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Charge multiplicity in relativistic heavy ion collisions: A statistical model approach
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We use fireball geometry and a statistical model to calculate charged particle associated multiplicity in
relativistic heavy ion reactions. General expressions for multiplicity distributions based upon this model are
derived. The constraints of charge and baryon number conservation are shown to lead to modified Poisson
distributions. The expressions developed are applicable to all nonstrange particles and composites.

Comparison is made with existing data.
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I. INTRODUCTION

In this work we compare the available data on
charge multiplicity in relativistic heavy ion col-
lisions with calculations based on a statistical
model. Such a model has two parts to it: the
geometry of cleancuts’ and an assumption of therm-
al and chemical equilibrium®'? in the overlapping
parts of the target and the projectile. Actually,
the two assumptions are independent. The first
one can be justified intuitively from energy argu-
ments and also from fragmentation data. If the
time scale in which the ordered motion (kinetic
energy) is converted into various exit channels
is large compared to reaction rates, the second
assumption will follow. Another way of stating
this is to say that the fireball loses the memory
of how it was formed; then all parts of the avail-
able phase space are equally probable. Tempera-
ture and chemical potentials are introduced for
ease of calculation, i.e., such that one can work
with the grand ensemble. One may hope to test
separately the two ingredients of the model from
multiplicity data.

One advantage of the statistical model is that
it can make predictions for any experimental re-
sult. Thus it predicts simultaneously proton,
pion, triton, deuteron, and any other spectra; the
same calculation will yield multiplicity distribu-
tions. We do not know of any other model that is
this versatile. For example, the collective tube
model makes excellent predictions for pion mul-
t1phc1ty, but has not been used to describe pro-
ton spectra. This is not to say that the statistical
model is the only approach one should pursue;
however, we should confront it with many differ-
ent facts in the hope of learning how to improve

20

upon it.

The paper is organized as follows: In Sec. II,
we compare our calculation with known associated
multiplicity data. We also point out what experi-
ments could test separately the “clean cut” as-
sumption as opposed to the thermodynamic as-
sumption. In Sec. IlI, formulas for multiplicity
distributions are derived. The basic formula for
Sec. III was presented previously in Ref. 4; how-
ever, it had to be extended and modified for prac-
tical computation. Section IV contains our calcu-
lation for pion multiplicity. In Sec. V we give our
results for deuteron multiplicity, although no ex-
perimental data are available to us. Conclusions
are presented in Sec. VI.

II. ASSOCIATED MULTIPLICITY

The average number of charged particles emit-
ted in a heavy ion collision is given by

SN (b)27D db
Tambab

where N, (b) is the number emitted at a given im-
pact parameter b.

If one assumes a clean cut and neglects the pos-
sibility of pion production, composite particle
production, etc., then (M) will be independent of
energy. The fireball' model or the firestreak®
model would then given identical results. How-
ever, because particles (pions, deltas) and com-
posites are also produced, (M) is a function of
energy. Despite this, actual numerical computa-
tion showed that both fireball and firestreak mod-
els give nearly the same result for (M). In our -
calculation we use fireball geometry throughout.

Experiments at the Bevalac®’ measure as-

o) = (1)
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sociated multiplicity. Specifically, charges are
measured provided that in the event there is a
proton at 90° to the beam axis. We therefore cal-
culate

o= J [N, (0) = 11(dN/dS)(n/2, b)2mb db
“ . [(@N/dQ)(n/2,b)27b db ’
where (dN/dQ)(n/2,b) is the number of protons

per unit solid angle at 90° from a collision at the
impact parameter b. We have

(2)

dN d’N

— = — 3

as dE dEAQ’ @)
where

&N oy /2 E'Ne®E’

dEag - B -mN s

[2K,(Bm) K (Bm)]
“TmE *pm ] ’

with E the total lab energy, and E’ the total ener-
gy in the fireball c.m. of a free nucleon of mass
m =939 MeV, and 1/ the fireball temperature.
(This expression is derived in Sec. IV of Ref. 1.)
We include the production of pions and deltas, as
well as all the composites and resonances tabu-
lated in Refs. 2 and 8. 'As in Ref. 8, a critical
density of p=0.12 fm= is used throughout this
paper. (Units are h=c=1.)

