ−λ)b)

(λ− sµ)2
− 1

sµ− λ
(
λ

λ0
− 1)(gb − λ)e(sµ−λ)b, (8.57)

c2 = −sµ(λ− gb)
(λ− sµ)2

+
1

sµ− λ
(
λ

λ0
− 1)(gb − λ), (8.58)

and

c3 =
sµ(gb − λ)

λ− sµ
. (8.59)

Proof. Using the same argument as in the proof of the previous theorem, we can show that the

ub(·) and gb satisfy the following optimality equation:

u′b(w) + gb + λub(w) =


λub(w), if w > b,

λ+ λ
∫∞

0 ub(w + t)s(t)dt, if 0 < w ≤ b,

(8.60)

with boundary conditions

ub(b) = 0, (8.61)

u′b(b) = λ− g − gλ

sµ
, (8.62)

and

u′b(0) = (
λ

λ0
− 1)(gb − λ), (8.63)

where λ0 is as given in Equation 8.48. Next we solve Equation 8.60.

First consider the case w > b. From Equation 8.60, we see that ub satisfies the differential

equation

u′b(w) + gb = 0.

Using the boundary condition in Equation 8.61, we see that the solution is given by

ub(w) = −gb(w − b), w ≥ b. (8.64)

This is the first case in Equation 8.56.

113

Next consider the region 0 < w ≤ b. From Equation 8.60, we see that in this region ub satisfies

the differential equation

u′b(w) + λub(w)− λ
∫ ∞

0
ub(w + t)s(t)dt = λ− gb.

Substituting from Equation 8.64, this reduces to

u′b(w) + λub(w)− sλµ
∫ b−w

0
ub(w + t)e−sµtdt = λ− gb −

gbλe
−sµ(b−w)

sµ
.

Now use the transformation

ub(w) = esµwf(w) (8.65)

in the above equation and simplify it to get

f ′(w) + (λ+ sµ)f(w)− sλµ
∫ b

w
f(z)dz = (λ− gb)e−sµw −

gbλe
−sµb

sµ
.

Taking the derivative with respect to w on both sides of the above equation and simplifying, we

get

f ′′(w) + (λ+ sµ)f ′(w) + sλµf(w) = sµ(gb − λ)e−sµw.

This is a non-homogeneous second order linear differential equation that can be solved by standard

methods to obtain

f(w) = c1e
−sµw + c2e

−λw + c3we
−sµw,

where c3 is as given in Equation 8.59. The last term arises from the non-homogeneous part.

Substituting the above in Equation 8.65 leads to

ub(w) = c1 + c2e
(sµ−λ)w + c3w, 0 < w ≤ b,

which is the second part of Equation 8.56. Finally, the boundary conditions in Equations 8.61, 8.62

and 8.63, provide the three equations to determine the three unknowns c1, c2 and gb. The final

expressions for these three unknowns are given in Equations 8.57, 8.58, and 8.55.

114

Clearly the expressions in the statement of the above theorem need to be modified if λ = sµ.

We give the result in the following corollary.

Corollary 1. In the special case when λ = sµ, the results of Theorem 10 reduce to

gb =
λ2(λ0b+ 1)

λ+ λ0 + λλ0b
, (8.66)

ub(w) =

 −gb(w − b), if w > b,

c1 + c2w + c3w
2, if 0 < w ≤ b,

(8.67)

where

c1 = −(
λ

λ0
− 1)(gb − λ)b− λ(gb − λ)b2

2
, (8.68)

c2 = (
λ

λ0
− 1)(gb − λ), (8.69)

and

c3 =
λ(gb − λ)

2
. (8.70)

Using Theorem 10, we get the main result in the next Theorem.

Theorem 11. The b-policy maximizes the long run average reward per unit time.

Proof. We shall first show that

ub(w) >

∫ ∞
0

ub(w + t)s(t)dt, if w > b, (8.71)

and

ub(w) ≤ 1 +

∫ ∞
0

ub(w + t)s(t)dt, if 0 < w ≤ b. (8.72)

First consider the case w > b. Using the first part of Equation 8.56, we have

∫ ∞
0

ub(w + t)s(t)dt = −gb(w − b)−
gb
sµ

= ub(w)− gb
sµ

< ub(w).

This proves Equation 8.71.

115

Now consider the case 0 < w ≤ b. Using the second part of Equation 8.56 and 8.60, and

Equation 8.55, we get

1 +

∫ ∞
0

ub(w + t)s(t)dt− ub(w) = u′b(w) + gb

= esµw(sµf(w) + f ′(w)) + gb

=
sµ(λ− gb)(1− e(sµ−λ)w)

sµ− λ
+ (

λ

λ0
− 1)(gb − λ)ew(sµ−λ) + gb

=
−sλµ(λ− sµ)

sµ(sµ+ λ0)− λ(λ0e(λ−sµ)w + sµ)
≥ 0.

Hence Equation 8.72 holds.

Then we see that Equation 8.60 satisfied by ub and gb reduces to the optimality equations in

Theorem 9. Hence gb is the optimal long run reward rate and b-policy is optimal.

With these results about the optimal admission control policies, we are ready to study R∗F (s),

the optimal long run reward rate if the number of servers is fixed at s. Then we have proved that

it is achieved by following the b-policy, and is given by gb of Equation 8.55 if λ 6= sµ and gb of

Equation 8.66 if λ = sµ. It is seen that R∗F (s) = gb is a concave function of s for a given set of

parameters b, λ, and µ, although it is difficult to prove this algebraically. For the case s = 1, we

get

R∗F (1) =



ρ(λeλb−µeµb)
ρ2eλb−eµb , λ 6= µ,

λ(λb+1)
2+λb , λ = µ.

(8.73)

This result can also be derived by using the limiting distribution of the VQT process derived in

(Liu and Kulkarni, 2006). Based on the expression for R∗F (s), we present its asymptotic properties

in the following Theorem. The results are intuitive and the proof is purely algebraic and hence is

omitted.

Theorem 12. In the full information case, we have

(i)

lim
b→0

R∗F (s) = λ(

s−1∑
k=0

pk), (8.74)

116

where pk is the stationary probability of k customers in an M |M |s|s queue,

lim
b→∞

R∗F (s) =


λ if ρ < 1,

sµ if ρ ≥ 1,

(8.75)

(ii)

lim
r→∞

R∗F (s) = sµ, (8.76)

(iii)

lim
s→∞

R∗F (s) = λ. (8.77)

We can see that the asymptotic properties of R∗F (s) are the same as the asymptotic properties

of R∗M (s) and R∗P (s).

8.4.3 Staffing Problem

Now consider the staffing problem, which involves computing the staffing level s that maximizes

the net profit per unit time. For a given staffing level s, the optimal revenue rate is computed as

R∗F (s) = gb in the previous subsection. Hence the optimal profit rate for a given s is given by

P ∗F (s) = R∗F (s)− cs.

Thus the staffing problem reduces to the following optimization problem:

max
s≥0

P ∗F (s) = R∗F (s)− cs. (8.78)

Since R∗F (s) is a concave function of s, so is P ∗F (s). Hence P ∗F (s) achieves its global maximum at

some finite value of s. Denote this optimal staffing level by s∗∗F . Then the optimal profit is given

by

P ∗∗F = P ∗F (s∗∗F).

117

As described in section 3, we can compute

s∗F = argmax

{
s ≥ 1 :

R∗F (s)

s

}
. (8.79)

Since R∗F (s) is a concave function of s, it follows that the optimal revenue per server decreases

with s, and hence s∗F = 1 always! This is indeed very counterintuitive and very different from the

minimal and partial information cases. Since s∗F = 1, we get

c∗F =
R∗F (s∗F)

s∗F
= R∗F (1),

where R∗F (1) is explicitly given in Equation 8.73. Theorem 6 holds with s∗F , s∗∗F and c∗F in place of

s∗, s∗∗ and c∗.

8.4.4 Numerical Results

In this subsection, we present the numerical results for the joint staffing and admission control

problem. Specifically, we study the behavior of optimal staffing level s∗∗F and optimal profit P ∗∗F as

a function of c and r with different values of b.

We skip the study of s∗F since it is always 1. In figure 8.10, we plot c∗F as a function of r ∈ [0, 15]

for b = 0, 1, 5. We can see that it increases with r and b. It also shows the right-hand limit of

maximum value of c that will produce a profitable operation (using the results of Theorem 6). Thus

when r = 10, and b = 0, c∗F is seen to be 0.9091, which is the same as the corresponding value in

the partial information case since they are both equivalent to an M |M |s|s queue when b = 0. Thus

if c ≥ 0.9091, the optimal staffing level will be zero.

We next show s∗∗F as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in Figure 8.11a, and as a

function of r ∈ [0, 15] for b = 0, 1, 5, and c = .6 in Figure 8.11b. As expected, we can see that s∗∗F

is decreasing in c, and increasing in r. In Figure 8.11a, we see that when c is too high (c ≥ 0.9091

when b = 0), s∗∗F will be 0 since it is too expensive to offer the service. Also, for the behavior of s∗∗F

with respect to b, it is similar to that in the partial information case. In Figure 8.11b, we note that

the optimal staffing level is zero for small values of r since the offered traffic is not large enough to

run a profitable system at this server cost.

118

0 5 10 15

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
F*

b=0

b=1

b=5

Figure 8.10: c∗F as a function of r for different values of b under full information case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

2

4

6

8

10

12

14

16

18

20

s
F*
*

b=0

b=1

b=5

(a) s∗∗F as a function of c

0 5 10 15

r

0

5

10

15

s
F*
*

b=0

b=1

b=5

(b) s∗∗F as a function of r

Figure 8.11: Optimal staffing s∗∗F as a function of c and r for different values of b under full information
case

We finally show P ∗∗F as a function of c ∈ [0, 1] for b = 0, 1, 5, and r = 10 in Figure 8.12a, and

as a function of r ∈ [0, 15] for b = 0, 1, 5 for c = .6 in Figure 8.12b. As expected, P ∗∗F is decreasing

in c, and increasing in r and b.

8.5 Value of Information

In this section, we study how the available information (minimal, partial or full) affects the

performance of the system under optimal operations. We know previously that when b → 0, the

partial and full information cases have the same joint staffing and admission control policy, which

is different from that in the minimal information case. And when b→∞, all the information cases

have the same joint staffing and admission control policy. What less clear is the case when b is in

between. So, we choose b = 1 in the following analysis.

119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

1

2

3

4

5

6

7

8

9

10

P
F*
*

b=0

b=1

b=5

(a) P ∗∗
F as a function of c

0 5 10 15

r

0

1

2

3

4

5

6

P
F*
*

b=0

b=1

b=5

(b) P ∗∗
F as a function of r

Figure 8.12: Optimal profit P ∗∗
F as a function of c and r for different values of b under full information

case

To begin with, we study the effect of information on server value c∗. We plot the ratios c∗M/c
∗
F

and c∗P /c
∗
F as a function of r ∈ [0, 15] in Figure 8.13, for b = 1. We see that

c∗M
c∗F
≤
c∗P
c∗F
≤ 1,

implying that the server value increases with information. In other words, we can afford to pay the

workers more and still make profit if we have more information. It is also important to realize that

this effect is non-monotone in r: it decreases from 1 initially and then increases to 1. Thus the

server value in the partial (minimal) information case can be as low as 74% (59%) of that in the

full information case. However, when r is large, the ratios approach 1, implying that the effect of

extra information diminishes. This provides an important insight about the value of information.

