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ABSTRACT

Ziliang Zhu: Prediction Methods in Large-Scale Network Analysis for
Neuroimaging Data

(Under the direction of Hongtu Zhu)

Brain functional connectivity data are critical for understanding human brain structure

and cognitive disease diagnostics. The underlying genetic architecture behind brain functional

connectivity is a critical topic in medical studies, which helps unveil the linkages between

genetic variants and brain activity and further understand cognitive diseases and brain

disorders. The rapid emergence of large scale imaging studies provides researchers with more

opportunities to discover the connections between brain system and genes. However, existing

methods in imaging genetics are not sufficient in dealing with the high-dimensional data with

complex structure, thus limiting the discovery of biological foundation of neuro-development.

Therefore, we developed novel statistical approaches for efficient analysis of imaging genetic

data. In the first project, we developed a matrix decomposition based method for denoising

and recovering the structure of the subject-wise network based on the assumption of factor

model. We decompose the subject networks into two parts: a common low-rank basis and

subject-specific loadings on the basis. A matrix L0 penalty problem was formulated to

accelerate the algorithm. Meanwhile, to avoid iterative computation of high dimensional

matrix, we will select a relatively lower dimension basis in the first step, which is a coarse

estimator, and then do a fine-tuning in the second step based on the results in step one. In the

simulation study, it showed that our approach outperformed other existing approaches in terms

of recovering accuracy and computing speed. We also proved that under mild conditions, the

algorithm converges fast in an exponential rate. In the second project, we proposed a matrix

regression approach for imaging genetic studies. The proposed regression model includes two
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steps. In the first step, a marginal screening procedure was used to study the univariate

associations between genetic variants (SNPs) and imaging phenotype. The theoretical p-value

for the marginal screening step was derived using random matrix theories, and important

SNPs were selected based on the univariate associations using knock-off. In the second step,

a multivariate regression model with all the important SNPs selected as covariates were

fitted, and a penalized optimization problem was solved using Nestrov methods. We studied

the theoretical properties of the proposed two-stage algorithm thoroughly and simulation

studies supported the efficiency and consistency of the proposed method. In the third project,

we established a missing data imputation framework to address the issue of missing image

modality in real data. The missingness of some imaging modality is common in real imaging

data, which may undermine the statistical power in the prediction and inference. However,

inaccurate imputation of the missing modality may lead to bias in prediction. Therefore, we

thoroughly studied the performance of imputation approaches, including LASSO and ridge

models, under different conditions, and concluded the optimal choice of imputation options

under the different settings.

iv



ACKNOWLEDGEMENTS

I am grateful to my academic advisors Hongtu Zhu and Joseph Ibrahim for their guidance,

encouragement, and support during my study at UNC. I thank Weili Lin for the support

during my study at UNC and guidance of statistical collaboration in BRIC. I also thank

Quefeng Li and Tengfei Li for their advice and serving in my committee.

I thank my collaborators in UNC BRIC and Nestle for many enjoyable memories. Special

thanks to Weiyan Yin for insightful thoughts on research projects. I am grateful to fellows

during my internship for giving me guidance on career development and job hunting.

It has been my pleasure to be a member of the Biostatistics and Imaging Genomics

Analysis Lab (BIG-S2). I would like to thank all my lab mates in BIG-S2 for priceless

friendship. Special thanks to Bingxin Zhao for his enormous help and valuable conversations

in discovering interesting scientific questions. Also I’m really grateful to Tengfei Li for the

collaboration in all research projects.

I would like to thank my fellow classmates: Jitong Lou, Jiawei Xu, Rujin Wang, Meichen

Dong, and my friends: Zengdi Liao, Mengxiao Liu, Haoyang Li, Yujie Su for the great

friendship in the past years.

Finally and most importantly, I would like to dedicate this dissertation to my family for

their love and support in my life.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 High Dimensional Neuro-Imaging Studies . . . . . . . . . . . . . . . . . . . . 2

2.2 Multiple Covariance Matrices Estimation . . . . . . . . . . . . . . . . . . . . 4

2.3 Network Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Missing Data in High-Dimensional Inferences . . . . . . . . . . . . . . . . . . 10

CHAPTER 3: FACTOR MODEL FOR MULTIPLE NETWORK DATA . . . . . . . 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Estimating B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Estimating Λi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Estimating σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.4 Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.5 Tuning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Numeric Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 Real Data Analysis: UKBioBank Functional Connectivity . . . . . . 28

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 4: REGRESSION MODELS IN IMAGING GENETICS . . . . . . . . . 32

vi



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Marginal Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Multivariate Regression . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Null Distribution of Tj . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.2 FDR Control using Knockoffs . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3 Multivariate Regression . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 5: PREDICTION WITH MODALITY IMPUTATION . . . . . . . . . . 44

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 TWAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

APPENDIX A: TECHNICAL DETAILS OF CHAPTER 3 . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



LIST OF TABLES

2.1 Summary of Imaging Cohort Studies . . . . . . . . . . . . . . . . . . . . . . 3

4.1 False Discovery Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Relative Error and Computational Speed of Matrix Regression . . . . . . . . 41

viii



LIST OF FIGURES

3.1 Sin Θ Distance of Subspace Estimation . . . . . . . . . . . . . . . . . . . . . 25

3.2 Relative Error of Covariance Matices Recovery . . . . . . . . . . . . . . . . . 26

3.3 Relative Error Under Different Choice of Optimal Rank . . . . . . . . . . . . 27

3.4 Masks of Networks in UKBioBank Resting-State fMRI Data . . . . . . . . . 29

3.5 SNP Heritability of the Connectivity across 8 Networks
in UKBiobank Resting-State fMRI Data . . . . . . . . . . . . . . . . . . . . 30

4.1 QQ Plot of Null Distribution of Tj . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Recovered Coefficient Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Relative Error of Recovered Response Images . . . . . . . . . . . . . . . . . 42

ix



CHAPTER 1: INTRODUCTION

In recent years, the emerging of high-dimensional network data has drawn the attraction of

researchers in many fields including finance, sociology, geography, and neuro-science Scruggs

and Glabadanidis (2003); Patz et al. (2005); Kolaczyk (2009). Powerful statistical tools for

analysing these high-dimensional network data can provide a better insight into the research

questions associated with these data. Specifically, in the field of neuro-imaging, researchers

has found that the functional connectivity between different parts of the brain is associated

with cognitive behaviours, brain developments, and neural diseases He et al. (2011); Rogers

et al. (2007); Atasoy et al. (2016). A large number of studies have been using brain imaging

for detecting potential developmental disorder, or clinical outcomes Vincent et al. (2011);

Chupin et al. (2009); Johnson et al. (2012). Teipel found the resting-state fMRI shows a

significant difference in the Alzheimer Disease patients, suggesting that neuro-imaging can

help diagnose serious diseases Teipel et al. (2017).

However, the real world network data we get are not reliably measured, because the

number of nodes in the network is large, while the length of time-series for measuring the

correlation is limited. For example, in UK Biobank study, a typical atlas of resting-state fMRI

is usually several hundreds (p=90 for AAL Atlas), while the length of each scan is n=468.

The high-dimensionality brings in a large amount of noise in the network data we derive Fan

et al. (2008), and the noise may lead to unstable results if further statistical analysis is done

based on the network. Therefore, it is imperative to develop statistical methods for denoising

the covariance matrices.
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CHAPTER 2: LITERATURE REVIEW

2.1 High Dimensional Neuro-Imaging Studies

The Human brain has been analyzed from a network perspective with the advent of

neuroimaging acquisition techniques and network theory. Functional magnetic resonance

imaging (fMRI) is a non-invasive neuroimaging procedure to assess brain neuronal activity

that can be measured by changes in blood oxygen level-dependent (BOLD) signal Logothetis

et al. (2001). In particular, resting-state fMRI is a stable neural signal when a subject is

not performing any tasks. The pairwise correlations of resting-state fMRI between different

regions measures the network connection strength and is refered to as connectivity van den

Heuvel and Pol (2010), and functional networks could be defined based on these connectivities.

It is shown that resting-state networks (RSNs) closely resembles the functional networks of

the human brain identified by various sensory, motor and cognitive paradigms Atasoy et al.

(2016); Fox et al. (2006); Fox and Raichle (2007).

To understand the human brain connectome and how it relates to other clinical and

genetic traits, and it motivated a bunch of large neural-imaging studies, including PNC,

PING, UKBiobank, HCP. Also, longitudinal studies are developed in both adults population,

including ADNI, and young infants, e.g. BCP. Clinical, genetic, and imaging information are

all collected for subjects with an age range from 0-70 years old. A brief summary of these

data set are listed in Table 2.1.

PNC study is funded by NIHM and was initially a collaborative research between the Brain

Behavior Laboratory at the University of Pennsylvania and the Center for Applied Genomics

at the Children’s Hospital of Philadelphia. This cohort study focus on characterizing the

interaction between brain, behaviours, and genetics. More than 9, 500 subjects aged 8 to

21 years old with diverse medical conditions were enrolled in the study, and 1,445 subjects
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Dataset Data Type Age Range Sample Size
PNC Cross-Sectional 8-21 1445
PING Cross-Sectional 3-20 1400
UKBiobank Longitudinal 40-69 500000 (released 40k)
HCP Cross-Sectional 4-75 1206
ADNI Longitudinal 50-90 822
BCP Longitudinal 0-4 500

Table 2.1: Summary of Imaging Cohort Studies

received neuroimaging including fMRI, stuctural MRI, and DTI.

PING study is launched by the UCSD Center for Human Development (CHD) and is

funded by NIDA and cofunded by NICHD within NIH. Ten sites throughout the country are

involved. The study is aimed at creating a large repository of standardized measurements of

behavioral and neuroimaging phenotypes accompanied by whole genome genotyping acquired

from 1,493 typically-developing children aged 3 to 20 years.