Figure 1 compares our calculation with data.
The calculation should overestimate the data at
the lower energy end as we have imposed no ener-
gy cutoff in the detected fragments; thus the ab-
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FIG. 1. Associated multiplicity for Ne on U; projectile
is Ne with energies 250 MeV/A, 400 MeV/A, 1.05 .
GeV/A, and 2.1 GeV/A. The curve A is drawn through
the data points; curve a is the theoretical calculation
[Eq. (2) in the text]; curve B is a calculation for charge
multiplicity without weighting [Eq. (1) in the text].
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FIG. 2. Calculated associated multiplicity for protons
A, negative pions B, and positive pions C for Ne on U at
various incident energies. Note the change of scale from
the previous figure.

sorption in the wall of the scattering chamber is
not taken into account. (We do consider cutoff
effects due to the limited pass band of the 90° de-
tector telescope; thus we ignore those undetect-
able events in which the proton trigger is emitted
with lab kinetic energy less than 5 MeV or greater
than 200 MeV.”) Although we have shown only the
case of Ne on U, other projectile/target combina-
tions were also computed, with similar agree-
ment.

Although this agreement with experiment is
pleasing, for reasons to be mentioned in Sec. III
it may be fortuitous. The major contributors to
(M,) in Eq. (2) are the protons; at high energies,
pions become important. In Fig. 2, we show each
of these contributions. Ne+U has a neutron ex-
cess over protons, so there are more negative
than positive pions produced.” The composite
production decreases as the energy increases.
The net result is a slight increase in the number
of protons with energy. It would be interesting to
have separate experimental data for both protons
and pions; if the slope of the increase of pro-
tons as a function of energy differs from what we
calculate, it may mean that the “cut” varies
with energy. The pion production, however, is
strongly influenced by thermodynamics as well
as by the cut.

III. MULTIPLICITY DISTRIBUTIONS IN THE STATISTICAL
MODEL

At each impact parameter, the participating
fractions of the target and the projectile de-
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fine a certain number of baryons, a total charge,
a fixed total energy E, and a fixed momentum P
which is zero in the center of mass of the fireball.
The assumption of the statistical model is as fol-
lows: Let there be n, particles (or composites) of
one kind, », of another, and so on; if such a par-
tition conserves the total baryon and charge num-
bers, then the probability of obtaining it is pro-
portional to the phase space available to it:

P

nyngeee

o« H—:l-,T fo(E - De,)5(P,)dp, , (4)
where the indices run over all participating spe-
cies. ’

For relativistic particles, the computation of
this microcanonical phase space is very hard; we
work instead with the canonical ensemble. Thus
one defines a temperature which is adjusted to
give the correct average energy. In the c.m. of
the fireball, the total momentum is also, on aver-
age, zero. At a given temperature, the probability
that we obtain a state which has »n, particles in
eigenstate A, n, particles in eigenstate B, etc. is

eBE4 M)p-BEg M), .

2
ABvs+
mymyeee

AB--- —
PiB =

(5)

o BE 4 mgBE g (M), , .

The probability of obtaining » particles of one
kind, n, of another, etc., is then just

E eBEA M )o-BE g (Y
Beee

(6)

P"l"z"' E o-BE4 (m)p-BE g M), |

ABv e
mymgee

The quantity 75 e ™9 is, however, the canonic-
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where Z; is the partition function of one particle
of species 17,

z,=V [ expl-Bim 2 + ) 2] pPdpag. (®)

Thus we have

1 m 1 n
;l'l—!-(Zl) 1@(22) oo

Py

®)
1
Z T

- :
m 1y
(20" (2)

mymyees

Equation (9) was derived in Ref. 4. The approxi-
mations leading to the above are detailed there.
The summations in Eq. (9) are restricted by

baryon and charge conservation. In view of the
fact that we have neutrons, protons, pions, deltas
and various composites and resonances, this con-
strained summation is hard to carry out in prac-
tice. With suitable approximations, the sums can
be computed. We illustrate this with an example
where only neutrons, protons, and the three pions
are considered important: Let n,, n,, n,, n,, and
ng stand for the number of protons, neutrons, 7,
7_, and m,, respectively, that are present. Then

b

n,=Q -=mn;+n,,
ny, =B =Q+n;~n,. (10)
Here B is the baryon number and @ the charge
number carried by the participating parts of the
target and projectile for a given impact parameter.
The quantity n, — n, is the difference between the
number of 7,’s and 7_’s. Usually this is small so
we can write