0 5 10 15

r

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

s
e

rv
e

r
v
a

lu
e

 r
a

ti
o

c
M

*
/c

F

*

c
P

*
/c

F

*

Figure 8.13: The server value ratio as a function of r

120

We next explore the effect of available information on the optimal profit P ∗∗. We plot the

ratios P ∗∗M /P ∗∗F and P ∗∗P /P ∗∗F as a function of c ∈ [0, 1] in Figure 8.14a for r = 10 and b = 1, and as

a function r ∈ [0, 15] in Figure 8.14b for c = .6 and b = 1. We see that

P ∗M
P ∗F
≤
P ∗P
P ∗F
≤ 1,

implying that extra information leads to better profits. This is to be expected. We interpret the

ratios as profit efficiency: it tells us what fraction of the profit under full information is captured

by minimal and partial information levels. Figure 8.14a shows that the profit efficiency decreases

with c under both information levels. The efficiency hits zero when c increases beyond the server

value in each case. Another implication is that we should be willing to pay more for information if

our servers are more expensive. Figure 8.14b shows that the profit efficiency tends to increase as r

increases, although the effect is not strictly monotone. This is the consequence of discrete nature

of the optimal staffing level and admission control. This figure also implies that the usefulness of

the extra information diminishes as the traffic load increases. We also see that the optimal profit

under the partial information case is not too much worse than the full information case when c

is small and r is large. In this case, it may not be able to help the service provider too much by

getting more information when c is small and r is large given he has partial information already.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

fi
t

ra
ti
o

P
M
** /P

F
**

P
P
**/P

F
**

(a) The profit ratio as a function of c

0 5 10 15

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ro

fi
t

ra
ti
o

P
M
** /P

F
**

P
P
**/P

F
**

(b) The profit ratio as a function of r

Figure 8.14: The profit ratios as a function of c and r

Next we study the effect of information on the optimal staffing level s∗∗. This is not as easy to

guess intuitively. We plot the ratios s∗∗M/s
∗∗
F and s∗∗P /s

∗∗
F as a function of c ∈ [0, 1] in Figure 8.15a,

121

for r = 10 and b = 1, and as a function of r ∈ [0, 15] in Figure 8.15b for c = .6 and b = 1. We

have seen previously that s∗∗ decreases in c and increases in r in all the information cases. One

might expect that the optimal staffing level will be smaller with more information. We can think

of the ratio as staffing efficiency. A staffing ratio of 1.2 would mean that full information is 20%

more efficient. Clearly the ratio cannot be more than one for all parameter values, since we know

that the optimal staffing level drops to zero if c ≥ c∗, and we have seen that c∗ increases with

information.

When c < c∗M , we see that the ratio is always more than 1 for the minimal information case.

That is, we use more servers under the minimal information than under the full information. The

story of the partial information is less clear. In that case, we see that when c < c∗P , the ratio hovers

around one, and even dips below one as c approaches c∗P . Similar effect is observed when we vary

r in Figure 8.15b. In general, when the staffing levels are not zero, the optimal staffing level under

the partial information case is comparable to that under the full information case, but the staffing

level under minimal information is always more than that under the partial or full information case.

The discontinuous nature of the graph is because the optimal staffing levels are discrete.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s
ta

ff
in

g
 r

a
ti
o

s
M
** /s

F
**

s
P
**/s

F
**

(a) The staffing ratio as a function of c

0 5 10 15

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

s
ta

ff
in

g
 r

a
ti
o

s
M
** /s

F
**

s
P
**/s

F
**

(b) The staffing ratio as a function of r

Figure 8.15: The staffing ratios as a function of c and r

Staffing level is of course intimately influenced by the admission control policy. Since the policies

under different information levels have different structures (p-policy under M, K-policy under P,

and b-policy under F), we need a common criterion for comparison. We choose to compare the effect

of information on the fraction of the arrivals that are admitted under optimal admission policy,

which we denote as p∗∗. Specifically, p∗∗ = p∗∗M in the minimal information case, p∗∗ equals the

122

stationary probability that an incoming customer enters an M |M |s∗∗P |K∗∗P queueing system in the

partial information case, and p∗∗ = R∗∗F /λ in the full information case. We plot the ratios p∗∗M/p
∗∗
F

and p∗∗P /p
∗∗
F as a function of c ∈ [0, 1] in Figure 8.16a, for r = 10 and b = 1, and as a function

of r ∈ [0, 15] in Figure 8.16b for c = .6 and b = 1. From the figure, we can see that the minimal

information case always allows a significantly larger fraction of customers to enter service compared

to the other two information cases, leading to significantly smaller profits. It is interesting to note

that the ratio in the partial information case does not always exceed one, and is less than one as

c approaches c∗P . It hovers around 1 as r increases. We have seen similar behavior for the staffing

ratios. Since full information is typically much harder to implement in practice (since it involves

knowing the actual service time of every admitted customer in the system), it is useful to know that

the performance of the optimal staffing and admission control policies in the partial information

case is not that far from the full information case when c is small and r is large. Thus using partial

information can often be the most practical strategy to use in real world in that parameter space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

0.2

0.4

0.6

0.8

1

1.2

a
d

m
is

s
io

n
 r

a
ti
o

p
M
** /p

F
**

p
P
**/p

F
**

(a) The admission ratio as a function of c

0 5 10 15

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a
d

m
is

s
io

n
 r

a
ti
o

p
M
** /p

F
**

p
P
**/p

F
**

(b) The admission ratio as a function of r

Figure 8.16: The admission ratios as a function of c and r

8.6 Conclusions

In this project, we consider a joint staffing and admission control problem under the minimal,

partial and full information. Under each information case, we do this in two stages. In the first stage

we fix the staffing level and determine the optimal admission control policy to maximize the revenue

rate. We analyze various asymptotic properties of the optimal revenue rate under such a policy.

In the second stage we determine the optimal staffing level to maximize the profit rate assuming

123

that we follow a staffing-level-dependent admission control policy. We also study the maximum

revenue per server under each information level. Finally, we consider the effect of information on

the server value, optimal profits, optimal staffing levels and optimal admission fractions under the

three information cases.

In terms of the admission control under each information case, we show that the revenue is

concave over the probability p under the minimal information case, and concave over the capacity K

under the partial information case, and the optimal revenue under full information case is achieved

under b-policy. We also observe a surprising phenomenon that the optimal admission probability

under minimal information case, and optimal capacity under the partial information case shows a

non-monotone behavior over the traffic level. This is because the optimal staffing level is discrete,

and whenever it jumps up by 1, the optimal probability under the minimal information case, and

optimal capacity under the full information case increase suddenly to make full use of the service

capacity. However, when the optimal staffing level keeps the same, the optimal probability and

optimal capacity would gradually decrease to avoid overcrowding with the increase of the traffic

level. By contrast, the b-policy is always optimal under the full information case no matter how

the traffic level changes since we have full information over the queueing time, thus do not have

to worry about the use of service capacity, and overcrowding. It implies that the trends of the

admission control policy under minimal and partial information cases are similar, which are very

different from that of full information case.

In terms of the staffing level under each information case, we show that the optimal staffing

level will become 0 when the server cost is larger than or equal to the server value. It implies

if the server cost is too high, it would be too expensive to offer the service. We observe that

the optimal staffing level is decreasing in the server cost and increasing in the traffic level under

each information case. We also notice that the optimal staffing under minimal information case is

always larger than that in the partial or full information case, but the optimal staffing level under

the partial information case is comparable to that under the full information case.

In terms of the profit, the minimal information level significantly under-performs the partial

and full information levels. However, the comparison between partial and full information cases is

more nuanced. The partial information level only mildly under-performs the full information case

when the server cost is small and the traffic level is high, but when the server cost is large or the

124

traffic level is low, the full information case out-performs the partial information case. It implies

our model can not only help the service provider decide the optimal admission control and staffing

policy based on the information he has about the system, but also help the service provider realize

the potential improvement in profit if he can get additional information. For example, based on

the service level parameter, server cost and traffic level, the service provider can decide whether it

is worthwhile to get additional information in order to get more profit.

125

CHAPTER 9

Joint Admission and Service Rate Control of an Unobservable Queue

9.1 The Model

We consider a queueing system where customers arrive at an average rate λ. The system

operator has two controls: the admission probability p ∈ [0, 1], and the average service rate µ. If

the admission probability is p, the customers enter the system at rate λp. The system is stable if

µ > λp. We find it more convenient to use the excess service capacity θ = µ− λp ≥ 0 as a control

in place of µ. We call this the (p, θ) policy. Henceforth we assume

(p, θ) ∈ S = [0, 1]× [0,∞).

We treat the case p = 0 as a special case, since in this case no one is entering the system, so it

makes sense to set µ = θ = 0 and not operate the system at all.

Suppose each admitted customer generates an expected reward m(p, θ). Then

f(p, θ) = λpm(p, θ)

is the average reward per unit time from the admitted customers under the policy (p, θ).

Suppose the cost of choosing a service rate µ is cµ per unit time, where c is the cost per unit

time of a server that serves at rate 1, called per unit server cost. Then the expected profit per unit

time is given by

g(p, θ, c) = f(p, θ)− c(λp+ θ).

We use the following notation for the partial derivatives, assuming they exist:

fp(p, θ) =
∂f(p, θ)

∂p
, fθ(p, θ) =

∂f(p, θ)

∂θ
,

126

fp,p(p, θ) =
∂2f(p, θ)

∂p2
, fp,θ(p, θ) =

∂2f(p, θ)

∂p∂θ
, fθ,θ(p, θ) =

∂2f(p, θ)

∂θ2
.

We make the following assumptions.

Assumption 1. (i): fθ(p, θ) ≥ 0, (ii): fp,θ(p, θ) ≥ 0, (iii): fp,p(p, θ) ≤ 0, and (iv): fθ,θ(p, θ) ≤ 0,

p > 0, θ > 0.

Assumption 1 implies that f is concave in p, and increasing concave in θ, but not necessarily

jointly concave in p and θ. The function need not be continuous at (p, θ) = (0, 0), and we simply

define it to be 0.

Assumption 2 is about the behavior of f at the boundaries. This is needed in Lemma 4 in

Section 9.2.

Assumption 2. (i): limθ→0+ f(p, θ) ≤ 0, and (ii): limθ→∞ f(p, θ) = l ∈ (0,∞).

Finally, we need a technical assumption below.

Assumption 3. pmp(p, θ) + θmθ(p, θ) ≥ 0.

This is needed in Lemmas 5 and 6 in Section 9.2. Even though this assumption can be expressed

in terms of f(p, θ) instead of m(p, θ), it is much clearer to use m(p, θ) instead.

9.2 Socially Optimal Policy

In this section we derive the socially optimal policy that maximizes the profit rate. That is, we

assume there is a central decision maker, namely the system manager, who maximizes the expected

profit per unit time. We assume that the system manager knows the system parameters λ and c,

but does not know any other details about the state of the queuing system. He wants to choose

a policy (p, θ) that maximizes the expected profit rate g(p, θ, c). Thus, he solves the following

optimization problem

max
p∈[0,1],θ≥0

g(p, θ, c). (9.1)

Let the optimal solution be p∗ and θ∗. We call (p∗, θ∗) the socially optimal policy (SOP). Note

that g(p∗, θ∗, c) ≥ 0, since we can always decide not to operate the system, that is, choose p = 0

and θ = 0 (equivalently, µ = 0), and get zero profit.

127

We first consider the case when θ is fixed, and study the optimal value p∗(θ) that maximizes

g(p, θ, c). The main result is given in Lemma 3.

Lemma 3. Let p̃(θ, c) be the solution to

fp(p, θ)− cλ = 0, (9.2)

and

c∗(θ) =
fp(1, θ)

λ
. (9.3)

Then

p∗(θ) =


1, if c ≤ c∗(θ),

p̃(θ, c), if c > c∗(θ).

(9.4)

Proof. Fix a θ. Since f(p, θ) is concave over p, fp(p, θ) is decreasing in p. Thus, fp(p, θ) is minimized

at p = 1.

We consider two cases.

Case (i): c ≤ c∗(θ), where c∗(θ) is given in Equation 9.3.

In this case gp(p, θ, c) ≥ 0. Thus, g(p, θ, c) is increasing in p for p ∈ [0, 1]. Hence, we get

p∗(θ) = 1.

Case (ii): c∗(θ) < c. Since f(p, θ) is concave in p, then fp(p, θ)− cλ > 0 for 0 ≤ p < p̃(θ, c), and

fp(p, θ) − cλ < 0 for p̃(θ, c) < p ≤ 1. Hence, g(p, θ, c) achieves its maximum at p = p̃(θ, c). Hence

p∗(θ) = p̃(θ, c). This completes the proof.

Now we consider optimization over θ. Note that the profit function is linear in c. We have

gp(p, θ, c) = fp(p, θ)− cλ, (9.5)

and

gθ(p, θ, c) = fθ(p, θ)− c. (9.6)

128

Concavity of g in θ implies that there is a unique θ = θ∗(p, c) that makes the derivative in Equa-

tion 9.6 zero for a given p and c, and g(p, θ, c) is maximized at θ = θ∗(p, c).

Let

c̃(p, θ) = fθ(p, θ). (9.7)

Then we see that gθ(p, θ, c) > 0 if c < c̃(p, θ), zero if c = c̃(p, θ), and negative if c > c̃(p, θ).