ADNI study was initially led by Dr. Michael W. Weiner and funded as a private-

public partnership between 20 companies and two foundations throught NIH, and NIA.

This longitudinal multicenter study was designed to develop clinical, imaging, genetic, and

biochemical biomarkers for the early detection and tracking of Alzheimers disease (AD).

Neuroimaging including structural MRI, fMRI, T2 weighted imaging, DTI, FLAIR, and ASL

were collected.

UK Biobank study was established by the Wellcome Trust medical charity, Medical

Research Council, Department of Health, Scottish Government and the Northwest Regional

Development Agency. The study aims to improve the prevention, diagnosis and treatment

of a wide range of serious and life-threatening illnesses, including cancer, heart diseases,

stroke, diabetes, arthritis, osteoporosis, eye disorders, depression and forms of dementia.

Comprehensive information including 1) questionnaire collected data (diet, cognitive function,

work history and digestive health), 2) imaging (brain, heart, abdomen, bones carotid artery),

3) electronic health records (cancer, death, hospital episodes, general practice), 4) blood

biochemistry (such as hormones cholesterol) from 100, 000 subjects are collected and analysed.
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Moreover, genotyping has been undertaken on all 500, 000 participants aged 40 to 69 years

old.

In RSNs, researchers are focusing on the following topics:

• Development of RSNs in early infancy

• Identifying regions corresponding to different functional domains

• Constructing the underlying network structures based on resting fMRI signals

• Disease diagnostics and prediction using RSNs

• Genetic foundation study for brain strucures

While resting fMRI data evaluates the connectivities between different gray matter regions

using BOLD signals, DTI is another type of brain imaging which measures the diffusion of

water molecules in white matter tissue O’Donnell and Westin (2011). Current studies on DTI

data mainly focus on

• Generating anatomically plausible tract reconstructions of major projection pathways

• Clustering of white matter tracts generated from DTI imaging

• Disease diagnostics using DTI data

• Genetic analysis on white matter structures

2.2 Multiple Covariance Matrices Estimation

In a neuro-imaging study, an rfMRI scan will be acquired for each subject, thus leading

to multiple-covariance matrices data. The challenge here is how we can find a parsimonious

way to represent the multiple-covariance data, with the similarities and differences between

different subjects kept. There has been bunch of literatures studying a low-dimensional

representation for single covariance matrices. For example, PCA finds a low-dimensional

representation of the original network and keeps most of the information of the original matrix.
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Also, topic model Ke and Wang (2017); Ke (2016); Hofmann (1999) is another approach to

find the low-dimensional representation of the network, which focus on finding the typical

region representation of each network. Another approach for finding the low-rank structure

is stochastic block model (SBM), which aims at finding potential block–wise clusters in the

nodes Mao et al. (2018); Holland et al. (1983); Jin et al. (2017).

A direct extension of these approaches could be applied to multiple networks by treating

individual networks as independent and apply theese methods separately. This extension is

able to reduce the dimension of our networks data significantly, by reducing the dimension

for each one separately. However, this kind of extension assumes that all networks are

independent, and there is no common information across different brain networks. This

assumptionis not reasonable for human brains, since human functional networks could be

viewed as replicated graphs Durante et al. (2017) and should share common information.

Therefore, we are aiming at find a parsimonious representation of the networks that is able

to account for the common basis of the networks, and also extract the individual-specific

differences as well.

Factor models are commonly used to model the low-rank network structures for network

data Wang et al. (2011); Fan et al. (2011). The factor models Fan et al. (2011) assumes

Yit = b′ift + uit

where ft ∈ Rd is the random factor and bi is the factor loading of ith subject. The underlying

dimension of the data is equal to the number of effective factors, i.e., the dimension of

ft. Therefore, the dimension of the data could be reduced significantly if d << p. The

distribution of factors ft describes the common information across different subjects, while

the subject-specific factor loadings contains the subject-specific information.

An similar approach of factor model is called common component analysis Wang et al.
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(2011). In CCA, the subject level network data is assumed to have the form

Xi = UYiU
′ + Ei,

where U ∈ Op×r is the orthonormal loading matrix on a low-dimensional data space and

Yi ∈ Rr×r is the connectivity matrix for the low-rank space. In this approach, the error Ei is

assumed to be Gaussian, and estimates for U and Yi are attained by minimizing the Frobenius

norm of residual connectivity matrices. The optimization problem, which is not convex

and involves high dimensional matrix derivitive if using Newton-Raphson approach, was

accelarated by using an iterative SVD to approximate the original problem. This approach is

fast and can get a reasonably good estimates if the dimension is not extremely high. However,

in sup-high dimensional cases, the approach still fails due to computational burden coming

from iterative SVD of high dimensional matrices.

To study how well the denoising of connectivity is based on factor model, the most

straightforward metric is the Frobenius error of the recovered matrices and true matrices.

Besides this, Sin-Θ distance Wedin (1972); Davis and Kahan (1970) was also proposed and

used to depict the similarity between the recovered spaces and the original spaces. For

two p-dimensional linear spaces A and B with orthonormal basis A and B respectively, the

principle angle is defined as

Θ(A,B) = diag(cos−1(σ1), . . . , cos−1(σp)),

where sigma1 ≥ . . . ≥ σp are the singular values of ATB. Then the Sin-Θ distance is defined

as ||SinΘ(A,B)|| or ||SinΘ(A,B)||F . It actually measures the similarity between the estimates

of common factor space and the true factor space. A rate-optimal upper perturbation bound

was derived Cai and Zhang (2018) for SVD for a single matrix.

Another issue with the current denoising algorithms is that the determination of the

optimal rank is not yet well-built. Commonly accepted criterion includes EBIC Chen and
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Chen (2008) and GCV Josse and Husson (2012). However, both approaches requires an

estimation of the degree of freedom of the model, which has been proved to be different from

the number of parameters in a low rank approximation Yuan (2016). Adjustment has to be

made on the degree of freedom in order to get a consistent estimation of degree of freedom

and thus achieve optimal prediction accuracy.

2.3 Network Regression Models

Aside from reducing the dimension of the connectivity matrix, another question of great

interest is that how to evaluate the association of the connectivity derived from imaging

and clinical or genetic traits. Such association analysis could provide us with information

about how to improve brain functional development in childhood and infancy and also predict

potential brain malfunction from clinical assessment. However, due to the complexity of

network data as mentioned in the previous section, not a lot of efficient approaches has been

developed.

One commonly used approach is to extract some summary statistics from the network

data, including small-worldness, global efficiency, local efficiency, modularity, etc, and evaluate

the association between these statistics and the traits of researchers’ interest. These summary

statistics provide insight about how the efficient the information is transfered in the brain,

and how the brain is functionally segregated. However, since our brain is a complicated world

of mixed structures, these extracted features may capture only a small part of the information

of our brain, and a lot more information might be neglected. Also, since the original high

dimensional connectivity matrices include massive noise, which will further affect the quality

of these summary statistics. Therefore, it may further bias the results of association and

regression analysis.

Another problem of calculating the summary statistics is that how the network should

be defined. A commonly used approach is to define a binary network by including the top

connectivities only at a given threshold Achard et al. (2006); van den Heuvel et al. (2017).

However, the network could be sensitive to the choice of the threshold Bassett et al. (2012);
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Bullmore and Bassett (2011). Therefore, a more stable approach was proposed by considering

the graph curves Bassett et al. (2012), which calculates a series of topologic measures across

a wide range of thresholds. The mean value of the curve is a typically used summary statistic

of the topologic metric Gao et al. (2011).

Another approach to construct the network without using a threshold on the original

connectivity matrices is to use sparse representation (SR, Yu et al. (2017); Zhang et al. (2019).

In SR, the original time series for each region is assumed to be represented by a small amount

of other regions, thus resulting in a optimization problem of minimizing the following loss

function.

min
W

1

2
||X −XW ||2F + λ||W ||1, s.t. diag(W ) = 0

In neuro-science, previous studies suggests that there are groups of connectivities and

regions are closely related and the inference based on these regions should be similar. Therefore,

a group level selection approach, namely WGSR Yu et al. (2017); Simon et al. (2013) was

proposed by adding a penalty for group selection. The problem is formulated as minimizing

the following object problem,

min
W

1

2
||X −XW ||2F + λ1||cW ||1 + λ2

G∑
g=1

||WOg ||2, s.t. diag(W ) = 0

where ||WOg ||2 =
√∑

(i,j) w
2
i,j is the l2 norm of group g.

The approaches above will give individual specific estimate of networks, thus making

the inter-subject variability to be large and resulting in unstable estimates. To overcome

this, group sparsity representation Wee et al. (2014) was proposed and reduces the inter-

subject variability by forcing the non-zero connectivities across different subjects to be similar.

Assuming there are M subjects, then the proposed approach is to minimize the following

object function,
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min
Wi

1

2
||xmi −Xm

i Wi||2 + λ||Wi||2,1

where xmi is the time series for ith ROI of subject m, and Xm
i is the time series matrix

for subject m excluding region i. Since the subjects may come from different groups, like in

an ADHD study, a further improvement allowing for larger between-group variability was

proposed (SSGSR, Zhou et al. (2019)).

In SSGSR, the between-group variability could be included, and a comparison between

these groups could be done. However, this approach can only work for categorical covariates,

and it’s extension to continuous covariates is not straightforward.