1! =(Q =ng+n,)! =

al partition function for n; particles. It is given QU™
1 : nz!ﬁm,N=B—Q.
Ze-BEA\(ni) ="‘—" (Zi)"i > (7)
Y n;t Equation (9) then reduces to
]
1 Q Z)\™ 1 Z, N\" 1
b ] ez %) mE5z) m® "
mnyeeng b 1 0 Q Zz) m o1 <Z Z, N) my 1 z)m (12)
> — X Zz) - Zi 20 T
my mame ! 3Z, N md \*Q Z, mgl s
i
The right-hand side of Eq. (12) does not contain ay =y (13)
n, or n,. If n, and n, are given, then n, and n, are - (14)
fixed by Eq. (10). At this stage, we introduce 7, 2= Has
n,, and 7, from the grand canonical ensemble. In A3 = Py = My, (15)
this ensemble, the average number of particles _ (16)
is given by @g=He = ks
n;=ef%Z,, @5 =0. (17)
where In the above, n, and n, are determined through
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the law of chemical kinetics, e.g., p+n.—:n+n+‘7r+
means that at chemical equilibrium y, =p,— i,.
We can rewrite Eq. (12) as

(tm)"

P xls-Is :' (18)
nyngesen - 7 3
5 E H (gm ‘) i
0 mgmgmg 13,5

where ¢, =7,Q/(,N), £,=7,N/(7,Q), and ¢, =1.
Although Eq. (18) is strictly valid only for
|n, —n,| < @ or N, we use it throughout since at
least |77, —7,|<« @ or N. We then have in general
for pions, deltas, and deuterons (both to be intro-
duced below)

1 X T
P,.f;;—;(é;ﬁ.-)"‘e S i=3.4,...,9. (19)
;!
We will also make occasional use of a better ap-
proximation than Eq. (11). For small » and large
@, one can use

@-mr =& 12y (20)

or better yet

@-nn =2 ( ——g-)”z'"ﬂn,Q) ,.

where

n o 2 n 1 3 4

N\~ Q3 A
is generated from the Taylor series expansion of
e"(1 -n/Q)°.

The production of A(1232)’s® can also be included
in the formalism. In obtaining single proton or
single pion inclusive spectra, it was deemed nec-
essary®? to include them. We have to modify Egs.
(10) to (19). Let n4, n,, ny, and n, stand for the
number of A/ A A, and A_, respectively.
Therefore,

N, =Q =Ny +0, = 2ng—n,+n,,
Ny =N+n; ~n,+ng—ng— 204 . (21)

An approximation similar to that of Eq. (11) is now
made. In addition to Eqgs. (13) to (17) we now have

= _ Ba.
n;=e"%z,,

with
Qg=24 — Uy, (22)
o=y, ’ (23)
Qg =ly, (24)
0y =2y = Ky - (25)

Carrying through the same argument as before,
we find the expressions for P,,, Pn,, and P, un-

changed. For the A’s, we find that the probabil-
ities are given by Eq. (19) with

ey
(@) (26)
;7=,%, @7
zs=g—2, (28)
¢ —Z(N—)z (29)
Q—Q ﬁz )

To calculate 7_ multiplicity distributions, the
appropriate decays of the A’s have to be taken
into account: A_decays into n+7_, but A, has a
probability a (=3) of decaying into 7_+p, and prob-
ability b (=%) into m,+n. Thus, »n negative pions
may come from », or any higher number, of A;’s.
It is not difficult to see that with A’s included, the
7_ multiplicity distribution becomes

P,= 2, P,P,P,, (30)
n4m8+n9=n
where P, =a"P,.e"s"% and P,, and {, are given by

Egs. (19) and (28).

It is clear that similar techmques can be used to
calculate the multiplicity distribution of any com-
posite. As an example, we calculate that of the
deuteron in an effort to understand what could be
learned from such a study We have used Eq. (19)
both with
Q
n,

€a= y = es(ulmz)zd s (31)

s;lz

and

1 n n.\ na-t /2 n\nat/2
- (-5) (-]
ng ~ m, mg-172 m, mg-172
E g ! (7145,;) < _§> ' (1 - _JV>

Equation (31) uses Eq. (11); Eq. (32) uses Eq.
(20).

IV. PION MULTIPLICITY

We use the development of the previous section
to calculate negative pion multiplicity for the reac-
tion Ar on Pb,;O,; the argon projectile has kinetic
energy 1.8 GeV/A in the lab.'° This particular set
of data has been the subject of considerable theo-
retical effort3:11-13

In Fig. 3 we show the results of our calculatmn
for P, (b) as a function of b and n for Ar on Pb,
For large n, P,(b) maximizes near b =0 but is
always numerically small. .The reason is obvious.
If for a given b many pions are produced [, of Eq.
(19) is large], P, is distributed among many =
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FIG. 3. Calculated values of P,(b) for negative pions
as a function of b for various values of » are plotted; the
vertical dimension refers to the values of P,(b). The
projectile is Ar on Pb at 1.8 GeV/A.