Next let

ĉ(p, θ) =
f(p, θ)

λp+ θ
. (9.8)

Then we see that g(p, θ, c) > 0 if c < ĉ(p, θ), zero if c = ĉ(p, θ), and negative if c > ĉ(p, θ).

Now for a fixed p, let θ = θ̄(p) be such that ĉ(p, θ) = c̃(p, θ), that is,

(λp+ θ)fθ(p, θ)− f(p, θ) = 0. (9.9)

When p = 0, any θ will be the solution to Equation 9.9 since f(0, θ) = 0 and fθ(0, θ) = 0

derived from f(p, θ) = λpm(p, θ). In this case, we can choose θ = 0, which implies we do not

operate the system. We then show that the solution to Equation 9.9 when p > 0 in Lemma 4.

Lemma 4. There is a unique non-negative solution θ = θ̄(p) to Equation 9.9 when p > 0.

Proof. We know f(p, θ) is increasing concave over θ. Also, limθ→0+ f(p, θ) ≤ 0, and limθ→∞ f(p, θ) =

l ∈ (0,∞). This immediately results in the unimodality of n(p, θ) = f(p,θ)
λp+θ . And we know

nθ(p, θ) =
(λp+ θ)fθ(p, θ)− f(p, θ)

(λp+ θ)2
.

Thus, there is a unique non-negative solution θ = θ̄(p) to Equation 9.9.

Let

c̄(p) = ĉ(p, θ̄(p)) = c̃(p, θ̄(p)). (9.10)

Using Equations 9.7 and 9.8, we can write the above as

c̄(p) = fθ(p, θ̄(p)) =
f(p, θ̄(p))

λp+ θ̄(p)
. (9.11)

129

Both these formulas are useful. We see that for a fixed value of p and c < c̄(p), g(p, θ, c) is an

increasing concave function of θ for θ ∈ [0, θ̄(p)] and it is maximized at θ = θ∗(p, c) > θ̄(p). If

c = c̄(p), θ∗(p, c) = θ̄(p) and the maximum value of g(p, θ, c), namely, g(p, θ̄(p), c) is zero. If

c > c̄(p), θ∗(p, c) > θ̄(p) and the maximum value of g(p, θ, c), namely, g(p, θ̄(p), c), is negative.

We need the following two lemmas:

Lemma 5. c̄(p) is an increasing function of p ∈ [0, 1].

Proof. Using Equation 9.8, we get

ĉθ(p, θ̄(p)) =
fθ(p, θ̄(p))(λp+ θ̄(p))− f(p, θ̄(p))

(λp+ θ̄(p))2

= 0 (using Equation 9.9),

(9.12)

and

ĉp(p, θ̄(p)) =
fp(p, θ̄(p))− λfθ(p, θ̄(p))

λp+ θ̄(p)
. (9.13)

Then we have

dĉ(p, θ̄(p))

dp
= ĉp(p, θ̄(p)) + ĉθ(p, θ̄(p))

dθ̄(p)

dp

=
fp(p, θ̄(p))− λfθ(p, θ̄(p))

λp+ θ̄(p)

=
λ(pmp(p, θ̄(p)) + θmθ(p, θ̄(p)))

λp+ θ̄(p)
(using Equation 9.9)

≥ 0 (using pmp(p, θ̄(p)) + θmθ(p, θ̄(p)) ≥ 0).

(9.14)

Thus, ∂c̄(p)
∂p ≥ 0. So, c̄(p) is increasing in p. It is done.

Thus,

c̄(p) ≤ c̄(1). (9.15)

Lemma 6.

c∗(θ̄(p)) ≥ c̄(p).

130

Proof.

c∗(θ̄(p))− c̄(p) ≥ c∗(θ̄(p))− c̄(1), (using Equation 9.15)

=
fp(1, θ̄(p))

λ
− fθ(1, θ̄(p)), (using Equations 9.3 and 9.7)

= pmp(p, θ̄(p)) + θmθ(p, θ̄(p)), (using Equation 9.9)

≥ 0 (using pmp(p, θ̄(p)) + θmθ(p, θ̄(p)) ≥ 0).

(9.16)

This proves the theorem.

With these lemmas we are ready to state the main theorem about the socially optimal policy.

Theorem 13. Let c̄(1) be as given in Equation 9.11 with p = 1. The socially optimal operating

policy (p∗, µ∗) is given by

(p∗, µ∗) =


(1, λ+ θ∗(1, c)), if c ≤ c̄(1),

(0, 0), if c > c̄(1).

Proof. Let (p, θ) be any given feasible point. From Equation 9.15, we know that c̄(p) ≤ c̄(1).

Consider two cases:

Case 1: c ≤ c̄(p) ≤ c̄(1).

In this case, θ∗(p, c) ≥ θ̄(p). We see that c∗(θ) is increasing in θ since fp,θ(p, θ) ≥ 0. Then

c∗(θ∗(p, c)) ≥ c∗(θ̄(p))

≥ c̄(p) (based on Lemma 6)

≥ c.

Further, based on the definition of θ∗(p, c), and Lemma 3, we have

g(p, θ(p), c) ≤ g(p, θ∗(p, c), c) ≤ g(1, θ∗(p, c), c) ≤ g(1, θ∗(1, c), c).

Thus g(p, θ, c) is maximized at p∗ = 1 and θ∗ = θ∗(1, c), that is, µ∗ = λ+ θ∗(1, c).

131

Case 2: c̄(p) < c ≤ c̄(1). In this case g(p, θ) < 0. But we know that g(1, θ∗(1), c) ≥ 0. Hence

g(p, θ, c) ≤ g(1, θ∗(1, c), c).

Thus g(p, θ, c) is maximized at p∗ = 1 and θ∗ = θ∗(1, c), that is, µ∗ = λ+ θ∗(1, c).

Case 3: c > c̄(1). Then c > c̄(p), hence g(p, θ, c) < 0 for any feasible point (p, θ). Hence the

optimal profit is zero, and is obtained by setting p∗ = 0 and µ∗ = 0. Thus it is not optimal to

operate the system.

This proves the theorem.

This is a surprising result. One would have expected an interior point of (0, 1) to arise as an

optimal admission probability for some parameter values. But the above theorem says that it is

either optimal to admit everybody and choose a corresponding optimal service rate, or admit no

one and not operate the system at all. This is a consequence of having the flexibility of choosing

both p and θ and the concavity properties of f .

The power of Theorem 13 becomes even more apparent when we consider the following Lemma.

Lemma 7. Suppose the reward functions fi(p, θ), (i = 1, 2, · · · , n) satisfy Assumptions 1, 2 and 3.

Let

f(p, θ) =
n∑
i=1

αifi(p, θ),

where αi ≥ 0 for 1 ≤ i ≤ n, and
∑n

i=1 αi = 1, n ≥ 1. Then f(p, θ) also satisfies Assumptions 1, 2

and 3.

The proof is straightforward and is omitted. The implication of this lemma is obvious: if we

know that the Theorem 13 is applicable to the reward functions fi(p, θ), (i = 1, 2, · · · , n), then it is

applicable to any convex combination of them. This can be quite useful in applications.

9.3 Decentralized Decisions

We have assumed so far that there is a central decision maker (system manager) who decides

both the admission probability as well as the service rate. This leads to a rather appealing socially

132

optimal policy described in Theorem 13. How will the policy change if the decisions are not

centralized? This will depend on who decides what and what motivates their decisions.

Recall that m(p, θ) is the revenue received by the system manager for each admitted customer.

In order to decide how the customers behave if left to themselves, we need a model for how much

reward a customer earns from joining the system. We shall assume that a customer gets αm(p, θ)

expected reward if she joins the system, where α > 0 is a fixed constant. We assume α = 1, without

loss of generality. This situation occurs in many applications. For example, a customer may be

satisfied if her service starts within a given fixed time after arrival. Suppose the system manager

gets a revenue of r if the admitted customer is satisfied. The customer gets a reward of one if she is

satisfied. Thus in case α = 1/r. We always assume that if a customer is not admitted, the service

manager gets no revenue. Similarly, if a customer does not join, she gets no reward. We consider

three models of decentralized decision making in this section.

9.3.1 Individually Optimal Policy.

We assume the system manager is the leader who sets the service rate µ so as to maximize the

net profit, but he has no control over how the customers will react to the service rate chosen by him.

We further assume that the customers are followers who take this service rate µ as given and join if

and only if their expected reward from joining is positive. Thus the customers behave selfishly, with

no regard to the externalities they create on others. The service manager chooses the service rate

taking into account this customer response. We call the resulting policy an individually optimal

policy (IOP). To be precise, a policy (p∗I , µ
∗
I) is called an IOP if the profit maximizing service rate

for the system manager is µ∗I and it induces the selfish customers to join with probability p∗I . The

main result is given in the following Theorem.

Theorem 14. The socially optimal policy (p∗, µ∗) given in Theorem 13 is also the individually

optimal policy (p∗I , µ
∗
I).

Proof. Consider the socially optimal policy (p∗, µ∗) given in Theorem 13. Suppose the service

manager chooses µ∗ according to this policy, without any control over the customer decisions.

Then, if c ≤ c̄(1), he uses service rate µ∗ = λ + θ∗(1, c); otherwise he uses µ∗ = 0. Clearly, in the

first case the system is stable, and m(1, θ) must be positive, since otherwise it is not optimal to

133

operate the system. But if m(1, θ) > 0, every customer will join, that is p∗ = 1. On the other hand,

in the second case, the reward from joining the system is not positive, and the customers decide not

to join from selfish point of view, that is p∗ = 0. Thus in both cases, the system manager chooses

µ∗ and each customer responds with p∗, that is, (p∗, µ∗) is an IOP.

The above theorem implies that the system manager and the customer will self regulate and

settle on the socially optimal policy. This regulation scheme has all the desired properties summa-

rized by (Haviv and Oz, 2018). Firstly, each customer is free to join the queue, and if she joins the

queue, she will receive the service within a finite time in our scheme. This is because the probability

that the customers join the queue is one when we operate the system. When we operate the system,

the queue is always stable, thus, the customers are guaranteed to receive the service within a finite

time. Secondly, our queueing regime can always be made work conserving since we have not made

any assumption about how the system operates. Thirdly, it is easy to see that our scheme does

not have any money transfers since the customer’s decision to join or not is driven by self interest.

Fourthly, the policy (p∗, µ∗) says that we admit all the customers when c ≤ c̄(1). Thus this policy

is independent of the arrival rate λ. Lastly, the customers do not need to know the parameter c,

their decision is based only on whether the service rate is positive or zero. The service rate decided

by the service manager does depend on c.

It should be noted that the policy (p∗, µ∗) is robust since the reward function only needs to

satisfy Assumptions 1, 2 and 3 under an unobservable queueing system. By contrast, the results

in (Haviv and Oz, 2018) assume a linear cost reward structure for an M/M/1 queue in their

self-regulation scheme.

9.3.2 Stackelberg Game

Now we consider a general Stackelberg game where the system manager is a leader who decides

the service rate µ, and an agent for the customers is a follower who decides the joining probability

p in response to µ for all customers. The Stackelberg game proceeds as follows:

The system manager first announces the service rate µ. The customer agent responds with p

so as to maximize a given reward function a(p, µ). The system manager knows how the customer

agent will respond, and takes this into account while setting the service rate µ to maximize his

134

reward function given by a(p, µ)+b(µ). Notice the separable nature of the system manager’s reward

function. We make this procedure precise below.

We first define

p∗(µ) = argmax{p : a(p, µ)},

and

µ̂ = argmax{µ : a(p∗(µ), µ) + b(µ)}.

Then

(p∗S , µ
∗
S) = (p(µ̂), µ̂).

is called a Stackelberg solution. That is, the system manger will choose to use the service rate µ∗S

and the customer agent will respond with p∗S under this leader/follower Stackelberg game. Now let

(p∗, µ∗) be the global optimal solution of the system manager’s reward function a(µ, p) + b(µ). The

main result is given in the following theorem, whose proof is almost trivial.

Theorem 15. The globally optimal solution is a Stackelberg solution, that is,

(p∗S , θ
∗
S) = (p∗, µ∗).

Proof. Suppose the system manager chooses the service rate µ∗. Then the response from the

customer agent must be p∗, since

p∗ ∈ argmax
{

f(p, µ∗) + g(µ∗)} = argmax
{

f(p, µ∗)}.

Thus the conclusion follows.