Aside from using the summary statistics of connectivity matrices, matrix regression

analysis using the raw connectivity matrices is another approach and will include more

information about the data. Therefore, a few new approaches which use the entire network as

response has been developed. Tensor based approach are developed Zhang et al. (2019); Sun

and Li (2016) to handle to specific network structure. In Zhang’s approach, the regression

coefficients are assumed to be tensors as well, such that the network stucture is kept in

the space of regression coefficients, i.e. the associations. Within the GLM framework, an

low-rank interect, which stands for a low-rank population baseline or mean is assumed and

the coefficient tensors were assumed to be sparse. A Newton-Raphson algorithm based MLE

was used and a further post hard thresholding was applied. In this model, the assumption is

that each variable contributes to only a few of the connectivities. The problem for this model

is that if the true underlying structure is not sparse, but low-rank, than this algorithm is not

easy to handle, and ignoring the low-rank structure may lead to overfitting of the data.

Another Low-rank based approach, Multi-Scale Network Regression (MSNR,Xia et al.

(2019)) was proposed where a low-rank community structure was assumed. The model is

formulated as
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Ai = Θ +

q∑
f=1

Xf
i · (WΓfW ′) + εi, i = 1, . . . , n

where Ai ∈ Rp × p is the network matrix of ith subject, Θ is a low-rank baseline network,

Xf
i is the fth covariate for ith subject, and W ∈ Rp × r is a known community structure

matrix. ΓfRr× r is the effects of Xf on the connectivities of r communities. The assumption

of MSNR is that each of the p nodes belongs to exactly one of the r communities, and the

allocation of the nodes are known. However, in a real network, the community structure of

the nodes may not be known, so that this assumption is too strong in practice.

The recent L2RM approach Kong et al. (2020) is another low-rank based approach for the

network regression problem. The model is formulated similarly, but without any assumptions

about the structure of the regression coefficients, which makes the model to be more flexible.

A marginal screening procedure is performed before the estimation, to remove the redundant

covariates information and make the inference more stable. However, a problem for this

approach is that the screening procedure is performed with permutation test, so that it

requires large computational resources.

2.4 Missing Data in High-Dimensional Inferences

In large scale neuro-imaging studies, missing data is a major issue that researchers have

to face. Due to limited budget, participants’ availability, data quality, or data management,

some of the information or modalities might be missing for some subjects. With missing

data, we are not able to directly use the subject for inference or statistical learning, unless

carefully handling it. For example, in ADNI study Petersen et al. (2010), out of the 1628

subjects with imaging data, only 783 participants have both resting-state fMRI and DTI

imaging. On the other hand, studies Zhang et al. (2021); Enciso-Olivera et al. (2021) have

shown that combining DTI and resting-state fMRI data to predict AD outperforms using

a single channel models. Therefore, developing a powerful imputation approach to handle

missing imaging modality is critical.

Another situation in imaging genetics where missing data is commonly involved is
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Transcriptome-Wide Association Studies (TWAS) Gamazon et al. (2015); Gusev et al. (2016),

where gene expression data were used to study the genetic association with phenotypic

features. However, due to technical and financial limit in the ability to collect gene expression

data, the gene expression data for only a small subset of the participants are collected. The

gene expression information for most of the participants needs to be imputed from SNP data,

which is collected for all subjects.

Specifically, assume Y is a vector for phenotype, X is an n× p matrix for population SNP

information, and Z is a n× q matrix for population gene expression information. TWAS is

aiming at fitting the model

Y = Xβ + Zγ + ε

However, due to the availability of gene expression data, the matrix Z is not observed,

and needs to be estimated as Ẑ = f(X), which is typically estimated as a linear function

f(X) = XD, where D is a p× q matrix of covariates. The final model to be fitted is

Y = Xβ + Ẑγ + ε

There has been wide research about missing data imputation. The most widely used

approach is to impute the missing values using a similar subject with complete data Joenssen

and Bankhofer (2012) or imputing with mean value Kalton (1983). However, these methods

does not work in high-dimensional missing settings as in imaging genetics. Regression

models are also commonly used for imputation. However, in high-dimensional settings, the

appropriateness of simple regression models is doubtful.

Beyond the fore-mentioned traditional approaches, some machine learning based ap-

proaches have been proposed to handle missingness more effectively. Matrix completion

methods based on matrix factorization has been proposed Candès and Tao (2009). The

approach is based on a convex relaxation of PCA, and a low-rank structure was assumed for

the data. As extensions to regression models, advanced machine learning techniques have
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been used for imputation, including random forest Stekhoven and Bühlmann (2011) and

SVM Yang et al. (2012). Beyond these approaches, generative adversarial networks (GAN)

are also used for high-dimensional imputation Yoon et al. (2018); Dong et al. (2021), due to

its power of handling complicated missing mechanism.

However, due to the complexity of imaging genetics data, how these methods could help

inference is not studied and arbitrary use of these methods without a justification may lead

to inaccurate or even biased conclusions. Therefore, we are eager in an investigation of the

performance of different methods on imaging genetics imputation.
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CHAPTER 3: FACTOR MODEL FOR MULTIPLE NETWORK DATA

3.1 Introduction

In recent years, the emerging of high-dimensional network data has drawn the attraction of

researchers in many fields including finance, sociology, geography, and neuro-science Scruggs

and Glabadanidis (2003); Patz et al. (2005); Kolaczyk (2009). Powerful statistical tools for

analysing these high-dimensional network data can provide a better insight into the research

questions associated with these data. Specifically, in the field of neuro-imaging, researchers

has found that the functional connectivity between different parts of the brain is associated

with cognitive behaviours, brain developments, and neural diseases He et al. (2011); Rogers

et al. (2007); Atasoy et al. (2016). A large number of studies have been using brain imaging

for detecting potential developmental disorder, or clinical outcomes Vincent et al. (2011);

Chupin et al. (2009); Johnson et al. (2012). Teipel found the resting-state fMRI shows a

significant difference in the Alzheimer Disease patients, suggesting that neuro-imaging can

help diagnose serious diseases Teipel et al. (2017).

However, the real world network data we get are not reliably measured, because the

number of nodes in the network is large, while the length of time-series for measuring the

correlation is limited. For example, in UK Biobank study, a typical atlas of resting-state fMRI

is usually several hundreds (p=90 for AAL Atlas), while the length of each scan is n=468.

The high-dimensionality brings in a large amount of noise in the network data we derive Fan

et al. (2008), and the noise may lead to unstable results if further statistical analysis is done

based on the network. Therefore, it is imperative to develop statistical methods for denoising

the covariance matrices.

In a neuro-imaging study, an rfMRI scan will be acquired for each subject, thus leading

to multiple-covariance matrices data. The challenge here is how we can find a parsimonious
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way to represent the multiple-covariance data, with the similarities and differences between

different subjects kept. There has been bunch of literatures studying a low-dimensional

representation for single covariance matrices. For example, PCA finds a low-dimensional

representation of the original network and keeps most of the information of the original matrix.

Also, topic model Ke and Wang (2017); Ke (2016); Hofmann (1999) is another approach to

find the low-dimensional representation of the network, which focus on finding the typical

region representation of each network. Another approach for finding the low-rank structure

is stochastic block model (SBM), which aims at finding potential block–wise clusters in the

nodes Mao et al. (2018); Holland et al. (1983); Jin et al. (2017).

A direct extension of these approaches could be applied to multiple networks by treating

individual networks as independent and apply theese methods separately. This extension is

able to reduce the dimension of our networks data significantly, by reducing the dimension

for each one separately. However, this kind of extension assumes that all networks are

independent, and there is no common information across different brain networks. This

assumptionis not reasonable for human brains, since human functional networks could be

viewed as replicated graphs Durante et al. (2017) and should share common information.

Therefore, we are aiming at find a parsimonious representation of the networks that is able

to account for the common basis of the networks, and also extract the individual-specific

differences as well.

To account for the difference of networks across different subjects, but maintaining a

common low-rank structure, a Multiple Random Eigen Model (MREG, Wang et al. (2019))

was proposed. In MREG, each network was decomposed as

Si = UΛiU
′

where U ∈ Rp×r is a loading matrix and Λi’s are diagonal matrices representing the individual

specific information for each subject. Although MREG models the common information across
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different subjects, the model has several drawbacks. First of all, the common information is

not assumed to be orthogonal to each other, which is in contrast to the network structures in

reality. Typically in a neuro-imaging study, our brain are separated into different disjoint

regions, which means all these regions are spatially mutually exclusive, thus orthogonal

to each other. On the other hand, the subject-specific community connection matrices is

assumed to be diagonal, which means that for each subject, all communities are independent

of each other functionally. This assumption is against the brain functional structures, where

different networks are usually connected each other. Therefore, although the MREG provides

a efficient algorithm for multiple matrix decomposition, the general assumption of this model

is not adequate for functional connectivity modeling.

To overcome the issue of disjoint region parcellations, factor models, which assumes

orthogonal community memberships, are commonly used to model the low-rank network

structures for network data Wang et al. (2011); Fan et al. (2011). The factor models Fan

et al. (2011) assumes

Yit = b′ift + uit

where ft ∈ Rd is the random factor and bi is the factor loading of ith subject. The underlying

dimension of the data is equal to the number of effective factors, i.e., the dimension of

ft. Therefore, the dimension of the data could be reduced significantly if d << p. The

distribution of factors ft describes the common information across different subjects, while

the subject-specific factor loadings contains the subject-specific information.

An similar approach of factor model is called common component analysis Wang et al.

(2011). In CCA, the subject level network data is assumed to have the form

Xi = UYiU
′ + Ei,

where U ∈ Op×r is the orthonormal loading matrix on a low-dimensional data space and

Yi ∈ Rr×r is the connectivity matrix for the low-rank space. In this approach, the error Ei is
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assumed to be Gaussian, and estimates for U and Yi are attained by minimizing the Frobenius

norm of residual connectivity matrices. The optimization problem, which is not convex

and involves high dimensional matrix derivitive if using Newton-Raphson approach, was

accelarated by using an iterative SVD to approximate the original problem. This approach is

fast and can get a reasonably good estimates if the dimension is not extremely high. However,

in sup-high dimensional cases, the approach still fails due to computational burden coming

from iterative SVD of high dimensional matrices.