values and individually each of them is small.
On the other hand, if 7, is small, P, for large n
is necessarily small. For small n, P, is deter-
mined primarily by the edge, i.e., large impact
parameter. Thus in order to obtain information
on what happens for near head-on collisions, one

0.01

0.001 1 1 Il i 1 Il L
o 6 8
N

FIG. 4. Calculation of P, for negative pions compared
with experimental data. Ar projectile on Pb3O,, incident
at 1.8 GeV/A. Curve A: A’s excluded, no trigger bias.
Curve B: A’s included, no trigger bias. Curvea: A’s
excluded, trigger bias. Curve b: A’s included, trigger
bias. For the trigger bias used in the calculation, see
Sec. IV. )

has to determine P, for large n. These numbers
will be small and are harder to measure.

Figure 4 compares our results with the data.
Two calculations are shown: The first assumes
only pions, nucleons, and composites are pre-
sent; the second includes the production of pions
by deltas. In the experiment,'® the trigger of the
streamer chamber was biased such that events
in which very few charged particles were pro-
duced were not recorded. This bias is included
in the calculation'?''® by demanding that if less
than five charges are involved in the collision,
it is ignored in the computation of the multiplicity
distribution. This amounts to the imposition of a
cutoff in the impact parameter at less than the
sum of the two radii of the ions. The cutoff has
a significant effect on P, for » small (Fig. 4).
Compared to our fit of associated multiplicity
data, the agreement here is less than ideal and
we now try to understand the reason for this. One
could argue that the fireball model may still be
quite valid for low values of b, the impact param-
eter, and fails when b is large (only a few nu-
cleons participate in the collision). But there is
another explanation which we feel is more natural.
Generally if one uses a fireball-type model to cal-
culate one pion inclusive spectra, one finds that
the theoretical cross section is too high by a factor
of about 2 (see Refs. 8 and 14). Although the in-
clusive spectrum is not known at all angles or
energies, this suggests that the overall normaliza-
tion may be overestimated. We have therefore

0.01

0.001 NN U N TNNS T NS T N O B L
o} 2 4 [S) 8 10 12 14
Na_

FIG. 5. Same as before except that a normalization
correction has been made. See Sec. IV.
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FIG. 6. The calculated values of P,(b) for deuterons
as a function of b for various values of n are plotted.
The vertical dimension refers to the values of P,(5).
The projectile is 400 MeV/A Ne, incident on U.

done a calculation in which 72, %,, and 7%, [Eqgs.
(16), (24), and (25)] are computed correctly, but
are then arbitrarily halved in the calculation of
the multiplicity distribution [Eqgs. (19), (28), and
(29)]. The good agreement (Fig. 5) suggests that
it is the wrong normalization which is responsible
for the error. A further confirmation of this
would come from a measurement of negative pion
associated multiplicity (Sec. II).

Although the approach of Ref. 12 is similar in
spirit to ours, there are significant differences.
That calculation is valid only for N =Z systems;
also the temperature was parametrized, rather
than béing determined more rigorously from ener-
gy considerations as in our case., Of course when
we make these simplifications, we reproduce the
results of Ref. 12.

In Ref. 11 a multiple-collision model is devel-
oped and applied to the same data set. In that
analysis, no account is taken of the experimental
triggering condition mentioned above, so any com-
parison with our calculations should be made with
our “untriggered” results. (Recall that the shape
of the distribution changes significantly when this
experimental constraint is imposed.)

V. DEUTERON MULTIPLICITY

As an example of multiplicity distributions for
composites, we have calculated the case for deu-
terons. This is shown in Figs. 6 and 7. One in-
teresting feature is the plateau between P, and
P,_,, and we have verified that this remains even

1 T T T T T T T T T 1T
0.1 ]
P
Ng
0.01 -

0.001 N WS NN U S SRR U N U KR SO S
o 2 4 6 8 10 12 14

FIG. 7. Calculated P, for deuterons for Ne on U at
400 MeV/A.

if 77, of Eq. (31) is changed significantly. Any trig-
ger bias present in the experimental set up will
change the shape of Fig. 7; however, it should be
possible to incorporate such biases in the calcula-
tion. Unlike the pion case, here P, forn=6 or 7
already senses the central region of the collision.

VI. SUMMARY AND CONCLUSIONS

Based on the statistical model, we have obtained
expressions for charged particle multiplicity dis-
tributions in relativistic heavy ion reactions. The
formalism is quite general and applies equally
well to, for example, pions or deuterons.

Compared to experimental data on negative
pions, the difference between experiment and theo-
ry can probably be traced back to an overestima-
tion of normalization in the theory. The agreement
with data for associated multiplicity is good.
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