Now we see that our specific problem of section 9.1 is a special case of this general separable

problem with

a(p, µ) = f(p, µ− λp), b(µ) = −cµ.

Then we have the following corollary, whose proof is omitted.

Corollary 2. Let (p∗, µ∗) be the socially optimal policy of Theorem 13. Then it is a Satckelberg

solution (p∗S , µ
∗
S).

135

The above result is another indication of the robustness of the socially optimal policy, since the

same policy will be followed even if decision making is decentralized between the system manager

and the customer agent in a leader/follower fashion. There is no need for an external incentive to

align the Stackelberg solution with the socially optimal solution.

We next consider the Nash equilibrium between the customers and service provider in the next

subsection.

9.3.3 Nash Equilibrium

We again start with the general separable problem where the customer agent wants to max-

imize a(p, µ) and the service manager wants to maximize a(p, µ) + b(µ). However, there is no

leader/follower designation between the two. Hence we consider the Nash equalibrium which is

defined precisely below. Let

p∗(µ) ∈ argmax{a(p, µ)},

and

µ∗(p) ∈ argmax{a(p, µ) + b(µ)}.

Then (p∗N , θ
∗
N) is a Nash solution if

p∗N = p∗(µ∗N),

and

µ∗N = µ∗(p∗N).

As in the previous section, let (p∗, µ∗) be the global optimal of a(p, µ) + b(µ). Then we have

following analogue of Theorem 15.

Theorem 16. The globally optimal solution is a Nash solution, that is,

(p∗S , θ
∗
S) = (p∗, µ∗).

Proof. The proof is almost the same as that of Theorem 15, and is omitted.

Similarly, we get the following corollary:

136

Corollary 3. Let (p∗, µ∗) be the socially optimal policy of Theorem 13. Then it is a Nash solution

(p∗N , µ
∗
N).

The above result is a further indication of the robustness of the socially optimal policy, since the

same policy will be followed even if decision making is decentralized between the system manager

and the customer agent in a symmetric fashion. There is no need for an external incentive to align

the Nash solution with the socially optimal solution.

We illustrate these results by several examples in the next section.

9.4 Analytical Examples

We derive the socially optimal policy under four different settings in the examples below. From

the results in the previous section, we know that this is also the individually optimal policy, the

Stckelberg policy and the Nash policy.

Example 1. Queueing Time Dependent Binary Reward in M/M/1 Queue. Suppose

the service times in the system are iid exp(µ) random variables. Then the system is an M/M/1

system with arrival rate λp and service rate µ. It is stable if µ > λp. Suppose the customer receives

one dollar if her queueing time (that is the time spent in the system until the service starts) is b or

less, where b ≥ 0 is a given constant. Then the reward rate from each admitted customer is given

by

m(p, θ) = 1− λpe−bθ

λp+ θ
, (9.17)

and hence

f(p, θ) = λp(1− λpe−bθ

λp+ θ
), 0 ≤ p ≤ 1, θ ≥ 0, (9.18)

with

fp(p, θ) =
λ3(1− e−θb)p2 + 2θλ2(1− e−θb)p+ λθ2

(θ + λp)2
, (9.19)

and

fθ(p, θ) =
λ2p2e−θb

(θ + λp)2
+
bλ2p2e−θb

θ + λp
≥ 0. (9.20)

137

It is straightforward to verify that assumptions 1 and 2 are satisfied. We have

pmp(p, θ) + θmθ(p, θ) =
bλpθe−bθ

λp+ θ
≥ 0,

which verifies assumption 3.

When p = 1, θ = θ∗(1, c) maximizes the profit g(1, θ, c). It satisfies the equation fθ(1, θ) = c,

which reduces to

λ2e−θb

(θ + λ)2
+
bλ2e−θb

θ + λ
= c. (9.21)

For p = 1, Equation 9.9 reduces to

2λe−θb

λ+ θ
+ λbe−θb = 1. (9.22)

Let θ̄(1) be the unique solution to the above equation. Using the first equality in Equation 9.11,

we see that the quantity c̄(1), defined in Equation 9.11 with p = 1, is given by

c̄(1) =
λ2e−θ̄(1)b

(θ̄(1) + λ)2
+
bλ2e−θ̄(1)b

θ̄(1) + λ
. (9.23)

Then Theorem 13 says that if c ≤ c̄(1), the profit is maximized at p∗ = 1, and µ∗ = λ+ θ∗(1, c). If

c > c̄(1), the profit is maximized at p∗ = 0, and µ∗ = 0.

Example 2. Waiting Time Dependent Binary Reward in M/M/1 Queue. Consider

the setting of Example 1. Suppose the customer receives a reward of one dollar if her waiting time

(defined as queuing time plus service time) is b or less, where b ≥ 0 is a given constant.

Then the expected reward from an admitted customer is given by

m(p, θ) = 1− e−θb, (9.24)

and hence the reward rate from the admitted customers is given by

f(p, θ) = λp(1− e−θb), 0 ≤ p ≤ 1, θ ≥ 0, (9.25)

138

with

fp(p, θ) = λ(1− e−θb), (9.26)

and

fθ(p, θ) = λpbe−θb ≥ 0. (9.27)

It is straightforward to verify that assumptions 1 and 2 are satisfied. We have

pmp(p, θ) + θmθ(p, θ) = θbe−θb ≥ 0,

which verifies assumption 3.

When p = 1, θ = θ∗(1, θ) maximizes the profit g(1, θ, c). It satisfies the equation fθ(1, θ) = c,

which reduces to

λbe−θb = c. (9.28)

For p = 1, Equation 9.9 reduces to

(λ+ θ)be−θb − (1− e−θb) = 0. (9.29)

Let θ̄(1) be the unique solution to the above equation. Using the first equality in Equation 9.11,

we see that the quantity c̄(1), defined in Equation 9.11 with p = 1, is given by

c̄(1) = λbe−θ̄(1)b. (9.30)

Then Theorem 13 says that if c ≤ c̄(1), the profit is maximized at p∗ = 1, and µ∗ = λ+ θ∗(1, c). If

c > c̄(1), the profit is maximized at p∗ = 0, and µ∗ = 0.

Example 3. Queueing Time Related Holding Cost for M/G/1 Queue. We consider

an M/G/1 queue with arrival rate λp, and a general service distribution. Let S denote a random

service time with a general service distribution G(·) with C2
B = V ar(s)

E2(S)
being a constant. C2

B is the

squared coefficient of variation of the service distribution. Note that when C2
B = 1, the queueing

system will be reduced to an M/M/1 Queue. Assume the average service rate µ = 1
E(S) > λp to

make sure the queue is stable. Suppose each customer receives r dollars if she joins the queue, but

139

it costs h dollars per unit time to stay in the queue. Based on (Shortle et al., 2018), the expected

queueing time of the customer is given by

E(W) =
1 + C2

B

2

λp

θ(λp+ θ)
=

λpk

θ(λp+ θ)
,

where k =
1+C2

B
2 .

The revenue function is given by:

f(p, θ) = λp

(
r − λpkh

θ(λp+ θ)

)
, 0 ≤ p ≤ 1, θ > 0, (9.31)

with

fp(p, θ) = λr − hkλ2p(2θ + λp)

θ(λp+ θ)2
, (9.32)

and

fθ(p, θ) =
hkλ2p2(2θ + λp)

θ2(θ + λp)2
≥ 0. (9.33)

It is straightforward to verify that assumptions 1 and 2 are satisfied. We have

pmp(p, θ) + θmθ(p, θ) =
hkλp

θ(θ + λp)
≥ 0,

which verifies assumption 3.

When p = 1, θ = θ∗(1, θ) maximizes the profit g(1, θ, c). It satisfies the equation fθ(1, θ) = c,

which reduces to

hkλ2(2θ + λ)

θ2(θ + λ)2
= c. (9.34)

For p = 1, Equation 9.9 reduces to

hkλ(2θ + λ)

θ2(θ + λ)
−
(
r − hλk

θ(λ+ θ)

)
= 0. (9.35)

Let θ̄(1) be the unique solution to the above equation. Using the first equality in Equation 9.11,

we see that the quantity c̄(1), defined in Equation 9.11 with p = 1, is given by

c̄(1) =
hkλ2(2θ̄(1) + λ)

(θ̄(1))2(λ+ θ̄(1))2
. (9.36)

140

Then Theorem 13 says that if c ≤ c̄(1), the profit is maximized at p∗ = 1, and µ∗ = λ+ θ∗(1, c). If

c > c̄(1), the profit is maximized at p∗ = 0, and µ∗ = 0.

Example 4. Waiting Time Related Holding Cost for M/G/1 Queue. We consider the

same setting in Example 3. Suppose each customer receives r dollars if she joins the queue, but

it costs h dollars per unit time to stay in the system. We consider an M/G/1 queue with arrival

rate λp, and a general service distribution with the average service rate µ > λp. Based on (Shortle

et al., 2018), the expected waiting time of the customer is given by

E(W) =
1 + C2

B

2

λp

θ(λp+ θ)
+

1

λp+ θ
=

λpk + θ

θ(λp+ θ)
.

The revenue function is given by:

f(p, θ) = λp

(
r − h(λpk + θ)

θ(λp+ θ)

)
, 0 ≤ p ≤ 1, θ > 0, (9.37)

with

fp(p, θ) = λr − hλ(kλ2p2 + 2kλθp+ θ2)

θ(λp+ θ)2
, (9.38)

and

fθ(p, θ) =
hλp(kλ2p2 + 2kλθp+ θ2)

θ2(λp+ θ)2
≥ 0. (9.39)

It is straightforward to verify that assumptions 1 and 2 are satisfied. We have

pmp(p, θ) + θmθ(p, θ) =
h(kλp+ θ)

θ(θ + λp)
≥ 0,

which verifies assumption 3.

When p = 1, θ = θ∗(1, θ) maximizes the profit g(1, θ). It satisfies the equation fθ(1, θ) = c,

which reduces to

hλ(kλ2 + 2kλθ + θ2)

θ2(λ+ θ)2
= c. (9.40)

For p = 1, Equation 9.9 reduces to

h(kλ2 + 2kλθ + θ2)

θ2(λ+ θ)
−
(
r − h(λk + θ)

θ(λ+ θ)

)
= 0. (9.41)

141

Let θ̄(1) be the unique solution to the above equation. Using the first equality in Equation 9.11,

we see that the quantity c̄(1), defined in Equation 9.11 with p = 1, is given by

c̄(1) =
hλ(kλ2 + 2kλθ̄(1) + (θ̄(1))2)

(θ̄(1))2(λ+ θ̄(1))2
. (9.42)

Then Theorem 13 says that if c ≤ c̄(1), the profit is maximized at p∗ = 1, and µ∗ = λ+ θ∗(1, c). If

c > c̄(1), the profit is maximized at p∗ = 0, and µ∗ = 0.

9.5 Numerical Results

In this section, we present the numerical results for the joint admission and service rate con-

trol problem. Specifically, we first consider the binary revenue structure and holding cost reward

structure on the queueing time in examples 1 and 3, respectively. Here, we use holding cost reward

structure and linear reward structure interchangeably. We set λ = 1, r = 1 and C2
B = 1 without

loss of generality, and study the behavior of c̄(1) as a function of b, µ∗ and g(p∗, µ∗, c) as a function

of c and b in example 1, and study the behavior of µ∗ and g(p∗, µ∗, c) as a function of c and h in

example 3.

We first plot c̄(1) as a function of b ∈ [0, 3] and h ∈ (0, 3] in Figures 9.1a and 9.1b, respectively.

It should be noted that c does not play any role in computing c̄(1). We can see that c̄(1) increases

with b and decreases with h since the reward is increasing in b, and decreasing in h in examples

1 and 3, respectively. This is as expected. It is also interesting to see that c̄(1) is concave in b,

but convex in h. It implies the increasing rate of c̄(1) will become smaller with the increase of b,

and the decreasing rate of c̄(1) will become smaller with the increase of h. This is because the

binary reward structure computes the reward over b in a cumulative way, but the holding cost

reward structure computes the reward over h in a marginal way. This is consistent with the law

of diminishing marginal utility. By applying the results of Theorem 13, we see that c̄(1) shows the

maximum value of c that will bring a profitable operation. This can be called the server value.

Thus when b = 1 in example 1, c̄(1) is equal to .4177. Thus using Theorem 13, we see that if

c > .4177, p∗ = 0, and µ∗ = 0 in example 1. Otherwise, p∗ = 1, and µ∗ = λ+ θ∗(1, c). Similarly, in

example 3, when h = 1 in example 1, c̄(1) is equal to .2938, and similar result can be derived.