In this paper, we made the following contributions. First of all, we build a L0FM framework

for high-dimensional connectivity matrices decomposition based on factor model with matrices

version of l0 penalty. Next, we gave theoretical guarantee of the L0FM estimator. Third,

we adjusted the degree of freedom estimator in multiple matrices decomposition problem.

Finally, we showed that our proposed L0FM approach outperforms existing approaches for

large-scale matrices decomposition methods with numerical studies.

3.2 Model

Assume there are I individuals, and for each individual, a time series Xi ∈ RT×p is

observed, where p is the number of regions of interest (ROI) and T is the number of

timepoints in the time series. We assume the time series comes from a low-rannk factor model

Xi = FiB
′ + Ei, i = 1, . . . , I (3.1)

where Fi ∈ RT×r is the time series in the low rank underlying basis, which consists of

only r components. We assume these r components are independent of each other, i.e.,

Cov(Fi) = Λi = diag(Λi1, . . . , λir). In brain functional analysis, these r components play

similar roles as independent networks. B ∈ Op×r is an orthogonal matrix, and characterizing

the loading of each ROI on the independent basis. Ei is a noise matrix with i.i.d. elements

from N(0, σ2) and independent of Fi.
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Under the setting of model (1), we have that the covaraince matrix of Xi is

Σi = BΛiB
′ + σ2I

Our goal is to estimate the covariance structure Σi from the sample covariance matrix Si.

Under the low-rank structure, the loss function can be written as

L(B,Λ, σ2, γ) =
I∑
i=1

||Σi − Si||2F + γrank(Λ1)

=
I∑
i=1

||BΛiB
′ + σ2I − Si||2F + γrank(Λ1)

3.3 Estimation

The optimization of this object function is not straightforward, given the non-convex

behavior in the parameters. Therefore, we update the parameters block-wisely in each

iteration.

3.3.1 Estimating B

Given σ2(k) be the estimator of σ2 after the k-th iteration, let S(k)
i = Si − σ2(k)I. We can

rewrite the loss function as

L1(B,Λ, γ) =
I∑
i=1

||BΛiB
′ − S(k)

i ||2F + γrank(Λ1)

To solve this problem, we first introduce the following lemma.

Lemma 1. When a rank-k orthogonal matrix B is given, the rank-k optimizer of Λi for

the following problem

min
Λi

I∑
i=1

||BΛiB
′ − Si||2F

is given by Λ̂i = B′SiB.
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From Lemma 1, by plugging in Λ̂i to L1, we have the following loss function

L̃1(B, γ) =
I∑
i=1

||BB′S(k)
i BB′ − S(k)

i ||2F + γrank(B)

The optimization of this function is difficult, but we can use approaximation to update it

iteratively. Actually we can rewrite

L̃1(B, γ) =
I∑
i=1

||BB′S(k)
i BB′ − S(k)

i ||2F + γrank(B)

=
I∑
i=1

tr(BB′S(k)
i BB′ − S(k)

i )2 + γrank(B)

=
I∑
i=1

tr(BB′S(k)
i BB′S

(k)
i BB′ − 2BB′S

(k)
i BB′S

(k)
i + S

(k)2
i ) + γrank(B)

=
I∑
i=1

tr(−BB′S(k)
i BB′S

(k)
i ) + γrank(B) + C

=− tr(B′(
I∑
i=1

S
(k)
i BB′S

(k)
i )B) + C

=− tr(B′A(B)B) + C

Given a current estimate B(k), we replace A(B) with A(B(k)), and minimizing L̃1(B, γ) is

equivalent to maximizing the trace of B′A(B(k))B. The rank-r orthogonal matrix maximizing

the quantity is the top-r eigenvectors of A(B(k)).

However, since A(B(k)) is an approximation of A(B) and the top eigen-space could be

sensitive to the perturbation. Therefore, when estimating B(k), we will allow for a larger rank

R to make sure the actual subspace is included in B(k).

3.3.2 Estimating Λi

In the previous section, actually we have already shown that Λi could be estimated by

Λ̂i = B(k+1)′S
(k)
i B(k+1)
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However, in the previous section, we allowed for a larger space for B(k+1), thus the rank of Λ̂i

is not optimal and may include redundant information. Therefore, a further tuning of Λi is

needed. Inspired by the L0 penalty algorithm in linear model Huang et al. (2018), by solving

the KKT condition can significantly improve the performance of this non-convex problem.

Similarly, we will find the KKT condition for Λi in the matrix case.

Following the proof of Lemma 1, the optimization problem in terms of Λ is

L2(Λ) =
I∑
i=1

||Λi −B(k+1)′S
(k)
i B(k+1)||2F + γ||diag(Λ1)||0

The penalty is given on the common matrix Λ1 because we require all subjects share a

common subspace.

Lemma 2. The KKT condition for

min
Λ

I∑
i=1

||Λi − Ai||2F + γ||diag(Λ1)||0, i = 1, . . . , I

is given by

d = 1[A2(d⊗ 1′p) + (I − 2D)diag(A2) ≥ γ]

where d = (d1, . . . , dp), D = diag(d), and Λ̂i = DAiD. A2 = (A2,jk)p×p where A2,jk =∑I
i=1A

2
i,jk.

Following Lemma 2, the optimization of the problem could be done iteratively by satisfying

the KKT condition. Given a current candidate index d(k), update

d(k+1) = 1[A2(d(k) ⊗ 1′p) + (I − 2D(k))diag(A2) ≥ γ]

The rank-r version of the update is

d(k+1) = 1[A2(d(k) ⊗ 1′p) + (I − 2D(k))diag(A2) >= M (k)
r ]
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where M (k)
r is the r-th largest component of A2(d(k)⊗ 1′p) + (I − 2D(k))diag(A2). The optimal

Λi will be obtained when the algorithm converges, i.e., d(k+1) remains unchanged after update.

After we get the updated Λ
(k)
i , we should also update B(k+1) by keeping the corresponding

columns only, this will reduce the computational complexity during the iteration.

3.3.3 Estimating σ2

Although in most studies, the term σ2 is regarded as noise parameter and not modeled

in the algorithm. However, the removal of the baseline noise can help increase the signal to

noise ratio and enhance the accuracy of subspace estimation.

The update of σ2 when B(k) and Λ
(k)
i are given is straightforward, since the loss function

is a quadratic function of σ2. Actually, let R(k)
i = Si−B(k)Λ

(k)
i B(k)′, the loss function of σ2 is

L3(σ2) =
I∑
i=1

||R(k)
i − σ2I||2F

Therefore, we can get the closed form solution as

σ2(k) =
1

Ip

∑
i,j

R
(k)
i,jj

3.3.4 Estimation Algorithm

In this section, we summarize the optimization algorithm in Algorithm 1. [ht] InputInput

OutputOutput

L0FM(Si, i = 1 . . . n; R, r,ε)

R, r,Si, i = 1 . . . , I σ2, B,Λi, i = 1, . . . , I

σ2(0) = 0; B(0) = Eigvecr(
∑I

i=1 Si);k = 0;

|| sin(B(k), B(k−1)) >= ε S
(k)
i = Si − σ2(k)I;

A(k) =
∑
S

(k)
i B(k)B(k)′S

(k)
i ;

B̃(k+1) = EigvecR(A(k));

L
(k)
i = B(k+1)′S

(k)
i B(k+1);
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L2 = (L2,jk)R×R;L2,jk =
∑I

i=1 L
(k)2
i,jk

d(0) = (1′r, 0
′
R−r)

′; s=1;

d(s) 6=d(s−1)

D(s−1) = diag(d(s−1))

Let M (s−1)
r be the r-th largest component of L2(d(s−1) ⊗ 1′p) + (I − 2D(s−1))diag(L2);

d(s) = 1[L2(d(k) ⊗ 1′p) + (I − 2D(s−1))diag(L2) >= M
(s−1)
r ]

B(k+1) = B̃(k+1)[:, d(s)];

Λ
(k+1)
i = B(k+1)′S

(k)
i B(k+1);

R
(k+1)
i = Si −B(k+1)Λ

(k+1)
i B(k+1)′

σ2(k+1) = 1
Ip

∑
i,j R

(k+1)
i,jj

k=k+1;

L0FM Algorithm

3.3.5 Tuning Parameters

In Algorithm 1, we need to specify two tuning parameters r and R, which is the rank

of final model and the rank of the pre-screened model, respectively. The choice of R is less

important, since the goal for pre-screening is purely to do a dimension reduction to save

computational resources. Therefore, we can choose a moderate R, and we suggest to use

2
√
p.

However, the choice of the rank of final model is critical, because it determines what

the underlying structure of the data is. A incorrect specification of r may lead to missing

information of data or over-fitting to the data. Information type of criterion are typically

used to determine the optimal tuning parameters. In these criterion, the degree of freedom is

always used to measure the complexity of the model. Typically, the number of free parameters

is used as the degree of freedom in most questions Chen and Chen (2008). However, in

low-rank matrix type of problems, people have shown that the number of free parameters

is a biased estimator of ’true’ degree of freedom, even in a single matrix case Yuan (2016).

Therefore, we need to adjust for the degree of freedom in L0FM to determine the optimal rank
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r. The following lemma gives an asymptotic unbiased estimator for the degree of freedom in

L0FM.

Lemma 3. The following estimator is a consistent estimator for degree of freedom in

L0FM with rank r.

d̂f = pr +
r(r + 1)(I − 1)

2
+ 2

r∑
k=1

p∑
l=r+1

(σ2
l − σ̂2)+

σ2
k − σ2

l

where σ2
k is the k-th eigenvalue of

∑I
i=1 Si.

Using Lemma 3, the information type of criterions of L0FM can be calculated using

the estimated degree of freedom. Specifically, we will consider the following two criterion.

Mallow’s Cp is defined as

Cp(M) =
∑
||Σ̂i − Si||2F + 4σ̂2d̂f

GCV is defined as

GCV (M) =
1

p2I − 2d̂f − 1

∑
||Σ̂i − Si||2F

The optimla rank could be determined by minimizing Cp or GCV .

3.4 Theoretical Properties

In this paper, we evaluate the performance of our algorithm using Frobinius norm and

Sin−Θ distance.

For any δ ∈ (0, 1), let τ = 56
c

[ p
n

log 2I
δ

+ r
p
].

Conditions.

• All Xi’s are sub-Gaussian with variance proxies Σi.

• Assume there exist constants k1(n, p, I), k2(n, p, I) ∈ (0, 1), s.t.

τ
∑I

i=1 σ(Λi)[σ(Λi) + σ2]

σmin(
∑I

i=1 Λ2
i )

≤ k1
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τ
∑I

i=1 [σ(Λi) + σ2]2

σmin(
∑I

i=1 Λ2
i )

≤ k2

and

ρ =
2(1− k1)k2

(1− k1 − 3k2)2 − 18k2
2

< 1

Under the conditions above, we have the following theorem about the convergence of the

algorithm.

Theorem 1. (Convergence Rate) The convergence rate of Sin − Θ distance in

Algorithm 1 satisfies

lim
k→∞

SinΘ(B(k), B∗)

SinΘ(B(k+1), B∗)
≤ ρ

Theorem 1 ensures that Algorithm 1 will converge in a exponential rate. The following

Theorem 2 and 3 ensures the error bounds of subspace estimation and covariance matrices

reconstruction.

Theorem 2. (Sub-Space Estimation Error Bound) The Sin−Θ error of subspace

estimation of Algorithm 1 satisfies

||SinΘ(B̂, B)|| ≤ ρ

2(1− ρ)

Theorem 3. (Covariance Matrices Reconstruction Error Bound) The error

bound of reconstruction the subject-wise low-rank matrix Σ̂i = B̂Λ̂iB̂
′ of Algorithm 1 satisfies

||Σ̂i − Σi||2F ≤
2ρ

(1− ρ)
||Λi||F + τ

√
r[σ(Λi) + σ2]

Theorem 1-3 actually tells us if the ratio between the largest eigenvalues of Λi and the

smallest eigenvalue of Λi is a lower order term of the quantity max{ p
n

log I, r/p}, the algorithm

will converge at exponential rate and will result in a consistent estimator.
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3.5 Numeric Results

In this section, several numeric studies has been conducted to show the performance of

the proposed method.

3.5.1 Simulations

Simulation studies has been done to evaluate the estimation of covariance matrices in

terms of both subspace estimation and covariance matrices recovery. The SinΘ distance and

the relative error which is defined as

RE(Σ̂i,Σi, i = 1, . . . , I) =

∑I
i=1 ||Σ̂i − Σi||2F∑I

i=1 ||Σi||2F

were used as metrics for evaluating subspace estimation and covariance matrices recovery,

respectively.

Data were simulated from Model (1), were B is a random p× r orthonormal matrix. Λi is

generated as

Λi = ΓiΓ
′
i

where Γi ∈ Rr×r with elements from iid N(0, 1). The number of subjects is set to be I = 1000,

the number of nodes were chosen to be p = 30, 100, 500, 1000, the number of true underlying

factors is r = 5, and the length of signal for each subject is fixed at n = 1000.

We compared our L0FM method with several other methods for multiple matrices

decomposition, including FGSC Wang et al. (2011), group PCA Smith et al. (2014), and

MREG Wang et al. (2019).

Figure 3.1 shows the comparison of SinΘ distances under different methods. When

the noise level σ2 is low, all the methods perform pretty well except for MREG, in which

a diagonal structure is assumed on Λi. However, as the data becomes noisier, our L0FM

approach outperforms FGSC and Group PCA, in both low dimensioal or high dimensional

situations. Moreover, we can see that even as the dimension goes higher, the subspace

estimation accuracy does not increase significantly.
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Figure 3.1: Sin Θ Distance of Subspace Estimation

Figure 3.2 shows the relative error of different methods. L0FM outperforms other methods

when the noise level is high. In contrast to the SinΘ distance, where MREG performs worst,

MREG achieves a comparible performance as L0FM. There might be two potential reasons

for this phenomenon. Firstly, MREG aims at recovering the true covariance matrices, thus

the relative error is minimized during the optimization algorithm. On the other hand, the

simulated Λi’s are close to diagonal, so that it is close to the model that MREG assumes.

Therefore, MREG achieves good relative error although performs not very good in terms of

subspace estimation.

Finally, to illustrate the appropriateness of the definition of degree of freedom, we chose

the optimal rank based on our adjusted dof and compared it to the optimal rank chosen
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Figure 3.2: Relative Error of Covariance Matices Recovery

by naive method. In naive method, the degree of freedom is equal to the number of free

parameters in the model, so it is

d̂fnaive = pr +
r(r + 1)(I − 1)

2

We determined the optimal rank using different d̂f with two information criterion, the

generalized cross validation (GCV) and Bayesian Information Criterion (BIC). The relative

error under different rank choice are shown in Figure 3.3. Based on the adjusted degree of

freedom, the reconstruction of the covariance matrices are better than using the naive degree

of freedom, which suggested that the adjustment is necessary.
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3.5.2 Real Data Analysis: UKBioBank Functional Connectivity

We applied our method on UKBioBank data which involves more than 30k subjects.

Functional connectivity was calculated using resting-state fMRI scans for each subject. 37848

subjects with rsfMRI data were included in the study.

The resting-state fMRI data were processed using UKBioBank standard pipeline Alfaro-

Almagro et al. (2018). After processing, a 55 × 55 Pearson’s correlation matrix for 55

independent network components were acquired for each subjects. Our L0FM approach

was applied to the functional connectivity data to further determine the underlying network

structures of our brain.

Furthermore, SNP heritability analysis was performed using Λi as phenotype to show the

genetic contribution on functional connectivities. Non-British subjects were removed from

the analysis to minimize the potential ethnicity confounding, and covariates including age,

age-squared, sex, age-sex interaction, age-squared-sex interaction, site, and top-40 genetic

principle components were adjusted in the analysis. As a result, 31053 subjects were included

in the heritability analysis. GCTA tool Yang et al. (2011) was used for calculating genetic

heritability.

Results: Based on BIC with the derived degree of freedom, there are 8 underlying

networks. The masks of the 8 networks could be found in Figure 3.4. Network 1 and 3

are visual networks, where Network 1 is mainly primary visual cortex, while network 3

involves not only the primary visual cortex, but also the occipital lobe. Network 2 is a

mixture of bilateral parietal cortices and precuneus, both of which belongs to the default

mode network (DMN). Network 4 is dominated by the sensory-motor network and auditory

network. Network 5 is mostly the frontoparietal network and part of the precuneus which

belongs to DMN. Network 6 is a mixture of frontal parietal network and primary visual

cortex. Network 7 is the mixture of primary visual network, primary motor cortex, and part

of auditory area (Wernicke’s area). Network 1-7 are more symmetric networks, while network

8 represents a lateralization of the motor area and Wernicke’s area. This is in accordance
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with the previous finding that lateralization of language areas van Ettinger-Veenstra et al.

(2010) and motor cortex Tozakidou et al. (2013) are common in brains.

Figure 3.4: Masks of Networks in UKBioBank Resting-State fMRI Data

The heritability analysis suggests that the connectivity between network 2 and 8 (h2 =

18.5%) and the within network connectivity of network 2 (h2 = 16.0%) are the most heritable

, see Figure 3.5. This finding is in accordance with previous findings that handedness is

related to brain cortical lateralization Sainburg (2014) and handedness is genetically heritable

Nurhayu et al. (2020); Medland et al. (2009). Meanwhile, the high heritability of within

network connectivity of DMN is in accordance with previous findings Teeuw et al. (2019).

3.6 Conclusions

In this paper, we proposed L0FM, a multiple matrices decomposition approach based

on factor models. The approach used a matrix form of l0 penalty, which is based on matrix
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Figure 3.5: SNP Heritability of the Connectivity across 8 Networks in UKBiobank Resting-
State fMRI Data

multiplication, so that the computationally complexity is reduced. With the proposed L0FM

approach, large scale neuro-imaging datasets like UKBioBank could be handled efficiently.

Theoretical properties guarantees that not only the connectivity matrices recovery, but the

subspace estimation are consistent with mild condition. This approach gives us possibility to

study large scale nerro-image datasets, and learn the underlying brain functional structure
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with large sample size.
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CHAPTER 4: REGRESSION MODELS IN IMAGING GENETICS

4.1 Introduction

In imaging genetics, a fundamental problem of interest is the association between imaging

features and genetic biomarkers. Since imaging features provide valuable information about

neural development or malfunctions, and thus affecting behavioural outcomes or assisting

disease diagnoistics, unveiling the association between imaging features and genetic biomarkers

can provide more insights about understanding the biological pathway of cognitive growths

and diseases.

However, the high-dimensionality of both the imaging features and genetic variants

makes the association analysis become challenging. High-dimensionality brings in cumulatied

noise that brings difficulties in separating true signals from spurious noise. Meanwhile,

the correlation structures in imaging feature, especially the spatial correlations, makes the

problem even harder. Finally, the high-dimensionality also brings challenges in how to do the

inference and association analysis efficiently.