142

0 0.5 1 1.5 2 2.5 3

b

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(a) c̄(1) as a function of b in example 1

0 0.5 1 1.5 2 2.5 3

h

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) c̄(1) as a function of h in example 3

Figure 9.1: c̄(1) as a function of b and h in examples 1 and 3, respectively

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

5

10

15

20

25

(a) µ∗ as a function of c in example 1

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

2

4

6

8

10

12

(b) µ∗ as a function of c in example 3

Figure 9.2: µ∗ as a function of c in examples 1 and 3, respectively

We next show µ∗ as a function of c ∈ [0, 0.6] for b = 0, 1, 2 in Figure 9.2a, and for h = .25, .5, 1

in Figure 9.2b. We can see that µ∗ is decreasing convex in c. This implies if the per unit service

cost becomes larger, it will induce the service provider to use less service rate. The convexity in c

is due to the law of diminishing marginal utility over c. It can also be observed that µ∗ will become

0 once it is beyond c̄(1). This is consistent with the result obtained in the previous paragraph.

We then show µ∗ as a function of b ∈ [0, 3] for c = .1, .2, .3 in Figure 9.3a, and as a function of

h ∈ [0, 3] for c = .1, .2, .3 in Figure 9.3b. In Figure 9.3a, we see that µ∗ is first increasing concave

in b, and then decreasing in b. This is very surprising especially when it is compared with the

concavity of µ∗ over b under the holding cost reward structure, which will be shown later. It shows

when b is small, namely, when it is very difficult to earn the reward, µ∗ is increasing in b. It implies

that the increase in service rate in increasing the reward is more important in increasing the profit

143

0 0.5 1 1.5 2 2.5 3

b

0

0.5

1

1.5

2

2.5

3

3.5

(a) µ∗ as a function of b in example 1

0 0.5 1 1.5 2 2.5 3

h

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b) µ∗ as a function of h in example 3

Figure 9.3: µ∗ as a function of b and h in examples 1 and 3, respectively

compared to the cost incurred by the increased service rate. This effect is decreasing in b, and

once b is beyond a critical value, with the further increase of b, µ∗ is decreasing in b. It implies

the service provider can use less service rate to make more profit instead of using more service rate

when b is relatively larger, namely, when it becomes easier to earn the reward. By contrast, in

Figure 9.3b, we see that µ∗ is always increasing concave over h until it drops down to zero. With

the increase of h, it becomes more difficult to earn the reward. In this case, the service provider

tends to use a larger service rate to earn more reward, which outweighs the cost incurred by the

server. Thus, he can get more profit. Due to the concavity, we see that the effect is decreasing in

h.

Finally, we show the optimal profit g(p∗, µ∗, c) as a function of c ∈ [0, .6] for b = 0, 1, 2, in

Figure 9.4a, and as a function of c ∈ [0, .6] for h = .25, .5, 1, in Figure 9.4b. g(p∗, µ∗, c) is decreasing

convex in c since it becomes more expensive to increase the service rate with the increase of c.

With the increase of c, the decreasing rate of g(p∗, µ∗, c) will become smaller due to the law of

diminishing marginal utility over c. In Figure 9.5, we see that g(p∗, µ∗, c) is increasing concave in b,

and decreasing convex in h since the reward becomes larger with the increase of b or the decrease

of h. The concavity over b and the convexity over h can be similarly explained using the argument

on µ∗.

Further, we consider the binary revenue structure and holding cost reward structure on the

waiting time in examples 2 and 4, respectively. We show the detailed figures as follows. We first

plot c̄(1) as a function of b ∈ [0, 3] and h ∈ (0, 3] in Figures 9.6a and 9.6b, respectively.

144

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Optimal profit as a function of c in example
1

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Optimal profit as a function of c in example
3

Figure 9.4: Optimal profit as a function of c in examples 1 and 3, respectively

0 0.5 1 1.5 2 2.5 3

b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Optimal profit as a function of b in example
1

0 0.5 1 1.5 2 2.5 3

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Optimal profit as a function of h in example
3

Figure 9.5: Optimal profit as a function of b and h in examples 1 and 3, respectively

0 0.5 1 1.5 2 2.5 3

b

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) c̄(1) as a function of b in example 2

0 0.5 1 1.5 2 2.5 3

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) c̄(1) as a function of h in example 4

Figure 9.6: c̄(1) as a function of b and h in examples 2 and 4, respectively

145

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

1

2

3

4

5

6

7

8

(a) µ∗ as a function of c in example 2

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

5

10

15

20

25

(b) µ∗ as a function of c in example 4

Figure 9.7: µ∗ as a function of c in examples 2 and 4, respectively

0 0.5 1 1.5 2 2.5 3

b

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) µ∗ as a function of b in example 2

0 0.5 1 1.5 2 2.5 3

h

0

1

2

3

4

5

6

(b) µ∗ as a function of h in example 4

Figure 9.8: µ∗ as a function of b and h in examples 2 and 4, respectively

We next show µ∗ as a function of c ∈ [0, 0.6] for b = 1, 2, 3 in Figure 9.7a, and for h = .25, .5, 1

in Figure 9.7b.

We then show µ∗ as a function of b ∈ [0, 3] for c = .1, .2, .3 in Figure 9.8a, and as a function of

h ∈ [0, 3] for c = .1, .2, .3 in Figure 9.8b.

Finally, we show the optimal profit g(p∗, µ∗, c) as a function of c ∈ [0, .6] for b = 1, 2, 3, in

Figure 9.9a, and as a function of c ∈ [0, .6] for h = .25, .5, 1, in Figure 9.9b. Then we show the

optimal profit g(p∗, µ∗, c) as a function of b ∈ [0, 3] for c = .1, .2, .3, in Figure 9.10a, and as a

function of h ∈ [0, 3] for c = .1, .2, .3, in Figure 9.10b. We can see that the monotonicity and

concavity of server value, optimal service rate and optimal profit in examples 2 and 4 follow the

similar pattern to those in examples 1 and 3, respectively. It implies the queueing time and waiting

time reward structures follow the similar pattern in monotonicity and concavity. It further shows

146

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Optimal profit as a function of c in example
2

0 0.1 0.2 0.3 0.4 0.5 0.6

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Optimal profit as a function of c in example
4

Figure 9.9: Optimal profit as a function of c in examples 2 and 4, respectively

0 0.5 1 1.5 2 2.5 3

b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Optimal profit as a function of b in example
2

0 0.5 1 1.5 2 2.5 3

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Optimal profit as a function of h in example
4

Figure 9.10: Optimal profit as a function of b and h in examples 2 and 4, respectively

the robustness of our proposed optimal joint admission and service rate control policy. No matter

whether the system manager cares about the queueing time or the waiting time, they can use similar

pattern to direct their practice. This would make our proposed policy much more applicable to

real operations.

9.6 Conclusions

In this project, we consider the joint admission and service rate control problem for an unob-

servable single server queueing system. We first introduce the general reward structure and the

conditions the general reward structure should satisfy. Then we show the detailed steps to prove

the optimal joint admission and service rate control policy under the centralized decision case. Fur-

147

ther, we analyze the joint policy under the decentralized decision case, namely, the decentralized

Stackelberg game, two-player Stackelberg game and two-player Nash game. Then we give several

analytical examples under both binary and linear reward structures. Finally, we do extensive nu-

merical analysis on the server value, optimal service rate, and optimal profit under different reward

structures.

We show that it is optimal to admit all the customers when the per unit service cost is less

than or equal to a critical level, called the server value, otherwise, it is optimal to admit no one.

This optimal policy works for any reward structure as long as it satisfies the assumptions specified

in Section 9.1. This makes the joint policy very easy to implement, and much more applicable

to real operations. This policy would also make the customers behave in a socially optimal way

with self-regulation. It not only has the desired properties proposed by previous research, but also

has the additional properties including the robustness to reward structure and queueing system.

We also show that the centralized decision case, Stackelberg equilibrium and Nash equilibrium are

equivalent. This further enhances the desirability of our proposed policy. In the analytical examples,

we show the detailed steps to compute the joint admission and service rate policy analytically. In

the numerical analysis, we find a surprising result that the optimal service rate first increases and

then decreases in the service level parameters under binary reward structure. This is unexpected.

However, it is always increasing in the holding cost per unit time until it drops down to zero under

linear reward structure. This manifests the importance and the complexity of the joint admission

and service rate control problem.

148

APPENDIX A

RATIONALE TO CHOOSE SCHEDULED ARRIVAL TIME, ORIGIN AIR-
PORT AND AIRCRAFT TYPE AS COVARIATES

In this section, we show the reason why we finally choose scheduled arrival time, origin airport

and aircraft type as covariates in the first project in the first part. Based on the research from

(Deshpande and Arıkan, 2012), they consider seven types of covariates: (1) route, (2) carrier,

(3) origin airport, (4) destination airport, (5) congestion at the origin airport, (6) congestion at

the destination airport, and (7) aircraft-specific variable. We focus on the aircraft assignment

problem operated by Delta Airlines at Atlanta airport (destination airport). So it means the

destination airport and carrier can also be regarded as the covariates we consider. We capture the

aircraft-specific variable by considering the aircraft type. We capture congestion at the destination

airport by considering scheduled arrival time at the destination airport. Since we only consider the

assignment at Atlanta airport without considering the route, it makes no sense to consider route as

a covariate. The only left covariate is the congestion at the origin airport. It is possible to consider

scheduled departure time at the origin airport of the flight to capture the congestion at the origin

airport. However, it would have a similar effect compared to that of the scheduled arrival time

at the destination airport. And if we further consider the scheduled departure time as another

covariate, it would make the number of flights in each cell too sparse. It implies if we consider

all the covariates of arrival delay, then we may only have a few flight observations in the data to

compute each element of the cost matrix. If we consolidate all flights in the data to estimate the

arrival delay distribution, then we would not be able to consider the effect from the covariates on

the arrival delay when computing the cost matrix. There is a balance in choosing the right number

of covariates. Thus we finally choose the scheduled arrival time, origin airport and aircraft type as

covariates. Then we further show why these three covariates are important as follows.

We first fix the origin airport as Chicago airport and fix the aircraft type as MD-88/MD-90-30,

and then draw the empirical cumulative distribution of arrival delay of the incoming flights arriving

in [14, 15) and [20, 21), respectively. It is shown in Figure A.1. From the figure, we can also see

that there is a big difference in arrival delay distribution between intervals [14, 15) and [20, 21).

We further fix the scheduled arrival time in interval [9, 10) and fix aircraft type as MD-88/MD-

90-30, and then draw the empirical cumulative distribution of arrival delay of the incoming flights

149

-50 0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[14,15)

[20,21)

Figure A.1: Comparison on the Empirical Cumulative Distribution of Arrival Delay between
Intervals [14, 15) and [20, 21) with the Origin Airport being Chicago Airport and the Aircraft Type
being MD-88/MD-90-30

from Columbia airport and Chicago airport, respectively. It is shown in Figure A.2. From the

figure, we can also see that there is a big difference in arrival delay distribution between Columbia

airport and Chicago airport.

We finally fix the scheduled arrival time in interval [8, 9) and fix origin airport as Chicago

airport, and then draw the empirical cumulative distribution of arrival delay of the incoming flights

belonging to Boeing 737-932ER and MD-88/MD-90-30, respectively. It is shown in Figure A.3.

From the figure, we can see that there is a big difference in arrival delay distribution between

Boeing 737-932ER and MD-88/MD-90-30.

We can see that the three covariates including the scheduled arrival time, origin airport and

aircraft type have an important effect on the arrival delay distribution. So, we finally choose the

scheduled arrival time, origin airport and aircraft type as covariates.