There have been a rich body of literature trying to draw inference about the high-

dimensional data with complex structures. The simplest way is to perform univariate analysis

and use a summary statistics to summarize the results. However, the univariate analysis

suffers from the risk of cumulating noises and neglecting complex structure of imaging data.

To overcome the issue of complex structure, summary statistics like network efficiency of

networks are used for association analysis to reduce dimension Achard et al. (2006); van den

Heuvel and Pol (2010); Gao et al. (2011). However, summary statistics may only affecting a

certain aspect of the imaging data, and other information might be lost. A series of network

regression based approaches Yu et al. (2017); Simon et al. (2013); Zhang et al. (2019); Xia

et al. (2019) have been proposed to better model the associations with complex imaging
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data. However, all of these approaches suffers from computational burden because of high

dimensionality. The L2RM approach Kong et al. (2020) used a screening procedure to

accelerate the estimation, but still suffers from the computational burden from permutation

test.

To fill the gaps as mentioned above, we propose a novel low-rank approach for estimating

the association between brain imaging and genetic variants. A screening procedure with

theoretical guarantee was proposed to efficiently estimate the association.

4.2 Models

Let Y1, . . . , YI ∈ Rm×n be the imaging feature matrices from I different subjects. For

each subject, a p-dimensional vector of covariates xi = (xi1, . . . , xip is observed. In imaiging

genetics, the set of covariates include genetic markers (SNPs), age, gender, among others.

Without loss of generality, we assume Yi’s have mean 0, and all the covariates are standardized

to mean 0 and unit variance.

A low-rank based regression model

Yi =

p∑
j=1

xijBj + Ei, i = 1, . . . , I (4.1)

is considered, where Bj ∈ Rm×n is coefficient matrix characterizing the effect of the jth

covariate on Y , and Ei ∈ Rm×n is the random error matrix with mean 0. Due to the high

dimensionality of the covariates and limited sample size in most imaging genetic studies, a

few assumptions need to be made to make the model identifiable. Thoughout the paper, we

make the following assumptions:

• Only a small portions of the covariates has effect on connectivity matrices, i.e. ∃S ⊂

{1, . . . , p}, where |S| = s << p, s.t. for j /∈ S,Bj = 0.

• For non-zero coefficients Bj, j ∈ S, there is a low-rank structure, i.e., rank(Bj) <<

min(m,n)
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• Noise Ei has distribution

Ei = BFi +Gi

where Fi ∈ Rr×n and Gi ∈ Rm×n has i.i.d. standard normal distribution for each entry.

4.3 Estimation

The estimation of the model given in the previous section suffer from the burden of high

dimensionality. Therefore, we separate the estimation procedure into two steps. In the first

step, a marginal screening is done by fitting a series of univariate models. The summary

statistics will be calculated using random matrix theory and justify the choice of significant

variables to enter the next step. In the second step, important features selected in step one

will be considered together and a penalized matrix regression model will be fitted using these

important features.

4.3.1 Marginal Screening

Since the dimension of covariates p is usually ultra-high in genetics studies ( 1 million

to 10 million SNPs), follow the idea of sure independence screening (SIS) Fan and Lv

(2008), a marginal screening step to reduce the dimension of covariates will help enhance

the performance by removing redundant information while keeping potential informative

predictors.

Similar to ordinary linear models, the correlation between Xj and Y could be used as

the testing statistic for marginal screening. The correlation between Xj and Y is calculated

element-wise correlation, i.e.,

Cj =
n∑
i=1

xijYi

As we can see, C is not a scalar, therefore, we use the largest eigenvalue Tj = λmax(C ′jCj) as

the testing statistic.

This testing statsitics has been proposed by Kong et al. (2020), and has been shown to be

robust to signal structure Bj ’s. However, they failed to derive the theoretical asymptotic null

distribution of the testing statistic Tj. As a consequence, a resampling approach was used to
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construct the null distribution, which requires huge computational resources. In this paper,

we derived the theoretical null distribution of the testing statistics, so that no bootstrap or

resampling is needed.

Null Distribution of Tj Based on the model assumption, under the condition that Bj = 0,

we have xijYi. Since xij is standardized to unit length, i.e.,

j∑
i=1

x2
ij = 1

we have Cj =
∑n

i=1 xijYi has the same distribution as Y1.

Note that Y1 = BF1 +G1, the columns of Y1 have i.i.d. distribution from N(0, BB′ + I),

and thus CjC ′j has the same distribution as the covariance matrix of N(0, BB′+I) distribution

with n observations.

Let y = m
n
and α be the largest eigenvalue of BB′+ I, we have the following lemma about

the distribution of largest eigenvalue of CjC ′j similar to the results shown in ?.

Lemma 4.1 (Null Distribution of Tj) Under the condition that α > 1 +
√
y and

xij ⊥ Yi, as min(m,n)→∞,
√
n(Tj − λ)

d→ N(0, σ2
T )

where

λ = α +
yα

α− 1

and

σ2
T =

2α2[(α− 1)2 − y]

(α− 1)2

Following Lemma 4.1, we can calculate a normalized summary statistic for each covariate

as Zj =
√
n(Tj−λ)

σT
and the corresponding p-values from the standard normal distribution.

Selecting Important Features Based on the null distribution of Tj, we can order the

importance of each feature based on the testing statistics Zj’s and the p-values pj’s. The set
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of results of pj’s could be considered as the results for GWAS analysis with matrix-valued

pheonotypes.

For example, based on the series of p-values pj, we can calculate a series of the adjusted

p-values p̃j using FWER or FDR control, and select the top SNPs with a certain threshold.

However, a drawback of using traditional FWER of FDR control approach is that the

correlation structures between the covariates are ignored, so that there might be power loss

during the screening procedure.

To overcome this issue, knockoff filters were proposed ?. The idea of knockoff filter is

that we artificially construct a design matrix that is similar to the original design matrix

but independent of the response. Based on the artificial design matrix, we are able to get a

null distribution of the testing statistic with the correlation between the variables considered.

Therefore we are able to get a data driven estimator of the FDR or FWER.

First of all, we need to construct the knockoff design matrix X̃ as proposed by ?. Let

Σ = X ′X, we select s > 0, s.t., diag(s) � 2Σ, the knockoff matrix could be constructed as

X̃ = X(I − Σ−1diag(s)) + ŨC (4.2)

where Ũ is a I × p orthonormal matrix which is orthogonal to the span of X and C is the

Cholesky decomposition of 2diag(s)− diag(s)Σ−1diag(s). With the construction above, we

can see that X̃ satisfies X̃ ′X̃ = Σ and X ′X̃ = Σ− diag(s).

However, as we can see that the construction above is only valid when p ≤ 2I because we

need to find a p-dimensional space orthogonal to the span of X. In imaging genetic studies,

this assumption does not hold since we usually have p > n. To overcome this issue, we used

a screening procedure first as proposed by ?. We devided the samples into 2 blocks X1 and

X2 with sample sizes I1 and I2 = I − I1 respectively. On the first set of samples X1 and

Y1, we calculate the marginal screening testing statistics Z1
j , and pick the top d features

with d ≤ 2I2. We can choose d = 2I2 to minimize the probability of missing any important

features in this step. Next, we consider only the d variables selected in step 1 in X2 (indexed
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S1, denoted as X̂2. Then we can construct the corresponding knockoff features based on X̂2

as X̃2.

After constructing the knockoff matrix X̃2, we need to select important features based on

the testing statistics. Now the augmented design matrix becomes [X̂2X̃2] and using marginal

screening we can get a series of testing statistics (p-values) W 1
j = − log p̂2

j and W 2
j = − log p̃2

j .

As we can see, W 2
j is similar to a sample from the null distribution of W 1

j if there is no

correlation. Therefore, we can further define Ŵj = max(Wj,W
∗
j )sign(Wj > W ∗

j ). As we can

see, if Ŵj < 0, it is most likely that Xj is a false discovered feature since its significance is

even below the null distribution. For any t > 0, if we select the features based on Ŵj > t, a

sample based estimator of FDR becomes

ˆFDR(t) =
#{j ∈ S1, Ŵj ≥ t}

#{j ∈ S1, Ŵj ≤ −t}
(4.3)

We can select the minimal t such that ˆFDR(t) ≤ q, where q is our targeted FDR rate.

4.3.2 Multivariate Regression

After selecting the important features Ŝ using a certain threshold, we then include all

the important variables in one linear regression model. With our assumption of low rank

structure of coefficient matrices, we can formulate the following penalized matrix regression

problem.

f(B) =
1

2n

I∑
i=1

||Yi −
∑
j∈Ŝ

xijBj||2F + λ
∑
j∈Ŝ

rank(Bj)

To optimize the object function above, we used the coordinate descend approach, where

in each iteration, we update Bj for a certain j ∈ Ŝ.

Given a current estimate of B̂k for k 6= j, let Rj
i = Yi −

∑
k 6=j xikBk. The object function

becomes
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f(Bj) =
1

2n

I∑
i=1

||Rj
i − xijBj||2F + λrank(Bj)

=
1

2n
||B −

I∑
i=1

xijR
j
i ||2F + λrank(Bj)

The solution to the obtimization problem above has a closed form solution as

B̂ = UD(2nλ)V ′

where UDV ′ is the SVD decomposition of
∑I

i=1 xijR
j
i , and D(2nλ) is the thresholded diagonal

matrix of D with entries smaller than 2nλ shrinked to 0.

4.4 Numerical Studies

In this section, we did several simulation studies to evaluate the performance of our

proposed approaches.

4.4.1 Null Distribution of Tj

First of all, we used simulations to illustrate the accuracy of the proposed null distribution

of testing statistic Tj.

We simulated the data with I = 1, 000 subjects, p = 2, 000 features, and with different

imaging sizes (m,n) = (30, 30), (100, 100), (30, 100), (100, 30). All the regression coefficents

Bj’s were set to be 0. The rank in the noise Ei is set to be 4, and the largest eigenvalue of

B was set to be 2
√
y. The QQ plot of the 2, 000 p-values of the features were presented in

Figure 4.1. We can see that the derived distribution is a very good approximation to the

true distribution of the testing statistics.

4.4.2 FDR Control using Knockoffs

In this section, we evaluated the appropriateness of using knockoff for FDR control, and

compared the performance with other FDR control strategies including Benjamini–Hochberg

procedure and Benjamini–Yekutieli procedure.

In the simulation, we set I = 1, 000, p = 2, 000, and the true non-zero coefficient matrices
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Figure 4.1: QQ Plot of Null Distribution of Tj

are set to be equal: a matrix with entries 1 in the center t× t voxels, and 0 elsewhere, where

t ranges from 2 to 10, representing different signal strength. The actual false discovery rates

with different settings are shown in Table 4.1. As we can see, the traditional approaches gives

inflated FDR estimates, while knockoff filters gives more reasonable estimates of FDR. The

potential reason for the inflated FDR of traditional approaches is that due to the co linearity

of the covariates, there are spurious correlations between some of the covariates, which brings

in false discover results. On the other hand, since knockoffs generate a set of covariates with

the same correlation structures as the original covariates, the spurious correlations will also

appear in the knockoff variables, thus limiting the probability of false discover due to spurious

correlations.
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Table 4.1: False Discovery Rate Control using Knockoff, Benjamini–Yekutieli, and Ben-
jamini–Hochberg

q=0.05 q=0.10 q=0.25
Size of Signal Knockoff BH BY Knockoff BH BY Knockoff BH BY

2 0.083 0.391 0.129 0.117 0.578 0.232 0.319 0.622 0.388
4 0.075 0.408 0.179 0.136 0.715 0.112 0.231 0.740 0.287
6 0.088 0.319 0.101 0.128 0.620 0.171 0.291 0.705 0.410
8 0.106 0.442 0.237 0.168 0.502 0.199 0.180 0.544 0.225
10 0.092 0.29 0.126 0.135 0.418 0.210 0.309 0.569 0.316

4.4.3 Multivariate Regression

The performance of the multivariate regression based on coordinate descend algorithm is

studied.

We first examined the coordinate descend approach separately by including only the set

of true covariates. We used the setting I = 1, 000, p = s = 20,m = 50, n = 70. Figure 4.2

shows the true coefficient matrices and the estimated coefficient matrices. We compared

our coordinate descend approach with several other approaches including L2RM Kong et al.

(2020), voxel-wise regression, and voxel-wise regression with L0 penalty. We can see coordinate

descend approach gives similar results as L2RM approach, both of which can recover the true

signal well. The voxel-wise approaches, however, includes some noise in the recovered images,

which is mainly due to lack of consideration of the low-rank nature of the true signals.

Figure 4.3 shows the relative error of the predicted response. We can see again L2RM

and coordinate descend algorithm outperforms voxel-wise regression approaches, which is

mainly due the the flexibility of the voxel-wise models. In addition, the L0 penalty based

voxel-wise regression model performs worse than ordinary linear regression when all the

coefficient matrices are the same, which is due to the fact that the sparse assumption is

violated in this case.

Next, we also evaluated the overall performance of our proposed marginal screening

regression models (MSRM) and compare it with other competitors. Specifically, we compared

our approach with L2RM, L2RM with marginal screening (L2RM-MS), voxel-wise regression

with L0 penalty, and voxel-wise regression with L1 penalty. The RMSE, computational time
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Figure 4.2: Recovered Coefficient Matrices

are listed in Table 4.2. We can see L2RM achieves the best RMSE in all cases, while L2RM

and MSRM are comparable in terms of L2RM and slightly worse than L2RM. However,

the computational time is much faster for theoretical marginal screening based approaches,

because L2RM needs bootstrap test. voxel-wise approaches are fast in terms of computational

time, but performs poorly in terms of RMSE.

Table 4.2: Comparison of Relative Error and Computational Speed of Different Methods for
Matrix Regression

(m,n) (30,30) (30,100) (100,30) (100,100)
Method RE Time (s) RE Time (s) RE Time (s) RE Time (s)
MSRM 0.3126 149.6 0.371 408.100 0.374 459.320 0.367 1214.775
L2RM 0.2855 2885.2 0.358 13764.7 0.343 17744.650 0.413 43382.110

L2RM-MS 0.3048 173.7 0.384 419.610 0.361 482.584 0.417 1122.140
Voxel L0 0.4109 65.1 0.485 217.176 0.506 193.602 1.377 629.037
Voxel L1 0.5498 102.3 0.725 309.382 0.857 302.237 1.514 691.181
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Figure 4.3: Relative Error of Recovered Response Images

4.5 Conclusion

In this paper, we proposed a matrix regression model with high-dimensional imaging

outcome and genetic predictors. A marginal screening procedure with asymptotic null

distribution was derived. A knockoff procedure was proposed along with the marginal screening

to control for the FDR rate at the screening level. Furthermore, a matrix factorization

approach was used for efficiently estimating the associations after screening. Numerical

studies have shown that the proposed method outperforms existing approaches in terms

of speed and screening accuracy. The derived asymptotic distribution is close to empirical

distribution and the knockoff procedure controls the FDR rate better than other multiplicity

approaches, although the FDR is still inflated, which is a future work for this project.
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Moreover, numerical studies have shown that the proposed method is powerful at capturing

complex features in high-dimensional associations, and thus providing a powerful tool for

imaging genetic studies.
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CHAPTER 5: PREDICTION WITH MODALITY IMPUTATION

5.1 Introduction

In imaging genetics studies, missing data is a fundamental problem that most of the

researchers have to face. For example, in ADNI study, only half of the participants have

complete imaging data (both resting-state fMRI and DTI). The common solution to missing

data in imaging genetics is to exclude subjects with missing modality. However, excluding

half of the subjects in a data set may lead to significantly reduced power for inference and

accuracy for prediction. Therefore, efficient approaches for imputing the high-dimensional

missing data is needed. The most straightforward way of imputing the missing data is

through regression models, which may lack the power to handle high-dimensional cases. More

advanced approaches have been proposed to replace simple linear regression. For example,

ridge regression Hilt, Seegrist, Service., and Northeastern Forest Experiment Station (Radnor

(Hilt et al.) and LASSO Tibshirani (1996) are alternatives to linear regression to handle

high-dimensional problems. The two estimators shrinks the coefficient estimators to provide

a more accurate prediction by a trade-off between variance and bias. Other machine learrning

alternatives including random forest and SVM are also proposed to replace linear model for

imputation. Recently, as the emergence of the powerful tool of deep learning, more and more

deep learning techniques are also used for imputation. Among them, the most promising

approach is generative adversarial networks (GAN). Two approaches Yoon et al. (2018); Dong

et al. (2021) have shown great improvement of imputation accuracy.

However, the ultimate goal of imputation in imaging genetics is to better predict the

phenotype of our interest. Therefore, how the imputation approaches could affect the

prediction of phenotype remains unknown. In this paper, with a simple example of linear
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imputation, we first showed that imputation of missing covariates may lead to a biased

prediction and worse accuracy. Thus we have to be careful when we decide to use imputation.

Next, we compared the performance of multiple imputation approaches, and shown that in

high-dimensional cases, the GAN based approach GAIN Dong et al. (2021) outperforms other

imputation techniques.

5.2 Model Setup

Assume we have n subjects with responses Y and covariates X ∈ Rp. Particularly, X has

three blocks, X0 ∈ Rp0 , X1 ∈ Rp1 , and X2 ∈ Rp2 . Meanwhile, all the n subjects could be

divided into 3 blocks, n1 of them are missing X1, n2 of them are missing X2, and n3 of them

have complete covariates. Therefore, the full data of the subjects are

X =


X10 X11 X12

X20 X21 X22

X30 X31 X32


The missing mechanism is assumed to be missing completely at random (MCAR) for

simplicity.

Further, we assume the covariance structure of X as

Cov(X) =


Σ00 Σ01 Σ02

Σ10 Σ11 Σ12

Σ20 Σ21 Σ22


The response Y is associated with X via the following lienar model:

Y = Xβ + ε (5.1)

where ε∼N(0, σ2In) is the random error.

We compare the following 2 methods of estimating beta.
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• Imputation. We use linear models to impute the missing data. The models for

imputation are based on n3 subjects with complete data. After imputing X11 and X22,

we get the imputed data matrix X̃, and estimate β̃ with Y and X̃.

• Complete data. Use n3 subjects to estimate β̂.

After some calculation, we can see that the distributions of the estimates are

β̂ ∼ N(β,
σ2

n3

Σ−1)

and

β̃ ∼ N(S−1Tβ, σ2S−1)

where

S =


S00 S01 S02

S10 S11 S12

S20 S21 S22


and

S00 = nΣ00

S01 = S ′10 = n1

[
Σ00 Σ02

]Σ00 Σ02

Σ20 Σ22


−1 Σ01

Σ21

+ (n2 + n3)Σ01

S02 = S ′20 = n2

[
Σ00 Σ01

]Σ00 Σ01

Σ10 Σ11


−1 Σ02

Σ12

+ (n1 + n3)Σ02

S11 = n1

[
Σ10 Σ12

]Σ00 Σ02

Σ20 Σ22


−1 Σ01

Σ21

+ (n2 + n3)Σ11
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S22 = n2

[
Σ20 Σ21

]Σ00 Σ01

Σ10 Σ11


−1 Σ02

Σ12

+ (n1 + n3)Σ22

S12 = S ′21 = n1

[
Σ10 Σ12

]Σ00 Σ02

Σ20 Σ22


−1 Σ02

Σ22



+n2

[
Σ10 Σ11

]Σ00 Σ01

Σ10 Σ11


−1 Σ02

Σ12

+ n3Σ12

From the distribution of β̃, we can see it is a biased estimator of β, and thus Xβ̃ is also a

biased estimator of the true response Xβ.