150

-50 0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Columbia airport

Chicago airport

Figure A.2: Comparison on the Empirical Cumulative Distribution of Arrival Delay between
Columbia Airport and Chicago Airport with Scheduled Arrival Time in [9, 10) and Aircraft Type
being MD-88/MD-90-30

-30 -20 -10 0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Boeing 737-932ER

MD-88/MD-90-30

Figure A.3: Comparison on the Empirical Cumulative Distribution of Arrival Delay between
Boeing 737-932ER and MD-88/MD-90-30 with Scheduled Arrival Time in [8, 9) and Origin Airport
being Chicago Airport

151

APPENDIX B

CLUSTER LABEL FOR EACH FLIGHT

Table B.1: Cluster Label for Each flight in N1

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

27 JFK IAD 9:45 11:05 0 10 22 23 36 44 53 405 1

32 CLT BOS 9:55 12:15 0 0 0 0 4 14 14 332 1

48 PWM JFK 6:30 8:00 0 0 0 0 0 0 86 429 1

50 RIC BOS 12:10 13:43 2 3 5 8 14 19 64 372 1

76 JFK PIT 15:40 17:47 0 0 0 8 25 40 40 399 1

77 JFK PIT 7:05 8:55 0 0 0 0 0 16 58 366 1

21 ORD JFK 17:55 21:35 0 6 15 16 17 154 196 202 2

22 PBI BOS 16:05 19:10 0 2 7 22 28 68 134 191 2

33 JFK CLT 11:10 13:04 0 5 12 19 26 57 192 218 2

59 JFK CMH 11:15 13:05 0 0 0 4 26 55 155 172 2

60 JFK CMH 7:20 9:20 0 0 0 0 3 6 204 226 2

10 BOS JFK 15:50 17:07 38 44 47 64 88 147 161 249 3

12 CLT JFK 13:45 15:45 0 0 1 17 108 132 163 273 3

36 PIT JFK 14:35 16:10 0 20 54 94 150 181 238 251 3

79 JFK ORD 15:25 17:14 31 39 86 93 122 170 205 229 3

101 AUS JFK 10:40 15:28 15 25 28 49 106 146 190 207 3

3 BOS JFK 18:55 20:13 14 22 23 32 56 58 81 145 4

16 CMH JFK 13:40 15:32 7 22 35 36 75 103 136 177 4

37 PIT BOS 13:25 15:07 26 31 32 59 63 67 102 163 4

54 RDU JFK 19:40 21:15 19 29 36 39 57 70 110 176 4

57 RDU BOS 16:05 18:15 19 20 23 52 62 64 137 150 4

61 PWM JFK 18:20 19:35 34 37 47 49 62 73 105 162 4

64 JFK AUS 19:45 23:06 0 31 32 44 51 78 89 126 4

70 JFK BOS 16:15 17:56 16 24 29 41 43 82 83 191 4

72 JFK PBI 19:15 22:30 26 28 31 43 46 49 68 158 4

73 JFK BOS 17:40 19:21 29 32 33 50 61 74 79 192 4

78 JFK BOS 8:45 10:00 35 36 46 48 53 67 71 218 4

93 HOU JFK 10:55 15:22 26 39 41 41 54 95 136 203 4

9 BOS JFK 10:35 11:47 0 2 4 4 9 20 24 25 5

14 CLT JFK 8:35 10:36 0 0 4 8 8 10 30 80 5

15 BOS PIT 12:15 14:02 0 0 0 0 0 0 0 38 5

18 BOS PBI 12:15 15:30 0 0 0 2 14 15 18 19 5

19 CMH BOS 10:55 12:39 5 5 12 14 16 23 30 54 5

20 CMH JFK 10:00 11:42 0 0 0 0 0 12 21 36 5

23 JFK IAD 21:50 23:16 3 4 11 12 16 17 31 35 5

Continued on next page

152

Table B.1 – continued from previous page

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

24 PBI JFK 5:25 8:00 0 0 13 16 18 20 28 29 5

29 BOS TPA 14:35 17:55 0 0 4 6 10 15 44 56 5

34 JFK CLT 6:00 8:01 0 0 0 0 9 12 17 85 5

40 BOS RIC 9:55 11:37 0 0 0 0 0 4 19 26 5

42 BOS RIC 19:45 21:30 0 0 0 0 0 0 0 1 5

43 BUF BOS 10:20 11:40 0 0 0 0 0 0 0 5 5

56 RDU JFK 5:05 6:37 0 0 0 0 0 0 11 17 5

67 JFK PWM 15:55 17:40 7 8 10 15 17 34 41 65 5

92 JFK RDU 20:40 22:52 5 18 19 20 24 28 33 61 5

95 BOS BUF 8:00 9:36 0 0 0 0 0 0 0 53 5

96 BOS AUS 6:30 9:50 0 0 0 0 0 0 27 35 5

97 BOS CMH 8:00 10:20 0 0 0 0 0 0 0 113 5

99 BOS IAD 8:00 9:40 0 0 0 0 0 0 8 81 5

100 ACK JFK 18:55 20:30 0 0 0 3 3 27 35 42 5

105 BNA JFK 5:05 8:25 0 0 0 0 0 0 12 16 5

106 BNA JFK 10:20 13:39 0 0 0 0 10 11 21 70 5

4 JFK HOU 7:10 10:14 16 18 19 20 27 34 55 215 6

25 JFK IAD 16:25 18:13 0 15 16 26 28 43 55 194 6

31 SYR JFK 13:00 14:10 4 4 6 20 27 32 57 189 6

46 JFK AUS 8:05 11:14 0 0 0 0 0 10 83 204 6

49 RIC BOS 6:00 7:30 0 0 0 4 8 21 25 201 6

52 RDU JFK 11:30 13:05 0 0 0 0 0 9 20 205 6

53 JFK CLT 13:40 15:39 16 17 28 29 29 32 46 242 6

58 RIC JFK 18:45 20:07 15 16 23 26 28 38 45 176 6

66 JFK BNA 8:05 9:40 17 25 26 31 37 42 55 211 6

69 IAD BOS 7:50 9:22 0 0 0 15 26 50 51 239 6

71 IAD BOS 19:50 21:20 6 10 10 24 29 39 41 191 6

87 JFK RIC 11:30 12:57 0 0 0 0 7 20 48 237 6

98 BOS CLT 7:10 9:20 19 19 24 32 35 37 53 176 6

1 BOS JFK 17:40 19:03 42 47 68 83 88 99 143 153 7

30 IAD MCO 17:20 19:45 18 54 61 91 95 120 125 176 7

82 IAD JFK 16:25 17:53 53 75 81 94 96 126 167 201 7

83 IAD JFK 19:00 20:25 45 47 55 60 93 95 103 154 7

91 HOU JFK 16:00 20:38 41 56 80 116 118 130 136 153 7

2 JFK HOU 12:20 15:20 0 7 17 19 20 26 29 81 8

5 BOS IAD 15:00 16:46 15 18 18 40 41 54 65 77 8

6 JFK SYR 11:10 12:22 0 1 12 16 22 50 79 114 8

7 JFK FLL 6:00 8:55 23 23 25 29 33 34 39 78 8

Continued on next page

153

Table B.1 – continued from previous page

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

8 BOS IAD 17:35 19:20 0 0 0 10 23 39 52 148 8

11 ORD JFK 11:15 14:55 0 0 0 2 23 48 61 118 8

26 JFK IAD 14:25 15:50 15 17 18 18 27 28 73 88 8

28 JFK HOU 19:00 22:24 0 0 4 26 29 56 116 122 8

38 BOS RDU 13:20 15:32 0 0 0 0 9 24 27 116 8

41 PIT JFK 5:50 7:25 0 0 0 0 0 16 42 138 8

44 RIC JFK 9:25 10:37 0 0 0 0 10 17 33 103 8

45 TPA BOS 18:30 21:31 6 7 25 27 31 45 68 80 8

51 JFK ACK 16:35 18:13 23 27 28 37 47 50 66 122 8

55 JFK CMH 15:15 17:23 0 0 0 7 18 41 62 134 8

62 JFK PWM 18:55 20:41 10 14 18 19 25 30 66 96 8

63 JFK BNA 20:15 22:05 0 26 32 33 36 66 73 77 8

65 JFK PIT 20:05 22:07 2 3 25 31 35 39 55 75 8

68 IAD BOS 10:10 11:43 0 0 0 6 9 55 64 112 8

74 JFK PIT 11:10 12:48 5 6 6 24 24 52 92 100 8

75 JFK BOS 13:10 14:28 0 0 3 38 50 56 66 148 8

80 IAD JFK 7:25 8:40 0 7 8 17 22 25 39 129 8

84 JFK ORD 8:45 10:30 17 19 25 29 49 63 87 97 8

85 JFK RDU 9:05 10:47 25 25 30 32 43 52 70 129 8

86 JFK RIC 7:10 8:47 0 0 0 28 36 47 62 135 8

88 JFK RIC 16:10 18:05 9 10 16 38 54 55 62 92 8

89 HOU JFK 6:00 10:26 0 0 0 15 17 17 54 86 8

90 JFK RDU 16:45 18:57 20 20 23 26 31 35 37 104 8

94 MCO IAD 20:20 22:30 0 0 2 4 8 11 56 108 8

102 AUS JFK 6:00 10:40 0 0 0 19 21 21 35 83 8

103 AUS BOS 11:55 17:00 0 0 12 16 19 39 60 88 8

104 FLL HPN 9:35 12:30 6 15 17 17 21 22 34 126 8

39 PIT JFK 9:30 11:00 0 0 0 0 0 103 212 429 9

81 IAD JFK 11:45 12:57 0 2 12 13 39 181 368 385 9

13 CLT JFK 16:15 18:15 54 58 74 85 133 156 192 394 10

17 CMH JFK 17:55 19:47 43 64 67 71 76 123 131 281 10

35 PIT JFK 18:25 20:02 52 69 69 83 95 98 135 257 10

47 RIC JFK 13:30 14:48 18 23 43 57 77 118 143 345 10

Table B.2: Cluster Label for Each flight in N2

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

4 OAK LGB 11:25 12:47 0 0 0 0 0 0 0 0 1

5 BOS JFK 6:50 8:05 0 9 16 17 28 29 71 386 1

Continued on next page

154

Table B.2 – continued from previous page

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

10 ORD JFK 8:15 11:55 0 0 0 0 0 0 0 0 1

22 PBI JFK 9:35 12:14 0 0 0 0 0 10 31 278 1

23 BOS MCO 5:30 8:30 0 0 0 0 0 0 0 7 1

31 SYR JFK 5:00 6:12 0 0 0 0 0 15 67 426 1

33 LAS LGB 18:05 19:12 0 0 0 0 0 3 4 36 1

36 SMF LGB 9:50 11:12 0 0 0 0 0 0 0 37 1

40 LAS LGB 13:10 14:18 0 0 0 0 0 0 3 17 1

43 SMF LGB 16:00 17:23 0 0 0 0 0 0 0 7 1

45 LAS LGB 6:00 7:05 0 0 0 0 0 0 0 0 1

53 PWM JFK 5:00 6:25 0 0 0 0 0 0 5 33 1

59 ROC JFK 7:30 8:45 0 0 0 0 0 0 1 24 1

71 MCO BOS 9:25 12:18 0 0 0 0 0 0 0 22 1

75 LGB LAS 12:20 13:30 0 0 0 0 0 0 0 15 1

82 MCO EWR 7:00 9:34 0 0 0 0 0 0 0 40 1

92 LGB SMF 7:50 9:10 0 0 0 0 0 0 0 8 1

96 BOS DEN 20:35 22:57 0 0 0 0 0 0 2 28 1

2 EWR MCO 17:35 20:37 0 0 0 0 10 11 23 28 2

12 BOS MCO 13:00 16:05 17 22 32 32 49 57 93 120 2

16 JFK SYR 14:20 15:38 7 11 15 15 34 85 193 270 2

19 PBI HPN 16:15 19:05 18 18 19 20 24 25 32 34 2

29 SWF MCO 13:50 16:50 3 10 12 27 37 47 86 93 2

50 TPA JFK 5:05 7:45 0 0 0 0 2 6 22 23 2

51 TPA JFK 10:40 13:17 0 0 0 0 7 20 42 59 2

52 PWM JFK 15:10 16:25 94 138 139 149 153 183 281 282 2

57 SYR JFK 16:15 17:25 36 37 45 57 64 98 222 237 2

61 BQN MCO 3:00 5:46 0 1 2 2 3 3 8 10 2

62 ROC JFK 16:10 17:29 24 25 33 57 112 115 230 242 2

69 JFK BOS 14:30 16:13 0 13 19 36 53 90 162 260 2

72 MCO BOS 16:45 19:40 63 73 75 75 80 106 142 145 2

81 MCO EWR 13:35 16:36 104 104 153 175 186 186 279 326 2

84 JFK BUF 19:50 21:39 25 28 28 29 45 56 91 113 2

90 LGB SLC 10:35 13:15 3 4 4 4 6 10 17 21 2

99 FLL JFK 12:35 15:24 15 19 27 28 104 121 314 424 2

9 JFK FLL 20:45 0:02 9 10 15 17 20 38 48 56 3

25 BUF JFK 16:00 17:25 15 38 41 100 122 129 189 209 3

26 BOS SEA 17:10 20:19 2 15 21 26 46 61 62 67 3

35 JFK BUR 17:20 20:46 0 0 0 28 37 45 47 50 3

42 LGA FLL 8:30 11:35 0 0 0 0 17 28 35 35 3

Continued on next page

155

Table B.2 – continued from previous page

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

44 LAS JFK 14:25 22:34 0 0 33 53 74 76 87 131 3

48 JFK BUF 13:55 15:23 0 0 0 3 15 22 23 30 3

55 JFK DEN 18:55 21:35 0 0 9 17 36 50 60 79 3

58 LGA MCO 20:00 22:51 0 0 0 0 2 2 3 3 3

65 JFK PSE 22:50 2:48 7 11 12 19 25 26 27 44 3

67 LGB OAK 15:00 16:16 0 0 3 3 4 6 9 13 3