Besides, we have,

T =


T00 T01 T02

T10 T11 T12

T20 T21 T22


and

T00 = S00, T01 = S01, T02 = S02, T10 = S10, T20 = S20, T11 = S11, T22 = S22

T12 = n1

[
Σ10 Σ12

]Σ00 Σ02

Σ20 Σ22


−1 Σ02

Σ22

+ (n2 + n3)Σ12

T21 = n2

[
Σ20 Σ21

]Σ00 Σ01

Σ10 Σ11


−1 Σ01

Σ11

+ (n1 + n3)Σ21

As a result, for a new data with the same distribution of X, i.e.,

X ∼ N(0,Σ)

The MSE of estimating Xβ with Xβ̂ and Xβ̃ are
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E||Xβ̃ −Xβ||22 =E(β̃ − β)′(X ′X)(β̃ − β)

=Etr[(X ′X)(β̃ − β)(β̃ − β)′]

=tr(Σ[σ2S−1 + (S−1T − I)ββ′(T ′S−1 − I)])

=σ2tr(ΣS−1) + β′(T ′S−1 − I)Σ(S−1T − I)β

and

E||Xβ̂ −Xβ||22 =
p

n3

σ2

To further compare the two MSEs, we assume S = nΣ + A and T = nΣ +B. Under the

assumption n1 << n and n2 << n, we have

E||Xβ̃ −Xβ||22 =
p

n
σ2 − 1

n2
σ2tr(AΣ−1) +

1

n2
β′(B′ − A)Σ−1(B − A)β + o(n−2)

and

E||Xβ̃ −Xβ||22 =
p

n
σ2 +

1

n2
p(n1 + n2)σ2 + o(n−2)

Comparing the MSE of β̂ and β, we can conclude that imputation performs better since

n+n1+n2

n2 ≤ 1
n3
. However, when n3 is close to n, the improvement may not be significant, and

could be negative due to the contribution of the residuals.

5.3 TWAS

The problem of TWAS is formulated as following. There are three groups of subjects, the

reference panal, training data, and testing data. We have SNP data X, gene expression data

Z, and phenotype Y . In training and testing data, we only observed X1 and Y1, and X2 and

Y2, respectively. In reference panel, we observe X3 and Z3.

We assume that

Y = Xα + Zβ + ε
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and

Z = XΛ + E

In training data, we only have X1 and Y1, so we have to impute Z1 if we want to model

it. Assume we have obtained a linear estimator of Z based on X, i.e.,

Ẑ = XΛ̂

then in the training data, we have the model

Y1 = X1β + Ẑ1α + e∗ = X1Dγ + e∗

where D = [IΛ̂].

This TWAS model is essentially a special case of the model that we described above where

n2 = 0 and p3 = 0.

5.4 Conclusion

Imputation is a effective technique for genetic imaging studies to improve the sample size

for inference and thus increase statistical power and learning accuracy. We confirmed that

imputation of missing data always improve estimation acuracy, especially when the number

of subjects with missing data is large.
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APPENDIX A: TECHNICAL DETAILS OF CHAPTER 3

Main proofs

The idea of the proof for theorem 1-3 is based on the iteration from space B(k) to

space B(k+1). From Algorithm 1, we know B(k+1) is the eigen-space of matrix A(k) =∑
S

(k)
i B(k)B(k)′S

(k)
i . Let ak = ||SinΘ(B,B(k)||, we are interested in finding the relationship

between ak and ak+1.

First of all, let Σ0
i = BΛiB

′, we know that the eigen-space of matrix

A0 =
∑

Σ0
iBB

′Σ0
i =

∑
BΛ2

iB
′

is B. Therefore, we can write A(k) as a perturbation of matrix A0 as

A(k) =A0 + (A(k) − A0)

=B(
∑

Λ2
i )B

′ +
∑

S
(k)
i B(k)B(k)′S

(k)
i −

∑
Σ0
iBB

′Σ0
i

=X + Z

According to Cai and Zhang (2018), the perturbation bound of ||SinΘ(B,B(k)|| is bounded

by the following quantity

||SinΘ(B,B(k+1)|| ≤ (α + β)z12

α2 − β2 − z2
12

where

α = σmin(B′(X + Z)B)

β = ||B′⊥ZB⊥||

z12 = ||B′ZB⊥||

For α, it is easy to obtain
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α = σmin(B′XB) = σmin(
∑

Λ2
i )

Consider β and z12, we know

Z =
∑

S
(k)
i B(k)B(k)′S

(k)
i −

∑
Σ0
iBB

′Σ0
i

=
∑

(S
(k)
i − Σ0

i )(B
(k)B(k)′ −BB′)(S(k)

i − Σ0
i )

+
∑

(S
(k)
i − Σ0

i )BB
′(S

(k)
i − Σ0

i )

+
∑

(S
(k)
i − Σ0

i )BB
′Σ0

i

Lemma 4. Under sub-Gaussian assumption, for any δ ∈ (0, 1), we have with probability

at least 1− δ, ||(S(k)
i − Σ0

i )|| ≤ τ [σ(Λi) + σ2] for all i = 1, ldots, I, where τ = 56
c

[ p
n

log 2I
δ

+ r
p
].

Lemma 4 gives a uniform bound of sample covariance matrix estimation. It could be

proved using ε-net with ε = 3/7.

Now we use lemma 4 to get a upper bound for β and z12. First let’s look into β.

β =||B′⊥ZB⊥||

≤
∑
||B′⊥(S

(k)
i − Σ0

i )(B
(k)B(k)′ −BB′)(S(k)

i − Σ0
i )B⊥||

+
∑
||B′⊥(S

(k)
i − Σ0

i )BB
′(S

(k)
i − Σ0

i )B⊥||

+
∑
||B′⊥(S

(k)
i − Σ0

i )BB
′Σ0

iB⊥||

≤
∑

2||SinΘ(B,B(k)|| · ||S(k)
i − Σ0

i ||2

+
∑
||S(k)

i − Σ0
i ||2

≤τ 2
∑

(σ(Λi) + σ2)2 + 2τ 2ak
∑

(σ(Λi) + σ2)2

Similarly we can get the same upper bound for z12,

z12 ≤ τ 2
∑

(σ(Λi) + σ2)2 + 2τ 2ak
∑

(σ(Λi) + σ2)2

For α, we have
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α =σmin(B′(X + Z)B)

≥σmin(B′XB)− ||B′ZB||

≥σmin(
∑

Λ2
i )− τ

∑
(σ(σ(Λi) + σ2)

− τ 2
∑

(σ(Λi) + σ2)2 − 2τ 2ak
∑

(σ(Λi) + σ2)2

Let

A0 = σmin(
∑

Λ2
i )

A1 = τ
∑

(σ(σ(Λi) + σ2)

A2 = τ 2
∑

(σ(Λi) + σ2)2

we have

α ≥ A0 − A1 − A2 − 2A2ak

z12 ≤ A2 + 2A2ak

β ≤ A2 + 2A2ak

Under the condition that A1

A0
≤ k1 and A2

A0
≤ k2, we have

ak+1 =||SinΘ(B,B(k+1)|| ≤ (α + β)z12

α2 − β2 − z2
12

≤ (A0 − A1)(A2 + 2A2ak)

(A0 − A1 − A2 − 2A2ak)2 − 2(A2 + 2A2ak)2

≤ (1− k1)(k2 + 2k2ak)

(1− k1 − 3k2)2 − 18k2
2

=
(1− k1)k2

(1− k1 − 3k2)2 − 18k2
2

+
2(1− k1)k2

(1− k1 − 3k2)2 − 18k2
2

ak

Therefore, let ρ = 2(1−k1)k2
(1−k1−3k2)2−18k22

, we have

ak+1 ≤
1

2
ρ+ ρak

52



Under the condition ρ < 1, we have the convergence of the above series at a exponential

rate of ρ. Furthermore, with k →∞, we have

lim
k→∞

ak ≤
ρ

2(1− ρ)

This finishes the proof of Theorem 1 and 2.

The proof of theorem 3 could be based on the results of theorem 2. Note that Σi = BΛiB
′

and Σ̂i = B(k)B(k)′S
(k)
i B(k)B(k)′, we have

||Σ̂i − Σi||F =||B(k)B(k)′S
(k)
i B(k)B(k)′ −BΛiB

′||F

=||B(k)B(k)′S
(k)
i B(k)B(k)′ −B(k)B(k)′ΣiB

(k)B(k)′ +B(k)B(k)′ΣiB
(k)B(k)′

−BB′ΣiB
(k)B(k)′ +BB′ΣiB

(k)B(k)′ −BΛiB
′||F

≤||B(k)B(k)′S
(k)
i B(k)B(k)′||F + ||B(k)B(k)′ΣiB

(k)B(k)′ −BB′ΣiB
(k)B(k)′||F

+ ||BB′ΣiB
(k)B(k)′ −BΛiB

′||F

≤τ [σ(Λi) + σ2]
√
r + 2ak||Λi||F + 2ak||Λi||F

≤ 2ρ

(1− ρ)
||Λi||F + τ

√
r[σ(Λi) + σ2]

as k →∞.
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