76 LGB LAS 16:05 17:15 0 0 0 1 3 4 6 8 3

77 LGB LAS 18:05 19:15 0 1 4 5 9 14 15 18 3

100 MCO JFK 13:00 15:37 50 72 80 81 97 146 154 178 3

103 MCO JFK 6:40 9:09 0 0 0 7 24 31 32 59 3

106 MCO JFK 17:30 20:10 96 98 128 135 169 170 176 177 3

107 AUS JFK 16:20 21:15 33 35 59 100 145 145 152 152 3

108 JFK SFO 20:10 23:35 32 43 52 58 59 67 70 76 3

109 FLL EWR 11:55 15:03 43 90 107 195 206 243 247 362 3

14 BOS OAK 7:00 10:30 0 0 0 0 0 0 13 19 4

20 JFK JAX 12:40 15:10 2 12 17 31 33 39 145 179 4

28 SWF MCO 10:50 13:45 0 0 0 0 0 1 15 32 4

38 RSW JFK 9:35 12:17 0 0 0 0 2 6 91 121 4

73 JFK ORD 5:45 7:30 0 0 0 0 0 0 34 42 4

78 JFK BQN 4:45 8:23 0 0 0 0 0 0 27 47 4

79 JFK BTV 21:55 23:18 3 16 32 34 35 42 155 183 4

86 HPN MCO 19:55 22:40 0 0 0 0 0 0 77 80 4

88 JFK PBI 12:25 15:18 0 0 5 11 13 26 90 127 4

89 HPN MCO 6:55 9:40 0 0 0 0 0 0 53 72 4

97 FLL LGA 5:05 7:50 0 0 0 0 0 0 15 32 4

105 MCO PSE 22:10 1:05 0 0 0 0 0 0 3 3 4

115 MCO SWF 10:20 13:10 0 0 0 0 0 1 18 26 4

1 EWR MCO 10:15 12:54 0 0 0 1 22 30 33 90 5

11 JFK LAS 9:45 12:10 0 21 23 25 34 54 70 183 5

18 JFK TPA 7:00 10:00 0 0 0 0 7 24 38 82 5

21 JFK JAX 7:05 9:38 11 16 17 22 47 61 100 171 5

27 BUF JFK 19:10 20:35 19 25 26 46 52 59 74 133 5

39 SLC LGB 14:05 14:55 0 0 0 0 3 4 5 14 5

41 RSW JFK 16:50 19:45 39 45 54 73 88 125 158 245 5

47 JFK BUF 9:50 11:14 12 17 32 35 35 38 47 75 5

54 JFK AUS 12:35 15:38 0 0 0 0 0 6 25 58 5

56 JAX JFK 15:50 18:10 32 64 70 72 96 104 126 259 5

60 ROC JFK 18:45 20:05 28 30 38 53 62 62 72 120 5

Continued on next page

156

Table B.2 – continued from previous page

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

66 JFK PWM 13:10 14:30 2 4 16 21 25 63 73 207 5

68 JFK PBI 6:00 8:51 0 0 0 16 18 24 30 71 5

74 MCO BQN 23:25 2:03 6 6 8 11 11 15 32 56 5

83 JFK BTV 8:15 9:35 17 24 28 31 31 46 74 126 5

85 MCO HPN 15:25 18:05 32 32 34 42 44 73 135 236 5

87 HPN PBI 18:55 21:40 0 0 1 3 3 11 24 45 5

93 LGB SMF 14:00 15:20 0 0 0 0 0 6 8 24 5

94 JFK RSW 13:00 16:08 6 11 17 18 31 32 59 104 5

98 JFK ROC 14:05 15:30 5 8 15 29 35 65 98 215 5

101 JFK ROC 8:25 9:50 19 27 27 34 40 61 63 144 5

102 MCO JFK 5:05 7:35 0 0 0 0 1 16 19 36 5

104 MCO LGA 16:30 19:18 42 48 53 67 83 112 120 184 5

113 MSY JFK 9:50 13:40 0 0 0 0 0 9 12 30 5

114 JFK MCO 9:30 12:10 28 34 42 47 49 57 59 95 5

116 JFK MCO 20:35 23:45 24 24 25 35 39 42 56 108 5

117 MCO SWF 7:30 10:10 0 0 0 0 2 8 8 19 5

3 EWR PBI 15:55 18:52 3 3 5 5 14 21 26 127 6

6 JFK FLL 18:05 21:30 23 30 44 46 50 53 67 163 6

7 OAK LGB 17:00 18:20 0 0 0 0 0 0 3 13 6

8 JFK FLL 8:45 11:42 36 36 37 47 56 111 116 461 6

13 ORD JFK 14:35 17:50 36 39 58 83 84 97 105 445 6

15 JFK TPA 18:15 21:31 11 15 25 28 31 67 78 288 6

17 JFK SYR 8:25 9:43 34 38 40 42 46 52 84 239 6

24 BUF JFK 11:50 13:05 1 3 4 11 22 38 47 177 6

30 JAX JFK 10:20 12:29 0 2 8 16 36 58 92 361 6

32 SYR JFK 10:30 11:35 0 3 3 8 11 13 14 62 6

34 IAD LGB 7:20 9:45 0 0 0 0 0 15 24 121 6

37 PBI JFK 19:55 22:37 0 0 0 0 0 3 16 66 6

46 JFK BUF 16:20 18:12 0 15 15 32 42 52 53 282 6

49 BTV JFK 10:25 11:40 0 0 3 3 5 8 12 37 6

63 BQN JFK 9:20 13:00 0 0 0 0 8 10 30 91 6

64 ROC JFK 10:40 11:52 0 0 1 1 3 15 28 82 6

70 JFK ORD 12:15 13:53 11 12 13 20 36 41 56 279 6

80 JFK ROC 16:10 17:58 3 19 21 31 36 53 68 264 6

91 LGB SLC 19:00 21:45 0 0 0 0 2 4 15 74 6

95 JFK RSW 5:50 8:55 2 8 10 16 19 20 91 418 6

110 JFK MSY 6:55 9:06 0 4 5 15 18 19 52 177 6

111 JFK MCO 18:10 21:18 43 43 56 60 66 69 81 203 6

Continued on next page

157

Table B.2 – continued from previous page

Flight Ori Des Local time-SD Local time-SA Eight largest primary delays Custer label

112 JFK MCO 13:00 15:47 35 38 49 58 73 77 150 466 6

158

BIBLIOGRAPHY

Adan, I. J., Kulkarni, V. G., Lee, N., and Lefeber, E. (2018). Optimal routeing in two-queue polling
systems. Journal of Applied Probability, 55(3):944–967.

Adusumilli, K. M. and Hasenbein, J. J. (2010). Dynamic admission and service rate control of a
queue. Queueing Systems, 66(2):131–154.

Ageeva, Y. (2000). Approaches to incorporating robustness into airline scheduling. PhD thesis,
Massachusetts Institute of Technology.

Ahmadbeygi, S., Cohn, A., and Lapp, M. (2010). Decreasing airline delay propagation by re-
allocating scheduled slack. IIE transactions, 42(7):478–489.

Airlines for America (2019). Passenger carrier delay costs. https://www.airlines.org/dataset/per-
minute-cost-of-delays-to-u-s-airlines.

Aldous, D. (1992). Asymptotics in the random assignment problem. Probability Theory and Related
Fields, 93(4):507–534.

Antunes, D., Vaze, V., and Antunes, A. P. (2019). A robust pairing model for airline crew schedul-
ing. Transportation Science.

Arıkan, M., Deshpande, V., and Sohoni, M. (2013). Building reliable air-travel infrastructure using
empirical data and stochastic models of airline networks. Operations Research, 61(1):45–64.

Armony, M., Plambeck, E., and Seshadri, S. (2009). Sensitivity of optimal capacity to customer im-
patience in an unobservable m/m/s queue (why you shouldn’t shout at the dmv). Manufacturing
& Service Operations Management, 11(1):19–32.

Baidari, I. and Sajjan, S. (2016). International journal of mathematical archive-7 (10), 2016, 123-
127 available online through www. ijma. info issn 2229–5046.

Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odoni, A., Peterson, E., Sherry, L.,
Trani, A., Zou, B., et al. (2010). Total delay impact study. In NEXTOR Research Symposium,
Washington DC.

Barnhart, C. and Cohn, A. (2004). Airline schedule planning: Accomplishments and opportunities.
Manufacturing & service operations management, 6(1):3–22.

Barnhart, C., Fearing, D., and Vaze, V. (2014). Modeling passenger travel and delays in the national
air transportation system. Operations Research, 62(3):580–601.

Bekker, R. and Borst, S. C. (2006). Optimal admission control in queues with workload-dependent
service rates. Probability in the Engineering and Informational Sciences, 20(4):543–570.

Borgs, C., Chayes, J. T., Doroudi, S., Harchol-Balter, M., and Xu, K. (2014). The optimal admission
threshold in observable queues with state dependent pricing. Probability in the Engineering and
Informational Sciences, 28(1):101.

Borndörfer, R., Dovica, I., Nowak, I., and Schickinger, T. (2010). Robust tail assignment.

159

Borst, S., Mandelbaum, A., and Reiman, M. I. (2004). Dimensioning large call centers. Operations
research, 52(1):17–34.

Burkard, R. E., Klinz, B., and Rudolf, R. (1996). Perspectives of monge properties in optimization.
Discrete Applied Mathematics, 70(2):95–161.

Cachon, G. P. and Zipkin, P. H. (1999). Competitive and cooperative inventory policies in a
two-stage supply chain. Management science, 45(7):936–953.

Chen, H. and Solak, S. (2015). Lower cost arrivals for airlines: Optimal policies for managing
runway operations under optimized profile descent. Production and Operations Management,
24(3):402–420.

Cho, S.-H. and Tang, C. S. (2013). Advance selling in a supply chain under uncertain supply and
demand. Manufacturing & Service Operations Management, 15(2):305–319.

Chowdhury, S., Schulz, E., Milner, M., and Van De Voort, D. (2014). Core employee based human
capital and revenue productivity in small firms: An empirical investigation. Journal of Business
Research, 67(11):2473–2479.

Chr, N. (1972). Individual and social optimization in a multiserver queue with a general cost-benefit
structure. Econometrica: Journal of the Econometric Society, pages 515–528.

Clarke, L., Johnson, E., Nemhauser, G., and Zhu, Z. (1997). The aircraft rotation problem. Annals
of Operations Research, 69:33–46.

Deshpande, V. and Arıkan, M. (2012). The impact of airline flight schedules on flight delays.
Manufacturing & Service Operations Management, 14(3):423–440.

Dong, L. and Rudi, N. (2004). Who benefits from transshipment? exogenous vs. endogenous
wholesale prices. Management Science, 50(5):645–657.

Dunbar, M., Froyland, G., and Wu, C.-L. (2012). Robust airline schedule planning: Minimiz-
ing propagated delay in an integrated routing and crewing framework. Transportation Science,
46(2):204–216.

Dunbar, M., Froyland, G., and Wu, C.-L. (2014). An integrated scenario-based approach for robust
aircraft routing, crew pairing and re-timing. Computers & Operations Research, 45:68–86.

D’Auria, B. and Kanta, S. (2015). Pure threshold strategies for a two-node tandem network under
partial information. Operations Research Letters, 43(5):467–470.

Edelson, N. M. and Hilderbrand, D. K. (1975). Congestion tolls for poisson queuing processes.
Econometrica: Journal of the Econometric Society, pages 81–92.

Ehrgott, M. and Ryan, D. M. (2002). Constructing robust crew schedules with bicriteria optimiza-
tion. Journal of Multi-Criteria Decision Analysis, 11(3):139–150.

Eltoukhy, A. E., Chan, F. T., and Chung, S. H. (2017). Airline schedule planning: A review and
future directions. Industrial Management & Data Systems.

Emami, P., Pardalos, P. M., Elefteriadou, L., and Ranka, S. (2018). Machine learning methods for
solving assignment problems in multi-target tracking. arXiv preprint arXiv:1802.06897.

160

Estes, A. S. and Ball, M. O. (2021). Monge properties, optimal greedy policies, and policy im-
provement for the dynamic stochastic transportation problem. INFORMS Journal on Computing,
33(2):785–807.

Froyland, G., Maher, S. J., and Wu, C.-L. (2013). The recoverable robust tail assignment problem.
Transportation Science, 48(3):351–372.

Gao, C., Johnson, E., and Smith, B. (2009). Integrated airline fleet and crew robust planning.
Transportation Science, 43(1):2–16.

Guo, P. and Zipkin, P. (2007). Analysis and comparison of queues with different levels of delay
information. Management Science, 53(6):962–970.

Guthrie, J. P. (2001). High-involvement work practices, turnover, and productivity: Evidence from
new zealand. Academy of management Journal, 44(1):180–190.

Halfin, S. and Whitt, W. (1981). Heavy-traffic limits for queues with many exponential servers.
Operations research, 29(3):567–588.

Hassin, R. and Haviv, M. (2003). To queue or not to queue: Equilibrium behavior in queueing
systems, volume 59. Springer Science & Business Media.

Haviv, M. (2014). Regulating an m/g/1 queue when customers know their demand. Performance
Evaluation, 77:57–71.

Haviv, M. and Oz, B. (2016). Regulating an observable m/m/1 queue. Operations Research Letters,
44(2):196–198.

Haviv, M. and Oz, B. (2018). Self-regulation of an unobservable queue. Management Science,
64(5):2380–2389.

Hu, X. and Ralph, D. (2007). Using epecs to model bilevel games in restructured electricity markets
with locational prices. Operations research, 55(5):809–827.

Huselid, M. A. (1995). The impact of human resource management practices on turnover, produc-
tivity, and corporate financial performance. Academy of management journal, 38(3):635–672.

Janssen, A. and van Leeuwaarden, J. S. (2015). Staffing many-server systems with admission control
and retrials. Advances in Applied Probability, 47(2):450–475.

Kang, L. S. (2004). Degradable airline scheduling: an approach to improve operational robustness
and differentiate service quality. PhD thesis, Massachusetts Institute of Technology.

Koçağa, Y. L. and Ward, A. R. (2010). Admission control for a multi-server queue with abandon-
ment. Queueing Systems, 65(3):275–323.

Köchel, P. (2004). Finite queueing systems—structural investigations and optimal design. Inter-
national Journal of Production Economics, 88(2):157–171.

Koole, G. and Pot, A. (2011). A note on profit maximization and monotonicity for inbound call
centers. Operations research, 59(5):1304–1308.

Kouvelis, P. and Zhao, W. (2012). Financing the newsvendor: supplier vs. bank, and the structure
of optimal trade credit contracts. Operations research, 60(3):566–580.

161

Krokhmal, P. A. and Pardalos, P. M. (2009). Random assignment problems. European Journal of
Operational Research, 194(1):1–17.

Kulkarni, V. G. (2016). Modeling and analysis of stochastic systems. Crc Press.

Laboratory Corporation of America (2020). Specimen collection and shipping instruc-
tions. https://www.avancecare.com/wp-content/uploads/2020/03/Labcorp-COVID-19-NP-OP-
Specimen-Collection-and-Shipping-Instructions.pdf.

Lan, S., Clarke, J.-P., and Barnhart, C. (2006). Planning for robust airline operations: Optimizing
aircraft routings and flight departure times to minimize passenger disruptions. Transportation
science, 40(1):15–28.

Lee, H. L. and Cohen, M. A. (1983). A note on the convexity of performance measures of m/m/c
queueing systems. Journal of Applied Probability, pages 920–923.

Lee, J., Marla, L., and Jacquillat, A. (2020). Dynamic disruption management in airline networks
under airport operating uncertainty. Transportation Science, 54(4):973–997.

Liang, L., Wu, J., Cook, W. D., and Zhu, J. (2008). The dea game cross-efficiency model and its
nash equilibrium. Operations research, 56(5):1278–1288.

Liu, L. and Kulkarni, V. G. (2006). Explicit solutions for the steady state distributions in m/ph/1
queues with workload dependent balking. Queueing Systems, 52(4):251–260.

Liu, L. and Kulkarni, V. G. (2008a). Balking and reneging in m/g/s systems exact analysis and
approximations. Probability in the Engineering and Informational Sciences, 22(3):355.

Liu, L. and Kulkarni, V. G. (2008b). Busy period analysis for m/ph/1 queues with workload
dependent balking. Queueing Systems, 59(1):37–51.

Liu, S. W., Thomas, S. H., Gordon, J. A., Hamedani, A. G., and Weissman, J. S. (2009). A pilot
study examining undesirable events among emergency department–boarded patients awaiting
inpatient beds. Annals of emergency medicine, 54(3):381–385.

Mandelbaum, A. and Zeltyn, S. (2009). Staffing many-server queues with impatient customers:
constraint satisfaction in call centers. Operations research, 57(5):1189–1205.

Marla, L., Vaze, V., and Barnhart, C. (2018). Robust optimization: Lessons learned from aircraft
routing. Computers & Operations Research, 98:165–184.

Mendelson, H. and Whang, S. (1990). Optimal incentive-compatible priority pricing for the m/m/1
queue. Operations research, 38(5):870–883.

Mercier, A., Cordeau, J.-F., and Soumis, F. (2005). A computational study of benders decomposi-
tion for the integrated aircraft routing and crew scheduling problem. Computers & Operations
Research, 32(6):1451–1476.

Messerli, E. (1972). Bstj brief: Proof of a convexity property of the erlang b formula. The Bell
System Technical Journal, 51(4):951–953.

Naor, P. (1969). The regulation of queue size by levying tolls. Econometrica: journal of the
Econometric Society, pages 15–24.

162

Nash Jr, J. F. (1950). Equilibrium points in n-person games. Proceedings of the national academy
of sciences, 36(1):48–49.

Official Airline Guide (2020). Punctuality league 2020 report. https://www.oag.com/punctuality-
league-2020-report.

Patel, P. B., Combs, M. A., and Vinson, D. R. (2014). Reduction of admit wait times: the effect
of a leadership-based program. Academic Emergency Medicine, 21(3):266–273.

Pines, J. M., Iyer, S., Disbot, M., Hollander, J. E., Shofer, F. S., and Datner, E. M. (2008). The
effect of emergency department crowding on patient satisfaction for admitted patients. Academic
Emergency Medicine, 15(9):825–831.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons.

Ramdas, K. and Williams, J. (2006). An empirical investigation into the tradeoffs that impact
on-time performance in the airline industry. Washington Post, pages 1–32.

Rosenberger, J. M., Johnson, E. L., and Nemhauser, G. L. (2004). A robust fleet-assignment model
with hub isolation and short cycles. Transportation science, 38(3):357–368.

Sanders, J., Borst, S., Janssen, A., and Leeuwaarden, J. v. (2017). Optimal admission control for
many-server systems with qed-driven revenues. Stochastic Systems, 7(2):315–341.

Schumer, C. and Maloney, C. B. (2008). Your flight has been delayed again: flight delays cost
passengers, airlines, and the us economy billions. The US Senate Joint Economic Committee.

Shi, P., Chou, M. C., Dai, J. G., Ding, D., and Sim, J. (2016). Models and insights for hospital
inpatient operations: time-dependent ED boarding time. Management Science, 62(1):1–28.

Shortle, J. F., Thompson, J. M., Gross, D., and Harris, C. M. (2018). Fundamentals of queueing
theory, volume 399. John Wiley & Sons.

Singer, A. J., Thode Jr, H. C., Viccellio, P., and Pines, J. M. (2011). The association between length
of emergency department boarding and mortality. Academic Emergency Medicine, 18(12):1324–
1329.

Smith, B. C. and Johnson, E. L. (2006). Robust airline fleet assignment: Imposing station purity
using station decomposition. Transportation Science, 40(4):497–516.

Smith, J. M. (2003). M/g/c/k blocking probability models and system performance. Performance
Evaluation, 52(4):237–267.

Smith, J. M., Cruz, F., and van Woensel, T. (2010). Optimal server allocation in general, finite,
multi-server queueing networks. Applied Stochastic Models in Business and Industry, 26(6):705–
736.

Stidham Jr, S. (2009). Optimal design of queueing systems. CRC press.

Stidham Jr, S. and Weber, R. R. (1989). Monotonic and insensitive optimal policies for control of
queues with undiscounted costs. Operations research, 37(4):611–625.

163

Ward, A. R. and Kumar, S. (2008). Asymptotically optimal admission control of a queue with
impatient customers. Mathematics of Operations Research, 33(1):167–202.

Wei, K. and Vaze, V. (2018). Modeling crew itineraries and delays in the national air transportation
system. Transportation Science, 52(5):1276–1296.

Weide, O., Ryan, D., and Ehrgott, M. (2010). An iterative approach to robust and integrated
aircraft routing and crew scheduling. Computers & Operations Research, 37(5):833–844.

Yadav, R., Khanna, A., Panday, P., Dasmohapatra, S., et al. (2019). An analytical study of quality
of work life & organisational commitment and their relation with revenue per employee of major
it companies in india. Journal of Human Resource and Sustainability Studies, 7(02):284.

Yan, C. and Kung, J. (2016). Robust aircraft routing. Transportation Science, 52(1):118–133.

Yechiali, U. (1971). On optimal balking rules and toll charges in the gi/m/1 queuing process.
Operations Research, 19(2):349–370.

Yen, J. W. and Birge, J. R. (2006). A stochastic programming approach to the airline crew
scheduling problem. Transportation Science, 40(1):3–14.

164

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Introduction to Data-Driven Aircraft Assignment
	Literature Review to Data-Driven Aircraft Assignment
	Data-Driven Aircraft Assignment at A Single Airport to Minimize Delay Propagation
	Modeling the Aircraft Assignment Problem
	The Optimal Assignment under Deterministic Arrival Times
	Nonnegative Delay
	Signed Delay

	The Optimal Assignment under Stochastic Arrival Times
	Example
	The Revised FIFO Assignment
	The Stochastic Assignment

	A Data-Driven Approach for the Aircraft Assignment Problem
	Data-Driven Approach to the Stochastic Assignment
	Data-Driven Approach to the rFIFO Assignment

	Computational Experiments
	Data Collection and Cleaning
	Optimal Number of Clusters
	Comparison of FIFO, rFIFO, and Stochastic assignment policies

	Maintenance Routing Problem
	Conclusions

	Data-Driven Aircraft Assignment Over Multiple Airports to Minimize Delay Propagation
	Model Description
	Iterative Algorithm
	Algorithm
	Performance of the Iterative Algorithm
	Comparison among Deterministic, Mixed and Stochastic cases

	Data-driven Approach
	Data-driven Approach Under Stochastic Case
	Data-driven Approach Under Mixed Case
	Data-driven Approach Under Deterministic Case

	Computational Experiment
	Assignments Derived from the Data-driven Approach
	Comparison

	Conclusions

	Introduction
	Literature Review
	Joint Staffing and Admission Control Under Different Levels of Information
	Formulation and Preliminaries
	Minimal Information
	Admission Control
	Staffing Problem
	Numerical Results

	 Partial Information
	Admission Control
	Staffing Problem
	 Numerical Results

	 Full Information
	Virtual Queueing Time Process
	Admission Control
	Staffing Problem
	Numerical Results

	Value of Information
	Conclusions

	Joint Admission and Service Rate Control of an Unobservable Queue
	The Model
	Socially Optimal Policy
	Decentralized Decisions
	Individually Optimal Policy.
	Stackelberg Game
	 Nash Equilibrium

	Analytical Examples
	Numerical Results
	Conclusions

	Rationale to Choose Scheduled Arrival Time, Origin Airport and Aircraft Type as Covariates
	Cluster Label for Each Flight
	BIBLIOGRAPHY

